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Fundamental Interactions – the Standard Model

♠ Gauge symmetry: SU(3)C × SU(2)L × U(1)Y

L ⊃ −1
4
Fµνa Faµν︸ ︷︷ ︸

SU(3)C

−1
4
W µν

i Wi µν︸ ︷︷ ︸
SU(2)L

−1
4
BµνBµν︸ ︷︷ ︸

U(1)Y

⇓ ⇓

Gµa |a=1,...8 W±
µ ,Zµ,Aµ
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♠ The Higgs sector:

• The minimal choice H =
(

G +

(h + iG 0)/
√

2

)
necessary for

SU(2)L × U(1)Y → U(1)EM .

L ⊃ (DµH)†DµH − V (H)

for Dµ ≡ ∂µ + igW i
µT

i + ig ′ 1
2YBµ, V (H) = µ2|H|2+λ|H|4 and YH = 1

2

• If µ2 < 0 then ⟨0||H|2|0⟩ = − 1
2
µ2

λ
≡ v2

2 (spontaneous symmetry breaking,
the origin of mass)

• Boson masses: mh =
√

2λv , mW± = 1
2gv and mZ = mW /cW , for

cW ≡ cos θW = g/(g2 + g ′ 2)1/2
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♠ Fermions
fermion T T3

1
2Y Q

νi L
1
2 + 1

2 − 1
2 0

li L
1
2 − 1

2 − 1
2 −1

ui L
1
2 + 1

2
1
6

2
3

di L
1
2 − 1

2
1
6 − 1

3

li R 0 0 −1 −1
ui R 0 0 2

3
2
3

di R 0 0 − 1
3 − 1

3

νi R 0 0 0 0

i = 1, . . . ,Nf = 3, ψL,R ≡ 1
2 (1 ∓ γ5)ψ (parity violation), Q = T3 + 1

2Y

Neutrino masses:

• Dirac mass: fij L̄i Lνj R H̃ + H.c. for H̃ ≡ iτ2H
⋆

• Majorana mass: 1
2Mij νi RCνj R + H.c.
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Gauge transformations: ψ(x) → exp
{

−igT iθi (x) − ig ′ 1
2Yβ(x)

}
ψ(x)

Gauge interactions:

L ⊃
∑
ψ

ψ̄iγµDµψ for Dµ ≡ ∂µ + igW i
µT

i + ig ′ 1
2
YBµ

Yukawa interactions:

L ⊃ −
3∑

i,j=1

(
Γ̃ij ūi R H̃

†Qj L + Γij d̄i RH
†Qj L + H.c.

)
⇓

if ⟨H⟩ ≠ 0 then mq ̸= 0

Lq mass = −
3∑

i,j=1

(
ūi RMu

ijuj L + d̄i RMd
ijdj L + H.c.

)
for

Mu
ij = v√

2
Γ̃ij Md

ij = v√
2

Γij ⇒ no FCNC for one Higgs boson doublet

5



 u1

u2

u3


L,R

= UL,R

 u

c

t


L,R

 d1

d2

d3


L,R

= DL,R

 d

s

b


L,R

U†
RMuUL = diag(mu,mc ,mt ) D†

RMdDL = diag(md ,ms ,mb)

⇓

Γ̃, Γ diagonal (gf =
√

2
mf

v
) ⇒ no FCNC

• charged currents:
∑

ūi Lγ
µdi L = (ū, c̄, t̄)L U†

LDL︸ ︷︷ ︸
UCKM

γµ

 d

s

b


L

• neutral currents:
∑

ūi Lγ
µui L,

∑
d̄i Lγ

µdi L remain unchanged upon UL,R ,
DL,R transformations
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UCKM :

• unitary complex N × N matrix, qi L → e iαi qi L ⇒ 1
2 (N − 1)(N − 2)

phases in UCKM

• N ≥ 3 ⇒ CP violation in charged currents

♠ Masses in the SM: mV ∝ gv mh ∝ λ1/2v mf ∝ gf v

Leptons:
mνe

<∼ 3 eV mνµ
<∼ 0.2 MeV mντ

<∼ 18 MeV
me = 0.5 MeV mµ = 105.5 MeV mτ = 1.78 GeV

Quarks:
mu ≃ 2 MeV mc ≃ 1.2 GeV mt ≃ 174 GeV
md = 5 MeV ms = 0.1 GeV mb = 4.3 GeV

