An Introduction to Crystal Physics

(Description of the Physical Properties of Crystals)

Ervin Hartmann

Research Laboratory for Crystal Physics, Hungarian Academy of Sciences, Budapest

IUCr Teaching Pamphlets

 $\bar{P} = \chi \bar{E}$ $P_1 = \chi_{11}E_1 + \chi_{12}E_2 + \chi_{13}E_3$ $P_3 = \chi_{31}E_1 + \chi_{32}E_2 + \chi_{33}E_3.$ $P_2 = \chi_{21}E_1 + \chi_{22}E_2 + \chi_{23}E_3$

Accordingly if the $[B_{ijk...n}]$ and $[A_{pqr...u}]$ tensors represent physical quantities the general form of the relation between these quantities may be written (in first-order approximation) using the Einstein's convention as

$$B_{ijk...n} = a_{ijk...npqr...u} \cdot A_{pqr...u} \quad (i, j, k...n, p, q, r, ... u = 1, 2, 3) \quad (2.1)$$

two physical quantities. where the tensor [aijk...npqr...u] denotes the physical property connecting the

be an (f+g)-rank tensor. $[B_{ijk...n}]$ a g-rank tensor the $[a_{ijk...npq...u}]$, denoting the physical property, must It follows from the tensor algebra that if $[A_{pqr...u}]$ denotes an f-rank and

