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3 for 50-61 pt.
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Krzysztof Byczuk
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Meeting ID: 489 936 4871
Passcode: 3XTpkb

Permanent links for tutorials:

Maciej Lisicki
https://zoom.us/j/98076111296?pwd=

WDJnZkp5STJtK0ZYTWhXWVRLbDJ1UT09
Meeting ID: 980 7611 1296
Passcode: EbHa0C

Marta Wacławczyk
https://zoom.us/j/98822265791?pwd=

TWMybjZ1UzZ1WkN5bk9KSDE4ZTI1Zz09
Meeting ID: 988 2226 5791
Passcode: 58D7k5

Dates of colloquia and exams:

colloquium I, 30/11/2020, 9:15-12:00, online

colloquium II, 18/01/2021, 9:15-12:00, online

written exam I, 08/02/2021, 9:15-13:00, online

oral exam I 10-12/02/2021, 10:00-16:00, online

written exam II, 25/02/2021, 9:15-13:00, online

oral exam II, 26/02/2021, 10:00-16:00, online

1 Week I, 15-21/10/2020

1.1 Lecture

I. Microcanonical ensemble:
&1. Foundations of statistical physics - a goal of sta-

tistical physics, few examples, a large number of com-
ponents in macroscopic systems, the definition of mol
and Avogadro number Na = 6, 02214076 · 1023, few
examples, (the mol’s day: October 23, from 6:02 am to
6:02 pm), discrete energy levels in quantum systems,
e.g. quantum well and harmonic oscillator, very small
distances between energy levels in macroscopic systems
and very fast time of transition between neighboring
levels, microscopic (mechanical) description of many-
body system on quantum and classical levels, Schrodin-
ger and Newton equations, a problem with huge num-
ber of possible information about macroscopic systems,
in thermodynamic equilibrium only a small number of
variables is sufficient to characterize a macroscopic sys-
tem, thermodynamic (hydrodynamic) description as an
alternative to mechanical ones, statistical physics aims
to derive thermodynamics from mechanics, concepts of
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microstates and macrostates, extensive and intensive
variables, two-level system as an example to illustrates
micro and macrostates.

&2. basic postulates of statistical mechanics - hypo-
thesis of molecular chaos due to Ludwik Boltzmann,
for an isolated system in thermal equilibrium all possi-
ble microstates realizing any macrostates are equally
probable, hypothesis of equal probability a priori, two
heuristic justifications (element of ignorance and self-
averaging hypothesis), definition of statistical ensem-
ble, equivalence between averaging in time and avera-
ging over a statistical ensemble (ergodic hypothesis),
a prescription how to find corresponding probabilities,
pi = Ωi/Ω, where Ωi is the number of states realizing
a given macrostate y = yi and Ω is the total num-
ber of microstates, short remainder of formulae in the
probability theory.

1.2 Quizes

1.2.1 Quiz 1

The value of Avogadro number is

1. 6.02214076 · 1026 1/mol

2. 6.02214076 · 1023 1/mol

3. 1.602176634 · 10−19 1/mol

4. 6.62607015 · 10−34 1/mol

Your answer is 2.

1.2.2 Quiz 2

In thermal equilibrium

1. positions of particles are constant in time.

2. momenta of particles are constant in time.

3. density of particles is constant in time.

4. wave function of particles is constant in time.

Your answer is 3.

1.2.3 Quiz 3

The correct sentence is

1. a macrostate can be realized by many microstates.

2. a microstate can be realized by many macrostates.

3. a microstate is only a state of a small system.

4. a macrostate is too big to be observed.

Your answer is 1.

1.3 Tutorial

1. Gaussian integrals - Compute the integral I =∫∞
−∞ e−αx

2
dx by firstly computing I2 in the po-

lar coordinates. By taking a derivative of I over α
determine the integral J =

∫∞
−∞ x2e−αx

2
dx.

2. Gamma function - Gaussian integrals in the form
Im = 2

∫∞
0 xme−αx

2
dx, with m > −1, formu-

late in terms of the gamma function Γ(z) =∫∞
0 yz−1e−z

2
dz. Show the recursion relation Γ(n+

1) = nΓ(n). Compute explicitly Γ(1/2), Γ(l+1/2),
Γ(1), Γ(l + 1), for l = 1, 2, 3, ....

3. Ball in n-dimensions - Find the volume of a ball
and the area of a sphere with radius r in n dimen-
sions. The results express in terms of the Gamma
function (generalized factorial function).

4. Stirling approximation - Show that for
n � 1 we can approximate n! ≈√

2πn nne−n+1/(12n)+O(1/n2). Write this ap-
proximation for lnn!. Discuss the role of leading
terms, 1/n corrections, and compare with an
asymptotic of the gamma function.

5. Probability theory - We throw two dice. What is a
probability that a sum of results is six? What is the
average sum of the results and its variance? What
is the probability distribution function. (Using this
example recollect: probability space, frequency de-
finition of probability, axiomatic definition of pro-
bability, discrete random variables, probability di-
stribution function of a random variable, moments
of a random variable).

6. Probability theory - A stone is falling down from
a shelf at a height h. This event is registered by
a photo camera at discrete and random times. On
each photograph we measure the distance, which
the stone has gone. Find a probability distribution
function for these distances. Compute the average
distance and the standard deviation. What is a
probability that the stone was registered at a di-
stance lower then one standard deviation from the
average. (Using this example recollect: continuous
random variables and their probability distribu-
tions, averages and other means).

1.4 Homework problems

1. COVID test - A large group of people is tested
for COVID-19 disease. The proportion of ill pe-
ople that are correctly identified with positive test
result equals 0.9. Tests’ specificity (i.e. the per-
centage of healthy people who are correctly iden-
tified as not having some illness) equals 0.95. It
is known that 10% of people from the group get
positive COVID test result. Determine the true
proportion of sick individuals in this group.

2. Stirling’s formula - Use the Stirling’s formula to
estimate the term:
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1 · 3 · 5 · · · · · (2n+ 1)

Use the Stirling’s formula to estimate the term:

2 · 4 · 6 · · · · · (2n)

Use the two to calculate

∞∏
n=1

2n
2n− 1

2n
2n+ 1

3. Tennis players - Father, trying to motivate his Son
to practice her tennis skills, promises him a prize
if he wins at least two games in a row with the
Father and the Club Master playing according to
one of the schemes: Father – Club Master – Father
or Club Master – Father – Club Master. Which
order should the clever Son choose to maximise
the probability of winning the prize if the chance
to with with the Father is pf = 0.8, while for the
Club Master it is pm = 0.4?

4. Bertrand’s box paradox - There are three boxes: a
box containing two gold coins, a box containing
two silver coins, a box containing one gold coin
and one silver coin. We choose one of the boxes
at random and withdraw one of the coins from
it, which happens to be a gold coin. What is the
probability that theother coin from the same box
is also gold?

5. Gaussian distribution - For a Gaussian distribu-
tion, given by

N (x;µ, σ) = N exp
(
− (x− µ)2

2σ2

)
(a) Find the normalising constant N . Hint: the in-
tegral is easier to do in polar coordinates
(b) Find the mean and the standard deviation.
(c) Find the cumulative distribution function for
the normal distribution.
(c) If X is a random variable with a standard nor-
mal distribution, i.e. X ∼ N (x; 0, 1), what is the
distribution of the variable X2 (known as the chi-
squared distribution)?