Bosons:

mW± = 80.4 GeV mZ = 91.2 GeV mγ = 0 mh = 125.3 GeV

⇓
Fine tuning:

mνe

mt

<∼ 1.72 · 10−11 ⇒ gνe
gt

<∼ 1.72 · 10−11
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Introduction to the Standard Model: Experimental constraints

• Perfect agreement with the existing data
• The scalar sector not fully tested

• Higgs-boson representation:

ρ ≡
m2

W

m2
Z cos2 θW

, SM ⇒ ρ = 1 + O(α)

for general Higgs multiplets: ρ =
∑

i
[Ti (Ti +1)−T2

i 3]v2
i∑

i
2T2

i 3v
2
i

data: ρ = 1.0002

{
+0.0024
−0.0009

⇒ T = 1
2 (doublets are favored)

• mh = 125.3 GeV
• Higgs-boson interactions: no direct tests of quartic Higgs interactions

(potential)
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Outstanding problems of the SM

♠ Gauge-Higgs sector:

• Why is there only one Higgs boson?
• The Higgs field was introduced just to make the model renormalizable

(unitary)
• There exist many fermions and vector bosons, so why only one scalar? Why,

for instance, not a dedicated scalar for each fermion?
• The strong CP problem:

• symmetries of the SM allow for

Tr
(
Fµν F̃

µν
)

≡
1
2

ϵµναβTr
(
FµνFαβ

) P−→ −Tr
(
Fµν F̃

µν
)

• odd under CP

Lθ = θ g2
s

32π2 F
aµν F̃ a

µν ⇒ neutron-EDM Dn ≃ 2.7 · 10−16θ e cm

⇓

data: Dn <∼ 1.1 · 10−25 e cm ⇒ θ <∼ 3 · 10−10

The strong CP problem: why is θ so small?
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♠ The flavor sector:

• parity violation:

W +µ ūiγµ(1−γ5)dj
P−→ W +µ ūiγµ(1+γ5)dj

Maximal parity violation, why?
• Charge quantization, why qu = 2

3 , qd = − 1
3 and ql = −1?

• Number of generations, why N = 3?
• Why is the top quark so heavy (mt ≃ 174 GeV while mb ≃ 4.3 GeV) ?

mt ≃ v = ⟨0|H|0⟩ ≃ 246 GeV

⇓

top quark is very different (possibly sensitive to the mechanism of
gauge symmetry breaking)
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• Mixing angles and fermion masses:

L ⊃ −
3∑

i,j=1

(
Γ̃ij ūi R H̃

†Qj L + Γij d̄i RH
†Qj L + H.c.

)
⇓

Lq mass = −
3∑

i,j=1

(
ūi RMu

ijuj L + d̄i RMd
ijdj L + H.c.

)
for Mu

ij = v√
2

Γ̃ij , Md
ij = v√

2
Γij

 u1

u2

u3


L,R

= UL,R

 u

c

t


L,R

 d1

d2

d3


L,R

= DL,R

 d

s

b


L,R

U†
RMuUL = diag(mu,mc ,mt ) D†

RMdDL = diag(md ,ms ,mb)

⇓∑
ūi Lγ

µdi L = (ū, c̄, t̄)L U†
LDL︸ ︷︷ ︸

UCKM

γµ

 d

s

b


L

It is natural to expect that UCKM = UCKM (mq/m
′
q).
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♠ Parameters of the SM:

me mµ mτ mu mc mt

mνe mνµ mντ md ms mb

g , g ′︸ ︷︷ ︸
(αQED ,sin θW )

, gs︸︷︷︸
(αQCD )

, mh, λ︸ ︷︷ ︸
(µ,λ)

, UCKM︸ ︷︷ ︸
θ1,2,3,δCP

21 parameters !
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♠ Cosmology:

Ωi ≡ ρi
ρc

for ρc = 3H2
0

8πGN

data ⇒ ΩΛ = Λ
3H2

0
≃ 70%, ΩDM ≃ 27% and ΩB ≃ 3%
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• SM has no candidate for dark matter
• ΩΛ = ρΛ

ρc
≃ 0.7 ⇒ ρΛ ≃ 10−120M4

Pl = (10−3 eV)4 while
typical scale of the SM is O(100 GeV)! Fine tuning again!

• Inflation: period of fast expansion of the very early Universe,
a(t) ∝ exp

(√
Λ
3 t

)
Again the SM has no means to explain the inflation (no inflaton in the
SM). For a typical inflaton mϕ ∼ 1013 GeV and λ ∼ 10−13, so the SM Higgs
boson is not an inflaton (assuming standard interactions with gravity).

