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Dynamical mean-field theory (DMFT) is a successful method to investigate in-

teracting lattice fermions. In these lecture notes we present an introduction into
the DMFT for lattice fermions with interaction, disorder and external inhomo-
geneous potentials. This formulation is applicable to electrons in solids and
to cold fermionic atoms in optical lattices. We review here our investigations
of the Mott-Hubbard and Anderson metal-insulator transitions in correlated,
disordered systems by presenting selected surprising results.

1. Introduction

The exceptional properties of strongly correlated electron systems have fas-

cinated physicists for several decades already.1–10 New correlated electron

materials and unexpected correlation phenomena are discovered every year.

Often the properties of those systems are influenced by disorder. Also inho-

mogeneous external potentials or layers and interfaces are present in partic-

ular experimental realizations, e.g see in [11]. Unfortunately, real materials

and even model systems with strong electronic correlations and random-

ness or inhomogeneities are notoriously hard to investigate theoretically

because standard approximations are invalid in the most interesting pa-

rameter regime – that of intermediate coupling. Here the recently developed

dynamical mean-field theory (DMFT)12–21 has proved to be an almost ideal

mean-field approximation since it may be used at arbitrary coupling. For

this reason the DMFT has been successfully employed in the investigation

of electronic correlation effects in theoretical models and even real materi-

als.19–21
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In the present lecture notes we provide an introduction into the DMFT

for correlated and disordered electron systems in the inhomogeneous ex-

ternal potential. We start with a brief description of the correlated and

disordered electron systems and their models. The DMFT is introduced

from the practical point of view. The emphasis is put on the physical in-

terpretation rather then on a formal mathematical structure of the theory.

Different approaches to deal with randomness in many-body systems are

discussed on the physical ground. The second part of these notes present

selected applications of the DMFT for correlated and disordered systems

based on our research.

2. Correlation and correlated electron systems

2.1. Correlations

The word correlation comes from Latin and means “with relation”. It im-

plies that at least two objects are in a relation with each other. In math-

ematics and statistics or natural sciences the correlation has a rigorous

meaning.22 Namely, two random variables x and y are correlated if the

average (expectation value) 〈xy〉 cannot be written as a product of the

averages 〈x〉〈y〉, i.e. explicitly:

〈xy〉 6= 〈x〉〈y〉 . (1)

In other words, the covariance cov(x, y) ≡ 〈(x− 〈x〉)(y − 〈y〉)〉 6= 0. In such

a case the probability distribution function P (x, y) cannot be expressed as

a product of marginal distribution functions Px(x) and Py(y). Of course,

the lack of correlations, i.e. 〈xy〉 = 〈x〉〈y〉, does not automatically imply

that x and y are independent random variables.

To illustrate the concept of correlations imagine a crowd of pedestrians

going on a sidewalk in different directions. For each person the walk is deter-

ministic. However, for an observer the walk of a single person X is described

by a random variable - the position rX(t) at a given time t. Of course, to

avoid collisions people make the trajectories mutually dependent. In a sta-

tistical analysis of such a system the observer finds that the correlation

function of two positions is not factorized 〈rX(t)rY (t′)〉 6= 〈rX(t)〉〈rY (t′)〉.
It means that the pedestrian motion in a dense crowd is correlated. The

same holds true for a motion of cars or airplanes, for example. Dealing

with correlations in modelling of such complex systems is a difficult task

and requires very sophisticated mathematical techniques.23
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2.2. Weakly correlated many-particle systems

In condensed matter physics we want to model systems containing moles

of particles, i.e. of the order 1023 in each cube centimeter. A typical course

of many-body physics starts from discussing the noninteracting particles.24

The goal is to find the probability distribution function f(k) describing

how particles are distributed over different momenta k. The classical par-

ticles are uncorrelated in the absence of interaction and the distribution

function is given by the Maxwell-Boltzmann formula. Quantum mechanics

introduces new idea: the indistinguishability of identical particles. Then,

the distribution function for fermions is given by the Fermi-Dirac formula

and for bosons by the Bose-Einstein one. Even then in quantum mechan-

ics, when the interaction is absent, the distribution functions at different

momenta are still uncorrelated.

In reality electrons, atoms, and/or protons in condensed matter (liquids,

solids, ultracold gases of atoms, nuclei, or nuclear matter in stars) interact

with each other by long-range Coulomb and/or short-range strong (nuclear)

forces. Often the long-range Coulomb interaction is effectively screened and

only the short-range potentials remain. Even then models of such many-

body systems are not exactly solvable. An approximation which neglects

correlations between the relevant variables is often employed. For example,

it is assumed for the density-density correlation function that

〈ρ(r, t)ρ(r′, t′)〉 ≈ 〈ρ(r, t)〉〈ρ(r′, t′)〉 , (2)

where ρ(r, t) is a density of the particles and the expectation values 〈...〉
are taken with respect to the quantum mechanical and thermal states.

Such factorizing approximation is known as a Weiss mean-field type or as

a Hartree-Fock mean-field type approximation.25 In these types of theories

particles are kept independent from each others and their mutual interac-

tion is included by an average mean-field potential. Saying differently, the

independent particle propagates in a mean-field potential created by all

other particles.

Nowadays the density functional theory (DFT) is routinely used to ex-

plain or predict properties of various interacting many-body systems.26 In

principle, this is an exact, mathematical theory of many particles. However,

any practical calculation within DFT uses a mean-field type approximation.

The most common one is the local density approximation (LDA) which uses

the average charge and spin density distributions to define electric and mag-

netic mean-field potentials.27 Although approximate, the DFT with LDA

gives a very accurate description, even on a quantitative level, of many bulk
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systems as well as molecules and atoms.26

2.3. Strongly correlated many-particle systems

There are various classes of systems, however, containing either transition

metal elements (e.g., Ni, La2CuO4, V2O3, or NiS2Se),8 or Latinate and

Actinide elements (e.g., CeCu2Si2, UBe13, or UPt3, commonly named as

heavy-fermions),28,29 which are not described by a theory which neglects

electronic correlations. These systems are named strongly correlated electron

systems. Many examples of correlated electron systems, including high -

temperature superconductors with coper-oxygen planes, are reviewed and

discussed in Ref. [8].

The canonical example of correlated electron system is V2O3.
30 Its phase

diagram is presented in Fig. 1. The DFT within LDA predicts that this sys-

tem is a metal with half-filled conducting band. In experiments however,

changing the temperature between 200 and 400K at ambient pressure (see

left panel in Fig. 1) one find a huge (8 orders of magnitude) drop of the

resistivity at around 150K (see right panel in Fig. 1). The observed phe-

nomenon is an example of the Mott-Hubbard metal insulator transition

(MIT) driven by the electronic correlations. The low-temperature param-

agnetic Mott insulator is not describe by the DFT with LDA. Also the

high-temperature correlated metallic phase is different from that predicted

by DFT within LDA, in particular the effective electron mass is strongly

enhanced.10

The strongly correlated electrons are usually found in systems with par-

tially filled d- or f-orbitals. To understand this we consider a hopping prob-

ability amplitude tij between two sites i and j on a crystal lattice. It is

expressed by the overlap matrix element containing the one-particle part

of the Hamiltonian T̂ , i.e. tij = 〈i|T̂ |j〉, where |i〉 are Wannier localized

wave functions centered at sites i. These hopping amplitudes determine the

total band-width W and the average kinetic energy of the electrons. The

mean time τ spent by the electron on a given atomic orbital is inversely

proportional to the band-width, i.e. τ ∼ ~/W .32 For narrow band systems,

such as those with partially filled d- or f-orbitals, this mean time τ is large.

