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1. Introduction

Ferromagnetism and Mott–Hubbard metal–insulator transitions (MIT) in
charged lattice fermion systems originate from strong repulsive interactions. Both
phenomena occur at intermediate coupling strengths and are notoriously difficult
to investigate since they require the application of non–perturbative theoretical
methods. Further complications arise in the presence of disorder. Indeed, even in
the absence of any interactions the disorder–induced delocalization–localization
transition, e.g., caused by a random distribution of two different atoms in an
alloy (“alloy disorder”), occurs at a disorder strength comparable to the band
width. For this reason disorder also requires a non–perturbative treatment. The
simultaneous presence of interactions and disorder therefore leads to a highly
non–trivial many–body problem [1, 2, 3, 4] which is still far from understood.

In this paper we review our recent investigations of interacting, alloy–
disordered lattice fermions. By solving the Hubbard model and the periodic
Anderson model (PAM) within the dynamical mean–field theory (DMFT), we
show that alloy disorder can lead to
(i) non–monotonic changes of the Curie temperature Tc as a function of some con-
trol parameter, and even to an enhancement of Tc compared to the non–disordered

(1)
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case, and to
(ii) Mott–Hubbard MITs and the formation of Mott or Kondo insulators at non–
integer electron densities.

2. Alloy–Band Splitting in the Hubbard Model

As a minimal model describing correlated lattice electrons in the presence
of disorder we consider the single–orbital (Anderson–) Hubbard Hamiltonian

HH = −t
∑

〈ij〉σ

a†
iσajσ +

∑

iσ

ǫiniσ + U
∑

i

ni↑ni↓, (1)

where t > 0 is the hopping integral for the electrons between nearest neighbor
sites, U is the on–site interaction energy between electrons with opposite spins
σ = ±1/2, niσ = a†

iσaiσ is the local electron number operator, and ǫi is the
local ionic energy which here is a random variable. In the following we assume a
bimodal probability distribution for ǫi, i.e.,

P (ǫi) = xδ(ǫi) + (1 − x)δ(ǫi − ∆), (2)

which corresponds to a binary–alloy system composed of two different atoms A
and B. The atoms are distributed randomly on the lattice and have ionic energies
ǫA,B, with ǫB−ǫA = ∆. The concentration of A (B) atoms is given by x = NA/NL

(1 − x = NB/NL), where NA (NB) is the number of the corresponding atoms.
While the concentration x and energy splitting ∆ are, in general, independent
parameters the values x = 0, 1 correspond to a non–disordered system. Hence
δ = x(1 − x)∆ is a natural parameter for the disorder strength of alloy disorder.

From the localization theorem (the Hadamard–Gerschgorin theorem in ma-
trix algebra) it is known that if the Hamiltonian HH is bounded the single–particle
spectrum will open a gap for sufficiently large ∆ ≫ max(|t|, U) [5, 6, 7]. Hence
at ∆ = ∆c the density of states (DOS) splits into a lower and an upper alloy
subbands with centers of mass at the ionic energies ǫA and ǫB, respectively. The
width of the alloy gap is of the order of ∆. The lower and upper alloy subbands
contain 2xNL and 2(1 − x)NL states, respectively, where NL is the number of
lattice sites.

Our results for the Hubbard model (1) are obtained within the DMFT
where, after arithmetic averaging over the disorder using (2), the local one–particle
Green function Gσ(τ) = −〈Tτaσ(τ)a†

σ(0)〉 is given by

Gσn =
x

G−1
σn − Σσn

+
1 − x

G−1
σn − ∆ − Σσn

. (3)

Here we use the finite temperature formalism with odd (fermionic) Matsubara
frequencies ωn indicated by the subscript n. The self–energy Σσn is determined
by the corresponding impurity problem with the self–consistent mean–field prop-
agator Gσn = 1/(iωn + µ − ησn) [8, 9]. The quantity ησn is a hybridization
function which describes the broadening of the quantum impurity levels due to
finite hopping, and µ is the chemical potential.

