Kinks in the dispersion relation of strongly correlated electrons

Krzysztof Byczuk and Marcus Kollar

Institute of Physics, EKM, Augsburg University

May 03rd, 2006

Collaboration

- K. Held, Y.-F. Yang, Stuttgart, Germany
- I. Nekrasov, Ekaterinburg, Russia
- T. Pruschke, Göttingen, Germany
- D. Vollhardt Augsburg, Germany

Support from SFB 484

Outline

- Kinks in the dispersion relations
- Origin of kinks in strongly correlated electrons
 - DMFT solution
 - Physical picture
- Predictions: energy scales and examples of kinks
 - Estimation of energy scale
 - Bethe DOS
 - Hypercubic DOS
 - $SrVO_3$
 - HTC and pd systems
- Conclusions and outlooks

Standard model of quantum many-body system

emergent particles quasiparticle quasihole holon spinon plasmon magnon phonon polariton exciton anyon g-on

. . .

(i) well defined dispersion relation $E(\mathbf{k})$

(ii) long (infinite) life-time au

(iii) proper set of quantum numbers

(iv) statistics

Dispersions and kinks

Coupling/hybridization \hat{V} between different particles/modes

 $\langle \Psi | \hat{V} | \Phi \rangle \neq 0$

Df. kinks are sudden slope changes in the dispersion relations

they provide information on different modes and their coupling

Examples of kinks in ARPES

20K50K

• 130K

1 0

-100

-200

0

20K100K

 Sr_2RuO_4 , cond-mat/0508312

Kinks seen experimentally between 20-300 meV Origin: phonos, spin fluctuations, often not known

different HTC systems, cond-mat/0604284

1 0.0

2

0.3

Doping, δ

Kinks in numerical DMFT solutions

plain band model with local correlations, no other bosons, ... but kinks!

I.A. Nekrasov et al., cond-mat/0508313, PRB (2006)

Not found in SIAM with simple hybridization function! \rightarrow DMFT self-consistency effect

Origin of kinks within DMFT

Three peak structure is a sufficient condition to observe the kinks

- three separated energy scales
 - 1. ω_{qp} quasiparticle width
 - 2. Ω distance between dips
 - 3. U distance between Hubbard satellites

0

 $\mathbf{x} \in (1)$

• DMFT lattice self-consistency

$$\Sigma(\omega) = \omega + \mu - R[G(\omega)], \text{ inverse of } G_0(\omega) = \int d\omega' \frac{N_0(\omega')}{\omega - \omega'}$$

 $\omega_{qp} \ll \Omega \ll U$

Mathematical explanation of kinks within DMFT

Moment expansion for $R[G(\omega)]$

$$R[G(\omega)] = \frac{1}{G(\omega)} + m_1 + (m_2 - m_1^2)G(\omega) + (m_3 - 3m_2m_1 + 2m_1^3)G(\omega)^2 + \dots$$

where $m_n = \int d\omega \; \omega^n N_0(\omega)$ the n-th moment of the DOS

DMFT self-consistency

$$\Sigma(\omega) = \underbrace{\omega + \mu - \frac{1}{G(\omega)} + m_1}_{\omega + \tilde{\mu} - \frac{1}{G(\omega)}} - \underbrace{(m_2 - m_1^2)G(\omega) - (m_3 - 3m_2m_1 + 2m_1^3)G(\omega)^2 - \dots}_{\Delta[G(\omega)]}$$

These two terms behave differently on the energy scale $|\omega| \lesssim \Omega$

$$\Sigma(\omega) = \omega + \mu - \frac{1}{G(\omega)} - \Delta[G(\omega)]$$

Mathematical explanation of kinks within DMFT

$$\Sigma(\omega) = \omega + \mu - \frac{1}{G(\omega)} - \Delta[G(\omega)]$$

Mathematical explanation - brief summary

When energy scales separate (three peak structure),

$$\omega_{qp} \ll \Omega \ll U,$$

the self-energy has two contributions:

$$\Sigma(\omega) = \omega + \mu - \frac{1}{G(\omega)} - \Delta[G(\omega)],$$

with two different behaviors:

- $\omega + \mu \frac{1}{G(\omega)}$ is almost linear on the scale $|\omega| \lesssim \Omega$
- $\Delta[G(\omega)]$ is almost linear on the scale $|\omega| \lesssim \omega_{qp}$

energy scale ω_* of kinks is determined by slope changes in hybridization function $\Delta[G(\omega)]$

Beyond DMFT: DCA and further $N_c \rightarrow \infty$

When energy scales separate (three peak structure) at a given \mathbf{K} point in BZ,

 $\omega_{qp}^{\mathbf{K}} \ll \Omega^{\mathbf{K}} \ll U,$

the \mathbf{K} -resolved self-energy has two contributions:

$$\Sigma_{\mathbf{K}}(\omega) = \omega + \mu - \frac{1}{G_{\mathbf{K}}(\omega)} - \Delta[G_{\mathbf{K}}(\omega)],$$

with two different behaviors if close to Fermi surface:

- $\omega + \mu \frac{1}{G_{\mathbf{K}}(\omega)}$ is almost linear on the scale $|\omega| \lesssim \Omega^{\mathbf{K}}$
- $\Delta[G_{\mathbf{K}}(\omega)]$ is almost linear on the scale $|\omega| \lesssim \omega_{qp}^{\mathbf{K}}$

Kinks are generic feature of strongly correlated metals with large spectral redistribution

Physical picture of the kink origin

 $G_{\mathbf{k}}(\omega) = \frac{1}{\omega + \mu - \epsilon_{\mathbf{k}} - \Sigma(\omega)}$ with $\Sigma(\omega) = \omega + \mu - \frac{1}{G(\omega)} - \Delta[G(\omega)]$ leads to the dispersion relation $E_{\mathbf{k}}$ given by

$$\operatorname{Re}\left\{\frac{1}{G(E_{\mathbf{k}})} + \Delta[G(E_{\mathbf{k}})] - \epsilon_{\mathbf{k}}\right\} = 0$$

Approximate

$$\operatorname{Re}\left\{\frac{1}{G_{at}(E_{\mathbf{k}})} + \Delta[G_{qp}(E_{\mathbf{k}})] - \epsilon_{\mathbf{k}}\right\} = 0,$$

where

$$G_{at}(\omega) = \frac{1 - n/2}{\omega + \mu + i\Gamma} + \frac{n/2}{\omega + \mu - U + i\Gamma} = \frac{1}{\omega + \mu + i\Gamma - \Sigma_{at}(\omega)}$$

and

$$G_{qp}(\omega) = \frac{Z^*}{\omega + \mu - \epsilon_{qp} + i\gamma}$$

with $\Delta[G(\omega)] = t^2 G(\omega)$.

Mapping onto three-level system

Eigen-value equation:

$$E_{\mathbf{k}} + \mu - U\frac{n}{2} - \epsilon_{\mathbf{k}} + i\Gamma - U^2 \frac{\frac{n}{2}(1 - \frac{n}{2})}{E_{\mathbf{k}} + \mu - U(1 - \frac{n}{2}) + i\Gamma} - \frac{Z^*t^2}{E_{\mathbf{k}} + \mu - \epsilon_{qp} + i\gamma} = 0$$

Equivalent three-level system Hamiltonian

$$H_{eff} = \begin{pmatrix} U(1 - \frac{n}{2}) - \mu - i\Gamma & -U\sqrt{\frac{n}{2}(1 - \frac{n}{2})} & 0 \\ -U\sqrt{\frac{n}{2}(1 - \frac{n}{2})} & \epsilon_{\mathbf{k}} - \mu + U\frac{n}{2} - i\Gamma & -\sqrt{Z^{*}}t \\ 0 & -\sqrt{Z^{*}}t & \epsilon_{qp} - \mu - i\gamma \end{pmatrix}$$

and

$$\det(E_{\mathbf{k}}I - H_{eff}) = 0$$

gives the same spectrum.

Physical picture of the kink origin

Strong correlations leads to energy scale separation and formation effective three level system. Hybridization between three levels gives rise to kinks.

