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Strong electronic correlations and especially the interplay between cor-
relations and disorder lead to many interesting and quite unexpected phe-
nomena. A short summary of our recent investigations into the properties
of strongly correlated electron systems with and without disorder using the
dynamical mean-field theory is presented.
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1. Introduction

The exceptional properties of strongly correlated electron systems have
fascinated physicists for several decades already [1–9]. New correlated elec-
tron materials and unexpected correlation phenomena are discovered every
year. Often the properties of those systems are influenced by disorder. Un-
fortunately, real materials and even model systems with strong electronic
correlations and disorder are notoriously hard to investigate theoretically
because standard approximations are invalid in the most interesting param-
eter regime – that of intermediate coupling. Here the recently developed
dynamical mean-field theory (DMFT) [10–17] has proved to be an almost
ideal mean-field approximation since it may be used at arbitrary coupling.
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For this reason the DMFT has been successfully employed in the investi-
gation of electronic correlation effects in theoretical models and even real
materials [17–19].

The investigations of electronic correlations and their interplay with dis-
order by means of the DMFT has led to the discovery of several unexpected
properties and phenomena. Examples are: (i) a purely electronic mecha-
nism leading to kinks in the electronic dispersion relation [20]; (ii) a novel
type of Mott-Hubbard metal insulator transition (MIT) away from integer
filling in the presence of binary alloy disorder [21]; (iii) an enhancement
of the Curie temperature in correlated electron systems with binary alloy
disorder [22,23]; and (iv) unusual effects of correlations and disorder on the
Mott-Hubbard and Anderson MITs, respectively [24,25]. Below we describe
and explain these often surprising results.

The fundamental electronic correlation models investigated here are the
Anderson-Hubbard model

H =
∑

ij,σ

tijc
+
iσcjσ +

∑

iσ

εiniσ + U
∑

i

ni↑ni↓, (1)

where tij is the hopping matrix element, U is the local Coulomb interaction,
c+
iσ is the fermionic creation operator for an electron with spin σ in Wannier

state i, and niσ is the particle number operator; and the Anderson-Falicov-
Kimball model

H =
∑

ij

tijc
†
i cj +

∑

i

εic
†
i ci + U

∑

i

f †
i fic

†
i ci, (2)

where c†i (f †
i ) and ci (fi) are fermionic creation and annihilation operators

for mobile (immobile) particles at a lattice site i. Furthermore, tij is the
hopping amplitude for mobile particles between sites i and j, and U is the
local interaction energy between mobile and immobile particles occupying
the same site. The ionic energy εi in both models is a random, independent
variable which describes the local, quenched disorder affecting the motion of
the mobile particles. At large U the models are reduced to t-J-like Hamil-
tonians with spin-exchange interactions between the fermions [26].

The disorder part is modeled by a corresponding probability distribution
function (PDF) P (εi). For P (εi) = 0 the system is called pure. For binary
alloy disorder we assume

P (εi) = xδ

(

εi +
∆

2

)

+ (1 − x)δ

(

εi −
∆

2

)

, (3)

where ∆ is the energy difference between the two atomic energies which
provides a measure of the disorder strength, while x and 1 − x are the
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concentrations of the two alloy atoms. Another model of disorder which we
use is one with the continuous PDF

P (εi) =
Θ(∆

2
− |εi|)

∆
, (4)

with Θ as the step function. Again the parameter ∆ is a measure of the
disorder strength.

2. Kinks in the electronic dispersion

Dispersion relations characterize quasiparticles and collective excitations
of many-body systems. The coupling between them may lead to kinks,
i.e. abrupt changes in the slope of the dispersion. Such kinks thus carry
important information about interactions in a many-body system. Recently
we have found a novel, purely electronic mechanism yielding kinks in the
electron dispersions [20]. This mechanism does not require a coupling of
two different excitations as in previously known cases. Our theory applies
to strongly correlated metals whose spectral function shows well separated
Hubbard subbands and central peak as, for example, in transition metal-
oxides.

For a microscopic description of these electronic kinks we use the Hub-
bard model (1) without disorder. For simplicity, we focus here on a single
band with particle-hole symmetry. The model was solved using the DMFT
at T = 0 [20].