In the non–interacting limit U = 0 the solution (3) corresponds to the
result obtained within the coherent potential approximation (CPA) for disordered
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electrons. In this limit the DOS N(ω) = −ImG(iωn = ω + i0+)/π is found to
split into two bands for ∆ ≫ W , corresponding to alloy subbands with 2xNL

and 2(1 − x)NL states. When the number of electrons neNL coincides with the
number of available states in the lower alloy subband, the system becomes an
alloy band insulator [10] with ne 6= 2 or 4.

3. Alloy–Band Splitting in the Periodic Anderson Model

A more complicated situation is encountered in the case of the PAM with
binary alloy disorder, given by the Hamiltonian

HPAM =
∑

i,jσ

tijc
†
iσcjσ +

∑

iσ

(

εf
i f †

iσfiσ + εc
ic

†
iσciσ

)

+
∑

iσ

(

V c†iσfiσ + V ∗f †
iσciσ

)

+ U
∑

i

nf
i↑n

f
i↓. (4)

Here c†iσ (ciσ) and f †
iσ (fiσ) are creation (annihilation) operators of conduction (c)

and localized (f) electrons with spin σ at a lattice site i. The microscopic param-
eters entering into this model are the hopping amplitude tij of the c–electrons,

the random on–site energies εf
i and εc

i , and V , the local hybridization between
f– and c–electrons. The Coulomb interaction U acts only between f–electrons on
the same site. The alloy will be modeled by a bimodal probability distribution
function,

P (yi) = xδ(yi − y0) + (1 − x)δ(yi − y0 − ∆y), (5)

where yi = εc
i , εf

i are independent, random variables with reference values y0 =

εc
0, εf

0 . The alloy concentration is characterized by the parameter x and the
difference between the atomic energies of the alloy components by ∆y = ∆c, ∆f ,
respectively.

The PAM (4) is solved within the DMFT by mapping it onto a correspond-
ing single–impurity problem. The disordered averaged local Green function is
given by the matrix

Gloc
σ (τ ; {yi}) = −

(

〈Tτfσ(τ)f †
σ(0)〉 〈Tτfσ(τ)c†σ(0)〉

〈Tτcσ(τ)f †
σ(0)〉 〈Tτcσ(τ)c†σ(0)〉

)

(6)

and is expressed in terms of local self–energies, which appears in the k–integrated
Dyson equation Σσn = G−1

σn − Gσn. Here Gσn is the local Green function of the
non–interacting bath electrons, with

G−1
σn =

(

iωn + µ − εf
0 V ∗

V iωn + µ − εc
0 − ησn

)

. (7)

To understand the effect of the disorder on the physics described by the
PAM it is instructive to investigate the case U = 0 first. For U = 0 the cor-
responding impurity problem is quadratic and the functional integrals can be
performed analytically. However, in the case of a two–band system like the PAM,
where f– and c–electrons hybridize, the situation is more complicated than in
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the one–band case discussed earlier, since disorder affects a hybridized two–band
system in several nontrivial ways.

We now consider the case where the alloy disorder acts either on the c–
electrons or the f–electrons, respectively. In the case of c–electron disorder the
diagonal elements of the local Green function are given by

Gcc
σn =

x

(Gcc
σn)−1 − |V |2Gff

σn

+
1 − x

(Gcc
σn)−1 − |V |2Gff

σn − ∆c

Gff
σn =

x

(Gff
σn)−1 − |V |2Gcc

σn

+
1 − x

(Gff
σn)−1 − |V |2

(Gcc

σn
)−1−∆c

. (8)

The case of f–electron disorder is obtained by exchanging f ↔ c in (8). Alloy
disorder acting only on the c–electrons leads to a band splitting of the conduction
electrons for large enough energy splitting ∆c. As in the single–band model each
alloy subband then contains 2xNL and 2(1 − x)NL states, respectively. The c–
electron alloy subbands are separated by the energy ∆c. One might expect that,
due to the hybridization of c– and f–electrons, a similar effect would also occur
in the f–electron subsystem. However, this is not the case. Namely, as seen
from (8) a hybridization between the f–states and the 2(1−x)NL states from the
upper alloy c–electron subband is no longer possible for ∆c → ∞. In this limit
a (non–dispersive) f–level with 2(1 − x)NL states appears at the energy εf