Table 1. Tensors representing physical properties

Electrocaloric	X D E	E M D E		THE EMPE			Electron effe Dielec per per Electron con Electron con Thern con Seebe	
Company	effect felectric permittivity agnetic permeability	ctric ctric mittivity ctic ctic meability ical ductivity	ctric ctric mittivity ctic ctic meability ical iductivity ical stivity	ctric ctric mittivity ctic ctic meability ical iductivity ical stivity	ct ctric mittivity ettic meability ical ductivity ical stivity iductivity iductivity iductivity iductivity iductivity all stivity all expansion nal	ctric ctric ctric ctric mittivity ctic meability ical ductivity stivity nal ductivity nal expansion ck-effect	ctric ctric mittivity ctric meability ical ductivity ical stivity ical stivity ctcal stivity ctcal stivity ctcal cductivity ctcal stivity reffect	ctric ctric ctric mittivity ctic mittivity ctic meability ical ductivity iral stivity nal expansion ck-effect r-effect
	$[\mu_{ij}]$	$[e_{ij}]$	$\begin{bmatrix} \epsilon_{ij} \end{bmatrix}$ $\begin{bmatrix} \sigma_{ik} \end{bmatrix}$	$\begin{bmatrix} \epsilon_{ij} \end{bmatrix}$ $\begin{bmatrix} [\sigma_{ik}] \end{bmatrix}$ $\begin{bmatrix} [\sigma_{ik}] \end{bmatrix}$	$\begin{bmatrix} \epsilon_{ij} \end{bmatrix}$ $\begin{bmatrix} \epsilon_{ij} \end{bmatrix}$ $\begin{bmatrix} \epsilon_{ik} \end{bmatrix}$ $\begin{bmatrix} \epsilon_{ik} \end{bmatrix}$	$\begin{bmatrix} \epsilon_{ij} \end{bmatrix}$ $\begin{bmatrix} [a_{ik}] \end{bmatrix}$ $\begin{bmatrix} [a_{ij}] \end{bmatrix}$ $\begin{bmatrix} [a_{ij}] \end{bmatrix}$ $\begin{bmatrix} [a_{ij}] \end{bmatrix}$	$\begin{bmatrix} \epsilon_{ij} \end{bmatrix}$ $\begin{bmatrix} [\sigma_{ik}] \\ [\sigma_{ik}] \end{bmatrix}$ $\begin{bmatrix} [\alpha_{ij}] \\ [\beta_{ik}] \end{bmatrix}$	$\begin{bmatrix} \epsilon_{ij} \end{bmatrix}$ $\begin{bmatrix} [\sigma_{ik}] \\ [\sigma_{ik}] \end{bmatrix}$ $\begin{bmatrix} [\alpha_{ij}] \\ [\beta_{ik}] \end{bmatrix}$ $\begin{bmatrix} [\sigma_{ik}] \\ [\sigma_{ik}] \end{bmatrix}$
2	2	2 2	2 2 2	2 2 2 2	2 2 2 2 2	22 2 2 2 2	2 22 2 2 2 2	32 22 2 2 2 2
·	6 6	0 0 0	0000	a a a a a				
$D_i = \epsilon_{ij} E_j$	$B_i = \mu_{ij} H_j$	$B_i = \mu_{ij}H_j$ $j_i = \sigma_{ik}E_k$	$B_i = \mu_{ij}H_j$ $j_i = \sigma_{ik}E_k$ $E_i = \rho_{ik} \cdot j_k$	$B_{i} = \mu_{ij}H_{j}$ $j_{i} = \sigma_{ik}E_{k}$ $E_{i} = \rho_{ik} \cdot j_{k}$ $h_{i} = -k_{ij}(\partial T/\partial x_{j})$	$B_{i} = \mu_{ij}H_{j}$ $j_{i} = \sigma_{ik}E_{k}$ $E_{i} = \rho_{ik} \cdot j_{k}$ $h_{i} = -k_{ij}(\partial T/\partial x_{j})$ $\varepsilon_{ij} = \alpha_{ij} \Delta T$	$B_{i} = \mu_{ij}H_{j}$ $j_{i} = \sigma_{ik}E_{k}$ $E_{i} = \rho_{ik} \cdot j_{k}$ $h_{i} = -k_{ij}(\partial T/\partial x_{j})$ $\epsilon_{ij} = \alpha_{ij} \Delta T$ $E_{i} = -\beta_{ik}(\partial T/\partial x_{k})$	$B_{i} = \mu_{ij}H_{j}$ $j_{i} = \sigma_{ik}E_{k}$ $E_{i} = \rho_{ik} \cdot j_{k}$ $h_{i} = -k_{ij}(\partial T/\partial x_{j})$ $\varepsilon_{ij} = \alpha_{ij} \Delta T$ $E_{i} = -\beta_{ik}(\partial T/\partial x_{k})$ $h_{i} = \pi_{ik}j_{k}$	$B_{i} = \mu_{ij}H_{j}$ $j_{i} = \sigma_{ik}E_{k}$ $E_{i} = \rho_{ik} \cdot j_{k}$ $h_{i} = -k_{ij}(\partial T/\partial x_{j})$ $\varepsilon_{ij} = \alpha_{ij} \Delta T$ $E_{i} = -\beta_{ik}(\partial T/\partial x_{k})$ $h_{i} = \pi_{ik}j_{k}$ $E_{i} = \rho_{iki} \cdot j_{k} \cdot H_{i}$
[D.] electric	displacement $[B_i]$ magnetic induction	[J _i] current density	[B _i] magnetic induction [J _i] current density [E _i] electric field	displacement [B _i] magnetic induction [j _i] current density [E _i] electric field [h _i] heat flux	displacement [B _i] magnetic induction [j _i] current density [E _i] electric field [h _i] heat flux [s _{ij}] strain	displacement [B _i] magnetic induction [j _i] current density [E _i] electric field [h _i] heat flux [s _{ij}] strain [E _{ij}] electric field	displacement [B _i] magnetic induction [J _i] current density [E _i] electric field [h _i] heat flux [E _{ij}] strain [E _{ij}] electric field [h _i] heat flux	displacement [B _i] magnetic induction [J _i] current density [E _i] electric field [h _i] heat flux [E _{ij}] strain [E _{ij}] electric field [h _i] heat flux [E _i] electric field
$[E_j]$ electric field	$[H_j]$ magnetic field	$[H_j]$ magnetic field $[E_k]$ electric field	$[H_j]$ magnetic field $[E_k]$ electric field $[j_k]$ current density	$[H_j]$ magnetic field $[E_k]$ electric field $[j_k]$ current density $[aT/\partial x_j]$ temperature gradient	$[H_j]$ magnetic field $[E_k]$ electric field $[j_k]$ current density $[\partial_t T/\partial x_j]$ temperature gradient	$[H_j]$ magnetic field $[E_k]$ electric field $[J_k]$ current density $[\partial T/\partial x_j]$ temperature gradient T temperature $[\partial T/\partial x_k]$ temperature gradient	 [H_j] magnetic field [E_k] electric field [j_k] current density [\(\partial T'\)\(\partial x_j\)] temperature gradient T temperature [\(\partial T'\)\(\partial x_k\)] temperature gradient 	 [H_j] magnetic field [E_k] electric field [J_k] current density [aT/∂x_j] temperature gradient T temperature [aT/∂x_k] temperature gradient [j_k] current density [J_k] current density [H_l] magn. field
		$[\sigma_{ik}]$ 2 6 $j_i = \sigma_{ik}E_k$ $[j_i]$ current density	trivity $[\sigma_{ik}]$ 2 6 $j_i = \sigma_{ik} E_k$ $[j_i]$ current density $[\sigma_{ik}]$ $[\sigma_{ik}]$ 2 6 $E_i = \rho_{ik} \cdot j_k$ $[E_i]$ electric field ity	tivity $[\sigma_{ik}] 2 6 j_i = \sigma_{ik} E_k $ $[j_i] \text{ current density}$ $[\rho_{ik}] 2 6 E_i = \rho_{ik} \cdot j_k $ $[E_i] \text{ electric field}$ $[k_{ij}] 2 6 h_i = -k_{ij} (\partial T/\partial x_j) $ $[h_i] \text{ heat flux}$ $[k_{ij}] 2 6 h_i = -k_{ij} (\partial T/\partial x_j) $	$[\sigma_{ik}] 2 6 j_i = \sigma_{ik} E_k [j_i] current density$ $[\rho_{ik}] 2 6 E_i = \rho_{ik} \cdot j_k [E_i] electric field$ $[k_{ij}] 2 6 h_i = -k_{ij} (\partial T/\partial x_i) [h_i] heat flux$ $[\alpha_{ij}] 2 6 \epsilon_{ij} = \alpha_{ij} \Delta T [\epsilon_{ij}] strain$	trivity $[\sigma_{ik}]$ 2 6 $j_i = \sigma_{ik} E_k$ $[j_i]$ current density $[j_i]$ trivity $[\kappa_{ij}]$ 2 6 $E_i = \rho_{ik} \cdot j_k$ $[E_i]$ electric field $[j_i]$ trivity $[\kappa_{ij}]$ 2 6 $h_i = -\kappa_{ij}(\partial T/\partial x_i)$ $[h_i]$ heat flux $[a_{ij}]$ expansion $[\alpha_{ij}]$ 2 6 $\epsilon_{ij} = \alpha_{ij} \Delta T$ $[\epsilon_{ij}]$ strain $[\beta_{ik}]$ 2 9 $E_i = -\beta_{ik}(\partial T/\partial x_k)$ $[E_i]$ electric field	$[\sigma_{ik}] 2 6 j_i = \sigma_{ik} E_k $ $[j_i] \text{ current density} [l]$ $[\rho_{ik}] 2 6 E_i = \rho_{ik} \cdot j_k $ $[E_i] \text{ electric field} [l]$ $[k_{ij}] 2 6 h_i = -k_{ij} (\partial T/\partial x_i) $ $[h_i] \text{ heat flux} [\partial x_{ij}] 2 6 E_{ij} = \alpha_{ij} \Delta T $ $[\beta_{ik}] 2 9 E_{i} = -\beta_{ik} (\partial T/\partial x_k) $ $[E_i] \text{ electric field} [E_i] \text{ heat flux} $ $[\pi_{ik}] 2 9 h_i = \pi_{ik} j_k $ $[h_i] \text{ heat flux} [h_i] \text{ heat flux} $	$[\sigma_{ik}] 2 6 j_i = \sigma_{ik} E_k $ [j _i] current density [l _i] $[\rho_{ik}] 2 6 E_i = \rho_{ik} \cdot j_k $ [E _i] electric field [J _i] $[\kappa_{ij}] 2 6 h_i = -\kappa_{ij} (\partial T/\partial x_j) $ [h _i] heat flux [\(\hat{\theta}\) \\ \[\hat{\theta}_{ij}\] strain $[\beta_{ik}] 2 9 E_i = -\beta_{ik} (\partial T/\partial x_k) $ [E _i] electric field $[\eta_{ik}] 2 9 h_i = \pi_{ii} j_k $ [h _i] heat flux $[\rho_{ik}] 3 9 E_i = \rho_{iki} \cdot j_k \cdot H_i $ [E _i] electric field

