Dynamical mean-field theory for correlated bosons on a lattice in condensed and normal phases

Krzysztof Byczuk

Institute of Theoretical Physics
Department of Physics
Warsaw Univeristy

March 06th, 2009

Collaboration

Dieter Vollhardt - Augsburg University
Correlated bosons on a lattice: Dynamical mean-field theory for Bose-Einstein condensed and normal phases
arXiv:0706.0839, Phys. Rev. B 77, 235106 (2008)

Philipp Werner, Peter Anders - ETH, Zurich Anna Kauch -Augsburg University

Direct Bose-Einstein condensation

Magneto-optical traps with cold alkaline atoms with Bose statistics (${ }^{7} \mathrm{Li},{ }^{23} \mathrm{Na},{ }^{41} \mathrm{~K},{ }^{52} \mathrm{Cr},{ }^{85} \mathrm{Rb},{ }^{87} \mathrm{Rb},{ }^{133} \mathrm{Cs}$ and ${ }^{174} \mathrm{Yb}$)

M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, and E.A. Cornell, 1995

Superfluid-Mott transition - correlated lattice bosons

a Optical lattice

b Real crystal

Optical lattices with cold atoms

Greiner, Mandel, Esslinger, Hänsch, Bloch, 2002

Correlated bosons on a lattice

bosonic Hubbard model

Gersch, Knollman, 1963
Fisher et al., 1989
Scalettar, Kampf, et al., 1995 Jacksch, 1998

$$
H=\sum_{i j} t_{i j} b_{i}^{\dagger} b_{j}+\frac{U}{2} \sum_{i} n_{i}\left(n_{i}-1\right)
$$

local (on-site) correlations in time

$$
|i, 2\rangle \rightarrow|i, 3\rangle \rightarrow|i, 4\rangle \rightarrow|i, 3\rangle
$$

integer occupation of single site changes in time

Bosons on a lattice - Bose-Eisntein condensation

One-particle density matrix at $\left\|R_{i}-R_{j}\right\| \rightarrow \infty$

$$
\rho_{i j}=\left\langle b_{i}^{\dagger} b_{j}\right\rangle=\underbrace{\frac{N_{c}}{N_{L}}}_{\text {BEC part }}+\underbrace{\frac{1}{N_{L}} \sum_{k \neq 0} n_{k} e^{i k\left(R_{i}-R_{j}\right)}}_{\text {normal part }} \underset{\left\|R_{i}-R_{j}\right\| \rightarrow \infty}{\longrightarrow} \frac{N_{c}}{N_{L}}=n_{c}
$$

- BEC part - constant
- normal part - vanishes

The two contributions to the density matrix behave differently

Standard approximations

- Bose-Einstein condensation treated by Bogoliubov method $b_{i}=\left\langle b_{i}\right\rangle+\tilde{b}_{i}$ where $\left\langle b_{i}\right\rangle \equiv \phi_{i} \in C$ classical variable (Bogoliubov 1947)
- Weak coupling - mean-field (expansion) in U, valid for small U, average on-site density, local correlations in time neglected (Ooste, Stoof, et al., 2000)
- Strong coupling - mean-field (expansion) in t, valid for small t (Freericks, Monien, 1994; Kampf, Scalettar, 1995)

Bose-Einstein condensate - Mott insulator transition

$$
U \sim t
$$

intermediate coupling problem
Comprehensive mean-field theory needed

Comprehensive mean-field theory

- valid for all parameters values $t, U, n, T, .$.
- thermodynamically consistent
- conserving
- small (control) parameter $1 / d$
$d \rightarrow \infty \Rightarrow$ Dynamical mean-field theory for lattice bosons (B-DMFT)
Problem: How to rescale the kinetic energy with d ?

