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Rules

• Lectures are on Tuesdays at 14:15-16:00 in B0.21
room.

• Tutorials are on Wednesday at 10:15-12:00 in
B0.21 room.

• Home problems will be offered but not be chec-
ked. Some of these problems or similar ones might
occur during a colloquium or an exam.

• Standard way of passing the course

– Mid term written exam (Kolokwium), max
50 pts.

– Final written exam, max 50 pts.

– Oral exam (in uncertain cases)

• Second (resit) exam to pass the course

– Written exam, max 100 pts.

– Oral exam (in uncertain cases)

Final grade is based on total score points norma-
lized to 100 and determined as follows:

5+ for 99-100 pt.
5 for 90-98 pt.
4+ for 81-89 pt.
4 for 72-80 pt.
3+ for 62-71 pt.
3 for 50-61 pt.
2 for 0-49 pt.

Warning: points from the mod term exam and final
exam and from the second exams do not sum up.

Dates of exams:

colloquium, April 24th, 2023, 9:00-13:00, room 0.03a

written exam I, June 20th, 2023, 9:00-13:00, room
0.03a

oral exam I, on e-mail note

written exam II, September 5th, 2023, 9:00-13:00,
room 1.02

oral exam II, on e-mail note

1 Week I, 27/02-05/03/2023

1.1 Lecture
I - Symmetries in Quantum Mechanics

&1. Axioms of quantum mechanics - Postulates of
quantum mechanics, Ehrenfest theorem, conservation
laws.

&2. Symmetry transformations - definition of a sym-
metry transformation in quantum mechanics, Wigner’s
theorem, conservation laws obtained from a symmetry,
...

1.2 Tutorial
1. Conservation of momentum in classical physics -

Consider a single particle moving in a homogene-
ous space. Within the Lagrangian formalism show
that the momentum of the particle is conserved in
time.

2. Conservation of energy in classical physics - Con-
sider a single particle moving in space in a time
independent potential. Within the Lagrangian for-
malism show that the energy of the particle is con-
served in time.

3. Conservation of angular momentum in classical
physics - Consider a particle moving in an isotro-
pic space. Within the Lagrangian formalism show
that the angular momentum of the particle is con-
served in time.

4. Conserved quantity for a charge classical particle
in a homogeneous electric field - Derive a conserva-
tion law and find a conserved quantity for a clas-
sical particle with charge q and mass m moving in
a homogeneous electric field with an intensity E.

5. Ehrenfest theorem - Prove the Ehrenfest theorem.

1.3 Homework problems
1. Conserved quantity for a charge classical particle

in a homogeneous magnetic field - Derive a con-
servation law and find a conserved quantity for a
classical particle with charge q and massmmoving
in a homogeneous magnetic field with an induction
B.

2. Angular momenta in different reference frames -
(a) What is the connection between the angular
momenta in two reference systems which are at
rest relative to each other and whose origins are
separated by the distance vector a?
(b) What is the relation between the angular
momenta in two inertial reference systems which
move with velocity V relative to each other?
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3. Runge-Lenz-Laplace vector in the Kepler-Coulomb
problem - Consider a single particle moving in a
central force F(r) = −αr/r3. Introduce a vector
J = p×L− βr/r, where p and L are momentum
and angular momentum, respectively. Check that
J ·L = 0 and J2 = 2HL2 +β2, where H = p2/2−
β/r is the energy (Hamiltonian) per mass m, and
β = α/m. Prove that

d

dt

(
ṙ× L− αr

r

)
= 0,

so J is invariant in time. How many components
of J are in fact independent? Conclude why J and
r are in the plane perpendicular to L and how the
motion of a particle is constrained. In the polar
coordinate system parametrize J and r and write
J · r = Jr cos(φ− φ0), where φ and φ0 are angles
between horizontal axis and the vectors r and J,
respectively. Derive that the shape of the particle’s
trajectory is expressed by

r(φ) =
p

1 + e cos(φ− φ0)
,

where p = L2/mα and e = J/α =√
1 + 2EL2/mα2. What are interpretations of

these parameters? Think about the role of the vec-
tor J in this solution.

2 Week II, 06-12/03/2023

2.1 Lecture

... infinitesimal symmetry transformations, symmetry
generators as observables, symmetry and degeneracy,
classification of different symmetry transformations:
continuous (space translations, time translations, rota-
tions) and discrete (periodic translation in space, pe-
riodic translation in time, parity, time reversal).

&3. Continuous symmetry transformations - active
and passive view on space and time transformations,
translation in space, infinitesimal translation and its
generator, symmetry operator of arbitrary translation,
homogeneity of space and conservation of momen-
tum, translation in time, infinitesimal translation and
its generator, symmetry operator of arbitrary transla-
tion, homogeneity of time and conservation of energy,
rotation in space, infinitesimal rotation and its genera-
tor, symmetry operator of arbitrary rotation, isotropy
of space and conservation of angular momentum.

2.2 Tutorial

1. Units of bra and ket vectors - What are units of
bra and ket vectors in quantum mechanics. Discus-
sion based on: Do bras and kets have dimensions?,
C. Semay and C.T. Willemyns, Eur. J. Phys. 42,
025404 (2021) (arXiv:2008.03187).

2. Translational symmetry operator - Construct the
unitary translation operator Û(a) = e−ia·p̂/~ for
an arbitrary translation vector a.

3. Translational symmetry operator - Let Û(a) is a
translation operator and Ô(a) is an observable
operator. Show that Û(a)†Ô(a)Û(a′) = Ô(a+a′),
using that Û(a)ψ(r) = ψ(r− a) and Û(a)†ψ(r) =
ψ(r+ a), where ψ(r) is a wave function.

4. Two particles of mas m1 and m2 in one dimension
are interacting with each other with the potential
V (|x1 − x2|) and the Hamiltonian of this system
is

Ĥ =
p̂2

1

2m1
+

p̂2
2

2m2
+ V (|x1 − x2|).

Translation operator acting on the wave function
gives

Û(a)ψ(x1, x2) = ψ(x1 − a, x2 − a).

a) Show that

Û(a) = e−
i
~aP̂ ,

where P̂ = p̂1 + p̂2 is a total momentum.
b) Show that the total momentum is conserved.

2.3 Homework problems

1. Algebraic relations for translation operators -
Show that(

i

~
p̂

)n
B̂(x) =

n∑
ν=0

(
n
ν

)
∂νB̂

∂xν

(
i

~
p̂

)n−ν
,

where p̂ is a momentum operator and B̂(x) is every
differentiable operator. Next, using the result
above, calculate Û(a)†Â(x)Û(a) where Û(a) =
e−iap̂/~.

3 Week III, 13-19/03/2023

3.1 Lecture

&4 Discrete symmetry transformations -
Discrete translational symmetry in space, periodic
potential and primitive translational vectors of a
crystal structure (lattice), Bloch theorem and si-
multaneous eignestates of symmetry operator of
discrete translations and a periodic Hamiltonian,
Bloch wave function, quasimomentum in crystals,
Discrete translations in time, time dependent periodic
Hamiltonian, properties of the evolution operators for
periodic Hamiltonians, Floquet Hamiltonian, Floquet
theorem, Floquet eigenstates in time periodic systems,
...

3.2 Tutorial

1. Equation of symmetry generator Assuming that
Ω̂(t) is a generator of the symmetry Û(t) =
exp(−iaΩ̂(t)) and Ĥ is the Hamiltonian of the sys-
tem derive an equation satisfied by Ω̂.
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2. Conservation law in a uniform external electric
field - Derive a quantum mechanical generator for
the translational symmetry of a charged particle
in a homogeneous electric field with the intensity
E.

3. Conservation law in a uniform external magnetic
field - Derive a quantum mechanical generator for
the translational symmetry of a charged particle in
a homogeneous magnetic field with the induction
B.

