Metal-Insulator Transitions in Correlated Electron Systems with Disorder

Krzysztof Byczuk

Institute of Physics, Augsburg University

Institute of Theoretical Physics, Warsaw University

August 2nd, 2005

Main goal I

- Interaction \leftrightarrow Mott Hubbard MIT
- Disorder ↔ Anderson MIT

Interaction and disorder compete with each other stabilizing the metallic phase against the occurring one of the insulators

Main goal II

Geometric average

 $O_{\rm geom} = e^{\langle \ln O_i \rangle_{\rm arith}}$

Collaboration

- Walter Hofstetter Aachen, Germany
- Dieter Vollhardt Augsburg, Germany

Phys. Rev. Lett.**94**, 056404 (2005); cond-mat/0403765 Physica B **359-361**, 651 (2005); cond-mat/0502257 Phys. Rev. B **71**, 205105 (2005); cond-mat/0412590

Plan of the talk:

- 1. Introduction
 - Mott-Hubbard MIT
 - Anderson localization
 - Arithmetic vs. geometric means
- 2. Model with correlated electrons with disorder phase diagram and MITs in details
- 3. Conclusions and outlook

Mott-Hubbard MIT at n = 1

$$H = \sum_{i\sigma} \epsilon_0 n_{i\sigma} + \sum_{ij\sigma} t_{ij} \ a^{\dagger}_{i\sigma} a_{j\sigma} + U \sum_i n_{i\uparrow} n_{i\downarrow}$$

typical intermediate coupling problem $U_c \approx |t_{ij}|$

T=0 Mott transition according to DMFT

quantity to be determined

$$A(\omega) = -\frac{1}{\pi}\Im G(\omega)$$

spectral density function

R. Bulla'99 - NRG

Falicov-Kimball model

poor brother/sister of Hubbard model

 n_c and n_f independently fixed

 $n_c + n_f$ fixed

- mobile particles on a lattice
- localized particles on a lattice

- local interaction

$$H = \sum_{ij} t_{ij} c_i^{\dagger} c_j + \epsilon_f \sum_i f_i^{\dagger} f_i + U \sum_i f_i^{\dagger} f_i c_i^{\dagger} c_i$$

Mott MIT in Falicov-Kimball model

- f-particles appear as like disorder scatterers (with an annealed averaging).
- No Fermi liquid property of FK model if $n_f \neq 0$ or 1.
- Pseudo-gap regime.
- For $n_e = n_f = 0.5$ and $U = U_c \sim W$ continuous Mott like MIT.
- Correlation gap opened.

van Dongen and Lainung 1997, DMFT, Bethe, no CDW, U=0.5-3.0

Note: Falicov-Kimball (CT) like MIT is when $n_e(T) + n_f(T) = \text{const.}$

Anderson localization

propagation of waves in a randomly inhomogeneous medium

random conservative linear wave equation

$$\frac{\partial^2 w}{\partial t^2} = c(x)^2 \frac{\partial^2 w}{\partial x^2}$$

$$i\frac{\partial w}{\partial t} = -\frac{\partial^2 w}{\partial x^2} + \nu(x)w$$

$$\Psi_{k(E)}(r) \sim \sum_{i} \sin(kr + \delta_i)$$

Anderson 1958: (no averaging) – strong scattering forms "standing" waves, sloshing back and forth in a bounded region of space

Localization is a destruction of coherent superposition of spatially separated states

Anderson model

$$H = \sum_{i\sigma} \epsilon_i n_{i\sigma} + \sum_{ij\sigma} t_{ij} a_{i\sigma}^{\dagger} a_{j\sigma}$$

Probability distribution function

Anderson MIT - cont.

Returning probability $P_{j \to j}(t \to \infty; V \to \infty)$?

 $P_{j \to j}(t \to \infty; V \to \infty) = 0$ for extended states

 $P_{j \to j}(t \to \infty; V \to \infty) > 0$ for localized states

Characterization of Anderson localization

Anderson MIT - cont.

 $\rho_j(E)$ is different at different $R_j!$ Random quantity!

