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Rules

e Lectures and Tutorials are in Tuesdays at 11:15-
13:00 in 1.02 room and in Thursdays at 8:15-10:00
in 1.01 room.

e Way of passing the course: There is an oral exam
based on the theory from lectures (listed in this
file) and problems solved on tutorials and home-
works (listed in this file). You are allowed to posses
your handwritten notes from lectures and with so-
lved problems during your exam and supposed to
present 2-3 given topics in concise and short forms.

1  Week I, 24/02-02/03/2025

1.1 Lecture PJ

Review of the quantum many body formalism, no-
tion or bosonic and fermionic coherent states, general
expression for bosonic coherent states.

1.2 Tutorial KB

1. Feynman path integral in quantum mechanics -
Express a propagator in one-particle quantum me-
chanics in terms of a path integral with a classical
action

Gz, t;2', 1) = / Dla(t)]er Ji rGm®* V)

= /D[w(t)]e%;s{w(f)]_

Discuss mathematical meaning of this functional
integration.

2. Green function (propagator) for free particle - De-
rive an expression for the Green function (pro-
pagator) of one-particle in one dimension with
V(z) = 0. Do it in two ways, directly from the de-
finition in quantum mechanics and from the path
integration in discrete version.

1.3 Homework problems

1. Demons‘grate th*e closure relation
JTL, %e_ PONENTN |p)(¢|  for  bosonic

coherent states.

2. Consider (N) = %, where |¢) is a bosonic

coherent state, and N denotes the total particle
number operator. Express 02 = (N?) — (N)? by
the eigenvalues {¢,} corresponding to |¢).

3. (Not obligatory) Consider the perturbed Gaus-

sian measure %e*A(f)‘). Notation follows Zinn-

Justin’s book and V(%) = 4 SN &% Draw the
Feynman graphs corresponding to the two-point
function (x;,;,)» up to order A\2. Use the given fact
(linked cluster theorem) that the non-connected
contributions cancel. Write down the analytical
expressions corresponding to the diagrams and try
to figure out the corresponding coeflicients from
combinatorial arguments.

4. Quamtum mechanical operators and path integrals
- For a given trajectory we can define a classical
momentum ma(t). Let’s define at ¢; a quantum
mechanical momentum operator in one dimension
as

p¥(xy,ty) =
- / dy / Dla(t)]mi (t)et =N (y, 1),

Show that p = —ihd/dx.

2 Week II, 03-09/03/2024

2.1 Lecture PJ

Bosonic coherent states, Grassmann variables (basic
notions and properties, conjugation, differentiation, in-
tegration), fermionic coherent states.

2.2 Tutorial KB

1. Statistical mechanics and path integrals - Formula-
tion of the partition function in canonical ensem-
ble in terms of the path integral

Z = Tre Pl —

[ Dla(re#,
z(0)=xz(B)

Sla(r)] = /Oﬂ dr (27171 (di';(p)g + V(x(¢))> .

2. Partition function for a harmonic oscillator - De-
rive the partition function for a harmonic oscilla-
tor in quantum mechanics, i.e. V(z) = imw?z?.
To compute the path integral use the Fourier series
expansion in Matsubara frequencies w,, = 2nw/(
and the integration measure constant find from the

free particle problem.
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2.3 Homework problems

1. 2-point correlation functions for harmonic oscilla-
tor - Two point correlation function is defined

where

with 0 < 7 < Bh. The path integral representation
of this correlation function is

1

Gir) =+ / Dla(r)] (r)a(0) e+,
Z Ja(0)=x(8)

Determine this functional integral using the Fo-

urier series expansion in Matsubara frequencies.

2. Show by direct means based on standard quantum
statistical mechanics that the 2-point correlation
function in harmonic oscillator takes the form

5 cosh {(% - T)w)}

. Bhw
sinh [T}

G(r) =

2mw

Evaluate in details all steps needed in the problem
3 of the last tutorial.

3  Week III, 10-16,/03 /2025
3.1 Lecture PJ

Fermionic coherent states ctd: closure relation, trace
formula. Coherent states for fermions and bosons sum-
mary. Propagator in QM (introduction)."

3.2 Tutorial KB

1. Generating function - For an arbitrary measure
(probability distribution) in real n-dimensional
space introduce the generating function for cor-
relation functions. Check it properties.

2. Gaussian integrals in n-dimensions - Find the va-
lue of a gaussian integral of real variables in n-
dimensional space.

3. General gaussian integral - Find the value of a
gaussian integral with a linear term of real varia-
bles in n-dimensional space.

4. Reminder of Grassmann algebra - generators, anti-
commutation rules, reflection authomorphism P,
even and odd Grassmann subspaces.

5. Formal definitions of conjugation, differentiation
and integration in Grassmann algebra.

6. Grassmann calculus Let f(§) = fo + f1€ and
A(E,€) = ag + a1€ + @162 + a12€*¢. Compute
(a) OA(E",€)/0¢
(b) DA(E",€)/0¢”

(c) 0%A(E*,€)/0€ 08
(d) [dEf(S)

(e) JdEA(E", )

(f) [dg A(E, )

(g) [ d&rdEA(E",¢)

7. Grassmann delta Dirac distribution Show that

8(¢,€) = [ mexp(—n(§ —¢’) represents Dirac delta
function.