4. Derivation of Pauli equation - Consider an inva-
riant Hamiltonian

Ĥ =
(~σ · p̂)2

2m
,

where ~σ is a three component vector made of 2×
2 matrices. Show that if these matrices obey an
algebra of Pauli matrices

σiσj + σjσi = 2δij ,

[σi, σj ] = 2iεijkσk,

then the Hamiltonian is equivalent to the one for
free particles. For this you need to show

(~σ · a)(~σ · b) = a · b+ i~σ · (a× b).

Next, introducing a magnetic field via the vector
potential and the minimal coupling procedure p̂→
p̂ − qA derive the Pauli Hamiltonian for a spin
1/2 particles in an external magnetic field B. This
problem follows an article in Am. J. Phys. 49, 645
(1981).

5. Rotation of spin one particle wave function - Find
a transformation operator for a three-component
vector wave function (field). Conclude that it de-
scribes a spin one particle.

3.3 Homework problems
1. Rotation of spin one-half particle wave function -

Find how the two-component spinor wave function
is transformed under rotations. Show that such a
wave function describes a spin one-half particle.
Hint: to find the transformation rules for the bi-
spinor wave function you need to discuss an in-
variance of the probability density and the Pauli
equation, cf. W. Greiner’s book.

4 Week IV, 20-26/03/2023

4.1 Lecture
Parity transformation, parity transformation in clas-
sical physics, polar and axial vectors and exam-
ples, role of parity transformation in quantum me-
chanics, transformation of different operators under
the parity, conservation of parity for parity symme-
tric Hamiltonians, classification of energy eigenstates
under their parity symmetry, even and odd states,

Time reversal transformation, reversal of time in clas-
sical physics, Newton law, transformation of position,
velocity, momentum, force, Maxwell equations, trans-
formation of current, electric intensity, magnetic induc-
tion, to be continued, problem with a unitary time
reversal operator in quantum mechanics, antiunitary
time reversal operator, classification of operators regar-
ding time reversal operation, transformation of a scalar
wave function under reversing a time, transformation
of spin under time reversing, Kramers degeneracy.

4.2 Tutorial

1. Periodic lattices, Brillouin zones, Bloch’s theorem,
part I - Consider one dimensional problem with
a periodic potential V (x) = V (x ± na), n ∈ Z.
By imposing a periodic boundary condition ina fi-
nite system with N lattice sites find eigenvalues
of the discrete translation operator Û(a), which
Û(a)|n〉 = |x + a〉. Discuss number of those eige-
nvalues and a periodicity of the solution in a reci-
procal space. Identify the first Brillouin zone and
a periodic vector in reciprocal space.

2. Lattice (discrete) Fourier transform - Define the
Lattice (discrete) Fourier transform for a periodic
sequence Aj+N = Aj , i.e.,

Aj =
1√
N

∑
k

ake
ikaj ,

with k = 2πm/aN and −N/2 < m ¬ N/2, and
prove the lattice sum

1
N

∑
k

eika(j−l) = δjl.

Similarly it holds that

1
N

∑
j

ei(k−k
′)aj = δkk′ .

3. Periodic lattices, Brillouin zones, Bloch’s theorem,
part II - Construct an eigenkets of Û(a) and the
corresponding eigenfunctions Φk(x). Discuss the
Bloch’s theorem.

4. Tight binding model - Consider an infinite one-
dimensional system with a periodic potential
V (x ± a) = V (x). Let |n〉 be a ground state vec-
tor describing a particle localized in the n-th cell
of the crystal. The ground state energy is E0. As-
sume that,

〈n|m〉 = δnm,

〈n|Ĥ|n〉 = E0,

〈n|Ĥ|n± 1〉 = −∆ ¬ 0,

and other amplitudes vanish. Write down the Ha-
miltonian in |n〉 base. Find the dispersion relation,
energy eigenvalues of particles.
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4.3 Homework problems
1. Chain molecule - Tight binding model - Consider

a chain molecule of N atoms. Find the eigenstates
and eigenenergies of such a system. Assume a na-
tural boundary condition. Discuss the transition
from a single atom N = 1 via N = 2 and 3 cases
to an infinite system and appearance of the con-
tinuum band. Hints: Take a one-particle localized
base {|j〉} and expand any state

|ψ〉 =
N∑
j=1

cj |j〉 .

Solve the Schroedinger equation

Ĥ|ψ〉 = E|ψ〉,

assuming that 〈j|Ĥ|j〉 = α and 〈j|Ĥ|k〉 = β for j
and k nearest neighbors, and zero otherwise. Prove
that Em = α + 2β cos(mπ/(N + 1)) and cmj =√

2/(N + 1) sin(mjπ/(N + 1)). In the case of the
natural boundary condition c0 = cN+1 = 0, the
wave function out of the chain vanishes, being still
finite at edges in principle.

2. Ring molecule - Tight binding model - Consider a
ring molecule ofN atoms. Find the eigenstates and
eigenenergies of such a system. Assume a periodic
boundary condition. Discuss the transition from
few atoms to the thermodynamic limit. Discuss
the Bloch theorem in the finite and in the infinite
systems. Hints: Take a one-particle localized base
{|j〉} and expand any state

|ψ〉 =
N∑
j=1

cj |j〉 .

Solve the Schrodinger equation

Ĥ|ψ〉 = E|ψ〉,

assuming that 〈j|Ĥ|j〉 = α and 〈j|Ĥ|k〉 = β
for j and k nearest neighbors, and zero other-
wise. Impose the periodic boundary conditions
and show that Em = α + 2β cos(2πm/N) and
cmj = exp(i2πjm/N)/

√
N .

5 Week V, 27/03/-02/04/2023

5.1 Lecture
II - Spontaneous Symmetry Breaking in Quan-
tum Mechanics

&1. Methaphysic - Theory of almost everything
(around us), symmetries of general many-body non-
relativistic quantum Hamiltonian, existence of phases
without a symmetry of their Hamiltonians, some exam-
ples, thermodynamic limit, emergency principle.

&2. Spontaneous symmetry breaking - Definition of
spontaneous symmetry breaking and a Bogoliubov me-
thod of its detection, concept of an order parame-
ter, singular (non-commuting) limits in perturbation

and number of particles, mathematical and mechani-
cal examples of singular limiting procedure. For more
reading: SciPost Phys. Lect. Notes 11, ( 2019).

&3. Spontaneous symmetry breaking in quantum me-
chanical model - harmonic crystal - Model of a harmo-
nic crystal in one-dimension, creation and annihilation
operator, diagonalization of the Hamiltonian via Fo-
urier transform and Bogoliubov transform, analysis of
the excitation spectrum, emergence of new quasipar-
ticles - phonons - Goldstone modes, separate treatment
of the zero momentum part of the Hamiltonian, total
momentum of the system, existence of thin spectrum,
its role in thermodynamics and in translationally sym-
metry breaking in the thermodynamic limit, adding a
small translationally symmetry breaking perturbation,
non-commutative limits. Based on: Am. J. Phys. 75,
636 (2007).

5.2 Tutorial
1. A quantum particle with a time dependent poten-

tial - Find the exact solution for a problem of
a one-dimensional quantum particle described by
the following Schrödinger equation

i~
∂Ψ(x, t)
∂t

= − ~2

2m
∂2Ψ(x, t)
∂2x

− V (t)Ψ(x, t),

where V (t) is a time dependent potential, constant
in space. Find a solution for time-periodic poten-
tial V (t) = V0 sin(Ωt + θ). Check the validity of
the Floquet theorem.

2. Harmonic oscillator with driven time-dependent
force - Find the exact solution of the problem with
one-dimensional quantum harmonic oscillator in
the presence of a driving force and described by
the following Schrödinger equation

i~
∂Ψ(x, t)
∂t

= − ~2

2m
∂2Ψ(x, t)
∂2x

+
1
2
mω2x2Ψ(x, t)

−xF (t)Ψ(x, t),

where F (t) is a time dependent force. Next, di-
scuss an explicit solution for a periodic driving
force F (t) = A sin(Ωt) and check the validity of
the Floquet theorem. Based on P. Hängi, Quan-
tum transport and dissipation, chapt. 5.