Quantum lattice bosons in $d \rightarrow \infty$ limit

W. Metzner and D. Vollhardt 1989 - rescaling of hopping amplitudes for fermions

$$
t_{i j}=\frac{t_{i j}^{*}}{(2 d)^{\frac{\left\|R_{i}-R_{j}\right\|}{2}}} \quad \text { for NN } i, j \quad t=\frac{t^{*}}{\sqrt{Z}}, \quad Z=2 d
$$

Not sufficient for bosons because of BEC:

Normal bosons : $\left\langle H_{k i n}\right\rangle=-\underbrace{t}_{\frac{1}{\sqrt{Z}}} \sum_{i} \underbrace{\sum_{\sum^{j(N N i)}}}_{Z} \underbrace{\left\langle b_{i}^{\dagger} b_{j}\right\rangle}_{\frac{1}{\sqrt{Z}}} \neq \infty, 0 \Rightarrow$ rescaling $t=\frac{t^{*}}{\sqrt{Z}}$

BEC bosons : $\left\langle H_{k i n}\right\rangle=-\underbrace{t}_{\frac{1}{Z}} \sum_{i} \underbrace{\sum_{j(N N i)}}_{Z} \underbrace{\left\langle b_{i}^{\dagger}\right\rangle\left\langle b_{j}\right\rangle}_{Z-\text { independent }} \neq \infty, 0 \Rightarrow$ rescaling $t=\frac{t^{*}}{Z}$
No way to construct comprehensive mean-field theory in the bare Hamiltonian operator formalism

BEC and normal bosons on the lattice in $d \rightarrow \infty$ limit

1. Rescaling is made inside a thermodynamical potential (action, Lagrangian) but not at the level of the Hamiltonian operator

- normal parts: $t_{i j}=\frac{t_{i j}^{*}}{(2 d)^{\frac{\left\|R_{i}-R_{j}\right\|}{2}}}$ - fractional rescaling
- BEC parts: $t_{i j}=\frac{t_{i j}^{*}}{(2 d)^{\left\|R_{i}-R_{j}\right\|}}$ - integer rescaling

2. Limit $d \rightarrow \infty$ taken afterwards in this effective potential

Only this procedure gives consistent derivation of B-DMFT equations as exact ones in $d \rightarrow \infty$ limit for boson models with local interactions

Normal and condensed bosons are on equal footing already in $d \rightarrow \infty$ limit
KB, Vollhardt, Phys. Rev. B 77, 235106 (2008): systematic linked cluster expansion with correct rescaling of different terms, $d \rightarrow \infty$ limit, gathering all non-vanishing terms into exponent

Bosonic-Dynamical Mean-Field Theory (B-DMFT)

- Exact mapping of the lattice bosons in infinite dimension onto a single site
- Single site coupled to two reservoirs: normal bosons and bosons in the condensate
- Reservoirs properties are determined self-consistently, local correlations kept

B-DMFT application to bosonic Hubbard model

(i) Lattice self-consistency equation (exact in $d \rightarrow \infty$)

$$
\widehat{G}\left(i \omega_{n}\right)=\int d \epsilon N_{0}(\epsilon)\left[\left(\begin{array}{cc}
i \omega_{n}+\mu-\epsilon & 0 \\
0 & -i \omega_{n}+\mu-\epsilon
\end{array}\right)^{-1}-\widehat{\Sigma}\left(i_{\omega_{n}}\right)\right]^{-1}
$$

(ii) Local impurity $\quad \widehat{G}(\tau)=\int D\left[b^{*}, b\right] \bar{b}(\tau) \bar{b}^{*}(0) e^{-S_{l o c}}$
$S_{l o c}=-\int_{0}^{\beta} \int_{0}^{\beta} d \tau d \tau^{\prime} \bar{b}^{\dagger}(\tau) \widehat{\mathcal{G}}^{-1}\left(\tau-\tau^{\prime}\right) \bar{b}(\tau)+$
$\kappa \int_{0}^{\beta} d \tau \bar{\phi}^{\dagger}(\tau) \bar{b}(\tau)+\frac{U}{2} \int_{0}^{\beta} n(\tau)(n(\tau)-1)$

$$
\widehat{\mathcal{G}}^{-1}\left(i_{\omega_{n}}\right)=\widehat{G}^{-1}\left(i_{\omega_{n}}\right)+\widehat{\Sigma}\left(i_{\omega_{n}}\right)=\left(\begin{array}{cc}
i \omega_{n}+\mu & 0 \\
0 & -i \omega_{n}+\mu
\end{array}\right)-\widehat{\Delta}\left(i \omega_{n}\right)
$$

