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1 Introduction

Modern solid state physics explains the physical properties of numerous materials such as
simple metals, and some semiconductors and insulators. But materials with opend andf
shells, where electrons occupy narrow orbitals, have properties that are harder to explain.
In transition metals such as vanadium, iron and their oxides, for example, electrons expe-
rience strong Coulombic repulsion because of their spatial confinement in those orbitals.
Such strongly interacting or “correlated” electrons cannot be described as embedded in a
static mean field generated by the other electrons.1,2 Thed andf electrons have internal
degrees of freedom (spin, charge, orbital moment) whose interplay leads to a whole “zoo”
of exotic ordering phenomena at low temperatures. As a consequence, strongly corre-
lated electron systems are extremely sensitive to small changes in their control parameters
(temperature, pressure, doping, etc.), resulting in strongly nonlinear responses, and tenden-
cies to phase separate or form complex patterns in chemically inhomogeneous situations.
For this reason strongly correlated materials display dramatic effects which range from
large changes of the resistivity across the metal-insulator transitions in V2O3, and consid-
erable volume changes across phase transitions (volume collapse effect) in actinides and
lanthanides, to exceptionally high transition temperatures (above liquid nitrogen tempera-
tures) in superconductors with copper oxygen planes, and remarkable mass renormaliza-
tions in materials called heavy fermion systems which at low temperatures behave as free
electrons with masses as large as a thousand times the mass of a free electron. Furthermore,
some strongly correlated materials have a very large thermoelectric response. A great sen-
sitivity of the resistivity to applied magnetic fields, dubbed colossal magnetoresistance was
discovered recently and a gigantic nonlinear optical susceptibility with an ultrafast recov-
ery time was discovered in Mott insulating chains. These properties make the prospects for
applications of correlated materials exciting, and their theoretical and experimental study
very challenging.

One especially striking correlation phenomenom is the phase transition between a para-
magnetic metal and a paramagnetic insulator caused by the Coulomb interaction between
the electrons which is referred to as Mott-Hubbard metal-insulator transition.1–3 Reliable
microscopic investigations of this many-body phenomenon are known to be exceedingly
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difficult. Indeed, the question concerning the nature of this transition poses one of the fun-
damental theoretical problems in condensed matter physics. Correlation-induced metal-
insulator transitions (MIT) of this type are found, for example, in transition metal oxides
with partially filled bands near the Fermi level. In these systems band theory typically
predicts metallic behavior. The most famous example is V2O3 doped with Cr.4 While at
low temperatures V2O3 is an antiferromagnetic insulator (AFI) with monoclinic crystal
symmetry, the high-temperature paramagnetic phase has a corundum structure. The MIT
in the paramagnetic phase is iso-structural; only the ratio of thec/a axes changes discon-
tinuously. This may be taken as an indication for a predominantly electronic origin of this
transition.

The investigation of electronic many-particle systems is made especially complicated
by quantum statistics, and by the fact that the phenomena of interest (e.g., metal insulator
transitions and magnetism) usually require the application of nonperturbative theoretical
techniques. In the last decade, a new approach for treating electronic lattice models, the dy-
namical mean-field theory (DMFT), has led to new analytical and numerical opportunities
to study correlated electronic systems1,5. This theory – initiated by Metzner and Vollhardt
in 1989 – is exact in the limit of infinite dimensions (d = ∞)6. In this limit, the problem
is reduced to a single-impurity Anderson model with self consistency condition7,8, allow-
ing for quantum Monte-Carlo (QMC) simulations without a sign problem for one-band
models (for multi-band models, see Ref. 9), i.e., down to temperaturesT ∼ 10−2W (W :
bandwidth).

Recently, the LDA+DMFT, a new computation scheme that merges electronic band
structure calculations and the dynamical mean field theory, was developed1,10,11. Starting
from conventional band structure calculations in the local density approximation (LDA)
the correlations are taken into account by a Hubbard interaction term and a Hund’s rule
coupling term. The resulting DMFT equations are solved numerically with a parallelized
auxiliary-field quantum Monte-Carlo algorithm (QMC). In contrast to LDA or LDA+U the
many-body scheme LDA+DMFT provides the correct physics for all Coulomb interactions
and dopings. Indeed, LDA yields an uncorrelated metal even if the material at hand is a
strongly-correlated metal or a Mott insulator. Similarly, LDA+U yields an insulator for
the ab-initio-calculatedU -values of 3d transition metal oxides, even for materials which
should be metallic.