Hence, the effects due to the interaction with other electrons at the same

orbital become very important. The dynamics of a single electron must be

correlated with the other electrons. Any theory, which neglects those corre-

lations, fails to explain the existence of Mott insulators and Mott-Hubbard

MIT.

Optical lattices (crystal type structures made of standing laser lights)
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Fig. 1. Left: Phase diagram of V2O3 on pressure-temperature (p-T ) plane.30 The low
temperature phase is a long-range antiferromagnetic insulator which disappears only at
high pressures. At higher temperatures, when the system is paramagnetic one finds a
spectacular meta-insulator transition when changing p at constant T or vice versa. Note
that substitution of Cr or Ti in position of V acts like internal pressure as long as the
system remains isoelectronic. Right: Drop of the resistivity by 8 orders of magnitudes
when the metal-insulator transition occurs.31

filled with neutral fermionic atoms (e.g., 6Li, 40K, or 171Yb) provide an-

other experimental systems for studying correlated lattice fermions.33 The

relevant system parameters in these artificial crystals can be tuned as de-

sired and various possible phases can be investigated. It is now very rapidly

developing field of research, where ideas of condensed matter theory comes

into the quantum optics and laser physics.34–36

2.4. Correlated fermions and inhomogeneous potentials

Inhomogeneous external potentials are present both in cold fermionic atoms

loaded into optical lattices and in real materials with correlated electrons.

Cold atoms are trapped inside the magneto-optical potentials, usually of

ellipsoid-like shapes in space.37 In case of solids, the experiments are often

made with the presence of external gates, which produce space-dependent

inhomogeneous electric potentials. One of the example is the quantum point

contact, which is a narrow, smooth constriction inside a bulk system.38 In

addition, layers, interfaces, and surfaces play very important role and are

extensively studied,11 as for example in the heterostructres made of LaTiO3

(Mott insulator) and SrTiO3 (band insulator).39
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3. Disorder and disordered electron systems

In correlated electron materials it is a rule rather than an exception that

the electrons, apart from strong interactions, are also subject to disorder.

The disorder may result from non-stoichiometric composition, as obtained,

for example, by doping of manganites (La1−xSrxMnO3) and cuprates

(La1−xSrxCuO4),
8 or in the disulfides Co1−xFexS2 and Ni1−xCoxS2.

40 In

the first two examples, the Sr ions create different potentials in their vicinity

which affect the correlated d electrons/holes. In the second set of examples,

two different transition metal ions are located at random positions, creat-

ing two different atomic levels for the correlated d electrons. In both cases

the random positions of different ions break the translational invariance of

the lattice, and the number of d electrons/holes varies. As the composition

changes so does the randomness, with x = 0 or x = 1 corresponding to

the pure cases. With changing composition the system can undergo various

phase transitions. For example, FeS2 is a pure band insulator which becomes

a disordered metal when alloyed with CoS2, resulting in Co1−xFexS2. This

system has a ferromagnetic ground state for a wide range of x with a max-

imal Curie temperature Tc of 120 K. On the other hand, when CoS2 (a

metallic ferromagnet) is alloyed with NiS2 to make Ni1−xCoxS2, the Curie

temperature is suppressed and the end compound NiS2 is a Mott-Hubbard

antiferromagnetic insulator with Néel temperature TN = 40 K.

The transport properties of real materials are also strongly influenced

by the electronic interaction and randomness.41 In particular, Coulomb

correlations and disorder are both driving forces behind metal–insulator

transitions connected with the localization and delocalization of particles.

While the Mott–Hubbard MIT is caused by the electronic repulsion,4 the

Anderson MIT is due to coherent backscattering of non-interacting par-

ticles from randomly distributed impurities.42 Furthermore, disorder and

interaction effects are known to compete in subtle ways.41,43,44

4. Models for correlated, disordered lattice fermions with

inhomogeneous potentials

4.1. Hubbard model

As we discussed above, in narrow-band systems the interaction between two

electrons occupying the same orbital can play a dominant role. Therefore

in theoretical modeling, we take into account this local, on-site interaction.

In addition, there is a hopping of the electrons between different lattice

sites. The simplest lattice model to describe this situation is provided by
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the Hubbard Hamiltonian45

H =
∑

ijσ

tijc
†
iσcjσ +

∑

iσ

Vi niσ + U
∑

i

ni↑ni↓ , (3)

where c†iσ and ciσ are the fermionic creation and annihilation operators

of the electron with spin σ = ±1/2 at the lattice site i, niσ = c†iσciσ

is the particle number operator with eigenvalues 0 or 1, and tij is the

probability amplitude for an electron hopping between lattice sites i and

j. The second term describes the additional external potential Vi, which

breaks the ideal lattice symmetry. For homogeneous systems we set Vi = 0.

Due to the third, two-body term, two electrons with opposite spins at the

same site increase the system energy by U > 0. In (3) only a local part

of the Coulomb interaction is included and other longer-range terms are

neglected for simplicity.

The hopping and the interacting terms in the Hamiltonian (3) have dif-

ferent, competing effects in homogeneous systems. The first, kinetic part

drives the particles to be delocalized, spreading along the whole crystal as

Bloch waves. Then, the one-particle wave functions strongly overlap with

each other. The second, interacting term keeps the particles staying apart

from each other by reducing the number of double occupied sites. In partic-

ular, when the number of electrons Ne is the same as the number of lattice

sites NL the interacting term favors a ground state with all sites being sin-

gle occupied. Then the overlap of one-particle wave functions is strongly

reduced.

The occupation of a single site fluctuates in time when both kinetic and

interacting terms are finite. The lattice site i can be either empty |i, 0〉, or

single occupied |i, σ〉, or double occupied with two electrons with opposite

spins |i, 2〉, as shown in Fig. 2. The time evolution depends on the ratio

U/t and on the average number of electrons per site n = 〈∑iσ niσ〉/NL. As

we will explain latter, the DMFT keeps this local dynamics exactly at each

site, which is a key point for describing Mott insulators and Mott-Hubbard

MIT.