The effective dispersion relation Ek of the one-particle excitation is de-
termined by the singularities of G(k, ω) = (ω + µ − εk − Σ(k, ω))−1, which
give rise to peaks in the spectral function A(k, ω) = −ImG(k, ω)/π. Here ω
is the frequency, µ the chemical potential, εk the bare dispersion relation,
and Σ(k, ω) is the self-energy. If the damping given by the imaginary part
of Σ(k, ω) is not too large, the effective dispersion Ek is thus determined by

Ek + µ − εk − ReΣ(k, Ek) = 0. (5)

Any kinks in Ek that do not originate from εk must therefore be due to
changes in the slope of ReΣ(k, ω).

We use the DMFT self-consistency equations to express Σ(k, ω) = Σ(ω)
as Σ(ω) = ω + µ − 1/G(ω) − ∆(G(ω)), where G(ω) =

∫

G(k, ω) dk is the
local Green function (averaged over k) and ∆(G) is an energy-dependent
hybridization function, expressed here as a function of G(ω).

Kinks in ReΣ(ω) appear at a new small energy scale which emerges quite
generally for a three-peak spectral function A(ω), cf. Fig.1. Kramers-Kronig
relations imply that Re[G(ω)] is small near the dips of A(ω), located at ±Ω.
Therefore Re[G(ω)] has a maximum and a minimum at ±ωmax inside the
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Fig. 1. Local propagator and self-energy for a strongly correlated system. (a)

Correlation-induced three-peak spectral function A(ω) = −ImG(ω)/π with dips

at ±Ω = 0.45 eV. (b) Corresponding real part of the propagator, −ReG(ω), with

minimum and maximum at ±ωmax inside the central spectral peak. (c) Real part of

the self-energy with kinks at ±ω∗ (blue circles), located at the points of maximum

curvature of ReG(ω), (ω∗ = 0.4ωmax = 0.03 eV). (d) ω−1/G(ω) contributes to the

self-energy. In general Re[ω − 1/G(ω)] (blue line) is linear in |ω| < Ω. The other

contribution to the self-energy is −∆(G(ω)) ≈ −(m2 − m2
1)G(ω) (to lowest order

in the moments mi of εk; here m2 − m2
1=0.5 eV2). Therefore the nonlinearity of

−Re[G(ω)] at ±ω∗ determines the location of kinks. (Hubbard model in DMFT,

cubic lattice, interaction U=3.5 eV, bandwidth W ≈ 3.46 eV, n=1, ZFL=0.086);

after ref. [20]
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central spectral peak (Fig. 1b). This directly leads to kinks in ReΣ(ω) for the
following reason. There are two contributions to Σ(ω): ω +µ− 1/G(ω) and
−∆(G(ω)). While Re[ω + µ− 1/G(ω)] is linear in the large energy window
|ω| < Ω (Fig. 1d), the term −Re[∆(G(ω))] is approximately proportional to
−Re[G(ω)] (at least to first order in a moment expansion), and thus remains
linear only in a much narrower energy window |ω| < ωmax. The sum of
these two contributions produces pronounced kinks in the real part of the
self-energy at ±ω∗, where ω∗ = 0.41ωmax is the energy where Re[G(ω)] has
maximum curvature (marked by blue circles in Fig. 1c). The Fermi-liquid
regime with slope ∂ReΣ(ω)/∂ω = 1 − 1/ZFL thus extends only throughout
a small part of the central peak (|ω| < ω?). At intermediate energies (ω? <
|ω| < Ω) the slope is then given by ∂ReΣ(ω)/∂ω = 1−1/ZCP. The kinks at
±ω∗ mark the crossover between these two slopes. As a consequence there
is also a kink at ω∗ in the effective band structure Ek.

The FL regime terminates at the kink energy scale ω?, which cannot
be determined within FL theory itself. The quantities ω? and ZCP can
nevertheless all be expressed in terms of ZFL and the bare density of states
alone; explicitly, one finds ω? = 0.41ZFLD, where D is an energy scale
of the noninteracting system, e.g., D is approximately given by half the
bandwidth [20].

