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The Freeze-Out, the Boltzmann Transport Equation and the Dark Matter

"Freeze-out" examples:

• 1 sec - few minutes after the Big Bang: synthesis of light elements
(nucleosynthesis)

• ∼ 1 sec after the Big Bang: neutrino decoupling
• ∼ 105 years after the Big Bang: decoupling of photons from the matter

(recombination)

Consider a particle χ that could be a candidate for dark matter. Assume that
χ are stable and their number can change only through annihilations to
some SM particles X (it could be quark, lepton, Higgs boson etc.):

χ̄χ←→ X̄X
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In addition we assume that:

• the above process can take place in both directions, if the speed in both
directions is the same, we call it chemical equilibrium, then
µχ + µχ̄ = µX + µX̄ ,

• X and X̄ have thermal (equilibrium) distributions (they usually have
other interactions, e.g. electromagnetic, so the assumption is often
satisfied) with µX , µX̄ ≈ 0, (show that for charged particles µX = −µX̄ so
nX − nX̄ ∝ µX ),

• gX = gX̄ , so fX = fX̄ if µX , µX̄ ≈ 0 (assumed for all SM particles),
• T invariance holds, soMχ̄χ→X̄X =MX̄X→χ̄χ,
• symmetric dark matter (χ): gχ = gχ̄, µχ = µχ̄ (so fχ = fχ̄ and nχ = nχ̄

always, not only in equilibrium),
• the Bose-Einstein (for bosons) and the Fermi-Dirac (for fermions)

distribution functions could be approximated by the
Maxwell-Boltzmann distribution functions:

f (p⃗,T ) = 1
e [E (p⃗)−µ]/T ± 1

≃ e−[E (p⃗)−µ]/T .
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• scattering processes of the DM with the thermal bath enforce kinetic
(thermal) equilibrium (also after decoupling and out of chemical
equilibrium), so that phase-space distribution functions for particles
involved in the scattering satisfy, see Dodelson, 2003, sec. 3.1:

fχ(E ,T ) = e (−E+µχ)/T = eµχ/T f EQχ (E ,T ), (1)

where f EQχ (E ,T ) is the thermal Maxwell-Boltzmann equilibrium
distribution function for zero chemical potential. In this form of fχ(E ,T )
the whole uncertainty in the determination of fχ(E ,T ) (also after
decoupling and out of chemical equilibrium) is encoded in the function
µχ = µχ(t).
Since

nχ(T ) = gχe
µχ/T

∫
d3pχ

(2π)3
f EQχ (E ,T ) = eµχ/TnEQ

χ (T ),

therefore (1) could be written as

fχ(E ,T ) = nχ(T )
nEQ
χ (T )

· f EQχ (E ,T ),
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Our goal is to determine the evolution of the number density nχ = nχ(t).
When it happens that nχ > nEQ

χ then the reaction would go faster to the
right, so χ̄χ pairs will annihilate faster than they are created. The depletion
rate should be proportional to σ(χ̄χ→ X̄X )|v⃗ |n2

χ (quadratic in density, as it
should be proportional to the product of nχ and nχ̄, while these are equal).
At the same time χ̄χ are also produced in the process X̄X → χ̄χ with a rate
proportional to

fX fX̄ = e−(EX +EX̄ )/T = e−(Eχ+Eχ̄)/T = f EQχ f EQχ̄ ,

where X and X̄ were assumed to be in equilibrium with µX = µX̄ = 0. So we
get

dnχ
dt

+ 3Hnχ = −⟨σ(χ̄χ→ X̄X )|v⃗ |⟩[n2
χ − (nEQ

χ )2]

where the lhs comes from 1
a3

d
dt

(nχa3). The term 3H takes care of the dilution
that comes from the Hubble expansion. The expression ⟨σ(χ̄χ→ X̄X )|v⃗ |⟩
denotes a thermal average of the cross-section times velocity:

⟨σ(χ̄χ→ X̄X )|v⃗ |⟩ ≡
(
nEQ
χ

)−2 (gχ)2(gX )2·∫
dΦχdΦχ̄dΦXdΦX̄ (2π)4δ4(pχ + pχ̄ − pX − pX̄ )|M|2e−(Eχ+Eχ̄)/T

where dΦi ≡ d3pi
(2π)32Ei

is the phase space differential.
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In general after summing over all possible final states (all annihilation
channels) one gets the Boltzamann equation

dnχ
dt

+ 3Hnχ = −⟨σA|v⃗ |⟩[n2
χ − (nEQ

χ )2] (2)

where σA is the total (inclusive) annihilation cross-section.
In order to scale out the effect of the Universe expansion let’s define a new
variable Yχ ≡ nχ/s where s is the total entropy density and hence sa3 is
constant (this is an approximation) as the entropy in the comoving volume
a3, therefore

Ẏχ ≡
d

dt

(
nχ
s

)
= ṅχ

s
− nχ

ṡ

s2 = 1
s

(ṅχ − nχ
ṡ

s
)