0 , in
analogy with the case without hybridization (V = 0). Consequently, for infinitely
strong binary alloy disorder in the c–electron system 2(1−x)NL f–electron states
become localized for arbitrary but finite values of V . So for ∆c → ∞ only
2(1 − x)NL c–electron states, rather than 4(1 − x)NL states, are split off from
the spectrum and are shifted to high energies. We note that, although the band
splitting scheme is different from the single–band model, the alloy with hybridized
c– and f–electrons can still be a band insulator for total densities different from
integer values (2 or 4). A schematic plot in Fig. 1 shows the projected density
of states, N b(ω) = −Im

∑

σ Gbb
σ (ω)/π, where b = c or f , for a system without

[panel (a)] and with [panel (b)] disorder. An analogous analysis of f–electron
disorder shows that in this case, at large ∆f , the f–electron band is split into
alloy subbands. Hybridization between the 2(1 − x)NL states from the upper
alloy f–band and the c–electrons is again prevented when ∆f → ∞. Therefore,
the corresponding fraction of the c–electron band is unchanged, i.e., remains at
the same energies as in the non–disordered case. We thus see that even in the
absence of interactions binary alloy disorder affects a hybridized two–band system
and a single–band system in quite different ways.

4. Metal–insulator transition at fractional densities

In the absence of disorder (1) reduces to the usual Hubbard model where a
Mott–Hubbard MIT is known to occur upon increasing the interaction strength
U , provided the number of electrons Ne is commensurate with the number of
lattice sites NL (or, more precisely, if the ratio Ne/NL is an odd integer). At
zero temperature this is a continuous transition whereas at finite temperatures
the transition is of first–order [9]. Surprisingly, in the presence of binary alloy
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Fig. 1. Binary alloy splitting of the c– and f–electron DOS for U = 0. a) No disorder

in the c–electron system (∆c = 0). b) Limit of strong disorder, ∆c
→ ∞; in this case

2(1 − x)NL non–dispersive f–electron states remain at εf and 2(1 − x)NL c–electron

states are shifted to high energies.

disorder the MIT can occur at fractional densities [10]. We describe this situation
by employing the Hubbard model (1) with the disorder distribution (2).

The Mott–Hubbard metal–insulator transition can occur at any density n =
x or 1+x, corresponding to a half–filled lower or upper alloy subband, respectively,
as shown schematically for n = x in Fig. 2. The Mott insulator can then be
approached either by increasing U when ∆ ≥ ∆c (alloy band splitting limit), or
by increasing ∆ when U ≥ Uc (Hubbard band splitting limit). The nature of the
Mott insulator in the binary alloy system can be understood physically as follows.
Due to the high energy cost of order U the randomly distributed ions with lower
(higher) local energies ǫi are singly occupied at n = x (n = 1+x), i.e., the double
occupancy is suppressed. In the Mott insulator with n = x the ions with higher
local energies are empty and do not contribute to the low–energy processes in the
system. Likewise, in the Mott insulator with n = 1 + x the ions with lower local
energies are double occupied implying that the lower alloy subband is blocked and
does not play any role.

For U > Uc(∆), in the Mott insulating state with binary alloy disorder,



6

∆

ω

µ

A(  )
2(1−x)N2xN

2N

xN

LAB UAB

∆

L

LLxN

ω

µ

µµ

µ µ

U

L

L

U

LHB

UHB

INSULATOR

M
E

TA
L

U+ε

∆+ε∆+ε

U+ε

εε LHB LHB

UHB

UHB

UAB UAB

U< ∆ U> ∆

alloy Mott 
insulator

alloy charge transfer
insulator

~ ∆
~ U

Fig. 2. Left: Schematic plot representing the Mott–Hubbard metal–insulator transi-

tion in a correlated electron system with the binary alloy disorder. The shapes of the

spectral functions A(ω) are shown for different interactions U and disorder strengths ∆.

