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What you would like to know about

entanglement

but you were afraid to ask



Main goal:

• Entanglement is a quantum correlation in quantum many body

system

• Entanglement does not depend on particular physical representation

• Entanglement is a resource like energy

• Entanglement can be quantified and measured



Plan of the talk:

1. EPR and introduction to entanglement notion

2. How to use entanglement

• quantum teleportation

3. How to entangle photons, electrons, ...experimentally

4. How to characterize entanglement

• pure vs. mixed states entanglement

• measures of entanglement

5. How to quantify correlations in bulk systems

6. Fermions and bosons

7. Conclusions and outlook: correlations without correlata?



EPR theorem today

locality

completnessreality

QM

|ΨEPR〉 = [| ↑〉− ⊗ | ↓〉+ − | ↓〉− ⊗ | ↑〉+]/
√

2

H = H+ ⊗ H−

Verschränkung - entanglement (Schrödinger 1935)

QM is nonlocal

correlations over distance

results of independent measurements will be correlated

no superluminal transfer of information, energy, etc.

π ee +− 0



Bipartite pure entanglement

Let {|i〉A ⊗ |j〉B} ∈ H = HA ⊗ HB and AB distinguishable.

Any state

|Ψ〉 =
X

ij

γij|i〉A ⊗ |j〉B

that cannot be represented as a product state is called an entangled

state.

• Entanglement is a quantum correlation which does not have a

classical counterpart

• any entangled state cannot be prepared from a product state by

local operations and classical communications (LOCC)



Bell states

• classical two level system (0 or 1) codes one bit of information

• in QM two level system can be both 0 and 1 (spin, polarization,

vortex, energy structure)

• it was proposed to call it quantum bit or qbit (read: qiubit) in

general - Schumacher (1995)

Bell states - maximally entangled states of two qbits

|Ψ−〉 =
1√
2

[|01〉 − |10〉]

|Ψ+〉 =
1√
2

[|01〉 + |10〉]

|Φ−〉 =
1√
2

[|00〉 − |11〉]

|Φ+〉 =
1√
2

[|00〉 + |11〉]



Quantum teleportation

Bennett et al. (1993), photons (1998-2005), atoms (2004)

Alice and Bob share one entangled state, e.g. |Φ+〉.
Alice wants to send to Bob all necessary information about the

unknown quantum state |Φ〉 = a|0〉 + b|1〉 she has got such that

Bob could recreate this state using a particle he has at hand. This is a

task of quantum teleportation. The state at Alice will be destroyed.

What about the entangled state they share?

|Φ〉|Φ+〉 ∼ [|Φ+〉(a|0〉 + b|1〉) + |Φ−〉(a|0〉 − b|1〉) + |Ψ+〉(a|1〉 + b|0〉) + |Ψ−〉(a|1〉 − b|0〉)]

A: performs projective measurement on her 2 qbits - LO

A: call Bob and tells her result (one of 4) - CC

B: depending on A info performs 1 or σx or/and σz - LO

cost: one Bell state is eatten up



Source of entangled photons

l=0

l=1

l=0

parametric down-conversion, Kwiat et al. (1995)

light emitting quantum dots, beam-splitters,...



Source of entangled fermions

electronhole

Fermi sea

en
er

gy

position

ba
rri

er

E   + eVF

EF

V

metal
tunnel barrier

(insulator)

spin-entangled electron-hole pair

metal

voltage source

Beenakker et al. (2003) | ↑〉e| ↑〉h + eiφ| ↓〉e| ↓〉h

electron-electron scattering, quantum dots, Cooper pairs,

Kondo scattering, ...



Mixed state

• density operator ρ̂ =
P

n pn|Ψn〉〈Ψn| describes a system coupled

to another system to which we do not have an access

• pure state - maximal knowledge ρ̂2 = ρ̂

• mixed state - statistical knowledge, mixture of different pure states

can lead to the same density operator and thereby the same mixed

state

• states from different ensembles having the same density operator

are experimentally indistinguishable

• when pure system has entangled subsystems then each subsystem

is in a mixed state, e.g.

|Ψ〉 = α|00〉 + β|11〉
reduced density operator

ρ̂A = TrBρ̂ = TrB|Ψ〉〈Ψ| = |α|2|0〉〈0| + |β|2|1〉〈1|

Positive definition: A pure bipartite quantum system is entangled if

from the each subsystem point of view it looks as a mixed state



GHZ - entangled state

Greenberger-Horne-Zeilinger (GHZ)

|Ψabc〉 =
1√
2

(|0a0b0c〉 + |1a1b1c〉)

obviously this state is entangled

but

ρ̂bc = Tra|Ψabc〉〈Ψabc| =
1

2
(|0b0c〉〈0b0c| + |1b1c〉〈1b1c|)

b and c are not entangled! (the same is true for ab and ac pairs)

If a makes a projective measurement on |±〉 = (|0〉 ± |1〉)/
√

2 then

|Ψ±
bc〉 =

1√
2

(|0b0c〉 ± |1b1c〉)

is an entangled state; a must call the result to b and c using CC!



