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Cosmological horizons play an essential role in determining the causal structure of spacetime
and are of central importance in the inflationary universe scenario. We review the topic of
horizons in simple language, pointing out a number of widespread misconceptions. The use of
spacetime diagrams plotted in terms of proper time and proper distance coordinates helps sort
out some of these difficulties. They complement the widely used conformal diagrams, which
show causal relations clearly but severely distort proper distances.

I. INTRODUCTION

The concept of a horizon is familiar from daily experi-
ence as the distance on the surface of the earth beyond
which it is impossible to see. The same idea appears in
cosmology as the distance light travels within a fixed
amount of time. Since the speed of light is the highest
velocity at which signals can travel, cosmological horizons
provide an even more effective limit on vision than the
curvature of the earth; no information can be obtained
from—and no causal contact is possible with—any region
of spacetime beyond a cosmological horizon.

Because of their role in the causal structure of spacetime,
horizons have always played an important role in cosmol-
ogy and this importance has increased over the past decade
or so with the advent of the inflationary universe scenario,
which was largely designed to solve the “horizon prob-
lem.” Yet, although the idea behind horizons seems
straightforward, it is apparently one of those concepts that
becomes accepted at some point during one’s training
rather than understood. In both the popular and profes-
sional literature one encounters statements like: “Infiation
makes the horizon distance far larger than the observable
universe.” But if the horizon is the farthest distance one
can see, this assertion amounts to, “Inflation makes the
distance one can see far larger than the distance one can
see.” Many papers also talk about galaxies “leaving” and
“re-entering” the horizon. According to relativity, such
behavior is simply impossible.

A number of the same concerns were voiced in Rindler’s
seminal paper of 1956, where he wrote - - -the meanings of
many phrases used in discussions of horizons such as, for
example, ‘all particles on one side of the horizon,” ‘crossing
the horizon with the speed of light,’ etc., evidently depend
critically on the definitions of time and distance whose
diversity is enormous. A statement meaningful and valid
on one interpretation can be meaningless or false on an-
other--+”.! Apparently things have not changed.

Even if one avoids definitional confusions, some para-
doxes remain. For instance, we shall see that in the sim-
plest expanding universe model, when the universe reaches
an age t;, the size of the horizon is 3ct,. How can the
horizon have traveled a distance equivalent to three times
the age of the universe, since its origin? Is the horizon
traveling faster than light?

Because of such conceptual difficulties, and because the
horizon issue has now found its way even to the pages of
the New Yorker and The Guinness Book of Records, we feel
an up-to-date discussion of horizons would be useful to
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physicists and students alike. In this paper we attempt such
a discussion in language we hope will be comprehensible to
anyone familiar with special relativity.

An unusual feature of our presentation is that we plot
several spacetime diagrams in terms of real time and real
distance before going to the conformal diagrams often en-
countered in general relativity. The approach allows one to
think in terms of familiar quantities and makes apparent
various features that are unclear in the conformal dia-
grams, thereby dispelling a number of common misconcep-
tions. Such physical coordinates, however, require the in-
troduction of Jocal light cones to make clear that no
superluminal signaling is involved anywhere. This compli-
cation brings with it a pedagogical advantage in showing
how careful one must be when dealing with coordinate-
dependent quantities.

Those already familiar with metrics as used in relativity
and the basics of the standard cosmological model may
want to skip Secs. II-IV. Conformal diagrams are intro-
duced in Sec. XI and the proper solution to the horizon
problem appears in Sec. XII. A word on event horizons is
given in the Appendix. A few other technical papers that
cover some of the same ground are Refs. 2-5.

II. METRICS

It is well known that every paper on relativity begins
with a metric.® Let us therefore write down the most fa-
miliar metric:

ds* =dx*+dy* +dz%. (1)

This is of course the differential form of the Pythagorean
theorem. The quantity ds is usually called the line element
and gives the infinitesimal distance between two points P,
Q in a flat (Euclidean) three space, once dx, dy, and dz are
known, that is, once the differences in the x, y, and z co-
ordinates are specified. As written ds only represents a
coordinate distance between P and Q, rather than a phys-
ical distance. The values for x,y,z are simply numbers, per-
haps 1,2,3. Until we specify whether x,y,z are measured in
centimeters or furlongs, one does not know what physical
length ds represents. Coordinate distances change under
coordinate transformations, whereas physical distances are
invariant under such transformations. From now on we
shall refer to physical length as proper distance, the term
used in relativity.

Because the principles of general relativity require that
the laws of physics remain unchanged under coordinate

- transformations, such transformations are central to the

theory. If the coordinates in Eq. (1) are to be “pure
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numbers”—dimensionless—we then need some method to
set the scale of measurement, that is, to find proper dis-
tances. The easiest way to do this in Eq. (1) is to multiply
the right-hand side by an arbitrary (constant) scale factor

ds*=R*(dxX*+dy* +d7*). (2)

Thus, if R is doubled, ds is doubled, and so on. Setting R to
a particular value in kilometers or cubits fixes the proper
distance ds corresponding to specific coordinate incre-
ments. (One must be careful here. For a given R, the trans-
formation X=Rx brings the metric back into the form
ds* = dx* + dy* + d2’, apparently “unscaling” ds; however,
this conclusion assumes that R and dx are dimensionless.
If, say, R is given in kilometers, the transformation in fact

throws the dimensions onto dx. Thus the physical scale is
retained, but the “coordinate transformation” has dimen-
sionalized the coordinates, which we wish to avoid.)

A good illustration of the role of R is the ordinary globe,
which can be described by the following metric in polar
coordinates:

ds’=R*(d6*+sin’ 0 d¢?), (3)

where ¢ is the latitude and 0 the longitude. In this case, R,
the radius of the sphere, scales all distances on its surface
(the angles themselves are necessarily dimensionless).

Turning to special relativity, the spacetime distance is of
course described by the Minkowski metric

ds’= —*dP +dx* +dy* +d2, (4)
or
ds*= —d +dr +r(d6* +sin® 8 d¢?), (5)

where we have written the same metric in both rectilinear
and polar coordinates and, contrary to convention, have
set c=c. The Minkowski metric describes a flat, but non-
Euclidean spacetime. According to the standard interpre-
tation, ds? <O represents a “timelike” interval, a displace-
ment of a particle at v <c; ds* >0 represents a “spacelike”
interval, or an instantaneous displacement; whereas if
ds*=0 it represents motion at the speed of light (see, e.g.,
Ref. 6 for more details).