So far the LDA+DMFT method is the most successful tool available to investigate cor-
relation effects in transition metal oxides. Recent developments will allow us to apply the
method to a wider range of systems. In most previous studies the LDA band structure
served only as input information for the DMFT, but there was no feedback from DMFT to
LDA. Since the DMFT result can in principle change the charge distribution on which the
LDA band structure depends one should feed back the changes introduced by the DMFT
into LDA and repeat the calculation until convergence is reached in both parts. This pro-
cedure is currently being investigated. Furthermore, calculations should not only include
the orbitals of the correlated electrons, butall hybridizing orbitals. Such an extended com-
putational scheme has recently been developed and applied in Wannier basis.12 For crystal
structures with strong hybridization and/or low symmetry it is also necessary to obtain
the off-diagonal matrix elements of the local Green function from the QMC calculation.
This extension is currently being tested and will be applied in our future computational
investigations of correlated materials.
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In this paper we limit our discussion to the LDA+DMFT investigation of only one
material, namely V2O3 in the paramagnetic insulating and metallic phase.

2 The LDA+DMFT Method

In a first step, the LDA band structure and the densities of states for the crystal structures
of metallic V2O3 and insulating(V0.962Cr0.038)2O3 are calculated. The LDA DOS for
both materials are found to be metallic in contrast to experimental results. The reason for
this failure is the fact that LDA deals with electronic correlations only very rudimentarily,
namely, the dependence of the LDA exchange-correlation energy on the electron density is
given by perturbative or quantum Monte-Carlo calculations for jellium,13 which is a weakly
correlated system. To overcome this shortcoming, we supplement the LDA band structure
by the the most important Coulomb interaction terms, i.e., the local Coulomb repulsion
U and the local Hund’s rule exchangeJ . The local Coulomb repulsionU gives rise to a
genuine effect of electronic correlations, the Mott-Hubbard metal insulator transition.1,5,14

If the LDA bandwidth is considerably larger than the local Coulomb interaction, the LDA
results are slightly modified but the system remains a metal. If the LDA bandwidth is
much smaller than the local Coulomb interaction one essentially has the atomic problem
where it costs an energy of aboutU to add an electron and the system is an insulator.
In between the Mott-Hubbard metal insulator transition occurs, with V2O3 being on the
metallic side whereas(V0.962Cr0.038)2O3, which has a 0.1-0.2 eV smaller bandwidth, is
on the insulating side.

Interpreting the LDA band structure as a one-particle HamiltonianĤ0
LDA and supple-

menting it with the local Coulomb interactions gives rise to the multi-band many-body
Hamiltonian10,15

Ĥ = Ĥ0
LDA+U

∑
i m

n̂im↑n̂im↓

+
∑

i m 6=m̃ σσ̃

(V − δσσ̃J) n̂imσn̂im̃σ̃. (1)

Here,i denotes the lattice site and̂nimσ is the operator for the occupation of thet2g orbital
m with spinσ ∈ {↑, ↓}. The interaction parameters are related byV = U − 2J which
is a consequence of orbital rotational symmetry. This holds exactly for degenerate orbitals
and is a good approximation for V2O3 where thet2g bands have similar centers of gravity
and bandwidths. As in the local spin density approximation (LSDA), the spin-flip term of
the exchange interaction is not taken into account in Eq. (1). Furthermore, a pair hopping
term proportional toJ is neglected since it requires that one orbital is entirely empty while
another is entirely full which is a rare situation and corresponds to highly excited states.
For the Hund’s rule couplingJ we take the valueJ = 0.93 eV obtained from constrained
LDA. By contrast, a reliable calculation of the Coulomb repulsionU is made difficult by
the fact thatU depends sensitively on screening, leading to uncertainties of about 0.5 eV.11

For our present purposes this uncertainty is too large since V2O3 is on the verge of a Mott-
Hubbard metal-insulator transition, and, thus, small changes ofU have drastic effects.
Therefore we will chooseU in such a way as to ensure that the LDA+DMFT solution for
V2O3 is metallic while that for(V0.962Cr0.038)2O3 is insulating. A posteriori, we will
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compare the adjusted value with those calculated by constrained LDA calculations and
those extracted from the experiment.

