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Rules
• Lectures and Tutorials are in Tuesdays at 11:15-

13:00 in 1.02 room and in Thursdays at 8:15-10:00
in 1.01 room.

• Way of passing the course: There is an oral exam
based on the theory from lectures (listed in this
file) and problems solved on tutorials and home-
works (listed in this file). You are allowed to posses
your handwritten notes from lectures and with so-
lved problems during your exam and supposed to
present 2-3 given topics in concise and short forms.

1 Week I, 27/02-05/03/2023

1.1 Lecture PJ

Review of the quantum many body formalism, no-
tion or bosonic and fermionic coherent states, general
expression for bosonic coherent states.

1.2 Tutorial PJ

1. Multidimensional Gaussian integrals on Rn, mo-
ments of the Gaussian distribution, Wick’s the-
orem.

2 Week II, 06-12/03/2023

2.1 Lecture PJ

Bosonic coherent states ctd, Grassmann variables (ba-
sic notions and properties, conjugation, differentiation,
integration), fermonic coherent states.

2.2 Tutorial PJ

1. Perturbed Gaussian measure, perturbative expan-
sions, Feynman diagrams for the normalization
factor and the 2-point functions.

2.3 Homework problems

1. Demonstrate the closure relation∫ ∏
α
dφ∗αdφα

2πi e−
∑

α′
φ∗
α′φα′ |φ〉〈φ| for bosonic

coherent states.

2. Consider 〈N̂〉 = 〈φ|N̂ |φ〉
〈φ|φ〉 , where |φ〉 is a bosonic

coherent state, and N̂ denotes the total particle
number operator. Express σ2 = 〈N̂2〉 − 〈N̂〉2 by
the eigenvalues {φα} corresponding to |φ〉.

3. (Not obligatory) Consider the perturbed Gaussian
measure 1

Z(λ)e
−A(~x,λ). Notation follows the one

used in the class and V (~x) = 1
4!

∑N
i=1 x

4
i . Draw the

Feynman graphs corresponding to the two-point
function 〈xi1i2〉λ up to order λ2. Use the given fact
(linked cluster theorem) that the non-connected
contributions cancel. Write down the analytical
expressions corresponding to the diagrams and try
to figure out the corresponding coefficients from
combinatorial arguments.

3 Week III, 13-19/03/2023

3.1 Lecture PJ

Fermionic coherent states ctd: closure relation, trace
formula. Coherent states for fermions and bosons sum-
mary. Propagator in QM (introduction).

3.2 Tutorial KB

1. Reminder of Grassmann algebra - generators, anti-
commutation rules, reflection authomorphism P ,
even and odd Grassmann subspaces.

2. Formal definitions of conjugation, differentiation
and integration in Grassmann algebra.

3. Grassmann calculus Let f(ξ) = f0 + f1ξ and
A(ξ∗, ξ) = a0 + a1ξ + ā1ξ

2 + a12ξ
∗ξ. Compute

(a) ∂A(ξ∗, ξ)/∂ξ

(b) ∂A(ξ∗, ξ)/∂ξ∗

(c) ∂2A(ξ∗, ξ)/∂ξ∗∂ξ

(d)
∫
dξf(ξ)

(e)
∫
dξA(ξ∗, ξ)

(f)
∫
dξ∗A(ξ∗, ξ)

(g)
∫
dξ∗dξA(ξ∗, ξ)

4. Grassmann delta Dirac distribution Show that
δ(ξ, ξ) =

∫
η exp(−η(ξ− ξ′) represents Dirac delta

function.

5. Grassmann scalar product Check that 〈f |g〉 =∫
dξdξ∗ exp(−ξξ∗)f∗(ξ∗)g(ξ) represents a natural

scalar product between functions f and g.

