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The Principle of Equivalence and the Principle of General Covariance

& The Principle of Equivalence
The equations of motion for a system of material points moving with
non-relativistic velocities under the influence of forces I—:(%,, — X,)and an
external homogeneous and static gravitational field g reads

d*%,

M= g2

myg + Zﬁ()?n _)?m)

Perform the following non-Galilean space-time coordinate transformation
1

—f - —,2
X =X — =gt t

5 =t (1)

Then g will be canceled by an inertial "force" so that the equation of motion
in the new reference frame become

2
my L2 =S F(z, - %)



Remarks:

- The observer O who uses the coordinates t, x and his freely falling
colleague O with coordinates t’, X" are going to detect the same laws of
mechanics but O’ will conclude that there is no gravitational
interactions while O will say that there is one.

- The gravitational field was homogeneous and static. Had g depended

on x or t, we would not have been able to eliminate it through (7).

The equivalence principle (strong):

At every space-time point in an arbitrary gravitational field it is possible to
choose a "locally inertial coordinate system" such that, within a sufficiently
small region around the point in question, the laws of nature take the same
form as in unaccelerated coordinate system, consistent with the special
relativity and in the absence of gravity.

Comments:

- "locally inertial coordinate system" means that the gravitational field in
the vicinity of the point in question could be considered as static and
homogeneous.



# Equation of Motion
Consider a particle moving freely under the influence of purely gravitational
forces. From the Principle of Equivalence (PE) we conclude that there is a
freely falling system of coordinates £ such that the equations of motion
(EoM) read
d2£a
dr2
where T is so called proper time Note that the special relativity EoM are:
o (£ = £€%(x*)) the EoM would
look as

=0 for dr?=n.pde*de’®  with  7n.p = diag(l, -1, -1, 1),

.- (ag oy D™ x| 9P dx dx”
dr \ox+ dr Oxt d12  OxHOxv dt dt

Adopting 25 ggu 5, the EoM reads:

d?x* . dx* dx¥ A x> 9%

—— T, — for T = 500 =2

dr? dr dr &> OxHOxV

where I}, is the affine connection. The proper time could also be expressed
in the new frame:

0=

o 088
dr? —naga ud T
e g

B . .
where guu = nas 527 50 1S the metric tensor.

dx” = gu,dx"dx” ,




& Metric v.s. Connection
From the definition of the metric one can derive the relation between g,
and I,

o _ 1 vo aguu 8g)\u 3g#>\}
M 28 {8)@ " D OxV

where g"? is defined through
g8 7 =0y,

& The Newtonian Limit

Consider a particle moving slowly in a weak and static gravitational field.
Then the general EoM

d?x> o di“ dx”

dr2 "odr dr

will be simplified by neglecting dx/dr with respect to dt/dr

0=

0

_ AN (dt)2
dr

gz oo
Expanding to the first order (i.e. for a weak field) in h,.,

8uv = NMuv + My with [hu|< 1



and utilizing time-independence of the metric together with

A — 1. _aXoh A —1_a)\])O Jg, ogv
Moo = =31 e (Mav = 28° {agx”;? o T oxe }),one gets

d®x* 1, 8hoo (£>2
drz 2" oxv \dr
and )
d*x 1
= —ZVh
gz T 2V e
to be compared with the Newtonian result
d*x
=-V
dt? v

Finally, we get goo = 1 + 2.



Tensors

Contravariant vector V*, by definition, transforms under a coordinate
transformation x* — x’#(x) as

ox'H

V/y, = VV
ox¥

Covariant vector U,,, by definition, transforms as

U = ox”

7 aX/p,

U,




& Covariant Derivative

The connection
r)\ _ QXA 82£a
HY T 9g Oxnoxy

is not a tensor

P x'N 9% i} ox'* OxT Ox° _, . x'  §*xP
YT 9ge Oxax'v OxP Ox'P Ox'v T OxP Ox'FOX'V
A derivative of a tensor, in general, does not yield another tensor. Consider
for instance a vector

(2)

Ox'H
oxv
ov'+ _ Ox” ov¥ ox'* . Px'* OxP .,
Ox'™  Ox'N OxP Ox¥  OxYOxP Ox' A
Combining (2) and (3) we can define the covariant derivative of a
contravariant vector which is a tensor:

V/p, = Vl/

_ovH . ) i OXHOxP
%N = S +.V with Vi, = o s Ve
Similarly for the covariant derivative of a covariant vector
oU, _Ox” Ox°

Up = IO with U

i = X axv

Oxv



& Gradient, Curl, and Divergence
Properties of covariant derivatives:
For a scalar S

o8
%= o
LU, U,
Ui = Ui = o = e
VE, = %% {VeV"} and /d“x\/gv“m =0 (if V* vanishes at infinity)

where g = — det(g,.,.).

v 1 8 v 4
T = g (VET DT
For A#¥ = —A"H one gets:
v 1 8 v
A s g VA (2

OALL . OALA . OANL (5)
Ox? OxH Oxv

A,uu;)\ + Au)\;,u + AA;L;V =



& The Principle of General Covariance
A physical equation holds in a general gravitational field if

- The equation holds in the absence of gravitation; i.e,, it agrees with laws
of special relativity when g, = n,., and I, = 0.

- The equation is generally covariant; i.e. it preserves its form under a
general coordinate transformation x — x’.

I

It is useful to adopt quantities which have well defined transformation
properties, i.e. tensors



# Electrodynamics
The Maxwell equations:

0 _ap_ 8 1o} 9] 0 _
87,: —J and 8xaFﬂ—y+aXBnya+8x’yFa5—0,
where
dxi(t)

JH(x) = Z Gnd0>(X — (1))

dt
is the four-current, while F,, = 9, A, — 0, A,.

To make (6) covariant we replace ordinary derivatives by covariant
derivatives and the Minkowski metric n,,,, by a general metric g,... (note
raising and lowering indices):

FH, = J” and Fuvix + Fuxpu * Fap =0

Using identities () and (5) we get

e 9 9 R
Oxe \/EF - \/EJ and aX)\ Fuu + 8Xy F)\u + 8X,’,‘ Fu)\ 0



Figure 4 — Paraiiel Trarspors

Figure 1: The parallel transport on the surface of a sphere.

Figure 2: Positive and negative curvatures: the sum of angles in a triangle.



& The Riemann-Christoffel curvature tensor

The simplest tensor made out of g, and its first and second derivatives:

P _orp, o,
A N2

& Commutation of covariant derivatives

n A n A
* ruurmz - rﬁmrun

Vu;u;n - Vu;n;y = _Va Rduun
Similar formulas for other tensors:
A A _ A A
T JTHZ T [ H 2 TUMR ovKk T aRauun

Conclusion: covariant derivatives of tensors commute if the metric is
equivalent (to be defined) to n,..

& Properties

1 azg)\u 82g;w 82g>\n 62glm

Rxpwr = 5 + *&no [rZArfm - I—Z)\ rZV]

2 | OxmOxi  OxFOx*  Ox¥Oxt  OxVOx>

for R)\/Jl/)i = 8o Rc;uni



< Symmetry: Ryuvr = Rurap

- Antisymmetry: Ryuvi = —Ruxvs = —Rapre = *Ruxee

- Cyclicity: Rapvw * Ravip * Ry =0

- The Bianchi identities: Rypuvwm * Rxprnw + Raunue =0
Contracting A and v one gets (Using gu.;» = 0, see class)

G", =0 for G" = R" — %g‘“’R

* Rur = 8" R IS the Ricci tensor (Rux = Ricy)
© R =g gl Ry, IS the Ricci scalar

Def. A metric is equivalent to the Minkowski metric if there is a set of
Minkowskian coordinates £*(x) that everywhere satisfy the conditions

9¢%(x) 06" (x)

af = MV
g g () Oxt  Ox¥




Theorem:
The necessary and sufficient conditions for a metric g,.(x) to be equivalent
to the Minkowski metric 7., are:

: RAHVI‘Q = 0
- At some point X, the matrix g,,..(X) has three negative and one positive
eigenvalues.



Hydrodynamics

A perfect fluid is defined as having at each point a velocity ¥, such
that an observer moving with this velocity sees the fluid
(energy-momentum tensor T,,,) around him/her as isotropic.