2 Week II, 22-28/10/2020

2.1 Lecture
&3. Microcanonical ensemble - isolated system with
constant internal energy, U as an independent ma-
croscopic (thermodynamic) variable, a model of clas-
sical ideal gas, microstates {~x1, ..., ~xN , ~p1, ..., ~pN} and
macrostates {U, V,N}, an expression Ω(U, V,N) for
the total number of microstates at a given {U, V,N},
role of constants in integration measure, probability
distribution P (~x1, ..., ~xN , ~p1, ..., ~pN ), the total number
of microstates Γ(U, V,N) up to energy U , units of Γ
and Ω, density of states (DOS) in many-body system

Ω(U, V,N = ∂Γ(U, V,N)/∂U)V,N , explicit calculation
of Γ and Ω for the ideal classical gas at finiet N and in
the large N limit, monotonicity of Γ and Ω vs. U for
systems with unbound energy spectrum, a remark on
systems with bounded energy spectrum and ńegative
absolute temperatures", ln Γ and ln Ω and their equiva-
lence in large N limit, holographic principle in thermal
physics.

&4. Subsystems in thermal equilibrium - two subsys-
tems with a thermal interaction in the microcanonical
ensemble, the most probable state in equilibrium, the
thermal equilibrium condition, the Boltzmann defini-
tion of an entropy S(U, V,N) = kB ln Ω(U, V,N), the
Boltzmann constant kB = 1, 380649 · 10−23 J ·K, abso-
lute temperature 1/T = (∂S(U, V,N)/∂U)V,N , the en-
tropy as a measure of microstates and the most proba-
ble macrostate, an information entropy and its proper-
ties, additivity of the entropy, an energy transfer from
a hotter to a colder system, increase of the entropy
in spontaneous processes as a consequence of appro-
aching the system toward the most probable state, the
probabilistic interpretations of the second law of ther-
modynamics, different examples of processes leading
to increasing the entropy, equilibrium conditions with
thermal, mechanical and chemical interactions, a pres-
sure p/T = (∂S(U, V,N)/∂V )U,N and a chemical po-
tential µ/T = −(∂S(U, V,N)/∂N)U,V .

2.2 Quizes
2.2.1 Quiz 4

In the microcanonical ensemble a conserved quantity
is

1. temperature.

2. pressure.

3. internal energy.

4. ideal gas.

Your answer is 3.

2.2.2 Quiz 5

A correct integral measure in the phase space is

1.
∏N
i=1

d3xid3pi
h3NN ! .

2. 1
h3NN !

∏N
i=1 d3xid3pi.

3. 1
hNN !

∏N
i=1 d3xid3pi.

4. 1
h3NN

∏N
i=1 d3xid3pi.

Your answer is 2.

2.2.3 Quiz 6

The Boltzmann entropy is given by

1. S = kB ln Ω.

2. S = kB ln Γ.
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3. S = −kB ln Ω.

4. S = 1
kB

ln Γ.

Your answer is 1.

2.3 Tutorial

1. Identical particles in a box - Consider N balls,
which can occupy the left or the right half of the
container. In the case of N = 4 write down all po-
ssible microstates. Let the macrostate be defined
by the number of balls in the left half. What are
the possible macrostates in this case? How many
microstates can realize a given macrostate? What
is a probability to find a given macrostate? In the
case of N = 10 find all possible macrostates and
probabilities of them occurring. Which macrostate
is the most probable? Assume that in every second
the system changes its microstate and all particles
are distributed among the left and the right half
with equal probabilities. What is the average time
after which we would see all particles in the left
half if N = 10, 40, 109, and 1023? Compare with
other natural time scales.

2. Two-level system - It is a very popular model de-
scribing localized spins 1/2, photons with polari-
zation or atoms in certain states. For spins 1/2 it
is visualized that each particle has a magnetic mo-
ment pointing up or down. Write down all possible
microstates in the case ofN = 2, 3, and 4 particles.
For the spin system the natural variables descri-
bing different macrostates are the total number of
particles N and the "magnetization"M = N+ −
N−, where N± is the numer of moments pointing
up and down, respectively. Derive a formula for the
number of microstates Ω(N,M), realizing a given
macrostate with N and M . Find the total num-
ber of states Ω(N) =

∑
M Ω(N,M). In the limit

of large N show that Ω(N,M) ≈ Ω(N, 0)e−M
2/2N

is Gaussian. Show that Ω(N, 0) ≈
√

2/πN2N and
estimate its value for N = 100. Which are the
most probable microstates?

3. Distribution of particles in a container - Consi-
der N identical, distinguishable particles occupy-
ing k cells. It is a model of a discrete space with
particles in it. Microstates are given by the di-
stribution of particles in each cell. Macrostates
are characterized by providing numbers of par-
ticles ni in each cell i. Derive the formula for
the number of microstates for a given macro-state
Ω(n1, n2, ..., nk) = N !/n1!n2! . . . nk!. With a fixed
number of particlesN =

∑
i ni show that the most

probable distribution of particles is such that in
each cell there is ni = N/k of them. In other
words, the distribution is uniform.

4. Transition times in classical systems - A mean free
length (the mean length of a path between two
consecutive collisions) in one mole of H2 in atmo-
spheric pressure and temperature T = 300 K is

l = 2.7 · 10−7 m. The mean speed of particles is
v = 500 m/s. Estimate a number of collision in one
second. How frequently does this system undergo
from one micro-state to the other?

5. Transition times in quantum systems - First con-
sider two spins 1/2 in a quantum state | + −〉.
At time t = 0 the Heisenberg interaction H ′ =
J(S+

1 S
−
2 + S−1 S

+
2 ) is switched on with J =

0.00014 eV. In the lowest order of time-dependent
perturbation theory estimate the time that the
system transits to the state | −+〉. Next consider
N = 1023 spins with the total magnetization equal
to zero. Estimate how frequently the system un-
dergoes from one micro-state to the other without
changing the zero magnetization macro-state.

2.4 Homework problems
1. The Cauchy distribution - Find the normalization

and the first two moments (mean and the second
moment) for the Cauchy distribution

p(x) = N κ

(x− a)2 + κ2 .

2. Rare fluctuation in the air - An air in a room of
dimensions 3m×3m×3m is under a normal condi-
tions (atmospheric pressure and T = 300K). Esti-
mate a probability that at a given time in a cubic
volume a) 1cm3, b) 1A◦ (angstrom) at any place
in this room there is no air due to a statistical
fluctuation. Hint: p ∼ exp(−N(v/V )), where N is
a number of particles, V is a volume of the room,
and v is a volume of the small cube.

3. Chain of rods - N rods o length a are connected
together one to each other (the end of one to the
beginning of the next) forming a chain. The first
rod and the last one are hung on walls remote by
a distance l, where l < Na. Find the number of
possible microstates Ω. Estimate ln Ω at large N .
Hints: rods are infinitely thin and placed parallel
to each other. If N± is the number of rods pointed
to the right/left then we must have l = |N+−N−|
and a number of possible combinations we can find
similarly as in the problem with spins.

4. Checkerboard - Suppose we have a 6 × 6 checker-
board. Each square of the board represents a lo-
calized spin −1/2 particle with two possible spin
orientations, one spin-up marked by X and the
other spin-down marked by O. We assume that
every configuration of the checkerboard is equally
likely. The macrostate is defined by a number of
X’s. What is a probability of a single microstate?
How many microstates correspond to the macro-
state ”15 up spins”?

3 Week III, 28/10-04/11/2020

3.1 Lecture
II. Canonical ensemble:
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&1. Canonical ensemble - A system and its reservoir,
thermal equilibrium, definition of the canonical ensem-
ble.

&2. Boltzmann distribution - description of the sys-
tem coupled thermally to the reservoir with tempe-
rature T , derivation of the Boltzmann distribution,
p(ε) = e−βε/Z, β = kBT .

&3. Partition function - normalization factor Z =∑
ε e
−βε, derivation of internal energy from Z, energy

fluctuations and the specific heat at constant volume.
&4. Pressure - microscopic force and microscopic

pressure, the average pressure and its thermodynamic
definition, different expressions for pressure.

&5. Heat and the laws of thermodynamics - thermo-
dynamic reminder, reversible and irreversible proces-
ses, second law of thermodynamics i n four equivalent
formulations, heat and entropy, first law of thermody-
namics, work and heat, microscopic understanding of
work and of heat.