So far, we did not specifŷH0
LDA. In principle, it should contain the valence orbitals,

i.e., the oxygen2p orbitals and the five vanadium3d orbitals per atom and, perhaps, even
some additionals orbitals. In V2O3 the threet2g bands at the Fermi energy are well
separated from the other orbitals. Therefore, as a first step we restrict ourselves to the three
t2g bands at the Fermi energy which are made up of the corresponding atomic vanadium
3d orbitals with some admixtures of oxygenp orbitals. In the case of three degenerate
t2g orbitals, which is a good approximation in the case of V2O3 since the bandwidths
and centers of gravity of thea1g and the doubly-degenerateeπ

g band are very similar, the
k-integrated Dyson equation simplifies to become an integral over the DOS15

Gm(ω)=
∫

dε
N0

m(ε)
ω + µ− Σm(ω)− ε

. (2)

HereGm(ω), Σm(ω), andN0
m(ε) are the Green function, self energy, and LDA density

of states, respectively, for thet2g orbital m. In principle,N0
m(ε) should contain a double

counting correction, which takes into account the fact that parts of the local Coulomb inter-
action are already included in the LDA. However, this correction results in the same effect
for all three orbitals and, hence, only translates into a simple shift of the chemical poten-
tial µ. This makes the issue of how to calculate the double counting correction irrelevant
for the present purposes. The (shifted)µ has to be controlled according to the vanadium
valency, i.e., in such a way that there are two electrons in the three bands at the Fermi
energy.

Within DMFT thek-integrated Dyson equation (2) has to be solved self-consistently
together with a one-site (mean field) problem which is equivalent to an Anderson impurity
model with hybridization∆m(ω′) fulfilling 5

[Gm(ω)]−1 + Σm(ω) = ω + µ−
∫ ∞

−∞
dω′

∆m(ω′)
ω − ω′

. (3)

The self-consistent solution of the Anderson impurity model given by (3) together with
the Dyson equation (2) allows for a realistic investigation of materials with strongly cor-
related electrons. At small values ofU this procedure typically yields a spectrum with a
central quasiparticle resonance at the Fermi energy and incoherent Hubbard side bands,
while at larger values ofU the quasiparticle resonance disappears and a metal-insulator
transition occurs. This approach has been successfully applied to a number of transition
metal-oxides, transition metals, and elemental Pu and Ce.15

In the present paper, we solve the multi-band Anderson impurity model by QMC,16,5

where by means of the Trotter discretization and Hubbard-Stratonovich transformations
the interacting Anderson impurity model is mapped into a sum of non-interacting prob-
lems, the sum being performed by the Monte-Carlo technique. We employ a Trotter dis-
cretization of∆τ = 0.25 eV−1 unless noted otherwise and follow Ref. 17 for the Fourier
transformation between Matsubara frequencies and imaginary timeτ .

To obtain the physically relevant spectral functionAm(ω) = − 1
π ImGm(ω) we employ

the maximum entropy method.18 This statistical approach allows one to solve

Gm(τ) =
∫ ∞

−∞
dω

eτ(µ−ω)

1 + eβ(µ−ω)
Am(ω) (4)
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for Am(ω), i.e., to analytically continue from imaginary time to real frequencies. The
QMC has the advantage of being numerically exact, the main disadvantage being the in-
ability to reach very low temperatures. Indeed, the room temperature calculations of this
paper were computationally very expensive, using up to40 iterations with up to2 × 105

sweeps and requiring about2 × 105 hours CPU time. For the implementation of QMC in
the context of LDA+DMFT, including flow diagrams, see Ref. 15.

3 Results for V2O3

Using the crystal structure of paramagnetic metallic (PM)V2O3 and paramagnetic insu-
lating (PI) (V0.962Cr0.038)2O3, respectively, as input we performed LDA+DMFT(QMC)
calculations with onea1g and two degenerateeπ

g bands. AtU = 4.5 eV both crystal struc-
tures lead to spectra showing metallic behavior, with a lower Hubbard band between−2 eV
and−0.5 eV (peaked at about−1 eV), an upper Hubbard band between1 eV and6 eV and
a quasiparticle peak at the Fermi edge. The peak at about1 eV is split from the uppert2g

Hubbard band due to Hund’s rule exchange.
By contrast, atU = 5.5 eV, both crystal structures lead to spectra showing nearly

insulating behavior. The lower Hubbard band is strongly enhanced whereas at the Fermi
edge a pseudo-gap is formed. Above the Fermi energy, the two-peak structure is changed
only slightly.

Apparently, qualitatively different spectra for the two crystal structures require an in-
termediate value ofU . This is indeed observed atU = 5.0 eV. Whereas pureV2O3 now
shows a small peak at the Fermi edge (a residue of the quasiparticle peak obtained at
U = 4.5 eV) and is therefore metallic, the Cr-doped system exhibits a pronounced mini-
mum in the spectrum implying that it is nearly insulating. Due to the rather high tempera-
ture at which the QMC simulations were performed (T = 0.1 eV≈ 1160 K) one observes
only a smoothcrossoverbetween the two phases with a metal-like and insulator-like be-
havior of the respective curves instead of a sharp metal-insulator transition as would be
expected for temperatures below the critical point (i.e., forT < 400 K in the experiment).