The energy scale ω∗ involves only the bare band structure which can
be obtained, for example, from band structure calculations, and the FL
renormalization ZFL = 1/(1 − ∂ReΣ(0)/∂ω) ≡ m/m∗ known from, e.g.,
specific heat measurements or many-body calculations. We note that since
phonons are not involved in this mechanism, ω? shows no isotope effect.
For strongly interacting systems, in particular close to a metal-insulator
transition, ω? can become quite small, e.g., smaller than the Debye energy.

3. Metal-insulator transition at fractional filling

The Mott-Hubbard MIT occurs upon increasing the interaction strength
U in the models (1) and (2) if the number of electrons Ne is commensurate
with the number of lattice sites NL or, more precisely, if the ratio Ne/NL is
an odd integer. At zero temperature it is a continuous transition whereas
at finite temperatures the transition is of first-order [27,17]. Surprisingly, in
the presence of binary alloy disorder the MIT occurs at fractional filling [21].

We describe this situation by using the Anderson-Hubbard model (1)
with the distribution (3) which corresponds to a binary-alloy system com-
posed of two different atoms A and B. The atoms are distributed randomly
on the lattice and have ionic energies εA,B, with εB − εA = ∆. The concen-
tration of A (B) atoms is given by x = NA/NL (1 − x = NB/NL), where
NA (NB) is the number of the corresponding atoms.
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From the localization theorem (the Hadamard–Gerschgorin theorem in
matrix algebra) it is known that if the Hamiltonian (1), with a binary alloy
distribution for εi, is bounded, then there is a gap in the single–particle
spectrum for sufficiently large ∆ � max(|t|, U). Hence at ∆ = ∆c the
DOS splits into two parts corresponding to the lower and the upper alloy
subbands with centers of mass at the ionic energies εA and εB , respectively.
The width of the alloy gap is of the order of ∆. The lower and upper alloy
subband contains 2xNL and 2(1 − x)NL states, respectively.

New possibilities appear in systems with correlated electrons and binary
alloy disorder [21]. The Mott–Hubbard metal insulator transition can occur
at any filling n = x or 1 + x, corresponding to a half–filled lower or to
a half–filled upper alloy subband, respectively, as shown schematically for
n = x in Fig. 2. The Mott insulator can then be approached either by
increasing U when ∆ ≥ ∆c (alloy band splitting limit), or by increasing
∆ when U ≥ Uc (Hubbard band splitting limit). The nature of the Mott
insulator in the binary alloy system can be understood physically as follows.
Due to the high energy cost of the order of U the randomly distributed ions
with lower (higher) local energies εi are singly occupied at n = x (n = 1+x),
i.e., the double occupancy is suppressed. In the Mott insulator with n = x
the ions with higher local energies are empty and do not contribute to the
low–energy processes in the system. Likewise, in the Mott insulator with
n = 1 + x the ions with lower local energies are double occupied implying
that the lower alloy subband is blocked and does not play any role.

For U > Uc(∆) in the Mott insulating state with binary alloy disorder
one may use the lowest excitation energies to distinguish two different types
of insulators. Namely, for U < ∆ an excitation must overcome the energy
gap between the lower and the upper Hubbard subbands, as indicated in
Fig. 2. We call this insulating state an alloy Mott insulator. On the other
hand, for ∆ < U an excitation must overcome the energy gap between the
lower Hubbard subband and the upper alloy–subband, as shown in Fig. 2.
We call this insulating state an alloy charge transfer insulator.

In Fig. 3 we present a particular phase diagram for the Anderson-
Hubbard model at filling n = 0.5 showing a Mott-Hubbard type of MIT
with typical hysteresis.