&6. Helmholtz free energy - definition of Helmholtz
free energy F (T, V,N) = U − TS, minimization of the
free energy at isothermal processes, different thermo-
dynamic relations from the free energy, physical inter-
pretation of the free energy as an accessible work in
isothermal processes, relation between the free energy
and the partition function.

3.2 Quizes
3.2.1 Quiz 7

In the canonical ensemble a set of independent ther-
modynamic variable is

1. S, U , V .

2. U , V , N .

3. T , S, N .

4. N , V , T .

Your answer is 4.

3.2.2 Quiz 8

In reversible processes the pressure is expressed by

1. p = −
(
∂U
∂V

)
S
.

2. p = −
(
∂U
∂V

)
T
.

3. p = −
(
∂V
∂U

)
S
.

4. p = −
(
∂V
∂U

)
T
.

Your answer is 1.

3.2.3 Quiz 9

Work and heat changes in reversible processes are given
by

1. δW =
∑
s εsdP (εs) and δQ = −

∑
s psP (εs)dV ,

respectively.

2. δW = −
∑
s psdP (εs) and δQ =

∑
s εsP (εs)dV ,

respectively.

3. δW =
∑
s psP (εs)dV and δQ = −

∑
s εsdP (εs),

respectively.

4. δW = −
∑
s psP (εs)dV and δQ =

∑
s εsdP (εs),

respectively.

Your answer is 4.

3.3 Tutorial
1. Microcanonical ensemble - equilibrium conditions

- An isolated system of the energy U , volume V ,
and number of particles N (microcanonical en-
semble) is split with a partition that allows to
exchange the energy and particles and change
the volumes of subsystems, i.e. Ui, Vi and Ni,
with i = 1, 2, are random variables which are
constrained U1 + U2 = U , V1 + V2 = V and
N1 +N2 = N . Let Ωi(Ui, Vi, Ni) be the number of
microstates corresponding to a given macrostate
(Ui, Vi, Ni) of each subsystem. Compute the to-
tal number of microstates for a given macrostate
of the whole system. Maximizing the correspon-
ding probability, find the equilibrium conditions
for those subsystems. Hints: Introduce an entropy
S = kB ln Ω, temperature 1/T = (∂S/∂U)V,N ,
pressure p/T = (∂S/∂V )U,N and a chemical po-
tential −µ/T = (∂S/∂N)U,V .

2. One-particle density of states in quantum mecha-
nics - One-particle density of states (DOS) is de-
fined as ρ(ε) = (1/V )

∑
k δ(ε − εk), where εk is a

given dispersion relation and k is a d-dimensional
wave vector, accordingly quantized. Find an ana-
lytic expression for the DOS in the case of a
free particle with the parabolic dispersion rela-
tion εk = ~2k2/2m, where ~ is the Planck con-
stant and m is the mass of a particle. Assume here
periodic boundary conditions in a d-dimensional
hypercube with the volume V . Discuss and plot
important cases with d = 1, 2, and 3. Find
the total number of states up to an energy E.
Hints: δ(f(x)) =

∑
x0
δ(x − x0)/|f ′(x0)|, where

f(x0) = 0.

3. Number of microstates for a classical ideal gas
in microcanonical ensemble - For a classical
ideal gas in three dimensions find Ω(U, V,N)
and Γ(U, V,N). Find the corresponding expan-
sions in case of large N . Hints: Γ(U, V,N) =∫
d3Nxd3Np/(h3NN !)Θ(p −

∑N
i=1 p

2
i /2m),

Ω(U, V,N) = (∂Γ(U, V,N)/∂U)V,NδU , and
apply the Stirling formula n! = nne−n. A schema-
tic derivation and final results will be shown at
the lecture.

4. Thermodynamics of an ideal classical gas from mi-
crocanonical ensemble - Applying results of the
previous problem, also discussed at the lecture, de-
termine the temperature T , the pressure p and the
chemical potential µ for an ideal classical gas in
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three dimensions. Show the energy equipartition
theorem in this example and derive an equation of
state for this system.

5. Generalized coordinates and the number of degrees
of freedom - Discuss examples of generalized coor-
dinates in mechanical systems and the number of
degrees of freedom using a few examples.

3.4 Homework problems

1. Monoatomic crystal - Atomic nuclei of a certain
monoatomic crystal have spin j = 1. Each of them
can be in one of the three states characterized by
the values mj = −1, 0,+1 of the magnetic quan-
tum number (i.e. the spin projection onto a cho-
sen quantization axis). Energy of a single nucleus
is equal ε > 0, when mj = ±1, and 0 in the state
mj = 0. Compute the number of microstates cor-
responding to a fixed value U of the total energy of
the system of N such nuclei. Calculate the entropy
of this system as a function of U and N .

2. Interfacial region between two fluids Consider two
adjoining fluids (fluid 1 and fluid 2) which are ho-
mogeneous up to their common interface. In a thin
interfacial region between the fluids the composi-
tion c of the fluid 1 changes from 1 to 0. Let us
assume the interfacial region can be treated as a
lattice composed of P flat layers of assigned com-
position. The layers cannot be interchanged. Each
layer contains N molecules. Calculate the entropy
of the interfacial region as a function of N and cp,
where cp is an assigned composition of the p-th
layer (for this make use of the Stirling’s formula).

3. One-particle density of states in quantum mecha-
nics - One-particle density of states (DOS) is de-
fined as ρ(ε) = (1/V )

∑
k δ(ε − εk), where εk is a

given dispersion relation and k is a d-dimensional
wave vector, accordingly quantized. Find an ana-
lytic expression for the DOS in the case of a
free particle with the parabolic dispersion relation
εk = c|k|α, where c is a constant in an appropriate
unit (find it), and α > 0 is a constant. Assume here
periodic boundary conditions in a d-dimensional
hypercube with the volume V . Discuss and plot
important cases with d = 1, 2, and 3. Find the
total number of states up to an energy E.

4. Six particles with quantized energies - A system
contains N = 6 particles with a total energy
U = 6ε. Distribution of particles among quanti-
zed energy levels, 0, ε, 2ε, 3ε, 4ε, 5ε, and 6ε is
arbitrary. Find all possible macrostate with a fi-
xed total energy, their number of microstates, and
find the average occupation of each energy level.

4 Week IV, 05-11/11/2020

4.1 Lecture

&7. Ideal gas in canonical ensemble - A partition func-
tion for the classical ideal gas, de Broglie thermal
wave length, different formulations and its interpreta-
tion λdB =

√
2π~2/mkBT and λdB =

√
h2/mkBT ,

quantum concentration nQ = 1/λ3
dB , indistinguisha-

ble particles Z = (nQV )N/N !, quantum and classical
limits n/nQ � 1 or n/nQ � 1, respectively, thermo-
dynamics: internal energy, specific heat, Helmholtz free
energy, pressure, Clapeyron equation of states, entropy,
the role of N ! term, Gibbs paradox, entropy of mixing.

&8. Maxwell distribution - derivation of
Maxwell distribution for classical ideal gases
p(v) = 4π(m/2πkBT )3/2v2e−mv

2/2kBT , average
and typical velocities, some numerical examples,
other formulations of the Maxwell distributions,
p(vx, vy, vz) and p(E), experimental ways to determine
p(v), "Maxwell temperatureóf ultracold atomic gases
in magneto-optical traps, derivation of Clapeyron
equation from the Maxwell distribution.

III. Planck distribution and its applications
&1. Planck distribution - single mode vibration of

mechanical or electromagnetic systems, Planck hypo-
thesis, energy spectrum of the quantum harmonic oscil-
lator εs = ~ω(s+ 1/2), dual role of s quantum number
and number of modes with a given ω, to be continued.

4.2 Quizzes

4.2.1 Quiz 10

De Broglie thermal wave length can be expressed as

1.
√

~
mkBT

.

2.
√

2π~2
kBT

.

3.
√

2π~2
mkBT

.

