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Abstract

The local moment approach (LMA) of Logan et al. and its modification is summarized here. The existence of the
local moments is taken from the outset and their values are determined through variational principle by minimizing
the corresponding ground state energy. The LMA is used to solved a multi-orbital single impurity Anderson model.
The method is also applied to solve the dynamical mean-field equations for the multi-orbital Hubbard model. In
particular, the Mott-Hubbard metal–insulator transition is addressed within this approach.
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1. Introduction

The single impurity Anderson model (SIAM) is one
of the most investigated models in condensed matter
physics [1]. This model is regarded as a prototype to
understand and describe: i) properties of metals with
magnetic atoms [2], ii) current transport through quan-
tum dots [3], iii) Mott-Hubbard metal-insulator tran-
sitions (MIT) within the dynamical mean-field the-
ory (DMFT) [4–9], and iv) a crossover between weak
and strong coupling limits and confinement phenom-
ena. The SIAM consists of a term describing band elec-
trons coupled by hybridization to a term correspond-
ing to a single impurity where the local Coulomb in-
teraction is taken into account [1]. In the featureless
hybridization limit the SIAM is solved exactly within
the Bethe ansatz or conformal field theory techniques
so the ground state and the whole excitation spectrum
as well as thermodynamics is exactly known [2]. Un-
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fortunately, these methods cannot in practice provide
dynamical quantities, for example one-particle spectral
functions or dynamical susceptibilities, for all interest-
ing energies. Also the (asymptotic) exact solvability is
not possible for a general hybridization term.

For practical applications of the SIAM one has to
rely on either a numerically exact or an analytical but
approximate solution. Numerically exact methods, like
the numerical renormalization group (NRG) [10] or the
determinant quantum Monte Carlo (QMC) [6] are very
time (CPU) consuming. In particular, the CPU is very
long when the number of orbitals is large in the NRG
case and when the temperature is low in the QMC
case. Also to extract dynamical quantities is a rather
tricky task. Reliable analytical methods are therefore
needed. One of such methods, which recovers properly
both weak and strong coupling limits, is a local moment

approach (LMA) invented recently by Logan et al. [11].
The LMA is a perturbative method around an un-

restricted Hartree-Fock solution with broken symme-
try, i.e. with a non-zero local magnetic moment. The
broken symmetry is restored at the end by taking the
average of the solutions corresponding to different di-
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rections of the local magnetic moment [11].
In the present contribution we describe the LMA

method and our implementation of it, which is different
from the original one [11] by the way of how the value
of the local moment is determined. Namely, we use the
variational principle demanding that the ground state
energy should be minimized by the physical value of the
local moment. Such a procedure allows us to easily gen-
eralize the LMA for multi-orbital models as well as for
finite temperatures and systems with disorder [12–15].
We also discuss the Luttinger-Ward generating func-
tional for the LMA and claim that this method belongs
to the class of conserving approximations. The appli-
cation of LMA for studying the electron flow through
quantum dots and the Mott-Hubbard MIT is addressed
at the end of the contribution.

2. Local moment method in one orbital SIAM

The single impurity Anderson model is given by the
Hamiltonian

HSIAM = Hc + Himp + Hhyb, (1)

where the conduction electrons are described by

Hc =
X

k,σ

εkc†
kσckσ, (2)

where εk is an energy (a dispersion relation) for an
electron in a state k and spin σ = ±1/2, the impu-
rity electrons with the local Coulomb interaction U are
represented by

Himp =
X

σ

(εd + Und−σ) ndσ, (3)

with ndσ = d†
σdσ, and the hybridization between con-

duction and impurity electrons is

Hhyb =
X

k,σ

“

Vkd†
σckσ + h.c.

”

. (4)

All local (on impurity site) properties are expressed by
the hybridization function

∆(ω) =
X

k

|Vk|
2

ω − εk
, (5)

and not by εk and Vk separately.

2.1. Mean field solution of the single impurity

Anderson model

The Hartree-Fock mean-field solution of the SIAM is
obtained by factorizing the interacting term nd↑nd↓ ≈

Fig. 1. The frequency dependent part of self-energy expressed

as the RPA series around the broken symmetry Hartree-Fock

solution. The transverse spin polarization bubbles constitute

a geometric series which can be summed up to infinity.

