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Main results

- New comprehensive dynamical mean-field theory for correlated, lattice bosons in
normal and condensate phases, exact in d — o0

Correlated lattice

Boson reservoir (BEC)

time

- Correlation might enhance BEC fraction and transition temperature
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Preprint

Correlated bosons on a lattice: Dynamical mean-field theory for Bose-FEinstein
condensed and normal phases - arXiv:0706.0839

Plan of talk

e Dynamical mean-field theory (DMFT) for correlated fermions
e Formulation of dynamical mean-field theory for bosons (B-DMFT)
e Bosonic Hubbard model within B-DMFT

e Falicov-Kimball model within B-DMFT

— Enhancement of BEC transition temperature due to correlations

e Summary and outlook
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Correlated lattice fermions
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fermionic Hubbard model, 1963

Local Hubbard physics
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The Holy Grail for correlated electrons (fermions)

Fact: Hubbard model is not solved for arbitrary cases

Find the best comprehensive approximation

e valid for all values of parameters t, U, n = N./Ny, T, all thermodynamic phases
e thermodynamically consistent

e conserving

e possessing a small expansion (control) parameter and exact in some limit

e flexible to be applied to different systems and material specific calculations



DMFT for lattice fermions

Replace (map) full many-body lattice problem by a single-site coupled to dynamical
reservoir and solve such problem self-consistently
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All local dynamical correlations included exactly

Space correlations neglected - mean-field approximation



DMFT - equations full glory

Local Green function

where
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and self-energy
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Local Green function and lattice system self-consistency
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DMFT - exact in the infinite dimension (coordination)

Non-trivial (asymptotic) theory is well defined such that the energy density is
generically finite and non-zero
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Fact, since G;; is probability amplitude for hopping,
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sum Zj(i) is compensated and energy is finite (Metzner, Vollhardt, 1989)



d — oo limit — Feynman diagrams simplification

One proves, term by term, that skeleton expansion for
the self-energy 3;;|G| has only local contributions
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Fourier transform is k-independent
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DMFT is an exact theory in infinite dimension (coordination number) and small
control parameter is 1/d (1/z2)

(Metzner, Vollhardt, 1989)



DMFT - flexibility; LDA+DMFT
Multi-band systems (Anisimov et al. 97; ... Nekrasov et al. 00, ...)
H=Hrpa+ Hint — HgDA = HgDA + Hint

direct and exchange interaction
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kinetic part, determined from DFT-LDA calculation (material specific)
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LDA+DMFT - state of the art for realistic approach to correlated electron systems



DMFT scheme

Sioc - local interactions U or J from a model TB or a microscopic LDA Hamiltonian
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HO is a model TB or a microscopic LDA Hamiltonian



BOSONS



Correlated bosons on optical lattices  Gersch, Knoliman, 1963
Fisher et al., 1989

_ Scalettar, Kampf, et al., 1995
bosonic Hubbard model Jacksch, 1998 P
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. local (on-site) correlations in time
t
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integer occupation of single site changes in time



Standard approximations

e Bose-Einstein condensation treated by Bogoliubov method b; = (b;) + b; where
(b;) = ¢; € C classical variable (Bogoliubov 1947)

e Weak coupling - mean-field (expansion) in U, valid for small U, average on-site
density, local correlations in time neglected (Ooste, Stoof, et al., 2000)

e Strong coupling - mean-field (expansion) in ¢, valid for small ¢ (Freericks, Monien,
1994; Kampf, Scalettar, 1995)

Bose-Einstein condensate — Mott insulator transition
U~t

intermediate coupling problem
Comprehensive mean-field theory needed

Like DMFT for fermions: exact and non-trivial in d — oo limit



Quantum lattice bosons in d — oo limit
W. Metzner and D. Vollhardt 1989 - rescaling of hopping amplitudes for fermions
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Not sufficient for bosons because of BEC:

for NNi,5 t=
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One-particle density matrix at ||R; — R;|| — oo
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BEC part ~~ -
normal part

e BEC part — constant

e normal part — vanishes

The two contributions to the density matrix behave differently



BEC and normal bosons on the lattice in d — oo limit

1. Rescaling is made inside a thermodynamical potential (action, Lagrangian) but
not at the level of the Hamiltonian operator
t . :
e normal parts: ¢;; = ||R‘Z—Rj|| - fractional rescaling
(2d) 2
(2d)||Ri_Rj||

o BEC parts: t;; = - integer rescaling

2. Limit d — oo taken afterwards in this effective potential

Only this procedure gives consistent derivation of B-DMFT equations as
exact ones in d — oo limit for boson models with local interactions



Bosonic-Dynamical Mean-Field Theory (B-DMFT)

e Exact mapping of the lattice bosons in infinite dimension onto a single site
e Single site coupled to two reservoirs: normal bosons and bosons in the condensate

e Reservoirs properties are determined self-consistently, local correlations kept

Correlated lattice
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B-DMFT application to bosonic Hubbard model

(i) Lattice self-consistency equation (exact in d — o0)
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(ii) Local impurity ~ G(7) = [ D[b*,b] b(7)b*(0) e~ tec

Correlated lattice
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(iii) Generalized Gross-Pitaevskii eq. (exact in d — o0)
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B-DMFT application to bosonic Falicov-Kimball
model

Binary mixture of itinerant (b) and localized (f) bosons on the lattice
H = Ztij bzbj + €f Z f;rfZ + Ubf anmﬂ + Uff anmﬂ
ij i i i

Local conservation law [n¢;, H] = 0 hence ny; = 0, 1,2, ... classical variable

B-DMFT: local action Gaussian and analytically integrable
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Enhancement of T3z~ due to interaction

Hard-core f-bosons Us¢ = 00; ny =0,1; 0 <ny <1; d= 3 - SC lattice
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Normal part decreases when U increases for constant p and T



Exact limit: enhancement of Tz~ due to interaction

Hard-core f-bosons Uy = 00; ny = 0,1; 0 < ny <1; d = oo - Bethe lattice
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Summary and Outlook

e Formulated Bosonic Dynamical Mean-Field Theory (B-DMFT)

— comprehensive mean-field theory
— conserving and thermodynamically consistent
— exact in d — oo limit due to new rescaling

Correlated lattice

e B-DMFT equations for bosonic Hubbard model

Boson reservoir (BEC)

e B-DMFT solution for bosonic Falicov-Kimball model -

time

— Enhancement of T’ g due to correlations
— Mixture of 8"Rb (f-bosons) and “Li (b-bosons) may have larger Tz ¢ on
optical lattices

e Spinor bosons, bose-fermi mixture within B-DMFT or density like LRO easy to
include within B-DMFT