4.2. Models for external inhomogeneous potential

The additional inhomogeneous term Vi in the Hamiltonian (3) allows us to

model different physical systems. Cold fermionic atoms in optical lattices

are trapped by the magneto-optical potential,37 which is very well described

by a three dimensional ellipsoid

Vi = kx(Rx
i − Rx

0)2 + ky(Ry
i − Ry

0)
2 + kz(R

z
i − Rz

0)
2 , (4)



January 11, 2008 10:42 WSPC - Proceedings Trim Size: 9in x 6in author

8 K. Byczuk

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

In
In

Out

TIME

Fig. 2. Evolution of a quantum state at a single lattice site for the electrons described
by the Hubbard model (3). The lattice site i can be either empty |i, 0〉, or single occupied
|i, σ〉, or double occupied with two electrons with opposite spins |i, 2〉.

centered at the site R0 and parameterized by three numbers ki > 0. Another

choice of the external inhomogeneous potential would describe, for example,

a quantum point contact,38 which is a narrow constriction along the z-

direction. Here we model it by a three dimensional hyperboloid potential

Vi = −kx(Rx
i − Rx

0 )2 − ky(Ry
i − Ry

0)2 + kz(R
z
i − Rz

0)
2 . (5)

Interlayers and thin films or surfaces are modelled by the potential Vi, which

changes in a step-wise manner along one selected dimension.11

4.3. Anderson model

For modelling disordered electrons a similar strategy is usually employed

as for the interacting problem. We assume that the particles can hop on

a regular lattice but the atomic energy εi at each lattice site is a random

variable. The minimal model describing such a case is given by the Anderson

Hamiltonian42

H =
∑

ij,σ

tijc
†
iσcjσ +

∑

iσ

Vi niσ +
∑

iσ

εi niσ , (6)

where the meanings of the first two terms are the same as in the Eq. (3). In

fact, this is a one-body Hamiltonian without any two-body interaction. The

effect of disorder on the system is taken into account through a local random

term, for which we have to assume a probability distribution function (PDF)

.
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Typically we consider the uncorrelated quenched disorder with

P(ε1, ..., εNL
) =

NL
∏

i=1

P (εi) , (7)

where P (εi) is a normalized PDF for the atomic energies εi. The quenched

disorder means that P (εi) is time independent. The atomic energies are

randomly distributed over the lattice but then are fixed and cannot be

changed. This is different from the annealed disorder where the random

atomic energies are supposed to change in time.

4.4. Models for disorders

If P (εi) = δ(εi), where δ(x) is a delta-Dirac function, the system is pure,

i.e. without any disorder. For binary alloy disorder we assume the PDF has

the form

P (εi) = xδ

(

εi +
∆

2

)

+ (1 − x)δ

(

εi −
∆

2

)

, (8)

where ∆ is the energy difference between the two atomic energies , while

x and 1 − x are concentrations of the two alloy atoms. At x = 0 or 1

the system is non-disordered even when ∆ is finite. Therefore the proper

measure of the disorder strength would be a combination δ ≡ x(1− x)∆.46

This model of disorder is applicable to binary alloy AxB1−x systems, e.g.

NixFe1−x. Another choice is a model with the continuous PDF describing

continuous disorder. Here we use the box-type PDF

P (εi) =
1

∆
Θ(

∆

2
− |εi|) , (9)

with Θ as the step function. The parameter ∆ is a measure of the disorder

strength. Physics described by these two PDFs is qualitatively different as

we shall see further. However, the use of a different continuous, normalized

function for the PDF would bring about only quantitative changes.

4.5. Anderson-Hubbard model

To describe both correlations and disorder we simply merge together these

two Hamiltonians (3) and (6) obtaining so called the Anderson-Hubbard

Hamiltonian

H =
∑

ij,σ

tijc
†
iσcjσ +

∑

iσ

Vi niσ

∑

iσ

εi niσ + U
∑

i

ni↑ni↓ . (10)

This model is a working horse for us to investigate the competition between

correlations and disorder in lattice fermions.47–50
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4.6. Anderson-Falicov-Kimball model

We also investigate here the spinless Anderson-Falicov-Kimball Hamilto-

nian

H =
∑

ij

tijc
†
icj +

∑

i

Vi c†ici +
∑

i

εi c†i ci + U
∑

i

f †
i fic

†
ici , (11)

where c†i (f †
i ) and ci (fi) are fermionic creation and annihilation operators

for mobile (immobile) fermions at a lattice site i. Furthermore, tij is the

hopping amplitude for mobile particles between sites i and j, and U is the

local interaction energy between mobile and immobile particles occupying

the same lattice site. The atomic energy εi is again a random, independent

variable which describes the local, quenched disorder affecting the motion of

mobile particles. Note that imobile fermions are thermodynamically coupled

to mobile particles and therefore they act as an annealed disorder.

The Falicov-Kimball Hamilonian without disorder was introduced to

model the f- and s-electrons in rare-earth solids, see for review [51], and

later generalized for systems with quenched disorder.52 It can also be re-

alized experimentally using optical lattices filled with light (Li) and heavy

(Rb) fermionic atoms, where the relevant parameters are fine tuned by

changing the external potentials and magnetic field around the Feschbach

resonance.53 Pure Falicov-Kimball model was studied within the DMFT51

and also within exact approaches, e.g. [54], or Monte Carlo simulations.55

This model can also be generalized to include many orbitals51,56 and ex-

change interactions.57

5. Average over disorder

5.1. Average and most probable value

Imagine now a system, described by one of the above Hamiltonians, with

a given and fixed distribution of atomic energies over the lattice sites:

{ε1, ..., εNL
}. Even if by some means we solve the Hamiltonian, results will

depend on this particular realization of the disorder. Different distributions

of atoms will give different results. Usually, when the system is infinitely

large (NL → ∞) we take an arithmetic average of the physical quantity

(observable) O(ε1, ..., εNL
) over infinitely may realizations of the disorder,

i.e.

〈O(ε)〉 =

∫ NL
∏

i=1

dεiP (εi)O(ε1, ..., εNL
) , (12)
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in accord with the Central Limit Theorem58 for infinitely many, indepen-

dent random variables O(ε1, ..., εNL
). Such methodology holds only if the

system is self-averaging. It means that the sample-to-sample fluctuations

DNL
(O) =

〈O2〉 − 〈O〉2
〈O〉2 (13)

vanish when NL → ∞.

An example of the non-self-averaging system is an Anderson insulator,

where the one-particle wave functions are exponentially localized in a finite

subsystem.42 In other words, during the dynamical evolution a quantum

state cannot penetrate the full phase space, probing all possible random

distributions. Here we are faced with a problem how to describe such sys-

tems. In principle, we should investigate the PDF for a given physical ob-

servable O(ε1, ..., εNL
)59 and find the most probable value of the observable

O(ε1, ..., εNL
), i.e. such value where the PDF is maximal. This value will

represent typical behavior of the system. It requires to have a very good

statistics, which is based on many (perhaps infinitely many) samples. Such

requirement is hardly to achieve, in particular in correlated electron sys-

tems, because the relevant Hilbert space is too large to be effectively dealt

with. Therefore in practice, we look at a generalized mean which gives the

best approximation to this most probable value, e.g. see in [50].

5.2. Generalized mean

Generalized f-mean for a single random variable x with a PDF given by

p(x) is defined as follows

〈x〉f = f−1(〈f(x)〉) , (14)

where f and f−1 is a function and its inverse.60,61 The average inside the

function f−1 is the arithmetic mean with respect to p(x). The geometric

mean is obtained when f(x) = lnx.