Suppose that we are in a frame of reference in which the fluid is at rest at
some particular position and time. Then at this point the isotropy implies
Fi=psl,  TO=7%=0, 7%=,

where p and p are the pressure and energy density, respectively. After a
Lorentz transformation to the lab frame we get the general form of the
energy-momentum tensor for the perfect fluid

7%= —pn™? + (p+ p)UU”

where U® is the velocity four-vector of a fluid point

o_ﬂ_ 7 =
v dar " v

x|
—

=~v  for

Q‘Q
)
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Note that U, U® = 1.
The "energy-momentum conservation" implies (if there is no external forces)

ap 9]

+

Oxo OXP
The particle number conservation
_ON™ _ 0
Ox>  Ox“
where n is the particle number density. Consider a fluid composed of point
particles

=07 = [(p+ pU” U]

- (nU?)

1/2

I =— Z m, / h dp [gw(xn(p)) P p(p ) dX"dp( p)

The energy momentum tensor is defined by

8l = —E/d x g P T 6g,,



So for the action Iy we get

i) = 30 PALPA o)

- For non relativistic gas p ~ nm + gp
- For highly relativistic gas p ~ 3p
In the presence of gravity the energy-momentum tensor reads
T = —pg™+ (p+ p)U U’

The energy-momentum covariant conservation implies:

0=T, =P goty gm12 T 11254 p)UUP] 4T3 (p + p)U° U

A E)XB OxB



The Einstein’s Field Equations
The energy-momentum tensor for a system described by the action

= [d* gL
M f g M (;IM=*%/C!4X gl/zT‘uV(Sg,uu

for the variation of the metric g, (x) — gu..(x) + dg..(x) such that
88, (x) — 0 for |x*|— oo. For instance for electrodynamics:

1,
Ly — Zg“ g FuxFup

one finds that T** = 2g**F,,, F* — F,*F/*.

The Einstein’s Field Equations
1
R — EgWR = —8nGT.,

are derived from the Einstein-Hilbert action /ey with a matter
action ly:

1
167G

/ d*x gl/z(x)R(x) + I

IE_H




Contracting 1 and v one gets: R = 8rGT?,, hence

1
Ry = —87G <T,“, — Eg,“, T’\A)

& Gravitational Radiation
The weak field approximation: gu, = nuw + huw for |hu, |< 1. First we
calculate the connection expanding in powers of hy.:

o _ 1 vo aguu ag)\u 8g;4>\}
Y 28 { x> Oxn OxV

Then the Ricci tensor:
_ory, o,
Ruuw = ox*  Oxv

ul v ui v
* r;wrnn - r;m rvn
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Finally we get
fm=%@ﬁ%wfammfﬁwwy+@@MQ+am
For a given action
I= / d*x L(¢'(x), 9,¢'(x))
EoM are obtained through the Principle of Least Action:
() g e

The free EoM for the linearized gravity reads:

000" hyy — Db, — 00N, + 8,0k, = 0
For coordinate transformations of the form

xt s X = XM+ e (x)

21



the corresponding transformations of hy.. (g = 1 + hy) are as follows (it
is assumed that 2 ~ h,,,,):

raw _ OXHOXY
= g
Ox* OxP

= huw(x) = h,(x) = hu(x) — Ouew — duep

Note that
gh =17‘w—h“”+0(h2) since  g""gua =064 .

It is convenient to adopt the harmonic coordinate gauge conditions
M =g"r), =0 — d:(g"?g*) =0

Up to the first order in h: 0, k", = 20, h*,,. Then the equations of motion in
vacuum (R, = 0) simplify

Ohp, =0 (together with the gauge condition)
Plane wave solutions:

. A - A
ik x * _—ikyx
AXT e e p\

hu(x) = euve
with k. k* =0 and k.e”, = Tk,e*, and e., = ey,

22



Using the residual gauge freedom x* — x* + g*(x) with

ik x™ H*e—ikkx”\

e(x) = ic"e —ie
(€uv = €, = euy + kuew + kye,) one concludes that there are only two
independent degrees of freedom (as it should be), e.g. e1; and ez

(e2n = —e11), then the solution (gravitational plane waves) is

0 O 0 0 0 O 0 0

hu(x) = 0 en @2 0 e 4 0 ei} 61*2* 0 e~
0 €12 —€11 0 0 €12 —€11 0
0 O 0 0 0 O 0 0

for k* = (k, 0,0, k).
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& The Action Principle
The action for charged massive particles in the electromagnetic field and

gravitational background

o u v\ 1/2
S N [

,% / d*x g2 (x)Fou (x)F"" (x) + Z en /:: dp%Au(Xn(P))

The gravitational action

_ 1 4 1)2
lor = o /d x 2(x) R(x)

2



The Friedmann-Lemaitre-Robertson-Walker Metric and the Friedmann
Equations

The Friedmann-Lemaitre-Robertson-Walker (FLRW) metric describes a
homogeneous, isotropic expanding/contracting/static universe.