4.
√

mkBT
2π~2 .

Your answer is 3.

4.2.2 Quiz 11

Sakura-Tetrode formula reads

1. S = nR[ln(nQn ) + 5
2 ].

2. S = nR[ln(nQn ) + 3
2 ].

3. S = nR[ln( n
nQ

) + 5
2 ].

4. S = nR[ln( n
nQ

) + 3
2 ].

Your answer is 1.
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4.3 Tutorial

1. Spins in magnetic field, microcanonical ensemble -
An isolated system on N � 1 localized spins ~/2
is in an external magnetic field B and is descri-
bed within a microcanonical ensemble. Find the
entropy, internal energy, temperature, magnetiza-
tion, magnetic susceptibility, specific heat. Discuss
results and plot them as a functions of tempera-
ture.

2. Negative absolute temperatures (This is an addi-
tional, not obligatory material for a group more
advanced in time. It should be presented by
tutors.) - Discuss a problem of the existence and
a meaning of a negative absolute temperature in
systems of localized spins and in systems with
itinerant degrees of freedom. Discuss historical
and recent experimental findings. Discuss thermo-
dynamics and, in particular, an energy transfer
between two systems if the negative temperatures
are allowed. Literature:
N. Spisak, Foton 132, Wiosna 2016, p. 16;
S. Braun et al., Science 339, p. 52 (2013);
N. Ramsey, Phys. Rev. 103, p. 20 (1956);
M. Klein, Phys. Rev. 104, p. 589 (1956);
D. Frenkel et al., Am. J. Phys. 83, p. 163 (2015)
(!!!);
E. Abraham, et al., Phys. Rev. E 95, p. 012125
(2017) (!!!);

4.4 Homework problems

1. Consider a classical gas in volume V . Gas consi-
sts of N particles, each of mass m. The internal
energy of the gas equals U . Calculate the proba-
bility that the energy of a selected particle in this
gas is contained within E and E + dE.

2. Gas fluctuations in a cubic box A cubic box with
isolating (adiabatic) walls of length L contains N
particles of an ideal gas. Find the dispersion of
the centre of mass of the system in equilibrium.
How does the dispersion behave with the incre-
asing number of particles in the box?

5 Week V, 12-18/11/2020

5.1 Lecture

&1. Planck distribution - continued, Boltzmann distri-
bution for quantized harmonic oscillator energies, the
partition function as a sum of geometric series, the ave-
rage occupation of a single mode 〈s〉 = 1/(e~ω/kBT−1),
Planck distribution, the internal energy, specific heat,
free energy, and entropy of the harmonic oscillator,
high- and low-temperature limits.

&2. Black body radiation - the resonance cavity and
the solution of Maxwell equation for a simple cubic
cavity box, Planck hypothesis about quantization of
energy in the electromagnetic field, the internal energy

and the density of internal energy, Stefan-Boltzmann
law and their constant, thermodynamics of the elec-
tromagnetic radiation and the equation of state, the
spectral energy density and the Planck law u(ω) =
(~/π2c3)ω3/(e~ω/kBT − 1), the classical limit and the
ultraviolet catastrophy, the average number of excited
models and its temperature dependence, radiation from
a cavity and the energy flux of radiation, total energy
flux and the Stefan-Boltzmann law, photometric qu-
antities: luminous intensity and candela [cd], luminous
flux and lumen [lm], illuminance and lux [lx], to be
continued.

5.2 Quizzes

5.2.1 Quiz 12

Planck distribution reads

1. 1
eβ~ω+1 .

2. 1
eβ~ω−1 .

3. 1
e−β~ω+1 .

4. 1
e−β~ω−1 .

Your answer is 2.

5.2.2 Quiz 13

Planck law for spectral energy density for a black body
radiation is

1. ~
π2c3

ω1

eβ~ω−1 .

2. ~
π2c3

ω2

eβ~ω−1 .

3. ~
π2c3

ω3

eβ~ω−1 .

4. ~
π2c3

ω4

eβ~ω−1 .

Your answer is 3.

5.2.3 Quiz 14

According to the Stefan-Boltzmann law the total
energy flux is

1. J(T ) = σT 4.

2. J(T ) = σT 3.

3. J(T ) = σT 2.

4. J(T ) = σT 1.

Your answer is 1.
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5.3 Tutorial
1. Classical ideal gas, the partition function - Derive

the partition function for the classical ideal gas
starting from a) quantized energy levels, b) clas-
sical kinetic energy for particles. Compare results
and pay attention on h and N ! factors.

2. Thermodynamics of ideal gas derived microscopi-
cally - From the partition function of the classical
gas derive: internal energy, specific heat, Helm-
holtz free energy, pressure and equation of states,
internal anergy, entropy. Derive the same expres-
sion for the entropy using results from microcano-
nical ensemble.

3. Ising spins in canonical ensemble - Consider a sys-
tem of N Ising spins in a magnetic field. Derive the
partition function and discuss thermodynamics of
this system by deriving internal energy, magneti-
zation, free energy, entropy, magnetic susceptibi-
lity.

4. Work microscopically and macroscopically in the
canonical ensemble - Assuming that the energy
level εi(X) changes with the change of the con-
trol parameter X introduce a microscopic force
Fi = −dεi/dX and a microscopic work δWi =
FidX. Derive an equation for the macroscopic
work δW = kBT (∂ lnZ/∂X)dX. Discuss this re-
sult for ideal gas in a box of volume (δW = −pdV )
and for Ising spins in a magnetic field (δW =
MdB).

5. Work, heat, entropy and exact forms - Recollect
the first and the second laws of thermodynamics
(dU + δW = δQ, and δQ = TdS), where δW is
the work performed by the system. Discuss the
difference between the state function U and its
differential dU and the not state functions δW
and δQ. Provide a physical interpretation. Show
that dU + δW is not an exact form (use δW =
kBT (∂ lnZ/∂X)dX and U = −(∂ lnZ/∂β). Show
that β(dU+δW ) is an exact form with the integra-
tion factor S/kB = lnZ − β(∂ lnZ/∂β). Show the
equivalence of S with the thermodynamic entropy
S −−(∂F/∂T )X,N .

5.4 Homework problems
1. Based on the Boltzmann distribution P (ε) =

e−βε/Z(T, V,N) calculate the internal energy
U(T, V,N) = 〈ε〉 and its dispersion σ(U)2 =
〈ε2〉 − 〈ε〉2 = kBT

2Cv. Recall the definition of the
heat capacity Cx = (δQ/dT )x at constant x and
from the first law of thermodynamics, find the for-
mula for Cv = (∂U/∂T )V,N .

2. Prove the Dalton’s law (which states that in a mi-
xture of non-reacting gases, the total pressure is
equal to the sum of the partial pressures of the
individual gases) for a mixture of classical gasses
using the canonical ensemble. Hint: Calculate the
statistical sum for the mixture of gasses and make

use of the definition of the pressure, as it was done
during the lecture for one-component gas.

3. A system can be in states of energies 0, ε, ε, ε, 2ε.
Calculate the internal energy of this system and
the specific heat at temperature T .

4. Statistical sum satisfies the relation lnZ = aTαV ,
where a and α are positive constants. Calculate
specific heat of this system.

5. Consider N magnetic moments, which have two
allowed orientations ±µ in an external magnetic
field B (the energy of each dipole can take values
±µB). Within the canonical ensemble, find the re-
lative dispersion of the magnetisation σM/M =√
〈M2〉 − 〈M〉2/ 〈M〉.

6 Week VI, 19-25/11/2020

6.1 Lecture
&2. Black body radiation - continued, absorption and
emission coefficients, the perfect mirror and the black
body, the gray body, Kirhchoff’s law and its proof, uni-
versality of black body radiation formula, (stimulated)
absorption, spontaneuos emission, stimulated emission,
Einstein coefficients, detailed balance.

