Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder

Krzysztof Byczuk

Institute of Physics, Augsburg University

Institute of Theoretical Physics, Warsaw University

October 13th, 2005

Main results

- New collective effects induced by correlation and disorder
- Enhancement of T_c in binary alloy ferromagnets
- New Mott–Hubbard metal–insulator transition at $n \neq 1$

K. Byczuk, M. Ulmke, D. Vollhardt Phys. Rev. Lett. **90**, 196403 (2003)
K. Byczuk, W. Hofstetter, D. Vollhardt Phys. Rev. B **69**, 04512 (2004)
K. Byczuk, M. Ulmke

Eur. Phys. J. B 45, 449 (2005)

Collaboration

- Walter Hofstetter Aachen, Germany
- Martin Ulmke FGAN FKIE, Wachtberg, Germany
- Dieter Vollhardt Augsburg University, Germany

Plan of the talk

- 1. Introduction
 - localized vs. itinerant FM
 - Mott-Hubbard MIT
 - binary alloy disorder
 - alloy FM in Nature
- 2. Earlier result within DMFT on pure FM
- 3. Our results on binary alloy FM
 - enhancement of T_c
 - magnetization and Curie–Weiss law
 - Mott–Hubbard MIT at $n \neq 1$
- 4. Conclusions

Ferromagnetism of local moments

Exchange (Heisenberg) coupling

$$H = \sum_{ij} J_{ij} \ \vec{S}_i \cdot \vec{S}_j$$

 $J < 0 \rightarrow \text{FM}$ appears at Curie temperature T_c

Saturated magnetization $M(T=0) = \mu_B S$

Itinerant Ferromagnetism

Dynamical way to make FM

To reduce interaction energy electrons prefer FM state

FM stable if $U\gtrsim |t|$ - intermediate coupling problem !!!

Many itinerant FM are alloys

Mott-Hubbard MIT at n = 1

typical intermediate coupling problem $U_c \approx |t_{ij}|$

Alloy Band Splitting

Binary alloy disorder (alloys $A_{1-x}B_x$, e.g $Fe_{1-x}Co_x$)

DOS

alloy ba

intermediate "coupling" problem !!!

physical quantity: $O = \int d\epsilon \mathcal{P}(\epsilon) < \hat{O}(\epsilon) >$

Alloy Ferromagnets in Nature I

Piryts:
$$T_{1-x}(T+1)_x S_2$$
, $T=$ Fe, Co, Ni, Cu, Zn $t_{2g}^6 e_g^n$ with $n=0,1,2,3,4$
Fe $_{1-x}$ Co $_x S_2$, max $T_c(x)$ @ $x \approx 0.76$

Jarrett et al., PRL 1968, Leighton 2004

Alloy Ferromagnets in Nature II

Silva Neto et al., PRL 2003

Si and Ge isovalent, only structural disorder

Alloy Ferromagnets in Nature III

Fe weak FM, Co strong FM, bcc alloy

$$Fe_{1-x}Co_x$$
, max $T_c(x)$ @ $x \approx 0.5$

Pratzer et al., PRL 2003

Alloy Ferromagnets in Nature IV

Alloy ruthenates

 $SrRu_{1-x}Mn_xO_3$, FM Met–AF Ins

Cao et al., cond-mat/0409157

Hubbard model to capture right physics

Physical picture, n = 1

spin flip on central site

dynamical processes with spin-flips inject states into correlation gap giving a quasiparticle resonance

Route to FM in one-band Hubbard (DMFT)

0.06

0

0

0.2

a=1 <u>→</u> a=0.98 ---⊟--a=0.97 ·····⊙·····

D

n

0.6

0.6

n

0.4

Ρ

0.8

U=8 — → U=6 ---⊟---U=4 ·····▲·····

Ρ

0.8

1

1

U = 4

a = 0.98

$$H = \sum t a_{i\sigma}^{\dagger} a_{j\sigma} + U \sum n_{i\uparrow} n_{i\downarrow}$$

$$DOS \text{ asymmetry - } a$$

$$T = 0.03$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.01$$

$$0.02$$

$$0.02$$

$$0.02$$

$$0.02$$

$$0.02$$

$$0.02$$

$$0.02$$

$$0.02$$

$$0.02$$

$$0.02$$

$$0.02$$

$$0.02$$

$$0.02$$

$$0.02$$

$$0.02$$

$$0.02$$

$$0.02$$

$$0.02$$

$$0.02$$

$$0.02$$

$$0.02$$

$$0.02$$

$$0.02$$

$$0.02$$

$$0.02$$

$$0.02$$

$$0.02$$

Wahle et al. 1998

FCC $d = \infty$ FM in one-band Hubbard

$$N^0(\epsilon) = rac{\exp[-rac{1+\sqrt{2}\epsilon}{2}]}{\sqrt{\pi(1+\sqrt{2}\epsilon)}}$$