5.3 Homework problems
1. A quantum particle in a gravity field with a time

dependent force - Find the exact solution for a pro-
blem of a one-dimensional quantum particle in a
gravity field described by the following Schrödin-
ger equation

i~
∂Ψ(x, t)
∂t

= − ~2

2m
∂2Ψ(x, t)
∂2x

+mgxΨ(x, t)

−xF (t)Ψ(x, t),

where F (t) is a time dependent force, constant in
space, and x  0. Find a solution for time-periodic
force F (t) = A sin(Ωt). Check the validity of the
Floquet theorem. Based on arXiv:2202.01213.
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6 Week VI, 03-09/04/2023

6.1 Lecture
&4. Ferromagnet - a prominent exception - The
Heisenberg model, rotational symmetry of the Heisen-
berg model, exact ferromagnetic ground state without
rotational symmetry, definition of orientation vector
and its classical behavior in the thermodynamic limit,
orthogonality of different oriented ferromagnetic states
in the thermodynamic limit, symmetry breaking and
classical behavior, low energy excitations of ferroma-
gnets, quadratic dispersion of magnons, spin-waves. 1

III. Galilean and gauge transformations in
quantum mechanics

&1. Landé-Lévy-Lebonds pseudoparadox - Discus-
sion of de Broghlie p = h/λ and Einstein E = hν
hypothesis in laboratory and moving frames, Galilean
transformation in classical wave physics and classical
Doppler effect, based on: Am. J. Phys. 44, 1130 (1974).

&2. Galilean transformation in quantum mechanics
- Wigner symmetry operator for Galilean shift of po-
sition and momentum operators, explicit derivation of
this operator

Û(v, t) = e
i
~ (p̂t−mr̂)v,

wave function transformation between two moving fra-
mes

ΨT (rT , t) = e
i
~ (mv

2
2 t−mvr)Ψ(r, t),

role of the local phase change in the wave function, re-
solution of the Lande’s pseudoparadox, quantum Dop-
pler effect

1
λ′

=
1
λ
− mv

h
,

ν′ = ν − v

λ
+
mv2

2h
.

6.2 Tutorial
No tutorial in this easter week.

6.3 Homework
1. Dynamical symmetry in hydrogen atom, Runge-

Lenz vector2 - For the Hamiltonian

Ĥ =
p̂2

2m
− κ

r

we introduce the Runge-Lenz vector

M̂ =
1

2m
(p̂× L̂− L̂× p̂)− κr

r
.

One can show that

[M̂, Ĥ] = 0

1Shifted to the tutorial section.
2This is interesting problem related with the symmetry of the

hydrogen atom. Please consider it as an extra, not obligatory
exercise. Nevertheless, I recommend to work on it.

L̂ · M̂ = M̂ · L̂ = 0

M̂2 =
2
m
Ĥ(L̂2 + ~2) + κ2,

and
[L̂i, L̂j ] = i~εijkL̂k

[M̂i, L̂j ] = i~εijkM̂k

[M̂i, M̂j ] = −2
Ĥ

m
i~εijkL̂k.

We consider bound states subspace of the Hilbert
space with E < 0 and perform the rescaling of the
Runge vector

M̂′ =
√
− m

2Ĥ
M̂

and obtain the SO(4) commutator algebra

[L̂i, L̂j ] = i~εijkL̂k

[M̂ ′i , L̂j ] = i~εijkM̂ ′k
[M̂ ′i , M̂

′
j ] = i~εijkL̂k.

We introduce new operators

Î =
1
2

(L̂+ M̂)

K̂ =
1
2

(L̂− M̂)

and we show that

[Îi, Îj ] = i~εijk Îk

[K̂i, K̂j ] = i~εijkK̂k

[Îi, K̂j ] = 0.

The eigenstates of these operators and the Hamil-
tonian are {|imikmk〉} with eigenvalues

Î2 → ~2i(i+ 1)

Îz → ~mi

K̂2 → ~2k(k + 1)

K̂z → ~mk

and

Ĥ → En = − mκ2

2~2n2 ,

where n = 2i+1 ∈ N and i = k was used from the
orthogonality constraint. Discussion of symmetry
and degeneracy of the hydrogen eigenstates. Based
on W. Greiner, B. Müller Quantum mechanics -
symmetries.

2. Identity with M̂ - Show that

M̂2 =
2
m
Ĥ(L̂2 + ~2) + κ2.

3. One of the commutator involving M̂ and L̂ - Show
that

[M̂1, L̂2] = i~M̂3.

4. One of the commutator involving M̂ and L̂ - Show
that

[M̂1, L̂1] = 0.

5. For ambitious students - Prove by yourself all equ-
ations presented in the problem 1.
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7 Week VII, 10-16/04/2023

7.1 Lecture
No lecture in this Easter week.

7.2 Tutorial
1. Parity and spherical harmonics - Discuss how

spherical harmonics are transformed under the pa-
rity operation.

2. Permanent electric dipole moment - Discuss un-
der which condition a permanent (spontaneous)
dipole electric moment occurs in quantum mecha-
nics. Consider linear Stark effect in n = 2 excited
state in hydrogen.

3. Antiunitary operators - Let Â is an antiunitary
operator and |ũ〉 = Â|u〉 and |ṽ〉 = Â|u〉. Show
that 〈ũ|ṽ〉 = 〈v|u〉 = 〈u|v〉∗.

4. Antiunitary operator acting on bra - How to define
an action of the antiunitary operator B̂ on a bra
vector (to the left)

〈v|B̂ = ?

5. Adjoint to antiunitary operator - How to define an
adjoint operator B̂† to an antiunitary operator B̂?

8 Week VIII, 18-23/04/2022

8.1 Lecture
&3. Non-equvalent representations of momentum ope-
rators in quantum mechanics - Position and momen-
tum operators in quantum mechanics and their com-
mutator, explicit form of these operators in position re-
presentation, momentum operator defined with respect
to an arbitrary function, x̂ = x, p̂ = −i~d/dx + χ(x),
invariance of canonical commutation relations, trans-
formation of the base {|x〉} by multiplying by the phase
factor exp(ig(x)/~), where g(x) =

∫ x
χ(y)dy, unitary

change of the base, higher dimensional generalization,
path independence of the phase g(r) =

∫ r
χ(r′)dr′, ro-

tationless of the function ∇ × χ(r) = 0, non-unique
method in non-compact spaces.

&4. Electromagnetic gauge representations in quan-
tum mechanics - reminder of scalar and vector po-
tentials in classical electrodynamics, gauge freedom in
classical electrodynamics, some popular gauges, incor-
poration of electromagnetic field in quantum mecha-
nics, minimal coupling prescription, mechanical mo-
mentum vs. dynamical momentum, change of the wave
function and states by adding the vector potential, elec-
tromagnetic gauge transformations in quantum mecha-
nics.

8.2 Tutorial
1. Product of unitary and antiunitary operators - Let

Ψ̂ = Θ̂Û , where Û is an unitary operator and Θ̂

is an antiunitary operator. Show that Ψ̂ is antiu-
nitary.

2. Product of two antiunitary operators - Let Ψ̂ and
Θ̂ are antiunitary operators. Show that Û = Ψ̂Θ̂
is unitary.

3. Base dependence in representing an antiunitary
operator - Let K̂ is a complex conjugation opera-
tor. Show that K̂ is not independent of the phase
of the basis vectors in terms of which it is defined.

4. Rotation of a spin around one of the coordinate
axis - For the spin rotation operator with the angle
π around the axis y,

Û = e−i
π
~ Ŝy ,

show that Û Ŝx = −ŜxÛ and Û Ŝz = −ŜzÛ .

8.3 Homework problems

1. Time reversal and spherical harmonics - Discuss
how spherical harmonics are transformed under
the time reversal operation.

2. Roration operator for fermions - Find an explicit
form of the spin rotation operator Û(φ n) for spin
1/2 particles. Show that Û(2π n) = −1. φ is the
rotation angle around the n direction.

9 Week IX, 24-30/04/2022

9.1 Lecture

&5. Aharonov-Bohm effect - model of infinite sole-
noid, absence of magnetic induction outside the sole-
noid tube, motion of a charge quantum particle outside
the tube, relative phase of the wave functions and its
dependence on the magnetic flux, unit of quantum flux.