In cosmology we often assume that the spacetime is homogeneous (in
space, not in time). If the space-time is homogeneous and isotropic, then it
is possible to choose coordinates such that the length element reads:

dr?
1— kr?

dr? = g, dxtdx” = dt* — a*(t) { +r?d6? + r*sin® 0dg02}
where a(t) is called the scale factor and k = &1, 0.

The coordinates (r, 8, ) of the (FLRW) metric are called comoving
coordinates. This reflects the fact that this coordinate system follows the
expansion of space, so that the space coordinates of objects which have zero
peculiar velocity remain the same. The homogeneity of the universe fixes a
special frame of reference, the cosmic rest frame. In other words this
means that there exists a coordinate system in which ¢ = const.
hypersurfaces are homogeneous. The time coordinate of this system is
called the cosmic time.

25



# The two sphere first

X

Figure 3: The two sphere.

X12+X22+X32=R2 d/2=dx12+dx22+dx32
Eliminate the fictitious coordinate xs:
2 2 2 _ 2 —
Xy +x5+x3 =R = x1dx1 + xadxa + x3dx3 = 0

I

26



X1 Xm + X2dX2 _ X1 dX1 + X2dX2

X3 (R2 — x2 — x2)1/2

I

d72=dX12+dx22+

dX3 =

(X1dX1 + Xo dX2)2
2 2 2
R? — x7 — x3
Introduce new coordinates (', 0): xy = r' cosf,  x2 =r'siné.
Then
d><12 + d><22 =dr'? + r'?do? x1dxy + xodxo = r'dr’ (<= X12 + x22
In terms of (¢, 0) we get

2 472
R=dr . +r'2d02

.
di*= s

Define r = &, then

2
di? = R? [1dr,2 + rzdéz}

Note similarity between that and the FLRW metric for k = 1.
Another convenient coordinate system is (6, ¢):

x1 = Rsin6 cosp x2 = Rsinfsiny x3 = Rcosf

27



Then

- . 1 0
di? = R?(d#? + sin® 0d 2 = . = R? )
( v ) &y 0 sin%0

- Cosmological Principle — R = R(t) (homogeneity)

- As the sphere expands or contracts, the coordinates (r, #) remain
unchanged (the comoving coordinates)

- For the negative curvature: R — iR and x3 — ix3

72 _ p2 dr’ 2 192
dl“=R [1 i do
& The two sphere > the three sphere

(x1dx1 + xodxo + x3dx3)?

2 2

72 2 2 2
dl == Xm + dX2 + dX3 + > >
R? — x{ — x5 — X3

x1=r'sinfcosy xo = r'sinfsing x3=r' cosf

28



After rescaling r’ (r = %) one gets

dr?

1—r2

di? = R?

+r2d6? + r* sin® Odp?

In the spherical 4-d coordinates (see class perhaps)

x1 = Rsinysinfcosy
x2 = Rsinysinfsing
x3 = Rsinycosé

xa = Recosy

dI? = R*[dy?+sin® x(d6?+sin” 0dy?)] — g; = R? diag(1, sin® x, sin® x sin® 6)
Introducing time we get the FLRW metric

dr?
1— kr?

dr? = g dxtdx” = dt* — a°(t) { +r2d6? + r* sin® Gdgoz}

where R(t) is the scale factor denoted by a(t) (R(t) — a(t)) and k = &1, 0.
Note that r is dimensionless.

29



Comments:

- The spatial coordinates r, 0, p form a comoving system in the sense that
typical galaxies have constant spatial coordinates r, 0, .

- Since I = 0 for the FLRW metric, it is easy to show (see class) that the
trajectories X = const. are geodesics. Thus the statement that a galaxy
has constant r, 0, ¢ is perfectly consistent with the the supposition that
galaxies are in free fall.

