Class problems \#3

The proper (physical) distance (defined along the surface of constant time $d t=0$) to an object located at the comoving coordinate r at the moment t is:

$$
D(t)=a(t) \int_{0}^{r} \frac{d r^{\prime}}{\left(1-k r^{\prime 2}\right)^{1 / 2}}
$$

1. Draw a recession velocity as a function of redshift assuming interpretation of the Hubble law in terms of the non-relativistic Doppler effect, relativistic Doppler effect and General relativity for a universe made of matter and cosmological constant, see fig 1 in [1] and sec. 3.1 in [2].
2. Clarify the Misconception \#3 "Galaxies with recession velocities exceeding the speed of light exist but we cannot see them", see sec. 3.3 in [2].
3. For universes with the scale factor
(a)

$$
a(t)=a_{0}\left(\frac{t}{t_{0}}\right)^{\alpha}
$$

(b)

$$
a(t) \propto e^{H t},(H \text { is a constant })
$$

find, draw and discuss the Hubble sphere $D_{H s}(t)$, the null light cone $D_{\gamma}(t)$, the particle horizon $D_{p h}(t)$ and the galaxy world line $D_{G}(t)$. For definitions see the lecture notes $\# 3$. Draw t as the vertical axis in the period from the Big Bang $(t=0)$ till today $\left(t_{0}\right)$. Show that the crossing of the Hubble sphere with the past null cone takes place at the time t_{\times}such that $\dot{D}_{\gamma}\left(t_{\times}\right)=0$. Find the time t_{\times}and the proper distance to the crossing point. The case (b) might be problematic.
4. Draw, discuss and explain fig. 2 of [1].
5. Draw, discuss and explain the lower panel of fig. 1 of [2].
6. Derive $v_{\text {rec }}$ as a function of time t and the observed redshift z :

$$
v_{\mathrm{rec}}=\frac{\dot{a}(t)}{a_{0}} \int_{0}^{z} \frac{d z^{\prime}}{H\left(z^{\prime}\right)} .
$$

7. Find the proper (physical) distance to the Hubble sphere for MD, RD and Λ-dominated universe.

References

[1] T. M. Davis and Ch. H. Lineweaver, "Superluminal Recession Velocities", AIP Conf. Proc. 555, 348 (2001).
[2] T. M. Davis and Ch. H. Lineweaver, "Expanding Confusion: common misconceptions of cosmological horizons and the superluminal expansion of the universe", 2004, Publications of the Astronomical Society of Australia, 21, 97-109;