To study V2O3 near the metal-insulator transition at experimentally relevant tempera-
tures we performed calculations atT = 700 K andT = 300 K. Since the computational
effort is proportional toT−3, those low temperature calculations were computationally
very expensive. Fig. 1 shows the results of our calculations atT = 1160 K, T = 700 K,
andT = 300 K for metallic V2O3 and atT = 1160 K and T = 700 K for insulating
(V0.962Cr0.038)2O3.19 In the metallic phase the incoherent features are hardly affected
when the temperature is changed, whereas the quasiparticle peak becomes sharper and
more pronounced at lower temperatures.

In Fig. 2, the LDA+DMFT results at300 K are compared with early photoemission
spectra by Schramme20 and recent high-resolution bulk-sensitive photoemission spectra
by Mo et al.21 The strong difference between the experimental results is now known to
be due to the distinct surface sensitivity of the earlier data. In fact, the photoemission data
by Mo et al.21 obtained athν = 700 eV andT = 175 K exhibit, for the first time, a
pronounced quasiparticle peak. This is in good qualitative agreement with our low temper-
ature calculations. However, the experimental quasiparticle peak has more spectral weight.
We note that while in the theory the peak considerably sharpens with decreasing tempera-
ture its weight only increases by 11% from 1160K to 300K. The origin for this discrepancy
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Figure 1. LDA+DMFT(QMC) spectra for paramagnetic insulating(V0.962Cr0.038)2O3 and metallicV2O3 at
U = 5 eV.

for a system as close to a Mott transition as V2O3 is presently not clear.
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Figure 2. Right: Comparison of LDA+DMFT(QMC) results atT = 300 K andU = 5 eV with photoemission
data by Schrammeet al.20 and Moet al.21 for metallic V2O3; Left: Comparison of LDA+DMFT(QMC) results
atU = 5 eV with X-ray absorption data by M̈uller et al.22 for metallic V2O3

While the comparison with PES data provides important insight into the physics of
V2O3, more than half of the theoretical spectrum lies aboveEF . For this region we com-
pare our results at1160 K, 700 K, and300 K with O 1s X-ray absorption spectra (XAS)
for V2O3 at300 K by Müller et al.22 (see Fig. 2). Since in the XAS-data the Fermi energy
is not precisely determined, the data were shifted so that the peaks at1.1 eV coincide; all
curves were normalized to the same area.

The theoretical spectra aboveEF are found to be almost independent of temperature.
Just above the Fermi energy they all show some structure (i.e., a shoulder at higher tem-
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peratures developing into a small peak at low temperatures (300 K)) which is the residue of
the quasiparticle peak. Furthermore, at1.1 eV there is a rather narrow peak, and at about
4.2 eV a broad peak. The latter two structures are parts of the upper Hubbard band which
is split due to the Hund’s rule couplingJ . Hence, the relative position of those two peaks
can be expected to depend sensitively on the value ofJ . A slightly smaller value ofJ will
therefore yield an even better agreement with experiment.

The absence of any quasiparticle weight nearEF in the XAS data is puzzling. This
quasiparticle weight is not only present in the theoretical spectra aboveandbelowEF , but
is also seen in the high resolution PES measurements by Moet al.21 belowEF .

4 Concluding Remarks

At present, LDA+DMFT is the only availableab initio computational technique which is
able to treat heavy fermions,f -electron materials and correlated electron systems close
to a Mott-Hubbard metal insulator transition. Using LDA-calculated densities of states
for paramagnetic metallic V2O3 as well as paramagnetic insulating(V0.962Cr0.038)2O3 as
input, we performed DMFT(QMC) calculations at 300 K, 700 K, and 1160 K for various
U values. ForU ≈ 5 eV, the calculated spectra show a Mott-Hubbard MIT (or, rather, a
sharp crossover).

The 300 K spectrum calculated for metallic V2O3 is in good overall agreement with
new bulk-sensitive PES measurements.21 On the other hand, the difference in the quasi-
particle weight remains to be explained. The comparison with X-ray absorption measure-
ments shows that our LDA+DMFT(QMC) calculations also give a good description of the
spectrum above the Fermi energy.

All calculations described above were performed using the integral over the LDA den-
sity of states (DOS) (Eq. (2)) to obtain the lattice Green function. For a non-cubic system,
this procedure is an approximation to the exact LDA+DMFT scheme. In the future we plan
to make use of the full HamiltonianH0 (Eq. (1)). In this way it will be possible to study
the influence of correlation effects on all orbitals including theeσ

g orbitals and the oxygen
states.

The multi-orbital quantum Monte-Carlo simulations used in our LDA+DMFT calcula-
tions are computationally very expensive and require powerful computing resources, espe-
cially for calculations at experimentally relevant temperatures.
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