Dynamical mean-field theory for correlated lattice bosons and fermions in normal and condensed phases

Krzysztof Byczuk and Dieter Vollhardt

Institute of Physics, EKM, Augsburg University

April 12th, 2007

Mean-field theory for lattice bosons and fermions

$$H = H^{\text{hopping}} + H^{\text{interaction}}_{\text{loc}}$$

- comprehensive (all input parameters, temperatures, all phases, ...)
- thermodynamically consistent and conserving
- provides exact solutions in certain non-trivial limit (large d)

$$\langle H \rangle$$
, $\langle H^{\text{hopping}} \rangle$, $\langle H^{\text{interaction}}_{\text{loc}} \rangle$

are finite and generically non-zero, and

$$\langle [H^{\text{hopping}}, H^{\text{interaction}}_{\text{loc}}] \rangle \neq 0$$

to describe non-trivial competition

W. Metzner and D. Vollhardt (Phys. Rev. Lett. **62**, 324 (1989)) started DMFT for fermions by introducing scaling $t \to t^*/\sqrt{2d}$ and $d \to \infty$ limit

BEC and normal bosons on the lattice in $d \to \infty$ limit

Bosons can condense into a one-particle state and a singe scaling cannot yield a comprehensive mean-field theory in large d. We have introduced:

- 1. Scaling is made inside a thermodynamical potential (action, Lagrangian) but not at the level of the Hamiltonian operator
 - normal parts: $t_{ij}=\frac{t_{ij}^*}{\frac{||R_i-R_j||}{2}}$ fractional rescaling BEC parts: $t_{ij}=\frac{t_{ij}^*}{\frac{||R_i-R_j||}{2}}$ integer rescaling
- 2. Limit $d \to \infty$ taken afterwards in this effective potential

Only this procedure gives consistent derivation of B-DMFT equations as exact ones in $d \to \infty$ limit for boson models with local interactions

K. Byczuk and D. Vollhardt, arXiv:0706.0839

Bosonic-Dynamical Mean-Field Theory

- Exact mapping of the lattice bosons in infinite dimension onto a single site
- Single site coupled to two reservoirs: normal bosons and bosons in the condensate
- Reservoirs properties are determined self-consistently, local correlations kept

B-DMFT in well-known limits

Outlook

- Develop a bosonic impurity solver
 - Hyungjung Lee bosonic numerical renormalization group
 - Philipp Werner continuous time quantum monte-carlo
 - KB linked cluster (cummulants) expansion
 - **–** ...
- Extensive investigation of lattice bosons within B-DMFT
- DMFT for mixtures of bosons (^{87}Rb) and fermions (^{40}K) in (optical) lattices
 - Equations have been derived
 - Pairing and instabilities of boson due to fermions and vice versa
 - Impurity solvers to be developed