III. THE STANDARD COSMOLOGICAL MODEL

Cosmology tends to be concerned with metrics that rep-
resent expanding universes. The standard Friedmann-
Lemaitre-Robertson—-Walker (FLRW) cosmology may be
thought of as a generalization of the Minkowski metric to
spaces that expand and that may have spatial curvature

’.2
ds*= —czdt2+R(t)2(%z+I2(d02+sin2 0 d¢2))

(6)

(see, e.g., Refs. 6,7). Note the resemblance to both the
globe [Eq. (3)] and the Minkowski metric [Eq. (5)]. In
these universes, the entire effect of the expansion is con-
tained in the time-dependent scale factor R(¢). The param-
eter k, determining the spatial curvature, has been scaled
to take on the values + 1,0 or —1. A k=0 universe has flat
spatial sections; a k=+1 universe is the higher-
dimensional generalization of a globe and is commonly
referred to as ““closed;” whereas the k= — 1 case represents
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a universe with negatively curved spatial surfaces, an
“open” model.

What about the function R(#)? This depends on the
particular model under consideration. Due to the high
symmetry of the FLRW model, the 10 field equations of
general relativity are boiled down to one

R\* 87G K Ac?

(E) =3 PTR T3 7
Here, p is the energy density of the model and A is a
constant, the cosmological constant. For now we assume
k=A=0. In a “matter-dominated” universe, one filled
with ordinary matter, p« (vol)‘locR_3 since, as men-
tioned, doubling R doubles all length scales. Then (7)
gives R o #/%. This is the so-called Einstein—de Sitter uni-
verse, the simplest cosmological model.

On the other hand, in a ‘“‘radiation-dominated” model,
the energy density of photons goes like (vol)~*3, so
p«R~*and R « 1”2, These dependences will soon prove to
be important. In particular, since R(¢) governs the dis-
tance between galaxies, in the matter-dominated case gal-
axies (and other particles locally at rest with respect to
them) will have world lines that follow trajectories o />,
We will use this case as representing a good approximation
to the universe at recent times. By convention, we choose
the origin of time so that the Big Bang (R=0) occurs
when r=0.

IV. NULL RAYS

In the usual spacetime diagram for special relativity,
light travels along 45° lines. Along such null rays the in-
terval ds is always zero. Similarly, setting ds=0 in the
standard model (6) gives the light trajectories for that
universe. Because the FLRW metric is everywhere spher-
ically symmetric, we can without loss of generality choose
the coordinates so that a general null ray is represented as
a radial null ray, with d9=d¢$=0. Then Eq. (6) gives

R 2
cldﬂ=%§ dr (8)

for the infinitesimal proper distance corresponding to a
coordinate distance dr (traversed in time dt).

Here we encounter the first place where conceptual clar-
ity is essential. Assume that the time interval d¢ is fixed.
Then the above expression appears to indicate that as light
crosses the coordinate interval dr, the distance traveled
depends on the function R(¢). For instance, it might seem
it travels a different distance in a model where R « */3 than
in a model with R o« /2. This seems highly improbable if
one believes that the speed of light is a constant.

The crucial point here is that the coordinate system of
Eq. (6) is a peculiar type of coordinate system used by
cosmologists, known as comoving coordinates. The coordi-
nates of a galaxy, 7, 0, ¢ are fixed in this system; the only
thing changing is R (#). To visualize comoving coordinates
it is best to resort to the balloon analogy and imagine each
galaxy stuck to the balloon at a constant r,6,¢. However,
the coordinate grid itself is getting bigger. If in Eq. (8) dt
is fixed and R(¢) increases, then the coordinate distance dr
(and hence, number of galaxies encountered by the light)
must decrease

This actually makes intuitive sense. If an observer is
sitting on galaxy A and receiving light signals from neigh-
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Fig. 1. One might think a £/ universe expands faster than a /2 universe,

but the expansion rate is fixed foday by measurements of the Hubble
constant H=R/R. Thus the constants of proportionality are such that a
£/% universe is younger, and hence must be expanding faster, than a 3
universe. The so-called Hubble age of the universe, 1/H is marked.

boring galaxies B, C, D,..., then the faster the universe is
expanding, the fewer galaxies the observer expects to see
when the light travels a given time interval dt. Since in
comoving coordinates, galaxies are attached to different 7’s,
the fewer r’s an observer sees, the fewer galaxies.

As an important aside, a umverse with R« is not
expanding faster than a R «¢'? universe. With A=k=0
one can easily integrate Eq. (7) for matter- and radiation-
dominated models to get the age of the universe

to=3H;"' (matter), 9
t0=%H0_ V' (radiation), (10)
where
HomRo/Ro= [ S20P0)
0=R¢/Ro= (7—)

is the current value of the Hubble constant =R/R. This
means that a 7'/ universe is actually younger than a #3
universe and hence must expand faster to reach the current
value of R. The point that is usually forgotten is that we fix
R and H today, so the curves match now. The situation is
shown in Fig. 1.

V. PARTICLE HORIZONS

For a given observer at the present time 7, the particle
horizon, following Rindler,! is the surface in ordinary
three-space that divides particles that have already been
seen by the observer at time #,, from particles that have not
yet been seen.

To calculate the horizon distance, define the coordinate
horizon as the coordinate distance light has traveled to an
observer at ¢, since the earliest possible time ¢, for emission,
which in the usual case is taken to be zero (the origin of
the universe). It is easily found from Eq. (8) to be

= I 1= [ 5

Now the essential point is that there are particles (or gal-
axies) whose 7-coordinate value is currently greater than u;

(11)
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Fig. 2. In special relativity light travels along straight lines and the light
cone is the familiar one. General relativity models the universe as a Rie-
mannian manifold and the light cones will therefore be curved, as are lines
of longitude on the surface of a sphere. The coordinate distance u that
light travels in an interval between times ¢, and ¢, is indicated. This is the
coordinate horizon when ¢, is the beginning of the universe. Note that this
diagram does not represent spatial distances accurately.

we cannot have seen them. Those galaxies with
r-coordinate value equal to # therefore separate the ones
we can have seen from those we cannot.