6. Grassmann-Gaussian one-variable integral Show
that

∫
dξ∗dξ exp(−ξ∗aξ) = a. Compare this result

with Gaussian integral over complex numbers.
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7. Change of variable From
∫
ηη = 1 and by chan-

ging the variable η = αξ show for a one Grassmann
variable that the Jacobian d(αξ) = (dξ)/α . Ap-
ply this result to compute the Gaussian integral∫
dξ∗dξ exp(−ξ∗aξ) = a again.

8. Show that∫ n∏
i=1

dη∗i dηie
−
∑

ij
η∗iHijηj+

∑
i
ξ∗i ηi+ξiη

∗
i =

= [DetH]e
∑

ij
ξ∗i (H−1)ijξj .

3.3 Homework problems

1. Show that∫ n∏
i=1

dη∗i dηiηkη
∗
l e
−
∑

ij
η∗iHijηji =

= [DetH](H−1)kl.

2. Review the demonstration of the closure re-
lation using fermionic coherent states: 1 =∫ ∏

α dξ
∗
αdξαe

−
∑

α
ξ∗αξα |ξ〉〈ξ|. Evaluate the final

integral left out in the proof given in the lecture.

4 Week IV, 20-26/03/2023

4.1 Lecture PJ

Partition function and propagator in imaginary time
for a single quantum particle; the classical limit. Co-
herent state path integral for the partition function of
many-body systems.

4.2 Tutorial KB

1. Feynman path integral in quantum mechanics -
Express a propagator in one-particle quantum me-
chanics in terms of a path integral with a classical
action

G(x, t;x′, t′) =
∫
D[x(t)]e

i
~

∫ t′
t
dτ( 12mẋ(t)2−V (x))

=
∫
D[x(t)]e

i
~S[x(τ)].

Discuss mathematical meaning of this functional
integration.

2. Green function (propagator) for free particle - De-
rive an expression for the Green function (pro-
pagator) of one-particle in one dimension with
V (x) = 0. Do it in two ways, directly from the de-
finition in quantum mechanics and from the path
integration in discrete version.

4.3 Homework problems
1. Normal ordering - Consider a single quantum par-

ticle governed by the hamiltonian H = ~p2

2m +V (~x).
Write down the complete (double series) expres-
sion for : e−i

H
~ ε :. Compare it with the correspon-

ding expression for e−i
H
~ ε. Compare in particular

the two expressions, when truncated at order ε and
at order ε2.

2. Quamtum mechanical operators and path integrals
- For a given trajectory we can define a classical
momentum mẋ(t). Let’s define at tf a quantum
mechanical momentum operator in one dimension
as

p̂Ψ(xf , tf ) =

=
∫ ∞
−∞

dy

∫
D[x(t)]mẋ(tf )e

i
~S[x(τ)]Ψ(y, ti).

Show that p̂ = −i~d/dx.

5 Week V, 27/03-02/04/2023

5.1 Lecture PJ
Evaluation of the coherent path integral for the par-
tition function of noninteracting Bose and Fermi sys-
tems. Linear response theory and the Kubo formula
(review). N-body real-time Green’s functions, thermal
(imaginary time) Green’s functions and their path in-
tegral representation.

5.2 Tutorial KB
1. Statistical mechanics and path integrals - Formula-

tion of the partition function in canonical ensem-
ble in terms of the path integral

Z = Tre−βĤ =

=
∫
x(0)=x(β)

D[x(τ)]e−
1
~S[x(τ)],

where

S[x(τ)] =
∫ β

0
dτ

(
1

2m

(
dx(τ)
dτ

)2

+ V (x(τ))

)
.

2. Partition function for a harmonic oscillator - De-
rive the partition function for a harmonic oscilla-
tor in quantum mechanics, i.e. V (x) = 1

2mω
2x2.

To compute the path integral use the Fourier series
expansion in Matsubara frequencies ωn = 2nπ/β
and the integration measure constant find from the
free particle problem.