&6 Dirac magnetic monopole - history of a magnetic
monopole and the consideration of Dirac, theorem
of non-existence of the single vector potential corre-
sponding to the magnetic monopole, Wu and Yang
consideration about the magnetic monopole, two
different vector potentials covering the whole sphere
in 3-dimensional space, gauge transformation between
these potentials, quantization of the magnetic mono-
pole due to single valuedness of the wave function,
topological character of this quantization.

IV. Berry phases and topological states inn
quantum mechanics

&1. Adiabatic approximation - adiabatic processes
and adiabatic invariants in classical mechanics, two dif-
ferent time scales, to be continued ...

9.2 Tutorial

1. Model of quantum harmonic crystal - Detailed so-
lution of the quantum harmonic crystal model
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in one dimension with periodic boundary condi-
tion: rising operators in lattice space, lattice Fo-
urier transformation, Bogoliubov-Valatin diagona-
lization.

2. Ferromagnet - a prominent exception - The He-
isenberg model, rotational symmetry of the He-
isenberg model, exact ferromagnetic ground state
without rotational symmetry, definition of orien-
tation vector and its classical behavior in the ther-
modynamic limit, orthogonality of different orien-
ted ferromagnetic states in the thermodynamic
limit, symmetry breaking and classical behavior,
low energy excitations of ferromagnets, quadratic
dispersion of magnons, spin-waves.

3. Spin-wave (magnon) excitation spectrum - Find
a dispersion relation of the spin-wave excitations
around the ferromagnetic ground state of d = 1
Heisenberg model.

9.3 Homework problems
1. Model of quantum harmonic crystal - different ap-

proach - Consider the model

H =
N∑
j=1

p2
j

2m
+
κ

2

N∑
j=1

(xj − xj+1)2.

Introduce Fourier transforms xk =
(1/
√
N)
∑
j e
ikajxj and pk = (1/

√
N)
∑
j e
ikajpj

and show that

H =
1

2m

∑
k

pkp−k + 2κ
∑
k

sin2(ka/2)xkx−k.

Check commutation relations between new ope-
rators. Introduce creation and annihilation opera-
tors

ak =

√
mωk
2~

(xk + i
p−k
mωk

)

a†k =

√
mωk
2~

(x−k − i
pk
mωk

),

where ωk = 2
√
κ/m| sin(ka/2)| and show that

H =
∑
k

~ωk(a†kak +
1
2

).

2. Poor men’s version of Hohenberg-Mermin-Wagner
theorem, instability of d = 1 crystal - Calculate
the mean square deviation of the n-th ion from its
equilibrium position at T = 0, i.e. 〈0|x̂2

n|0〉, within
the model of quantum harmonic crystal. Since the
result is divergent it implies that no long-range
order is possible in one-dimensional system.

3. Correlation function in the model of quantum har-
monic crystal - Within the model of quantum har-
monic crystal determine the correlation function
〈0|(x̂n− x̂n−l)2|0〉 in the ground state. Discuss the
nearest neighbor bond length at l = 1 and discuss
the limit l→∞.

4. Model of quantum harmonic crystal with two
atoms unit cell - Consider one dimensional model
of harmonic crystal with two different ions of mas-
ses m1 and m2 placed in an alternative manner.
Distances between atoms are a and the interaction
is of harmonic (quadratic) type between nearest
neighbor ions. Find the excitation spectrum of this
system. Check that there are two branches of exci-
tations one gapless (Goldstone) and the other gap-
ped, with finite energy at k = 0. Check the limit
m1 = m2.

5. Spin-wave (magnon) excitation spectrum in d-
dimensions - Find a dispersion relation of the spin-
wave excitations (collective superposition of states
with only one spin flipped) around the ferroma-
gnetic ground state of a Heisenberg model with
the exchange interaction between spins localized
on nearest neighbor sites of a hypercubic lattice
with the lattice constant a in d-dimensions. Hint:
repeat steps from tutorial problem but the discrete
Fourier transform must be d-dimensional.

10 Week X, 01-07/05/2023

10.1 Lecture
3 days May’s holiday

10.2 Tutorial
3 days May’s holiday

11 Week XI, 08-14/05/2023

11.1 Lecture
... cont., quantum mechanical examples of adia-
batic processes: infinite quantum well and Born-
Oppenheimer approximation, adiabatic theorem in qu-
antum mechanics and its prove.

&2. Berry (geometric) phases - Anholonomy in case
of periodic processes, example of pendulum on the
Earth surface, Foucault pendulum and Hannay’s angle,
relation of this angle to solid angle, geometric phase in
quantum mechanics, the approximate form of the wave
function in case of adiabatic processes, definition of dy-
namical and geometric phases, condition on the geome-
tric phase, expression on the geometric phase in case of
the change of the Hamiltonian parameters, flux inter-
pretation of geometric phase, Berry’s potential, Berry’s
flux, is the geometric phase real? is the geometric phase
measureable?

11.2 Tutorial
1. Einstein’s gedanken experiment with a rocket -

Consider a rocket in an empty space and subjec-
ted to an acceleration equal to g. Suppose that
inside the rocket there is a single quantum object,
described by a Schrödinger equation with a confi-
ning potential V (x, t), e.g. the rocket walls, in the
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laboratory frame. Find the Schrödinger equation
in a reference frame co-moving with the rocket.
Interpret this result.

2. Gauge transformation in quantum mechanics -
Check by explicit calculation that the form of the
Schrödinger equations before and after the gauge
transformation are the same.

3. Quantum particle in uniform electric field - Solve
the problem of a quantum particle moving in a
static uniform electric field E − E0ex. Solve the
problem in: a) static gauge with V = −E0x, A =
0, and b) dynamic gauge with V = 0 and A =
−E0tex. Using these solutions, obtain solutions in
the other gauges by taking a gauge transformation
with χ = −E0xt scalar function.

11.3 Homework problems
1. Quantum particle in a gravity field - Solve a pro-

blem of a quantum particle with mass m falling in
a uniform gravity field V = mgz for z > 0, and
assuming that for z ¬ 0 the potential is of infinite
height (hard wall potential). Discuss an energy qu-
antization and a motion of a classical (gaussian)
wave packet. Compare to results in an infinite
space with the uniform gravity field, i.e. without
the hard wall boundary. Hint: Am. J. Phys. 67,
776 (1999), arxiv:2009.03744.

2. Gauge invariant density, current, and continuity
equation - For a quantum particle with charge in
the presence of an electromagnetic field find (gu-
ess) forms for the particle density and the cur-
rent density, such that they are gauge invariant.
Check if the continuity equation is gauge invariant
as well.

12 Week XII, 15-21/05/2023

12.1 Lecture
&3. Aharonov-Bohm phase as a Berry phase - reinter-
pretation of the Aharonov-Bohm geometry in terms of
adiabatic change of the system and interpretation of
the magnetic flux as a geometric phase.

&4. Emergent of a Berry monopole in a two level
system - generic form of a zero dimensional, two-level
quantum mechanical Hamiltonian, unique eigenvalues
and non-unique eigenvectors, necessity of using two
gauges (e.g. north and south) determination of the
Berry gauge dependent potential vector and the Berry
gauge independent flux, magnetic monopole interpre-
tation of the Berry vector potentials, a monopole at the
degeneracy point in the Hamiltonian parameter space,
emergence of the gauge structure in the adiabatically
changed two level system.

12.2 Tutorial
1. DC Josephson effect - Using a simplified two-state

model due to Feynman derive the Josephson equ-

ation on the tunneling current J = J0 sin(θ2 − θ2)
between two superconductors with fixed phases of
their wave functions.

2. AC Josephson effect - Using a simplified two-state
model due to Feynman derive the Josephson equ-
ation on the tunneling current between two super-
conductors with fixed phases of their wave func-
tions which are biased by the gate voltage V (t).
Analyze in details the case where V (t) = V0.

