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The Freeze-Out, the Boltzmann Transport Equation and the Dark Matter

"Freeze-out" examples:

- 1 sec - few minutes after the Big Bang: synthesis of light elements
(nucleosynthesis)

- ~ 1 sec after the Big Bang: neutrino decoupling

- ~ 10° years after the Big Bang: decoupling of photons from the matter
(recombination)

Consider a particle x that could be a candidate for dark matter. Assume that
x are stable and their number can change only through annihilations to
some SM particles X (it could be quark, lepton, Higgs boson etc.):

XX — XX



In addition we assume that:

- the above process can take place in both directions, if the speed in both
directions is the same, we call it chemical equilibrium, then
Hox ¥ g = X ¥ g,

- X and X have thermal (equilibrium) distributions (they usually have
other interactions, e.g. electromagnetic, so the assumption is often
satisfied) with ux, ug ~ 0, (show that for charged particles ux = —pug so
nx — ng o pix),

- gx = gx, SO fx = fg if ux, pgy ~ 0 (assumed for all SM particles),

+ T invariance holds, so Mg, xx = Mgx_ 5\

- symmetric dark matter (x): gy = gx, fx = p5 (SO fiy = fz and ny = ng
always, not only in equilibrium),

- the Bose-Einstein (for bosons) and the Fermi-Dirac (for fermions)
distribution functions could be approximated by the
Maxwell-Boltzmann distribution functions:
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- scattering processes of the DM with the thermal bath enforce kinetic
(thermal) equilibrium (also after decoupling and out of chemical
equilibrium), so that phase-space distribution functions for particles
involved in the scattering satisfy, see Dodelson, 2003, sec. 3.1:

F(E, T) = e EmI/T = o/ TEEQ(E T), (1)

where £EQ(E, T) is the thermal Maxwell-Boltzmann equilibrium
distribution function for zero chemical potential. In this form of £ .(E, T)
the whole uncertainty in the determination of £,(E, T) (also after
decoupling and out of chemical equilibrium) is encoded in the function
Hx = Mx(t)~

Since

3
nX(T) - gxepx/T/ é;’)); fXEQ(E, T) = eHx/Tn)I:;Q(T)7

therefore (1) could be written as

n(T)
n£9(T)

f(E,T)= FEQ(E, T,



Our goal is to determine the evolution of the number density n, = n,(t).
When it happens that n, > n,’iQ then the reaction would go faster to the
right, so xx pairs will annihilate faster than they are created. The depletion
rate should be proportional to o(xx — XX)|V|n2 (quadratic in density, as it
should be proportional to the product of n, and ng, while these are equal).
At the same time yx are also produced in the process XX — xx with a rate
proportional to

fo)_( = ei(EX+E)-()/T = ei(Ex+E)-<)/T = fXEQf)ZEQa

where X and X were assumed to be in equilibrium with ux = uux = 0. So we
get

% +3Hn, = —(o(xy — XX)| 72 — (nE9)]

where the lhs comes from a%%(nxf). The term 3H takes care of the dilution
that comes from the Hubble expansion. The expression (o(xx — XX)|v|)

denotes a thermal average of the cross-section times velocity:
- - o -2
(olex = XX)V)) = (n?) (g *(ex)*

/dq’xd®xd®xd¢x(2ﬂ)454(px +py — px — px)|M[Pe B ENT



In general after summing over all possible final states (all annihilation
channels) one gets the Boltzamann equation

dny
dt

+3Hny = —(0al7])[n}, — (n°)] )

where o4 is the total (inclusive) annihilation cross-section.

In order to scale out the effect of the Universe expansion let's define a new
variable Y, = n, /s where s is the total entropy density and hence sa® is
constant (this is an approximation) as the entropy in the comoving volume
a3, therefore

- d /ny\ n s 1,. s
o= g () = F o= [ n))

Since sa® = const. therefore

da

) . a .
(sa®) = ¢a®+32%3s=0 = 3Zs=-35 =
dt a

. 1/. s
Y, = = _ - =
x T3 (”x ”XS)

wiln
1
I
w
I

Hence
(ny +3Hny)
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Therefore the Boltzmann equation could be written as

sYy = —<aA|V>[ni—<n§">21=—<oA|V|>Knn'fx‘?> _1] (n{0)? =
B v '
<O—A|v>l<yxm> )
Hence