〈nd↑〉nd↓ + nd↑〈nd↓〉 − 〈nd↑〉〈nd↓〉 [1]. For the interac-
tion U above Uc and corresponding impurity electron
densities n̄d the mean-field solution is unstable toward
the local moment formation with non-zero moment
µ ≡ 〈nd↑〉 − 〈nd↓〉. The solution is doubly degenerate
because of two equivalent directions of the local mo-
ment µ = ±|µ|, which give the same energy of the sys-
tem. The local (impurity) Green function within the
Hartree-Fock solution is

GHF
σ (ω) =

1

ω − εd − ∆(ω) − ΣHF + iδsgnω
(6)

where the static Hartree-Fock self-energy ΣHF
σ =

U〈nσ̄〉 and δ → 0+. Since there are in principle two
possible signs of the local moment, there are two differ-
ent possible Hartree – Fock Green functions denoted
by GA

σ (ω)HF and GB
σ (ω)HF that differ only by the

sign of the local moment and depend parametrically
on its value |µ|.

The fundamental deficiency of the Hartree-Fock ap-
proximation is that it leads to a broken symmetry solu-
tion which cannot persist in the thermodynamic limit,
i.e. a single impurity cannot lead to the magnetic solu-
tion in the infinite system. Also this solution does not
recover the singlet ground state known from the exact
Bethe ansatz solution. Nevertheless it turns out to be
useful as a starting point in the further perturbative
calculation combined with the symmetry restoration.

2.2. Two self-energy description

The two Hartree-Fock Green functions GA,B
σ (ω)HF

are used in the time-dependent many-body perturba-
tion expansion. Within the random phase approxima-
tion (RPA) the polarization diagrams are

ΠAA
σσ̄ (ω) =

0ΠAA
σσ̄ (ω)

1 − U0ΠAA
σσ̄ (ω)

(7)

and correspond to spin flip processes as represented by
the Feynmann diagrams in Fig. 1.

For each type of the mean-field solution GA,B
σ (ω)HF

we have the corresponding self-energy

ΣA
σ (ω) = ΣHF

σ + U2

Z

dω′

2πi
ΠAA

σ̄σ (ω′)GA
σ̄ (ω − ω′)HF (8)
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depending on frequency and parametrically on |µ| as
well. The full RPA-Green functions GA,B

σ (ω) are con-
structed by using the Dyson equation separately for A
and B solutions. Note that GA,B

σ (ω) depends paramet-
rically on still unknown |µ|.

2.3. Symmetry restoration ansatz

To restore the spin-rotational symmetry Logan et

al. [11] proposed the following ansatz for the full sym-
metrized Green function

Gσ(ω) =
1

2

“

GA
σ (ω) + GB

σ (ω)
”

. (9)

Within the LMA the physical Green function is an av-
erage of the two solutions with equal probabilities. Al-
though each GA,B

σ (ω) are determined within the renor-
malized perturbation scheme the final Green func-
tion turns out to capture nontrivial non-perturbative
physics as was shown by Logan et al. [11] and is also
reproduced below. In particular, the LMA is able
to recover the Kondo peak in the spectral function
correctly with the exponential width.

2.4. Determining the value of local moment

The value of the local moment is a free parameter
and must still be determined. In the original approach,
Logan et al. [11] imposed the Fermi liquid condition
to determine |µ| at zero temperature. This condition
might be too restrictive at finite temperatures or in
the multi-orbital cases. Therefore we decided to find
the physical solution to the problem by minimizing the
relevant thermodynamical potential with respect to |µ|
[16]. At zero temperature the relevant potential is just
the ground state energy of the system, i.e.

Ephysical = min
{µ,n}

EG(µ, n), (10)

where in the case away of half-filling the particle den-
sity n must also be determined. The variational method
reproduces the Fermi liquid properties where they are
expected.