• Baryogenesis and SM CP violation η ≡ nb−nb̄
nγ

≃ nb
nγ

≃ 6 · 10−10

The Sakharov’s necessary conditions for baryogenesis:
• B number violation
• C and CP violation
• Departure from thermal equilibrium

SM:
• B number violation: OK
• C and CP violation: too weak CP violation ∝ ℑQ , for Q ≡ UudUcbU

⋆
ubU

⋆
cd

(re-phasing invariant)
• Departure from thermal equilibrium: first-order electro-weak phase

transition requires mh <∼ 72 GeV
Conclusion: the SM doesn’t explain the baryogenesis

• Why is gravity so weak? Or, why MPl = 1019 GeV ≫ v = 246 GeV?
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The interaction rates Γi

♠ Definition of the cross-section:
The S-matrix element wi→f gives the probability for the transition to occur:

Pi→f = |wi→f |2= |⟨f |i⟩|2

The translational invariance allows to write the matrix element as

wi→f = δif + i (2π)4δ4(pf − pi )Ti→f

The above formula defines the transition matrix T .
Let’s consider the following scattering process

a + b → c1 + c2 + · · · + cn

We assume that b is at rest, and the velocity of a is v = |p⃗a|/Ea. The number
of particles b per target volume is (that defines the normalization of plane
waves ∝ (2E )−1/2e ipx ): 2Eb = 2mb as b is at rest. The incident flux is the
velocity (p⃗a/Ea) of a times their number density 2Ea, so 2|p⃗a|.
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If the reaction volume is V and the reaction takes place during the time T ,
then the cross-section σ is defined such that the transition probability per
unit time and unit volume equals the target density × the incident flux ×
the cross-section σ, that is, 2mb × 2|p⃗a|×σ. On the other hand it is equal to
|wi→f |2/(VT ). Hence summing over all available momenta for the final state
we get

σ(a + b → c1 + c2 + · · · + cn) =

= 1
4mb|p⃗a|

∫ n∏
j=1

d3pj

2Ej (2π)3
(2π)4δ4(pa + pb − p1 − · · · − pn)|T̃ |2

where for unpolarized initial state we have

|T̃ |2= 1
S

1
(2sa + 1)(2sb + 1)

∑
spins

|Ti→f |2

The spins of initial states are denoted by sa and sb . The symmetry factor S
appears because in quantum mechanics we can’t distinguish between two
final states which differ only by an exchange of identical particles, in general,
if there are k groups of ni (i = 1, 2, . . . , k) identical particles in the final state,
one has S = n1! n2! . . . nk !.
In order to have the cross-section in a Lorentz invariant form one has to
replace

mb|p⃗a|→
[
(pa · pb)2 − m2

am
2
b

]1/2 16



For decays
a → c1 + c2 + · · · + cn

we get instead of the cross-section the decay width

Γ(a → c1 + c2 + · · · + cn) =

= 1
4ma

∫ n∏
j=1

d3pj

2Ej (2π)3
(2π)4δ4(pa − p1 − · · · − pn)|T̃ |2

for
|T̃ |2= 1

S

1
(2sa + 1)

∑
spins

|Ti→f |2

Summing over all final states we get the total width

Γtot =
∑

final states f

Γ(a → f )

Then the life time is given by
τ = 1

Γtot
while the branching ratio reads

BR(a → f ) = Γ(a → f )
Γtot(a)
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♠ Strong and Electroweak Transitions:
Estimates of cross-sections:

•

σem(e+e− → µ+µ−) ∼
(

e2

4π

)2
1
s

for s ≡ (pe+ + pe− )2 ≫ m2
e

where e2

4π ≡ αQED ≃ 1
128 , for

√
s ≃ 100 GeV.

•

σstrong(qq̄ → qq̄) ∼
(
g2

QCD
4π

)2
1
s

for s ≫ m2
q

where
g2
QCD
4π ≡ αQCD ≃ 10−1,

•

σweak(νe + e+ → νµ + µ+) ∼
(
g2

weak
4π

)2
s

(s − m2
W )2

where
g2
weak
4π = e2

4π sin2 θW
= αQED

0.23

18



♠ The Interaction Rate:

If interactions between species are fast enough they could be in local/kinetic
equilibrium (state of maximal entropy). The reaction rate responsible for
establishing equilibrium can be characterized by the collision time:

tc ≡ 1
nσv

where σ is the cross-section, n is the number density of target particles and
v is the relative velocity. Note that nσv is roughly a number of collisions per
time. For estimates we will be using an equilibrium number density. In order
to maintain the equilibrium this time must be much shorter than the
Universe age tH ∼ H−1: tc ≪ tH (1)
Then the local equilibrium is reached before the expansion becomes
relevant.
High-energy example
Let’s consider T >∼ 500 GeV, then the cross-section for strong and
electroweak interactions could be estimated applying just dimensional
analysis for typical energy-momentum p ∼ T (masses are irrelevant at that
energy)

σ ∼ α2

T 2

where α is the fine structure constant for strong or electroweak interactions
α ≃ 10−1 − 10−2. 19



Taking into account that the equilibrium number density of relativistic
species behaves (see next section for details) as n ∼ a−3 ∼ T 3 we obtain

tc ∼ 1
α2T

If the universe is dominated by a single relativistic species then we have (see
next section for details)

tH ∼ 1
H

∼ 1
(ρrad/M2

Pl )1/2
∼ MPl

T 2 ,

where we have introduced the Planck mass defined as MPl ≡ G−1/2. Hence
we can see that the collision (reaction) time tc decreases slower (when T

increases) than the Hubble time tH , so if T is too large then (1) can not be
satisfied. Note that since ρrad ∼ T 4 during the radiation dominated epoch
we have H ∼ T 2/MPl (see next section for details). Therefore at
temperatures T ∼ α2MPl ≃ 1015 − 1017 GeV, we obtain tc ≃ tH . So for
T <∼ 1015 − 1017 GeV but above few hundred GeV (where σ ∼ α2

T2 ) the
inequality (1) is satisfied and the Universe made of quarks, leptons, gauge
bosons and Higgses remains in equilibrium. Above 1017 GeV the interaction
that we know are too slow too keep the universe in equilibrium.
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Low-energy example
For

√
s ≪ 100 GeV, the masses of gauge bosons W± (mW ≃ 80.4 GeV) and Z

(mZ ≃ 91.2 GeV) become relevant and the cross-section for e.g.
σ(νe + e+ → νµ + µ+) scales as α2

weakT
2/m4

W , so

tc ∼ 1
α2

weak

(
mW

T

)4 1
T

Again assuming the universe is dominated by a single relativistic species we
find that in order to have tc ≪ tH one needs

T ≫ 3.5 MeV

For lower temperatures the weak interaction becomes too slow to maintain
the equilibrium, as a consequence, e.g. neutrinos decouple at T ≃ 1 MeV
(more on that later).
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Rudiments of Equilibrium Thermodynamics

Assumptions

• The Universe is a dilute and weakly interacting gas.
• If rates of interactions between constituents of the Universe are large

enough, then we assume the Universe is in local/kinetic equilibrium (so
the state of maximal entropy, see Mukhanov for detailed discussion).

Then the number density ni , the energy density ρi , and the pressure for
particles with gi internal degrees of freedom (massless gauge boson has g=2,
massive gauge boson has g=3, massless fermion has g = 1, massive fermion
has g = 2, the same for anti-fermions) are given by the following integrals of
the expected number density of particles in states with energy Ei (phase
space distribution or occupancy functions) fi (p⃗,T ):

ni (T ) = gi

∫
fi (p⃗,T ) d3p

(2π)3
(2)

ρi (T ) = gi

∫
Ei (p⃗)fi (p⃗,T ) d3p

(2π)3
for Ei (p⃗) = (|p⃗|2+m2

i )1/2 (3)

pi (T ) = gi

∫
|p⃗|2

3Ei (p⃗)
fi (p⃗,T ) d3p

(2π)3
(4)

(See tutorials for the derivation of (4).) 22



The phase space distribution (the expected number of particles in an energy
state) is given by the Fermi-Dirac (for fermions, + sign below) or
Bose-Einstein (for bosons, − sign below) distributions

fi (p⃗,T ) = 1
e [Ei (p⃗)−µi ]/T ± 1

where µi is the chemical potential of the species, for our unit choice kB = 1.
It will be usually assumed that µi can be neglected in the early Universe.
Performing the angular integrations and changing variables from |p⃗| to
E = (|p⃗|2+m2)1/2, so |p⃗|d |p⃗|= EdE , so that d3p → 4π(E 2 − m2)1/2EdE and we
obtain