&3. Specific heat of solids, phonons - definition of the
heat capacity (extensive) and the specific heat (inten-
sive), harmonic model of crystal lattices, normal mo-
des of vibrations, classical theory of the specific heat of
solids, experimental evidences at low temperatures for
the specific heat, Einstein’s model of the specific heat of
crystals and its limitations, Debye’s model of the speci-
fic heat of crystals, T 3 law for the specific heat, Debye
length, Debye wave vector, Debye frequency, phonons,
emergent particles, emergency vs determinizm.

6.2 Quizzes
6.2.1 Quiz 15

Absorption of a perfect mirror A(ω, T ) is equal to

1. zero for all frequencies.

2. one for all frequencies.

3. zero for selected frequencies.

4. one for selected frequencies.

Your answer is 1.

6.2.2 Quiz 16

The heat capacity is

1. intensive.

2. proportional to the temperature.

3. extensive.

4. inversely proportional to the temperature.

Your answer is 3.
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6.2.3 Quiz 17

In the Debye model the specific heat at low tempera-
tures behaves as

1. CV ∼ const.

2. CV ∼ T 3.

3. CV ∼ T 4.

4. CV ∼ T−2e−T0/T .

Your answer 2.

6.3 Tutorial

1. Classical ideal gas of two-atom molecules - Ideal
gas is composed of molecules with two atoms of
mas m1 and m2. Atoms inside a molecule inte-
ract with each other with the potential of model
(expanded) form V (r) = V (r0)+(1/2)mω0ξ

2, with
ξ = r − r0. For a single molecule find the kine-
tic energy in relative and center of mass coordina-
tes. Then find the partition function and discuss
each contributing terms. For the translationally
invariant part use the earlier results for a mono-
atomic ideal gas. For rotational and vibrational
degrees of freedom show that Zrot

1 = 2IkBT/~2

and Zvib
1 = kBT/~ω0, where I = mr2

0.

2. Classical ideal gas of two-atom molecules - thermo-
dynamics - For a gas of diatomic molecules find:
internal energy, specific heat at constant volume,
Helmholtz free energy, pressure and equation of
state, entropy.

3. Classical gas of electric dipoles in an electric field
- For a classical gas of electric dipoles ~d in the elec-
tric field E find partition function, Helmholtz free
energy, and polarization. The interacting poten-
tial between the dipoles and the field is V = −~d · ~E
and masses of the ions are m1 and m2. A dipol is
made out of two atoms which charges are distri-
buted such that on one ends there is a charge q
and on the opposite end the charge is −q.

4. Maxwell distribution - characteristics - Find the
typical (the most probable) velocity, the averaged
velocity, the averaged square velocity and the di-
spersion form the Maxwell distribution in three
dimensional space. Estimate those quantities for
an oxygen gas at normal conditions.

5. Maxwell distribution - equation of states - Using
the hypothesis of molecular chaos, where particles
are moving chaotically with the velocity distribu-
tion given by the Maxwell formula, find the pres-
sure and the equation of state for the ideal gas.

6. Barometric formula - Find the formula describing
how the pressure of the ideal gas in a uniform gra-
vitational field changes with the altitude and the
temperature.

6.4 Homework problems

1. A ball of radius Rmoves with velocity u in a dilute
ideal gas of temperature T and density n. Assu-
ming that the collisions of gas particles with the
ball are ellastic calculate the drag force exerted
on the ball during its movement. Estimate the re-
sult for air at normal conditions and for a typical
football.

2. A small hole of area S was drilled in a container
with ideal gas. Estimate the number of particles
per unit time that fall on a disc of radius R placed
at a distance h from the hole. The disc plane is pa-
rallel to the hole plane. The centers of the disc and
the hole are located along a straight line perpen-
dicular to the hole plane. Assume that velocities
of gas particles are described by the Maxwell di-
stribution and the hole is so small that the leakage
does not disturb the thermodynamic equilibrium
state inside the container.

3. Two containers in which the pressures p1 and p2,
respectively and temperatures T1 and T2 are con-
stantly maintained are connected by a small tube
with a cross section S. Calculate the mass of the
gas which flows from one container to the second
one per unit time if the mass of a single gas par-
ticle equals m and p1 = 2p2, T1 = 2T2.

4. The Maxwell distribution For the Maxwell distri-
bution of gas particle velocities in an ideal gas

ρ(v) =
( m

2kT

)3/2
exp

(
−mv

2

2kT

)
,

where T is the temperature and m is the mass of
a gas particle
(a) find the typical (average) velocity of a gas par-
ticle,
(b) find the average relative velocity of two par-
ticles |v12| = |v1 − v2|. Comment on the relation
between the two results.

7 Week VII, 26/11-02/12/2020

7.1 Lecture

IV. Grand canonical ensemble
&1. Chemical potential - systems with chemical (dif-

fusive) interaction (coupling), thermodynamic condi-
tion of equilibrium, definition of the chemical potential
µ(T, V,N) = (∂F/∂N)T,V , direction of particle flow
from higher to lower chemical potentials, the chemi-
cal potential for multicomponent systems, example: the
chemical potential for ideal gas, internal and external
chemical potential, electrochemical potential, magne-
tochemical potential, etc.

&2. Chemical potential and entropy - thermodyna-
mic relations - thermodynamic derivation of µ =
−T (∂S/∂N)U,V , first thermodynamic law for open sys-
tems.
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&3. Grand canonical ensemble - Gibbs distribution
- definition of the grand canonical ensemble, deriva-
tion of Gibbs distribution from the equal probability
hypothesis a priori, grand partition function, thermo-
dynamic quantities from the grand partition function.

7.2 Quizzes

7.2.1 Quiz 18

The chemical potential is equal to

1. (∂F/∂N)T,V and is extensive.

2. (∂F/∂N)U,V and is intensive.

3. (∂F/∂N)U,V and is extensive.

4. (∂F/∂N)T,V and is intensive.

Your answer is 4.

7.2.2 Quiz 19

The chemical potential is equal to

1. −T (∂S/∂N)T,V .

2. −T (∂S/∂N)U,V .

3. T (∂S/∂N)U,V .

4. −T (∂S/∂U)T,V .

Your answer is 2.

7.2.3 Quiz 20

The grand partition function reads

1. Ξ(T, V, µ) =
∑∞
N=0

∑
εs(N) e

− εs(N)+µNkBT .

2. Ξ(T, V, µ) =
∑∞
N=0

∑
εs(N) e

− εs(N)−µNkBT .

3. Ξ(T, V, µ) =
∑∞
N=0

∑
εs(N) e

εs(N)−µN
kBT .

4. Ξ(T, V, µ) =
∑∞
N=0

∑
εs(N) e

εs(N)+µN
kBT .

Your answer is 2.

7.3 Tutorial

1. Discuss with students three problems from the col-
loquium one.

2. Rotated cylinder with the ideal gas - An ideal gas is
in the cylindrical container of height h and radius
R, which rotates with the angular velocity ω with
respect to symmetry axis. Fins the pressure acting
on the cylinder wall. The number of particles N
and the temperature T are given.

7.4 Homework problems
1. Correlations in an ideal gas The measure of

(in)dependence of two random variables is their
correlation. Find the correlation function between
two components of velocity

C(vx, vy) = 〈vxvy〉 − 〈vx〉 〈vy〉

for an ideal gas assuming a Maxwell velocity di-
stribution. Can you guess the result before calcu-
lating?

2. Find the center of gravity of an ideal gas in the
cylinder in the uniform gravity field g at the tem-
perature T . An atomic mass m is given.

3. A mixture of l ideal gases, with different atomic
masses mi=1,...,l are closed in a cylinder of the ra-
dius R and the height h in a gravitational field
of the Earth. Find the position of the center of
gravity of this mixture.