However as before, u is just a coordinate distance. To get
the proper distance to the horizon, one must again set the
scale

h(t) =R(y)u= R(to)f (12)

R(t)
The quantity 4(¢,) is the present size of the particle hori-
zon. It is an integral, hence a nonlocal quantity, and the
upper limit of integration is now. This point is crucial: as
defined, the horizon refers to a distance today, not to the
position of any particle in the past. If one remembers this
point, certain headaches will be avoided in what follows.

Figure 2 shows the past light cone of an observer at ¢,
with the coordinate horizon indicated. The diagram is
schematic and meant to resemble the usual spacetime dia-
gram from special relativity but in curved space. It will
turn out this sort of diagram is not the most useful.

At this stage, one encounters two interesting issues; one
a curiosity, one a major conceptual difficulty. The first is

_that for a static universe R =constant and h is immediately

found to be h=ct,, as you might expect. However, this
assumes that the static universe came into existence at 7,
=0. For an infinitely old universe, f,— — o0, the integral in
Eq. (12) diverges at the lower limit and there is no
horizon—all galaxies are visible. This is important when
thinking about Olber’s paradox (see, e.g., Harrison, Ref.
7). However the real universe is not static.

The second issue is a that for the standard matter and
radiation models, 4 is easily found to be

h=3ct0 (13)

h=2cto (14)

This is apparently very strange. If the speed of light is the
universal constant ¢, how in a time #; can one see a distance
2Ct0 or 3Ct0

The short answer is that no signal is propagating faster
than light and no signal has traveled a distance 3cty—a
point that will become clearer as we go along. For now we
note that a galaxy on the horizon is at a distance=3ct,
today; the “galaxy” was in fact on top of us when the light
we see was emitted (its distance was then zero; see Fig. 3).
The galaxy as it exists today is not yet visible to us.

(matter),

(radiation).
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Fig. 3. Equation (15) shows that the horizon distance s« R « #3, The
proper distance between galaxies also increases as R, so both the world
lines of galaxies and 4 follow curves « #73. Indeed, the horizon may be
considered as the set of galaxies that separates the seen from the unseen.
Several trajectories are shown here, representing the horizons at times #;,
t, t;, and £,. The curve marked ay?’ delimits the horizon today.

On the other hand, this appears to compound the prob-
lem; if a galaxy on the horizon has traveled a distance 3¢t
in a time #,, then the velocity of the galaxy must have been
at least three times the speed of light! One must seize the
bull by the horns and accept that this is in fact what hap-
pens. _ '

To get a mental picture of how the horizon can recede at
2¢ or 3c, consider the usual expanding balloon with radius
R. Two galaxies are separated on the surface by an
arclength S and a constant angle 6, with S/R=86. Clearly,
S=0R.1If, e.g., R=c/2, then § > ¢ when 6> 2 rad. The two
galaxies are receding faster than c but, as we will show, no
signal can be exchanged between them.

First, in order to better visualize the horizon, we plot the
current horizon’s time behavior. We want the proper dis-
tance [measured in a surface (z=const)] at some time ¢ in
the past, of those galaxies that become today’s horizon.
Since we use comoving coordinates, this is given simply by
multiplying # by R(¢)

h(to,t) =R(t)u, (15)

where u is the coordinate horizon as defined in Eﬂ (11).
Today’s horizon is found by setting t=t,. If R < #/* then
h o< 7”3 as well (although as a function of #,, 4 «t,). Note
that because % o />, the horizon is behaving just like the
world lines of galaxies (see Sec. III). For conceptual clar-
ity, it is in fact useful to follow Rindler in considering the
horizon to be the set galaxies beyond which we have not
yet seen. Figure 3 shows a set of horizon curves drawn in
proper time and proper distance.

Note, of course, that the horizon is constantly encom-
passing larger amounts of the universe—more galaxies are
always becoming visible as we view the universe at later
and later times. Figure 3 also makes clear that once a
galaxy falls within the horizon it remains within the hori-
zon. This will become more obvious in Sec. XI, but we can
already see that statements referring to galaxies entering
and then leaving the horizon are false.

We have now plotted the distance to the horizon as a
function of time. We will plot the velocity of specific gal-

886 Am. J. Phys., Vol. 61, No. 10, October 1993

axies in Sec. VII, showing they are superluminal, but Fig.
3 confirms that at time f, the horizon is at 3ct;, meaning
the average recessional velocity is 3c. However, this motion
has the character of a phase velocity. The question is
whether any superluminal signaling is involved. To show
that this is not the case, we examine the behavior of the
light rays themselves.

VI. THE PAST NULL CONE

Consider the length

; o cdt
(1) =R(z,) f Ok (16)
This represents the proper distance / corresponding to a
time ¢, when a light signal was emitted such that it reaches
us today at #,. In other words, /(z,) for all 7,<¢, is the
locus of points that lie on our past light cone. (Just as in
special relativity the past light cone is the locus of points
such that all signals emitted reach us now.) For R < /3 we
easily find

I(2,)=3c(27t*~1,). (17)

This is a striking result: /(z,) is not a monotonic function of
t,. Setting di/dt,=0 shows that the maximum / occurs at
t/ty=8/27 and [I,,=4cty/9. Figure 4(a) shows I(z,)
along with 4(#,?). Note again the proper time and dis-
tance coordinates: these are the physical times and dis-
tances as would be measured directly by local experiments.

How do we explain the shape of the past light onion?
Here is an example of gravitational lensing: light rays emit-
ted by a distant enough galaxy in the past initially spread
out, but are then refocused by the matter in the universe
and are reconverging by the time they reach us. Conversely
as we follow our light cone back into the past, the gravi-
tation of the matter it encloses causes refocusing, so it
reaches a maximum size (the *“equator”) and then con-
tracts.

