Correlated quantum particles in crystal and optical lattices

Krzysztof Byczuk

Institute of Theoretical Physics Department of Physics University of Warsaw

April 03rd, 2009

Collaboration

Dieter Vollhardt - Augsburg University

Walter Hofstetter - Frankfurt University Marcus Kollar - Augsburg University Anna Kauch - Augsburg University Philipp Werner - ETH Zurich many others

Aim of this talk

CORRELATIONS

- What is it?
- How to quantify it?
- How to see it?
- Where to look for it?

Correlation

- Correlation [lat.]: con+relatio ("with relation")
- Mathematics, Statistics, Natural Science:

$$\langle xy \rangle \neq \langle x \rangle \langle y \rangle$$

The term correlation stems from mathematical statistics and means that two distribution functions, f(x) and g(y), are not independent of each other.

• In many body physics: correlations are effects beyond factorizing approximations

$$\langle \rho(r,t)\rho(r',t')\rangle \approx \langle \rho(r,t)\rangle \langle \rho(r',t')\rangle,$$

as in Weiss or Hartree-Fock mean-field theories

Spatial and temporal correlations everywhere

car traffic

air traffic human traffic

electron traffic

more

Abb. 3: Beispiel eines Metall-Isolator-Übergangs: Bei Abkühlung unter eine Temperatur von ca. 150 Kelvin erhöht sich der elektrische Widerstand von metallischem Vanadiumoxid (V₂O₃) schlagartig um das Einhundertmillionenfache (Faktor 10^8) – das System wird zum Isolator.

Spatial and temporal correlations neglected

time/space average insufficient

 $\langle \rho(r,t)\rho(r',t')\rangle \approx \langle \rho(r,t)\rangle \langle \rho(r',t')\rangle = \text{disaster!}$

Boeing 757 and Tupolev 154 collided at 35,400ft. in 2001

Pilot of Tupolev received at the same time two conflicting (uncorrelated) instructions

Spatial and temporal correlations neglected

Local density approximation (LDA) disaster in HTC

LaCuO₄ Mott (correlated) insulator predicted to be a metal

Partially curred by (AF) long-range order ... but correlations are still missed

Correlated electrons

Narrow d,f-orbitals/bands \rightarrow strong electronic correlations

Electronic bands in solids

Wave function overlap $\sim t_{ij} = \langle i | \hat{T} | j \rangle \rightarrow |E_{\mathbf{k}}| \sim \text{bandwidth } W$

Band insulators, e.g. NaCl

Atomic levels, localized electrons $|{f R}_i\sigma
angle$

Correlated metals, e.g. Ni, V_2O_3 , Ce

Narrow bands, $|\mathbf{R}_i \sigma \rangle \leftrightarrow |\mathbf{k} \sigma \rangle$

Simple metals, e.g. Na, Al

Broad bands, extended Bloch waves $|{f k}\sigma
angle$

Electronic bands in solids

Mean time τ spent by the electron on an atom in a solid depends on the band width W

group velocity
$$v_{\mathbf{k}} \approx \frac{\text{lattice spacing}}{\text{mean time}} = \frac{a}{\tau}$$

Heisenberg principle $W\tau \sim \hbar$

$$\frac{a}{\tau} \sim \frac{aW}{\hbar} \Longrightarrow \tau \sim \frac{\hbar}{W}$$

Small W longer interaction with another electron on the same atom Strong electronic correlations

Optical lattices filled with bosons or fermions

Greiner et al. 02, and other works

atomic trap and standing waves of light create optical lattices $a\sim 400-500nm$

Correlated fermions on crystal and optical lattices

$$H = -\sum_{ij\sigma} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + \frac{U}{U} \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

P.W. Anderson, J. Hubbard, M. Gutzwiller, J. Kanamori, 1960-63

Local Hubbard physics

Correlated bosons on optical lattices

bosonic Hubbard model

$$H = \sum_{ij} t_{ij} \ b_i^{\dagger} b_j + \frac{U}{2} \sum_i n_i (n_i - 1)$$

Gersch, Knollman, 1963 Fisher et al., 1989 Scalettar, Kampf, et al., 1995 Jacksch, 1998

local (on-site) correlations in time

integer occupation of single site changes in time

Origin of genuine many-body correlation

 $H = H^{\text{hopping}} + H^{\text{interaction}}_{\text{loc}}$

 $\left[H^{\text{hopping}}, H^{\text{interaction}}_{\text{loc}}\right] \neq 0$

How to solve Hubbard models?