. 2

Y. . Y, .
YX = —(oalV]) K X ) 1] YyEqs = —nyeq{calV])
XEQ

2 2
YX EQS

Yx EQ

()

Defining the interaction rate ' = nyeq(oa|V|) we can write the Boltzmann
equation in the following form
v\,
Yy EQ

Recall the relation between temperature and time obtained for the
domination of radiation

Yy
Yxeo

Mp,

7'2g*1/2

t=0.30




Let's define x = £ and rewrite dt in terms of dx in order to change variables
in the Boltzmann equation

de=—030M0L 2 g 5. 030 MPL
g2 T gt/2m?2

Note that (3) follows from the Friedmann equation with the energy density
replaced by p = g—:g* T
1/2 42
&' T
H=166=——-
Mp,
Hence we can write dt as

Mp, 1 Mpl(X>2dX_|:1 Mp11:|dX 1 dx

2 T 166 G172 166 51/2 T2

*

dt=2-0.30

m

X

Therefore the equation (2) could be written as

x v Tl v\, W
YXEQ dX H YXEQ

In the non-relativistic (x = 2 >> 3) and ultra-relativistic (x < 3) cases Yeq
has the following limiting forms

8x S X
by S28 £ = 0278 - by B for x, < 3 (rel)

X 274 g, s

Yxee = { = (%)1/2 £ 3267 = 0,145 - :—sz;/Ze’XX for xy > 3 (non-rel)
xEQ = *

where b, =1 or 2 for bosons and fermions, respectively.



Comments:

- The destruction rate of xx per comoving volume is proportional to the
annihilation rate I.

- The destruction rate is balanced by inverse processes when n, = ny gq
as expected.

- The creation (the inverse) process is suppressed for T < m (Yy go < 1),
since only a small portion of XX pairs can have an energy sufficient to
create x pairs.

- The change of x number density is controlled by % as we have argued
before. If 5 < 1 then, since AYy /Y, o '/H, we obtain for the relative
change of Yy: AY, /Yy « [/H <« 1, so the annihilations "freeze-out"
while the number x's "freezes in".

+ I'=ngg(ov), soin the

- relativistic regime I ~ T3 . TK/AK*2 ~ T, while

- in the non-relativistic regime [ ~ (mT)3/2e=m/T . Tk /pk+2
In both cases I' decreases as T decreases, so usually eventually the
interaction rate becomes too small to maintain the equilibrium, roughly
at I ~ H (for x = xr ~ 25 for cold dark matter), thus for x < xr we
expect Y(x) ~ Yeg(x) while for x > xr the abundance "freezes in":
Y(x 2 x¢) ~ Yeq(xe).



& Hot relics: xr < 3
We assume that the freeze-out occurs when the species are still relativistic
and that YEQ does not change with time (or temperature). Note that

Yy eq(x) o< ( 5, it turns out that the proper choice of x in g s(x) is x = x.
We are gomg to integrate the Boltzmann equation from x = x¢ till x — co.

()

Then the Boltzmann equation

x dYy T

YyeQ dx  H

has a fixed point at x — oo such that:

Note that

Yy Y,
ddx <0 for Yx>Yye and h>0 for  Yx < YyeqQ

If g, s(x) is constant then

- The asymptotic value of Ye = lim_oo Yy (x) is not sensitive to the
initial value of Y, (x¢), it is just Y, eq.
- For x < x¢ the solution Y, (x) follows the equilibrium yield Yy go(x).



It could be shown (see class) that if it is assumed that g, s(x) = const,, then
the Boltzmann equation is satisfied by

Yy (x) = Yy eolxr) tanh(ax)
where a = Mpi/m > 1.

At large x we get

Yo(x) = Yoo = Yy eo(x) = 0278 - by —8X —  for  x <3
8« S(XF)

So, in the range where g, s(xr) = const. the resulting asymptotic (now)
abundance is independent of the freeze-out temperature. Hence the present
number density reads

Ex cm—3
g*S(Xf)