Increasing ∆ at U = 0 leads to splitting of the spectral function into the lower (LAB)

and the upper (UAB) alloy subbands, which contain 2xNL and 2(1 − x)NL states, re-

spectively. Increasing U at ∆ = 0 leads to the occurrence of lower (LHB) and upper

(UHB) Hubbard subbands. The Fermi energy for filling n = x is indicated by µ. At

n = x (or n = 1 + x, not shown in the plot) the LAB (UAB) is half–filled. In this

case an increase of U and ∆ leads to the opening of a correlation gap at the Fermi level

and the system becomes a Mott insulator. Right: Two possible insulating states in the

correlated electron system with binary–alloy disorder. For U < ∆ the insulating state is

an alloy Mott insulator with an excitation gap in the spectrum of order U . For U > ∆

the insulating state is an alloy charge transfer insulator with an excitation gap of order

∆; after Ref. [10]

one may use the lowest excitation energies to distinguish two different types of
insulators. Namely, for U < ∆ an excitation must overcome the energy gap
between the lower and the upper Hubbard subbands. We call this insulating
state an alloy Mott insulator. On the other hand, for ∆ < U an excitation must
overcome the energy gap between the lower Hubbard subband and the upper
alloy–subband. We call this insulating state an alloy charge transfer insulator.
In the left panel of Fig. 3 we present the evolution of the DOS for the Hubbard
model at filling n = 0.5 and U = 3 showing a Mott-Hubbard type MIT. Clearly,
there exists a gap at a fractional density of electrons.

A similar opening of a correlation gap, obtained by increasing the alloy band
splitting ∆c, is found for the PAM; see right panel of Fig. 3. This is caused by the
splitting of the c–electron band due to binary alloy disorder and the correlations
between the f–electrons. Namely, when the energy splitting ∆c is much larger
than the width of the c–electron band the total number of available low–energy
states is reduced from 4NL to [4− 2(1− x)]NL = 2(1 + x)NL, whereby the filling
effectively increases by a factor of 4/[2(1 + x)], such that neff

tot = 2ntot/(1 + x),
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Fig. 3. Left: Spectral function of the Hubbard model at n = x = 0.5 and U = 3 for

different values of the disorder ∆. In the insulating phase (∆ = 2) a Mott gap is opened

at the chemical potential (ω − µ = 0); after Ref. [10]; Right: Spectral function of c–

electrons in the PAM for different ∆c at x = 0.3 (other parameters: U = 1.5, V = 0.5,

εc
0 − εf

0 = 3.25 and ntot = 1.3) obtained within QMC and maximal entropy at T = 1/60.

By increasing ∆c a pseudogap opens, which becomes a real gap for T → 0; after Ref.

[12].

if ntot < 2(1 + x). For the filling ntot = 1.3 studied in Fig. 3 the concentration
x = 0.3 is a special case since then neff

tot = 2. The system is then effectively at half–
filling and behaves as a Kondo insulator at large U , ∆c, and low temperatures.
The transition from a metal to a Kondo insulator at non–integer filling predicted
here for the PAM is a counterpart to the Mott–Hubbard metal–insulator transition
at non–integral filling in the one–band Hubbard model discussed in [10, 11].

5. Disorder–induced enhancement of the Curie temperature

Itinerant ferromagnetism in the non–disordered Hubbard model (1) occurs
off half–filling and if the DOS is asymmetric and peaked at the lower edge [13, 14].
While the Curie temperature increases with the strength of the electron interac-
tion one would expect it to be lowered by disorder. However, our investigations
show that in some cases the Curie temperature can actually be increased by binary
alloy disorder [11, 15].