Since sa3 = const. therefore

d

dt
(sa3) = ṡa3 + 3a2ȧs = 0 ⇒ 3

ȧ

a
s = −ṡ ⇒ ṡ

s
= −3H

Hence
Ẏχ = 1

s

(
ṅχ − nχ

ṡ

s

)
= 1
s

(ṅχ + 3Hnχ)
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Therefore the Boltzmann equation could be written as

sẎχ = −⟨σA|v⃗ |⟩[n2
χ − (nEQ

χ )2] = −⟨σA|v⃗ |⟩

[(
nχ

nEQ
χ

)2

− 1

]
(nEQ
χ )2 =

−⟨σA|v⃗ |⟩

[(
Yχ

Yχ EQ

)2

− 1

]
Y 2
χ EQs

2

Hence

Ẏχ
YχEQ

= −⟨σA|v⃗ |⟩

[(
Yχ

Yχ EQ

)2

− 1

]
Yχ EQ s = −nχ EQ⟨σA|v⃗ |⟩

[(
Yχ

Yχ EQ

)2

− 1

]
Defining the interaction rate Γ ≡ nχEQ⟨σA|v⃗ |⟩ we can write the Boltzmann
equation in the following form

Ẏχ
YχEQ

= −Γ

[(
Yχ

Yχ EQ

)2

− 1

]
Recall the relation between temperature and time obtained for the
domination of radiation

t = 0.30
MPl

T 2g
1/2
⋆

(3)
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Let’s define x ≡ m
T

and rewrite dt in terms of dx in order to change variables
in the Boltzmann equation

dt = −0.30
MPl

g
1/2
⋆

2
T 3 dT = 2 · 0.30

MPl

g
1/2
⋆ m2

xdx

Note that (3) follows from the Friedmann equation with the energy density
replaced by ρ = π2

30 g⋆T
4:

H = 1.66
g

1/2
⋆ T 2

MPl
Hence we can write dt as

dt = 2 · 0.30
MPl

g
1/2
⋆ m2

xdx = 1
1.66

MPl

g
1/2
⋆

(
x

m

)2 dx

x
=

[
1

1.66
MPl

g
1/2
⋆

1
T 2

]
dx

x
= 1
H

dx

x

Therefore the equation (2) could be written as

x

Yχ EQ

dYχ
dx

= − Γ
H

[(
Yχ

Yχ EQ

)2

− 1

]
(4)

In the non-relativistic (x ≡ m
T
≫ 3) and ultra-relativistic (x ≪ 3) cases YEQ

has the following limiting forms

Yχ EQ =

{
45

2π4

(
π
8

)1/2 gχ

g⋆ S
x

3/2
χ e−xχ = 0.145 · gχ

g⋆ S
x

3/2
χ e−xχ for xχ ≫ 3 (non-rel)

bχ
ζ(3)45
2π4

gχ

g⋆ S
= 0.278 · bχ gχ

g⋆ S
for xχ ≪ 3 (rel)

where bχ = 1 or 3
4 for bosons and fermions, respectively. 8



Comments:

• The destruction rate of χ̄χ per comoving volume is proportional to the
annihilation rate Γ.

• The destruction rate is balanced by inverse processes when nχ = nχ EQ

as expected.
• The creation (the inverse) process is suppressed for T ≪ m (Yχ EQ ≪ 1),

since only a small portion of X̄X pairs can have an energy sufficient to
create χ̄χ pairs.

• The change of χ number density is controlled by Γ
H

as we have argued
before. If Γ

H
≪ 1 then, since ∆Yχ/Yχ ∝ Γ/H , we obtain for the relative

change of Yχ: ∆Yχ/Yχ ∝ Γ/H ≪ 1, so the annihilations "freeze-out"
while the number χ’s "freezes in".

• Γ = nEQ⟨σv⟩, so in the
• relativistic regime Γ ∼ T 3 · T k/Λk+2 ∼ T , while
• in the non-relativistic regime Γ ∼ (mT )3/2e−m/T · T k/Λk+2

In both cases Γ decreases as T decreases, so usually eventually the
interaction rate becomes too small to maintain the equilibrium, roughly
at Γ ≃ H (for x ≡ xf ≃ 25 for cold dark matter), thus for x <∼ xf we
expect Y (x) ≃ YEQ (x) while for x >∼ xf the abundance "freezes in":
Y (x >∼ xf ) ≃ YEQ (xf ).
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♠ Hot relics: xf <∼ 3
We assume that the freeze-out occurs when the species are still relativistic
and that YEQ does not change with time (or temperature). Note that
Yχ EQ (x) ∝ gχ

g⋆ S (x) , it turns out that the proper choice of x in g⋆ S (x) is x = xf .
We are going to integrate the Boltzmann equation from x = xf till x →∞.

Then the Boltzmann equation

x

Yχ EQ

dYχ
dx

= − Γ
H

[(
Yχ

Yχ EQ

)2

− 1

]
has a fixed point at x →∞ such that:[(

Yχ
Yχ EQ

)2

− 1

]
= 0

Note that
dYχ
dx

< 0 for Yχ > Yχ EQ and dYχ
dx

> 0 for Yχ < Yχ EQ

If g⋆ S (x) is constant then

• The asymptotic value of Y∞ ≡ limx→∞ Yχ(x) is not sensitive to the
initial value of Yχ(xf ), it is just Yχ EQ .

• For x < xf the solution Yχ(x) follows the equilibrium yield Yχ EQ (x).
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It could be shown (see class) that if it is assumed that g⋆ S (x) = const., then
the Boltzmann equation is satisfied by

Yχ(x) = Yχ EQ (xf ) tanh(αx)

where α ≡ MPl/m≫ 1.