(iii) Condensate wave function

$$
\bar{\phi}(\tau)=\int D\left[b^{*}, b\right] \bar{b}(\tau) e^{-S_{l o c}}, \quad \text { A. Kauch: proof that } \bar{\phi}(\tau)=\mathrm{const}
$$

B-DMFT in well-known limits

Application I: bosonic Falicov-Kimball model

Binary mixture of itinerant (b) and localized (f) bosons on the lattice

$$
H=\sum_{i j} t_{i j} b_{i}^{\dagger} b_{j}+\epsilon_{f} \sum_{i} f_{i}^{\dagger} f_{i}+U_{b f} \sum_{i} n_{b i} n_{f i}+U_{f f} \sum_{i} n_{f i} n_{f i}
$$

Local conservation law $\left[n_{f i}, H\right]=0$ hence $n_{f i}=0,1,2, \ldots$ classical variable
B-DMFT: local action Gaussian and analytically integrable

Enhancement of $T_{B E C}$ due to interaction

Hard-core f-bosons $U_{f f}=\infty ; n_{f}=0,1 ; 0 \leq \bar{n}_{f} \leq 1 ; d=3$ - SC lattice

KB, Vollhardt, PRB (2008)

$$
A_{b}(\omega)=-\operatorname{Im} G_{b}(\omega) / \pi
$$

$$
\bar{n}_{b}=\bar{n}_{b}^{B E C}+\int d \omega \frac{A_{b}\left(\omega+\mu_{b}\right)}{e^{\omega / T}-1}
$$

Normal part decreases when U increases for constant μ_{b} and T

Application II: bosonic Hubbard model CT-QMC

Philipp Werner, Peter Anders: developed continous time Monte Carlo method for local (impurity) bosonic problem with B-DMFT self-consistency conditions

Exact result for SF-Mott Insulator transition
Bethe DOS, $W=4, \beta=4$

Application III:

Bose-Fermi mixture $\left({ }^{87} \mathbf{R b}-{ }^{40} \mathrm{~K}\right)$ on a lattice in a trap

$$
H=\sum_{i j} t_{i j}^{b} b_{i}^{t} b_{j}+\sum_{i} \epsilon_{i}^{b} n_{i}^{b}+\frac{U_{b}}{2} \sum n_{i}^{b}\left(n_{i}^{b}-1\right)+\sum_{i j} t_{i j}^{f} f_{i}^{\dagger} f_{j}+\sum_{i} \epsilon_{i}^{f} n_{i}^{f}+U_{b f} \sum_{i} n_{i}^{b} n_{i}^{f}
$$

DMFT for bose-fermi mixtures

BF-DMFT equations:

$$
\begin{gathered}
S_{i_{0}}^{\mathrm{b}}=\int_{0}^{\beta} d \tau \mathbf{b}_{i_{0}}^{\dagger}(\tau)\left(\partial_{\tau} \sigma_{\mathbf{3}}-\left(\mu_{b}-\epsilon_{i_{0}}^{b}\right) \mathbf{1}\right) \mathbf{b}_{i_{0}}(\tau)+\int_{0}^{\beta} d \tau \int_{0}^{\beta} d \tau^{\prime} \mathbf{b}_{i_{0}}^{\dagger}(\tau) \mathbf{\Delta}_{i_{0}}^{b}\left(\tau-\tau^{\prime}\right) \mathbf{b}_{i_{0}}\left(\tau^{\prime}\right) \\
+\frac{U_{b}}{2} \int_{0}^{\beta} n_{i_{0}}^{b}(\tau)\left(n_{i_{0}}^{b}(\tau)-1\right)+\int_{0}^{\beta} d \tau \sum_{j \neq i_{0}} t_{i_{0} j}^{b} \mathbf{b}_{i_{0}}^{\dagger}(\tau) \mathbf{\Phi}_{j}(\tau) \\
S_{i_{0}}^{\mathrm{f}}=\int_{0}^{\beta} d \tau f_{i_{0}}^{*}(\tau)\left(\partial_{\tau}-\mu_{f}+\epsilon_{i_{0}}^{f}\right) f_{i_{0}}(\tau)+\int_{0}^{\beta} d \tau \int_{0}^{\beta} d \tau^{\prime} f_{i_{0}}^{*}(\tau) \Delta_{i_{0}}^{f}\left(\tau-\tau^{\prime}\right) f_{i_{0}}\left(\tau^{\prime}\right) \\
S_{i_{0}}^{\mathrm{bf}}=U_{b f} \int_{0}^{\beta} d \tau n_{i_{0}}^{b}(\tau) n_{i_{0}}^{f}(\tau)
\end{gathered}
$$

Lattice self-consistency (Dyson) equations

$$
\begin{gathered}
\mathbf{G}_{i j}^{b}\left(i \nu_{n}\right)=\left[\left(i \nu_{n} \sigma_{3}+\mu_{b} \mathbf{1}-\boldsymbol{\Sigma}_{i}^{b}\left(i \nu_{n}\right)\right) \delta_{i j}-t_{i j}^{b} \mathbf{1}\right]^{-1} \\
G_{i j}^{f}\left(i \omega_{n}\right)=\left[\left(i \omega_{n}+\mu_{f}-\Sigma_{i}^{f}\left(i \omega_{n}\right)\right) \delta_{i j}-t_{i j}^{f}\right]^{-1}
\end{gathered}
$$

Effective interaction between bosons

Integrating out fermions: effective bosonic action

$$
\begin{gathered}
\tilde{S}_{i_{0}}^{b} \approx S_{i_{0}}^{b}+\frac{U_{b f}}{\sqrt{\beta}} \sum_{n} \mathcal{G}_{i_{0}}^{f}\left(\omega_{n}\right) n_{i_{0}}^{b}\left(\nu_{m}=0\right)-\frac{U_{b f}^{2}}{2} \sum_{n} n_{i_{0}}^{b}\left(\nu_{n}\right) \pi_{i_{0}}^{f}\left(\nu_{n}\right) n_{i_{0}}^{b}\left(-\nu_{n}\right) \\
\pi_{i_{0}}^{f}\left(\nu_{n}\right) \equiv-\frac{1}{\beta} \sum_{m} \mathcal{G}_{i_{0}}^{f}\left(\omega_{m}\right) \mathcal{G}_{i_{0}}^{f}\left(\omega_{m}+\nu_{n}\right)
\end{gathered}
$$

with renormalized boson-boson interaction

$$
U_{b}^{\mathrm{eff}}=U_{b}-U_{b f}^{2} N_{i_{0}}^{f}(\mu)
$$

system unstable when $U_{b}=U_{b f}^{2} N_{i_{0}}^{f}(\mu)$.

Summary and Outlook

- Bosonic Dynamical Mean-Field Theory
- comprehensive mean-field theory
- conserving and thermodynamically consistent
- exact in $d \rightarrow \infty$ limit due to new rescaling

- B-DMFT equations and CT-QMC solution for bosonic Hubbard model
- B-DMFT solution for bosonic Falicov-Kimball model
- Enhancement of $T_{B E C}$ due to correlations
- Mixture of ${ }^{87} \mathrm{Rb}$ (f-bosons) and ${ }^{7} \mathrm{Li}$ (b-bosons) may have larger $T_{B E C}$ on optical lattices
- Spinor bosons, bose-fermi mixture within B-DMFT or density like LRO easy to include within B-DMFT
- More bosonic impurity solvers wanted!