3. 2-point correlation functions for harmonic oscilla-
tor - Two point correlation function is defined

G(τ) =
1
Z

Tr
[
e−βĤ x̂(τ)x̂(0)

]
,

where
x̂(τ) = e

Ĥτ
~ x̂e−

Ĥτ
~ ,
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with 0 ¬ τ < β~. The path integral representation
of this correlation function is

G(τ) =
1
Z

∫
x(0)=x(β)

D[x(τ)] x(τ)x(0) e−
1
~S[x(τ)].

Determine this functional integral using the Fo-
urier series expansion in Matsubara frequencies.

5.3 Homework problems
1. By direct calculation find the inverse of the ma-

trix S(α) discussed in the lecture and yielding the
expression for the thermal Green’s function of the
non-interacting Fermi or Bose system.
Hint: It may be helpful to perform the calculation
for a small M (e.g. M = 4) first.

2. Show by direct means based on standard quantum
statistical mechanics that the 2-point correlation
function in harmonic oscillator takes the form

G(τ) =
~

2mω

cosh
[
(β~2 − τ)ω)

]
sinh

[
β~ω

2

] .

Evaluate in details all steps needed in the problem
3 of the last tutorial.

6 Week VI, 03-09/04/2023

6.1 Lecture
No lecture in this Easter week.

6.2 Tutorial KB
1. Evaluation of Matsubara sums - Derive the contour

integral equations for fermionic (F) and bosonic
(B) Matsubara sums:

SF (τ) =
1
β

∑
ikn

g(ikn)eiknτ = −
∮
C

dz

2πi
nF (z)g(z)ezτ ,

SB(τ) =
1
β

∑
iωn

g(iωn)eiωnτ =
∮
C

dz

2πi
nB(z)g(z)ezτ ,

where kn = (2n + 1)π/β, ωn = 2nπ/β, and
nF (B)(z) = 1/(eβz ± 1).

2. Matsubara sum over functions with singe poles -
Derive a fermionic Matsubara sum for a function
with single poles

g0(z) =
∏
j

(
1

z − zj

)
.

Apply this result to the fermionic non-interacting
Green function

G0
k(ikn) =

1
ikn − (εk − µ)

,

and derive probability of occupation of a single
state k.

3. Matsubara sum over functions with a branch cut -
Derive a fermionic Matsubara sum for a function
with a branch cut along the real axis g(ε). Derive
probability of occupation of a single state k.

6.3 Homework problems
1. Matsubara sum over functions with singe poles -

Derive a bosonic Matsubara sum for a function
with single poles

g0(z) =
∏
j

(
1

z − zj

)
.

Apply this result to the bosonic non-interacting
Green function

G0
k(iωn) =

1
iωn − (εk − µ)

,

and derive probability of occupation of a single
state k.

2. Matsubara sum over functions with a branch cut
- Derive a bosonic Matsubara sum for a function
with a branch cut along the real axis g(ε). derive
probability of occupation of a single state k.

3. Other application - Derive that

ctghx− 1
x

=
∞∑
m=1

2x
x2 +m2π2 .

Then, show that

sinhx
x

=
∞∏
m=1

(
1 +

x2

m2π2

)
and

sin θ
θ

=
∞∏
m=1

(
1− θ2

m2π2

)
.

Hint: F. W. Byron and R. W. Fuller, Matematyka
w fizyce klasycznej i kwantowej. Tom 2

7 Week VII, 10-16/04/2023

7.1 Lecture PJ
Green’s functions for non-interacting fermions and Bo-
sons, Wick’s theorem, Feynman diagrams (to be conti-
nued).

7.2 Tutorial
No tutorial in this Easter week.

8 Week VIII, 17-23/04/2023

8.1 Tutorial KB
1. Hubbard model in the atomic limit - Find the parti-

tion function of the Hubbard model in the atomic
limit

Ĥ =
∑
σ

n̂σ + Un̂↑n̂↓,
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a) directly in the occupation number base, b)
by Feynman path integrals and the Hubbard-
Stratonovic transformation.

