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Standard model of quantum many-body system
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E(k)

k

quasiparticle

quasihole

holon

spinon

plasmon

magnon

phonon

polariton

exciton

anyon

g-on

...

emergent particles

(i) well defined dispersion relation E(k)

(ii) long (infinite) life-time τ

(iii) proper set of quantum numbers

(iv) statistics



Dispersions and kinks

Coupling/hybridization V̂ between different particles/modes

〈Ψ|V̂ |Φ〉 6= 0

E(k)

k

E(k)

k

Df. kinks are sudden slope changes in the dispersion relations

anticrossing, lifting degeneracy, ...

they provide information on different modes and their coupling



Examples of kinks in ARPES
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different HTC systems, cond-mat/0604284
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Sr2RuO4, cond-mat/0508312

Kinks seen experimentally between 20-300 meV

Origin: phonos, spin fluctuations, often not known



Kinks in numerical DMFT solutions

plain band model with local correlations, no other bosons, ... but kinks!
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Gk(ω) = 1
ω+µ−εk−Σ(ω) → Ek + µ − εk − ReΣ(Ek) = 0

I.A. Nekrasov et al., cond-mat/0508313, PRB (2006)

Not found in SIAM with simple hybridization function! → DMFT self-consistency effect



Origin of kinks within DMFT

Three peak structure is a sufficient condition to observe the kinks

• three separated energy scales

1. ωqp - quasiparticle width
2. Ω - distance between dips
3. U - distance between Hubbard satellites

ωqp � Ω � U

• DMFT lattice self-consistency

Σ(ω) = ω + µ − R[G(ω)], inverse of G0(ω) =

∫

dω′
N0(ω

′)

ω − ω′

ω qp

U

Ω



Mathematical explanation of kinks within DMFT

Moment expansion for R[G(ω)]

R[G(ω)] =
1

G(ω)
+ m1 + (m2 − m2

1)G(ω) + (m3 − 3m2m1 + 2m3
1)G(ω)2 + ...

where mn =
∫

dω ωnN0(ω) the n-th moment of the DOS

DMFT self-consistency

Σ(ω) = ω + µ − 1

G(ω)
+ m1

︸ ︷︷ ︸

ω+µ̃− 1
G(ω)

− (m2 − m2
1)G(ω) − (m3 − 3m2m1 + 2m3

1)G(ω)2 − ...
︸ ︷︷ ︸

∆[G(ω)]

These two terms behave differently on the energy scale |ω| . Ω

Σ(ω) = ω + µ − 1

G(ω)
− ∆[G(ω)]



Mathematical explanation of kinks within DMFT

Σ(ω) = ω + µ − 1

G(ω)
− ∆[G(ω)]

Im G(w)

Re G(w)

Im (1/G(w))

Re(1/G(w))−w

Ω

ω qp

ω

ω

ω

*

*
−

contributions to ReΣ(ω) and kinks at ω∗

−∆[G(ω)]

ω + µ − 1
G(ω)



Mathematical explanation - brief summary

When energy scales separate (three peak structure),

ωqp � Ω � U,

the self-energy has two contributions:

Σ(ω) = ω + µ − 1

G(ω)
− ∆[G(ω)],

with two different behaviors:

• ω + µ − 1
G(ω) is almost linear on the scale |ω| . Ω

• ∆[G(ω)] is almost linear on the scale |ω| . ωqp

energy scale ω∗ of kinks is determined by slope changes in hybridization

function ∆[G(ω)]



Beyond DMFT: DCA and further Nc → ∞
When energy scales separate (three peak structure) at a given K point in BZ,

ωK

qp � ΩK � U,

the K-resolved self-energy has two contributions:

ΣK(ω) = ω + µ − 1

GK(ω)
− ∆[GK(ω)],

with two different behaviors if close to Fermi surface:

• ω + µ − 1
GK(ω) is almost linear on the scale |ω| . ΩK

• ∆[GK(ω)] is almost linear on the scale |ω| . ωK

qp

Kinks are generic feature of strongly correlated metals with large spectral

redistribution



Physical picture of the kink origin

Gk(ω) = 1
ω+µ−εk−Σ(ω) with Σ(ω) = ω + µ − 1

G(ω) − ∆[G(ω)] leads to the dispersion

relation Ek given by

Re

{
1

G(Ek)
+ ∆[G(Ek)] − εk

}

= 0

Approximate

Re

{
1

Gat(Ek)
+ ∆[Gqp(Ek)] − εk

}

= 0,

where

Gat(ω) =
1 − n/2

ω + µ + iΓ
+

n/2

ω + µ − U + iΓ
=

1

ω + µ + iΓ − Σat(ω)

and

Gqp(ω) =
Z∗

ω + µ − εqp + iγ

with ∆[G(ω)] = t2G(ω).



Mapping onto three-level system

Eigen-value equation:

Ek + µ − U
n

2
− εk + iΓ − U2

n
2(1 − n

2)

Ek + µ − U(1 − n
2) + iΓ

− Z∗t2

Ek + µ − εqp + iγ
= 0

Equivalent three-level system Hamiltonian

Heff =









U(1 − n
2) − µ − iΓ −U

√
n
2(1 − n

2) 0

−U
√

n
2(1 − n

2) εk − µ + U n
2 − iΓ −

√
Z∗t

0 −
√

Z∗t εqp − µ − iγ









and
det(EkI − Heff) = 0

gives the same spectrum.



Physical picture of the kink origin

Strong correlations leads to energy scale separation and formation effective

three level system. Hybridization between three levels gives rise to kinks.
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