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Direct Bose-Einstein condensation

Magneto-optical traps with cold alkaline atoms with Bose statistics
(“Li, 22Na, 41K, 22Cr, 85Rb, 87Rb, 133Cs and 174Yb)

M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, and E.A. Cornell, 1995



Superfluid-Mott transition - correlated lattice bosons
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b Real crystal

Superfluid-Mott insulator transition, Greiner, Mandel, Esslinger, Hansch, Bloch, 2002



Correlated bosons on a lattice Gersch, Knollman, 1963
Fisher et al., 1989

_ Scalettar, Kampf, et al., 1995
bosonic Hubbard model Jacksch, 1998 P

H = Ztij b;rb] + %an(nz — 1)
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Bosons on a lattice - Bose-Eisntein condensation

One-particle density matrix at ||R; — R;|| — o

N, 1 : N,
= (pTp N — c _Z ik(R;—R;) c
~~ k#0 [|Ri— R;|| o0
BEC part ~~ o

normal part
e BEC part — constant

e normal part — vanishes

The two contributions to the density matrix behave differently



Standard approximations

e Bose-Einstein condensation treated by Bogoliubov method b; = (b;) + b; where
(b;) = ¢; € C classical variable (Bogoliubov 1947)

e Weak coupling - mean-field (expansion) in U, valid for small U, average on-site
density, local correlations in time neglected (Ooste, Stoof, et al., 2000)

e Strong coupling - mean-field (expansion) in ¢, valid for small ¢ (Freericks, Monien,
1994; Kampf, Scalettar, 1995)

Bose-Einstein condensate — Mott insulator transition
U~t

intermediate coupling problem

Comprehensive mean-field theory needed



Comprehensive mean-field theory

e valid for all parameters values t, U, n, T,..
e thermodynamically consistent
® conserving

e small (control) parameter 1/d

d — oo = Dynamical mean-field theory for lattice bosons (B-DMFT)

Problem: How to rescale the kinetic energy with d7



Quantum lattice bosons in d — oo limit
W. Metzner and D. Vollhardt 1989 - rescaling of hopping amplitudes for fermions
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No way to construct comprehensive mean-field theory
in the bare Hamiltonian operator formalism



BEC and normal bosons on the lattice in d — oo limit

1. Rescaling is made inside a thermodynamical potential (action, Lagrangian) but
not at the level of the Hamiltonian operator
ty : :
e normal parts: ¢;; = ||RZ—RJ-|| - fractional rescaling
(2d) 2
tF.

L]
(Qd)HR'i_RjH

e BEC parts: ¢;; = - integer rescaling

2. Limit d — oo taken afterwards in this effective potential

Only this procedure gives consistent derivation of B-DMFT equations as
exact ones in d — oo limit for boson models with local interactions

Normal and condensed bosons are on equal footing already in d — oo limit

KB, Vollhardt, Phys. Rev. B 77, 235106 (2008): systematic linked cluster expansion with
correct rescaling of different terms, d — oo limit, gathering all non-vanishing terms
into exponent



Bosonic-Dynamical Mean-Field Theory (B-DMFT)

e Exact mapping of the lattice bosons in infinite dimension onto a single site
e Single site coupled to two reservoirs: normal bosons and bosons in the condensate

e Reservoirs properties are determined self-consistently, local correlations kept

Correlated lattice
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B-DMFT application to bosonic Hubbard model

(i) Lattice self-consistency equation (exact in d — o0)

. 1 _1
Glieon) deNo [ ( o +0’u_€ — W —(I)—,LL—G ) N i(zwn)

AN

(ii) Local impurity  G(7) = [ D[b*,b] b(7)b*(0) e~ Stec

Correlated lattice
bosons

7 & 7 Sioe=— [ [V drdr'bt (1) GHr — 7') b(7)+

Boson reservoir (BEC) K fOB dT&T (7')1_)(7-) —|— % foﬁ ’n,(T) (’I’L(T) - ].)
1. N1/ ~ W, 0 ~ .
g_l(’lwn) — G_l(zwn) + (i) = ( . O+ s it + 1 ) — A(iwp)

(iii) Condensate wave function

= [ D[b*,b] b(7) e~ lee, A.Kauch: proof that ¢(7) = const



B-DMFT in well-known limits

Bosonic Hubbard Model (t;,U)

1) ?

4 & ™\ -
t.
t, = . S t. :—t”
s=1/2 for normal bosons
s=1 for condensed bosons d = o
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Beliaev-Popov |, U <t

Y B-DMFET

i Keep only diagrams
% of 1. order in U

A=0 Boson mean-field

(immobiie "™ theory of Fisher et al.

normal bosons)

Hartree-Fock-
Bogoliubov
approximation

i Normal diagrams = 0
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Application |: bosonic Falicov-Kimball model

Binary mixture of itinerant (b) and localized (f) bosons on the lattice
H = Ztij b;rb] + €f Z fjfz + Ubf anmﬁ + Uff Znﬁnﬁ
ij i i i

Local conservation law [n¢;, H] = 0 hence ny; = 0,1, 2, ... classical variable

B-DMFT: local action Gaussian and analytically integrable




Enhancement of T35~ due to interaction

Hard-core f-bosons Uss = 00; ny =0,1; 0 <ny <1; d=3 - SC lattice

T Ensuran KB, Vollhardt, PRB (2008)
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Normal part decreases when U increases for constant p and T



Application Il: bosonic Hubbard model CT-QMC

Philipp Werner, Peter Anders: developed continous time Monte Carlo method for
local (impurity) bosonic problem with B-DMFT self-consistency conditions

Exact result for SF-Mott Insulator transition
Bethe DOS, W =4, 5 =4



Application IlI:
Bose-Fermi mixture (°’Rb-"’K) on a lattice in a trap

H = thjbjb —I—Zefnf—l—%an( —1) —I—Zt £ f]—l—z —I—Ubonznz




DMFT for bose-fermi mixtures

BF-DMFT equations:
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Lattice self-consistency (Dyson) equations
G2 (ivn) = [(ivnos + sl — S8(ivn))di; — t21]

1
szj(iwn) = [(zwn + pr— E{(iwn))dij — tzfj:|
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Effective interaction between bosons

Integrating out fermions: effective bosonic action

5 Up Ub
S,f’o ~ Szbo fZg onZO (Vp)m zo (V) nb( Vn)

)= — ng (Wm) Qf (Wi + Vn)

with renormalized boson-boson interaction

Us™ = Uy, — U N (1)

system unstable when U, = Ubef ().



Summary and Outlook

Correlated lattice
bosons

e Bosonic Dynamical Mean-Field Theory

— comprehensive mean-field theory
— conserving and thermodynamically consistent
— exact in d — oo limit due to new rescaling

Boson reservoir (BEC)

e B-DMFT equations and CT-QMC solution for bosonic Hubbard model

e B-DMFT solution for bosonic Falicov-Kimball model

— Enhancement of T’gg~ due to correlations
— Mixture of 8“Rb (f-bosons) and 7Li (b-bosons) may have larger Tgrc on
optical lattices

e Spinor bosons, bose-fermi mixture within B-DMFT or density like LRO easy to
include within B-DMFT

e More bosonic impurity solvers wanted!



