Homework problems \# 3

(deadline: 23.01.22)
19. (6 pts) In QED, calculate from first principles (without adopting Feynman rules, i.e. from the definition of the S-matrix):

- The S-matrix element in the momentum space for the scattering process $e^{-}(p) \mu^{-}(q) \rightarrow e^{-}\left(p^{\prime}\right) \mu^{-}\left(q^{\prime}\right)$ squared and summed over final and averaged over initial spins. Include only tree-level diagrams.
- The total cross-section for this process.

20. (4 pts) In QED, adopting Feynman rules in the momentum space, calculate the matrix element for the process $\gamma\left(q_{1}\right) \gamma\left(q_{2}\right) \rightarrow e^{+}\left(p_{1}\right) e^{-}\left(p_{2}\right)$.
21. (5 pts) Calculate from first principles (without adopting Feynman rules, i.e. from the definition of the S-matrix) decay width for $\phi \rightarrow \bar{\psi} \psi$ within the theory defined by the following Lagrangian:

$$
\mathcal{L}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m_{\phi}^{2} \phi^{2}+\bar{\psi}\left(i \partial_{\mu} \gamma^{\mu}-m_{\psi}\right) \psi+g \phi \bar{\psi} \psi .
$$