8 Week VIII, 03-09/12/2020

8.1 Lecture
&4. Grand canonical potential - thermodynamic defini-
tion of the grand canonical potential, definition of the
grand canonical potential in statistical physics in grand
canonical ensemble, differential form of the grand ca-
nonical potential, the first thermodynamic law for sys-
tem exchanging energy and particles, summary of the
three ensembles, mathematical definition of Legendre
transform, summary of the most relevant thermody-
namical potentials (state functions): internal energy,
entropy, Helmholtz free energy, entalpy, Gibbs free
energy, grand canonical potential, example of ideal
classical gas in the grand canonical ensemble, the parti-
tion function, activity, thermodynamic quantities and
derivation of the equation of state, the chemical poten-
tial in explicit form.
V. Ideal quantum gases
&1. Wave function of many-body particles - quantum

mechanics reminder: a single particle in a box with
the periodic boundary condition, two non-interacting
ideal particles and they wave function, Heisenberg un-
certainty principle and indistinguishability of identi-
cal quantum particles, symmetry of the many-body
wave function under permutation of particles, symme-
tric and antisymmetric wave functions, fermions and
bosons, spin-statistics theorem, some examples, Pauli
exclusion principle.

8.2 Quizzes
8.2.1 Quiz 21

The first thermodynamical law in open systems is
expressed by

1. dU = SdT − pdV + µdN̄ .

2. dU = TdS + pdV + µdN̄ .
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3. dU = TdS − pdV − µdN̄ .

4. dU = TdS − pdV + µdN̄ .

Your answer 4.

8.2.2 Quiz 22

The grand canonical potential for an ideal gas is given
by

1. Φ = −kBTα V
λ3
dB

.

2. Φ = +kBTα V
λ3
dB

.

3. Φ = −kBTαλ
3
dB

V .

4. Φ = kBTα
λ3dB
V .

Your answer 1.

8.2.3 Quiz 23

The true statement is:

1. All bosons have half-integer spins and all fermions
have half-integer spins.

2. All bosons have integer spins and all fermions have
half-integer spins.

3. All bosons have integer spins and all fermions have
integer spins.

4. All bosons have half-integer spins and all fermions
have integer spins.

Your answer 2.

8.3 Tutorial

1. Quantum harmonic oscillator - For a single har-
monic oscillator find the partition function, the
average number of excitations, the internal energy,
the specific heat, the free energy, the entropy, and
discuss the low- and high- temperature limits.

2. Electromagnetic radiation of a resonance cavity -
An electromagnetic radiation is captured inside an
resonance cavity of cubic shape with the length
L and the temperature T , where metallic walls
are perfect conductors. Find the partition func-
tion, the average number of excitations, the inter-
nal energy, the specific heat, the free energy, the
entropy, and discuss the low- and high- tempera-
ture limits.

3. Photons in the Universe - Estimate the average
number per volume of photons in the Universe.
Assume its temperature to be 3K. Estimate the
entropy per volume of the Universe.

4. Two-atomic molecule and separation of degrees of
freedom1 - On the quantum mechanical ground
justify that the energy of a tow-atom molecule H+

2
reads EK,J,ν = ~2K2/2ms+~ω(ν+1/2)+~2J(J+
1)/2I + V0, where ms is a mass of the system, ω
is the resonant frequency of oscillations, I is the
moment of inertia, V0 is the potential energy at
the equilibrium. Quantum numbers: K continuous
wave vector, ν = 0, 1, 2, 3, ... and J = 0, 1, 2, 3, ...
Forget the spins of electrons and nucleus and apply
the Born-Oppenheimer approximation.

5. Quantum theory of specific heat for ideal gas of
two-atomic molecules - Assuming that one can
separate different degrees of freedom in a two-
atom molecule one can write the partition func-
tion as Z = ZtransZvibZrotZelectr, where each
term represents contributions from translational,
oscillation, rotation, and electronic degrees of fre-
edom, respectively. Find contributions from oscil-
lational and rotational degrees of freedom to the
specific heat and discuss low and high tempera-
ture limits. Discuss the typical temperature de-
pendence of the specific heat and characteristic
energy/temperature scales.

8.4 Homework problems
1. The Sun constant is 1360 J/m2s and describes

amount of energy approaching from Sun to Earth
in a unit of time and per unit of area. The di-
stance Sun-Earth is 1.3 ·1011m and the Sun radius
is 7 · 108m. Find the total power of the Sun and
its temperature.

2. Find an approximate formula for the Wien’s shift
law.

9 Week IX, 10-16/12/2020

9.1 Lecture
&2. Fermi-Dirac and Bose-Einstein distribution func-
tions - The grand partition functions for fermions and
bosons, the grand canonical potential for fermions and
bosons, the average number of particles in a given
quantum states for fermions and bosons, Fermi-Dirac
function, Bose-Einstein function.

&3. Quantum corrections to ideal gases - high tempe-
rature expansion of the grand canonical potential for
fermions and bosons, the activity as a formal small
control parameter of the expansion, the first quantum
correction to the grand canonical potential, the quan-
tum corrections to the equation of states in classical
gases, corrections to pressure for fermions and bosons.

&4. Gas of ideal fermions at T = 0 - the ground
state of non-interacting fermions, the main characteri-
stics: Fermi energy, Fermi wave vector, Fermi momen-
tum, Fermi wave length, Fermi velocity, Fermi tempe-
rature, the idea of Fermi sea, Fermi wave vector and

1Discuss by the tutor if time allows, otherwise skip it, please.
See also the next week IX.
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the particle density, different numerical examples and
some estimates, the internal energy of ideal fermions,
the pressure in the ground state and its origin, addi-
tional factors to stabilize the fermionic systems, Pauli
paramagnetism, Pauli susceptibility.

9.2 Tutorial

Only one group is going to have a tutorial in this week
so the problems are supposed to be supplementary, i.e.
this material is not obligatory during exams.

1. Two-atomic molecule and separation of degrees of
freedom - On the quantum mechanical ground ju-
stify that the energy of a tow-atom molecule H+

2
reads EK,J,ν = ~2K2/2ms+~ω(ν+1/2)+~2J(J+
1)/2I + V0, where ms is a mass of the system, ω
is the resonant frequency of oscillations, I is the
moment of inertia, V0 is the potential energy at
the equilibrium. Quantum numbers: K continuous
wave vector, ν = 0, 1, 2, 3, ... and J = 0, 1, 2, 3, ...
Forget the spins of electrons and nucleus and ap-
ply the Born-Oppenheimer approximation.

2. Quasiparticles and the specific heat - Find the
specific heat at low temperatures of quasipartic-
les in d-dimensions with the dispersion relation
εk = ε0(k/k0)α, where k = 2π/L[n1, n2, ...nd],
L is the system length and ni are integers. The
exponent α > 0 and ε0 has energy unit and k0

has momentum unit. In condensed matter systems
one can design or tailor such excitations that at
low energy limit their dispersion relation might
have an arbitrary power law. One of such exam-
ples are excitations of one-dimensional interacting
electrons, known as Luttinger liquids.

3. Thermal radiation of q-ons - Consider a hypothe-
tical excitations in three dimensions with linear di-
spersion relation εp = cp, such that a maximal nu-
mer of excited quanta is q  1. The case of q =∞
corresponds to either photons or phonos. In case
of magnetic excitations of a magnetic, so called a
spin waves, the maximal number of excited modes
is constrained by the spin and then q = 2s+1. de-
rive the partition function, the averaged number of
excitations and discuss limits, the internal energy,
the specific heat at constant V , the Helmholtz free
energy, the entropy, the pressure, the equation of
state, the average number of excitations in volume
V . Discuss different limits of q and compare with
known results for photons.

9.3 Homework problems

1. Solve a classical model for 1D crystal with the
Hook’s interactions between atoms and with pe-
riodic boundary conditions. Calculate eigenmodes,
disparsion relation and wavenumbers. Calculate
the statistical sum, internal energy and specific
heat. Hint: Recall the same problem from the qu-
antum mechanics course.

2. Quantize the classical model from the previous
task. Calculate the statistical sum, internal energy
and the specific heat in the Debeye approximation.