Third-order clastic stiffnesses	Electrostriction	Quadratic clectrooptic effect	Piezooptic effect	Second-order elastic compliances	Second-order elastic stiffnesses	Second Harmonic Generation	Electro-optical effect	Piezomagnetic effect	Converse piezo- clectric effect
$[c_{ijklmn}]$	[*///*]	$[R_{ijkI}]$	$[\pi_{ijkl}]$	$[s_{ijki}]$	$[c_{ijkl}]$	$[d_{ijk}]$	$[r_{ijk}]$	$[q_{iij}]$	$[d_{ijk}]$
6	4	4	4	4	4	ω	w	w	ω
56	36	36	36	21	21	18	18	8	18
$\Phi = \frac{1}{2}c_{ijkl} \cdot \eta_{ij} \cdot \eta_{kl}$ $+ \frac{1}{6}c_{ijklmn} \cdot \eta_{ij} \cdot \eta_{kl} \cdot \eta_{mn}$	$\varepsilon_{jk} = \mu_{iljk} E_i E_i$	$\Delta a_{ij} = R_{ijkl} E_k E_l$	$\Delta a_{ij} = \pi_{ijkl}\sigma_{kl}$	$\varepsilon_{ij} = s_{ijk_i}\sigma_{k_i}$	$\sigma_{ij} = c_{ijk_i} \epsilon_{kl}$	$P_i^{2\omega} = d_{ijk} E_j E_k$	$\Delta a_{ij} = r_{ijk} E_k$	$M_i = q_{iij}\sigma_{ij}$	$\varepsilon_{jk} = d_{ijk} E_i$
Φ , energy of deformation, $[\eta_{ij}], [\eta_{ij}], [\eta_{im}]$ the $[c_{ijkl}]$ second-order Lagrange finite stiffnesses strain components	$[\varepsilon_{jk}]$ strain	$[a_{ij}]$ dielectric impermeability	$[a_{ij}]$ dielectric impermeability	[e _y] strain	$[\sigma_{ij}]$ stress	[P ^{2ω}] dielectric polarization at frequency 2ω	$[a_{ij}]$ dielectric impermeability	[M _i] magnetic polarization	$[\varepsilon_{/k}]$ strain
$[\eta_{ij}], [\eta_{ij}], [\eta_{min}]$ the Lagrange finite strain components	$[E_i], [E_i],$ electric field	$[E_k], [E_l]$ electric field	$[\sigma_{kl}]$ stress	$[\sigma_{kl}]$ stress	$[e_{kl}]$ strain	$[E_j], [E_k]$ electric field	$[E_k]$ electric field	$[\alpha_{ij}]$ stress	$[E_i]$ electric field

