Verschränkung II

Krzysztof Byczuk

Institute of Physics, Augsburg University
http://www.physik.uni-augsburg.de/theo3/kbyczuk/index.html

January 11th, 2006

What you would like to know about

entanglement

but you were afraid to ask

Main goal:

- Entanglement is a quantum correlation in quantum many body system
- Entanglement does not depend on particular physical representation
- Entanglement is a resource like energy
- Entanglement can be quantified and measured

Plan of the talk:

1. EPR and introduction to entanglement notion
2. How to use entanglement

- quantum teleportation

3. How to entangle photons, electrons, ...experimentally
4. How to characterize entanglement

- pure vs. mixed states entanglement
- measures of entanglement

5. How to quantify correlations in bulk systems
6. Fermions and bosons
7. Conclusions and outlook: correlations without correlata?

EPR theorem today

$$
\mathcal{H}=\mathcal{H}_{+} \otimes \mathcal{H}_{-}
$$

$$
\left|\Psi_{\mathrm{EPR}}\right\rangle=\left[|\uparrow\rangle_{-} \otimes|\downarrow\rangle_{+}-|\downarrow\rangle_{-} \otimes|\uparrow\rangle_{+}\right] / \sqrt{2}
$$

Verschränkung - entanglement (Schrödinger 1935)

QM is nonlocal
correlations over distance

results of independent measurements will be correlated
no superluminal transfer of information, energy, etc.

Bipartite pure entanglement

Let $\left\{|i\rangle_{A} \otimes|j\rangle_{B}\right\} \in \mathcal{H}=\mathcal{H}_{\mathcal{A}} \otimes \mathcal{H}_{\mathcal{B}}$ and $A B$ distinguishable.

Any state

$$
|\Psi\rangle=\sum_{i j} \gamma_{i j}|i\rangle_{A} \otimes|j\rangle_{B}
$$

that cannot be represented as a product state is called an entangled state.

- Entanglement is a quantum correlation which does not have a classical counterpart
- any entangled state cannot be prepared from a product state by local operations and classical communications (LOCC)

Bell states

- classical two level system (0 or 1) codes one bit of information
- in QM two level system can be both 0 and 1 (spin, polarization, vortex, energy structure)
- it was proposed to call it quantum bit or qbit (read: qiubit) in general - Schumacher (1995)

Bell states - maximally entangled states of two qbits

$$
\begin{aligned}
\left|\Psi^{-}\right\rangle & =\frac{1}{\sqrt{2}}[|01\rangle-|10\rangle] \\
\left|\Psi^{+}\right\rangle & =\frac{1}{\sqrt{2}}[|01\rangle+|10\rangle] \\
\left|\Phi^{-}\right\rangle & =\frac{1}{\sqrt{2}}[|00\rangle-|11\rangle] \\
\left|\Phi^{+}\right\rangle & =\frac{1}{\sqrt{2}}[|00\rangle+|11\rangle]
\end{aligned}
$$

Quantum teleportation

Bennett et al. (1993), photons (1998-2005), atoms (2004)

Alice and Bob share one entangled state, e.g. $\left|\Phi^{+}\right\rangle$.
Alice wants to send to Bob all necessary information about the unknown quantum state $|\Phi\rangle=a|0\rangle+b|1\rangle$ she has got such that Bob could recreate this state using a particle he has at hand. This is a task of quantum teleportation. The state at Alice will be destroyed.
What about the entangled state they share?
$|\Phi\rangle\left|\Phi^{+}\right\rangle \sim\left[\left|\Phi^{+}\right\rangle(a|0\rangle+b|1\rangle)+\left|\Phi^{-}\right\rangle(a|0\rangle-b|1\rangle)+\left|\Psi^{+}\right\rangle(a|1\rangle+b|0\rangle)+\left|\Psi^{-}\right\rangle(a|1\rangle-b|0\rangle)\right]$

A: performs projective measurement on her 2 qbits - LO

A: call Bob and tells her result (one of 4) - CC

B: depending on A info performs 1 or σ_{x} or/and σ_{z} - LO

Source of entangled photons

parametric down-conversion, Kwiat et al. (1995)
light emitting quantum dots, beam-splitters,...

Source of entangled fermions

Beenakker et al. (2003)
electron-electron scattering, quantum dots, Cooper pairs, Kondo scattering, ...