Indeed, the Curie temperature as a function of alloy concentration exhibits
very rich and interesting behavior as shown in the left panel of Fig. 4. At some
concentrations and certain values of U , ∆ and n, the Curie temperature is en-
hanced above the corresponding value for the non–disordered case (x = 0 or 1).
This is shown in the upper left panel of Fig. 4 for 0 < x < 0.2. The relative
increase of Tc can be as large as 25%, as is found for x ≈ 0.1 at n = 0.7, U = 2
and ∆ = 4 (upper left panel of Fig. 4).

This unusual enhancement of Tc is caused by three distinct features of in-
teracting one–band electrons in the presence of binary alloy disorder:
(i) The Curie temperature in the non–disordered case, T p

c ≡ Tc(∆ = 0), depends
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Fig. 4. Left: Curie temperature in the Hubbard model as a function of alloy concen-

tration x at U = 2 (upper panel) and 6 (lower panel) for n = 0.7 and disorder ∆ = 1

(dashed lines) and 4 (solid lines); after refs. [11, 15]; Right: Curie temperature in the

PAM as a function of alloy concentration x and energy splitting ∆f (left column) and

∆c (right column) for ntot = 1.3 and εc
0−εf

0 = 3.25. Strong c–electron disorder enhances

Tc compared to its values at x = 0 or 1; after Ref. [12].

non–monotonically on the band filling n [13]. Namely, T p
c (n) has a maximum at

some filling n = n∗(U), which increases as U is increased; see also the schematic
plots in Fig. 5.
(ii) As described above, in the alloy–disordered system the band is split when
∆ ≫ W . As a consequence, for n < 2x and T ≪ ∆ electrons occupy only the
lower alloy subband, and for n > 2x both the lower and upper alloy subbands
are filled. In the former case the upper subband is empty while in the latter case
the lower subband is completely full. Effectively, one can therefore describe this
system by a Hubbard model mapped either onto the lower or the upper alloy sub-
band, respectively. The second subband plays a passive role. Hence, the situation
corresponds to a single band with the effective filling neff = n/x for n < 2x and
neff = (n − 2x)/(1 − x) for n > 2x. It is then possible to determine Tc from the
phase diagram of the Hubbard model without disorder.
(iii) When ∆ ≫ W the disorder leads to a reduction of T p

c (neff), i. e. Tc(n) ≈
αT p

c (neff), where α = x if the Fermi level is in the lower alloy subband and
α = 1 − x if it is in the upper alloy subband. Hence, as illustrated in Fig. 5,
Tc can be determined by T p

c (neff). Surprisingly, then, it follows that for suitable
values of U and n, the Curie temperature of a disordered system can be higher
than that of the corresponding non–disordered system (cf. Fig. 5).

As shown in the right panel of Fig. 4, the Curie temperature for the transi-
tion to the ferromagnetic state in the PAM is therefore a non–monotonic function
of the alloy concentration x. In particular, the behavior is quite different for
disorder acting on the f– or the c–electrons.

f–electron disorder: In agreement with Meyer [16] the presence of f–electron
disorder always reduces the Curie temperature relative to its non–disordered val-
ues at x = 0 or 1. For strong enough disorder Tc eventually vanishes, e.g., at
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Fig. 5. Schematic plots explaining the filling dependence of Tc for interacting electrons

with strong binary alloy disorder. Curves represent T p
c , the Curie temperature for the

pure system, as a function of filling n at two different interactions U1 ≪ U2. Left: For

n < x, Tc of the disordered system can be obtained by transforming the open (for U1)

and the filled (for U2) point from n to neff = n/x, and then multiplying T p
c (n/x) by

x as indicated by arrows. One finds Tc(n) < T p
c (n) for U1, but Tc(n) > T p

c (n) for U2.