2. Polaron model in the atomic limit - Find the par-
tition function of the polaron model in the atomic
limit

Ĥ = g
∑
σ

(b̂† + b̂)n̂σ −
∑
σ

µσn̂σ + wb̂†b̂

by computing the Feynman path integral.

9 Week IX, 24-30/04/2023

9.1 Lecture KB

Hubbard model

&1. Wannier functions - Bloch theorem, Brillouin
zone, Wannier functions and their properties.
&2. Hubbard model and its derivation - Many body Ha-
miltonian in terms of the second-quantized field ope-
rators for fermions, expansion of the field operators in
the Wannier one-particle base, creation and annihila-
tion operators at the lattice sites, one-body part of the
Hamiltonian, hopping amplitude, two-body part of the
Hamiltonian, local diagonal interaction, the Hubbard
model

Ĥ =
∑
ijσ

tij â
†
iσâjσ +

∑
i

n̂i↑n̂i↓.

&3. Extended Hubbard model - Two-site interaction, di-
rect Coulomb term, exchange term, and singlet hoping
term.
&4 Symmetries of the Hubbard model - global U(1)
gauge symmetry, conservation of charge, spin rotation
SU(2) symmetry, particle-hole symmetry on bipartite
lattices.

10 Week X, 01-07/05/2023

10.1 Tutorial PJ

Perturbation theory for the partition function and the
grand canonical potential of interacting Fermi and Bose
systems, Feynman diagrams, linked cluster theorem -
proof by replica method.

10.2 Homework problems

1. A system of quantum particles is described by the
(grand-canonical) hamiltonianH = H0+V , where
H0 =

∑
α(εα − µ)a†αaα, and V represents a two-

body interaction. Consider perturbative expansion
for the partition function Z up to second order in
V .
a) How many terms (contractions) are there?
b) Draw all the distinct Feynman diagrams and

try to figure out the corresponding numerical coef-
ficients. Check consistency by comparing with po-
int a). [Hint: There are 8 distinct diagrams of order
2.]
c) Which diagrams obtained in point b) contribute
to the grand canonical potential Ω?

2. Particle-hole symmetry - Show that for the Hub-
bard model on a bipartite lattice (particle-hole
transformation) n(µ, T ) = 2 − n(U − µ, T ). Show
that at half-filing particle-hole symmetry requires
that µ = U/2.

11 Week XI, 08-14/05/2023

11.1 Lecture KB

&5 Exactly solvable limits in arbitrary dimensions -
free electron and atomic limits, free electron limit: di-
screte Fourier transform, diagonalization of the Hamil-
tonian, dispersion relation, examples of dispersion re-
lations, thermodynamics of free electron on lattices,
grand partition function, grand thermodynamical po-
tential, averages, limits of a band insulator and metal,
Fermi energy and the band filling, one-particle Green’s
function for free electrons, spectral function, density of
states, physical interpretations.

11.2 Tutorial PJ

Perturbation theory and Feynman diagrams ctd - fre-
quency/momentum representation, expansion for the
Green’s function.

11.3 Homework problems

1. A system of quantum particles is described by the
(grand-canonical) hamiltonianH = H0+V , where
H0 =

∑
α(εα − µ)a†αaα, and V represents a two-

body interaction. Consider perturbative expansion
for the thermal Green’s function G up to first or-
der in V .
a) Write down the complete expression for the
terms representing 〈ψα1(τ1)ψ∗α2(τ2)e−Sint〉0 and
draw the corresponding diagrams.
b) Show directly (at first order in V ) the can-
cellation of the contributions represented by non-
compact diagrams in the expansion of G.

2. Dispersion relation on a square lattice - Find the
dispersion relation for free fermions on a square
lattice with nearest and next nearest neighbor
hopping amplitudes.