12.3 Homework problems
1. Gauge invariant current density in superconduc-

tors - Assuming the wave function as Ψ(r, t) =√
n(r, t)eiθ(r,t) and show that the current density

is J = qnv, where v = ~
m∇θ −

q
mA. Check gauge

invariance.

2. AC Josephson effect - Shapiro steps - Using a sim-
plified two-state model due to Feynman derive the
Josephson equation on the tunneling current be-
tween two superconductors with fixed phases of
their wave functions which are biased by the gate
voltage V (t). Analyze in details the case where
V (t) = V0 + V1 cos(ωt).

13 Week XIII, 22-28/05/2023

13.1 Lecture
V. Scattering Theory

&1. Introduction to scattering experiments - typi-
cal scattering geometry, conservation laws in scattering
experiments, elastic and inelastic scatterings, types of
scattering experiments.

&2. Scattering cross section - incoming current and
scattered current and their units, definition of differen-
tial and total cross sections, geometrical interpretation
of the total cross section.

&3. General theory of scattering - Lippmann-
Schwinger equation - derivation of a formal solution
of the Schrödinger equation for continuous energies in
term of Lippmann-Schwinger equation.

13.2 Tutorial
1. SQUID - Superconducting QUantum Interference

Device - Consider two superconductors forming a
loop with two Josephson junctions. Derive the for-
mula for the current as a function of the magnetic
flux inside the loop.

2. Berry phase in the Born-Oppenheimer approxima-
tion - Consider two-particle hamiltonian

Ĥ =
P̂

2M
+
p̂

2m
+ V (R, r),

where small and great letters correspond to light
and heavy particles. In the limit M � m one can
take an ansatz on the wave function

ψn(R, r) = φn(R)ξn(R, r),
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where the eigen-problem for fast degrees of fre-
edom (m)

ĥ(R)|nR〉 = εn(R)|nR〉

or
ĥ(R)ξn(R, r) = εn(R)ξn(R, r),

depends on R only parametrically. Show that the
eigen-problem for for the slow degrees of freedom
(M) is described by the Hamiltonian

Ĥeff =
1

2M
(P̂+ ~AB)2 + εn(R),

where AB = i
∫
d3rξn(R, r)∗∇Rξn(R, r) is the

Berry phase. Interpret these results.

13.3 Homework problems
1. Beyond the adiabatic limit - Taking the wave func-

tion expansion

Ψn(x, t) = ψn(x, t)eiΘn(t)eiγn(t)+

+ε
∑
m 6=n

cm(t)ψm(x, t)

check the correctness of the expression for the geo-
metric phase up to the first order in the ε.

2. Expanding adiabatically quantum well - Calculate
the geometric phase γn in the problem of infinite
quantum well in one dimension if the well expands
adiabatically from L1 to L2. If the expansion hap-
pens at a constant rate dL/dt = v determine the
dynamic phase Θn. If the well contracts to the ori-
ginal size, what is the Berry’s phase? Make com-
ments on these partial results.

3. Particle in a rotating magnetic field - An external
magnetic field changes in time as

B(t) =

 B0 sinα cosωt
Bo sinα sinωt
B0 cosα

 .

Assume that at t = 0 the particle’s spin points
along the magnetic field. Check that the exact so-
lution is in the form

χ(t) =(
(cos(λt/2) + iω1+ωλ sin(λt/2)) cos(α/2)e−iωt/2

(cos(λt/2) + iω1−ωλ sin(λt/2)) sin(α/2)eiωt/2

)
,

where ω1 = qB0/m and
λ =

√
ω2 + ω2

1 + 2ωω1 cosα. Compute the proba-
bility that the particle’s spin will be anti-parallel
to the magnetic field. Find the adiabatic condi-
tions under which this probability vanishes. Com-
pute the Berry phase during a singe cycle of rota-
tion of the magnetic field.

4. Two level system - Berry phase - For a two level
system discussed in the lecture derive all results
on Berryology in details.

14 Week XIV, 29/05-04/06/2023

14.1 Lecture
&4. Resolvents, Green’s functions and Lippmann-
Schwinger equation - definition of a resolvent for a gi-
ven Hamiltonian Ĝ(E) = (E − Ĥ)−1, application of
the η trick, E → E + iη with η → 0+, formulation
of the Lipman-Schwinger equation using the resolvent,
formal solution of the Shrödinger equation by using
Ĝ(E), relation of the η trick with the retarded boun-
dary condition, formulation of the problem in terms of
a time dependent Schrödinger equation and its solution
by retarded Green’s function, prove of the relation be-
tween the retarded boundary (initial) conditions with
the η → 0+ procedure.

&5. Formal solution of the Lippmann-Schwinger equ-
ation - iterative solution to Lippmann-Schwinger equ-
ation, summation of the geometric progress, defini-
tion of the t-matrix operator (transition matrix), t-
matrix as an effective scattering potential, Lippmann-
Schwinger equation for the wave function, Born series
for the wave function and for the t-matrix, multiple
scattering interpretation of the Born series expansion.

14.2 Tutorial
1. Phase of the Bloch function - Check the invariance

of the Schroedinger equation with a periodic po-
tential if we perform the local in k-space phase
transformation

ψnk(r)→ ψ′nk(r) = eiφn(k)unk(r)eikr.

2. Berry vector potential / connection for Bloch
functions - define the Berry connection Ank =
−i〈unk|∇kunk〉 and show how it transforms under
the local in k-space phase transformation introdu-
ced above. Introduce the Berry field /curvature for
Bloch functions Fnk = ∇k×Ank and find an expli-
cit expression that Fnk = −i〈∇kunk| × |∇kunk〉.

3. position operator in Bloch space functions - Show
for a single band that the position operator in k-
space in the presence of the periodic potential ta-
kes the form r̂ = i∇k −Ank.

4. Equation of motion for momentum operator -
Show for a single band that the momentum ope-
rator satisfies

dπ

dt
= −q∇rφ(r) + qv ×B,

where φ is the scalar electric potential, B is the
magnetic induction, and q is the charge.

5. Equation of motion for the position operator -
Show for a single band that the position opera-
tor satisfies

dr
dt

=
1
~
∇kE(k) +

dk
dt
×Fk.

The second term is called an anomalous velocity.
It drives the anomalous Hall effect, a current per-
pendicular to the electric field.
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14.3 Homework problems

1. Particle on a ring pierced by a magnetic field - A
charged q particle is moving along a circle of ra-
dius R around a very narrow infinite solenoid with
a magnetic flux Φ. The circle is perpendicular to
the solenoid. Taking the vector potential inside the
ring A = Φ

2πReφ show that the eigenenergies are
En = ~2

2mR2 (Φ/Φ0−n)2, where Φ0 = 2π~/q. Inter-
pret the quantum number n. What are the corre-
sponding eigenstates? How the ground state and
exited states change when Φ increases/decreases?
Find the current density of those states and di-
scuss it change with Φ.

2. Wilczek-Zee phase - Consider an M dimensio-
nal R(t) = (R1(t), ..., RM (t)) parameter depen-
dent Hamitlonian Ĥ(R(0)) with r-fold degenerate
energy En(R(0))

Ĥ(R(0))|ψna(R(0))〉 = En(R(0))|ψna(R(0))〉.

Let the initial state is |ψ(0)〉 = |ψnb(R(0))〉 for
some fixed b.

Check that during an adiabatic evolution the state
is

|ψ(t)〉 = e
− i

~

∫ t
0
En(R(t′))dt′

r∑
a=1

U
(n)
ab (t)|ψna(R(t))〉,

where U (n)
ab is a unitary r × r matrix operator sa-

tisfying (
(Û (n))−1 dÛ

(n)

dt

)
ab

=

= −〈ψna(R)|∇Rψnb(R)〉 · dR(t)
dt

,

with Û(0) = 1̂. Define a matrix valued Berry vec-
tor potential

Aab(n,R) = i〈ψna(R)|∇Rψnb(R)〉,

where (Ai)ab(n,R) is a Hermitian r×r matrix and
i = 1, ...,M .