30



& Distance in general relativity
Along an arbitrary space-like path P, the proper (physical) distance is given
as the line integral

Dp =/d7'=/(—gm,dx“dx")1/2
P P

dr2 1/2
= /P [—dt2 +a%(t) { s r2do? + r? sin? OdgoZH

Let's calculate the distance between a galaxy placed in the origin (0,0, 0) and
another one at comoving coordinates (r, 6, ) along the curve t, 6, ¢ = const.
sodt=df=dp=0

/r a(t)ﬁ = a(t) r k=0

31



& The most useful formula in cosmology

We will show that
)\emit - )\obs
a(temit) a(tobs)
Emission at t = t; and r = r;, detection at t = to and r = 0. The massless wave

travels along a geodesic, dr = 0, 50

dr?
1— kr?

dr? = dt* — a(t)? =0

Integrating from the emission to the detection and taking into account that
dr < 0 one finds

f(r1) 7)

gt [ dr

/ﬁ ) / Vi—k?

where the rhs is fixed (independent of time) as the comoving coordinate of
the source remains unchanged.

32



Consider two subsequent emissions at t = t; and t = t; + t; (corresponding
to two successive wave-crests), which were detected at t = to and t = tp + dto.
Then the rhs of (7) does not change, so we get

t1+8ty dt’ to+dto dt’

e U et
n ) Sy At ), a) ), a(t’)  J, a(t’)
U
ot gy fo*dto s
[ A

Assume that 6t; = \; (c = 1), i = 0,1, are small enough such that a(t) ~ const.

in the integrand, so

oty - Oto
a(t1)  alto)
U
Atr) _ Ato) “ detection

emission —
a(t1)  alto)
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& The cosmic time -— redshift relation

The redshift z

1+z= Aobs

emit

Then from the X < a relation for tops = to and temic = t we find

_ a(to)

a(t)

For a given geometry the above is the relation between the redshift
observed now and the time of light emission.
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# The Friedmann Equations
We will solve the Einstein’s equations

Ru = —87G (T,“, _ %g,“, Tx)

for
T = —pg®? +(p+ p)U U’

for Ut =1 and U’ =0 (this is a consequence of the cosmological principle).

Using the FLRW metric

dr?
1— kr2

dr? = g dxtdx” = dt* — a*(t) { +r2d0? + r? sin? 0d<p2}

The metric guu:

g =1, git =0, g = —a’(t)g;(x)

with g, = (1 — kr®)™2, oo = r?, 8o = r¥sin0 and g; = 0 for i 7.
The inverse metric g"* (g2 g = 0,0):

R

with " = (1 — kr?), g% = r=2, g% = r2sin 20 and g7 = 0 for i 7.
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Then we calculate the affine connection from the metric

]- vo {8gHV + ag)\V _ 8gM>\}

P = 28 ox»  Oxm oxv

Non-zero entries (see class) are

My = aag;

i_ dg

My = 39

i _ 1.y ) ogu Ogi  Ogk | _=i

Kk = 5 A Y ok aor (- i
2 Oxi  Oxk  Ox!

Then the Ricci tensor
ary,  ory.,.

Ruuw = ox* oxv

* rzvrzn - rzm rtlin
The non-vanishing elements (see class) are:

Ry = 33, R,'j = R,‘j — éu(aa + 2é2)
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It is easy to show that R = —2kg; (see class), hence
Rj = —gj(ai +23% + 2k)

We also need the components of the rhs of the Einstein equations:
1 N 1
Spu = T,uu - Egpr A= (,0+ p)ULLUV - 5(,0 - P)guu

for T, = —pgu +(p+ p)U, U, (T, = p—3p, as g gua = 6% and U*U, = 1).
So for Ut =1 and U’ = 0 we have

Rtt = 32 Stt = %(P + 3P), Sit = O
Ry = —gjlaa+2a*+2k) S;= %(p — p)ag;

Substituting into the Einstein’s equations

1
R}LV = -8nG (Tuu - Eguu T/\)\) = —87TGSNV
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One gets the celebrated Friedmann’s equations.