From Fig. 4(a) we see that no light ray received now
ever reaches us from anywhere near the horizon distance;
thus no signal conveying information to us travels faster
than light. One might be initially perplexed that the hori-
zon is always outside the past light cone in the diagram.
This is as it should be; the horizon separates particles that
have already been seen from those that have not yet been
seen. Anything to the left of the horizon has been observed
by the current time; anything to the right has not. To make
this clearer, in Fig. 4(b) we plot several world lines of
galaxies that formed the horizon at earlier times (as in Fig.
3). Each of these earlier horizons has intersected our
present past light cone. Just as in special relativity, that
means the corresponding particle will have already been
seen by us. The current horizon curve is tangent to the past
light cone at 1=0.

VII. THE SPEED OF LIGHT SPHERE

Sometimes people have the impression that the horizon
is the distance at which a galaxy is receding at the speed of
light [see, e.g., the Guiness Book of Records, 1992 edition,
p. 6 (“Remotest object™)]. It is easy to see that this is not
the case. As before, when k=0 the proper distance to a
galaxy (expressed in terms of comoving coordinates) is
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Fig. 4. (a) Today’s past light cone [Eq. (17)] is shown as well as the corresponding horizon curve. (a)-(d) represent spatial distances accurately. Note
that today’s value of the horizon is 3ct, as found in Sec. III. But no light ray from our past light cone starts at anywhere near this distance; indeed the
maximum distance from which we receive light is 4cf/9, showing that nothing conveying information to us has traveled faster than light. Also shown
is the speed-of-light-sphere, SLS, on which objects are receding from us at the speed of light. It corresponds to a distance D,=3ct/2. The point L marks
the intersection of the past light cone with the SLS. The point S marks the position at which a galaxy receding at the speed of light today was actually
seen by us. (b) Any galaxy to the right of today’s horizon (the shaded region) has not yet been seen by us. Any galaxy to the left of today’s horizon
has followed a world line that has already intersected our past null cone, as can be seen by examining trajectories of previous horizons (cf. Fig. 3). These
horizons correspond to the past null cones drawn. The points where the world lines intersect today’s past null cone mark where we have seen galaxies
on those world lines. (c) As in (a), but with the creation light cone. The creation light cone gives the horizon when it reaches ¢=#,. (d) The global
light-cone structure of the FLRW spacetime with local light cones drawn in. This shows that in proper-distance coordinates the speed of light varies
considerably from one place to another.

D=R(t)r. (18) corresponds to the SLS, not to the horizon [in Harrison’s

. ) L ) L recent paper on this topic (Ref. 3) he refers to the SLS as

Smce r is constant in time for a galaxy, the time derivative  {he Hubble sphere]. We return to this important point in
18 Sec. XIII.

.. R It is true, however, that the horizon is the surface of

v=D=Rr=— D, (19) infinite redshift, as can be seen from the cosmological red-

R

which is Hubble’s law (the recessional velocity of a galaxy
is proportional to distance.)

shift formula

R(1)

Now, setting v=c gives a distance D ,=3cty/2 for the
matter-dominated case. Another surprising result. The ho-
rizon is not the distance at which objects are moving away
with velocity ¢. The horizon is twice this distance; the
matter there is moving away from us at twice the speed of
light. We plot the speed-of-light sphere (SLS) on Fig.
4(a).

There is another way to interpret this result. The Hubble
radius, as defined by astronomers, is ¢/H=cR/R. Note
that R/R=3t/2. Thus the Hubble radius of the universe
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z (20)

=m—)'— .

Thus if R(¢,) -0 at ¢,—0, then the redshift z— «. Conse-
quently infinite redshift is not the same as motion away
from us at the speed of light.

It is important to keep in mind that, as with the horizon,
a galaxy currently receding at the speed of light was actu-
ally seen by us at a much earlier time (when it was moving
away from us much faster than the speed of light). This
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time and position is marked S on Fig. 4(a): it is the inter-
section of our past null cone with the worldline of the
galaxy that now lies on the SLS.

With this in mind, the redshift formula gives immedi-
ately another striking result. Solving Egs. (17) and (19)
for the intersection of / and the SLS, one quickly finds that
the SLS intersects the past null cone at its maximum (this
seems to be a coincidence). The maximum occurred at
t,/ty=8/21, at which point R(z,)/R(#,) = (8/27)**=4/9.
Equation (20) then gives z=1.25 at the SLS. In other
words, galaxies at point L on Fig. 4(a) emitted the radi-
ation we now see when they were receding from us at the
speed of light. Such galaxies have a redshift of only 1.25—a
far cry from infinity. This means that all the objects we see
with redshifts 2> 1.25 (which include many quasars) gave
off the light we observe when they were moving away from
us faster than ¢. Indeed, according to Eq. (7), the velocity
of all matter was infinite at the Big Bang; it then gradually
slows to subluminal velocities.

What is the present position of the matter that we ob-
serve at the exceptional redshift value of z=1.25? It is in
fact just a distance cf; away from us today. The average
recessional velocity of this matter, since the Big Bang, is
precisely ¢! (And c is also precisely the speed of the matter
when it emitted the light by which we see it!) Contrast this
with the matter at point S on Fig. 4(a). This matter is
today moving away from us at the speed of light. The time
of emission is easily calculated to be (1/8)¢,. The redshift
of this matter is z=3, and at ¢, the velocity was 2¢, which
is greater than ¢ (as it must be).

We also take this opportunity to mention that because
z=1.25 is at the maximum of the past light cone, where
gravitational refocusing of light begins, this redshift is also
the position of minimum angular diameter of galaxies (re-
member we are assuming the Einstein—de Sitter case: p=A
=k=0).

VIII. LOCAL LIGHT CONES

One might doubt the statement that no signal is propa-
gating faster than light is true at the point marked L on
Fig. 4(c)-the point where the SLS intersects the past light
cone. At L a galaxy is seen by us at %, to be receding at the
speed of light. Does an observer sitting at L measure other
matter to be receding faster than ¢? No! To understand this
one must calculate the behavior of light in the vicinity of
L; we must determine the local light cone. We show how
to this now, although readers not interested in the details
can skip to Sec. IX.

