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Main results

- New comprehensive dynamical mean-field theory for correlated, lattice bosons in
normal and condensate phases, exact in d — o0

Correlated lattice

Boson reservoir (BEC)

time

- Correlation might enhance BEC fraction and transition temperature



Collaboration
Dieter Vollhardt - Augsburg University

Correlated bosons on a lattice: Dynamaical mean-field theory for Bose-FEinstein
condensed and normal phases - arXiv:0706.0839, accepted to Phys. Rev. B (2008)

Plan of talk

e Dynamical mean-field theory (DMFT) for correlated fermions
e Formulation of dynamical mean-field theory for bosons (B-DMFT)
e Bosonic Hubbard model within B-DMFT

e Falicov-Kimball model within B-DMFT

— Enhancement of BEC transition temperature due to correlations
e Mixtures of bosons and fermions on a lattice

e Summary and outlook
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Correlated lattice fermions

H = — Z tijCIUCjJ +U Z N1
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fermionic Hubbard model, 1963

Local Hubbard physics
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The Holy Grail for correlated electrons (fermions)

Fact: Hubbard model is not solved for arbitrary cases

Find the best comprehensive approximation

e valid for all values of parameters t, U, n = N./Ny, T, all thermodynamic phases
e thermodynamically consistent

e conserving

e possessing a small expansion (control) parameter and exact in some limit

e flexible to be applied to different systems and material specific calculations



Fermions in large dimensions
Large dimensional limit is not unique

No scaling at all:

tij = tij; U = U etc.
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Fermions in large dimensions (coordination)

Non-trivial (asymptotic) theory is well defined such that the energy density is
generically finite and non-zero
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Fact, since G;; is probability amplitude for hopping,
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sum Zj(i) is compensated and energy is finite (Metzner, Vollhardt, 1989)



Comprehensive mean-field theory for fermions

_ hopping interaction
H=H + Hy.
e comprehensive (all input parameters, temperatures, all phases, ...)

e thermodynamically consistent and conserving

e provides exact solutions in certain non-trivial limit (large d)

<H>, <}Ih0pping>7 <Hinteraction>

loc

are finite and generically non-zero, and
hopping interaction
< [H ) Hloc ] > 7& 0

to describe non-trivial competition



Non-comprehensive mean-field theory for fermions

e Distance independent hopping (van Dongen, Vollhardt 92)

H = thIchg + UZniTml

1]0

e Distance independent interaction (Spalek, Wojcik 88, Baskaran 91, Kohmoto 95,
Gebhard 97)

H = Z tz-jc;racjg +U Z N1 = Z exNke + U Z Nk 7k |
k
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In both models a non-trivial competition is suppressed

< [Hhopping’ HliélgeraCtion] > — 0

although <H>, <}Ihopping>7 <Hinteraction> # 0

loc



d — oo limit — Feynman diagrams simplification

One proves, term by term, that skeleton expansion for the self-energy 3J;;[G] has only
local contributions

Fourier transform is k-independent
Ea(kawn) —7d—o0 Z0'(("}77,)

DMFT is an exact theory in infinite dimension (coordination number)
and a small control parameter is 1/d (1/z)

(Metzner, Vollhardt, 1989; Muller-Hartmann, 1989; Georges, Kotliar, 1990’;
Janis, Vollhardt 1990, ...)



DMFT for lattice fermions

Replace (map) full many-body lattice problem by a single-site coupled to dynamical
reservoir and solve such problem self-consistently
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All local dynamical correlations included exactly

Space correlations neglected - mean-field approximation



DMFT - equations full glory

Local Green function

where

Sloc = —Z/deT’cz(T T —7eo (T )—l—U/dTTLT(T)nl(T)

and self-energy
1(Wn) = G;l(wn) + Yo (wn)

Local Green function and lattice system self-consistency
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DMFT - flexibility; LDA+DMFT
Multi-band systems (Anisimov et al. 97; ... Nekrasov et al. 00, ...)
H=Hrpa+ Hint — HgDA = HgDA + Hiny

direct and exchange interaction
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kinetic part, determined from DFT-LDA calculation (material specific)
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LDA+DMFT - state of the art for realistic approach to correlated electron systems



DMFT scheme

Sioc - local interactions U or J from a model TB or a microscopic LDA Hamiltonian

A A A A

G=>(w+ml—-H =]~

HO is a model TB or a microscopic LDA Hamiltonian



BOSONS



Correlated bosons on optical lattices  Gersch, Knoliman, 1963
Fisher et al., 1989

_ Scalettar, Kampf, et al., 1995
bosonic Hubbard model Jacksch, 1998 P

%] 1

. local (on-site) correlations in time
t
< / Fiw= U 3U 6U 3U

TIME f

,2) = 1i,3) = [i,4) — [i,3)

integer occupation of single site changes in time



Standard approximations

e Bose-Einstein condensation treated by Bogoliubov method b; = (b;) + b; where
(b;) = ¢; € C classical variable (Bogoliubov 1947)

e Weak coupling - mean-field (expansion) in U, valid for small U, average on-site
density, local correlations in time neglected (Ooste, Stoof, et al., 2000)

e Strong coupling - mean-field (expansion) in ¢, valid for small ¢ (Freericks, Monien,
1994; Kampf, Scalettar, 1995)