Ry = 35 Sue = %(P * 3P)» Sie=0
R,'j = —é,-,—(aé + 252 + 2k) 5,'j = %(p — p)azé,-j

Substituting into the Einstein’s equations
1
Ru = —87G (TW ~ S8 T*A) = _87GS,.,
One gets the Friedmann’s equations

- (0,0) component:
33=—47G(p+3p)a (8)

- (i, i) component:
a3 +2a% +2k = 4nG(p — p)a° (9)

Eliminating a one gets the Friedmann equation which determines the
evolution of the Hubble parameter H(t)

8rG 2

3 pa - H2(t) - 87l'G k

-2
a“+k= _
3 77 2()

for H(t):g (10)
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Using (10) one can eliminate p from the second equation to obtain the

acceleration equation
. .\ 2
k
224 (a) + = = —8rGp
a a a

To investigate consequences of the energy-momentum conservation let’s
recall the following identity
L p——— TH L+ T THA
b= e VET)
For the energy-momentum tensor T+ = —pgh” + (p + p)U* U” one gets for
the "energy-momentum conservation" (T*%,, = 0):
o 8p — a @ o4

0=T =2 58" +g7 25 [g"2(p+ U U] + Tha(p + U U (1)
Are the "energy-momentum conservation" (11) and the Friedmann equations
independent? Hint: the Bianchi identities.
It is easy to find (see class) that the time component of T"%, = 0 implies

-3

pa’ = — [a*(p+ p)]

pl
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Then

. .d d . d . . d

pa3 = aa (aap) + Jt (a3p) = aa (a3p) + 3azap+ a3p = A (pa3) = 3:)32)
12

The above equation could be rewritten in a more familiar way
d(pa3) = fpd(a3) (13)

that comprise the first law of thermodynamics and has a simple
interpretation: the rate of change of the total energy in a volume element of
size V = a% is equal minus the pressure times the change of volume, —pdV/,
which is the work responsible for the energy change. Note however, that in
the case of cosmology that kind of reasoning is hardly applicable, since a
change of energy d(pa®) is not equivalent to work done against a piston as
such does not exist. Therefore in cosmology, although we can calculate
change of energy using (13) but we can not say where is the energy coming
from or going to. We must conclude that the energy of the fluid is not
conserved.

40



If p = p(p) (the equation of state) is known then using (12) one can determine
p = pla). For instance:

- If p < p ("dust") then

Then the total energy contained in a volume V(t) & a3(t) scales as
E(t) a3(t) . p(t) o 33(t) . 373(1?) = const.

So, for the dust its energy is conserved.

+ For ultra-relativistic fluid p = %p, then

d

d 1
7 (pa3) = d—ga3 + p3a2 = —3pa2 = —37,032

3

3
@=74E = pO(374
p a

Al



Then the total energy contained in a volume V(t) & a3(t) scales as

E(t) oc a%(8) - plt) o< a°(£) - a~*(t) oc 2 *(¢)
So, for the radiation its energy is not conserved.

The fundamental equations are:

- The Friedmann equation

87;‘; 0 = HAD)

. 2
a k
+ (a> +?=_87-(Gp

- The "energy-momentum conservation" (the first law of
thermodynamics):

Pek=

- The acceleration equation:

pa*= 2 [&(p+p)] = a (pa®) = —3pa”

dt da

H(t) =

L.

However, only two of the above three equations are independent!
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The Schwarzschild Solution

We are looking for a solution of the Einstein equations which are static and
isotropic. So the metric does not depend on t but only on |X| while d72 may
contain x - dx:

dr? = F(r)dt® — 2E(r)dt X - d< — D(r)(X - dX)* — C(r)dx®
for r = |X|. In the spherical coordinates

x" = rsinfcos x> =rsinfsingp x*=rcosd
we get

dr? = F(r)dt? — 2rE(r)dt dr — r*D(r)dr® — C(r)[dr? + r?d0? + r* sin® 0dx?]

dx?

Define new time: t' = t + ¢(r), so that

2
dt = dt' — @ and d? = dt'? — 2d¢dt dr+ (%) dr?
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Then
dr? = F(r)dl‘/2 -2 {#F(r) + rE(r)] dt’ dr+
r

2
. [(‘(’j‘f) F(r) + 2rE(r )d¢ rzD(r)] dr+
—C(r)dr* + r?do? + r* sin® d 2]
Choose ¢(r) such that: %2 F(r) + rE(r) = 0,s0 %¢ = —rE(:; then

E*(r)
F(r)

do\? oy, dp  apiv. a .
(I) F(r) + 2rE(N 2 = 12D(r) = —r [D(r)

} =—G(r)