If f(x) = xp is a power function of x, the corresponding generalized

average is known as a Hölder mean61 or p-mean

〈x〉p =

[
∫

dxp(x)xp

]
1

p

, (15)

which is parameterized by a single number p. Like the arithmetical mean,

the Hölder mean:

• is a homogeneous function of x, and
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• have a block property, i.e. 〈xy〉p = 〈x〉p〈y〉p if x and y are indepen-

dent random variables.

In particular, it can be seen that p = −∞ gives the possible minimum of

x, p = −1 gives the harmonic mean, p = 0 gives the geometric mean, p = 1

is the arithmetic mean, p = 2 gives the quadratic mean, and p = ∞ gives

the maximum of possible x.

Which mean gives the best approximation, in particular when disorder is

very strong and drives the system from the self-averaging limit, is a matter

of experience and tries. For example, many biological and social processes

are modelled by the log-normal PDF, for which the geometrical mean gives

exactly the most probable value of the random variable.62,63 The same is

also true for a system of conductors in series with random resistances.

6. Static mean-field theory

6.1. Exchange Hamiltonian

Before reviewing the DMFT for correlated fermions we discuss the static

(Weiss) mean-field approximation for magnetic systems. This helps to ap-

preciate similarities and differences between the static and the dynamical

mean-field theories.

At large U the Hubbard model (3) can be reduced, via the canonical

transformation projecting out double occupied sites, to the t-J Hamiltoni-

ans with spin-exchange interactions between the electrons.64 At half-filling

the t-J model is exactly equivalent to the Heisenberg Hamiltonian for lo-

calized magnetic moments

Hexch = −1

2

∑

ij

JijSi · Sj , (16)

where Si is a quantum mechanical spin operator and Jij = 4t2ij/U � tij is

a kinetic exchange coupling.

6.2. Static mean-field approximation

The idea of any mean-field theory is to replace an unsolvable many-body

Hamiltonian by a solvable one-body Hamiltonian HMF containing an ex-

ternal fictitious field. In the case of the Heisenberg model (16), we rewrite

the partition function as

Z = TrSi
e−βHexch = TrSi

e−βHMF , (17)
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where β = 1/kT is the inverse of the temperature kT in energy units and Tr

denotes the trace over the spin degrees of freedom. The one-body mean-field

Hamiltonian HMF is assumed to be

HMF =
∑

i

BMF
i · Si + Eshift . (18)

The interpretation of (18) is straightforward: localized moments interact

only with the external magnetic (Weiss, molecular) mean-field BMF
i . The

transformation from the Hamiltonian (16) into the mean-field Hamiltonian

(18) is exact from the formal point of view. However, the static Weiss mean-

field BMF
i is not known yet and has to be found within an approximation

scheme.

We determine the molecular field within the mean-field (decoupling)

approximation Si · Sj ≈ 〈Si〉 · Sj . Hence, BMF
i =

∑

j(i) Jij〈Sj〉HMF
. Now

the average spin 〈Si〉 is found by the self-consistent equation

〈Sz〉HMF
= tanh (βJ〈Sz〉HMF

) , (19)

where the unknown quantity appears on both sides of it. In the last step we

assumed also that the interaction is only between nearest neighbor moments

and that the systems is homogeneous. We can solve Eq. (19) iteratively, in

the l-th step we plug 〈Sz〉lHMF
into the right hand side of (19) and determine

new 〈Sz〉l+1
HMF

from the left hand side of (19). We shall repeat this until l-th

and l+1-th results are numerically the same with pre-assumed accuracy.

The only approximation within this static mean-field theory is that we

have neglected spatial spin-spin correlations, i.e. we have assumed explicitly

that

〈[Si − 〈Si〉] · [Sj − 〈Sj〉]〉 = 0 =⇒ 〈Si · Sj〉 = 〈Si〉 · 〈Sj〉 . (20)

It means that a single spin interacts now with an average (mean) external

magnetic field, produced by all other spins as is plotted schematically in

Fig. 3.

6.3. Large dimensional limit

This approximation becomes exact when the single spin interacts with in-

finitely many other spins. For this either the exchange coupling Jij = t2ij/U

has to be infinitely long-range or there has to be infinitely many nearest

neighbors to a given site. The former would lead to hopping amplitudes

with pathological properties. The latter is admissible in view of a physical

realization. Indeed, note that for the two-dimensional simple cubic (sc) lat-

tice the coordination number z = 4, for the three-dimensional simple cubic
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2J<S> 0 2J<S> −4J<S>

2J<S>

Fig. 3. Different spin configurations are replaced by a single central spin interacting
with a mean magnetic field BMF. The more spins interact with the central one the more
accurate is such approximation.

lattice z = 6, for the body centered cubic (bcc) lattice z = 8, whereas for

the the three-dimensional face centered cubic lattice (fcc) z = 12. Large z

limit corresponds to the existence of a small, dimensionless parameter 1/z

in the theory, which vanishes when z → ∞.

The best strategy is to construct a mean-field type theory which is exact

in the z → ∞ limit. In practice, a useful non-trivial theory is only obtained

when we rescale the exchange coupling, J = J∗/z where J∗ = const. In

this case the static mean-magnetic field

BMF =

z
∑

j=1

J〈S〉HMF
=

J∗

z

z
∑

j=1

〈S〉HMF
= J∗〈S〉HMF

(21)

is finite (bounded) in z → ∞ limit. Then the spatial correlations exactly

vanish

lim
z→∞

〈[Si − 〈Si〉] · [Sj − 〈Sj〉]〉 = 0 =⇒ lim
z→∞

〈Si · Sj〉 = 〈Si〉 · 〈Sj〉 . (22)

In principle, we can also find corrections to the z → ∞ limit by applying

a perturbation theory with respect to 1/z. Hence, this static mean-field

theory is a controlled approximation with well defined small parameter.

Unfortunately this is not the theory which we expect to have for the

Hubbard model of correlated fermions. The static mean-field theory was

constructed only for the t-J model, where t � U . On the other hand, as

we discussed in the beginning sections, the interesting physics with Mott-

Hubbard MIT occurs when t ∼ U , i.e. in the intermediate coupling regime.
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Then the local dynamics seems to be important and we need a dynamical

theory, which incorporates those local quantum fluctuations.

7. The Holy Grail for lattice fermions or bosons

In the lack of exact solutions to the interesting models (3,6,10,11) in two or

three dimensions, we search for an approximate but comprehensive mean-

field theory that:

• is valid for all values of parameters, e.g. U/t, the electron density,

disorder strength ∆ and concentration x, or temperature;

• is thermodynamically consistent, i.e. irrespectively in which way

thermodynamical quantities are calculated, final results are identi-

cal;

• is conserving, i.e. the approximation must preserve the microscopic

conservation laws of the Hamiltonian;

• has a small controlled (expansion) parameter z and the approxi-

mate theory is exact when z → ∞;

• is flexible in application to various classes of correlated fermion

models, with and without disorder, and useful to realistic, material

specific calculations.