and the entropy [S] are selected as dependent variables. The differentials $[\sigma_{kl}]$, the electric field $[E_k]$, the magnetic field $[H_l]$ and temperature $[T_l]$ are investigated simultaneously. Independent variables should be the stress of the former quantities are obviously connected with the following relationwhereas the deformation $[\varepsilon_{ij}]$, the polarization $[P_i]$, the magnetization $[M_i]$

$$d\varepsilon_{ij} = \left(\frac{\partial \varepsilon_{ij}}{\partial \sigma_{kl}}\right) d\sigma_{kl} + \left(\frac{\partial \varepsilon_{ij}}{\partial E_{k}}\right) dE_{k} + \left(\frac{\partial \varepsilon_{ij}}{\partial H_{l}}\right) dH_{l} + \left(\frac{\partial \varepsilon_{ij}}{\partial T}\right) dT$$

$$dP_{i} = \left(\frac{\partial P_{i}}{\partial \sigma_{kl}}\right) d\sigma_{kl} + \left(\frac{\partial P_{i}}{\partial E_{k}}\right) dE_{k} + \left(\frac{\partial P_{i}}{\partial H_{l}}\right) dH_{l} + \left(\frac{\partial P_{i}}{\partial T}\right) dT$$

$$dM_{i} = \left(\frac{\partial M_{i}}{\partial \sigma_{kl}}\right) d\sigma_{kl} + \left(\frac{\partial M_{i}}{\partial E_{k}}\right) dE_{k} + \left(\frac{\partial M_{i}}{\partial H_{l}}\right) dH_{l} + \left(\frac{\partial M_{i}}{\partial T}\right) dT$$

$$g$$

$$dS = \left(\frac{\partial S}{\partial \sigma_{kl}}\right) d\sigma_{kl} + \left(\frac{\partial S}{\partial E_{k}}\right) dE_{k} + \left(\frac{\partial S}{\partial H_{l}}\right) dH_{l} + \left(\frac{\partial S}{\partial T}\right) dT$$