Ulmke et al. 1998

FM in binary alloy itinerant electrons

Anderson-Hubbard Hamiltonian

$$H = \sum_{ij,\sigma} t_{ij} \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + \sum_{i\sigma} \epsilon_i \hat{n}_{i\sigma} + U \sum_i \hat{n}_{i\uparrow} \hat{n}_{i\downarrow}$$

where ϵ is random variable with bimodal PDF

$$P(\epsilon) = x\delta\left(\epsilon + \frac{\Delta}{2}\right) + (1-x)\delta\left(\epsilon - \frac{\Delta}{2}\right)$$

Physical observable averaged arithmetically

$$\langle \cdots \rangle_{\rm dis} = \int d\epsilon P(\epsilon)(\cdots)$$

 $d=\infty$ FCC DOS stabilizes FM

$$N^{0}(\omega) = \frac{\exp\left[-\frac{1+\sqrt{2}\omega}{2}\right]}{\sqrt{\pi(1+\sqrt{2}\omega)}}$$

Dynamical Mean–Field Theory

Local Green function - Hilbert transform of DOS with self-energy

$$G_{\sigma n} = \int d\epsilon \frac{N^0(\epsilon)}{i\omega_n + \mu - \Sigma_{\sigma n} - \epsilon}$$

expressed by path integral, which is calculated with Hubbard–Stratonovich and QMC over auxiliary Ising spins

$$G_{\sigma n} = -\left\langle \frac{\int D\left[c_{\sigma}, c_{\sigma}^{\star}\right] c_{\sigma n} c_{\sigma n}^{\star} e^{\mathcal{A}_{i}\left\{c_{\sigma}, c_{\sigma}^{\star}, \mathcal{G}_{\sigma}^{-1}\right\}}}{\int D\left[c_{\sigma}, c_{\sigma}^{\star}\right] e^{\mathcal{A}_{i}\left\{c_{\sigma}, c_{\sigma}^{\star}, \mathcal{G}_{\sigma}^{-1}\right\}}} \right\rangle_{\text{dis}}$$

single impurity action for each $\epsilon_i=\pm\Delta/2$

$$\mathcal{A}_{\mathbf{i}}\{c_{\sigma}, c_{\sigma}^{\star}, \mathcal{G}_{\sigma}^{-1}\} = \sum_{n, \sigma} c_{\sigma n}^{\star} \mathcal{G}_{\sigma n}^{-1} c_{\sigma n} - \epsilon_{\mathbf{i}} \sum_{\sigma} \int_{0}^{\beta} d\tau n_{\sigma}(\tau) - \frac{U}{2} \sum_{\sigma} \int_{0}^{\beta} d\tau c_{\sigma}^{\star}(\tau) c_{\sigma}(\tau) c_{-\sigma}^{\star}(\tau) c_{-\sigma}(\tau)$$

k-integrated Dyson equation for Weiss function

$$\mathcal{G}_{\sigma n}^{-1} = \mathbf{G}_{\sigma n}^{-1} + \boldsymbol{\Sigma}_{\sigma n}$$

Curie temperature

Is there an alloy band splitting at U > 0?

$$U = 4, n = 0.3, n = 0.5, T = 0.071, MEM$$

Subtle interplay between Δ and U increases $T_c!$

Why is Curie temperature enhanced?

Magnetization and Curie-Weiss law

If $\Delta \gg W$ and $n < 2x
ightarrow M_s = n$ but $n > 2x
ightarrow M_s = n - 2x$

$$\frac{M(T)}{M_s} = \tanh[\frac{T_c M(T)}{T M_s}]$$

$$\chi(T) = \frac{C}{T - T_c}$$
, where $C \approx M_s$

$$\frac{C_1}{C_2} = 0.623 \qquad \text{close to } \frac{3}{5}$$

Mott–Hubbard metal–insulator transition

If n = x (or 1 + x) Mott-Hubbard MIT occures for $\Delta > \sqrt{x}$ and $U > 6\sqrt{x}$ (or $\sqrt{1 - x}$ and $6\sqrt{1 - x}$) U = 6, x = 0.5, n = 0.5, T = 0.071, MEM

Λ

Uc

ΡI

5

6

7

Correlated insulators

- alloy Mott insulator
- alloy charge transfer insulator

Quantum critical points

At T = 0 quantum phase transitions: FM met \rightarrow PM ins or FM met \rightarrow PM ins (Mott).

Correlation (band-width) controlled, Filling controlled, Alloy concentration controlled Mott MITs.

Is non-Fermi liquid in $d < \infty$? Role of correlations in space.

Summary

- New collective effects induced by correlation and disorder
- Possibilities of T_c increase in binary alloy ferromagnet
- New Mott–Hubbard metal–insulator transition at $n \neq 1$
- Alloy Mott insulator vs. Alloy charge transfer insulator
- Alloy concentration controlled Mott MIT

Outlook

- $T_c(x)$ QPT ? 2nd vs 1st order PT ?
- Multi-band Hubbard model, role of Hund and exchange coupling, which from our findings are generic for many orbitals ?
- Material specific models ?? LDA+DMFT+disorder ???