n(T ) = g

2π2

∫ ∞

m

(E 2 − m2)1/2

exp [E (p⃗) − µ]/T ± 1
EdE

ρ(T ) = g

2π2

∫ ∞

m

(E 2 − m2)1/2

exp [E (p⃗) − µ]/T ± 1
E 2dE

p(T ) = g

6π2

∫ ∞

m

(E 2 − m2)3/2

exp [E (p⃗) − µ]/T ± 1
dE
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In the relativistic limit (T ≫ m) with µ = 0 we get (see class)

n(T ) =
{

ζ(3)
π2 gT 3 bosons
3
4
ζ(3)
π2 gT 3 fermions

ρ(T ) =
{

π2

30 gT
4 bosons

7
8
π2

30 gT
4 fermions

p(T ) = ρ(T )
3
(5)

where ζ(3) = 1.202 . . . is the Riemann zeta function of 3.
In the non-relativistic limit (T ≪ m) there is no difference between fermions
and bosons, result for µ = 0 reads (see class)

n(T ) = g
(
mT

2π

)3/2

exp(−m/T ), ρ(T ) = mn(T ), p(T ) = n(T )T ≪ ρ(T )
(6)
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For relativistic species the average energy per particle reads

⟨E⟩ ≡ ρ

n
=

{
π4

30ζ(3)T ≃ 2.701 T for bosons
7π4

180ζ(3)T ≃ 3.151 T for fermions
(7)

For the rhs of Friedmann equations we need the total contribution to the
energy density and the pressure, that is

ρtot = T 4
∑

i

(
Ti

T

)4 gi
2π2

∫ ∞

xi

(y2 − x2
i )1/2y2dy

exp(y ) ± 1
(8)

ptot = T 4
∑

i

(
Ti

T

)4 gi
2π2

∫ ∞

xi

(y2 − x2
i )3/2y2dy

exp(y ) ± 1
(9)

where xi ≡ mi/T and y = E/T , and it has been taken into account that
some species may have decoupled (maintaining an equilibrium distribution)
so that they may have different "temperatures" Ti .
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Note that at a given temperature the ratio of the energy density for
non-relativistic species to the relativistic one reads

ρnrel

ρrel
∝

(
m

T

)5/2
e−m/T

For the species to be non-relativistic one needs m ≫ T so the e−m/T is a
strong suppression factor, therefore we will neglect contributions from
non-relativistic species while calculating total energy density. In that case
we get

ρtot(T ) = π2

30
g⋆T

4 and p(T ) = ρ(T )
3

= π2

90
g⋆T

4 (10)

where g⋆ counts only massless/relativistic (mi ≪ T ) degrees of freedom:

g⋆ =
∑

bosons

gi

(
Ti

T

)4

+ 7
8

∑
fermions

gi

(
Ti

T

)4

(11)

Note that g⋆ = g⋆(T ) is a function of temperature. An exact form of g⋆(T )
could be easily (see tutorials) obtained from (8) and (9). For T ≫ 100 MeV
g⋆ = 106 3

4 , for T ≪ 1 MeV g⋆ = 3.36, while for 100 MeV >∼ T >∼ 1 MeV one
gets g⋆ = 10 3

4 (see tutorials).
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particle flavour spin colour particle + anti-particle total

quarks(u, d, c, s, t, b) 6 2 3 2 72
charged leptons (e, µ, τ ) 3 2 1 2 12
neutrinos (νe , νµ, ντ ) 3 1 1 2 6
gluons (g ) 1 2 8 1 16
photon (γ) 1 2 1 1 2
charged massive gauge bosons (W± ) 1 3 1 2 6
neutral massive gauge bosons (Z ) 1 3 1 1 3
Higgs boson (H) 1 1 1 1 1

Table 1: Standard Model internal degrees of freedom, 118 total.

Note that a single flavour neutrino is contributing only 1 dof and
anti-neutrino another 1. This is because in the SM there are only left-handed
neutrinos (1 dof) and right-handed anti-neutrinos.
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Figure 1: The evolution of the number density (g⋆n), energy density (g⋆ϵ), pressure
(g⋆p), and entropy density (g⋆s ) as functions of temperature.