Among many different approximate theories for the Hubbard-like mod-

els of lattice fermions, the DMFT is the only one which satisfies all of those

requirements.11,17–21,51 Recently, the bosonic dynamical mean-field theory

(B-DMFT) for correlated lattice bosons in normal and Bose-Einstein con-

densate phases has also been formulated.65

8. DMFT - practical and quick formulation

In this Section we discuss the comprehensive mean-field theory for the cor-

related lattice fermions with disorder and inhomogeneous external poten-

tials. We present a quick and practical formulation of the DMFT equations,

which emphasizes the mean-field character of the theory.
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8.1. Exact partition function, Green function, and

self-energy

We begin with the exact partition function for a given lattice problem, e.g.

as that described by one of the Hamiltonians (3,6,10,11),

Z = Tre−β(H−µN) =
∏

σωn

Det[−Ĝσ(ωn)−1] = exp

(

∑

σωn

Tr ln[−Ĝσ(ωn)−1]

)

.

(23)

This partition function is derived in the Appendix, cf. Eq. (50). Odd Mat-

subara frequencies ωn = (2n +1)π/β, corresponding to the imaginary time

τ by the Fourier transform, keep track of the Fermi-Dirac statistics. The

hat symbol in Ĝ reminds us that the Green function is an infinite matrix

when expressed in the basis of one-particle wave functions.

Our goal is to formulate the DMFT for arbitrary discrete systems, where

the lattice is not necessary of Bravais type.66–68 Therefore we work with

a general quantum numbers α, corresponding to the one-particle basis |α〉
which diagonalizes the equations of motion, see the Eq. (48) in the Ap-

pendix. In particular, the present general formulation of the DMFT is ap-

plicable: to regular crystals, where the basis functions are Bloch waves with

quasi-momenta k as proper quantum numbers, as well as to thin films, in-

terlayers, and surfaces,11,69–71 or to irregular constrictions for electrons and

magneto-optical traps for cold atoms, or to infinite graphs, e.g. the Bethe

tree with different hoppings.72,73 We only demand that the lattice is in-

finitely large since we work directly in the thermodynamic limit.

According to the Dyson equation,74 the one-particle Green function

Gijσ(τ) = −〈Tτciσ(τ)c†jσ(0)〉 , (24)

where Tτ is a chronological operator, can be expressed exactly by the non-

interacting Green function G0
ijσ(ωn) and the self-energy Σijσ(ωn), i.e.

Gijσ(ωn)−1 = G0
ijσ(ωn)−1 − Σijσ(ωn) (25)

Here the non-interacting Green function can be written in the |α〉 basis

G0
ασ(ωn) = 1/(iωn + µ − εα), where εα are exact eigenvalues of the non-

interacting and non-disorder part H0 of the corresponding Hamiltonian, i.e.

H0|α〉 = εα|α〉. Then, the partition function (23) is expressed by the exact

self-energy

Z = exp

(

∑

σωn

Tr ln[Ĝ0
σ(iωn)−1 − Σ̂σ(ωn)]

)

. (26)



January 11, 2008 10:42 WSPC - Proceedings Trim Size: 9in x 6in author

Dynamical mean-field theory for correlated lattice fermions 17

The problem would be solved exactly if we had only known the self-energy

Σ̂σ(ωn).

8.2. DMFT approximation

Unfortunately, the self-energy is not known so we have to determine it

approximately. Within the DMFT for homogeneous systems we make the

main assumption, namely, that the self-energy is α-independent, i.e.

Σαα′σ(ωn) = Σσ(ωn)δαα′ . (27)

For the electrons on Bravais lattices it means that the self-energy is mo-

mentum independent. Correspondingly in the lattice space, the self-energy

is local, i.e. only diagonal elements are non-vanishing

Σijσ(ωn) =
∑

αα′

〈i|α〉Σαα′σ〈α′|j〉 = Σσ(ωn)δij , (28)

where δij is the lattice Kronecker delta, and we used the completeness of

the α-basis, i.e. 1 =
∑

α |α〉〈α|, together with the orthonormality property

of the Wannier states.

For lattice systems with additional, non-uniform external potential Vi

we have to make different, independent assumption, namely the self-energy

is local and depends explicitly on site indices, i.e.

Σijσ(ωn) = Σiσ(ωn)δij . (29)

In general such an assumption does not imply that the self-energy in α-basis

is diagonal or independent on α.

Within the DMFT we neglect space correlations by assuming that the

self-energy is local, diagonal in the lattice space. The local, dynamical cor-

relations, however, are included exactly by keeping the frequency depen-

dence of Σiσ(ωn), which translates into explicit time-dependence of the

self-energy Σiσ(τ − τ ′). Local dynamics is preserved by this approximation

and therefore we use the name dynamical mean-field theory. The DMFT

is the equilibrium theory expecting to describe systems in thermal equilib-

rium (or close to it, within linear response regime). The extension of the

DMFT to non-equilibrium situations is a separate problem, currently being

developed.75

8.3. Local Green function

The local Green function Giσ(iωn) ≡ Giiσ(iωn) is given by the diagonal

elements obtained from the matrix Dyson equation

Gijσ(iωn) =
[

G0
ijσ(iωn)−1 − Σiσ(iωn)δij

]−1
, (30)
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provided that we know all local self-energies on all lattice sites. This exact

expression is applicable to study finite size systems. When the system is

infinitely large we have to make other approximation to make the DMFT

equation numerically tractable.

8.4. Local approximation to Dyson equation

The local (diagonal in a lattice space) Green function can be expressed

solely by the local, non-interacting, pure density of states (LDOS) and the

self-energy, namely

Giσ(ωn) =
∑

α

|〈α|i〉|2
iωn + µ − εα − Σiσ(ωn)

=

∫

dε
N0

i (ε)

iωn + µ − ε − Σiσ(ωn)
,

(31)

where N0
i (ε) =

∑

α |〈α|i〉|2δ(ε − εα) is the non-interacting LDOS. This ex-

pression is obtained by assuming that on all sites the self-energy Σiσ(iωn)

is the same when calculating Giiσ(iωn). For another site Rj we assume the

same but now the self-energy should be Σjσ(iωn). We call this as a local

Dyson equation approximation (LDEA). For a given problem with the ex-

ternal potential Vi the noninteracting, pure LDOS is determined once at

the beginning for all lattice sites and then stored in the computer memory.

In practice a system of arbitrary size can be studied within this local ap-

proximation. This LDOS is the same and site independent for homogeneous

lattices.

This assumption is certainly valid as long as the external potential Vi is

a slowly-varying function compared with other characteristic length scales,

as a lattice constant a and the Fermi wave-length. This is a quasi-classical

(Wigner) description where both the α-quantum number in εα and the

Ri-position in Σiσ(ωn) are used at the same time.

8.5. Dynamical mean-field function

The locality of the self-energy has far reaching consequences as we shall see

now. We write the local Green function in a different form, i.e.

Giσ(ωn) =
1

iωn + µ − ηiσ(ωn) − Σiσ(ωn)
, (32)

where we introduced frequency dependent function ηiσ(ωn). We can inter-

pret ηiσ(ωn) as dynamical mean-field function. It describes resonant broad-

enings of single-site levels due to coupling of a given site to the rest of the

system. In different words, a coupling of the selected single site to all other
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sites is described in average by the local dynamical mean-field function

ηiσ(ωn).

