Ferromagnetism in Hubbard model with binary alloy disorder

Krzysztof Byczuk

Institute of Theoretical Physics Warsaw University

September 15th, 2004

Main results

- New collective effects induced by correlation and disorder
- Enhancement of T_c in binary alloy ferromagnets
- New Mott–Hubbard metal–insulator transition at $n \neq 1$

K. Byczuk, M. Ulmke, D. Vollhardt Phys. Rev. Lett. 90, 196403 (2003)
K. Byczuk, W. Hofstetter, D. Vollhardt Phys. Rev. B 69, 04512 (2004)
new unpublished results

Collaboration

- Martin Ulmke FGAN FKIE, Wachtberg, Germany
- Walter Hofstetter Aachen, Germany
- Dieter Vollhardt Augsburg University, Germany

Plan of the talk

- 1. Introduction
 - localized vs. itinerant FM
 - itinerant FM in brief history
 - binary alloy
 - alloy FM in Nature
- 2. Earlier result within DMFT on pure FM $% \left({{{\rm{T}}_{{\rm{T}}}} \right)$
- 3. Our results on binary alloy FM
 - enhancement of T_c
 - magnetization and Curie–Weiss law
 - Mott–Hubbard MIT at $n \neq 1$
 - non-iso-electronic systems
- 4. Conclusions

Ferromagnetism of local moments

Exchange (Heisenberg) coupling

$$H = \sum_{ij} J_{ij} \ \vec{S}_i \cdot \vec{S}_j$$

 $J < 0 \rightarrow \text{FM}$ appears at Curie temperature T_c

Saturated magnetization $M(T=0) = \mu_B S$

Itinerant Ferromagnetism

Dynamical way to make FM

To reduce interaction energy electrons prefer FM state

FM stable if $U\gtrsim |t|$ - intermediate coupling problem !!!

Many itinerant FM are alloys

Itinerant Ferromagnetism in brief history

- Bloch's FM in electron gas (1/r); unstable due to correlations (RPA)
- Stoner model (Hartree-Fock); $U_c \sim N(\mu)$; T_c overestimated
- Kanamori (T-matrix); no FM in Hubbard model
- Gutzwiller, Hubbard I and III contradictory views
- ...
- LSDA, mode coupling, RG, Hertz, ...
- exact results; $d = \infty$ (Wahle, Kollar, Ulmke, Vollhardt, et al.)
- E.Lieb Ground state of Hubbard is singlet on bipartite lattice at half-filling
- M. Kollar, R. Strack, D. Vollhardt Exact estimates for extended Hubbard

Alloy Band Splitting

Binary alloy disorder (alloys $A_{1-x}B_x$, e.g $Fe_{1-x}Co_x$)

DOS

intermediate "coupling" problem !!!

physical quantity: $O = \int d\epsilon \mathcal{P}(\epsilon) < \hat{O}(\epsilon) > 0$

Alloy Ferromagnets in Nature I

Piryts:
$$T_{1-x}(T+1)_xS_2$$
, T=Fe, Co, Ni, Cu, Zn

$$t_{2g}^6 e_g^n$$
 with $n = 0, 1, 2, 3, 4$

$$Fe_{1-x}Co_xS_2$$
, max $T_c(x)$ @ $x \approx 0.76$

Jarrett et al., PRL 1968, Leighton 2004

Alloy Ferromagnets in Nature II

Silva Neto et al., PRL 2003

Si and Ge isovalent, only structural disorder

Alloy Ferromagnets in Nature III

Fe weak FM, Co strong FM, bcc alloy

$$Fe_{1-x}Co_x$$
, max $T_c(x)$ @ $x \approx 0.5$

Pratzer et al., PRL 2003

Alloy Ferromagnets in Nature IV

Alloy ruthenates

 $SrRu_{1-x}Mn_xO_3$, FM Met–AF Ins

Cao et al., cond-mat/0409157

Route to FM in one-band Hubbard (DMFT)

$$H = \sum t a_{i\sigma}^{\dagger} a_{j\sigma} + U \sum n_{i\uparrow} n_{i\downarrow}$$

DOS asymmetry - a

Interaction - U

Wahle et al. 1998

FCC $d = \infty$ FM in one-band Hubbard

$$N^0(\epsilon) = rac{\exp[-rac{1+\sqrt{2}\epsilon}{2}]}{\sqrt{\pi(1+\sqrt{2}\epsilon)}}$$

Ulmke et al. 1998

FM in binary alloy itinerant electrons

Anderson–Hubbard Hamiltonian

$$H = \sum_{ij,\sigma} t_{ij} \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + \sum_{i\sigma} \epsilon_i \hat{n}_{i\sigma} + U \sum_i \hat{n}_{i\uparrow} \hat{n}_{i\downarrow}$$

where ϵ is random variable with bimodal PDF

$$P(\epsilon) = x\delta\left(\epsilon + \frac{\Delta}{2}\right) + (1-x)\delta\left(\epsilon - \frac{\Delta}{2}\right)$$