No =50 Yoo =2906 Yo cm 3 =807 b, -

where sp = 2906 cm 3 was used (see class). Today the energy density of a
particle which was relativistic at the freeze-out and is non-relativistic now is
saturated by its mass:

m _
Pyo ~ nyom=2.91-10% Y, (m) evVem™3



That leads to

8 G _ g m
Q° = =h278-10°h, X (—)
x 3H2 o= g*s(Xf) lev

Let's consider a contribution to Q that comes from neutrinos for which

b, =3/4 and g, = 2. As we already know neutrinos decouple at T ~ 1 MeV,
the total entropy is conserved so we can calculate the entropy just above
1 MeV where the relativistic species are v, e* and (v, »):

g*s(Xf)=2+g(4+3*2)=IO%

Hence we obtain for vv pairs

0 42 _ Z = (02, h?)
Q)47 = 0,011 v = Zmy, (Q%,h%) - 91.9 eV
If we require that neutrinos do not overclose the Universe, so Q,;h? < 1
then we get the celebrated cosmological bound on the mass of stable

neutrinos of single chirality
> m, < 919ev



& Cold relics: xr > 3
Let's consider the case where the freeze-out occurs when the species is
non-relativistic (xr > 3), then while T is decreasing, Y, eqo(x) is decreasing
exponentially:
1/2

Yy eqlx) = ;i (g) ! g%X;/267XX =0.145 - ixi/zeﬂ”(
There is no fixed point in this case. Assume that the following
parameterization could be adopted

T\" n
<aA|v|>=ao(;) —oox " for x>3 and n>0

()

could be written as (note that T = n, gq{oalv|))

(5) 1] -t - v

Yx EQ

Then the Boltzmann equation

x dYy _ T

Yyeo dx H

dY T Yieo
dx xH YxEQ

where we have used the fact that ny gq = sY, ro-



Next let’s recall that if the non-relativistic contribution to the energy and
entropy densities could be neglected, then

272 3 871G\ 1, 5
= " d = (7) */
s=sgsT and H 3 g1

what could be written as

271'2 m3 871G 1/2 1 2m2
== _g,s— and H=(— /
*T 5 53 ( 3 ) .

x2

Let me rewrite the coefficient %:,‘)5 as a function of x

X

g m3
(oalv)) s _ oox "IEgisTy mﬁ ( 3 )1/2 8BS ) — oy ~v2)
1/2 1/2 -
xH X(%) / g*l/z%z 45 \8nG g/

A



So, the Boltzmann equation in this case reads

dY, —(n+2)

T Y - ko)
where

272 1 3 \Y? gus g5

A = mE (871’7) 1/2 oo = =0.264 Mp1 moo——= 1/2
Yoo = 0.145. 8x ;3/2¢7x
8« S
Let's define a departure form equilibrium
A=Y, — Yeo

then the Boltzmann equation for A reads
N = —Yio — A "PN(2Veg + D)
We assume that at early times (1 < x < x), Yy follows closely Ygq so both
A and A" are small, so setting A’ = 0 one gets approximately
Y. x"?

£ NS (5)
2Yeo +A 2\
where in the last equality A was neglected in the denominator and 1/x was
dropped (note that 1 < x)

Yifi@z Yeq =l(§xflfl> %71. (6)
2YEQ+A ZYEQ 2\2 2

—1_m2
S




At late times (x > x¢) Ais large, so A ~ Y >> Ygg, so the terms containing
Yeo and Y, could be dropped, so the Boltzmann equation reads

N~ - x "2

<N = dx
/ de ~ 7A/ 2
Xf Xf

Then integrating we get




So then

R SO S
L D2 T (ne)xet

f

where A = limy_ 00 A(x) and Ar = A(x¢). Finally we obtain

1, A
A (n+1)xpt

.
A
Defining the freeze-out criterion by A(xf) = cYeg(xr) (with ¢ ~ O(1)) we get
from the early time solution (5) and (6)

1 n+2 YéQ(XF)
Ar = =X ooy
AT 2Yeq(xe) + Af
_1 n+2 2 YéQ(Xf) N_lxn+2 2 ;1 - X;7+2
AT 2+ 2Yeelx) T AT (2%c) 2 A2+¢)
therefore

1 M2+0) . A

Do X7 (n+ DX
Since by assumption x¢ > 3 and n > 0 we may try to neglect the first term
above.




