How to quantify correlation in correlated electron system

Krzysztof Byczuk

Institute of Theoretical Physics
Department of Physics, University of Warsaw
and
Center for Electronic Correlations and Magnetism
Augsburg University

June 17th, 2009

Collaboration

Dieter Vollhardt - Augsburg University

Walter Hofstetter - Frankfurt University

Aim of this talk

CORRELATION

- What is it?
- How to quantify it?

Correlation

- Correlation [lat.]: con+relatio ("with relation")
- Mathematics, Statistics, Natural Science:

$$
\langle x y\rangle \neq\langle x\rangle\langle y\rangle
$$

The term correlation stems from mathematical statistics and means that two distribution functions, $f(x)$ and $g(y)$, are not independent of each other.

- In many body physics: correlations are effects beyond factorizing approximations

$$
\left\langle\rho(r, t) \rho\left(r^{\prime}, t^{\prime}\right)\right\rangle \approx\langle\rho(r, t)\rangle\left\langle\rho\left(r^{\prime}, t^{\prime}\right)\right\rangle
$$

as in Weiss or Hartree-Fock mean-field theories

Spatial and temporal correlations everywhere

air traffic
human traffic
electron traffic

Abb. 3: Beispiel eines Metall-Isolator-Übergangs: Bei Abkühlung unter eine Temperatur von ca. 150 Kelvin erhöht sich der elektrische Widerstand von metallischem Vanadiumoxid ($\mathrm{V}_{2} \mathrm{O}_{3}$) schlagartig um das Einhundertmillionenfache (Faktor 10^{8}) das System wird zum Isolator.

Spatial and temporal correlations neglected

time/space average insufficient

$$
\left\langle\rho(r, t) \rho\left(r^{\prime}, t^{\prime}\right)\right\rangle \approx\langle\rho(r, t)\rangle\left\langle\rho\left(r^{\prime}, t^{\prime}\right)\right\rangle=\text { disaster! }
$$

Boeing 757 and Tupolev 154 collided at 35,400ft. in 2001

Pilot of Tupolev received at the same time two conflicting (uncorrelated) instructions

Spatial and temporal correlations neglected

Local density approximation (LDA) disaster in HTC

Vollime 58, Number 10 PhYSICAL REI

LaCuO_{4} Mott (correlated) insulator predicted to be a metal

Partially curred by (AF) long-range order ... but correlations are still missed

Correlated electrons

* Lanthanide Series	$\begin{gathered} 58 \\ \mathrm{Ce} \end{gathered}$	$\begin{gathered} 59 \\ \mathrm{Pr} \end{gathered}$	$\begin{aligned} & 60 \\ & \mathrm{Nd} \end{aligned}$	61	$\begin{aligned} & 62 \\ & \mathrm{Sm} \end{aligned}$	$\overline{63}$	$\begin{gathered} 64 \\ \text { Gd } \end{gathered}$	$\begin{gathered} 65 \\ \mathrm{~Tb} \end{gathered}$	$\begin{gathered} 66 \\ \text { Dy } \end{gathered}$	$\stackrel{67}{67}$	Er	$\begin{aligned} & 69 \\ & \mathbf{T m} \end{aligned}$	$\begin{aligned} & 70 \\ & \mathrm{Yb} \end{aligned}$	$\begin{aligned} & 71 \\ & \mathrm{Lu} \end{aligned}$
Series	Th	$\begin{array}{\|c} 91 \\ \mathrm{~Pa} \end{array}$	$\stackrel{92}{\mathbf{U 2}}$	93	94	95	96	97	98	99	100	101	102	${ }^{03}$

H-gas	Li - solid	Br- liquid	Tc - synthetic
Non-Metals	Transition Metals	Rare Earth Metals	Halogens
Alkali Metals	Alkali Earth Metals	Other Metals	Inert Elem

Electronic bands in solids

Wave function overlap $\sim t_{i j}=\langle i| \hat{T}|j\rangle \rightarrow\left|E_{\mathbf{k}}\right| \sim$ bandwidth W
Band insulators, e.g. NaCl