Finally we can redefine the radius: r'2 = C(r)r?, hence

4r2C(r) 72 /
—_— f C'(r) =
[2rC(r) + r2C'(r)]? r or (r) dr
Then we obtain the standard form of the length element

dr® = B(r')dt'? — A(r')dr'? — r'*(d6® + sin® 0d?])

dr® =

for

o N + G(r) + r / 2
B(r') = F(r) and Alr) = {1 C(r)} |:1 5C r)C (r)}
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We drop primes from now on, so the metric and its inverse read:

g = B(r), gr = —A(r), goo = —1°, 8o = —r’sin’é
tt _ 1 ro_ 1 00 _ 1 wp _ 1
& "By & A £ T g P2 sing

Then we calculate the affine connection from the metric

o _ 1 vo 8gu1/ ag)\u 8g;4>\}
Y 28 { x> oxn OxV

Non-zero entries (see class) are:

r,=r,=3i8'B7"

M =3iBA™" r,=3iAA" Mo =—rA™' T, =—rA"'sin’¢
My =rg,=—r* T%,=—sinfcoso

M=o =rt re, = coto
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Then the Ricci tensor
_ory, oy,
BE Gxn oxv

* rZV rzn - rZﬁ rlufn
The non-vanishing elements (see class) are:

_B LB (B AN 18

Re = —2*aa\B"2) a2
B// 1 B/ ! A/ 1A/

Rrr = = s — +t — - T
2B 45(3 A> rA

r (B A 1

Roo = _1+2A(B_A>+A

R, = sin*0Rgp

Run = 0 for vFu

Now we are ready to look for solutions of the Einstein’s equations in the
empty space
R =0
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It is sufficient to require R, = Rgs = Ry = 0. Note also that

R Re_ 11(B A
A B rA\ B A

Therefore Ry, = 0 implies that ‘% + A% =0, so0
A- B =const.
The constant is determined by the boundary conditions: 8w = v Since
dr? = B(r)dt®> — A(r)dr? — r3(d6? + sin® 0dp?)
that implies

B(r)— +1, Alr)— +1, = Alr) =

r—o0 r—oo B(r)

Now it is sufficient to impose

Rrr =0 and Reg =0
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Eliminate A(r) through A= B~ (A’ = — B}), then

BZ
Rw=—-1+L (E_AV. 1. 1.8
0o 2A\ B A) A
R:E_EE Elq-il _li’:BiNq-lEl:RéG
" 2B 4B\B A rA 2 rB 2rB

Therefore it is sufficient to require

B +B=1 = di(rB)=1 ~  B()=1+00t

r
Again the boundary behavior determines the constant, since at large r the
(0,0) component of the metric should be related to the Newton'’s
gravitational potential:

8t ~ 1+2¢=172G7M

r—o00 r
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Therefore the constant = —2GM, hence

1 r.
B(r)=——=1—-= for 5 =2GM
(r) A0) . r

So, finally the solution for a space-time outside of a static massive body of
mass M:

dr? = (1 _ L:) de? — dr® — r*(d6? +sin® 6 dp?)

1—r/r
where rs = 2GM is the Schwarzschild radius.
Comments:

- Atest particle which orbits around a central mass on an elliptical orbit
will undergo "perihelion motion", which means a rotation of the long
axis of the ellipse with respect to distant stars. (Measured e.g. for
Mercury is one the earliest triumphs of GR.)

- A passing light-ray which travels at the closest distance b from the
central body will be deflected by an angle A9 = 4GM/b. (Measured for a
starlight near the obscured Sun during the eclipse.)



Comments:

- Look at a photon (d7? = 0), traveling radially in the Schwarzschild
metric, then cdt = Ij’—é/,, so that the time to leave from r = rs to an
outside point becomes infinite. Thus, if an object is so dense that its
radius is inside the Schwarzschild radius, the object does not emit any
light - it is a black hole.

- In deriving the Schwarzschild metric, it was assumed that the metric
was in the vacuum, spherically symmetric and static. In fact, the static
assumption is stronger than required, as Birkhoff’s theorem states that
any spherically symmetric vacuum solution of Einstein’s field equations
is stationary; then one obtains the Schwarzschild solution. Birkhoff’s
theorem has the consequence that any pulsating star which remains
spherically symmetric cannot generate gravitational waves (as the
region exterior to the star must remain static).
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