10 Week X, 17-23/12/2020

10.1 Lecture

&4. Gas of ideal fermions at T = 0 - continued, a gas
of ideal fermions in infinite dimensions.

&5. Gas of ideal fermions at low temperatures - ge-
neral integrals involving the Fermi-Dirac function, the
density of states in energy space, the heat capacity
and the specific heat for fermions, the low-temperature
Sommerfeld expansion, the low-temperature expansion
of the specific heat, the effective mass and examples of
different systems: liquid 3He, alkali and transition me-
tals, heavy fermions.

&6. Landau quasiparticles - Foundation of the Lan-
dau Fermi liquid theory, concept of weakly interacting
fermionic quasiparticles, the Landau energy functional,
the effective mass and the renormalization factor, se-
lected results from Fermi liquid theory: specific heat,
Pauli susceptibility, compressibility, sound speed and
they renormalizations.

11 Week XI, 07-13/01/2021

11.1 Tutorial

1. Chemical potential for ideal gas - Using the Helm-
holtz free energy, find a chemical potential for an
ideal gas assuming that the the energy of a mole-
cule is a sum of kinetic, rotation, oscillation and
electronic energies.

2. Chemical potential in chemical reactions - In che-
mical reactions molecules can decay or can be cre-
ated, this is symbolically described by the equ-
ation

∑r
i=1 biBi ↔

∑M
i=r+1 biBi, where Bi is a

molecule symbol and bi is the smallest integer ac-
cording to conservation of atomic numbers. Let
νi = −bi for i = 1, ..., r and νi = bi for i =
r + 1, ...,M . Show that in thermodynamical equ-
ilibrium for isothermal (T = const) and isochoric
(V = const) reactions

∑M
i=1 νiµi = 0, where µi is a

chemical potential for the ith molecule. Illustrate
with examples.

3. Law of mass action - Derive the law of mass ac-
tion (Guldberg, Waage, 1867)

∏M
i=1 n

νi
i = K(T ),

where ni = Ni/V is a density of the ith molecule,
and find an explicit expression for the equilibrium
constant K(T ). Treat molecules as classical ideal
gases. Illustrate with examples.

4. Changes of the free energy in chemical reactions
- Show that in thermal equilibrium it is obeyed∏M
i=1N

νi
i = exp(−∆F0/kBT ) for any chemical re-

action, where ∆F0 is the change of the free energy
of the system.
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5. Model of adsorption - As a simple model of adsorp-
tion consider an ideal classical gas and a surface
with N holes. In every hole there might be maxi-
mally one particle and then its energy is −ε < 0.
Find the covering coefficient k = N̄/M , where N̄
is the average number of particles adsorbed on the
surface. Hint: use grand canonical ensemble.

11.2 Homework problems

1. Give explicit formulas for the law of mass action
and the equilibrium constant for the reactions:

N2O4 ↔ 2NO2

2H2 +O2 ↔ 2H2O

2. Calculate explicit form of the relation
∑M
i=1 νiµi =

0 for the reactions

ClNO2 +NO ↔ NO2 + ClNO

N2O4 ↔ 2NO2

3. A neutral gas consists of Ne electrons e−, Np pro-
tons p+, and NH Hydrogen atoms H. An electron
and a proton can combine to form Hydrogen

e− + p+ ↔ H.

At fixed temperature and volume, the free energy
of the system is F (T, V ;Ne, Np, NH). we can de-
fine a chemical potential for each of the three spe-
cies as

µi =
∂F

∂Ni
.

By minimizing the free energy, together with su-
itable constraints on the particle numbers, show
that the condition for equilibrium is

µe + µp = µH .

Such reactions usually take place at constant pres-
sure, rather than constant volume. What quantity
should you consider instread of F in this case?

12 Week XII, 14-20/01/2021

12.1 Lecture

&7. Bose-Einstein condensation - 1926 Einstein’s pre-
diction of a macroscopic occupation oh the lowest
energy state for bosons, negativity and temperature
dependence of the chemical potential for ideal bosons,
convergency issue of the boson partition function, occu-
pations of the ground and excited states, physical un-
derstanding of the phase transition to condensed phase,
critical temperature for condensation, temperature de-
pendence of occupation of ground and excited states,
microscopic and macroscopic properties of condensed

bosons, indistinguishability and a common wave func-
tion with the same phase for all condensed bosons, ma-
croscopic phase coherence, similarity in laser physics,
experimental observation of Bose-Einstein condensa-
tion, bosonic alkali atoms, idea of a magnetic traps
and cooling the system, signatures of experimental ve-
rification of the condensation: macroscopic occupation
and interference, comparison of of condensed bosons in
free space and in a harmonic potential, time of flight
experiments.

&8. Superfluidity - phase diagram and unique pro-
perties of 4He atoms, lambda transition in a specific
heat, frictionless capillary flow of HeII, infinite heat
conductance and no biling in HeII, thermomechanical
effect, mechanothermal effect, Andronikashvili effect,
two fluid model of Tisza and Landau, special properties
of superfluid component, quantization of vortices, two-
fluid thermodynamics, simple understanding of ther-
momechanical effect, to be continued,

12.2 Quizzes
12.2.1 Quiz 24

Number of bosons in the Bose-Einstein condensate de-
pends on temperature as

1. N0
N = 1−

(
T

TBEC

)5/2

2. N0
N = 1−

(
T

TBEC

)2/3

3. N0
N = 1−

(
T

TBEC

)2/5

4. N0
N = 1−

(
T

TBEC

)3/2

Your answer is 4.

12.2.2 Quiz 25

The phases of bosons in the Bose-Einstein condensate
are

1. arbitrary for each particle.

2. the same for each particle.

3. random for each particle.

4. zero or 2π for each particle.

Your answer 2.

12.2.3 Quiz 26

To prove the existence of the Bose-Einstein condensa-
tion one has to observe

1. macroscopic occupation of a single level or inter-
ference fringes.

2. interference fringes.

3. macroscopic occupation of a single level and inter-
ference fringes.

4. macroscopic occupation of a single level.

Your answer 3.
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12.3 Tutorial
1. Grand canonical ensemble - ideal gas - Consider

non-relativistic ideal classical gas in the grand ca-
nonical ensemble in three space dimensions. Find:
(a) the partition function, (b) the grand canonical
thermodynamic potential, (c) the average number
of particles, (d) the pressure, (e) the entropy, (f)
the internal energy.

2. Ideal gas in the grand canonical ensemble - For
an ideal classical gas show that: (a) N̄ =
−βΦ(T, V, µ), (b) the probability of finding exac-
tly N particles is given by a Poisson law PN =
e−N̄ N̄N/N !.

3. Ideal gas in the gravity field - the grand canonical
ensemble - derive a formula expressing a density
of particles at the level z = H with respect to the
ground level z = 0 assuming the uniform gravity
field U(z) = mgz. Derive the barometric formula
for the pressure.

4. Ideal quantum gases - grand canonical ensemble -
Show explicitly that the averaged occupation of
the orbital kth is given by nk = 1

eβ(εk−µ)±1
, i.e. by

Fermi-Dirac and Bose-Einstein distribution func-
tions, respectively for fermions and bosons.

12.4 Homework problems
1. Grand canonical ensemble - ultra-relativistic ideal

gas - Consider ultra-relativistic ideal classical gas
in the grand canonical ensemble in three space di-
mensions. The dispersion relation is εp = cp, where
c is a given velocity constant and p is a length of
the momentum. Find: (a) the partition function,
(b) the grand canonical thermodynamic potential,
(c) the average number of particles, (d) the pres-
sure, (e) the entropy, (f) the internal energy.

2. Fluctuation of particle number i grand canonical
ensemble - Derive the formula for the variance of
particle number σ2

N = 〈N2〉 − 〈N〉2 in the grand
canonical ensemble and show that the relative fluc-
tuation of the particle umber σN/〈N〉 ∼ 1/

√
〈N〉

vanishes in the thermodynamic limit.