At large x we get

Yχ(x)→ Y∞ = Yχ EQ (xf ) = 0.278 · bχ
gχ

g⋆ S (xf )
for xf <∼ 3

So, in the range where g⋆ S (xf ) = const. the resulting asymptotic (now)
abundance is independent of the freeze-out temperature. Hence the present
number density reads

nχ 0 = s0Y∞ = 2906 Y∞ cm−3 = 807 bχ ·
gχ

g⋆ S (xf )
cm−3

where s0 = 2906 cm−3 was used (see class). Today the energy density of a
particle which was relativistic at the freeze-out and is non-relativistic now is
saturated by its mass:

ρχ 0 ≃ nχ 0m = 2.91 · 103 Y∞

(
m

1 eV

)
eV cm−3

11



That leads to

Ω0
χ = 8πG

3H2
0

ρχ 0 = h−2 7.8 · 10−2bχ ·
gχ

g⋆ S (xf )

(
m

1 eV

)
Let’s consider a contribution to Ω that comes from neutrinos for which
bν = 3/4 and gν = 2. As we already know neutrinos decouple at T ≃ 1 MeV,
the total entropy is conserved so we can calculate the entropy just above
1 MeV where the relativistic species are γ, e± and (ν, ν̄):

g⋆ S (xf ) = 2 + 7
8 (4 + 3 ∗ 2) = 10

3
4

Hence we obtain for νν̄ pairs

Ω0
νν̄h

2 = 0, 011

∑
i
mνi

1 eV ⇒
∑

i

mνi = (Ω0
νν̄h

2) · 91.9 eV

If we require that neutrinos do not overclose the Universe, so Ωνν̄h2 < 1
then we get the celebrated cosmological bound on the mass of stable
neutrinos of single chirality ∑

i

mνi < 91.9 eV
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♠ Cold relics: xf >∼ 3
Let’s consider the case where the freeze-out occurs when the species is
non-relativistic (xf >∼ 3), then while T is decreasing, Yχ EQ (x) is decreasing
exponentially:

Yχ EQ (x) = 45
2π4

(
π

8

)1/2 gχ
g⋆ S

x3/2
χ e−xχ = 0.145 · gχ

g⋆ S
x3/2
χ e−xχ

There is no fixed point in this case. Assume that the following
parameterization could be adopted

⟨σA|v |⟩ = σ0

(
T

m

)n

= σ0x
−n for x >∼ 3 and n ≥ 0

Then the Boltzmann equation

x

Yχ EQ

dYχ
dx

= − Γ
H

[(
Yχ

Yχ EQ

)2

− 1

]
could be written as (note that Γ ≡ nχ EQ⟨σA|v |⟩)

dYχ
dx

= − Γ
xH

Y 2
χ EQ

Yχ EQ

[(
Yχ

Yχ EQ

)2

− 1

]
= −⟨σA|v |⟩ s

xH

[
Y 2
χ − Y 2

χ EQ

]
where we have used the fact that nχ EQ = sYχ EQ .
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Next let’s recall that if the non-relativistic contribution to the energy and
entropy densities could be neglected, then

s = 2π2

45
g⋆ ST

3 and H =
(8πG

3

)1/2

g1/2
⋆ T 2

what could be written as

s = 2π2

45
g⋆ S

m3

x3 and H =
(8πG

3

)1/2

g1/2
⋆

m2

x2

Let me rewrite the coefficient ⟨σA|v|⟩ s
xH

as a function of x

⟨σA|v |⟩ s
xH

=
σ0x

−n 2π2

45 g⋆ S
m3

x3

x
(

8πG
3

)1/2
g

1/2
⋆

m2

x2

= m
2π2

45

( 3
8πG

)1/2 g⋆ S

g
1/2
⋆

σ0︸ ︷︷ ︸
λ

x−(n+2) ≡ λx−(n+2)
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So, the Boltzmann equation in this case reads
dYχ
dx

= −λx−(n+2) [
Y 2
χ − Y 2

χ EQ

]
where

λ = m
2π2

45

( 3
8πG

)1/2 g⋆ S

g
1/2
⋆

σ0 = 0.264 MPl mσ0
g⋆ S

g
1/2
⋆

Yχ EQ = 0.145 · gχ
g⋆ S

x3/2e−x

Let’s define a departure form equilibrium

∆ ≡ Yχ − YEQ

then the Boltzmann equation for ∆ reads

∆′ = −Y ′
EQ − λx−(n+2)∆(2YEQ + ∆)

We assume that at early times (1 < x ≪ xf ), Yχ follows closely YEQ so both
∆ and ∆′ are small, so setting ∆′ = 0 one gets approximately

∆ ≈ −λ−1xn+2 Y ′
EQ

2YEQ + ∆ ≈
xn+2

2λ
, (5)

where in the last equality ∆ was neglected in the denominator and 1/x was
dropped (note that 1 < x)

Y ′
EQ

2YEQ + ∆ ≈
Y ′

EQ

2YEQ
= 1

2

(3
2
x−1 − 1

)
≈ −1

2
. (6) 15



At late times (x ≫ xf ) ∆ is large, so ∆ ≈ Y ≫ YEQ , so the terms containing
YEQ and Y ′