8.6. Self-consistency conditions

The partition function is expressed now as a product of the partition func-

tions determined on each lattice sites

Z =

NL
∏

i=1

Zi =

NL
∏

i=1

exp

(

∑

σωn

ln[iωn + µ − ηiσ(ωn) − Σiσ(ωn)]

)

. (33)

The mean-field function ηiσ(ωn) looks formally like an site- and time- de-

pendent potential. In the interaction representation, the unitary time evolu-

tion due to this potential is described by the local, time-dependent evolution

operator11,51

U [ηiσ] = Tτe−
R

β

0
dτ

R

β

0
dτ ′c

†
iσ

(τ)ηiσ(τ−τ ′)ciσ(τ ′) . (34)

In the final step we write the partition function (33) as a trace of operators

Z = Z[ηiσ] =

NL
∏

i=1

Tr
[

e−β(Hloc

i −µN loc

i )U [ηiσ]
]

, (35)

where H loc
i is the local part of the lattice Hamiltonian operator and de-

scribes the interaction and/or disorder. Here N loc
i is the local particle

number operator. The Eq. (35) is our main result allowing us to deter-

mine the interesting, local Green function for a given dynamical mean-field

ηiσ(ωn). Indeed, the local Green function is obtained by taking a functional

derivative of the logarithm from the partition function (35) with respect to

ηiσ(ωn),11,51 i.e.

Giσ(ωn) = −∂ lnZ[ηiσ]

∂ηiσ(ωn)
. (36)

In systems with disorder, the local part of the Hamiltonian H loc
i has

the random variable εi and therefore the local Green function (36) is also

a random quantity. In such a case we determine the average local Green

function by taking one of the mean, introduced above. For this we calculate

the spectral function, the interacting LDOS, from (36), i.e.

Aiσ(ω) = − 1

π
ImGiσ(ωn → ω + i0+) , (37)

and determine we the p-mean with respect to a given PDF

〈Aiσ(ω)〉p =

[
∫

dεP (ε)Aiσ(ω)p

]
1

p

. (38)
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According to the spectral representation theorem74 the averaged local

Green function is

〈Giσ(ωn)〉p =

∫

dω
〈Aiσ(ω)〉p
iωn − ω

, (39)

and should be used instead of (36) is systems with disorder.

Knowing Giσ(ωn) from the Eq. (36) or its average form from the Eq. (39)

we find directly the self-energy from the Eq. (32), i.e.

Σiσ(ωn) = iωn + µ − ηiσ(ωn) − 1

Giσ(ωn)
, (40)

or

Σiσ(ωn) = iωn + µ − ηiσ(ωn) − 1

〈Giσ(ωn)〉p
, (41)

respectively.

The local Green function is determined for a given, fixed mean-field

potential ηiσ(ωn). To obtain a self-consistent solution we proceed iteratively

by employing the Eq. (31) to obtain a new local Green function, which

afterwards is used to determine a new mean-field function from Eq. (32).

This should be done on all lattice sites in parallel if the system contains the

external, inhomogeneous potential Vi. For Bravais lattices the self-energy

is the same on each site so does the mean-field function ησ(ωn). Then the

site index i is irrelevant and can be omitted. The iteration steps should be

repeated until the l-th and l+1-th results are numerically the same with a

pre-assumed accuracy.

9. Limit of large coordination number

The success of the DMFT can be ascribed to the fact that this theory

provides an exact solution for non-trivial lattice Hamiltonians in the limit

of large coordination number, i.e. z → ∞. Similarly to the static mean-

field theory for the exchange Hamiltonian, in the z → ∞ limit the space

correlation functions vanish. The remaining correlations are local but time

dependent and completely taken into account by the DMFT.

To obtain a non-trivial theory in the z → ∞ limit the hopping ampli-

tudes in the lattice Hamiltonians have to be rescaled,12 i.e. tij = t∗ij/
√

dRij ,

where Rij is a distance between sites i and j obtained by counting the min-

imal number of links between them. Then the non-local hopping, the local

interacting, and the local random parts of the Hamiltonians (3,6,10,11) are

treated on equal footing.12–14,19,76 It can be exactly shown that the self-

energy is then local. Hence our quick, practical derivation becomes also an



January 11, 2008 10:42 WSPC - Proceedings Trim Size: 9in x 6in author

Dynamical mean-field theory for correlated lattice fermions 21

exact solution of the corresponding lattice problem. In addition, it can be

shown that within this rescaling scheme, the lattice disordered systems are

self-averaging and the use of arithmetic averaging is justified.76 For uncorre-

lated disordered systems the DMFT is equivalent to the coherent potential

approximation (CPA).77

Since the theory is exact in the large z limit it must be conserving and

thermodynamically consistent. Also it must give a comprehensive descrip-

tion of full phase diagrams in all possible regimes of the model and external

parameters.

We also mention here that DMFT is formulated in such a way as to

describe phases with long-range orders.19 Also the DMFT can be merged

with realistic ab initio calculations, which is known as the LDA+DMFT

approach.20,21 These examples show flexibility of the DMFT and ability to

describe real physical systems.

The DMFT set of equations have to be solved. The most difficult part

is determination of the local Green function from the Eq. (35). Apart of the

Falicov-Kimball model and similar ones, where there exist additional local

conservation laws, the calculation of the partition function (35) and the fol-

lowing Green functions requires advanced numerical approaches. Different

techniques are routinely used now and discussed in details in literature.19

The results presented here were obtained by using Quantum Monte Carlo

(QMC) simulations at finite temperatures19 and Numerical Renormaliza-

tion Group (NRG) at zero temperature.78,79

10. Surprising results from DMFT

The investigations of electronic correlations and their interplay with disor-

der by means of the DMFT has led us to the discovery of several unexpected

properties and phenomena. Examples are: (i) a novel type of Mott-Hubbard

metal insulator transition away from integer filling in the presence of binary

alloy disorder;48 (ii) an enhancement of the Curie temperature in correlated

electron systems with binary alloy disorder;47,49 and (iii) unusual effects of

correlations and disorder on the Mott-Hubbard and Anderson MITs, re-

spectively.50,52 Below we describe and explain these often surprising results

as an illustration of the theory introduced above.

10.1. Metal-insulator transition at fractional filling

The Mott-Hubbard MIT occurs upon increasing the interaction strength U

in the models (10) and (11) if the number of electrons Ne is commensurate
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with the number of lattice sites NL or, more precisely, if the ratio Ne/NL

is an odd integer. At zero temperature it is a continuous transition whereas

at finite temperatures the transition is of first-order.19,80 Surprisingly, in

the presence of binary alloy disorder the MIT occurs at fractional filling.48

We describe this situation by using the Anderson-Hubbard model (10)

with the distribution (8) which corresponds to a binary-alloy system com-

posed of two different atoms A and B. The atoms are distributed randomly

on the lattice and have ionic energies εA,B, with εB − εA = ∆. The concen-

tration of A (B) atoms is given by x = NA/NL (1 − x = NB/NL), where

NA (NB) is the number of the corresponding atoms.