13 Week XIII, 21-27/01/2021

13.1 Lecture
&8. Superfluidity - continued, quasiparticles and
superfluidity, Landau criterium for critical velocity of
a superfluid.2

VI. Phase transitions:

&1. Phase and phase diagram - Definition of
thermodynamical phases, examples of phases, phase
diagrams for solid-liquid-gas phases, a triple po-
int, a critical point, first order transition lines,

2Not presented.

melting-freezing transition, sublimation-resublimation,
condensation-evaporation, discontinuous and continu-
ous phase transitions, phase diagram for a magnetic
phase transition.

&2. First order phase transition - continuous Gibbs
entalpyG(T, p,N) = U−pV −TS at phase transition of
first order, discontinuous first derivatives of the Gibbs
entalpy S = −(∂G/∂T )p and V = (∂G/∂p)T at phase
transition of first order, coexistence of phases solid-
liquid, liquid-vapor, latent heat ∆QL = T∆S, con-
dition for the phase coexistence µ1(p, T0 = µ2(p, T ),
why does the salt melt the ice?, Clausius-Clapeyron
equation - derivation and discussion.

&3. Ehrenfest classification of phase transitions - de-
finition of the order of the phase transition with respect
to discontinuity of the m-the order derivatives of the
thermodynamical potential, 1-st order phase transition
- characteristics, 2-nd order phase transitions - charac-
teristics, example of specific hat jump in superconduc-
ting transition, divergence of response functions in case
of infinite correlation length at 2-nd order phase trans-
itions, continuous and discontinuous entropy, jump in
the volume and density, jump in the magnetization and
hysteresis.

&4. Mean field -theory I - van der Waals equation of
state - role of interparticle interactions in phase trans-
itions, heuristic modification of ideal gas equation of
state to include finite radius of molecules and finite at-
tractive interaction and longer distances, van der Waals
equation, microscopic derivation of the van der Waals
equation via virial expansion - sketch of derivation, vi-
rial coefficients, to be continued.

13.2 Quizzes

13.2.1 Quiz 27

At the critical point the phase transition is

1. 1st order.

2. 2nd order.

3. 3rd order.

4. 4th order.

Your answer 2.

13.2.2 Quiz 28

Clausius-Clapeyron relation reads

1.
(
dT
dp

)
∆G=0

= ∆QL
T∆S .

2.
(
dp
dT

)
∆G=0

= ∆QL
S∆T .

3.
(
dp
dT

)
∆G=0

= ∆QL
T∆V .

4.
(
dT
dp

)
∆G=0

= ∆V
T∆QL

.

Your answer 3.
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13.2.3 Quiz 29

Van der Waals equation of state reads

1. (p+ a
(
n
V

)2
)(V − bn) = nRT .

2. (p− a
(
n
V

)2
)(V − bn) = nRT .

3. (p+ a
(
n
V

)2
)(V + bn) = nRT .

4. (p− a
(
n
V

)2
)(V + bn) = nRT .

Your answer 1.

13.3 Tutorial
1. Ideal quantum gases - grand canonical ensemble

- For ideal bosons and fermions derive integral
expressions for: (a) the partition function, (b)
the grand canonical thermodynamic potential, (c)
the average number of particles, (d) the pressure,
(e) the entropy, (f) the internal energy. Introduce
the necessary polylogaritmic functions gn(z) and
fn(z) for bosons and fermions, respectively.

2. Ideal quantum gases at hight temperature - grand
canonical ensemble - For ideal bosons and fermions
we have derived integral expressions for: (a) the
partition function, (b) the grand canonical ther-
modynamic potential, (c) the average number of
particles, (d) the pressure, (e) the entropy, (f) the
internal energy. In the high temperature limit find
explicitly quantum corrections to the chemical po-
tential, the internal energy and the pressure. Di-
scuss the results and the role of quantum statistics
on pressure.

3. Ideal fermions at low temperatures - Sommerfeld
expansion - Derive a low temperature expansion
for the general integral

∫
dεH(ε)f(ε), where f(ε)

is the Fermi-Dirac function. Write down explicitly
terms up to (kBT )4 order.

4. Ideal fermions at low temperatures - thermodyna-
mics - Derive expressions in the low temperature
expansion up to (kBT )2 order for the chemical po-
tential, the internal energy, the specific heat, the
entropy, and the free Helmholtz free energy for
ideal fermions.

13.4 Homework problems
1. Ideal quantum gases at hight temperature - grand

canonical ensemble - For ideal bosons and fermions
with ultrarelativistic dispersion relation εp = cp
derive integral expressions for: (a) the partition
function, (b) the grand canonical thermodyna-
mic potential, (c) the average number of particles,
(d) the pressure, (e) the entropy, (f) the internal
energy. In the high temperature limit find explici-
tly quantum corrections to the chemical potential,
the internal energy and the pressure. Discuss the
results and the role of quantum statistics on pres-
sure.

2. Ideal fermions at low temperatures - thermodyna-
mics - Derive expressions in the low temperature
expansion up to (kBT )4 order for the chemical po-
tential, the internal energy, the specific heat, the
entropy, and the free Helmholtz free energy for
ideal fermions.

14 Week XIV, 28-31/01/2021

14.1 Lecture

&4. Mean field -theory I - van der Waals equation of
state - continued, alternative mean-field derivation of
the van der Waals equation, finding the critical point,
phase separation, coexistence condition, free energy
and Maxwell construction.

&5. Mean field theory II - Ising model - introduction
to Ising model, exact partition function and magnetiza-
tion, application of the Ising model, needs for approxi-
mate solution, mean-field approximation as neglection
of correlation fluctuations, mean-field energy and the
interpretation of the mean magnetic field, the mena-
field partition function and the self-consistent equation
for the magnetization, solution of the mean-field equ-
ation at zero magnetic field, the critical temperature,
critical behavior of the magnetization and the magnetic
susceptibility, concept of universal critical exponents,
free-energy expansion and Landau approach to phase
transitions.

14.2 Quizzes

14.2.1 Quiz 30

At the critical point of the van der Waals gas the ratio
pV/nRT is

1. 2/3.

2. 3/4.

3. 3/8.

4. −3/8.

Your answer is 3.

14.2.2 Quiz 31

The critical (Curie) temperature of the Ising model wi-
thin the mena-field approximation is

1. Tc = kB/2zJ .

2. Tc = 2zJ/kB

3. Tc = 2zkBJ .

4. Tc = 2zkB/J .

Your answer is 2.
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14.2.3 Quiz 32

The universal critical exponent γ− of the mean-field
susceptibility is

1. −1.

2. +1.

3. −1/2.

4. +1/2.

Your answer is 2.

14.3 Tutorial
1. Complete solutions of problems from the previous

week.

2. Bosons at low temperatures - 1. represent a grand
thermodynamical potential by a polilogarithmic
function and derive formal expressions for the
particle density, pressure, internal energy. Discuss
properties of the gα(z) functions vs. z - the acti-
vity. 2. find the explicit formula for the TBEC con-
densation temperature, derive expression for the
activity z, 3. derive an expression for the density
of bosons inside the condensed fraction, 4. derive
an equation for pressure and the equation of state.

3. If time allows, discuss all or selected solution to
problems in the last mid-term exam (colloquium).

14.4 Homework problems
1. Consider tow dimensional bosons and show that

the Bose-Einstein condensation occurs only at T =
0. Discuss thermodynamics of such bosons.

2. Show that in one dimension the Bose-Einstein is
impossible.

3. Supposing that the dispersion relation is εk = akα

and the system is d dimensional, derive a condi-
tion for α when the Bose-Einstein condensation
can occur at T > 0 case.

15 Literature
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• F. Schwabl, Statistical mechanics.

• R.H. Swendsen, An introduction to statistical me-
chanics and thermodynamics.
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