Recall first that the metric Eq. (6) is comoving, but our
graphs are plotted in real (proper) time and real (proper)
distance D. To see what the local light cones look like on
such graphs we transform from comoving coordinates
{¢,7,0,¢} to proper distance coordinates {¢,D,8,¢}. From
Eq. (18), when k=0

dD=Rdr+rdR (21)
or
dr=-d£—£5 Rdt. (22)
R R
This gives
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R? R
R¥*P=dD*— D* 7z dt2—2D— dDds. (23)

The radial part of the metric Eq. (6) now becomes

ds2=(—1+D2—7) cdP—2D — dDdt+dD2 (24)

For null rays, ds=0, as always Dividing both sides by d7
gives a quadratic equation in dD?/df which is easily
solved to yield

dD, D R

dt TR

The quantity d D/dt is the tilt (inverse slope) of light rays

at an arbitrary point on the graphs; in other words, it gives
the local light cone at any point.

Since DR/R, Hubble’s law, represents the recessional

velocity of matter, we see that the relative velocity of light

and matter is always c. Specifically, at the SLS, Eq. (19)
gives d D/dt= DR/R =c. Inserting this into Eq. (25) gives

dD dD,

+c. (25)

=%

for the local light cones. That is, one null ray is vertical
while the other has tilt 2¢. This will be true anywhere along
the SLS and is independent of equation of state. Now, at
the SLS the velocity of matter D,, was by definition ¢. The
tilt of local light cone there was {0,2}, telling us that the
velocity of light relative to matter is still ¢, as required by
relativity. Nothing is propagating faster than local velocity
of light. The local light cone is drawn in Fig. 4(c).
Using Equations (25) and (27) below, one can find the
light-cone structure not just at the SLS but over all space-
time; the cones are everywhere tangent to the light rays
through each point. The result is shown in Fig. 4(d). [To
aid plotting, note that dD_ /dt in Eq. (25) is always pos-
itive, but dD_ /dt changes sign at the SLS. The SLS thus
represents the turning points of these trajectories.]

(26)

IX. THE CREATION LIGHT CONE

The peculiarity that the velocity of light at L is 2¢ stems
from the coordinates we have chosen, which extend from
the origin over all spacetime. General relativity attempts to
make spacetime resemble the flat Minkowski space of spe-
cial relativity—where the speed of light is always c—but it
can only do this locally, not globally. Locally, one can
always find a coordinate system so that the velocity of light
is ¢. The details of how to do so are a large part of a
general-relativity course. Nevertheless, we have already
shown that locally the relative velocity of matter and light
is ¢, so one should find the following result easier to accept.
Equation (25) integrates to

cdt
‘*R(”f R®D’

where we have used the definition of » and where ¢, is an
integration constant. By convention the (+ ) indicates null
rays outgoing from ¢;, while (—) indicates null rays ingo-
ing to ¢, [although 7> 0 at all points in the spacetime, to
plot geodesics that lie outside the horizon, it is necessary to
let ¢, go negative in Eq. (27).] With #;=¢,, we have

(27)
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R [ 2% LR f"’—cft— (28)
D_(t)=-— (t)ft0 R(t)_+ t) . R’

which is our previous result for the past null cone [cf. Eq.
(16)].

On the other hand, the light cone spreading out from
t,=0 to the future is given by #;=0: then

t cdt
D+(t)=R(t)f0 f(—t_)_

This is termed the creation light cone. For a matter-
dominated universe, D(t)=3ct. The creation light cone is
plotted on Fig. 4(c) and looks nothing like the past light
cone. Here is perhaps the hardest result to understand: the
velocity of light on this trajectory, measured in terms of
proper distance from the origin divided by proper time, is
precisely 3c at all times. No getting around it. The point is
that the speed of light is a constant=2300 000 km/s relative
to matter. But because the matter is itself receding from us,
the speed of light relative to us must be greater than c,
although no causal violation is involved. Thinking again of
the expanding balloon with the horizon receding faster
than ¢, the matter velocity at D=3ctis D= DR/R=2c, so
as always the relative velocity of matter and light is c.

The importance of the creation light cone is that it gives
the particle horizon, when evaluated at t=¢,. We can first
receive light from a distant galaxy when it enters our ho-
rizon. Because the FLRW universe is homogeneous, that is
the same instant when light from our galaxy is first visible
to the distant galaxy. Figure 4(c) shows this takes place
when that galaxy lies on our creation light cone and vice
versa.

(29)

X. THE VISUAL HORIZON

In order to relate the horizon idea to real observations,
we must introduce one other type of horizon, the visual
horizon.? The visual horizon is merely the distance from us
of light which was emitted at the surface of last scattering,
at a time #; (for decoupling) and a redshift z~ 1000. This
is the time at which matter and radiation decoupled in the
early universe. At higher redshifts and earlier times the
universe is opaque to electromagnetic radiation; the visual
horizon thus really does define the maximum distance one
can see. Evaluated at ¢, it gives the distance at which the
cosmic microwave background radiation was emitted. To-
day it gives the present position of the particles that emit-
ted that radiation; these are the furthest objects we can ever
have seen (by any form of electromagnetlc radiation).

For the above value of z, with R « £/, Eq. (20) gives

t;=(1000) ~%%,. (30)
The proper distance to the light cone at that time is given
by Eq. (17) as

ho(tg) =3c(Z47 (31)

This was the position of the emitting matter at #;. Since the
distance to the horizon has increased by a factor of 1000
since then (Sec. V), its position is now

hvh(to)=0.97(3Ct0)=0.97h(t0), (32)
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Fig. 5. The conformal version of (c) (but with the SLS omitted). All the
light trajectories have been stretched into straight lines to make the figure
resemble the spacetime diagrams of special relativity. The penalty one
pays is that spatial distances are severely distorted. In particular, at =0
(where space time becomes singular), what is represented as a single
point on the previous diagram is mapped to an infinite plane.

where A(%,) is, as usual, the distance to the particle hori-
zon. However, as we have discussed, we cannot see to this
set of events, precisely because this distance is evaluated
today. Recent statements that “the primordial lumps in the
microwave background found by COBE represent the be-
ginnings of galaxies” are not verifiable through astronom-
ical observation, in the sense that any given lump observed
by COBE at the visual horizon evolved into something that
today lies far beyond what is now visible (Fig. 6).