Dynamical Mean-Field Theory (DMFT)

 $H = H^{\text{hopping}} + H^{\text{interaction}}_{\text{loc}}$

- comprehensive (all input parameters, all temperatures, all phases, ...)
- thermodynamically consistent and conserving
- exact solution in the large dimensions (coordination number) limit
- keeps $\langle [H^{\text{hopping}}, H^{\text{interaction}}_{\text{loc}}] \rangle \neq 0$ to describe correlations

DMFT for lattice fermions

Replace (map) full many-body lattice problem by a single-site coupled to dynamical reservoir and solve such problem self-consistently

All local dynamical correlations included exactly

Space correlations neglected - mean-field approximation

DMFT scheme

 S_{loc} - local interactions U or J from a model **TB** or a microscopic **LDA** Hamiltonian

Bosonic-Dynamical Mean-Field Theory (B-DMFT)

- Exact mapping of the lattice bosons in infinite dimension onto a single site
- Single site coupled to two reservoirs: normal bosons and bosons in the condensate
- Reservoirs properties are determined self-consistently, local correlations kept

K.B., D. Vollhardt Phys. Rev. B 77, 235106 (2008)

Mott-Hubbard metal insulator transition: V_2O_3

V ([Ar] $3d^{2}4s^{2}$) gives V^{+3} valence band partially filled (metallic?)

True Mott insulator

persists above T_N

Mott – Hubbard Insulator, Mott – Heisenberg Insulator, and Slater Insulator

MIT at half-filling

Antiferromagnetic Mott insulator

typical intermediate coupling problem $U_c \approx |t_{ij}|$

```
MIT at half-filling
```


spin flip on central site

dynamical processes with spin-flips inject states into correlation gap giving a quasiparticle resonance

MIT at half-filling at T = 0 according to DMFT

Kotliar et al. 92-96, Bulla, 99

Luttinger theorem $A(0) = N_0(0)$

Fermi liquid

6.0

Muller-Hartmann 1989

$$G(k,\omega) \sim \frac{Z}{\omega - \tilde{\epsilon}_k - i\alpha \ \omega^2} + G_{inc}$$

MIT at half-filling at T > 0 according to DMFT

 $1^{st}\mbox{-}order$ transition

Correlation seen in dispersion of correlated electrons

One-particle spectral function - excitations at ${\bf k}$ and ω

$$A(\mathbf{k},\omega) = -\frac{1}{\pi} \operatorname{Im} \frac{1}{\omega + \mu - \epsilon_{\mathbf{k}} - \Sigma(\mathbf{k},\omega)}$$

Dispersion relation $E_{\mathbf{k}}$

$$E_{\mathbf{k}} = \{ \omega \text{ where } A(\mathbf{k}, \omega) = \max \}$$

Dispersion relation is experimentally measured

Angular Resolved Photoemission Spectroscopy

energy distribution curve (EDC)

$$k_x = k \cos \phi$$
$$k_y = k \sin \phi$$

$$E = k^2/2m$$

energy resolution 1meV

momentum distribution curve (MDC)

Kinks in HTC

cond-mat/0604284

electron-phonon or electron-spin fluctuations coupling

More examples of kinks in ARPES

 $SrVO_3$, cond-mat/0504075

Kinks seen experimentally at 150 meV Pure electronic origin?

New purely electronic mechanism

- in strongly correlated systems
- characteristic energy scale
- range of validity for Fermi liquid theory

K.B., M. Kollar, K. Held, Y.-F. Yang, I. A. Nekrasov, Th. Pruschke, D. Vollhardt Nature Physics 3, 168 (2007)

Kinks due to strong correlations

Fermi liquid $Z_{FL} \ll 1$: $E_{\mathbf{k}} = Z_{FL} \epsilon_{\mathbf{k}}$ for $|E_{\mathbf{k}}| < \omega_*$