Mixed state

- density operator $\hat{\rho}=\sum_{n} p_{n}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right|$ describes a system coupled to another system to which we do not have an access
- pure state - maximal knowledge $\hat{\rho}^{2}=\hat{\rho}$
- mixed state - statistical knowledge, mixture of different pure states can lead to the same density operator and thereby the same mixed state
- states from different ensembles having the same density operator are experimentally indistinguishable
- when pure system has entangled subsystems then each subsystem is in a mixed state, e.g.

$$
|\Psi\rangle=\alpha|00\rangle+\beta|11\rangle
$$

reduced density operator

$$
\hat{\rho}_{A}=\operatorname{Tr}_{B} \hat{\rho}=\operatorname{Tr}_{B}|\Psi\rangle\langle\Psi|=|\alpha|^{2}|0\rangle\langle 0|+|\beta|^{2}|1\rangle\langle 1|
$$

Positive definition: A pure bipartite quantum system is entangled if from the each subsystem point of view it looks as a mixed state

GHZ - entangled state

Greenberger-Horne-Zeilinger (GHZ)

$$
\left|\Psi_{a b c}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|0_{a} 0_{b} 0_{c}\right\rangle+\left|1_{a} 1_{b} 1_{c}\right\rangle\right)
$$

obviously this state is entangled
but

$$
\hat{\rho}_{b c}=T r_{a}\left|\Psi_{a b c}\right\rangle\left\langle\Psi_{a b c}\right|=\frac{1}{2}\left(\left|0_{b} 0_{c}\right\rangle\left\langle 0_{b} 0_{c}\right|+\left|1_{b} 1_{c}\right\rangle\left\langle 1_{b} 1_{c}\right|\right)
$$

b and c are not entangled! (the same is true for $a b$ and ac pairs)

If a makes a projective measurement on $| \pm\rangle=(|0\rangle \pm|1\rangle) / \sqrt{2}$ then

$$
\left|\Psi_{b c}^{ \pm}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|0_{b} 0_{c}\right\rangle \pm\left|1_{b} 1_{c}\right\rangle\right)
$$

is an entangled state; a must call the result to b and c using $C C$!

Entanglement in mixed state

A mixed state is not entangled if there exists a convex decomposition into pure product state of its density operator, i.e.

$$
\hat{\rho}=\sum_{n} p_{n}\left|\Psi_{n}\right\rangle\left\langle\Psi_{n}\right|
$$

with

$$
\left|\Psi_{n}\right\rangle=\left|\Psi_{n}^{A}\right\rangle\left|\Psi_{n}^{B}\right\rangle
$$

for each n.

$$
\hat{\rho}_{s e p}=\sum_{n} p_{n} \hat{\rho}_{A} \otimes \hat{\rho}_{B}
$$

- mixture of separable states is always separable
- mixture of entangled states need not be entangled (see example)

Mixture of Bell states

$$
\begin{gathered}
\hat{\rho}=\frac{1}{2}\left|\Phi^{+}\right\rangle\left\langle\Phi^{+}\right|+\frac{1}{2}\left|\Phi^{-}\right\rangle\left\langle\Phi^{-}\right|=\frac{1}{2}|00\rangle\langle 00|+\frac{1}{2}|11\rangle\langle 11|= \\
\frac{1}{2}\left[|0\rangle\left\langle\left. 0\right|_{A} \otimes \mid 0\right\rangle\left\langle\left. 0\right|_{B}+\mid 1\right\rangle\left\langle\left. 1\right|_{A} \otimes \mid 1\right\rangle\left\langle\left. 1\right|_{B}\right]\right.
\end{gathered}
$$

- the mixed state can be realized by both an ensemble of maximally entangled states and an ensemble of product states
- mixture is a process which destroys entanglement

Example: Werner state

$$
\hat{\rho}=\frac{1}{4}(1-\lambda) \hat{I d}+\lambda\left|\Psi^{-}\right\rangle\left\langle\Psi^{-}\right|
$$

is entangled for $|\lambda|>1 / 3$.