The importance of the visual horizon will become clear
in Sec. XII. For the moment we note the following: the
maximum distance to which we can see in the universe is
Imax=4cty/9=1(8/29)(1/H,), as was already established
(Sec. VI). The distance we see by observing the microwave
background radiation is much less that this; it is h,,(2,)
[given by Eq. (31)], only about 107 light years. Further,
when this matter emitted that light, its speed of motion
away from us was (cf. Sec. VII)

R 2
v=R(td)Dd— (1000)3’2 (097)

= 1.94c10001/2=61.3c. (33)

This is the fastest moving matter we can see in the uni-
verse! However at the present day that matter is moving
away from us at 2c. Note that in both cases, the speed of
motion of that matter measured in a local comoving frame
is precisely zero (for that is the definition of such a frame).

XI. CONFORMAL DIAGRAMS

So far we have plotted the results in proper time and
proper distance. This method has the advantage of using
familiar quantities and it shows the real distances light has
traveled in a time df, but it has several disadvantages. Chief
among them is that the speed of light is no longer the local
speed of light. Further, all the past null cones and horizon
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Fig. 6. A conformal diagram illustrating the increase of the horizon with
time [cf. Fig. 4(b)]. The world lines of galaxies are vertical. This shows
clearly that a lump observed by COBE at the visual horizon has evolved
today into something that is not currently visible. Also shown is the world
line of an arbitrary particle not at rest with respect to galaxies. Since its
trajectory must be bounded by 45° lines, once it enters the horizon, it
remains within it.

lines converge at = D=0 and the details there are impos-
sible to discern. Both problems can be alleviated by rewrit-
ing the FLRW metric Eq. (6) as

ds' =R} —dn’+dP+P(d6*+sin’ 0dg)],  (34)

where we have used 7 to represent a comoving coordinate
system where the 1—k7* does not appear. It is clear that
such a transformation can be made in the k=0 case. Then
7=r, R=R(t), and dn(t) =cdt/R; one can show® that it is
possible to make a similar transformation for all the
FRLW models.

This conformal transformation has changed the FLRW
model into a flat Minkowski metric’ except for the confor-
mal factor R?(x’). For obvious reasons 7 is termed confor-
mal time.

Clearly, in this coordinate system null rays (ds=0)
travel along 45° lines, as they do in special relativity. This
is a great simplification. Under the conformal transforma-
tion Eq. (34), Fig. 4(c) becomes the conformal diagram
Fig. 5. Note the time coordinate is

t cdt

o R(1) (39)

n(t)=

and in the k=0 case, the space coordinate is comoving
coordinate value r (F=r). Surfaces of homogeneity (e.g.,
constant density surfaces) are horizontal on such dia-
grams, and world lines of galaxies are vertical.

One pays a penalty for using conformal diagrams: it
completely hides true distances (correctly represented in
the previous coordinates and diagrams). The proper dis-
tance between ‘“‘galaxies” at the Big Bang singularity =0
is zero. But because on the conformal diagfam the distance
to a galaxy is given in coordinate distance, it remains con-
stant, fixed at “today’s” value. The physical distances near
t=0 are thus severely distorted, appearing much larger
than they actually are; and this distortion becomes infi-
nitely large as —0. Nevertheless, conformal diagrams are
essential in understanding fully the nature of horizons.
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Fig. 7. Two galaxies G| and G, that we see in opposite directions in the
sky at the moment they are first able to causally interact. From basic
geometry it is easy to calculate that the distance between them is 2u/3.
The diagram also shows the relationship between the visual horizon (the
furthest distance we can see today) and the particle horizon. One sees that
the difference between them ~0.0312(t0) was the size of u at #,. Therefore
regions 1 and 2 shown at the bottom were separated by about 60 horizon
distances at the time of decoupling. It was thus impossible for them to
causally interact. This is the horizon problem.

They also make it much easier to see what happens in
inflation, and so the following discussion will be based ex-
clusively on them.

Before turning to inflation, consider Fig. 6. We see
clearly how a galaxy world line H separates those that can
have been seen by us, at time f,, from those that cannot
have been seen by us. We also see how our creation light
cone intersects the particle horizon today, just as we cross
the creation light cone of those galaxies that comprise the
horizon. This diagram also makes it easy to see how the
horizon increases with time. [This behavior is in sharp
distinction to MaCallum’s “reference horizon” (private
communication), which is the horizon beyond which a
published work is no longer cited. The reference horizon is
a rapidly decreasing function of time, and has a current
value measured at approximately 6 months.] Further, since
on conformal diagrams world lines of particles are
bounded by 45° lines, it is obvious that once any particle
enters our horizon it remains within it. Figure 6 also clar-
ifies the claim made in Sec. X that a blob seen by the
COBE satellite develops into a structure that is invisible
today. Figure 7 shows the relation between particle hori-
zon and the visual horizon.

Note particularly that these diagrams represent exactly
the same situation as shown in the previous diagrams, but
using different coordinates. The proper coordinate dia-
grams are transformed to these ones by magnifying the
spatial length scale by an amount that gets larger and
larger at earlier times, in such a way that galaxy world
lines become vertical and light rays travel at +£45°.

XII. WHAT DOES INFLATION DO

Inflation was designed largely to solve the ‘horizon
problem.” The horizon problem is most easily phrased in
terms of the microwave background. The COBE results
showed that the temperature of the background is uniform
to about 1 part in 10%. The question is, how did the back-
ground become so isotropic?

To be more precise, consider Fig. 7. An observer O at &,
sees a highly uniform background originating at ¢;, the
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Fig. 8. Inflation solves the horizon problem by putting the universe
through a period of exponential expansion at a very early time before #,.
(The diagram is unchanged after ¢;; cf. Fig. 7.) The singularity at =0 is
thus moved exponentially far from ¢, (in terms of these conformal coor-
dinates) allowing significant overlap of the past light cones of regions 1
and 2 (the dark shaded region at the bottom). Nonetheless, the overlap is
not total unless the universe is spatially closed (Sec. XIII).

decoupling time. Yet, as can easily be calculated from the
figure, the two galaxies marked G, and G, that the observer
sees in opposite directions could not have interacted with
each other if they are separated by more than 2u/3, two-
thirds of a coordinate horizon. This corresponds to an an-
gular separation of 60° in the sky at present. In other
words, regions on opposite sides of the sky are just coming
into causal contact now.