4. Disorder-induced enhancement of the Curie temperature

Itinerant ferromagnetism in the pure Hubbard model occurs only away
from half-filling and if the DOS is asymmetric and peaked at the lower
edge [28, 29]. While the Curie temperature increases with the strength
of the electron interaction one would expect it to be lowered by disorder.
However, our investigations show that in some cases the Curie temperature
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Fig. 2. Left: Schematic plot representing the Mott–Hubbard metal–insulator tran-

sition in a correlated electron system with the binary alloy disorder. The shapes

of spectral functions A(ω) are shown for different interactions U and disorder

strengths ∆. Increasing ∆ at U = 0 leads to splitting of the spectral function

into the lower (LAB) and the upper (UAB) alloy subbands, which contain 2xNL

and 2(1− x)NL states respectively. Increasing U at ∆ = 0 leads to the occurrence

of lower (LHB) and upper (UHB) Hubbard subbands. The Fermi energy for filling

n = x is indicated by µ. At n = x (or n = 1 + x, not shown in the plot) the LAB

(UAB) is half–filled. In this case an increase of U and ∆ leads to the opening of a

correlation gap at the Fermi level and the system becomes a Mott insulator. Right:

Two possible insulating states in the correlated electron system with binary–alloy

disorder. When U < ∆ the insulating state is an alloy Mott insulator with an

excitation gap in the spectrum of the order of U . When U > ∆ the insulating state

is an alloy charge transfer insulator with an excitation gap of the order of ∆; after

ref. [21]

can actually be increased by binary alloy disorder [22,23].
Indeed, the Curie temperature as a function of alloy concentration ex-

hibits very rich and interesting behavior as is shown in Fig. 4. At some
concentrations and certain values of U , ∆ and n, the Curie temperature is
enhanced above the corresponding value for the non-disordered case (x = 0
or 1). This is shown in the upper panel of Fig. 4 for 0 < x < 0.2. The
relative increase of Tc can be as large as 25%, as is found for x ≈ 0.1 at
n = 0.7, U = 2 and ∆ = 4 (upper panel of Fig. 4).

This unusual enhancement of Tc is caused by three distinct features of
interacting electrons in the presence of binary alloy disorder:

i) The Curie temperature in the non-disordered case T p
c ≡ Tc(∆ = 0),

depends non-monotonically on band filling n [28]. Namely, T p
c (n) has a

maximum at some filling n = n∗(U), which increases as U is increased; see
also our schematic plots in Fig. 5.
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determined by DMFT with the initial input given by the metallic (insulating) hy-
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from an asymptotic theory in the limit ∆ → ∞. Inset: hysteresis in the spectral
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ii) As was described above, in the alloy-disordered system the band is
split when ∆ � W . As a consequence, for n < 2x and T � ∆ electrons oc-
cupy only the lower alloy subband and for n > 2x both the lower and upper
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Fig. 5. Schematic plots explaining the filling dependence of Tc for interacting elec-

trons with strong binary alloy disorder. Curves represent T p
c , the Curie temperature

for the pure system, as a function of filling n at two different interactions U1 � U2.

Left: For n < x, Tc of the disordered system can be obtained by transforming

the open (for U1) and the filled (for U2) point from n to neff = n/x, and then

multiplying T p
c (n/x) by x as indicated by arrows. One finds Tc(n) < T p

c (n) for

U1, but Tc(n) > T p
c (n) for U2. Right: For n > x, Tc of the disordered system

can be obtained by transforming T p
c (n) from n to neff = (n − 2x)/(1 − x), and

then multiplying T p
c [(n− 2x)/(1− x)x] by 1− x as indicated by arrows. One finds

Tc(n) > T p
c (n) for U1, but Tc(n) < T p

c (n) for U2; after ref. [22, 23].

alloy subbands are filled. In the former case the upper subband is empty
while in the later case the lower subband is completely full. Effectively, one
can therefore describe this system by a Hubbard model mapped onto the
either lower or the upper alloy subband, respectively. The second subband
plays a passive role. Hence, the situation corresponds to a single band with
the effective filling neff = n/x for n < 2x and neff = (n − 2x)/(1 − x) for
n > 2x. It is then possible to determine Tc from the phase diagram of the
Hubbard model without disorder.

iii) The disorder leads to a reduction of T p
c (neff) by a factor α = x if the

Fermi level is in the lower alloy subband or α = 1 − x if it is in the upper
alloy subband, i. e. we find

Tc(n) ≈ αT p
c (neff), (6)

when ∆ � W . Hence, as illustrated in Fig. 5, Tc can be determined by
T p

c (neff). Surprisingly, then, it follows that for suitable U and n the Curie
temperature of a disordered system can be higher than that of the corre-
sponding non-disordered system [cf. Fig. 5].
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in the same system. According to DMFT investigations the simultaneous presence

of correlations and disorder enhances the metallic regime (thick line); the two

insulating phases are connected continuously. Insets show different local density of

states when disorder or interaction is switched off.