Then, since Ase & Yoo (late time) we obtain

(n+1)x™  (n+ 1)x*t g, 1/2 1

A 0.26Mp1maog*5 x moo

Yoo &

The above allows to determine the asymptotic (present) number density.
However one still needs to determine the freeze-out temperature x¢. The
explicit form of the freeze-out condition A(xs) = cYeo(xs) is the following

n+2

- X _ 3/2 —x
A(xr) = )\(2F+ 9 = CYEQ(Xf) = caxf/ f

for a = 0.145(g /g, s). Choosing c(c +2) = n+ 1 provides the best
approximation to the exact solution, so we get

xr ~ In lwa] 7)

1
n+l
2

X

Let's adopt for notation
A =(n+1)Aa



Then keeping two first terms one can write down the solution of (7) as
follows

xr=InA, —(n+f)lnx,r lnA, —(n+7)ln(lnA,,)+

Class: Illustrate the dependence of x; on Aa assuming oo ~ G2m> for
Gr=1.16-10"5GeV2forn=0,1,2,3,4 assume A, = (n+1) - 10° and vary
p € [10,16].

Having xr and Y. determined one can calculate the present number and
mass densities:

(n + ].)Xn+1 c _3

Nyo = 50 Yoo =2906Ys cm > =1.1-10*
(g*s/g* *)Mpimao

Quh?=11.10°0* L)xf™ Gev—*
(g.5/g}*)Mpi0o

19



o T ™ T T T T T

1)

= [ g
< L ]
= 25
> 10° —
i Yiea for small ov 1
1oL _ Yiea forlarge ov |
10" ¥ =
- eq 4
107%° s Lol . s 1 N
a 4 567 3 4 56 2 3 4 7
1 10 Xq 100 1000

Fig. 9.1. The freeze-out of a massive particle. At a certain value xy = my/Tr the
number density ¥ (normalized to the entropy density s, and in the figure arbitrarily
normalized to the value at x — 1) leaves the cquilibrium abundance curve Yoy (the
solid line) and gives an actual abundance Y;ear shown by the dashed lines. As can be
scen, a higher annihilation rate ov means a smaller relic abundance, since the actual
curve tracks the equilibrium curve to smaller temperatures. For weakly interacting
massive particles, x; is of the order of 20. Adapted from [26].

(An illustration for the freeze-out for cold relic is taken from Bergstrom & Goobar.)
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An example of cold relics is a hypothetical heavy Dirac stable neutrino with
m > 1 MeV. The large mass implies that such a neutrino would decouple as
non-relativistic, though not necessarily at the same temperature T ~ 1 MeV
as ordinary light neutrinos. The annihilation through the Z boson exchange
leads to various final states v, 11, Giqi etc.. Then for T <m< Mz
(assuming, as verified below, that the neutrino is non-relativistic)

oo~ GEFm> with n=0

Taking g =2 and g, ~ 60 one gets (class/homework perhaps)

~ m N _o /1GeV\?3 3 m
Xf—16.6+3ln<lGev> and Y ~5.1:10 ( p- ) {1+716.6ln(1GeV)]

then 5
- 1GeV) { 3 ( m )}
Qo h” = 1.5 2( m 1+ 766" (Tcev) |-

where it has been taken into account that Q;, = 2Q, because of identical
abundance of neutrinos and anti-neutrinos.

Note that the freeze-out takes place at

m m
T = 12 = 60 MeV (@)

Requiring Q;, h* < 1 we get the famous Lee-Weinberg bound

m 2 2 GeV 21



Big-Bang Nucleosynthesis

& The Baryon number of the Universe

The net baryon number density is ng = n, — n; where n, and n; are the
baryon and anti-baryon number densities, respectively. From

pe =1.05 h? eV cm™3 and my ~ 940 MeV (the nucleon mass) we get

myng _ Mnnp

Pe - 3Hg
8nG

Op = = ng=Qgh*-1.11-10 °cm3

Since soc a2 (s=S/a®), B= ng/s x nga® = const. is the net baryon number
of the Universe (V = a*). In the absence of baryon number violating
interactions, it is conserved.

It is useful to relate s and photon number density n.:

n45(3) & 45C(3)

_7*7-3 24 4
S 8xS } S T 8xS ™ T g sn, ~1.80g, s,

If g« s = const. then one can use s and n., interchangeable, for instance since
e'e” annihilation till today s ~ 7.04 - n,,.