2.5. Ground state energy in the Anderson impurity

model

The ground state energy of the SIAM is given by
EG = 〈0|H |0〉. This quantum-mechanical average con-
sists of two parts: the bulk, which is proportional to
the system volume and is independent of the local mo-
ments, and the impurity part, which depends explicitly
on |µ|. The impurity part of the ground state energy,
expressed by the local Green function Gσ(ω) and the
hybridization function ∆(ω), is equal to [17]

Eimp =
1

2πi

X

σ

I

C

dω

»

ω + εd + ∆(ω)

2

−ω
∂∆(ω)

∂ω

–

Gσ
imp(ω), (11)

where the contour integral is over the half circle in the
upper complex plane.

2.6. LMA as a conserving approximation

According to Kadanoff and Baym [18] any approx-
imate theory is conserving if there exists a Luttinger-
Ward functional Φ[G] for this theory. It is necessary
that this functional: i) is universal, i.e. it dependents
only on the full propagator Gσ(ω) and not on the
atomic properties of the system and ii) has a functional
derivative with respect to Gσ(ω) which is by definition
equal to the self-energy of the system. It turns out [16]
that the LMA is a conserving approximation and we
can construct explicitly the Luttinger-Ward functional

Φ[G] = Φ[GA, GB ] =
1

2

“

ΦA
RPA + ΦB

RPA

”

+

+
1

2
Tr log GA

σ GB
σ − Tr log

„

1

2

“

GA
σ + GB

σ

”

«

, (12)

where Tr = T
P

σ

P

iωn
ei0+

and the functionals

ΦA,B
RPA are represented diagrammatically by the RPA

diagrams with GA,B
σ (ω) respectively. The constraint

that G = 1
2

(GA + GB) must be satisfied. Finally, the
free energy functional is given by

Ω[G] = Φ[G] + Tr log G − TrΣG (13)

and the stationarity condition δΩ[G]/δG gives the
Dyson equation and the physical solution for G.

3. Local moment approach for the

multi-orbital SIAM

3.1. Multi-orbital SIAM and LMA generalization

Single impurity Anderson model with many orbital
levels is given by the Hamiltonian:

HSIAM =
X

α,σ

(εα + Uαnα,σ̄) nα,σ +

X

σ,σ′

X

α6=β

`

U ′
αβ − Jδσσ′

´

nασnβσ′ + (14)

X

k,σ,α

Vkα

“

d†
ασckσ + c†

kσdασ

”

+
X

k,σ

εkc†
kσckσ,
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where the direct U and U ′ as well as exchange J inter-
actions between the electrons of spin σ and on orbitals
α or β are taken into account.

In the mean field approximation of the multi-orbital
SIAM we also encounter a doubly degenerate solution,
where the two possible Green functions differ only by
the sign of the impurity magnetic moment. Within
the LMA, we introduce for each pair of orbital indices
α and β the two Green functions Gαβ,A

σ (ω)HF and
Gαβ,B

σ (ω)HF that correspond to the two possible di-
rections of the total magnetic moment on the impurity.
These Hartree-Fock Green functions depend now para-
metrically on values of local moments on each of the
orbitals µα. Next we use the RPA approximation to
obtain two Green functions Gαβ,A

σ (ω) and Gαβ,B
σ (ω),

which are parametrically dependent on the local mo-
ments on each orbitals µα.

3.2. Symmetry restoration and determining the local

moment values

The symmetry restoration in the multi-orbital case is
a straightforward generalization of the previous ansatz,
i.e.

Gαβ
σ (ω) =

1

2

“

Gαβ,A
σ (ω) + Gαβ,B

σ (ω)
”

, (15)

except that now the symmetrized Green functions
Gαβ

σ (ω) depend explicitly on local moments on all of
the orbitals, i.e. |µα|. The parameters |µα| have to be
determined independently. They are found by the min-
imization of the ground state energy of the impurity
with respect to both local moment values on orbitals
µα and particle number on each of the orbitals nα

Ephysical = min
{µα,nα}

EG(µα, nα). (16)

As mentioned above, the variational procedure allows
us to extend the LMA on the multi-orbital cases, where
the Luttinger (Fermi liquid) condition for each orbital
is absent. Also the possibility of non-Fermi liquid solu-
tion is naturally included within present generalization
of the LMA [16].