EQ could be dropped, so the Boltzmann equation reads

∆′ ≈ −λx−n−2∆2

Then integrating we get ∫ ∞

xf

∆′

∆2 dx ≈ −λ

∫ ∞

xf

dx

xn+2
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So then ∫ ∆∞

∆f

d∆
∆2 ≈ −

λ

(n + 1)xn+1
f

where ∆∞ ≡ limx→∞ ∆(x) and ∆f ≡ ∆(xf ). Finally we obtain

1
∆∞

= 1
∆f

+ λ

(n + 1)xn+1
f

Defining the freeze-out criterion by ∆(xf ) = cYEQ (xf ) (with c ∼ O(1)) we get
from the early time solution (5) and (6)

∆f ≈ − 1
λ
xn+2
f

Y ′
EQ (xf )

2YEQ (xf ) + ∆f

≈ − 1
λ
xn+2
f

2
(2 + c)

Y ′
EQ (xf )

2YEQ (xf )
≈ − 1

λ
xn+2
f

2
(2 + c)

−1
2

= xn+2
f

λ(2 + c)

therefore
1

∆∞
≈ λ(2 + c)

xn+2
f

+ λ

(n + 1)xn+1
f

Since by assumption xf >∼ 3 and n ≥ 0 we may try to neglect the first term
above.
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Then, since ∆∞ ≈ Y∞ (late time) we obtain

Y∞ ≈
(n + 1)xn+1

f

λ
= (n + 1)xn+1

f g
1/2
⋆

0.26MPlmσ0g⋆ S
∝ 1

mσ0

The above allows to determine the asymptotic (present) number density.
However one still needs to determine the freeze-out temperature xf . The
explicit form of the freeze-out condition ∆(xf ) = cYEQ (xf ) is the following

∆(xf ) = xn+2
f

λ(2 + c)
= cYEQ (xf ) = cax

3/2
f e−xf

for a ≡ 0.145(g/g⋆ S ). Choosing c(c + 2) = n + 1 provides the best
approximation to the exact solution, so we get

xf ≈ ln

[
(n + 1)λa

x
n+ 1

2
f

]
(7)

Let’s adopt for notation
An ≡ (n + 1)λa
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Then keeping two first terms one can write down the solution of (7) as
follows

xf = lnAn − (n + 1
2

) ln xf ≈ lnAn − (n + 1
2

) ln(lnAn) + · · ·

Class: Illustrate the dependence of xf on λa assuming σ0 ≈ G 2
Fm

2
Z for

GF = 1.16 · 10−5 GeV−2 for n = 0, 1, 2, 3, 4, assume An = (n + 1) · 10p and vary
p ∈ [10, 16].

Having xf and Y∞ determined one can calculate the present number and
mass densities:

nψ 0 = s0Y∞ = 2906Y∞ cm−3 = 1.1 · 104 (n + 1)xn+1
f

(g⋆ S/g
1/2
⋆ )MPlmσ0

cm−3

Ωψh2 = 1.1 · 109 (n + 1)xn+1
f GeV−1

(g⋆ S/g
1/2
⋆ )MPlσ0
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(An illustration for the freeze-out for cold relic is taken from Bergström & Goobar.)
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An example of cold relics is a hypothetical heavy Dirac stable neutrino with
m≫ 1 MeV. The large mass implies that such a neutrino would decouple as
non-relativistic, though not necessarily at the same temperature T ∼ 1 MeV
as ordinary light neutrinos. The annihilation through the Z boson exchange
leads to various final states ν̄iνi , l̄ l , q̄iqi etc.. Then for T <∼ m <∼ MZ

(assuming, as verified below, that the neutrino is non-relativistic)

σ0 ∼ G 2
Fm

2 with n = 0

Taking g = 2 and g⋆ ≃ 60 one gets (class/homework perhaps)

xf ≃ 16.6+3 ln
(

m

1 GeV

)
and Y∞ ≃ 5.1·10−9

(1 GeV
m

)3 [
1 + 3

16.6
ln

(
m

1 GeV

)]
then

Ων̄νh2 ≃ 1.5 · 2
(1 GeV

m

)2 [
1 + 3

16.6
ln

(
m

1 GeV

)]
,

where it has been taken into account that Ων̄ν = 2Ων because of identical
abundance of neutrinos and anti-neutrinos.

Note that the freeze-out takes place at

TF ≃
m

15
≃ 60 MeV

(
m

1 GeV

)
Requiring Ων̄νh2 <∼ 1 we get the famous Lee-Weinberg bound

m >∼ 2 GeV 21



Big-Bang Nucleosynthesis

♠ The Baryon number of the Universe
The net baryon number density is nB ≡ nb − nb̄ where nb and nb̄ are the
baryon and anti-baryon number densities, respectively. From
ρc = 1.05 h2 eV cm−3 and mN ≃ 940 MeV (the nucleon mass) we get