(plot from L. Husdal, “On Effective Degrees of Freedom in the Early Universe”,
Galaxies 4, no. 4, 78 (2016), doi:10.3390/galaxies4040078, arXiv:1609.04979)
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During the radiation dominated epoch (t <∼ 4 × 1010 s, see class for this
number), ρtot = ρrad hence, for k = 0, inserting (10) into the Friedmann
equation one gets the very important formula for the physics of early
Universe:

H =
[8πG

3
ρtot(T )

]1/2

=
[

8πG
3

π2

30
g⋆T

4
]1/2

= 1.66
g

1/2
⋆ T 2

MPl

For the radiation dominated Universe we have obtained earlier the following
time dependence of the scale factor

a(t) ∝ t1/2

So, for the radiation domination one has

H ≡ ȧ

a
= 1

2t
Hence the following time – temperature relation could be obtained

t = 0.30
MPl

g
1/2
⋆ T 2

=
(

5.2
g⋆

)1/2 (1 MeV
T

)2

s ∼
(1 MeV

T

)2

s,

where in the last step g⋆ ∼ 5.2 was adopted, note that for
100 MeV >∼ T >∼ 1 MeV one gets g⋆ = 10 3

4 , while for T ≪ 1 MeV g⋆ = 3.36. The
above is a useful formula to memorize as T ≃ 1 MeV is a very important
temperature in the evolution of the early Universe.
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Distribution functions in expanding Universe

The momentum of freely moving particles redshifts with the expansion of
the universe as follows (see class):

p⃗(t1) = a(t2)
a(t1)

p⃗(t2)

while the physical coordinates (position vectors) scale as

x⃗(t1) = a(t1)
a(t2)

x⃗(t2)

Massless particles

We will show that relativistic non-interacting particles that decoupled from
the thermal bath preserve equilibrium distribution during the expansion of
the universe.
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At moment t1 a phase space element d3p1d
3x1 contains

dn = g

(2π)3
f (p⃗1)d3p1d

3x1

particles with distribution (note that E1 = |p⃗1|≡ p1 for relativistic particles) at
the time t1

f (p⃗1) = 1
e (p1−µ1)/T1 ± 1

(12)

At time t2 these same dn particles are in a phase space element d3p2d
3x2.

We will find out how are the distributions at t2 and t1 related. For f (p⃗2) we
have

f (p⃗2) = (2π)3

g

dn

d3p2d3x2
(13)

Since the phase space volumes scale as

d3p1 =
(
a(t2)
a(t1)

)3

d3p2 and d3x1 =
(
a(t1)
a(t2)

)3

d3x2

therefore

dn = g

(2π)3
d3p1d

3x1

e (p1−µ1)/T1 ± 1

= g

(2π)3

(
a(t2)
a(t1)

)3
d3p2

(
a(t1)
a(t2)

)3
d3x2

e
( a(t2 )
a(t1 ) p2−µ1)/T1 ± 1

= g

(2π)3
d3p2d

3x2

e (p2−µ2)/T2 ± 1
,
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The latter line determines the temperature and chemical potential at time t2

T2 = a(t1)
a(t2)

T1 and µ2 = a(t1)
a(t2)

µ1

So, the distribution retains its thermal character (although particles have
decoupled) at red-shifted temperature and chemical potentials

T (t) ∝ 1
a(t)

and µ(t) ∝ 1
a(t)

32



Massive, non-relativistic particles

Now we assume that particles are decoupling from the thermal bath while
being non-relativistic.

The phase space distribution (the expected number of particles in an energy
state) is given by the Fermi-Dirac (for fermions, + sign below) or
Bose-Einstein (for bosons, − sign below) distributions

f (p⃗,T ) = 1
e [E (p⃗)−µ]/T ± 1

Assuming ±1 in the equilibrium distribution could be neglected we obtain in
the non-relativistic regime

f (p⃗1) = e
− m−µ1

T1 e
−

p⃗21
2mT1

From (13) one finds

f (p⃗2) = e
− m−µ1

T1 e
−

a2 (t2 ) p⃗22
2m a(t1 )2T1
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The above could be rewritten as follows

f (p⃗2) = e
− m−µ2

T2 e
−

p⃗22
2mT2

where

T2 = T1

(
a(t1)
a(t2)

)2

and m − µ2

T2
= m − µ1

T1

So, the distribution function still has the same form of equilibrium
distribution (although particles have decoupled) however the temperature
evolves as

T (t) ∝ 1
a2(t)
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Entropy

Let’s define the entropy through its differential

TdS(V ,T ) ≡ d[ρ(T )V ] +p(T )dV = Vdρ+ (ρ+p)dV = V
dρ

dT
dT + (ρ+p)dV (14)

In general we have

dS(V ,T ) = ∂S(V ,T )
∂T

dT + ∂S(V ,T )
∂V

dV

So, we get from (14)

∂S(V ,T )
∂T

= V

T

dρ(T )
dT

and ∂S(V ,T )
∂V

= 1
T

[ρ(T ) + p(T )]