Different renormalization $Z_{CP} \ll 1$: $E_{\mathbf{k}} = Z_{CP} \epsilon_{\mathbf{k}} \pm c$ for $|E_{\mathbf{k}}| > \omega_*$

Microscopic predictions

• Kink position

$$\omega_* = 0.41 Z_{FL} \frac{\mathrm{Im}1/G_0}{\mathrm{Re}G_0'/G_0^2}$$

• Intermediate energy regime

$$Z_{CP} = Z_{FL} \frac{1}{\text{Re}G_0'/G_0^2}$$

- Change in the slope Z_{FL}/Z_{CP} interaction independent
- Curvature of the kink $\sim Z_{FL}^2$
- Sharpness of the kink $\sim 1/Z_{FL}^2$
- Sharper for stronger ${\cal U}$

Superfluid-insulator transition in lattice bosons

Optical lattices with cold atoms

Superfluid-Mott insulator transition,

Greiner, Mandel, Esslinger, Hänsch, Bloch, 2002

Bosonic Hubbard model: B-DMFT CT-QMC

Philipp Werner, Peter Anders: developed continous time Monte Carlo method for local (impurity) bosonic problem with B-DMFT self-consistency conditions

Bosonic Falicov-Kimball model

Binary mixture of itinerant (b) and localized (f) bosons on the lattice

$$H = \sum_{ij} t_{ij} \ b_i^{\dagger} b_j + \epsilon_f \sum_i f_i^{\dagger} f_i + U_{bf} \sum_i n_{bi} n_{fi} + U_{ff} \sum_i n_{fi} n_{fi}$$

Local conservation law $[n_{fi}, H] = 0$ hence $n_{fi} = 0, 1, 2, ...$ classical variable B-DMFT: local action Gaussian and analytically integrable

Enhancement of T_{BEC} due to interaction

Hard-core f-bosons $U_{ff} = \infty$; $n_f = 0, 1$; $0 \le \bar{n}_f \le 1$; d = 3 - SC lattice

$$\bar{n}_b = \bar{n}_b^{BEC} + \int d\omega \; \frac{A_b(\omega + \mu_b)}{e^{\omega/T} - 1}$$

Normal part decreases when U increases for constant μ_b and T

Quantifying correlations

How many correlation is there in correlated electron systems?

We need information theory tools to address this issue.

Classical vs. Quantum Information Theory

Probability distribution vs. Density operator

$$p_k \longleftrightarrow \hat{\rho} = \sum_k p_k |k\rangle \langle k|$$

Shannon entropy vs. von Neumann entropy

$$I = -\langle \log_2 p_k \rangle = -\sum_k p_k \log_2 p_k \longleftrightarrow S = -\langle \ln \hat{\rho} \rangle = -Tr[\hat{\rho} \ln \hat{\rho}]$$

Two correlated (sub)systems have relative entropy

$$I = I_1 + I_2 - \Delta I \longleftrightarrow S = S_1 + S_2 - E$$

 $\Delta I(p_{kl}||p_kp_l) = -\sum_{kl} p_{kl} [\log_2 \frac{p_{kl}}{p_kp_l}] \longleftrightarrow E(\hat{\rho}||\hat{\rho}_1 \otimes \hat{\rho}_2) = -Tr[\hat{\rho}(\ln \hat{\rho} - \ln \hat{\rho}_1 \otimes \hat{\rho}_2)]$

Relative entropy vanishes in the absence of correlations (product states)

Asymptotic distiguishability

Quantum Sanov theorem:

Probability P_n that a state $\hat{\sigma}$ is not distiguishable from a state $\hat{\rho}$ in n measurements, when $n\gg 1,$ is

 $P_n \approx e^{-nE(\hat{\rho}||\hat{\sigma})}.$

Relative entropy $E(\hat{\rho}||\hat{\sigma})$ as a 'distance' between quantum states.

We calculate

- von Neumann entropies and
- relative entropies

for and between different correlated and uncorrelated (product) states of the Hubbard model.