Entanglement measures

- finite regime - for a single copy of a quantum state
- asymptotic regime - for n copies of a quantum state with $n \rightarrow \infty$

Maximally entangled state in pure bipartite states $\mathcal{H}_{d} \otimes \mathcal{H}_{d}$

$$
\left|\Phi_{\max }\right\rangle=\sum_{i=1}^{d} \frac{1}{\sqrt{d}}\left|\phi_{i}\right\rangle \otimes\left|\phi_{i}\right\rangle
$$

Entanglement measure $E(\hat{\rho})$ is a real-valued function

$$
E: \quad \hat{\rho} \rightarrow E(\hat{\rho}) \in R
$$

satisfying reasonable postulates:

Entanglement measures postulates

1. separability: $E(\hat{\rho})=0$ for $\hat{\rho}$ separable
2. normalization: $E(\hat{\rho})=\log _{2} d$ for maximally $\left|\Phi_{\max }\right\rangle$ entangled state
3. monotonicity: $E(\hat{\Lambda} \hat{\rho}) \leqslant E(\hat{\rho})$ for any LOCC $\hat{\Lambda}$ [LOCC does not increase entanglement]
4. continuity: If $\|\hat{\rho}-\hat{\sigma}\| \rightarrow 0$ then $E(\hat{\rho})-E(\hat{\sigma}) \rightarrow 0$
5. additivity: $E\left(\hat{\rho}^{\otimes n}\right)=n E(\hat{\rho})$
6. subadditivity: $E(\hat{\rho} \otimes \hat{\sigma}) \leqslant E(\hat{\rho})+E(\hat{\sigma})$
7. regularization: $E^{\infty}(\hat{\rho})=\lim _{n \rightarrow \infty} E\left(\hat{\rho}^{\otimes n}\right) / n$ exists
8. convexity: $E(\lambda \hat{\rho}+(1-\lambda) \hat{\sigma}) \leqslant \lambda E(\hat{\rho})+(1-\lambda) E(\hat{\sigma})$, for $0 \leqslant \lambda \leqslant 1$ [mixing does not increase entanglement]

Pure bipartite states

relative von Neumann entropy $(\hat{\rho}=|\Psi\rangle\langle\Psi|)$

$$
E(|\Psi\rangle)=-\operatorname{Tr}\left[\hat{\rho}_{A} \log _{2} \hat{\rho}_{A}\right]=-\operatorname{Tr}\left[\hat{\rho}_{B} \log _{2} \hat{\rho}_{B}\right]
$$

Schmidt rankr $\left(|\Psi\rangle \in \mathcal{H}_{A} \otimes \mathcal{H}_{B}, \operatorname{dim} \mathcal{H}_{A} \leqslant \operatorname{dim} \mathcal{H}_{B}\right)$

$$
|\Psi\rangle=\sum_{i=1}^{r} p_{i}\left|\tilde{\Psi}_{i}^{A}\right\rangle\left|\tilde{\Psi}_{i}^{B}\right\rangle
$$

$r \leqslant \operatorname{dim} \mathcal{H}_{A}$ - number of nonzero terms in Schmidt decomposition (number of entangled degrees of freedom)

Pure bipartite states - example

Single qbit

$$
|\phi\rangle=\sum_{i j=1}^{2} \gamma_{i j}|i\rangle_{A}|j\rangle_{B}
$$

$\operatorname{Tr} \gamma \gamma^{+}=1$

$$
E(|\phi\rangle)=\mathcal{F}\left(\frac{1}{2}+\frac{1}{2} \sqrt{1-4 \operatorname{det} \gamma \gamma^{+}}\right)
$$

where
$\mathcal{F}(x)=-x \log _{2} x-(1-x) \log _{2}(1-x)$
concurrency

$$
C=2 \sqrt{\operatorname{det} \gamma \gamma^{+}}
$$

Bell state $\gamma=\sigma_{x}$
$C=1, E=\mathcal{F}(1 / 2)=1, r=2$
Product state $|i i\rangle$
$C=0, E=\mathcal{F}(0)=0, r=1$

Mixed bipartite states

not completely resolved because of the intricate relation between classical and quantum correlations in mixed states

- E_{c} - entanglement cost (minimal number of Bell states to create a given state using LOCC) [cont]
- E_{D} - entanglement of distillation (maximal number of Bell states extracted from a system using LOCC) [cont]
- E_{F} - entanglement of formation (optimized average von Neumann entropy of reduced density operators for pure states) [add]

$$
E_{F}(\hat{\rho})=\min _{\left.\left\{p_{i}, \Psi_{i}\right\rangle\right\}} \sum_{i} p_{i} S\left(\hat{\rho}_{i, r e d}\right)
$$