The integrability condition tells us that

∂2S(V ,T )
∂T∂V

= ∂2S(V ,T )
∂V∂T

⇒ ∂

∂T

[ 1
T

[ρ(T ) + p(T )]
]

= ∂

∂V

[
V

T

dρ(T )
dT

]
⇓

dp(T )
dT

= 1
T

[
ρ(T ) + p(T )

]
⇒ dp(T ) = ρ(T ) + p(T )

T
dT (15)
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Rewriting dS from (14) as

dS = 1
T
d

[
(ρ + p)V

]
− dp

V

T

and inserting (15) we get

dS = 1
T
d

[
V (ρ + p)

]
−dT

T 2︸ ︷︷ ︸
d( 1

T )

V
[
ρ(T ) + p(T )

]
= d

{
V

T
[ρ(T ) + p(T )] + const.

}

So the entropy, up to an integration constant is given by

S(V ,T ) = V

T
[ρ(T ) + p(T )]

Recall now the "first law of thermodynamics" (equivalently Tµν
;ν = 0)

a3 dp(T )
dt

= d

dt

{
a3[ρ(T ) + p(T )]

}
Combining with (15) we get

a3 1
T

dT

dt︸ ︷︷ ︸
−T d

dt ( 1
T )

[ρ(T ) + p(T )] = d

dt

{
a3[ρ(T ) + p(T )]

}
Hence

d

dt

{
a3

T
[ρ(T ) + p(T )]

}
= 0
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Therefore, identifying volume with a3 we can conclude that the entropy of
the volume V is conserved. It proves useful to define the entropy density

s(T ) ≡ S(T )
V

= ρ(T ) + p(T )
T

Since relativistic particles dominate both ρ(T ) and p(T ), the same happens
for the entropy density. Using (5) one gets:

s = 2π2

45
g⋆ ST

3

where
g⋆ S =

∑
bosons

gi

(
Ti

T

)3

+ 7
8

∑
fermions

gi

(
Ti

T

)3

(16)

Since nγ ∝ T 3:

nγ = 2ζ(3)
π2 T 3

therefore one can derive the following relation

s = π4

45ζ(3)
g⋆ Snγ ≃ 1.8g⋆ Snγ

Note that the entropy conservation implies that g⋆ ST
3a3 = const. , therefore

in the early Universe (a ∼ 0) the temperature was maximal (roughly
T ∝ a−1), consequently all species can be treated as highly relativistic.

37



Let’s now illustrate the possibility of some species having different
temperatures by the decoupling of neutrinos at about T ∼ 1 MeV. For weak
interactions we had

σweak(e+ + e− → νi + ν̄i ) ∼
(
g2

weak
4π

)2
s

(s − m2
Z )2

s≪m2
Z≃

(
g2

weak
4π

)2
s

m4
Z

So, since ⟨E⟩ ∼ 3T therefore at T ≪ mZ we get

σweak(e+ + e− → νi + ν̄i ) ≃
(
g2

weak
4π

)2
T 2

m4
Z

Since the interaction rate Γint ≡ t−1
c = nσv therefore we get for n ∼ T 3 and

v = 1

Γint ≃ α2
weakT

5

m4
Z

≃ G 2
FT

5

where GF = 1.1664 × 10−5 GeV−2 is the Fermi constant
(GF/

√
2 ≡ g2

SU(2)/(8m2
W )). Let’s compare the interaction rate with the

expansion rate H ∼ g
1/2
⋆ T 2/MPl

tH
tc

= Γint

H
≃ G 2

FT
5

g
1/2
⋆ T 2/MPl

≃ G 2
FT

5

T 2/MPl
≃

(
T

0.7 MeV

)3
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So, at T <∼ 1 MeV the interactions are too slow to provide an equilibrium
between leptons and neutrinos. Neutrinos decouple ("the freeze-out") from
the SM and evolve separately, so the possibility for neutrinos to have
different temperature appears. Their energy (temperature) is being
redshifted the same way as for photons

Tν = Tdec
adec

a
∝ 1

a

Let’s investigate consequences of entropy conservation for the thermal bath,
i.e. photos and e±:

g⋆ S (aT )3 = const. ⇒ T ∼ (g⋆ S )−1/3 1
a

As long as (g⋆ S ) does not change the thermal bath temperature changes
only as a consequence of the expansion, i.e. T ∝ a−1, the same way the
neutrino temperature evolves. However around the same temperature
neutrinos decouple, electrons become non-relativistic me ≃ 0.5 MeV so that
the number of relativistic degrees of freedom (rdf) g⋆ S drops. e± annihilate
e+e− → γγ, while the inverse process is being suppressed as the averaged
energy decreases roughly below 2me .
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Therefore:

