Class problems #1

1. Introduce the natural physical units

$$h = c = k_B = 1,$$

the Planck length $(l_{\rm Pl})$, the Planck time $(t_{\rm Pl})$ and the Planck mass $(M_{\rm Pl})$ in the SI unit system. Compare $M_{\rm Pl}$ with the mass of a bacteria e.g. E.coli (in kg).

- 2. Derive the Friedmann equations from the cosmological principle (homogeneity and isotropy) using non-relativistic Newtonian dynamics [1, 2].
- 3. Find the orbital velocity of stars in a galaxy far from a massive core (stellar bulge). Assume isotropy.
- 4. Find the mass distribution in a galaxy that would explain flat rotational curves. Assume isotropy.
- 5. Estimate the orbital speed of the solar system knowing that the distance to the center of the Galaxy is about 8 kpc(define pc). The Milky Way contains about 2×10^{11} stars.
- 6. The estimated energy (mass) density of dark matter (DM) in the solar neighborhood is around $0.3 \text{ GeV}/\text{ cm}^3$. Suppose that the DM is made of WIMPs (Weakly Interacting Massve Particle) of mass ~ 100 GeV.
 - How many WIMPs are roughly inside your body at any time?
 - What is the DM flux, i.e. the number of particles per cm², per s, if they move with the typical galactic velocity $v \sim 200 \text{ km/sec}$?
- 7. Assume that the Milky Way is a typical galaxy containing about 10¹¹ stars and that averaged distance between galaxies is about 1 Mpc. Estimate the Universe density in SI units.
- 8. Spectral energy density for a black body radiation is

$$\varepsilon(\nu) = \frac{8\pi h}{c^3} \frac{\nu^3}{e^{\frac{h\nu}{k_BT}} - 1}, \quad [\varepsilon] = \frac{\mathbf{J}}{\mathbf{m}^3 \mathbf{Hz}}$$

The binding energy of the hydrogen atom is 13.6 eV. CMB has a spectrum of black body at T = 2.728 K, find:

- the average energy $\langle \varepsilon \rangle$ and the number density n_{tot} of photons in eV and compare to the hydrogen atom binding energy,
- the frequency and the wavelength of photon for the maximum of the sppectrum,
- the total photon energy density in $J m^{-3}$, $eV m^{-3}$.
- 9. Derive the following table

	CMB		Barions	
$\langle \varepsilon \rangle$	10^{-22} J	$6 \cdot 10^{-4} \text{ eV}$	$1.5 \cdot 10^{-10} \text{ J}$	10^9 eV
$\varepsilon_{\rm tot}$	$4 \cdot 10^{-14} \text{ J m}^{-3}$	$2 \cdot 10^5 \text{ eV m}^{-3}$	$1.5 \cdot 10^{-10} \text{ J m}^{-3}$	10^9 eV m^{-3}
$n_{\rm tot}$	$4 \cdot 10^8 \text{ m}^{-3}$		$1 {\rm m}^{-3}$	

References

- [1] Andrew Liddle, "An Introduction to Modern Cosmology".
- [2] Joan Arnau Romeu, "Derivation of Friedman equations", Barcelona, June 2014.