Check that after a cyclic evolution R(0) = R(T )
on a closed contour C in the parameter space the
solution on the matrix U is

Û (n)(C) = TCe
i
∮
C
A(n,R)·dR

,

where TC is a chronological ordering operator on
the contour C. Check that for non-degenerate case
r = 1 it reproduces the Berry geometric phase.
Û (n)(C) is called a non-abelian Wilczek-Zee fac-
tor. Under the adiabatic evolution of degenerate
spectrum the state vector rotates in the degene-
racy subspace.

Consider a gauge unitary transformation

|ψ̃na〉 =
r∑
b=1

Λab|ψnb〉,

where Λ̂ is a unitary r × r matrix. Show that the
Berry matrix valued vector potential transforms
as

˜̂
Ai(n,R) = Λ̂(R)Âi(n,R)Λ̂−1(R)+

∂Λ̂(R)
∂Ri

Λ̂−1(R).

It transforms as a non-abelian potential in a non-
abelian gauge field theory. Define the Berry inten-
sity field tensor

F̂ij(n,R) = ∂iÂj(n,R)− ∂jÂi(n,R)+

+[Âi(n,R), Âj(n,R)]

and check that it transforms as

˜̂Fij(n,R) = Λ̂(R)F̂ij(n,R)Λ̂−1(R).

15 Week XV, 05-11/06/2023

15.1 Lecture
&6. Formal solution of the scattering problem in terms
of the Green’s function - Resolvents and Green’s func-
tions for noninteracting and interacting problems, den-
sity of states and its relation to the Green’s function,
formal solution for the resolvent in terms of the t-
matrix, proof of the Friedel sum rule theorem, proof
of the optical theorem, definition of the s-matrix in on-
shell scattering and its relation to the t-matrix, to be
continued ...

15.2 Tutorial
1. Resolvent in one-level model - Find the resolvent

and the Green’s function for a system with the
Hamiltonian

Ĥ = εa|a〉〈a|.

2. Resolvent in two-level model - Find the resolvent
and the Green’s function for a system with the
Hamiltonian

Ĥ = εa|a〉〈a|+ εb|b〉〈b|+ V |a〉〈b+ V ∗|a〉〈b|.

Find the corresponding perturbative series with
respect to V . Find t-matrix series. Interpret re-
sults diagrammatically. This is an elementary in-
troduction to Feynman diagrams.

3. Green’s function in d = 3 - Compute the Green’s
function G0(r, r′;E) for free particles in d = 3
dimensions.

4. Friedel oscillations - Find how the density of elec-
trons oscillates far away from the localized impu-
rity potential in three dimensional space.

15.3 Homework problems
1. Green’s function in d dimensions - Compute the

Green’s function G0(r, r′;E) for free particles in
d = 1, d = 2 (and arbitrary d if you are interested
in) dimensions.
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2. Density of states in d dimensions - The local den-
sity of states (LDOS) is defined as

ρ(r;E) = − 1
π

lim
r′→r

Im G0(r, r′;E).

Compute this quantity in d = 1, 2 and 3 dimen-
sions. Compare with results obtained on your Sta-
tistical Physics course.

3. Single site model with only one discrete state
- Find t-matrix, Green’d function, scattering
phase shift, screening charge in case of a one
level ε model treating a shift V of the energy
level as perturbation. The Hamiltonian is
Ĥ = ε|0〉〈0|+ V |0〉〈0|.

Solution:

The Green function is

G0(z) =
1

z − ε
, (1)

where ε is the energy of this level. The DOS is
ρ0(ω) = δ(ω−ε) and the occupation of this system
is

n0 =
∫
ρ0(ω)f(ω)dω =

1
eβ(ε−µ) + 1

, (2)

where µ is the chemical potential.

We perturb this system by shifting the energy by
V . he the Green function is

G(z) =
1

z − ε− V
, (3)

the DOS is ρ(ω) = δ(ω−ε−V ), and the occupation
of this system is

n =
∫
ρ0(ω)f(ω)dω =

1
eβ(ε+V−µ) + 1

. (4)

The change of the DOS is

∆ρ(ω) = δ(ω − ε− V )− δ(ω − ε), (5)

and the screening charge is obtained

Zsc = n−n0 =
1

eβ(ε+V−µ) + 1
− 1
eβ(ε−µ) + 1

. (6)

At T = 0 it reduces to

Zsc = Θ(µ− ε− V )−Θ(µ− ε). (7)

Now we derive the same result within the scatte-
ring formalizm. For a scalar functions we have an
identity

G =
d

dω
lnG−1, (8)

which leads to

ρ(ω) = − lim
z→ω+i0+

1
π

Im
d

dω
lnG(z)−1. (9)

Hence the change of DOS is

∆ρ(ω) = − lim
z→ω+i0+

1
π

d

dω
Im ln

G(z)−1

G0(z)−1

= − lim
z→ω+i0+

1
π

d

dω
Im ln

z − ε− V
z − ε

= − lim
z→ω+i0+

1
π

d

dω
Im ln(1− V

z − ε
)

= lim
z→ω+i0+

1
π

d

dω
Im ln

1
V

V

1− V
z−ε

= lim
z→ω+i0+

1
π

d

dω
Im ln

1
V
T (z)

=
1
π

d

dω
φ(ω), (10)

where
T (z) =

V

1− V
z−ε

(11)

is the "T-matrix"(T-scalar) here and φ(ω) is the
scattering phase shift given by the argument of
T (ω).

Determination of the phase must take into acco-
unt multivaluedness of the logarithmic function.
Indeed from

ω + i0+ − ε = |ω − ε|eiπΘ(ε−ω), (12)

ω + i0+ − ε− V = |ω − ε− V |eiπΘ(ε+V−ω), (13)

we find

lim
z→ω+i0+

1
V
T (ω) = lim

z→ω+i0+

z − ε
z − ε− V

= | ω − ε
ω − ε− V

|eiπ(Θ(ε−ω)−Θ(ε+V−ω)). (14)

Therefore,

lim
z→ω+i0+

ln
1
V
T (z) = ln| ω − ε

ω − ε− V
|

+iπ(Θ(ε− ω)−Θ(ε+ V − ω). (15)

The imaginary part

φ(ω) = π[Θ(ε− ω)−Θ(ε+ V − ω)]

= π[Θ(ω − ε− V )−Θ(ω − ε)], (16)

since Θ(−x) = 1 − Θ(x), is just the scattering
phase shift. Although the spectrum is discrete the
T-matrix has a nontrivial phase. From the Friedel
sum rule we obtain

Zsc =
1
π
φ(µ) = Θ(µ− ε− V )−Θ(µ− ε), (17)

which agrees with the result before.

The change of DOS is

∆ρ(ω) =
1
π

d

dω
φ(ω)

=
d

dω
(Θ(ε− ω)−Θ(ε+ V − ω))

= δ(ω − ε− V )− δ(ω − ε). (18)
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This agrees with results from direct method gi-
ven at the beginning, c.f., Eq. (5). Hence the scre-
ening charge is correctly the same. Therefore, the
Friedel sum rule works for one site (discrete) non-
interacting system.

Checking the consistency of choosing the phase

x± i0+ = |x|e±iπΘ(−x).

We know that

1
x± i0

= P
1
x
∓ iπδ(x).

On the other hand

1
x± i0

=
d

dx
ln(x± i0+)

=
d

dx
ln(|x|e±iπΘ(−x)) =

d

dx
(ln|x| ± iπΘ(−x))

= P
1
x
± iπ d

dx
Θ(−x) = P

1
x
∓ iπδ(−x)

= P
1
x
∓ iπδ(x).

(19)

�

4. Two degenerate levels model with only one
level perturbed - Consider the model with
Ĥ = −t|0〉〈1| − t|1〉〈0| − v|1〉〈1|. Find t-matrix,
Green’d function, scattering phase shift, screening
charge treating a shift v of the energy level as
perturbation.