From the localization theorem (the Hadamard–Gerschgorin theorem in

matrix algebra) it is known that if the Hamiltonian (10), with a binary alloy

distribution for εi, is bounded, then there is a gap in the single–particle

spectrum for sufficiently large ∆ � max(|t|, U). Hence at ∆ = ∆c the

DOS splits into two parts corresponding to the lower and the upper alloy

subbands with centers of mass at the ionic energies εA and εB, respectively.

The width of the alloy gap is of the order of ∆. The lower and upper alloy

subband contains 2xNL and 2(1 − x)NL states, respectively.

New possibilities appear in systems with correlated electrons and binary

alloy disorder.48 The Mott–Hubbard metal insulator transition can occur at

any filling n = x or 1 + x, corresponding to a half–filled lower or to a half–

filled upper alloy subband, respectively, as shown schematically for n = x

in Fig. 4. The Mott insulator can then be approached either by increasing

U when ∆ ≥ ∆c (alloy band splitting limit), or by increasing ∆ when

U ≥ Uc (Hubbard band splitting limit). The nature of the Mott insulator

in the binary alloy system can be understood physically as follows. Due to

the high energy cost of the order of U the randomly distributed ions with

lower (higher) local energies εi are singly occupied at n = x (n = 1 + x),

i.e., the double occupancy is suppressed. In the Mott insulator with n = x

the ions with higher local energies are empty and do not contribute to the

low–energy processes in the system. Likewise, in the Mott insulator with

n = 1 + x the ions with lower local energies are double occupied implying

that the lower alloy subband is blocked and does not play any role.

For U > Uc(∆) in the Mott insulating state with binary alloy disorder

one may use the lowest excitation energies to distinguish two different types

of insulators. Namely, for U < ∆ an excitation must overcome the energy

gap between the lower and the upper Hubbard subbands, as indicated in

Fig. 4. We call this insulating state an alloy Mott insulator. On the other

hand, for ∆ < U an excitation must overcome the energy gap between the
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Fig. 4. Left: Schematic plot representing the Mott–Hubbard metal–insulator transition
in a correlated electron system with the binary alloy disorder. The shapes of spectral
functions A(ω) are shown for different interactions U and disorder strengths ∆. Increasing
∆ at U = 0 leads to splitting of the spectral function into the lower (LAB) and the
upper (UAB) alloy subbands, which contain 2xNL and 2(1 − x)NL states respectively.
Increasing U at ∆ = 0 leads to the occurrence of lower (LHB) and upper (UHB) Hubbard
subbands. The Fermi energy for filling n = x is indicated by µ. At n = x (or n = 1 + x,
not shown in the plot) the LAB (UAB) is half–filled. In this case an increase of U and
∆ leads to the opening of a correlation gap at the Fermi level and the system becomes
a Mott insulator. Right: Two possible insulating states in the correlated electron system
with binary–alloy disorder. When U < ∆ the insulating state is an alloy Mott insulator
with an excitation gap in the spectrum of the order of U . When U > ∆ the insulating
state is an alloy charge transfer insulator with an excitation gap of the order of ∆; after
Ref. [48]

lower Hubbard subband and the upper alloy–subband, as shown in Fig. 4.

We call this insulating state an alloy charge transfer insulator.

In Fig. 5 we present a particular phase diagram for the Anderson-

Hubbard model at filling n = 0.5 showing a Mott-Hubbard type of MIT

with typical hysteresis.

10.2. Disorder-induced enhancement of the Curie

temperature

Itinerant ferromagnetism in the pure Hubbard model occurs only away from

half-filling and if the DOS is asymmetric and peaked at the lower edge.81,82

While the Curie temperature increases with the strength of the electron

interaction one would expect it to be lowered by disorder. However, our

investigations show that in some cases the Curie temperature can actually

be increased by binary alloy disorder.47,49

Indeed, the Curie temperature as a function of alloy concentration ex-

hibits very rich and interesting behavior as is shown in Fig. 6. At some

concentrations and certain values of U , ∆ and n, the Curie temperature is
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Fig. 5. Ground state phase diagram of the Hubbard model with binary–alloy disorder at
filling n = x = 0.5. The filled (open) dots represent the boundary between paramagnetic
metallic (PM) and paramagnetic insulating (PI) phases as determined by DMFT with
the initial input given by the metallic (insulating) hybridization function. The horizontal
dotted line represents Uc obtained analytically from an asymptotic theory in the limit
∆ → ∞. Inset: hysteresis in the spectral functions at the Fermi level obtained from
DMFT with an initial metallic (insulating) host represented by filled (open) symbols
and solid (dashed) lines; after.48

enhanced above the corresponding value for the non-disordered case (x = 0

or 1). This is shown in the upper panel of Fig. 6 for 0 < x < 0.2. The

relative increase of Tc can be as large as 25%, as is found for x ≈ 0.1 at

n = 0.7, U = 2 and ∆ = 4 (upper panel of Fig. 6).

This unusual enhancement of Tc is caused by three distinct features of

interacting electrons in the presence of binary alloy disorder:

i) The Curie temperature in the non-disordered case T p
c ≡ Tc(∆ =

0), depends non-monotonically on band filling n.81 Namely, T p
c (n) has a

maximum at some filling n = n∗(U), which increases as U is increased; see

also our schematic plots in Fig. 7.

ii) As was described above, in the alloy-disordered system the band is

split when ∆ � W . As a consequence, for n < 2x and T � ∆ electrons oc-

cupy only the lower alloy subband and for n > 2x both the lower and upper

alloy subbands are filled. In the former case the upper subband is empty

while in the later case the lower subband is completely full. Effectively, one

can therefore describe this system by a Hubbard model mapped onto the

either lower or the upper alloy subband, respectively. The second subband

plays a passive role. Hence, the situation corresponds to a single band with

the effective filling neff = n/x for n < 2x and neff = (n − 2x)/(1 − x) for

n > 2x. It is then possible to determine Tc from the phase diagram of the

Hubbard model without disorder.
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Fig. 6. Curie temperature as a function of alloy concentration x at U = 2 (upper panel)
and 6 (lower panel) for n = 0.7 and disorder ∆ = 1 (dashed lines) and 4 (solid lines);
after Refs. [47,49].

iii) The disorder leads to a reduction of T p
c (neff) by a factor α = x if the

Fermi level is in the lower alloy subband or α = 1 − x if it is in the upper

alloy subband, i. e. we find

Tc(n) ≈ αT p
c (neff) , (42)

when ∆ � W . Hence, as illustrated in Fig. 7, Tc can be determined by

T p
c (neff). Surprisingly, then, it follows that for suitable U and n the Curie

temperature of a disordered system can be higher than that of the corre-

sponding non-disordered system [cf. Fig. 7].

10.3. Continuously connected insulating phases in strongly

correlated systems with disorder

The Mott-Hubbard MIT is caused by Coulomb correlations in the pure

system. By contrast, the Anderson MIT, also referred to as Anderson lo-

calization, is due to coherent backscattering from randomly distributed im-

purities in a system without interaction.42 It is therefore a challenge to

investigate the effect of the simultaneously presence of interactions and dis-

order on electronic systems.50,52 In particular, the question arises whether

it will suppress or enlarge a metallic phase. And what about the Mott and

Anderson insulating phases: will they be separated by a metallic phase?

