Class problems \#3

1. Show that for a coordinate transformation of the form

$$
x^{\mu} \rightarrow x^{\prime \mu}=x^{\mu}+\varepsilon^{\mu}(x)
$$

the corresponding transformation of $h_{\mu \nu}\left(g_{\mu \nu} \equiv \eta_{\mu \nu}+h_{\mu \nu}\right.$ with $\left.h_{\mu \nu} \ll 1\right)$ is the following:

$$
h_{\mu \nu}(x) \rightarrow h_{\mu \nu}^{\prime}(x)=h_{\mu \nu}(x)-\partial_{\mu} \varepsilon_{\nu}-\partial_{\nu} \varepsilon_{\mu},
$$

assuming $\frac{\partial \varepsilon_{\mu}}{\partial x^{\nu}} \sim h_{\mu \nu}$.
2. For the Friedmann-Robertson-Walker metric calculate all non-zero elements of the connection $\Gamma_{\mu \nu}^{\lambda}$ and the Ricci tensor $R_{\mu \nu}$.
3. Show that for the Friedmann-Robertson-Walker metric

$$
g_{t t}=1, \quad g_{t i}=0, \quad g_{i j}=-a^{2}(t) \tilde{g}_{i j}(x)
$$

with $\tilde{g}_{r r}=\left(1-k r^{2}\right)^{-1}, \tilde{g}_{\theta \theta}=r^{2}, \tilde{g}_{\varphi \varphi}=r^{2} \sin ^{2} \theta$:

- the spatial Ricci tensor $R_{i j}$ is of the following form:

$$
R_{i j}=\tilde{R}_{i j}-\tilde{g}_{i j}\left(a \ddot{a}+2 \dot{a}^{2}\right),
$$

where $\tilde{R}_{i j}$ is the Ricci tensor calculated for the metric $\tilde{g}_{i j}$, and

- the spatial Ricci tensor $\tilde{R}_{i j}$ is given by:

$$
\tilde{R}_{i j}=-2 k \tilde{g}_{i j} .
$$