Solution:

The free Green function matrix is

G0(z) =
(
z t
t z

)−1

=
1

z2 − t2

(
z −t
−t z

)
,

(20)

where the on site energy ε = 0 and t > 0 is the
hopping amplitude between sites. In the perturbed
case the second site onsite energy is changed by
−v, so the scattering potential is

V =
(

0 0
0 −v

)
, (21)

and the Green function is

G(z) =
(
z t
t z + v

)−1

=

=
1

z(z + v)− t2

(
z + v −t
−t z

)
. (22)

The perturbed Green function G has singularities
at

ω1,2 =
1
2

[−v ±
√
v2 + 4t2], (23)

and the free Green function G0 is singular at

ω0
1,2 = ±t. (24)

To find DOS we need the trace of G and G0:

Tr G(z) =
2z + v

z(z + v)− t2
=

=
2z + v

ω1 − ω2

(
1

z − ω1
− 1
z − ω2

)
(25)

Observing that ω1 − ω2 =
√
v2 + 4t2 we obtain

Tr G(z) =
2z + v√
v2 + 4t2

(
1

z − ω1
− 1
z − ω2

)
, (26)

and in the limit z → ω + i0+

Tr G(ω) =
2ω + v√
v2 + 4t2

(
P

1
ω − ω1

− iπδ(ω − ω1)

−P 1
ω − ω2

+ iπδ(ω − ω2)
)
.

(27)

With observation that 2ω1,2 +v = ±
√
v2 + 4t2 the

DOS is

ρ(ω) = − 1
π

Im Tr G(ω)

= δ(ω − ω1) + δ(ω − ω2). (28)

The unperturbed DOS is

ρ(ω) = δ(ω − ω0
1) + δ(ω − ω0

2), (29)

and the change of DOS is

∆ρ(ω) = δ(ω − ω1) + δ(ω − ω2)

−δ(ω − ω0
1)− δ(ω − ω0

2). (30)

The screening charge is

Zsc =
∫
dω∆ρ(ω)f(ω) =

1
eβ(ω1−µ) + 1

+
1

eβ(ω2−µ) + 1

− 1

eβ(ω01−µ) + 1
− 1

eβ(ω02−µ) + 1
(31)

and at T = 0 reduces to

Zsc = Θ(µ− ω1) + Θ(µ− ω2)

−Θ(µ− ω0
1)−Θ(µ− ω0

2). (32)

Next we use scattering to determine the change of
DOS and the screening charge. From the main tex
we have

∆ρ(ω) = lim
z→ω+i0+

1
π

d

dω
Im Tr ln[V−1(z)T(z)]

= lim
z→ω+i0+

1
π

d

dω
Im Tr ln[1−VG0]−1

= − lim
z→ω+i0+

1
π

d

dω
Im Tr ln[1−VG0].

(33)
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The matrix

1−VG0 =

=
(

1 0
0 1

)
− 1
z2 − t2

(
0 0
0 −v

)(
z −t
−t z

)
=
(

1 0
− vt
z2−t2 1 + zv

z2−t2

)
(34)

needs to diagonalized. There are two eigenvalues
λ1 = 1 and λ2 = (z(z+v)− t2)/(z2− t2) and loga-
rith of diagonal matrix is a matrix of logarithm of
its eigenvalues. Since the trace is base independent
we have

∆ρ(ω) = − lim
z→ω+i0+

1
π

d

dω
Im (lnλ1 + lnλ2). (35)

Now lnλ1 = 0 and

lim
z→ω+i0+

ln
z(z + v)− t2

z2 − t2

= lim
z→ω+i0+

(ln(z2 + zv − t2)− ln(z2 − t2))

= ln|(ω − ω1)(ω − ω2)|+ iπ(Θ(ω1 − ω) + Θ(ω1 − ω))

−ln|(ω − ω0
1)(ω − ω0

2)| − iπ(Θ(ω0
1 − ω) + Θ(ω0

1 − ω)).
(36)

Therefore we find nonzero scattering phase shift

Tr φ(ω) = π[Θ(ω − ω1) + Θ(ω − ω2)

−Θ(ω − ω0
1) + Θ(ω − ω0

2)]. (37)

The change of DOS

∆ρ(ω) =
1
π

d

dω
π[Θ(ω − ω1) + Θ(ω − ω2)

−Θ(ω − ω0
1) + Θ(ω − ω0

2)]

= δ(ω − ω1) + δ(ω − ω2)

−δ(ω − ω0
1)− δ(ω − ω0

2), (38)

in agreement with result (30). From the Friedel
sum rule we get

Zsc =
1
π

Tr φ(µ) = Θ(µ− ω1) + Θ(µ− ω2)

−Θ(µ− ω0
1) + Θ(µ− ω0

2), (39)

which agrees with result (32). Therefore, the Frie-
del sum rule works for two site (matrix) non-
interacting system as well. We also note that it
is easy to generalize this two site model by pertur-
bing asymmetrically both sites by potentials v1

and v2 as is presented next.

As a double check we can use Cauchy formula
to determine explicitly the logarithm of a matrix
function, i.e.

ln(1−VG0) =
1

2πi

∫
Γ

lnζ [ζ1− 1+VG0]−1dζ,

(40)

where the contour Γ incloses all eigenvalues λ1 and
λ2 and the function lnζ is analytic on and inside
it. Then we compute

ln(1−VG0) =

=
1

2πi

∫
Γ

lnζ
[
ζ − 1 0
vt

z2−t2 ζ − 1− vz
z2−t2

]−1

dζ

=
1

2πi

∫
Γ

lnζ
1

(ζ − 1)(ζ − 1− vz
z2−t2 )

·[
ζ − 1− vz

z2−t2 0
− vt
z2−t2 ζ − 1

]
dζ.

(41)

Using the theorem of residua we can compute each
matrix element independently and obtain

ln(1−VG0) =
[

0 0
− t
z ln(1 + vt

z2−t2 ) ln(1 + vz
z2−t2 )

]
,

(42)

which agrees with the earlier result gives the cor-
rect trace as presented above.

5. Two site model with general potentials - Consider
the model with Ĥ = −t|1〉〈2| − t|2〉〈1|+ v1|1〉〈1|+
v2|1〉〈2|. Find t-matrix, Green’d function, scatte-
ring phase shift, screening charge treating a shift
v of the energy level as perturbation.

The free Green function matrix is

G0(z) =
(
z − ε t
t z − ε

)−1

=
1

(z − ε)2 − t2

(
z − ε −t
−t z − ε

)
, (43)

where ε is the on site energy and t > 0 is the
hopping amplitude between sites. In the perturbed
case both sites are shifted by potentials v1 and v2

respectively, so the scattering potential is

V =
(
v1 0
0 v2

)
, (44)

and the Green function is

G(z) =
(
z − ε− v1 t

t z − ε− v2

)−1

=
1

(z − ε1)(z − ε2)− t2

(
z − ε2 −t
−t z − ε1

)
,

(45)

where we used ε1 = ε+ v1 and ε2 = ε+ v2.

The perturbed Green function G has singularities
at

ω1,2 =
1
2

[ε1 + ε2 ±
√

(ε1 − ε2)2 + 4t2], (46)

and the free Green function G0 is singular at

ω0
1,2 = ε± t. (47)
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To find DOS we need the trace of G and G0:

Tr G(z) =
2z − ε1 − ε2

(z − ε1)(z − ε2)− t2

=
2z − ε1 − ε2
ω1 − ω2

(
1

z − ω1
− 1
z − ω2

)
(48)

Observing that ω1 − ω2 =
√

(ε1 − ε2)2 + 4t2 we
obtain

Tr G(z) =
2z − ε1 − ε2√
(ε1 − ε2)2 + 4t2

(
1

z − ω1
− 1
z − ω2

)
,

(49)

and in the limit z → ω + i0+

Tr G(ω) =
2ω − ε1 − ε2√
(ε1 − ε2)2 + 4t2

(
P

1
ω − ω1

− iπδ(ω − ω1)

−P 1
ω − ω2

+ iπδ(ω − ω2)
)
.