Entanglement in mixed state

A mixed state is not entangled if there exists a convex decomposition

into pure product state of its density operator, i.e.

ρ̂ =
X

n

pn|Ψn〉〈Ψn|

with

|Ψn〉 = |ΨA
n〉|Ψ

B
n 〉

for each n.

ρ̂sep =
X

n

pnρ̂A ⊗ ρ̂B

• mixture of separable states is always separable

• mixture of entangled states need not be entangled (see example)



Mixture of Bell states

ρ̂ =
1

2
|Φ+〉〈Φ+| + 1

2
|Φ−〉〈Φ−| =

1

2
|00〉〈00| + 1

2
|11〉〈11| =

1

2
[|0〉〈0|A ⊗ |0〉〈0|B + |1〉〈1|A ⊗ |1〉〈1|B]

• the mixed state can be realized by both an ensemble of maximally

entangled states and an ensemble of product states

• mixture is a process which destroys entanglement

Example: Werner state

ρ̂ =
1

4
(1 − λ)Îd + λ|Ψ−〉〈Ψ−|

is entangled for |λ| > 1/3.



Entanglement measures

• finite regime - for a single copy of a quantum state

• asymptotic regime - for n copies of a quantum state with n → ∞

Maximally entangled state in pure bipartite states Hd ⊗ Hd

|Φmax〉 =
d

X

i=1

1
√
d
|φi〉 ⊗ |φi〉

Entanglement measure E(ρ̂) is a real-valued function

E : ρ̂ → E(ρ̂) ∈ R,

satisfying reasonable postulates:



Entanglement measures postulates

1. separability: E(ρ̂) = 0 for ρ̂ separable

2. normalization: E(ρ̂) = log2 d for maximally |Φmax〉 entangled

state

3. monotonicity: E(Λ̂ρ̂) 6 E(ρ̂) for any LOCC Λ̂ [LOCC does not

increase entanglement]

4. continuity: If ||ρ̂− σ̂|| → 0 then E(ρ̂) − E(σ̂) → 0

5. additivity: E(ρ̂⊗n) = nE(ρ̂)

6. subadditivity: E(ρ̂⊗ σ̂) 6 E(ρ̂) + E(σ̂)

7. regularization: E∞(ρ̂) = limn→∞E(ρ̂⊗n)/n exists

8. convexity: E(λρ̂ + (1 − λ)σ̂) 6 λE(ρ̂) + (1 − λ)E(σ̂), for

0 6 λ 6 1 [mixing does not increase entanglement]



Pure bipartite states

relative von Neumann entropy (ρ̂ = |Ψ〉〈Ψ|)

E(|Ψ〉) = −Tr[ρ̂A log2 ρ̂A] = −Tr[ρ̂B log2 ρ̂B]

Schmidt rank r (|Ψ〉 ∈ HA ⊗ HB, dimHA 6 dimHB)

|Ψ〉 =

r
X

i=1

pi|Ψ̃A
i 〉|Ψ̃

B
i 〉

r 6 dimHA - number of nonzero terms in Schmidt decomposition

(number of entangled degrees of freedom)



Pure bipartite states - example

Single qbit

|φ〉 =
2

X

ij=1

γij|i〉A|j〉B

Trγγ+ = 1

E(|φ〉) = F(
1

2
+

1

2

p

1 − 4 det γγ+)

where

F(x) = −x log2 x− (1 − x) log2(1 − x)

concurrency

C = 2
p

det γγ+

Bell state γ = σx
C = 1, E = F(1/2) = 1, r = 2

Product state |ii〉
C = 0, E = F(0) = 0, r = 1



Mixed bipartite states

not completely resolved because of the intricate relation between

classical and quantum correlations in mixed states

• Ec - entanglement cost (minimal number of Bell states to create a

given state using LOCC) [cont]

• ED - entanglement of distillation (maximal number of Bell states

extracted from a system using LOCC) [cont]

• EF - entanglement of formation (optimized average von Neumann

entropy of reduced density operators for pure states) [add]

EF(ρ̂) = min
{pi,|Ψi〉}

X

i

piS(ρ̂i,red)

• ER - relative entropy (distance between entangled ρ̂ and the

closest separated σ̂) [add]

ER(ρ̂) = min
σ̂

[Trρ̂(log2 ρ̂− log2 σ̂)]

(quite useful)

• many others ...

ED 6 EF 6 EC



Information and correlation (Shannon)

• One source of messages mk with receiving them with probability

pk (k = 1, ..., d).

• Df. Information in a message mk is I(mk) = − log2 pk.

• Df. Average information (surprise)

I = 〈I(mk)〉 − −
d

X

k=1

pk log2 pk.