Right: For n > x, Tc of the disordered system can be obtained by transforming T p
c (n)

from n to neff = (n−2x)/(1−x), and then multiplying T p
c [(n−2x)/(1−x)x] by 1−x as

indicated by arrows. One finds Tc(n) > T p
c (n) for U1, but Tc(n) < T p

c (n) for U2; after

Ref. [11, 15].

x = 0.28 and x = 0.75, respectively, for ∆f = 1.7 (right panel, left column of
Fig. 4). This is due to the splitting of the f–electron band at large ∆f which
increases the double occupation of the lower alloy subband; this reduces the local
moment of the f–electrons and thereby Tc.

c–electron disorder: By contrast, c–electron disorder leads to a much more
subtle dependence of Tc on concentration x. Namely, for increasing energy split-
ting ∆c there are, in general, three different features observed, the physical origin
of which will be discussed in more detail later:
(i) at x = 1, i.e., in the non–disordered case, Tc is reduced,
(ii) a minimum develops in Tc at x = ntot − 1 > 0;
(iii) Tc is enhanced over its non–disordered values at x = 0 or 1. Altogether this
leads to a global maximum in Tc vs. x. While the decrease of Tc at x = 1 is a
simple consequence of the reduction of the energy difference between the f–level
and the c–electron band, εc − εf = εc

0 − εf
0 − ∆c, for increasing ∆c, the latter

effects are more subtle.
We now explain the maximum in Tc vs. x. It can be understood within

the following model based on an ansatz for the Curie temperature, Tc(U, V, µ) =

T 0
c (U, V, µ)F c(µ − εc

0)F
f (µ − εf

0 ), which implies that the formation of local f–
electron moments (F f ) is assumed to be independent from the c–electron medi-
ated ordering of those moments (F c). In fact, for the RKKY model this ansatz
can be microscopically justified within a static mean–field theory. The two func-
tions F c, F f are determined by Tc calculated within DMFT for the non–disorder
case at fixed µ−εc

0 or µ−εf
0 , respectively; they are shown in Fig. 6(a) and 6(b) for
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one set of parameters. The prefactor T 0
c is determined by the requirement that

the dimensionless functions F f and F c be equal to one at their maxima. We note
that F f (µ − εf

0 ) has a maximum when the f–level is half–filled (µ = εf
0 + U/2),

i.e., when the local moment is maximal.
The Curie temperature in the presence of c–electron disorder can now be

estimated by averaging over the c–electron part, F c, giving rise to the disorder–
dependent function Fc(x, µ− εc

0) = [xF c(µ− εc
0 + ∆c) + (1− x)F c(µ− εc

0)]. The
linear dependence on the alloy concentration can again be justified microscopically
within a static mean–field theory for the RKKY model, where Tc depends linearly
on the DOS at the chemical potential. Tc is now determined for each concentration
x. We calculate µ, which is an implicit function of x, in the non–hybridized limit
(V = 0) within a rigid band approximation. The dependence of the resulting

functions Fc(x, µ− εc
0) and F f (µ− εf

0 ) on x are shown in Fig. 6(c) for ∆c = 2.0.

In general F f (µ − εf
0 ) has a global maximum at those values of x for which the

f–level is half–filled [see Fig. 6(c)]. By contrast, Fc(x, µ− εc
0) is characterized by

a wide minimum, related to the formation of the pseudo–gap in the interacting
DOS seen in Fig. 3. This minimum reaches zero, i.e., Fc(x, µ − εc

0) = 0, for a
finite range of x values as shown in Fig. 6(c). The resulting Tc(x) obtained by the
product of these two functions agrees remarkably well with the numerical result
obtained by DMFT as shown in Fig. 6(d).

6. Summary

We showed that the interplay between alloy disorder and electronic corre-
lations can lead to a remarkable increase of the Curie temperature, both in the
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Hubbard and the periodic Anderson model. Our results provide a basis for further
investigation of alloys made of strongly correlated lattice fermions, including elec-
tronic ferromagnets such as Co1−xFexS2 and URh1−xCoxGe, the Kondo insulator
FeSi1−xGex, and ultracold fermionic atoms in optical lattices in the presence of
pseudo–random binary disorder, trapped by harmonic potentials.
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