22



For the Universe baryon number we get

g M| _Qsh®-111-107°cm?
S ltoday 2970 cm—3

~3.74 - 10" Qgh?

where we have used the fact (see class) that s = 2= g, s T3]y 2970 cm 3

(g*Sltoday= 391)
Since the epoch of e* annihilation, s and n were related by s ~ 7.04 - n,, so
we get for the i parameter

ne _nBs

n= =22 ~704-B~263-10"° Qgh’

n n
v today R today

23



& The nuclear statistical equilibrium
Now we are in position to discuss consequences of the nuclear statistical
equilibrium:

e kinetic (thermal, local) equilibrium for non-relativistic species

I

ma T)3/2 elha=ma)/T
2m

na = 8A (
e chemical equilibrium AZ <+ Zp + (A — Z)n (the same speed)

A
pa = Zpp* (A= Z)pn

2



Let's find the number density for the nuclear species #Z. First we calculate
e"/T ysing the above relation and

T 3/2 . .
ni = gj (m ) e(#«: /T for i=n,p.
2T
So
eNA/T - e(Z/,ﬂﬂ(A*Z),u,n)/T - (e/"p/T)Z (e,LL,,/T)Afz

z 37/2 A-Z _
_ (e 27 (emp/T>Z. Nn ( 27 )3(A Z)/(zemn/T)A*Z
gp mpT &n mnT
_ 7 A7 7A< 27 >3A/2 [Zmp+(A—Z)m,]/ T
= nyn, “2 — e
mNT

where my ~ mp, ~ m, and g, = g, = 2.

25



nucleus H

2

Ba gA

deuteron 2H | 2.22MeV | 3
triton 3H | 8.48MeV | 2
helium-3 || 3He | 7.72 MeV | 2
helium-4 || 2He | 28.3 MeV | 1
carbon-12 || 33C | 92.2MeV | 1

Table 1: The binding energies of some light nuclei.
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Using the expression for the binding energy

BAEZm,,+(A—Z)m,,— ma

we get
na = ga (”"2AT>3/2 e M/ T nznf “7A ( 27TT)3A/2 elZmpA=2)mal/ T
i my
A—
- gAA3/227A (2771-7_)3( 1)/2 nfnffZeBA/T
mn

For all species n; oc a~2 therefore it is useful to factor out and cancel the
change related exclusively to the expansion. The following variable (mass
fraction) proves to be convenient:

AnA .

Xa=—= with Xa=1

” DX
where ny = n, + n, + > (Ana); is the total nucleon density (that is also equal
to the total baryon density ng). Let's first find Ana in terms of T, X, and X,:

2T )3(A_1)/2 Z A-Z Ba/T

ZyA—Z A
Xp X5 ng

27



From the definition of n we obtain

2
ny =ng=mnny = n((?)); T3

Hence ( y
B 2 3(A-1)/2 _ -
Xa = gaA®/227" (7177/\77-) XPZXnA “np 1gBa/T

Then inserting ny from (8) we have

X, = gA<(3)A7127(3A+5)/27T(17A)/2A5/277A7IXPZXnAfz (7
my

3(A—1)/2
T ) / oBA/T

28



& p «—— ntransitions: T > 1MeV(t<15s)
The following reactions are responsible for the balance between protons
and neutrons:

n <— pte +U,
n+ve +— pte
n+e" —— p+ie

For chemical equilibrium one obtains
Hon ¥ flue = flp ¥ fle

Then we can calculate n,/n, which is of fundamental importance for the
formation of light nuclei

(M)W ln—ma)/ T

n_nn_ &\ % = o mp) T g i)/ T =@/ Tolle—par)/ T
p N myT 3/2 (p—mp)/ T
8p (?) e\Hp P

(9)
where Q = m, — mp = 1.293 MeV.
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In order to estimate the relevance of the chemical potential term lets find a
net fermion number for a given fermionic species. Assume that there are
rapid transitions of the form: £ «— ~ +~ (here we will consider
temperatures 100 MeV > T > 1 MeV, so the transition e'e™ — ~ + v takes
place). Then ps + pz = 2pu, Since iy = 0 we get ur = —p;z. In general we have

oo 2 2y1/2
ne(T) = ﬁ/ (7 — mp) EdE
my¢

T 22 exp[(E — ue)/T1+1

Hence assuming gr = g7 we get for the net fermionic number density (in fact
this applies to any additive U(1) quantum number) corresponding to the
species f

nf—nf=%/dEE(E2_m%)l/2 [ L !