Bose-Einstein condensate — Mott insulator transition
U~t

intermediate coupling problem
Comprehensive mean-field theory needed

Like DMFT for fermions: exact and non-trivial in d — oo limit



Quantum lattice bosons in d — oo limit
W. Metzner and D. Vollhardt 1989 - rescaling of hopping amplitudes for fermions

*
poo 1l
t 1R — Rl

(2d)

Not sufficient for bosons because of BEC:

for NNi,5 t=

SR
SH

One-particle density matrix at ||R; — R;|| — oo

N, 1 . N
pij = (blb;) = N +N_ane@’“(R% k) — © =n,
<~ L 0 |Ri—Rjl|—o0 ' F

BEC part ~~ -
normal part

e BEC part — constant

e normal part — vanishes

The two contributions to the density matrix behave differently



Quantum lattice bosons in d — oo limit

e No scaling:

NLLE;%-” = 00
e Fractional scaling:
NLLEkm = 00
in the BEC phase
e |nteger scaling:
NLLEM”’ =0

in the normal phase

No way to construct comprehensive mean-field theory
in the bare Hamiltonian operator formalism



BEC and normal bosons on the lattice in d — oo limit

1. Rescaling is made inside a thermodynamical potential (action, Lagrangian) but
not at the level of the Hamiltonian operator
t . :
e normal parts: ¢;; = ||R‘Z—Rj|| - fractional rescaling
(2d) 2
(2d)||Ri_Rj||

o BEC parts: t;; = - integer rescaling

2. Limit d — oo taken afterwards in this effective potential

Only this procedure gives consistent derivation of B-DMFT equations as
exact ones in d — oo limit for boson models with local interactions



Bosonic-Dynamical Mean-Field Theory (B-DMFT)

e Exact mapping of the lattice bosons in infinite dimension onto a single site
e Single site coupled to two reservoirs: normal bosons and bosons in the condensate

e Reservoirs properties are determined self-consistently, local correlations kept

Correlated lattice

/Ojons/// e
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Boson reservoir (BEC)

time



B-DMFT application to bosonic Hubbard model

(i) Lattice self-consistency equation (exact in d — 00)
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(ii) Local impurity ~ G(7) = [ D[b*,b] b(7)b*(0) e~ tec

Correlated lattice
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(iii) Condensate wave function

— [ D[b*,b] b(r) e~ Stec



B-DMFT in well-known limits

Bosonic Hubbard Model (t.,U)
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B-DMFT application to bosonic Falicov-Kimball
model

Binary mixture of itinerant (b) and localized (f) bosons on the lattice
H = Ztij bzbj + €f Z f;rfZ + Ubf anmﬁ + Uff anmﬂ
ij i i i

Local conservation law [n¢;, H] = 0 hence ny; = 0, 1,2, ... classical variable

B-DMFT: local action Gaussian and analytically integrable




Enhancement of T3z~ due to interaction

Hard-core f-bosons Usf = 00; ny =0,1; 0 <ny <1; d= 3 - SC lattice
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Normal part decreases when U increases for constant u and T



Exact limit: enhancement of Tz~ due to interaction

Hard-core f-bosons Us¢ = 00; ny = 0,1; 0 < ny <1; d = oo - Bethe lattice
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Bose-Fermi mixtures on a lattice with a trap

H = th blb; +Ze +%an( —1) +Zt Flf+ {n{JrUbon?n{

BF-DMFT equations:
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Lattice self-consistency (Dyson) equations

G, (ivn) = [(ivnos + ml — S(ivy))0y; — t21]

—1
Gj(iwn) = |(iwn + g = S (iwn))di; — ]

Integrating out fermions



Effective interaction between bosons

In Det[M?] = Trin[M?) = Trin[—(G)) "1+ M?] = Trln[—((jf)_l]—f: %Tr[ngf]m

m=1
1
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Effective bosonic action
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Summary and Outlook

e Formulated Bosonic Dynamical Mean-Field Theory (B-DMFT)

— comprehensive mean-field theory
— conserving and thermodynamically consistent
— exact in d — oo limit due to new rescaling

Correlated lattice
bosons

e B-DMFT equations for bosonic Hubbard model

e B-DMFT solution for bosonic Falicov-Kimball model

Boson reservoir (BEC)

— Enhancement of T’ g due to correlations time
— Mixture of 8"Rb (f-bosons) and “Li (b-bosons) may have larger Tz ¢ on
optical lattices

e Spinor bosons, bose-fermi mixture within B-DMFT or density like LRO easy to
include within B-DMFT

e Bosonic impurity solver wanted!