ΩB = mNnB
ρc

= mNnB
3H2

0
8πG

⇒ nB = ΩBh
2 · 1.11 · 10−6 cm−3

Since s ∝ a−3 (s = S/a3), B ≡ nB/s ∝ nBa
3 = const. is the net baryon number

of the Universe (V = a3). In the absence of baryon number violating
interactions, it is conserved.
It is useful to relate s and photon number density nγ :

s = 2π2

45 g⋆ ST
3

nγ = ζ(3)
π2 gγT

3

}
−→ s

nγ
= 2π4

45ζ(3)
g⋆ S

gγ
−→ s = π4

45ζ(3)
g⋆ Snγ ≃ 1.80g⋆ Snγ

If g⋆ S = const. then one can use s and nγ interchangeable, for instance since
e+e− annihilation till today s ≃ 7.04 · nγ .
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For the Universe baryon number we get

B = nB
s

∣∣∣
today

= ΩBh
2 · 1.11 · 10−6 cm−3

2970 cm−3 ≃ 3.74 · 10−10ΩBh
2

where we have used the fact (see class) that s = 2π2

45 g⋆ ST
3|today≃ 2970 cm−3

(g⋆ S |today= 3.91).
Since the epoch of e± annihilation, s and nγ were related by s ≃ 7.04 · nγ , so
we get for the η parameter

η ≡ nB
nγ

∣∣∣∣
today

= nB
s

s

nγ

∣∣∣∣
today

≃ 7.04 · B ≃ 2.63 · 10−9 · ΩBh
2
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♠ The nuclear statistical equilibrium
Now we are in position to discuss consequences of the nuclear statistical
equilibrium:

• kinetic (thermal, local) equilibrium for non-relativistic species

⇓

nA = gA

(
mAT

2π

)3/2

e (µA−mA)/T

• chemical equilibrium AZ ↔ Zp + (A− Z )n (the same speed)

⇓

µA = Zµp + (A− Z )µn
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Let’s find the number density for the nuclear species AZ . First we calculate
eµA/T using the above relation and

ni = gi

(
miT

2π

)3/2

e (µi−mi )/T for i = n, p.

So

eµA/T = e (Zµp+(A−Z )µn )/T =
(
eµp/T

)Z (
eµn/T

)A−Z
=

=
(
np
gp

)Z (
2π

mpT

)3Z/2 (
emp/T

)Z
·
(
nn
gn

)A−Z ( 2π

mnT

)3(A−Z )/2(
emn/T

)A−Z

= nZ
p n

A−Z
n 2−A

( 2π

mNT

)3A/2
e [Zmp+(A−Z )mn ]/T

where mN ≃ mp ≃ mn and gp = gn = 2.
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nucleus A
ZX BA gA

deuteron 2
1H 2.22 MeV 3

triton 3
1H 8.48 MeV 2

helium-3 3
2He 7.72 MeV 2

helium-4 4
2He 28.3 MeV 1

carbon-12 12
6 C 92.2 MeV 1

Table 1: The binding energies of some light nuclei.
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Using the expression for the binding energy

BA ≡ Zmp + (A− Z )mn −mA

we get

nA = gA

(
mAT

2π

)3/2

e−mA/T · nZ
p n

A−Z
n 2−A

( 2π

mNT

)3A/2
e [Zmp+(A−Z )mn ]/T

= gAA
3/22−A

( 2π

mNT

)3(A−1)/2
nZ
p n

A−Z
n eBA/T

For all species ni ∝ a−3 therefore it is useful to factor out and cancel the
change related exclusively to the expansion. The following variable (mass
fraction) proves to be convenient:

XA ≡
AnA
nN

with
∑
A

XA = 1

where nN ≡ nn + np +
∑

i
(AnA)i is the total nucleon density (that is also equal

to the total baryon density nB ). Let’s first find AnA in terms of T , Xp and Xn :

AnA = gAA
5/22−A

( 2π

mNT

)3(A−1)/2
nZ
p n

A−Z
n︸ ︷︷ ︸

XZ
p XA−Z

n nA
B

eBA/T
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From the definition of η we obtain

nN = nB = ηnγ = ηζ(3) 2
π2T

3 (8)

Hence
XA = gAA

5/22−A
( 2π

mNT

)3(A−1)/2
X Z

p X
A−Z
n nA−1

B eBA/T

Then inserting nN from (8) we have

XA = gAζ(3)A−12−(3A+5)/2π(1−A)/2A5/2ηA−1X Z
p X

A−Z
n

(
T

mN

)3(A−1)/2
eBA/T

28



♠ p ←→ n transitions : T ≫ 1 MeV (t ≪ 1 s)
The following reactions are responsible for the balance between protons
and neutrons:

n ←→ p + e− + ν̄e

n + νe ←→ p + e−

n + e+ ←→ p + ν̄e

For chemical equilibrium one obtains

µn + µνe = µp + µe

Then we can calculate nn/np which is of fundamental importance for the
formation of light nuclei

n

p
≡ nn

np
=

gn
(
mnT
2π

)3/2
e (µn−mn )/T

gp

(
mpT

2π

)3/2
e (µp−mp )/T

= e−(mn−mp )/T−(µp−µn )/T = e−Q/T+(µe−µνe )/T

(9)
where Q ≡ mn −mp = 1.293 MeV.
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In order to estimate the relevance of the chemical potential term lets find a
net fermion number for a given fermionic species. Assume that there are
rapid transitions of the form: f f̄ ←→ γ + γ (here we will consider
temperatures 100 MeV > T > 1 MeV, so the transition e+e− −→ γ + γ takes
place). Then µf + µf̄ = 2µγ , since µγ = 0 we get µf = −µf̄ . In general we have