) { % [73 (LTf) + (4)3] for T > mf
inh (%)

exp (—%) for T < ms

expl(E — ur)/T1+1 B expl(E +pus)/T1+1

(10)
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Let's focus on the relativistic case T > mr and introduce the notation

A, = nf — ng, then
el (%) 1 (ﬂ)z
b= (7)1 =7

2
45

JAp _ &5 (ﬂ) 1+ 1 (ﬂ)2

s ges12m2 \ T w2\ T

Let's specify now to f = e. If, in addition we assume that ue/ T < 1 (later we
will see that this is indeed the case) then we obtain

Since

s = g*5T3

therefore we have

pe | gis12n by,

A,
~14.-10 — 1
T gr4b 5 ()

for gvs =10.75 and ge = 2.
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From electric neutrality of the Universe we have

A”e A"P

e
~ 12
T = (12)

S S

where only contributions for e~ and p to the total charge of the Universe
was taken into account (heavier leptons and baryons are negligible at the
temperature of interest): (A,, — As.)/s = 0. The baryon number of the
Universe is given by

ng Anp

+ A, _
B=-2="lr "™ ~374.10 °0gH
S S

Therefore (assuming A, ~ Ay,)

A,
s" ~ 107 Qgh?

and we get from (12)
He -9 2
— ~ 1077 Qgh
T B

Note that the above result allows to skip the electron chemical potential
contribution to n/p as a consequence of experimental data.

32



On the other hand, to estimate the contribution from the neutrino chemical
potential we assume that lepton numbers

— A"/‘ +AV,‘

= S

are small (as the baryon number B does), then we have from (11) (assuming
no cancellations)

L;

Hve

1
T <

so that we can approximate (9) by

Al M @/ THue—)/T o o=@/ T

Pleg M

Therefore if T > Q = m, — mp = 1.293 MeV then the number of protons and
neutrons are very much the same. As we know for certain temperature the
interaction between p and n are expected to be too slow to maintain
equilibrium between them. For the interaction rate for n+ve <— p+e~ one

gets (see e.g. Kolb & Turner for details)
3
rof () e (-9 for T<Q,me
r(1+3gA)GFT> ~ GET® for  T> Q,m.
where 7, = 885.7 & 0.8 s is the neutron life time and ga ~ 1.26 is the axial
vector coupling of the nucleon.
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Recall that

81 G Y2 I8rG 4 1z gf/2T T?
H = (T = T =1 ~54-—
[ 3 M i )} 73 30¢ o= = 5,

where g, =2+ £(3-2+4) =102 was adopted. For T > @, m. one gets

i~ (qamen)
H 0.8 MeV

So for T > 0.8 MeV one expects the ratio n/p to have its equilibrium value

< e T <1

Gl =
T

what implies X, ~ X,.
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The strategy that we apply to estimate abundances of light elements is to
assume that the thermal evolution is equilibrium like. Then one can
determine the freeze-out temperature and assume that the abundance at
this temperature is the same as at present asymptotic temperature. More
precisely in order to predict abundances of light elements one has to solve
(as functions of T) the following set of equations

x = oo (-3)

gAC(3)A 1 BABI2 (A=A p5/2 AL Z A2 (ml
N
1 = Xp+Xo+ Xo+ Xs+ Xy + Xi2

Ba/T
eBa/

£
n

)3(A—1)/2

for A=2H,3He,*He and *C (in the simplest case).
Questions: show suppression factors in the formula for Xs, when (for what
temperature) the abundance of A might be substantial?
xt~10725s(T ~ 10 MeV)
- The energy density dominated by the radiation, relativistic degrees of
freedom: e™, v, 3 neutrino species, g, = 10%.
- Weak reaction rates are large: T > H,so n/p = (n/p)eq ~ 1.
“T,=T
© Xo~ X, ~05, X2 — Xip ~ 10712 — 107126

35



*xt~1s(T ~1MeV)

- Neutrinos decoupled just before this epoch.

-+ At T ~ m./3 ~ 0.2 MeV e* pairs annihilate heating photons relative to
neutrinos by the factor (11/4)/3.

- Weak interactions that interconvert neutrons and protons freeze-out (so

I < H), then
n ~e YT~ 1
p freeze-out 6
and
X, ~ 2 X, ~ L d  Xp— X2~ 107" —107 18
P2 n=z an 2 — X12 ~ —

The ratio o starts slowly decreasing below 1/6 after the freeze-out because
of occasional free neutron decays.
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xt~1—=2min (T ~ 0.3 —0.1 MeV)

- At that time g, decreases to its present value 3.36.