• for T >∼ 2me ≃ 1 MeV:

g⋆ S =
∑

bosons

gi

(
Ti

T

)3

+ 7
8

∑
fermions

gi

(
Ti

T

)3

= 2 + 7
8

× 4 = 11
2

• for T ≪ 2me :
g⋆ S = 2

From continuity of the entropy we get the following condition[
g⋆ S (aT )3

]
before

=
[
g⋆ S (aT )3

]
after

which implies

11
2

(aT )3before = 2(aT )3after ⇒ Tbefore =
( 4

11

)1/3
Tafter
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For the temperature "before", the neutrinos even though they decoupled a
bit earlier, have the same temperature as photons, however at T ∼ 2me

photons are heated up by e+e− → γγ as the entropy is transferred (since it
is a continuous function of T ) from e+e− to photons. The already decoupled
neutrinos do not benefit from that reheating, since they do not interact with
the thermal bath (photons and electrons) any more (in other words the
entropy of neutrinos is conserved separately after the decoupling).
Consequently there is a difference in temperatures for neutrinos and
photons after e+e− freeze-out:

Tν =
( 4

11

)1/3
Tγ

Strictly speaking the photon’s temperature does not jump at T = 2me , but
rather starts to decrease slower already at temperatures slightly above
T = 2me (in reality the freeze-out process is smooth and starts already
before T = 2me ).
For CMB photons Tγ = 2.73 K, so there should be also cosmic neutrino
background with the temperature Tν = 1.95 K.

Let’s now determine the present energy density, number density and entropy
density for CMB photons and neutrinos assuming T0 = 2.75 K.
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γ ν

g⋆ =
∑

b
gi

(
Ti
T

)4
+ 7

8

∑
f
gi

(
Ti
T

)4
2 7

8 · 2 · 3 ·
(

4
11

)4/3
= 1.36

g⋆ S =
∑

b
gi

(
Ti
T

)3
+ 7

8

∑
f
gi

(
Ti
T

)3
2 7

8 · 2 · 3 · 4
11 = 1.91

ρ = π2

30 g⋆T
4 4.64 · 10−34 g cm−3 3.16 · 10−34 g cm−3

n = 2ζ(3)
π2 T 3 410 cm−3 149 cm−3

s = 2π2

45 g⋆ ST
3 1478 cm−3 1412 cm−3

Ωh2 = ρ 8πG
3H2

0
2.47 · 10−5 1.68 · 10−5

Table 2: Present Universe parameters.

I used the following conversion factors:
1 K = 4.3668 cm−1 = 8.6170 · 10−14 GeV = 1.5361 · 10−37 g,
1 Mpc = 1.5637 · 1038 GeV−1, G = 6.7065 · 10−39 GeV−2 and
H0 = h 2.1317 · 10−42 GeV.
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There exists also a possibility for another kind of radiation present as a relic
of the early Universe, this is the graviton, the massless quantum fluctuation
of the gravitational field. The reaction responsible for maintaining the
equilibrium would be e.g. ψ̄ψ ↔ hh, where h is the graviton and ψ is a
massless fermion. Gravitons hµν interact with ordinary matter through the
standard Lagrangian ∝ 1/MPl ×hµνT

µν , where Tµν is the energy momentum
tensor, therefore the reaction width (the inverse of the reaction rate) is

Γgrav = nσv ∼ T 3 T 2

M4
Pl

∼ T 5

M4
Pl

Since at the early Universe H ∼ g
1/2
⋆ T 2/MPl therefore we get (g1/2

⋆ ∼ 10 for
the SM at T >∼ 100 GeV)

tH
tc

= Γgrav

H
∼ 1

10

(
T

MPl

)3
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So gravitons freeze-out roughly at the Planck temperature
T ∼ 2MPl ∼ 1019 GeV. Using the continuity of entropy at the moment of
graviton freeze-out and all the SM thresholds we get the relation between
graviton temperature and the CMB photon temperature at the present
moment (see class for the discussion):

Tgrav =
(

gnow
⋆ S

gPlanck
⋆ S

)1/3

· T0 ≃ 1 K

where we have approximated gPlanck
⋆ S by its SM value for T >∼ 100 GeV, i.e.

∼ 100. Their contribution to the present energy density is
ρgrav ∼ T 4 ∼ 0.018ργ .
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