Correlation and Mott Transition

Product (HF) states: $|0\rangle = \prod_{k\sigma}^{k_F} a_{k\sigma}^{\dagger} |v\rangle - U = 0 \text{ limit}$ $|a\rangle = \prod_{i}^{N_L} a_{i\sigma_i}^{\dagger} |v\rangle - \text{ atomic limit}$

 $S(\hat{\rho}) = -Tr[\hat{\rho}\ln\hat{\rho}]$ $E(\hat{\rho}||\hat{\sigma}) = -Tr[\hat{\rho}\ln\hat{\rho} - \hat{\rho}\ln\hat{\sigma}]$

$$S = S(\hat{\rho}_{DMFT})$$
$$S_1 = S(\hat{\rho}_0)$$
$$S_2 = S(\hat{\rho}_a)$$

 $E_1 = E(\hat{\rho}_{DMFT} || \hat{\rho}_0)$ $E_2 = E(\hat{\rho}_0 || \hat{\rho}_{DMFT})$ $E_3 = E(\hat{\rho}_a || \hat{\rho}_{DMFT})$

Correlation and Antiferromagnetic Order

 $\begin{array}{l} \mathsf{Product} \ (\mathsf{HF}) \ \mathsf{states:} \\ |0\rangle = \prod_{k \in (A,B)}^{k_F} a_{k_A\uparrow}^{\dagger} a_{k_B\downarrow}^{\dagger} |v\rangle \ \mathsf{-} \ \mathsf{Slater} \ \mathsf{limit} \\ |a\rangle = \prod_{i \in (A,B)}^{N_L} a_{i_A\uparrow}^{\dagger} a_{i_B\downarrow}^{\dagger} |v\rangle \ \mathsf{-} \ \mathsf{Heisenberg} \ \mathsf{limit} \end{array}$

 $S(\hat{\rho}) = -Tr[\hat{\rho}\ln\hat{\rho}]$ $E(\hat{\rho}||\hat{\sigma}) = -Tr[\hat{\rho}\ln\hat{\rho} - \hat{\rho}\ln\hat{\sigma}]$ $S = S(\hat{\rho}_{DMFT})$ $S_1 = S(\hat{\rho}_0)$ $S_2 = S(\hat{\rho}_a)$

 $E_1 = E(\hat{\rho}_{DMFT} || \hat{\rho}_0)$ $E_2 = E(\hat{\rho}_0 || \hat{\rho}_{DMFT})$ $E_3 = E(\hat{\rho}_a || \hat{\rho}_{DMFT})$

Disorder as a probe of correlations

Interaction \leftrightarrow Mott-Hubbard MIT

Interaction and disorder compete with each other stabilizing the metallic phase against the occurring one of the insulators

Phase diagram for disordered Hubbard model

$$N_0(\epsilon) = \frac{2}{\pi D} \sqrt{D^2 - \epsilon^2}; \quad \eta(\omega) = \frac{D^2}{4} G(\omega)$$

 $T=0,\ n=1,\ W=2D=1,\ {\rm NRG}$ solver

K.B. W. Hofstetter, D. Vollhardt, Phys. Rev. Lett. 94, 056404 (2005)

Phase diagram for disordered Falicov-Kimball model

$$H = \sum_{ij} t_{ij} c_i^{\dagger} c_j + \sum_i \epsilon_i c_i^{\dagger} c_i + U \sum_i c_i^{\dagger} c_i f_i^{\dagger} f_i$$

T = 0, n = 1, W = 2D = 1, analytical solver

$$U$$
 - interaction, Δ - disorder

K.B., Phys. Rev. B 71, 205105 (2005)

Mott-Anderson MIT with AF long-range order

No phase transition between Slater and Heisenberg limits BUT

AF and PM metal only in Slater limit with disorder

K.B., W. Hofstetter, D. Vollhardt, Phys. Rev. Lett. 102, in press (2009)

Optical lattices with random disorder

- impurity atoms
- superposition of waves with different amplitudes (pseudo-random)
- speckle laser field on top of lattice (good random distribution)
- atom chips

$$H = J \sum_{ij} a_{i\sigma}^{\dagger} a_{j\sigma} + \sum_{i} \epsilon_{i} n_{i\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

Summary

- Correlation in many-body quantum physics
- Correlation is quantified by entropies
- Correlation is seen and tuned in solids and cold atoms
 - Mott-Hubbard metal-insulator transition
 - kinks in dispersions
 - superfluid-insulator transition
 - in phase diagrams when disorder is present
- Different correlations in paramagnetic and in antiferromagnetic cases