- The ratio 2 has decreased (as a consequence of decays with
7, = 885.7 £ 0.8 s) from ~ £ to ~ 2 (its equilibrium value would be %
for T = 0.3 MeV). Before having time to decay, most neutrons ends up in
helium nuclei through one of the chains:

p+rn — *H+xy
H+*H — >He+n
*He +2?H —» ‘“He+p

or

p+n —> 2H+7
2H+2H — 3H+p
3H+2H — “*He+n
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The ratio of the rate for p+ n — 2H + to the expansion rate

[ on 3( T )5 np 2
2. 10 Qsh
H 01MeV/) np+n, °

turns out to be large for T > 0.1 MeV. For T > 0.1 MeV the
photodisintegration p + n —s 2H + ~ is very efficient and not much helium
can be produced. However for T < 0.1 MeV 2H abundance rises to

~ 107% — 1073, which leads to rapid 2H + 2H fusion, that uses most of the
available neutrons, so that the estimate of the helium abundance is

_ Anaye _4ne/2) 2}

ny Ny + np 1+£

Xa

where for the ratio n/p one should adopt ~ 1/7 which leads to

1
X4 ~ Z
Xa =~ 0.25 agrees with observations of helium abundance in stars and gas
clouds. Note that the depletion ofg (due to neutron decays) from ~ 1/6 to

~ 1/7 is essential to fit the data (for = % one gets X ~ 2 ~ 0.29).



- For other species X are still very small.

- Note that the time from the weak interaction freeze-out till formation of
“He is approximately t ~ 200 s (roughly the Universe age at

T ~ 0.1 MeV) which is of the order of the neutron life time

T, = 885.7 + 0.8 s, this is a very spectacular coincidence since:

- If the time was longer more neutrons would decay and the formation of the
observed helium abundance would not be possible.

- If the Universe cooled faster (so the time was shorter) fewer neutrons
would have time to decay before being saved into its stable existence inside
helium nuclei, so that helium abundance would have increased.

Since H? « pw: and pu; is dominated by relativistic species therefore an
addition of extra (besides 3 present in the SM) neutrinos would speed
up the expansion increasing the helium abundance beyond the
observed value. From that (see class) one can obtain the limit N, < 4
(confirmed later by the LEP measurement of the number of light

(< mz/2) neutrinos N, = 3.

- The nucleosynthesis restricts the value of the baryon to photon ratio:
n=(5-6)-10"1°
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Figure 1: Mass fractions relative to hydrogen (from Astronomica.org.),
1K=86-10"%eV.
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Figure 2: The light element abundance predictions from BBN theory plotted against

the baryon-to-photon ratio. From top to bottom are the mass fraction of *He and the
relative mole fractions D/H, 3He/H and " Li/H. From
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Recombination

Now we are going to discuss what happened at the temperature far below
T ~ 0.3 —0.1 MeV (when the nucleosynthesis take place). Here we focus on
T ~ 1eV,weassume ne =0, n; =0and ne = n, (as the Universe is
electrically neutral). The electrons and photons are still in thermal
equilibrium, the Thomson scattering v+ e~ — v+ e~ is responsible for
maintaining the equilibrium. In the limit E, < m. the cross-section and the

interaction rate could be estimated as
2

(oTv) ~ %ﬁ = [y ~ne(oTv)
It is easy to see that for T ~ 1 — 10 eV the condition 'y > H is no longer
satisfied so that photons and electrons decouple. However there appears a
new difficulty while calculating n., namely electrons may disappear by
combining with protons (so forming hydrogen atoms), thus we should
consider the reaction p+ e~ — H +~ that would be responsible for the
electron number density, hence (since photons have -, = 0)

Hp * He = fiH
in equilibrium.
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Let's introduce the total baryon number (for simplicity we neglect here the
baryon number carried by *He, so protons may be either free or bound in
hydrogen)

ng = np*ny

Here we are interested in T < 10 eV (note the hydrogen binding energy in
the ground state is By = 13.6 eV) therefore e, p and H are non-relativistic,

hence 32
n;=g;<m’T) exp (u) for i=ep,H
21w T

Using pp + pte = oy and my = me + m, — B (definition of the binding energy)
we get

_ muT\*? PH = MHY _
nH = &H (7) exp (f) =

= g (mHT)3/2exp <(”8+“”)(me+m”3)> -
8e8p 2T T

. & e — me mJ)” (up—mp) (mpT>3/2
8e8p {ge exp( T ) ( 27 &, &XP T 27 *
exp (E) @ 3/2( ”T)3/2 = 81 npexp (E) 2rmy \*?