4. Application to multilevel quantum dots

4.1. The model of a multilevel quantum dot

A single quantum dot with many atomic-like levels
coupled to leads are described by a multi-orbital single
impurity Anderson model:

H = Hdot + Hleads + Hdot−leads,
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Fig. 2. Spectral functions for one level (left panel) and two level

(right panel) quantum dots. Left panel: spectral function at

half-filling and U = 6 (inset: the ground state energy as a func-

tion of the absolute value of local moment |µ|; the axis starts

at the Hartree-Fock value |µ| = |µ0|). Right panel: orbitally

resolved spectral functions in the dot for U = 3, J = 0.25U ,

|ε1 − ε2| = 0.1U , and the total filling nd = 1.95. All curves are

for semi-elliptic hybridization function with the width W = 20.

The Fermi level is at zero.

where Hdot is the local impurity part of the SIAM
Hamiltonian, Hleads corresponds to the conduction
electron part of the SIAM Hamiltonian, and Hdot−leads

is equal to the hybridization term in SIAM [3].

4.2. LMA in quantum dots

The properties of transport in a quantum dot in equi-
librium, i.e. with infinitesimally small bias voltage be-
tween the leads, are determined by the spectral func-
tions on each of the orbitals. Examples of the spectral
functions are presented in Fig. 2 for the one-orbital case
(left panel) and for the two orbital case (right panel).
In the two orbital case the atomic levels are shifted
such that one of the orbital is at half filling (dashed
line) and the other is away of half filling (solid line).
The Kondo peak in the symmetric case is suppressed
by the exchange (Hund) interaction (J 6= 0), which fa-
vors parallel spin orientations. In the asymmetric case
the Kondo peak survives due to the presence of uncom-
pensated magnetic moment and is shifted toward the
lower Hubbard band. Further investigation of multi-
level quantum dots including transport properties will
be presented elsewhere [16].

5. Application to the multi-orbital Hubbard

model

5.1. Multi-orbital Hubbard model

The generalized LMA is also applied to solve the
multi-orbital Hubbard model

4
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Fig. 3. Spectral functions for two-orbital Hubbard model with

different band widths W = 2 (solid line) and W = 4 (dashed

line) on Bethe lattice with infinite coordination number. Left

panel: U = 1.2, J = 0.1U . Right panel: U = 2, J = 0.1U . The

inter-band interaction U ′ = U − 2J is fixed preserving SU(4)

symmetry. In both cases the Fermi level is at zero energy and

the bands are half filled.

HHubb =
X

ij

X

α,σ

tα
ijd

†
iασdjασ + Hlocal,

where the local part is a lattice sum of the terms which
are of the same form as the atomic part in the SIAM.
This model is solved within the DMFT where the self-
consistency condition relates the local matrix Green
functions with the matrix of the self–energies [6]. In
this way the lattice problem is mapped onto the An-
derson impurity problem which has to be solved for dif-
ferent hybridization functions until self-consistency is
achieved. In order to solve the Hubbard model within
DMFT we need to solve the SIAM for arbitrary hy-
bridization functions. The self–consistency condition
simplifies greatly for the Bethe lattice which is used in
this contribution.

5.2. LMA method in DMFT

In the recent few years the orbital-selective Mott-
Hubbard metal-insulator transition has been the sub-
ject of extensive studies [19–23].

Using the LMA to obtain the solution of the SIAM
in each of the DMFT loops the spectral functions for
two–orbital Hubbard model at zero temperature were
found. As an example, Fig. 3 shows the results for the
case with different bandwidths and non-zero Hund cou-
pling J . Since one of the spectral function is metallic-
like (finite at ω = 0) and the other is insulating-like
(vanishes at ω = 0) we conclude that the orbital selec-
tive MIT occurs in this model system.

Summary

The generalized LMA to the multi-orbital SIAM al-
lows us to efficiently solve the problems of correlated
electron systems such as multilevel quantum dots and
the Hubbard model within the DMFT. In particular it
is relatively easy to address the problems of different
band widths and also the removing of the orbital de-
generacy [24]. We experienced that the local moment

approach is an efficient method in studying these prob-
lems, in particular, when the number of the orbitals is
larger than two.
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