- E_{R} - relative entropy (distance between entangled $\hat{\rho}$ and the closest separated $\hat{\sigma}$) [add]

$$
E_{R}(\hat{\rho})=\min _{\hat{\sigma}}\left[\operatorname{Tr} \hat{\rho}\left(\log _{2} \hat{\rho}-\log _{2} \hat{\sigma}\right)\right]
$$

(quite useful)

- many others ...

$$
E_{D} \leqslant E_{F} \leqslant E_{C}
$$

Information and correlation (Shannon)

- One source of messages m_{k} with receiving them with probability $p_{k}(k=1, \ldots, d)$.
- Df. Information in a message m_{k} is $I\left(m_{k}\right)=-\log _{2} p_{k}$.
- Df. Average information (surprise)

$$
I=\left\langle I\left(m_{k}\right)\right\rangle--\sum_{k=1}^{d} p_{k} \log _{2} p_{k}
$$

$-0 \leqslant I \leqslant \log _{2} d$.
$-I=\log _{2} d$ if $p_{k}=1 / d$ for each k (equal probable).

- Shannon's entropy (after von Neumann suggestion).

Information and correlation (Shannon)

- Two sources of messages x_{m} and y_{n} with probability distribution $p(x, y)$.
- Df. Total information in message (x, y) is

$$
I(x, y)=-\log _{2} p(x, y)
$$

- Df. Average total information in average

$$
I=\langle I(x, y)\rangle=-\sum_{x, y} p(x, y) \log _{2} p(x, y)
$$

- Df. Mutual information

$$
\Delta I\left(p_{1}, p_{2} ; p\right)=I_{1}+I_{2}-I \equiv I\left(p \| p_{1} p_{2}\right) \geqslant 0
$$

- where

$$
I\left(p \| p_{1} p_{2}\right) \equiv-\sum_{x, y} p(x, y) \log _{2} \frac{p(x, y)}{p_{1}(x) p_{2}(y)}
$$

can be called a relative Shannon's entropy.

- Of course $I=I_{1}+I_{2}-\Delta I$

Multipartite systems

- Quantum mutual information (Total correlation) between the two subsystems $\hat{\rho}_{1}$ and $\hat{\rho}_{2}$ of the joint state $\hat{\rho}_{12}$

$$
I\left(\hat{\rho}_{1}: \hat{\rho}_{2} ; \hat{\rho}_{12}\right)=S\left(\hat{\rho}_{1}\right)+S\left(\hat{\rho}_{2}\right)-S\left(\hat{\rho}_{12}\right)
$$

where $S=-\operatorname{Tr} \hat{\rho} \log _{2} \hat{\rho}$ von Neumann entropy

- Quantum relative entropy between $\hat{\sigma}$ and $\hat{\rho}$

$$
S(\hat{\sigma} \| \hat{\rho})=\operatorname{Tr}\left[\hat{\sigma}\left(\log _{2} \hat{\sigma}-\log _{2} \hat{\rho}\right)\right]
$$

- Quantum mutual information is a distance of $\hat{\rho}_{12}$ to the closest uncorrelated $\hat{\rho}_{1} \otimes \hat{\rho}_{2}$

$$
I\left(\hat{\rho}_{1}: \hat{\rho}_{2} ; \hat{\rho}_{12}\right)=S\left(\hat{\rho}_{12} \| \hat{\rho}_{1} \otimes \hat{\rho}_{2}\right)
$$

- Multipartite quantum mutual information in $\hat{\rho}$ (generalization)

$$
I\left(\hat{\rho}_{1}: \hat{\rho}_{2}: \ldots: \hat{\rho}_{n} ; \hat{\rho}\right)=S\left(\hat{\rho} \| \hat{\rho}_{1} \otimes \hat{\rho}_{2} \otimes \ldots \otimes \hat{\rho}_{n}\right)=\sum_{i} S\left(\hat{\rho}_{i}\right)-S(\hat{\rho})
$$

e.g. $S\left(\hat{\rho} \| \hat{\rho}_{M F}\right)=\ln Z_{M F}-\ln Z+\beta\left\langle H_{M F}-H\right\rangle_{H} \geqslant 0$.