Statistical description $P[\rho_j(E)]!$

Broadly distributed $P[\rho_j(E_F)]$

Typical escape rate is determined

by the typical LDOS

Multifractality - $\langle M^{(k)}
angle \sim L^{-f(k)}$

Schubert et al. cond-mat/0309015

Anderson MIT - cont.

Near Anderson localization typical LDOS is approximated by geometrical mean

 $\rho_{typ}(E) \approx \rho_{geom}(E) = e^{\langle \ln \rho_i(E) \rangle}$

Theorem (F.Wegner 1981):

$$\rho(E)_{av} = \langle \rho_i(E) \rangle > 0$$

within a band for any finite Δ

Schubert et al. cond-mat/0309015

Dynamical mean-field theory for U and Δ

Byczuk, Hofstetter, Vollhardt

Lattice problem of interacting particles is mapped onto an ensamble of single impurities (single atoms)

DMFT with Anderson MIT

after idea from: Dobrosavljevic et al., Europhys. Lett. 62, 76 (2003)

$$H^{\text{SIAM}} = \sum_{\sigma} (\epsilon_i - \mu) a_{i\sigma}^{\dagger} a_{i\sigma} + U n_{i\uparrow} n_{i\downarrow} + \sum_{k\sigma} V_k a_{i\sigma}^{\dagger} c_{k\sigma} + hc + \sum_{k\sigma} \epsilon_k c_{k\sigma}^{\dagger} c_{k\sigma}$$
$$G(\omega, \epsilon_i) \rightarrow \rho_i(\omega) = -\frac{1}{\pi} \text{ImG}(\omega, \epsilon_i)$$
$$\rho_g(\omega) = e^{\langle \ln \rho_i(\omega) \rangle}; \quad G(\omega) = \int d\omega' \frac{\rho_g(\omega)}{\omega - \omega'}$$
$$G^{-1}(\omega) = \omega - \eta(\omega) - \Sigma(\omega), \quad \eta(\omega) = \sum_k \frac{|V_k|^2}{\omega - \epsilon_k}$$
$$G(\omega) = \int d\epsilon \frac{N_0(\epsilon)}{\omega - \epsilon - \Sigma(\omega)}$$

Phase diagram for disordered Hubbard model

$$N_0(\epsilon)=rac{2}{\pi D}\sqrt{D^2-\epsilon^2};\ \ \eta(\omega)=rac{D^2}{4}G(\omega)$$
 $T=0,\ n=1,\ W=2D=1,\ {
m NRG}\ {
m solver}$

Mott-Hubbard transition in disordered Hubbard model

* Crossover

* Similar conclusions with $\langle \rho_j \rangle$ schme

Spectral functions in disordered Hubbard model

U/W=1.25

U/W=1.75

- * Redistribution of spectral weight
- * Reentrant Mott-Hubbard MIT
- * Anderson MIT $ho_{geom}(\omega)
 ightarrow 0$

Anderson transition in Hubbard model

* Two insulators: Mott and Anderson

* Adiabatic continuity

$$(U>0,\Delta=0)\to (U=0,\Delta>0)$$

Phase diagram for disordered Falicov-Kimball model

$$H = \sum_{ij} t_{ij} c_i^{\dagger} c_j + \sum_i \epsilon_i c_i^{\dagger} c_i + U \sum_i c_i^{\dagger} c_i f_i^{\dagger} f_i$$

T = 0, n = 1, W = 2D = 1, analytical solver

Spectral phase diagrams

weak coupling 0 < U < W/2

medium coupling $W/2 < U \lesssim 1.36W$

strong coupling $1.36W \lesssim U$

Conclusions and outlook

Interaction and disorder compete with each other stabilizing the metallic phase against the occurring one of the insulators

- Geometrical means used to study Anderson MIT in correlated electron system within DMFT
- Complete phase diagrams
- Nonmonotonic behavior of $\Delta_c(U)$ at Anderson MIT
- Two insulators connected continously
- Certain similarity/differences between Hubbard and FK models

Further projects: AF, CDW phases and Anderson localization in Hubbard and FK models

Physical systems