From Eq. (32) we found that 4,,=0.97h(%,). Both scale
as R, so at the time of decoupling, ¢, this remains true (i.e.,
the coordinate horizons always have the same value.) Re-
ferring to Fig. 7, we see that u () —u,(2,) =0.03u=1/30u
was in fact the horizon distance at decoupling. Thus re-
gions 1 and 2 on the diagram were separated by about 60
horizon distances when the microwave background was
created.

This being the case, causal interaction between various
regions of the sky was impossible. How then, did the mi-
crowave background become so uniform? This is the hori-
zon problem. One answer is that the universe was uniform
from the outset. Another answer is that inflation made it
that way.

According to the inflationary scenario, at about 10~ s
after the Big Bang (depending on the model) the universe
underwent a brief period of exponential expansion, during
which

R« e, (36)

where H=R/R =constant. Note that this is equivalent to
R/R=Ac*/3 in Eq. (7).

Because inflation took place at very early times, it affects
Fig. 7 only near ¢=0; it certainly leaves it unaffected after
t;. Recalling that conformal time 7(#) squeezes an infinite
amount of time onto a finite sheet of paper, the effect of
inflation is to give Fig. 8. We see that inflation allows the
past histories of two causally disjoint regions to signifi-
cantly overlap. Consequently they may interact and make
the microwave background uniform (though inflation does
not necessarily specify the form of the interaction).

That is all there is to it.
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XIII. WHAT DOES INFLATION NOT DO

Frequently one hears that inflation makes the horizon
far larger than the observable universe. We are now in a
position to understand what this statement means. Due to
the exponential increase of R in Eq. (36), the particle ho-
rizon is made exponentially large. But the visual horizon,
which relates to the much later time of ¢,, remains exactly
where it was. Thus we see exactly as far as we do in the
standard model.

One also frequently encounters statements in the litera-
ture about galaxies leaving the horizon, then reentering the
horizon at a later time. We have already explained that this
is impossible. Upon closer examination, what such state-
ments refer to is the following. Before inflation begins, a
comoving length scale, A will be getting larger with R. At
the same time R/R is getting smaller as the expansion of
the universe slows. Let us assume that A represents the
distance to a visible quark—the quark lies within our ho-
rizon. When inflation begins, A gets exponentially larger
while H=R/R becomes constant. Thus, the distance to the
quark becomes much larger than ¢/H, or AH/c»1. The
quark leaves the horizon. After inflation, H becomes much
smaller and eventually AH/c becomes <1 and the quark
(now part of a galaxy) reenters the horizon.

We see, however, that in this discussion ¢/H has been
tacitly equated with the horizon distance. But we have
already shown in Sec. VII that ¢/H is the speed-of-light
sphere. Therefore this discussion has nothing to do with
horizons. The same papers usually refer to ¢/H as the limit
of causal interaction, but as we have already detailed, that
distance is given by the horizon, not by the SLS.

XIV. CLOSED SPACE SECTIONS

We complete our survey by pointing out a feature of
inflation that seems to have gone largely unnoticed in the
literature: There is a large difference between inflation in a
spatially open (k= -1) model and a spatially closed (k
=+1) model.

In a k=—1 or k=0 standard model, the spatial extent
of the universe is truly infinite and therefore the model
contains an infinite amount of matter. The horizon, then,
limits our causal contact to a vanishingly small fraction of
the matter in the universe. This remains true even under
inflation; although the particle horizon is made exponen-
tially larger, it is still not infinite. Thus new information
can enter the horizon in the future and it is always possible
that some large-scale gradient in conditions will eventually
make the background radiation anisotropic (direction de-
pendent).

In a closed (k= + 1) model with vanishing cosmological
constant, this is far less likely to happen. Due to the cur-
vature of space we see a finite fraction of all there is. [The
precise value of this fraction depends on the famous den-
sity parameter = (p)/(p.n), Where p., is the value of p
in Eq. (7) when k=A=0]. For instance, one can show
that the horizon encompasses everything in a closed model
just at the moment of final collapse—you have seen right
around the universe.

However, as discussed above, if there is a nonzero cos-
mological constant in Eq. (7) (or equivalently a potential
dominated scalar field), inflation results, and we actually
see around (or at least make causal contact) before the end
of the universe. To see how this works, consider Eq. (11)
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with k= +1 and R=R e, where R, is the scale factor at
the beginning of inflation. Then Eq. (11) integrates to

ce—Ht,

HR,

where #; is the time that inflation begins and Az is the
duration of the inflationary period considered. (Here is a
good example of a model in which the horizon is definitely
not the SLS: The SLS=¢/H is constant, but the horizon is
always increasing. )

Now, the maximum value of arccos(u) needed to see
around the universe is 7 and ¢#; can be set to zero. Then we
have

arccos(u) = (1—e—HAY, 37

¢ _HAt
= HR1 (1—e )
determines the time Af needed to see right round the uni-
verse.

In the FLRW model without inflation, recalling that
R « temperature™", one can eas1ly calculate that at infla-
tionary temperatures T ~ 10% K, the “radius” of the uni-
verse was R~1 cm, while ¢/H was smaller by a factor of

~10%°. This surprising result is actually another statement
of the horizon problem. For the FLRW model
¢/H~ horizon: as t—0, (horizon)/(scale factor) —0 so at
early enough times no particles could communicate. Thus
¢/HR ~10~% in the standard model and it is impossible to
see a coordinate distance .

The situation is different if there was an inflationary era.
One generally fixes R at today’s value. That means if in-
flation took place, and increased R exponentially, then R,
must have been exponentially smaller than in the standard
model at the equivalent time, so ¢/HR,>1. (This is an-
other way of stating how inflation solves the horizon prob-
lem.) In that case, Eq. (38) shows that once inflation has
started, it is possible to see around the universe each time
w~HAt, or 1/m times the number of e-foldings during
inflation. The upshot is that inflation can isotropize the
universe much more effectively in the k=1 inflationary
model because it allows each particle to be in causal con-
tact with al/l the other matter in the universe many times
over (you can “see” round the universe many times),
which is not possible in the open or flat inflationary mod-
els. The particle horizon is thus broken at an early time in
inflationary universes with closed space sections.