nf (T ) = gf
2π2

∫ ∞

mf

(E 2 −m2
f )1/2

exp [(E − µf )/T ] + 1
EdE

Hence assuming gf = gf̄ we get for the net fermionic number density (in fact
this applies to any additive U(1) quantum number) corresponding to the
species f

nf − nf̄ = gf
2π2

∫ ∞

mf

dEE (E 2 −m2
f )1/2

[
1

exp [(E − µf )/T ] + 1
− 1

exp [(E + µf )/T ] + 1

]
=

{
gf T

3

6π2

[
π2

(
µf
T

)
+

(
µf
T

)3
]

for T ≫ mf

2gf
(
mf T
2π

)3/2 sinh
(
µf
T

)
exp

(
−mf

T

)
for T ≪ mf

(10)
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Let’s focus on the relativistic case T ≫ mf and introduce the notation
∆nf ≡ nf − nf̄ , then

∆nf = gfT
3

6

(
µf

T

) [
1 + 1

π2

(
µf

T

)2
]

Since
s = 2π2

45
g⋆ ST

3

therefore we have

∆nf

s
= gf 45
g⋆ S12π2

(
µf

T

) [
1 + 1

π2

(
µf

T

)2
]

Let’s specify now to f = e . If, in addition we assume that µe/T ≪ 1 (later we
will see that this is indeed the case) then we obtain

µe

T
∼ g⋆ S12π2

gf 45
∆ne

s
∼ 1.4 · 10

∆ne

s
(11)

for g⋆ S = 10.75 and ge = 2.
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From electric neutrality of the Universe we have

µe

T
≃ ∆ne

s
=

∆np

s
(12)

where only contributions for e− and p to the total charge of the Universe
was taken into account (heavier leptons and baryons are negligible at the
temperature of interest): (∆np − ∆ne )/s = 0. The baryon number of the
Universe is given by

B = nB
s

=
∆np + ∆nn

s
≃ 3.74 · 10−10ΩBh

2

Therefore (assuming ∆np ∼ ∆nn )

∆np

s
∼ 10−10 ΩBh

2

and we get from (12)
µe

T
∼ 10−9 ΩBh

2

Note that the above result allows to skip the electron chemical potential
contribution to n/p as a consequence of experimental data.
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On the other hand, to estimate the contribution from the neutrino chemical
potential we assume that lepton numbers

Li ≡
∆ni + ∆νi

s

are small (as the baryon number B does), then we have from (11) (assuming
no cancellations)

µνe
T
≪ 1

so that we can approximate (9) by
n

p

∣∣∣∣
EQ

≡ nn
np

= e−Q/T+(µe−µνe )/T ≃ e−Q/T

Therefore if T ≫ Q = mn −mp = 1.293 MeV then the number of protons and
neutrons are very much the same. As we know for certain temperature the
interaction between p and n are expected to be too slow to maintain
equilibrium between them. For the interaction rate for n + νe ←→ p + e− one
gets (see e.g. Kolb & Turner for details)

Γ =
{

1
τn

(
T
me

)3 exp
(
−Q

T

)
for T ≪ Q,me

7π
60 (1 + 3g2

A)G 2
FT

5 ≃ G 2
FT

5 for T ≫ Q,me

where τn = 885.7± 0.8 s is the neutron life time and gA ≃ 1.26 is the axial
vector coupling of the nucleon.
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Recall that

H =
[8πG

3
ρtot(T )

]1/2

=
[

8πG

3
π2

30
g⋆T

4
]1/2

= 1.66
g

1/2
⋆ T 2

MPl
≃ 5.4

T 2

MPl

where g⋆ = 2 + 7
8 (3 · 2 + 4) = 10 3

4 was adopted. For T >∼ Q,me one gets

Γ
H
∼

(
T

0.8 MeV

)3

So for T >∼ 0.8 MeV one expects the ratio n/p to have its equilibrium value

1
5

<∼
n

p

∣∣∣∣
EQ

≃ e−Q/T <∼ 1

what implies Xp ≃ Xn .
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The strategy that we apply to estimate abundances of light elements is to
assume that the thermal evolution is equilibrium like. Then one can
determine the freeze-out temperature and assume that the abundance at
this temperature is the same as at present asymptotic temperature. More
precisely in order to predict abundances of light elements one has to solve
(as functions of T ) the following set of equations
Xn

Xp
= exp

(
−Q

T

)
XA = gAζ(3)A−12−(3A+5)/2π(1−A)/2A5/2ηA−1X Z

p X
A−Z
n

(
T

mN

)3(A−1)/2
eBA/T

1 = Xp + Xn + X2 + X3 + X4 + X12

for A = 2H, 3He, 4He and 12C (in the simplest case).
Questions: show suppression factors in the formula for XA, when (for what
temperature) the abundance of A might be substantial?
⋆ t ∼ 10−2 s (T ∼ 10 MeV)
• The energy density dominated by the radiation, relativistic degrees of

freedom: e±, γ, 3 neutrino species, g⋆ = 10 3
4 .