T memp T2 2w Ze8p e T memp T
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Define the ionization fraction as

) Np
°7 ng Np *+ Ny
Then we can express ny in terms of X, as a function of T
_ 1-— Xe _ 8H
ny =

mo= € exp (§> < 2mmpy >3/2
Xe P 8e8p ° T

memp T

Hence, since ne = n, and my ~ m, we get
1—X. _ gu (B)( 27 )3/2
= eX J—
Xe 8e8p o €XP T meT

Expressing np, through the baryon to photon ratio n = ng/ny and X we obtain

1-X.  gu (B)( 27 )3/2

— = Xenglexp | —= ) | —=

Xe 8e8p [Xens]exp T meT
Since

¢(3)

3
ng =nny = U?ng

we finally get (adopting gy = 4, g, = g = gy = 2) the so-called Saha equation
for the fractional ionization at equilibrium:

T

1 XEZXS =4 (%)1/2C(3)T] (mle)3/2 exp (B)
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As we already know the nucleosynthesis restricts n: n = (5 — 6) - 107°
(through the relation n = 2.7 - 10~8Qgh? it corresponds to Qgh? ~ 0.02).
Therefore the Saha equation could be solved for X. = X.(T), or equivalently
as Xe = Xe(z) using T =2.73(1 + z) K.

The Fig3 (from Kolb & Turner) shows X. as a function of the redshift z.

—-

T | T | T T

9 —
8 —
T —
61— Qph®=0.01 —

% 5

o 5 _
4 —
3k —
2 —
1 -
O L ‘ 1 I 1 [ L
1000 1200 1400 1600 1800 2000

(1+z)

Fig. 3.9: The equilibrium ionization fraction as a function of (1 + z).
Figure 3: The ionization fraction (from Kolb & Turner).
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The ionization decreases below 10% for z ~ 1200 — 1300, so at that z(= z..)
electrons begins to be captured by protons forming neutral hydrogen (the

recombination). The corresponding temperature and time are

Tee = To(l+ze)~2.7-1300K=3500K~ 0.3 eV
2,1 0-1/2 —3/2 1.4-10°
brec §Ho Q21+ zed) Q2)/2h yr

where we have assumed that the Universe was matter dominated (see
Kolb&Turner) so ¢ ~ 2(1 +z)~32H;*Q% */?. For radiation domination
1.4 -10° would be replaced by 2.9 - 103, the exact value (radiation and
matter) is 2.7 - 10°.

(13)
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Comments:

- Note that naively one could expect the recombination to happen at

T ~ B =13 eV, that is not the case because of the long tail of energies
larger than T, there are so many photons relative to baryons

(n = np/n, =2.7-1078Qgh?) that the reionization easily may happen
even for T < 13 eV.

- So far we have considered the case of equilibrium so p+e™ — H+~
with the rate faster than the expansion rate. It turns out that this is
indeed the case for z > 1100. After that the equilibrium can not be

maintained and the ionization fraction is frozen at its value for z ~ 1100.

- It could be shown that for z ~ 1050 the mean free path of photons is
comparable with the radius of observable Universe, so the region of
z ~ 1100 is sometimes referred to as the surface of last scattering of
the cosmic microwave background.
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To determine the freeze-out temperature of the ionization fraction more
precisely we have to consider the Boltzmann equation for p+e™ — H + 1.
In a close analogy with the case considered before we obtain

’.7e +3Hn, = _<Urec|‘7‘> l:ng - (an)Z] (14)
where for the thermally averaged cross-section one can get
1/2
(] 7]) = 4.7 - 1072 (ﬂ) cm?
T
Solving the equation (14) numerically one finds

Tr ~0.25 eV

and hence the remaining ionization fraction (see class perhaps)

0

-5 Qm -3
Xe(00) ~2.7-10 Qsh 1.4-10

which means that only one proton per 10° baryons is free!
Comments:

- At the moment of recombination photons temperature was
T = Tr ~ 0.25 eV to be compared with the present CMB temperature
Tows = 2.35-10* eV. The difference (ratio) is due to the redshift.
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Brief thermal history of the Universe
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Figure 4: History of the Universe. Form physics.lakeheadu.ca/.../2330/Cosmology/.
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Particie Data Group, LENL

Figure 5: History of the Universe. Form conferences.fnal.gov.
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A thermal history of the Universe
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Figure 6: History of the Universe. Form Ipnhe-auger.in2p3.fr/slides/vulg/.
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