3.3 Homework problems

1. Show that

o 0 0 -
(Thy Thy k) = B, 8bk2"'ﬁz(b)‘5:0’

where Z(b) = fdnme_g'f.

2. Find explicit expression for
Z(A, E) = /dnaje% Z;jzl ziA”IjJrZ:;l zibi,

where A;; is positive real symmetric matrix and b;
a real vector.

3. Review the demonstration of the closure re-
lation using fermionic coherent states: 1 =

[TL, d€idene™ 2oaS55|€) (¢]. Bvaluate the final
integral left out in the proof given in the lecture.

4 Week IV, 17-23/03 /2025

4.1 Lecture PJ

Partition function and propagator in imaginary time
for a single quantum particle; the classical limit. Co-
herent state path integral for the partition function of
many-body systems. Evaluation of the coherent path
integral for the partition function of noninteracting
Bose and Fermi systems.

4.2 Tutorial KB

1. Grassmann scalar product Check that (f|g) =

[ déde” exp(—£€¥) f*(€%)g(€) represents a natural
scalar product between functions f and g.

2. Grassmann-Gaussian one-variable integral Show
that [ d&*d€ exp(—&*a&) = a. Compare this result
with Gaussian integral over complex numbers.

3. Change of variable From [7n = 1 and by chan-
ging the variable n = a£ show for a one Grassmann
variable that the Jacobian d(a&) = (d€)/a . Ap-
ply this result to compute the Gaussian integral

[ de*dg exp(—£*ag) = a again.

4. FEwvaluation of Matsubara sums - Derive the contour
integral equations for fermionic (F) and bosonic
(B) Matsubara sums:

Py L ‘ iknr__fﬁ
SH(r) = 3 Zg(zkn)e = ; 2m_np

iky

(2)9(2)e™,



B _ l . iwn T ﬁ 2T
$70) = § Satione™” = f Sonat:late)e
where k, = (2n + /B, w, = 2nw/S3, and
nF(B)(z) = 1/(eﬁz +1).

Matsubara sum over functions with singe poles -
Derive a fermionic Matsubara sum for a function

with single poles

Apply this result to the fermionic non-interacting
Green function

1

Z—Zj

go(2)

-~ 1

GO an - 7 7\

k( ) an— (Ek—,u)
and derive probability of occupation of a single
state k.

4.3 Homework problems

1. Normal ordering - Consider a single quantum par-
ticle governed by the hamiltonian H = % +V ().
Write down the complete (double series) expres-

sion for : e~1H€ . Compare it with the correspon-

ding expression for e~ihe Compare in particular
the two expressions, when truncated at order € and
at order €2.

2. Show that

/ﬁdngﬁdn}e— Do, miHigng+y ) & miteint _
7 7 -

=1

* -1 P .
= [DetH]eXo & H Vit

5 Week V, 24-30/03/2025

5.1 Lecture PJ

Real-time Green’s functions, thermal (imaginary time)
Green’s functions and their path integral representa-
tion.

5.2 Tutorial KB

1. BAafsz'c bosom;c Amodel - The Hamiltonian is H =
ebTb, where [b, bT] = 1. Determine

e Partition function directly from the trace

e Partition function form the path integral and

Matsubara-Fourier transform

Imaginary time Green’s function from the
equation of motion

Imaginary time Green’s function from the
path integral

5.3 Homework problems

)

1. Basic fermionic model - The Hamiltonian is H=
eftf, where {f, fT} = 1. Determine

e Partition function directly from the trace

e Partition function form the path integral and

Matsubara-Fourier transform

Imaginary time Green’s function from the
equation of motion

Imaginary time Green’s function from the
path integral

6 Week VI, 31/03-06,/04/2025

6.1 Lecture PJ

Thermal Green’s functions for non-interacting fermions
and bosons, perturbation series for the partition func-
tion, Wick’s theorem.

6.2 Tutorial KB

1. Polaron model in the atomic limit - Find the par-
tition function of the polaron model in the atomic
limit

H= gZ(l;T + I;)ﬁg — Z,ugﬁg + wb'h

by computing the Feynman path integral.
f;fm [bv bT] =1, {fmf;} =1

6.3 Homework problems

1. By direct calculation find the inverse of the ma-
trix S(®) discussed in the lecture and yielding the
expression for the thermal Green’s function of the
non-interacting Fermi or Bose system.

Hint: It may be helpful to perform the calculation
for a small M (e.g. M = 4) first.

7 Week VII, 07-13/04/2025

7.1 Lecture PJ

Perturbation theory for the partition function and the
grand canonical potential of interacting Fermi and Bose
systems, Feynman diagrams, linked cluster theorem -
proof by replica method.

7.2 Tutorial KB

1. Matsubara sum with a function possessing a
branch cut

2. Wannier functions

3. derivation of the Hubbard model



7.3 Homework problems

1. A system of quantum particles (fermions or bo-
sons) is described by the (grand-canonical) hamil-
tonian H = Ho+V, where Hy = Y__ (€4 — p)al,aq,
and V represents a two-body interaction. Consider
perturbative expansion for the partition function
Z up to second order in V.

a) How many terms (contractions) are there?

b) Draw all the distinct Feynman diagrams (there
are 10) and figure out the corresponding numerical
coefficients. Check consistency by comparing with
point a). ¢) Which diagrams obtained in point b)
contribute to the grand canonical potential Q7

8 Literature
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e More to be added in the course.
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