• Weak reaction rates are large: Γ≫ H , so n/p = (n/p)EQ ≃ 1.
• Tν = T

• Xn ≃ Xp ≃ 0.5, X2 − X12 ∼ 10−12 − 10−126
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⋆ t ∼ 1 s (T ∼ 1 MeV)

• Neutrinos decoupled just before this epoch.
• At T ≃ me/3 ≃ 0.2 MeV e± pairs annihilate heating photons relative to

neutrinos by the factor (11/4)1/3.
• Weak interactions that interconvert neutrons and protons freeze-out (so

Γ <∼ H), then (
n

p

)
freeze-out

≃ e−Q/T ≃ 1
6

and

Xp ≃
6
7

, Xn ≃
1
7

and X2 − X12 ∼ 10−12 − 10−108

The ratio n
p

starts slowly decreasing below 1/6 after the freeze-out because
of occasional free neutron decays.
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⋆ t ∼ 1− 2 min (T ∼ 0.3− 0.1 MeV)

• At that time g⋆ decreases to its present value 3.36.
• The ratio n

p
has decreased (as a consequence of decays with

τn = 885.7± 0.8 s) from ∼ 1
6 to ∼ 1

7 (its equilibrium value would be 1
74

for T = 0.3 MeV). Before having time to decay, most neutrons ends up in
helium nuclei through one of the chains:

p + n −→ 2H + γ
2H + 2H −→ 3He + n

3He + 2H −→ 4He + p

or

p + n −→ 2H + γ
2H + 2H −→ 3H + p
3H + 2H −→ 4He + n
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The ratio of the rate for p + n −→ 2H + γ to the expansion rate

Γpn

H
≃ 2 · 103

(
T

0.1 MeV

)5 np
np + nn

ΩBh
2

turns out to be large for T ≫ 0.1 MeV. For T >∼ 0.1 MeV the
photodisintegration p + n −→ 2H + γ is very efficient and not much helium
can be produced. However for T <∼ 0.1 MeV 2H abundance rises to
∼ 10−5 − 10−3, which leads to rapid 2H + 2H fusion, that uses most of the
available neutrons, so that the estimate of the helium abundance is

X4 ≃
4n4He

nN
= 4(nn/2)

nn + np
=

2 n
p

1 + n
p

where for the ratio n/p one should adopt ∼ 1/7 which leads to

X4 ≃
1
4

X4 ≃ 0.25 agrees with observations of helium abundance in stars and gas
clouds. Note that the depletion of n

p
(due to neutron decays) from ∼ 1/6 to

∼ 1/7 is essential to fit the data (for n
p

= 1
6 one gets X4 ≃ 2

7 ≃ 0.29).
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• For other species XA are still very small.
• Note that the time from the weak interaction freeze-out till formation of

4He is approximately t ∼ 200 s (roughly the Universe age at
T ∼ 0.1 MeV) which is of the order of the neutron life time
τn = 885.7± 0.8 s, this is a very spectacular coincidence since:

• If the time was longer more neutrons would decay and the formation of the
observed helium abundance would not be possible.

• If the Universe cooled faster (so the time was shorter) fewer neutrons
would have time to decay before being saved into its stable existence inside
helium nuclei, so that helium abundance would have increased.

Since H2 ∝ ρtot and ρtot is dominated by relativistic species therefore an
addition of extra (besides 3 present in the SM) neutrinos would speed
up the expansion increasing the helium abundance beyond the
observed value. From that (see class) one can obtain the limit Nν <∼ 4
(confirmed later by the LEP measurement of the number of light
(<∼ mZ/2) neutrinos Nν = 3.

• The nucleosynthesis restricts the value of the baryon to photon ratio:
η = (5− 6) · 10−10
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Figure 1: Mass fractions relative to hydrogen (from Astronomica.org.),
1 K = 8.6 · 10−4 eV. 40



Figure 2: The light element abundance predictions from BBN theory plotted against
the baryon-to-photon ratio. From top to bottom are the mass fraction of 4He and the
relative mole fractions D/H , 3He/H and 7Li/H . From
https://map.gsfc.nasa.gov/universe/bb_tests_ele.html 41



Recombination

Now we are going to discuss what happened at the temperature far below
T ∼ 0.3− 0.1 MeV (when the nucleosynthesis take place). Here we focus on
T ∼ 1 eV, we assume ne+ = 0, np̄ = 0 and ne = np (as the Universe is
electrically neutral). The electrons and photons are still in thermal
equilibrium, the Thomson scattering γ + e− −→ γ + e− is responsible for
maintaining the equilibrium. In the limit Eγ ≪ me the cross-section and the
interaction rate could be estimated as

⟨σT v⟩ ≃
α2

m2
e

⇒ Γγ ≃ ne⟨σT v⟩

It is easy to see that for T ∼ 1− 10 eV the condition Γγ > H is no longer
satisfied so that photons and electrons decouple. However there appears a
new difficulty while calculating ne , namely electrons may disappear by
combining with protons (so forming hydrogen atoms), thus we should
consider the reaction p + e− −→ H + γ that would be responsible for the
electron number density, hence (since photons have µγ = 0)