3. Dispersion relation on a hexagonal lattice - Find
the dispersion relation for free fermions on a hexa-
gonal lattice with nearest neighbor hopping ampli-
tudes. Take into account that the elementary cell
is made of two atoms, so you should find two sym-
metric dispersions in the Brillouin zone.
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12 Week XII, 15-21/05/2023

12.1 Lecture KB

atomic limit: partition function in the atomic tij = 0
limit of the Hubbard model, grand canonical potential,
single-site occupation function, non-Fermi-Dirac distri-
bution function, U → 0 and U → ∞ limits, equation
of motion for the retarded Green functions, exact form
of the Green function and spectral function, physical
interpratation.

&6. Two site Hubbard model - The Hilbert space of
the two site Hubbard model, dimension and basis vec-
tors for different numer of particles, ...

12.2 Tutorial PJ

Self-energy and its diagrammatic expansion, Dyson’s
equation, Lehmann representation of the Green’s func-
tion.

12.3 Homework problems

1. Hubbard model in atomic limit - Find equations
of motion for one and two particle Matsubara
Green’s functions and solve hem in the Matsubara
frequency representation.

13 Week XIII, 22-28/05/2023

13.1 Lecture KB

...matrix elements and the matrix Hamiltonian for two
electrons, singlet and triplet states, block diagonaliza-
tion, discussion of the exact solution, exact eigenstates
and eigenvalues, different limits.

&7. t-J model - Projection on single and double oc-
cupied sites, Π1 =

∏
i(1−ni↑ni↓) and Π2 =

∏
i ni↑ni↓,

canonical transformation and removing transition be-
tween single and double occupied sectors, ....

13.2 Tutorial PJ

Electronic gas (jellium model) and its ground state
energy in perturbation theory.

13.3 Homework problems

1. Calculate the integrals leading to the first-order
correction to the ground state energy of the jellium
model, in particular the volume Vα of the overlap
of two balls in 3 dimensions. Evaluation of these
integrals was left out during the class.

2. Two site Hubbard model - Compute all matrix ele-
ments for N = 2 particles in the two-site Hubbard
model.

14 Week XIV, 29/05-04/06/2023

14.1 Lecture KB
... explicit for of the effective t-J H hamiltonian and
discussion, RVB theory and real space pairing.

&8. Exact theorems on the Hubbard model - Lieb the-
orem (1989), Koma, Tasaki theorem (1992), Nagaoka
theorem (1965).

14.2 Tutorial PJ
Electronic gas (jellium model), RPA resummation for
the self-energy.

14.3 Homework problems
1. Calculate the integrals leading to the first-order

correction to the ground state energy of the jellium
model, in particular the volume Vα of the overlap
of two balls in 3 dimensions. Evaluation of these
integrals was left out during the class.

2. RVB and real-space pairing - Consider t-J Hamil-
tonian with three site term

Ht−J =
∑
ij

′
tijb
†
iσbjσ+

∑
ij

′ 2tij
U

(~Si · ~Sj−
1
4
νiνj)−

−
∑
ijkσ

′′ tijtjk
U

(b†iσνjσ̄bkσ + b†iσS
σ̄
j bkσ̄),

where biσ = aiσ(1 − niσ̄), etc., are projected fer-
mionic operators. Introduce the Cooper pair ope-
rator in real-space

B†ij =
1√
2

(b†i↑b
†
j↓ − b

†
i↓b
†
j↑),

etc. Show that

Ht−J =
∑
ij

′
tijb
†
iσbjσ −

∑
ijkσ

′′ tijtjk
U

B†ijBkj .

15 Week XV, 05-11/06/2023

15.1 Lecture KB
&9. Exact solution of the Hubbard model in infinite di-
mension - Dynamical Mean-Field Theory - Brief hi-
story of mean-field approximations, Baym’s criteria on
the reliable approximate theory, Weiss mean-field the-
ory for Ising model and its exactly solvable limit with
infinite coordination number, different lattices and co-
ordination numbers, construction of the exactly solva-
ble Hubbard model in infinite coordination number,
dimension, quantum rescaling of the hopping ampli-
tude, diagramatic simplification in infinite coordina-
tion number limit, local, diagonal self-energy, cavity
construction and integration out the rest of the lattice,
...