Entanglement for multipartite system

Relative entanglement

$$
E(\hat{\rho})=\min _{\hat{\sigma} \in\{\text { separable }\}} S(\hat{\rho} \| \hat{\sigma})
$$

the relative entanglement is a distance between $\hat{\rho}$ and the closest classically correlated state

$$
E(\hat{\rho}) \leqslant I(\hat{\rho})
$$

If we take $\hat{\sigma}=\hat{\rho}_{M F}$ (???)

$$
\begin{gathered}
E(\hat{\rho})=\ln Z_{M F}-\ln Z+\beta\left\langle H_{M F}-H\right\rangle_{H} \\
\chi=\frac{\partial^{2} \ln Z}{\partial B^{2}}, \quad \chi_{s e p}-\chi=\frac{\partial^{2} E(\hat{\rho})}{\partial B^{2}}+\beta \frac{\partial^{2}\left\langle H_{M F}-H\right\rangle_{H}}{\partial B^{2}}
\end{gathered}
$$

Th. general bound for multipartite entanglement (Vedral 2003)

$$
E(\hat{\rho}) \leqslant \ln Z_{M F}-\ln Z+\beta\left\langle H_{M F}-H\right\rangle_{H} .
$$

Entanglement and the III law

Nernst theorem says that $S(T) \rightarrow S_{0}=$ const, or equivalently $C_{V}(T)=T(\partial S(T) / \partial T)_{V} \rightarrow 0$ when $T \rightarrow 0$.

Th. Wiesniak et al. (2005): Only if entanglement develops at low temperatures the Nernst theorem is satisfied.
because: separable states give bound for the ground state energy $U(T=0) \geqslant E_{B}$ and hence for all separable states

$$
C=\frac{\partial U(T)}{\partial T}=\gamma \frac{U(T)-E_{0}}{T} \geqslant \gamma^{\prime} \frac{E_{B}-E_{0}}{T^{1(2)}}
$$

1 for gapless, 2 for gapped systems.
Only when $E_{B}=E_{0}, C(T) \rightarrow 0$
In general $C(T) \rightarrow \infty$ for all separable states.

Indistinguishable particles

- if wave function overlap very small then all effects due to statistics can be neglected; well separated particles in space
- if wave function overlap important
- Pauli (statistical) entanglement (due to anty/symmetrization); probably not of use in teleportation etc.
- entanglement between different determinants/permanents
- mode entanglement (Fock space entanglement); the entanglement is basis (operator, observer) dependent, e.g.

$$
H=\sum_{i j} t_{i j} a_{i}^{\dagger} a_{j}=\sum_{\mathbf{k}} \epsilon_{\mathbf{k}} a_{\mathrm{k}}^{\dagger} a_{\mathrm{k}}
$$

Indistinguishable particles

Example:

- single particle at A or B
$|0,1\rangle+|1,0\rangle$ in mode (Fock) reprezentation
$\psi_{A}(x)+\psi_{B}(x)$ in coordinate reprezentation
- two particles, one at A , one at B

$$
|1,1\rangle \text { in mode (Fock) reprezentation }
$$

$\psi_{A}(x) \psi_{B}(y) \pm \psi_{A}(y) \psi_{B}(x) \quad$ in coordinate reprezentation

- two particles, in different modes (as in (i)) superposition

$$
\begin{gathered}
(|0,1\rangle+|1,0\rangle)(|0,1\rangle+|1,0\rangle)=|00,11\rangle+|01,10\rangle+|10,01\rangle+|11,00\rangle \\
\left(\psi_{A_{1}}(x)+\psi_{B_{1}}(x)\right)\left(\psi_{A_{2}}(y)+\psi_{B_{2}}(y)\right) \pm(x \leftrightarrow y)
\end{gathered}
$$

One needs more refined measure of entanglement then simply von Neumann entropy $S\left(\hat{\rho}_{A}\right)$ even for pure states of indistinguishable particles.

Summary

- Entanglement is a quantum correlation in quantum many body system
- Entanglement does not depend on particular physical representation
- Correlation without correlata
- Entanglement is a resource for certain tasks
- Entanglement can be quantified and measured