Physical observable averaged arithmetically

$$\langle \cdots \rangle_{\rm dis} = \int d\epsilon P(\epsilon)(\cdots)$$

 $d=\infty$ FCC DOS stabilizes FM

$$N^{0}(\omega) = \frac{\exp\left[-\frac{1+\sqrt{2}\omega}{2}\right]}{\sqrt{\pi(1+\sqrt{2}\omega)}}$$

Dynamical Mean–Field Theory

Local Green function - Hilbert transform of DOS with self-energy

$$G_{\sigma n} = \int d\epsilon rac{N^0(\epsilon)}{i\omega_n + \mu - \Sigma_{\sigma n} - \epsilon}$$

expressed by path integral, which is calculated with Hubbard–Stratonovich and QMC over auxiliary Ising spins

$$G_{\sigma n} = -\left\langle \frac{\int D\left[c_{\sigma}, c_{\sigma}^{\star}\right] c_{\sigma n} c_{\sigma n}^{\star} e^{\mathcal{A}_{i}\left\{c_{\sigma}, c_{\sigma}^{\star}, \mathcal{G}_{\sigma}^{-1}\right\}}}{\int D\left[c_{\sigma}, c_{\sigma}^{\star}\right] e^{\mathcal{A}_{i}\left\{c_{\sigma}, c_{\sigma}^{\star}, \mathcal{G}_{\sigma}^{-1}\right\}}} \right\rangle_{\text{dis}}$$

single impurity action for each $\epsilon_i=\pm\Delta/2$

$$\mathcal{A}_{\mathbf{i}}\{c_{\sigma}, c_{\sigma}^{\star}, \mathcal{G}_{\sigma}^{-1}\} = \sum_{n, \sigma} c_{\sigma n}^{\star} \mathcal{G}_{\sigma n}^{-1} c_{\sigma n} - \frac{\epsilon_{i}}{\sigma} \sum_{\sigma} \int_{0}^{\beta} d\tau n_{\sigma}(\tau) - \frac{U}{2} \sum_{\sigma} \int_{0}^{\beta} d\tau c_{\sigma}^{\star}(\tau) c_{\sigma}(\tau) c_{-\sigma}^{\star}(\tau) c_{-\sigma}(\tau)$$

k-integrated Dyson equation for Weiss function

$$\mathcal{G}_{\sigma n}^{-1} = \mathbf{G}_{\sigma n}^{-1} + \boldsymbol{\Sigma}_{\sigma n}$$

Curie temperature

Is there an alloy band splitting at U > 0?

$$U = 4, n = 0.3, n = 0.5, T = 0.071, MEM$$

Subtle interplay between Δ and U increases $T_c!$

Why is Curie temperature enhanced?

Magnetization and Curie-Weiss law

If $\Delta \gg W$ and $n < 2x \rightarrow M_s = n$ but $n > 2x \rightarrow M_s = n - 2x$

$$\frac{M(T)}{M_s} = \tanh[\frac{T_c M(T)}{T M_s}]$$

$$\chi(T) = \frac{C}{T - T_c}, \text{ where } C \approx M_s$$

$$\frac{C_1}{C_2} = 0.623 \qquad \text{close to } \frac{3}{5}$$

Mott–Hubbard metal–insulator transition

If n = x (or 1 + x) Mott-Hubbard MIT occures for $\Delta > \sqrt{x}$ and $U > 6\sqrt{x}$ (or $\sqrt{1 - x}$ and $6\sqrt{1 - x}$) U = 6, x = 0.5, n = 0.5, T = 0.071, MEM

РM

FM

4

5

6

7

Ы

Correlated insulators

- alloy Mott insulator
- alloy charge transfer insulator

Quantum critical points

At T = 0 quantum phase transitions: FM met \rightarrow PM ins or FM met \rightarrow PM ins (Mott).

Correlation (band-width) controlled, Filling controlled, Alloy concentration controlled Mott MITs.

Is non-Fermi liquid in $d < \infty$? Role of correlations in space.

Non-iso-electronic alloyed Hubbard model

x = 2n as in $\operatorname{Fe}_{1-x}\operatorname{Co}_x$, "empty $e_g^0 \to e_g^1$ quarter filled"

Summary

- New collective effects induced by correlation and disorder
- Possibilities of T_c increase in binary alloy ferromagnet
- New Mott–Hubbard metal–insulator transition at $n \neq 1$
- Alloy Mott insulator vs. Alloy charge transfer insulator
- Alloy concentration controlled Mott MIT

Outlook

- $T_c(x)$ QPT ? 2nd vs 1st order PT ?
- Multi-band Hubbard model, role of Hund and exchange coupling, which from our findings are generic for many orbitals ?
- Material specific models ?? LDA+DMFT+disorder ???