15.2 Tutorial PJ
no tutorial, holiday.
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15.3 Homework problems
1. Density of states in infinite dimensions - On the

hypercubic lattice in d-dimensions consider a ne-
arest neighbor hopping Hamiltonian and the di-
spersion relation εk = 2t

∑d
i=1 cos(ki). Show that

the density of states is

ρd(ω) =
∑
k

δ(ω − εk) =

=
∫ ∞
−∞

du

2π

d∏
i=1

∫ π

−π

dki
2π

eiu(ω+2t
∑d

i=1
cos(ki)) =

=
∫ ∞
−∞

du

2π
eiuω[J0(2ut)]d,

where J0(x) is the Bessel function. Make a hopping
rescaling t → t∗/

√
2d, expand the integrand, and

find the density of states in the d→∞ limit. Ans.
ρd=∞(ω) = (1/

√
2πt∗)e−ω

2/2t∗2 .

16 Week XVI, 12-18/06/2023

16.1 Lecture KB
..., terms which are finite in the infinite dimension, lin-
ked cluster theorem and resummation of the cavity par-
tition function, Dyson equation in k-space and in real-
space, self-consistency condition, different methods for
solving DMFT equations.

16.2 Tutorial PJ
Electronic gas (jellium model) and its ground state
energy in RPA, the pair bubble and the Thomas-Fermi
screening length.

17 Exam questions - PJ + KB
1. Coherent state functional integrals.

2. Wick theorem.

3. Perturbation theory for the partition function, lin-
ked cluster theorem.

4. Perturbation theory for the imaginary time
Green’s function.

5. Ground state energy of the electron gas. Random
phase approximation for the self-energy and the
ground state energy.

6. Derive the Hubbard model from the many-body
Schroedinger Hamiltonian. Discuss terms which
are taken into account and which are neglected.

7. Discuss U(1) global gauge symmetry, SU(2) spin
symmetry, and particle-hole (geometric) symme-
try of the Hubbard model.

8. Discuss solutions of the Hubbard model in the
non-interacting and in the atomic limits.

9. Discuss the exact solution of the Hubbard model
for two lattice sites.

10. Present the basic steps in deriving the effective
t− J Hamiltonian.

11. Discuss three theorems about the Hubbard model
and their physical significance (no proofs).

12. Present the main steps in deriving the dynamical
mean-field theory equations. Why it is an exact
solution in the infinite dimension?

18 Literature
• H. Bruus, K. Flensberg, Many-Body Quantum
Theory in Condensed Matter Physics.

• A. Altland, B. Simons, Condensed Matter Field
Theory.

• J.W. Negele, H. Orland, Quantum many-paricle
systems.

• R.D. Mattuck, A guide to Feynman diagrams in
the many-body problems.

• A.A Abrikosov, L..P. Gorkov, I.E. Dzyaloshinski,
Methods of Quantum Field Theory in Statistical
Physics.

• W. Nolting, Fundamentals of Many-Body Physics.

• R. A. Jishi, Feynman Diagram Techniques in Con-
densed Matter Physics.

• E. Fradkin, Field Theories of Condensed Matter
Physics.

• N. Nagaosa, Quantum Field Theory in Strongly
Correlated Electronic Systems.

• J. Spałek, Wstȩp do fizyki materii skondensowa-
nej, PWN.

• A. Georges, G. Kotliar, W. Krauth, and M.J. Ro-
zenberg, Dynamical mean-field theory of strongly
correlated fermion systems and the limit of infinite
dimensions, Rev. Mod. Phys. 68, 13 (1996).

• More to be added in the course.
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