– 0 6 I 6 log2 d.

– I = log2 d if pk = 1/d for each k (equal probable).

– Shannon’s entropy (after von Neumann suggestion).



Information and correlation (Shannon)

• Two sources of messages xm and yn with probability distribution

p(x, y).

• Df. Total information in message (x, y) is

I(x, y) = − log2 p(x, y).

• Df. Average total information in average

I = 〈I(x, y)〉 = −
X

x,y

p(x, y) log2 p(x, y)

• Df. Mutual information

∆I(p1, p2; p) = I1 + I2 − I ≡ I(p||p1p2) > 0

– where

I(p||p1p2) ≡ −
X

x,y

p(x, y) log2

p(x, y)

p1(x)p2(y)

can be called a relative Shannon’s entropy.

– Of course I = I1 + I2 − ∆I



Multipartite systems

• Quantum mutual information (Total correlation) between the two

subsystems ρ̂1 and ρ̂2 of the joint state ρ̂12

I(ρ̂1 : ρ̂2; ρ̂12) = S(ρ̂1) + S(ρ̂2) − S(ρ̂12)

where S = −Trρ̂ log2 ρ̂ von Neumann entropy

• Quantum relative entropy between σ̂ and ρ̂

S(σ̂||ρ̂) = Tr[σ̂(log2 σ̂ − log2 ρ̂)]

• Quantum mutual information is a distance of ρ̂12 to the closest

uncorrelated ρ̂1 ⊗ ρ̂2

I(ρ̂1 : ρ̂2; ρ̂12) = S(ρ̂12||ρ̂1 ⊗ ρ̂2)

• Multipartite quantum mutual information in ρ̂ (generalization)

I(ρ̂1 : ρ̂2 : ... : ρ̂n; ρ̂) = S(ρ̂||ρ̂1⊗ρ̂2⊗...⊗ρ̂n) =
X

i

S(ρ̂i)−S(ρ̂)

e.g. S(ρ̂||ρ̂MF) = lnZMF − lnZ + β〈HMF −H〉H > 0.



Entanglement for multipartite system

Relative entanglement

E(ρ̂) = minσ̂∈{separable}S(ρ̂||σ̂)

the relative entanglement is a distance between ρ̂ and the closest

classically correlated state

E(ρ̂) 6 I(ρ̂)

If we take σ̂ = ρ̂MF (???)

E(ρ̂) = lnZMF − lnZ + β〈HMF −H〉H

χ =
∂2 lnZ

∂B2
, χsep − χ =

∂2E(ρ̂)

∂B2
+ β

∂2〈HMF −H〉H
∂B2

Th. general bound for multipartite entanglement (Vedral 2003)

E(ρ̂) 6 lnZMF − lnZ + β〈HMF −H〉H.



Entanglement and the III law

Nernst theorem says that S(T ) → S0 = const, or equivalently

CV (T ) = T (∂S(T )/∂T )V → 0 when T → 0.

Th. Wiesniak et al. (2005): Only if entanglement develops at low

temperatures the Nernst theorem is satisfied.

because: separable states give bound for the ground state energy

U(T = 0) > EB and hence for all separable states

C =
∂U(T )

∂T
= γ

U(T ) − E0

T
> γ′EB − E0

T 1(2)

1 for gapless, 2 for gapped systems.

Only when EB = E0, C(T ) → 0

In general C(T ) → ∞ for all separable states.



Indistinguishable particles

• if wave function overlap very small then all effects due to statistics

can be neglected; well separated particles in space

• if wave function overlap important

– Pauli (statistical) entanglement (due to anty/symmetrization);

probably not of use in teleportation etc.

– entanglement between different determinants/permanents

– mode entanglement (Fock space entanglement); the

entanglement is basis (operator, observer) dependent, e.g.

H =
X

ij

tija
†
iaj =

X

k

εka
†
k
ak



Indistinguishable particles

Example:

• single particle at A or B

|0, 1〉 + |1, 0〉 in mode (Fock) reprezentation

ψA(x) + ψB(x) in coordinate reprezentation

• two particles, one at A, one at B

|1, 1〉 in mode (Fock) reprezentation

ψA(x)ψB(y) ± ψA(y)ψB(x) in coordinate reprezentation

• two particles, in different modes (as in (i)) superposition

(|0, 1〉+|1, 0〉)(|0, 1〉+|1, 0〉) = |00, 11〉+|01, 10〉+|10, 01〉+|11, 00〉

(ψA1(x) + ψB1(x))(ψA2(y) + ψB2(y)) ± (x ↔ y)

One needs more refined measure of entanglement then simply von

Neumann entropy S(ρ̂A) even for pure states of indistinguishable

particles.



Summary

• Entanglement is a quantum correlation in quantum many body

system

• Entanglement does not depend on particular physical representation

• Correlation without correlata

• Entanglement is a resource for certain tasks

• Entanglement can be quantified and measured