(50)

With observation that 2ω1,2−ε1−ε2 = ±
√
v2 + 4t2

the DOS is

ρ(ω) = − 1
π

Im Tr G(ω)

= δ(ω − ω1) + δ(ω − ω2). (51)

The unperturbed DOS is

ρ(ω) = δ(ω − ω0
1) + δ(ω − ω0

2), (52)

and the change of DOS is

∆ρ(ω) = δ(ω − ω1) + δ(ω − ω2)

−δ(ω − ω0
1)− δ(ω − ω0

2). (53)

The screening charge is

Zsc =
∫
dω∆ρ(ω)f(ω) =

1
eβ(ω1−µ) + 1

+
1

eβ(ω2−µ) + 1

− 1

eβ(ω01−µ) + 1
− 1

eβ(ω02−µ) + 1
(54)

and at T = 0 reduces to

Zsc = Θ(µ− ω1) + Θ(µ− ω2)

−Θ(µ− ω0
1)−Θ(µ− ω0

2). (55)

Next we use scattering to determine the change of
DOS and the screening charge. From the main tex
we have

∆ρ(ω) = lim
z→ω+i0+

1
π

d

dω
Im Tr ln[V−1(z)T(z)]

= lim
z→ω+i0+

1
π

d

dω
Im Tr ln[1−VG0]−1

= − lim
z→ω+i0+

1
π

d

dω
Im Tr ln[1−VG0].

(56)

The matrix

1−VG0 =

=
(

1 0
0 1

)
−

− 1
(z − ε)2 − t2

(
v1 0
0 v2

)(
z − ε −t
−t z − ε

)
=

=

(
1− (z−ε)v1

(z−ε)2−t2
v1t

(z−ε)2−t2
v2t

(z−ε)2−t2 1− (z−ε)v2
(z−ε)2−t2

)
(57)

needs to diagonalized. There are two eigenvalues

λ± =
1
2

[
2− (v1 + v2)(z − ε)

(z − ε)2 − t2

±

√
(v1 − v2)2(z − ε)2 + 4v1v2t2

((z − ε)2 − t2)2

]
(58)

and logarithm of diagonal matrix is a matrix of
logarithm of its eigenvalues. Since the trace is base
independent we have

∆ρ(ω) = − lim
z→ω+i0+

1
π

d

dω
Im (lnλ+ + lnλ−)

= − lim
z→ω+i0+

1
π

d

dω
Im ln(λ+λ−). (59)

After some algebraic manipulation one can easily
show that

λ+λ− =
(z − ε)2 − (v1 + v2)(z − ε) + v1v2 − t2

(z − ε)2 − t2

=
(z − ω1)(z − ω2)
(z − ω0

1)(z − ω0
2)
.

(60)

Therefore,

lim
z→ω+i0+

ln(λ+λ−)

= ln|(ω − ω1)(ω − ω2)|+ iπ(Θ(ω1 − ω) + Θ(ω1 − ω))

−ln|(ω − ω0
1)(ω − ω0

2)| − iπ(Θ(ω0
1 − ω) + Θ(ω0

1 − ω)).
(61)

Hence, we find nonzero scattering phase shift

Tr φ(ω) = π[Θ(ω − ω1) + Θ(ω − ω2)

−Θ(ω − ω0
1) + Θ(ω − ω0

2)]. (62)

The change of DOS

∆ρ(ω) =
1
π

d

dω
π[Θ(ω − ω1) + Θ(ω − ω2)

−Θ(ω − ω0
1) + Θ(ω − ω0

2)]

= δ(ω − ω1) + δ(ω − ω2)

−δ(ω − ω0
1)− δ(ω − ω0

2), (63)

in agreement with result (53). From the Friedel
sum rule we get

Zsc =
1
π

Tr φ(µ) = Θ(µ− ω1) + Θ(µ− ω2)

−Θ(µ− ω0
1) + Θ(µ− ω0

2), (64)

which agrees with result (55). Therefore, the Frie-
del sum rule works for general two site (matrix)
non-interacting system as well.
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16 Week XVI, 12-18/06/2023

16.1 Lecture

... continued, bound states and states from the conti-
nuum, Levinson’s theorem and its prove, topological
character of the Levinson’s theorem.

&7. Scattering amplitude - Expansion of the
Lippmann-Schwinger equation far away from the scat-
tering potential center, definition of the scattering am-
plitude, relation of the scattering amplitude and the
T-matrix, relation between η-trick, retarded boundary
condition and purely outgoing boundary condition,
outgoing spherical wave with modified amplitude, the
scattering cross-section and the scattering amplitude,
different formulations of the optical theorem.

&8. Resonances, resonant states - experimental evi-
dence of resonance states in the cross-section, intuitive
relation with quasi-bound states with a finite life-time,
classification of possible solutions of the Schrödinger
equation and their location on complex energy plane
and complex momentum plane: i) continuum states,
ii) bound states, iii) virtual states, iv) resonant sta-
tes, v) antiresonance states, two Riemann sheets of the
complex energy plane and the locations of the diffe-
rent solutions, properties of the resonances in space and
in time, Bright-Wigner formula for resonances, mathe-
matical origin for complex eigen-energies of resonan-
ces, difference between hermitian and self-adjoint ope-
rators, purely outgoing boundary condition as a source
of non-self-adjointness.

16.2 Tutorial

1. δ-Dirac potential - Consider particles with mas m
moving in one dimension. The potential is V (x) =
−V)δ(x), where δ(x) is a Dirac distribution. Solve
this problem for bound states E < 0 and scatte-
red states E > 0 within the wave function appro-
ach with proper boundary conditions at x = 0.
Discuss results. Next, for scattered states E > 0
solve this problem within: a) t-matrix formalism,
b) Lippmann-Schwinger formalism.

16.3 Homework problems

1. Anderson-Fano-Friedrichs-Lee resonant model -
Consider the AFFL model

Ĥ = ε0|0〉〈0|+
∫
R

dkεk|k〉〈k|+

+
∫
dkRVk|0〉〈k|+ V ∗k |k〉〈0|.

Compute Green functions and find t-matrix. Di-
scuss analytic structure of the t-matrix and its
poles and a cut on both Riemann’s sheets. For
an explicit discussion assume that the DOS is con-
stant 1/2D between −D and D and zero otherwise
and that Vk = V ∗k = V .

2. Double δ-potential - Consider a system in one di-
mension with the potential

V (x) = V0[δ(x+ l) + δ(x− l)],

with V0 > 0. Assuming the purely outgoing bo-
undary conditions, i.e. taking an ansatze for the
solution

ψres(x) =

 Be−ikx for x < −l
Feikx +Ge−ikx for − l < x < l

Ceikx for l < x,

find equation(s) on kn and energies En =
~2k2

n/2m. By solving them numerically show that
the complex solutions are admitted En = εrn −
iΓn/2. Find them numerically, e.g. with Mathema-
tica. These are resonances. Hint: arxiv:0705.1388.

3. Double δ-potential - transition and reflection coef-
fcients - Consider again a system in one dimension
with the potential

V (x) = V0[δ(x+ l) + δ(x− l)],

with V0 > 0. Assuming the boundary conditions
with incoming wave from the left, i.e. taking an
ansatze for the solution

ψres(x) =

 Aeikx +Be−ikx for x < −l
Feikx +Ge−ikx for − l < x < l

Ceikx for l < x,

derive transition t(k) = C/A and reflection r(k) =
B/A coefficients. Show, that their divergence, i.e.
when A = 0 (as in purely outgoing boundary con-
dition, gives the same condition on k as in the
former problem. Plot, e.g. with Mathematica, t(E)
for real E = ~2k2/2m > 0 and check if positions of
maxima correlate with εrn. Hint: arxiv:0705.1388.
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17 Literature
• W. Greiner, B. Müller Quantum mechanics - sym-
metries.

• L.E. Ballentine, Quantum mechanics. A modern
development.

• A. Messiah, Quantum mechanics, vol. I and II.

• J.J. Sakurai, J. Napolitano, Modern quantum me-
chanics.

• L. I. Schiff, Quantum mechanics.

• A. Altland, http://www.thp.uni-koeln.de/
Documents/altland_advqm_2012.pdf

• More to be added in the course.
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