Atomic levels, localized electrons $\left|\mathbf{R}_{i} \sigma\right\rangle$

Correlated metals, e.g. $\mathrm{Ni}, \mathrm{V}_{2} \mathrm{O}_{3}, \mathrm{Ce}$

Narrow bands, $\quad\left|\mathbf{R}_{i} \sigma\right\rangle \leftrightarrow|\mathbf{k} \sigma\rangle$

Simple metals, e.g. Na, Al

Broad bands, extended Bloch waves $|\mathbf{k} \sigma\rangle$

Electronic bands in solids

Mean time τ spent by the electron on an atom in a solid depends on the band width W

$$
\text { group velocity } v_{\mathrm{k}} \approx \frac{\text { lattice spacing }}{\text { mean time }}=\frac{a}{\tau}
$$

Heisenberg principle $W \tau \sim \hbar$

$$
\frac{a}{\tau} \sim \frac{a W}{\hbar} \Longrightarrow \tau \sim \frac{\hbar}{W}
$$

Small W means longer interaction with another electron on the same atom Strong electronic correlations

Optical lattices filled with bosons or fermions

Greiner et al. 02, and other works
atomic trap and standing waves of light create optical lattices $a \sim 400-500 \mathrm{~nm}$

alkali atoms with ns ${ }^{1}$ electronic state $J=S=1 / 2$

$$
\mathbf{F}=\mathbf{J}+\mathbf{I}
$$

${ }^{87} \mathrm{Rb},{ }^{23} \mathrm{Na},{ }^{7} \mathrm{Li}-I=3 / 2$: effective bosons
${ }^{6} \mathrm{Li}-I=1,{ }^{40} \mathrm{~K}-I=4$: effective fermions

atom scattering - Hubbard U

$$
\begin{aligned}
& E_{\text {int }}^{\text {solid }} \sim 1-4 \mathrm{eV} \sim 10^{4} \mathrm{~K}, \quad E_{\text {kin }}^{\text {solid }} \sim 1-10 \mathrm{eV} \sim 10^{5} \mathrm{~K} \\
& E_{\text {kin }}^{\text {optical }} \sim E_{\text {int }}^{\text {optical }} \sim 10 \mathrm{kHz} \sim 10^{-6} \mathrm{~K}
\end{aligned}
$$

Quantifying correlations

How many correlation is there in correlated electron systems?

We need information theory tools to address this issue.

Classical vs. Quantum Information Theory

Probability distribution vs. Density operator

$$
p_{k} \longleftrightarrow \hat{\rho}=\sum_{k} p_{k}|k\rangle\langle k|
$$

Shannon entropy vs. von Neumann entropy

$$
I=-\left\langle\log _{2} p_{k}\right\rangle=-\sum_{k} p_{k} \log _{2} p_{k} \longleftrightarrow S=-\langle\ln \hat{\rho}\rangle=-\operatorname{Tr}[\hat{\rho} \ln \hat{\rho}]
$$

Two correlated (sub)systems have relative entropy

$$
I=I_{1}+I_{2}-\Delta I \longleftrightarrow S=S_{1}+S_{2}-E
$$

$\Delta I\left(p_{k l} \| p_{k} p_{l}\right)=-\sum_{k l} p_{k l}\left[\log _{2} \frac{p_{k l}}{p_{k} p_{l}}\right] \longleftrightarrow E\left(\hat{\rho} \| \hat{\rho}_{1} \otimes \hat{\rho}_{2}\right)=-\operatorname{Tr}\left[\hat{\rho}\left(\ln \hat{\rho}-\ln \hat{\rho}_{1} \otimes \hat{\rho}_{2}\right)\right]$
Relative entropy vanishes in the absence of correlations (product states)

Asymptotic distiguishability

Quantum Sanov theorem:
Probability P_{n} that a state $\hat{\sigma}$ is not distinguishable from a state $\hat{\rho}$ in n measurements, when $n \gg 1$, is

$$
P_{n} \approx e^{-n E(\hat{\rho}| | \hat{\sigma})}
$$

Relative entropy $E(\hat{\rho} \| \hat{\sigma})$ as a 'distance' between quantum states.