$$12$$

$$15$$

$$16$$

$$de_{ij} = \left(\frac{\partial \varepsilon_{ij}}{\partial \sigma_{kl}}\right) d\sigma_{kl} + \left(\frac{\partial \varepsilon_{ij}}{\partial E_{k}}\right) dE_{k} + \left(\frac{\partial \varepsilon_{ij}}{\partial H_{l}}\right) dH_{l} + \left(\frac{\partial \varepsilon_{ij}}{\partial T}\right) dT$$

$$dP_{i} = \left(\frac{\partial P_{i}}{\partial \sigma_{kl}}\right) d\sigma_{kl} + \left(\frac{\partial P_{i}}{\partial E_{k}}\right) dE_{k} + \left(\frac{\partial P_{i}}{\partial H_{l}}\right) dH_{l} + \left(\frac{\partial P_{i}}{\partial T}\right) dT$$

$$dM_{i} = \left(\frac{\partial M_{i}}{\partial \sigma_{kl}}\right) d\sigma_{kl} + \left(\frac{\partial M_{i}}{\partial E_{k}}\right) dE_{k} + \left(\frac{\partial M_{i}}{\partial H_{l}}\right) dH_{l} + \left(\frac{\partial M_{i}}{\partial T}\right) dT$$

$$g$$

$$dS = \left(\frac{\partial S}{\partial \sigma_{kl}}\right) d\sigma_{kl} + \left(\frac{\partial S}{\partial E_{k}}\right) dE_{k} + \left(\frac{\partial S}{\partial H_{l}}\right) dH_{l} + \left(\frac{\partial S}{\partial T}\right) dT$$

$$12$$

$$13$$

$$4S = \left(\frac{\partial S}{\partial \sigma_{kl}}\right) d\sigma_{kl} + \left(\frac{\partial S}{\partial E_{k}}\right) dE_{k} + \left(\frac{\partial S}{\partial H_{l}}\right) dH_{l} + \left(\frac{\partial S}{\partial T}\right) dT$$

The partial derivatives are characteristic of the following effects:

- Elastic deformation.
- 2. Reciprocal (or converse) piezo-electric effect.
- 3. Reciprocal (or converse) piezo-magnetic effect.
- Thermal dilatation.
- Piezo-electric effect.
- Electric polarization.

Magneto-electric polarization.

- Pyroelectricity.
- Piezo-magnetic effect.
- 0. Reciprocal (or converse) magneto-electric polarization.
- Magnetic polarization
- Pyromagnetism.
 Piezo-caloric effect.
- 14. Electro-caloric effect.
- 15. Magneto-caloric effect.
- Heat transmission.

the equation-system (3.1) let us discuss the Gibb's potential of the system In order to recognize the relationships among the partial derivatives of

$$G = U - \sigma_{ij}\varepsilon_{ij} - E_k P_k - H_i M_i - TS. \tag{3.2}$$

the first and second law of thermodynamics is Remembering that the total differential of the internal energy according to

$$dU = \sigma_{ij} d\varepsilon_{ij} + E_k dP_k + H_l dM_l + T dS$$
 (3.3)

one obtains for the total differential of the Gibbs' potential the expression

$$dG = -\varepsilon_{ij} d\sigma_{ij} - P_k dE_k - M_i dH_i - S dT. \tag{3.4}$$

potential with the partial derivatives of the independent variables: At the same time one may describe the total differential of the Gibbs'

$$dG = \left(\frac{\partial G}{\partial \sigma_{ij}}\right) d\sigma_{ij} + \left(\frac{\partial G}{\partial E_k}\right) dE_k + \left(\frac{\partial G}{\partial H_l}\right) dH_l + \left(\frac{\partial G}{\partial T}\right) dT \qquad (3.5)$$

$$\left(\frac{\partial G}{\partial \sigma_{ij}}\right) = -\varepsilon_{ij} \qquad \left(\frac{\partial G}{\partial E_k}\right) = -P_k \qquad \left(\frac{\partial G}{\partial H_l}\right) = -M_l \qquad \left(\frac{\partial G}{\partial T}\right) = -S.$$