µp + µe = µH

in equilibrium.
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Let’s introduce the total baryon number (for simplicity we neglect here the
baryon number carried by 4He , so protons may be either free or bound in
hydrogen)

nB = np + nH

Here we are interested in T <∼ 10 eV (note the hydrogen binding energy in
the ground state is B1 = 13.6 eV) therefore e−, p and H are non-relativistic,
hence

ni = gi

(
miT

2π

)3/2

exp
(

µi −mi

T

)
for i = e, p,H

Using µp + µe = µH and mH = me + mp − B (definition of the binding energy)
we get

nH = gH

(
mHT

2π

)3/2

exp
(

µH −mH

T

)
=

= gH
gegp

gegp

(
mHT

2π

)3/2

exp
(

(µe + µp)− (me + mp − B)
T

)
=

= gH
gegp

[
ge exp

(
µe −me

T

) (
meT

2π

)3/2
] [

gp exp
(

µp −mp

T

) (
mpT

2π

)3/2
]
×

exp
(
B

T

) [
(2π)2

mempT 2

]3/2 (
mHT

2π

)3/2

= gH
gegp

ne np exp
(
B

T

) (
2πmH

mempT

)3/2
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Define the ionization fraction as

Xe ≡
np
nB

= np
np + nH

Then we can express nH in terms of Xe as a function of T

nH = 1− Xe

Xe
np = gH

gegp
ne np exp

(
B

T

) (
2πmH

mempT

)3/2

Hence, since ne = np and mH ≃ mp we get
1− Xe

Xe
= gH
gegp

np exp
(
B

T

) ( 2π

meT

)3/2

Expressing np through the baryon to photon ratio η = nB/nγ and Xe we obtain
1− Xe

Xe
= gH
gegp

[XenB ] exp
(
B

T

) ( 2π

meT

)3/2

Since
nB = ηnγ = η

ζ(3)
π2 gγT

3

we finally get (adopting gH = 4, gγ = ge = gp = 2) the so-called Saha equation
for the fractional ionization at equilibrium:

1− Xe

X 2
e

= 4
( 2

π

)1/2
ζ(3)η

(
T

me

)3/2

exp
(
B

T

)
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As we already know the nucleosynthesis restricts η: η = (5− 6) · 10−10

(through the relation η = 2.7 · 10−8ΩBh
2 it corresponds to ΩBh

2 ∼ 0.02).
Therefore the Saha equation could be solved for Xe = Xe (T ), or equivalently
as Xe = Xe (z) using T = 2.73 (1 + z) K.

The Fig.3 (from Kolb & Turner) shows Xe as a function of the redshift z .

Figure 3: The ionization fraction (from Kolb & Turner).
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The ionization decreases below 10% for z ∼ 1200− 1300, so at that z(= zrec)
electrons begins to be captured by protons forming neutral hydrogen (the
recombination). The corresponding temperature and time are

Trec = T0(1 + zrec) ∼ 2.7 · 1300 K = 3500 K ∼ 0.3 eV
trec = 2

3
H−1

0 Ω0 −1/2
m (1 + zrec)−3/2 ∼ 1.4 · 105

(Ω0
m)1/2h

yr (13)

where we have assumed that the Universe was matter dominated (see
Kolb&Turner) so t ≃ 2

3 (1 + z)−3/2H−1
0 Ω0 −1/2

m . For radiation domination
1.4 · 105 would be replaced by 2.9 · 103, the exact value (radiation and
matter) is 2.7 · 105.
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Comments:

• Note that naively one could expect the recombination to happen at
T ≃ B = 13 eV, that is not the case because of the long tail of energies
larger than T , there are so many photons relative to baryons
(η = nb/nγ = 2.7 · 10−8ΩBh

2) that the reionization easily may happen
even for T < 13 eV.

• So far we have considered the case of equilibrium so p + e− −→ H + γ

with the rate faster than the expansion rate. It turns out that this is
indeed the case for z >∼ 1100. After that the equilibrium can not be
maintained and the ionization fraction is frozen at its value for z ∼ 1100.

• It could be shown that for z ≃ 1050 the mean free path of photons is
comparable with the radius of observable Universe, so the region of
z ∼ 1100 is sometimes referred to as the surface of last scattering of
the cosmic microwave background.
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To determine the freeze-out temperature of the ionization fraction more
precisely we have to consider the Boltzmann equation for p + e− −→ H + γ.
In a close analogy with the case considered before we obtain

ṅe + 3Hne = −⟨σrec|v⃗ |⟩
[
n2
e − (nEQ

e )2
]

(14)

where for the thermally averaged cross-section one can get

⟨σrec|v⃗ |⟩ = 4.7 · 10−24
(1 eV

T

)1/2

cm2

Solving the equation (14) numerically one finds

Tf ∼ 0.25 eV

and hence the remaining ionization fraction (see class perhaps)

Xe (∞) ∼ 2.7 · 10−5 Ω0
m

ΩBh
∼ 1.4 · 10−3

which means that only one proton per 103 baryons is free!
Comments:

• At the moment of recombination photons temperature was
T = Tf ∼ 0.25 eV to be compared with the present CMB temperature
TCMB = 2.35 · 10−4 eV. The difference (ratio) is due to the redshift.
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Brief thermal history of the Universe

Figure 4: History of the Universe. Form physics.lakeheadu.ca/.../2330/Cosmology/.
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Figure 5: History of the Universe. Form conferences.fnal.gov.
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Figure 6: History of the Universe. Form lpnhe-auger.in2p3.fr/slides/vulg/. 51


