

Figure 1: Supernova Cosmology Project Knop et al. (2003)

Class problems #4

1. Show, using the Friedmann, that sufficient conditions for exponential inflation are:

$$k = 0$$
 and $p = -\rho$

or

$$k \neq 0$$
 and $p = -\frac{\rho}{3} - \frac{H^2}{4\pi G}$,

with constant H. Note that p and ρ do not need to be constant.

- 2. Derive the non-relativistic analog of the Friedmann equation with non-zero cosmological constant Λ . Argue that positive Λ implies accelerating expansion of the universe.
- 3. Consider a universe with dust and k only, find and draw a = a(t) for $k = \pm 1, 0$.
- 4. Discuss existence of polynomial $(a \propto t^{\alpha})$ solutions to the Friedmann equation for $k \neq 0$. Compare with the Milne universe: $\rho = p = \Lambda = 0$ and k = -1.
- 5. For $\Lambda > 0$ and k = 1 find $\Lambda = \Lambda_E$ such that $\dot{a}(t) = \ddot{a}(t) = 0$ for $a(t) = a_E$. This is the Einstein static universe that motivated him to introduce Λ . Find Λ_E , a_E and relation between them. Show that
 - for $\Lambda > \Lambda_E$, Λ eventually dominates and the universe expands forever,

• for $0 < \Lambda < \Lambda_E$, there exists a range of a which is forbidden.

Discuss possible universes.

- 6. Verify stability of the Einstein static universe, i.e. expand around $a = a_E$ and solve for the fluctuations.
- 7. Explain regions shown in fig. 1.