Some tensors are symmetrical

$$-\left(\frac{\partial^{2} G}{\partial \sigma_{kl} \partial \sigma_{ij}}\right) = \frac{\partial \varepsilon_{ij}}{\partial \sigma_{kl}} = s_{ijkl} = -\left(\frac{\partial^{2} G}{\partial \sigma_{ij} \partial \sigma_{kl}}\right) = \frac{\partial \varepsilon_{kl}}{\partial \sigma_{ij}} = s_{klij}$$
$$-\left(\frac{\partial^{2} G}{\partial E_{j} \partial E_{k}}\right) = \frac{\partial P_{k}}{\partial E_{j}} = \chi_{kj} = -\left(\frac{\partial^{2} G}{\partial E_{k} \partial E_{j}}\right) = \frac{\partial P_{j}}{\partial E_{k}} = \chi_{jk}$$

Tensors representing the direct and reciprocal effects are related to each other:

$$-\left(\frac{\partial^{2}G}{\partial\sigma_{ij}}\frac{\partial E_{k}}{\partial E_{k}}\right) = \left(\frac{\partial P_{k}}{\partial\sigma_{ij}}\right) = -\left(\frac{\partial^{2}G}{\partial E_{k}}\partial\sigma_{ij}\right) = \left(\frac{\partial \varepsilon_{ij}}{\partial E_{k}}\right) = d_{kij} \qquad (3.13)$$

$$-\left(\frac{\partial^{2}G}{\partial\sigma_{ij}}\partial H_{i}\right) = \left(\frac{\partial M_{i}}{\partial\sigma_{ij}}\right) = -\left(\frac{\partial^{2}G}{\partial H_{i}}\partial\sigma_{ij}\right) = \left(\frac{\partial \varepsilon_{ij}}{\partial H_{i}}\right) = q_{iij} \qquad (3.14)$$

$$-\left(\frac{\partial^{2}G}{\partial E_{k}}\partial H_{i}\right) = \left(\frac{\partial M_{i}}{\partial E_{k}}\right) = -\left(\frac{\partial^{2}G}{\partial H_{i}}\partial E_{k}\right) = \left(\frac{\partial P_{k}}{\partial H_{i}}\right) = \lambda_{ik} \qquad (3.15)$$

$$-\left(\frac{\partial^{2}G}{\partial\sigma_{ij}}\partial T\right) = \left(\frac{\partial P_{k}}{\partial\sigma_{ij}}\right) = -\left(\frac{\partial^{2}G}{\partial T\partial\sigma_{ij}}\right) = \left(\frac{\partial \varepsilon_{ij}}{\partial T}\right) = \alpha_{ij} \qquad (3.16)$$

$$-\left(\frac{\partial^{2}G}{\partial T\partial E_{k}}\right) = \left(\frac{\partial P_{k}}{\partial T}\right) = -\left(\frac{\partial^{2}G}{\partial E_{k}}\partial T\right) = \left(\frac{\partial S}{\partial E_{k}}\right) = p_{k} \qquad (3.17)$$

$$-\left(\frac{\partial^{2}G}{\partial T\partial H_{i}}\right) = \left(\frac{\partial M_{i}}{\partial T}\right) = -\left(\frac{\partial^{2}G}{\partial H_{i}}\partial T\right) = \left(\frac{\partial S}{\partial H_{i}}\right) = m_{i} \qquad (3.18)$$

From the above equations follows that correspondences exist between:

- reciprocal piezo-electric effect (eq. (3.13)), (a) the components of the tensors representing the piezoelectric and
- reciprocal piezo-magnetic effect (eq. (3.14)), (b) the components of the tensors representing the piezo-magnetic and
- polarization and reciprocal magneto-electric polarization (eq. (3.15)), (c) the components of the tensors representing the magneto-electric
- and the thermal dilatation (eq. (3.16)), (d) the components of the tensors representing the piezo-caloric effect
- trocaloric effect (eq. (3.17)), (e) the components of the tensors representing the pyroelectric and elec-
- magneto-caloric effect (eq. (3.18)). (f) the components of the tensors representing the pyromagnetic and

$$\varepsilon_{ij} = s_{ijkl}\sigma_{kl} + d_{kij}E_k + q_{lij}H_l + \alpha_{ij}\Delta T$$

$$P_k = d_{kij}\sigma_{ij} + \chi_{kl}E_l + \lambda_{lk}H_l + p_k\Delta T$$

$$M_l = q_{lij}\sigma_{ij} + \lambda_{lk}E_k + \psi_{lm}H_m + m_l\Delta T$$

$$\Delta S = \alpha_{ij}\sigma_{ij} + p_kE_k + m_iH_l + \frac{c}{T}\Delta T \qquad (i, j, k, l = 1, 2, 3).$$
(3.19)