Possible scenarios are schematically plotted in Fig. 8.
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Fig. 7. Schematic plots explaining the filling dependence of Tc for interacting electrons
with strong binary alloy disorder. Curves represent Tp

c , the Curie temperature for the
pure system, as a function of filling n at two different interactions U1 � U2. Left: For
n < x, Tc of the disordered system can be obtained by transforming the open (for U1)
and the filled (for U2) point from n to neff = n/x, and then multiplying Tp

c (n/x) by
x as indicated by arrows. One finds Tc(n) < Tp

c (n) for U1, but Tc(n) > Tp
c (n) for U2.

Right: For n > x, Tc of the disordered system can be obtained by transforming T p
c (n)

from n to neff = (n − 2x)/(1 − x), and then multiplying Tp
c [(n − 2x)/(1 − x)x] by 1 − x

as indicated by arrows. One finds Tc(n) > Tp
c (n) for U1, but Tc(n) < Tp

c (n) for U2; after
Ref. [47,49].
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phases are connected continuously. Insets show different local density of states when
disorder or interaction is switched off.

The Mott-Hubbard MIT is characterized by the opening of a gap in the

density of states at the Fermi level. At the Anderson localization transition
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the character of the spectrum at the Fermi level changes from a continu-

ous spectrum to a dense, pure point spectrum. It is plausible to assume

that both MITs can be characterized by a single quantity, namely, the local

density of states (LDOS). Although the LDOS is not an order parameter

associated with a symmetry breaking phase transition, it discriminates be-

tween a metal and an insulator, which is driven by correlations and disorder,

cf. insets to Fig. 8.

In a disordered system the LDOS depends on a particular realization

of the disorder in the system. To obtain a full understanding of the effects

of disorder it would therefore in principle be necessary to determine the

entire probability distribution function of the LDOS, which is almost never

possible. Instead one might try to calculate moments of the LDOS. This,

however, is insufficient because the arithmetically averaged LDOS (first

moment) stays finite at the Anderson MIT.83 It was already pointed out

by Anderson42 that the “typical” values of random quantities, which are

mathematically given by the most probable values of the probability dis-

tribution functions, should be used to describe localization. The geometric

mean is defined by

Ageom = exp [〈lnA(εi)〉dis] , (43)

and differs from the arithmetical mean given by

Aarith = 〈A(εi)〉dis , (44)

where 〈F (εi)〉dis =
∫

dεiP(εi)F (εi) is an arithmetic mean of function F (εi).

The geometrical mean gives an approximation of the most probable (“typi-

cal”) value of the LDOS and vanishes at a critical strength of the disorder,

hence providing an explicit criterion for Anderson localization.42,84–86

A non-perturbative framework for investigations of the Mott-Hubbard

MIT in lattice electrons with a local interaction and disorder is provided by

the dynamical mean-field theory (DMFT).17,19 If in this approach the effect

of local disorder is taken into account through the arithmetic mean of the

LDOS87 one obtains, in the absence of interactions, the well known coherent

potential approximation (CPA),76 which does not describe the physics of

Anderson localization. To overcome this deficiency Dobrosavljević et al.85

incorporated the geometrically averaged LDOS into the self-consistency cy-

cle and thereby derived a mean-field theory of Anderson localization which

reproduces many of the expected features of the disorder-driven MIT for

non-interacting electrons. This scheme uses only one-particle quantities and

is therefore easily incorporated into the DMFT for disordered electrons

in the presence of phonons,88 or Coulomb correlations.50,52 In particular,
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Anderson-Falicov-Kimball (right) models at half-filling as calculated by DMFT with the
typical local density of states; after Refs. [50,52]

the DMFT with geometrical averaging allows to compute phase diagrams

for the Anderson-Hubbard model (10) and the Anderson-Falicov-Kimball

model (11) with the continuous probability distribution function (9) at half-

filling.50,52 In this way we found that, although in both models the metallic

phase is enhanced for small and intermediate values of the interaction and

disorder, metallicity is finally destroyed. Surprisingly, the Mott and Ander-

son insulators are found to be continuously connected. Phase diagrams for

the non-magnetic ground state are shown in Fig. 9. The method based on

geometric averaging described here was further investigated in details in

Refs. [89–92].

11. Conclusions

The physics of correlated electron systems is known to be extremely rich.

Therefore their investigation continues to unravel novel and often surpris-

ing phenomena, e.g. formation of kinks in the electronic dispersion rela-

tions.93 The presence of disorder further enhances this complexity. Here

we discussed several remarkable features induced by correlations with and

without disorder, which came as a surprise when they were first discovered,

but which after all have physically intuitive explanations. Behind these dis-

coveries is the dynamical mean-field theory, which was described here for

lattice quantum systems with interaction, disorder and external potentials.
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12. Appendix

A very convenient method to calculate the fermionic partition function is

the path-integral technique74 invented originally by Feynman. The partition

function is represented as a functional integral over anticommuting, time

dependent functions

Z = Tre−β(H−µN) =

∫

D[c∗iσ, ciσ]e−S[c∗iσ,ciσ] , (45)

where the action S is defined explicitly for a given Hamiltonian

S[c∗iσ, ciσ] =

∫ β

0

dτ
∑

iσ

c∗iσ(τ)(∂τ −µ)ciσ(τ)+

∫ β

0

dτH [c∗iσ(τ), ciσ(τ)] , (46)

with the antisymmetric boundary condition ciσ(τ + β) = −ciσ(τ) to keep

the Fermi-Dirac statistics.

In the DMFT we are mainly interested in the one-particle Green func-

tion (propagator), which is simply expressed by the functional integral

Gijσ(τ − τ ′) = −〈Tτciσ(τ)c†iσ(τ ′)〉
= − 1

Z

∫

D[c∗iσ, ciσ]ciσ(τ)c∗iσ(τ ′)e−S[c∗iσ,ciσ] . (47)

The Green function obeys the equation of motion
[

(∂τ − µ)1̂ + Ĥ
]

Ĝ(τ − τ ′) = −δ(τ − τ ′)1̂ , (48)

where we used the matrix notation for Ĝ and the Hamiltonian operator Ĥ ,

whereas 1̂ is a unit matrix.

With the help of Eq. (48), the exact partition function (45) can be

expressed exactly by the Green function

Z =

∫

D[c̄∗, c̄]e
R

β

0
dτ

R

β

0
dτ ′c̄∗(τ)Ĝ−1(τ−τ ′)c̄(τ ′) , (49)

where we used compact vector and matrix notations. The Gaussian func-

tional integral is evaluated and we obtain

Z = Det[−Ĝ−1] = eTr ln[−Ĝ−1] , (50)

where the determinant and the trace are taken over relevant quantum num-

bers and over the imaginary time τ or Matsubara frequencies ωn, depend-

ing which representation we use. This is equivalent because of the Fourier
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transform relation

Ĝ(τ) =
1

β

∑

ωn

eiωnτ Ĝ(ωn) , (51)

where ωn = (2n + 1)π/β are odd Matsubara frequencies. The formal ex-

pression (50) is our starting point in derivation the DMFT equations.
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