5. Continuously connected insulating phases in strongly

correlated systems with disorder

The Mott-Hubbard MIT is caused by Coulomb correlations in the pure
system. By contrast, the Anderson MIT, also referred to as Anderson lo-
calization, is due to coherent backscattering from randomly distributed im-
purities in a system without interaction [30]. It is therefore a challenge
to investigate the effect of the simultaneously presence of interactions and
disorder on electronic systems [24, 25]. In particular, the question arises
whether it will suppress or enlarge a metallic phase. And what about the
Mott and Anderson insulating phases: will they be separated by a metallic
phase? Possible scenarios are schematically plotted in Fig. 6.

The Mott-Hubbard MIT is characterized by the opening of a gap in the
density of states at the Fermi level. At the Anderson localization transition
the character of the spectrum at the Fermi level changes from a continu-
ous spectrum to a dense, pure point spectrum. It is plausible to assume
that both MITs can be characterized by a single quantity, namely, the local
density of states (LDOS). Although the LDOS is not an order parameter
associated with a symmetry breaking phase transition, it discriminates be-
tween a metal and an insulator, which is driven by correlations and disorder,
cf. insets to Fig. 6.

In a disordered system the LDOS depends on a particular realization
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of the disorder in the system. To obtain a full understanding of the effects
of disorder it would therefore in principle be necessary to determine the
entire probability distribution function of the LDOS, which is almost never
possible. Instead one might try to calculate moments of the LDOS. This,
however, is insufficient because the arithmetically averaged LDOS (first mo-
ment) stays finite at the Anderson MIT [31]. It was already pointed out
by Anderson [30] that the “typical” values of random quantities, which are
mathematically given by the most probable values of the probability dis-
tribution functions, should be used to describe localization. The geometric

mean is defined by

Ageom = exp [〈ln A(εi)〉dis] , (7)

and differs from the arithmetical mean given by

Aarith = 〈A(εi)〉dis, (8)

where 〈F (εi)〉dis =
∫

dεiP(εi)F (εi) is an arithmetic mean of function F (εi).
The geometrical mean gives an approximation of the most probable (“typi-
cal”) value of the LDOS and vanishes at a critical strength of the disorder,
hence providing an explicit criterion for Anderson localization [30,32–34].

A non-perturbative framework for investigations of the Mott-Hubbard
MIT in lattice electrons with a local interaction and disorder is provided
by the dynamical mean-field theory (DMFT) [17, 15]. If in this approach
the effect of local disorder is taken into account through the arithmetic
mean of the LDOS [35] one obtains, in the absence of interactions, the well
known coherent potential approximation (CPA) [36], which does not de-
scribe the physics of Anderson localization. To overcome this deficiency
Dobrosavljević et al. [33] incorporated the geometrically averaged LDOS
into the self-consistency cycle and thereby derived a mean-field theory of
Anderson localization which reproduces many of the expected features of
the disorder-driven MIT for non-interacting electrons. This scheme uses
only one-particle quantities and is therefore easily incorporated into the
DMFT for disordered electrons in the presence of phonons [37], or Coulomb
correlations [24, 25]. In particular, the DMFT with geometrical averaging
allows to compute phase diagrams for the Anderson-Hubbard model (1)
and the Anderson-Falicov-Kimball model (2) with the continuous probabil-
ity distribution function (4) at half-filling [24, 25]. In this way we found
that, although in both models the metallic phase is enhanced for small and
intermediate values of the interaction and disorder, metallicity is finally de-
stroyed. Surprisingly, the Mott and Anderson insulators are found to be
continuously connected. Phase diagrams for the non-magnetic ground state
are shown in Fig. 7.
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6. Conclusions

The physics of correlated electron systems is known to be extremely rich.
Therefore their investigation continues to unravel novel and often surpris-
ing phenomena. The presence of disorder further enhances this complexity.
Here we discussed several remarkable features induced by correlations with
and without disorder, which came as a surprise when they were first discov-
ered, but which after all have physically intuitive explanations.
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