(38)

XV. CONCLUSION

We see that because of the curvature of spacetime, when
we plot the history of the expanding universe in proper
distance and proper time coordinates some surprising facts
emerge. We do not see out to a Hubble radius; the micro-
wave background radiation was emitted a very small dis-
tance from our past world line; the matter emitting that
radiation was moving away from us at 60 times the speed
of light at the time of emission. Further, the light forming
our creation light cone traveled away from us at an effec-
tive speed of three times the speed of light, explaining why
the particle horizon today is at a distance corresponding to
three times the age of the universe. The galaxies forming
that horizon have been moving away from us much faster
than the speed of light, and are presently moving away
from us at twice the speed of light. All these features follow
by straightforward calculation of proper distances in a
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FLRW universe. The usual conformal diagrams make
causal properties very clear, but hide the real spatial dis-
tances involved.

On the other hand the causal diagrams make quite clear
that the particle horizon is an absolute limit on communi-
cation and the visual horizon an absolute limit on obser-
vation; once matter has entered one of these horizons, it
cannot leave it. Inflation moves the particle horizon out to
an exponentially large distance while leaving the visual
horizon fixed. In doing so it allows causal contact of those
events where the microwave background radiation was
emitted, thus in principle solving the horizon problem.
However a complete solution is only attained in a k= +1
universe (or in universes where the spatial sections are
closed for topological reasons, see Ref. 6); in this case only,
all the matter in the universe is in causal contact at early
times, because the particle horizon ceases to exist at an
early stage in the inflationary era.
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APPENDIX A: EVENT HORIZONS

For a discussion of cosmology and inflation, the most
important horizon is the particle horizon. One often en-
counters in the literature, however, another horizon that
may be more familiar because of its association with black
holes. This is termed the event horizon and we discuss it
briefly to distinguish it from the particle horizon.

The particle horizon is the distance of particles beyond
which an observer cannot see at the current time. The
event horizon for an observer is defined as the distance
beyond which this observer will never see. Specifically

b =R w cdt
=R (1) J;O RO

Thus it is the limit of the past light cone of a point on our
world line as time goes to infinity; its physical size is being
evaluated at time £,.

The ever-expanding FLRW models have no event
horizon—given enough time an observer will see every-
thing. In the case of k= + 1 models this is not the case; for
these models the upper limit of integration is usually taken
to be the end of the universe, leading to a finite value for
he, .

A particular model with an event horizon is the De Sitter
universe, in which the scale factor increases exponentially:
R «< e where H, the Hubble constant, is assumed to be
constant. (The inflationary period is one in which the uni-
verse goes through a De Sitter phase.) One can easily ver-
ify that 4., =c/H for a De Sitter universe. This is the far-
thest spatial distance observers at ¢, can ever hope to see to,
if they can observe to the infinite future of time.

The upper limit of o makes the definition of the event
horizon somewhat metaphysical. If one imagines getting a
grant from the World Scientific Foundation for an astron-
omy program that will last 100 000 yr, this is still a negli-
gible amount of time compared to infinity. In practice, our
point of observation (‘“here and now”) does not move far
into the future along our world line as we make our obser-

(A1)

G. F. R. Ellis and T. Rothman 892



vations, and the current past light cone effectively defines
what will be visible in the foreseeable future. Thus in prac-
tice in cosmology the event horizon is given by nothing other
than our past light cone. This is what separates the events
with which we have had causal contact from those we have
not.

This problem also arises in connection with black holes.
A black hole is defined by its event horizon; processes
within the event horizon will never be visible to outside
observers. However, its definition requires an integration to
t=o. Although many researchers argue that this is not
really necessary in practice, for physically speaking black
holes form in a finite time, mathematically no one has
succeeded in defining black holes with a finite upper limit
of integration in a universe that lasts forever.
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A solution to the paradoxical problem of a square wheel is presented. Using kinematics, it is
shown that the correct roadbed for a square object rolling without slipping is a series of inverted
catenaries. The dynamics of the square are revealed by the conservation of energy method.
Remarkably, the square is shown to be capable of winning a downhill race against a sphere on

a parallel inclined plane.

I. INTRODUCTION

Recently I was browsing through the Exploratorium
Cookbook,' a compendium of museum quality demonstra-
tions, and came across an entry in the mathematics section
entitled Square Wheels. The article described the construc-
tion of an apparatus consisting of two squares, connected
by an axle, that would roll smoothly across an appropriate
roadbed. The article stated that the correct roadbed was a
series of catenary sections and the square’s center of grav-
ity remained at the same height as the device rolled along.
It also supplied a generic catenary function to serve as a
construction template for the roadbed and went on to de-
scribe how to construct a sophisticated version of the de-
vice. Unfortunately, the author offered no further discus-
sion or references regarding either the physics of the device
or how he came to know that the correct roadbed was
indeed a catenary. Believing that the device would proba-
bly yield some interesting physics and might be a good
addition to my collection of demonstrations, I proceeded to
investigate the device.

II. KINEMATICS

The kinematic problem of the square wheel is to deter-
mine a surface (curve) that allows the square to roll while
maintaining a state of neutral equilibrium, as shown in Fig.
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1. The prerequisite of neutral equilibrium means that the
center of mass of the square must move along a horizontal
trajectory and remain directly above the contact point. We
will impose the restriction that rolling occurs without any
slippage. These conditions suggest the geometry depicted
in Fig. 2.

The square, assumed to be homogeneous, is described by
sides of length 2a and center of mass at point 4. The isos-
celes right triangle ABE represents one octant of the
square. Set the zero of gravitational energy at the origin.
Assume an initial configuration with one corner of the
square located at the origin (point O) and the contiguous
diagonal concurrent with the vertical (y) axis. In this con-
figuration, the gravitational potential energy is propor-
tional to the semidiagonal A B:{{AB=R= ﬁa}. The an-
gular displacement of the square is determined by the angle
a. Point C is located on the perimeter of the square directly
below A4, and point D is the projection of the center of mass
on the horizontal (x) axis. Pure rolling is ensured by the
requirement that line segment BC=arc length OC.

Point C will generate the required curve when the grav-
itational potential energy of the square remains constant,
that is AC+ CD=A B. Let point C be described by its Car-
tesian coordinates (x,y). The critical kinematic relation
becomes
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