We calculate

- von Neumann entropies and
- relative entropies
for and between different correlated and uncorrelated (product) states of the Hubbard model.

Correlated fermions on crystal and optical lattices

$$
H=-\sum_{i j \sigma} t_{i j} c_{i \sigma}^{\dagger} c_{j \sigma}+U \sum_{i} n_{i \uparrow} n_{i \downarrow}
$$

fermionic Hubbard model
P.W. Anderson, J. Hubbard, M. Gutzwiller, J. Kanamori, 1960-63

Local Hubbard physics

Origin of genuine many-body correlation

$$
H=H^{\text {hopping }}+H_{\text {loc }}^{\text {interaction }}
$$

$$
\left[H^{\text {hopping }}, H_{\text {loc }}^{\text {interaction }}\right] \neq 0
$$

DMFT for lattice fermions

Replace (map) full many-body lattice problem by a single-site coupled to dynamical reservoir and solve such problem self-consistently

All local dynamical correlations included exactly

Space correlations neglected - mean-field approximation

Local Entropy and Local Relative Entropy

Local density operator:

$$
\hat{\rho}_{i}=T r_{j \neq i} \hat{\rho}
$$

Local entropy:

$$
S\left[\hat{\rho}_{i}\right]=-\sum_{k=1}^{4} p_{k} \ln p_{k}
$$

where
$p_{1}=\left\langle\left(1-n_{i \uparrow}\right)\left(1-n_{i \downarrow}\right)\right\rangle, \quad p_{2}=\left\langle n_{i \uparrow}\left(1-n_{i \downarrow}\right)\right\rangle, \quad p_{3}=\left\langle\left(1-n_{i \uparrow}\right) n_{i \downarrow}\right\rangle, \quad p_{4}=\left\langle n_{i \uparrow} n_{i \downarrow}\right\rangle$.
A.Rycerz, Eur. Phys. J B 52, 291 (2006);
D. Larsson and H. Johannesson, Phys. Rev. A 73, 042320 (2006)

Generalized equations for local relative entropy.
KB, D. Vollhardt, '09

Expectation values for correlated states are determined from DMFT solution and for uncorrelated states from Hartree-Fock solutions.

Calculation details

Consider a pure state (maximal information)

$$
|\Psi\rangle=\sum_{\alpha \beta} \Psi_{\alpha \beta}|\alpha\rangle|\beta\rangle
$$

of a system which is composed of two subsystems $A=\{|\alpha\rangle\}$ and $B=\{|\beta\rangle\}$.
Density operator (Schmidt decomposition)

$$
\hat{\rho}=\sum_{k} p_{k}|k\rangle\langle k|=|\Psi\rangle\langle\Psi| .
$$

Entropy

$$
S(\hat{\rho})=-\langle\log \hat{\rho}\rangle=-\operatorname{Tr} \hat{\rho} \log \hat{\rho}=-\sum_{k} p_{k} \log p_{k}=0
$$

because

$$
p_{k}=\delta_{k, \Psi}
$$

Calculation details

Trace out the B subsystem, reduced density operator
$\hat{\rho}_{A}=\operatorname{Tr}_{B}|\Psi\rangle\langle\Psi|=\sum_{\beta}\langle\beta \mid \Psi\rangle\langle\Psi \mid \beta\rangle=\sum_{\alpha_{1}, \alpha_{2}}\left|\alpha_{1}\right\rangle \sum_{\beta} \Psi_{\alpha_{1}, \beta} \Psi_{\beta, \alpha_{2}}^{\dagger}\left\langle\alpha_{2}\right|=\sum_{\alpha_{1}, \alpha_{2}}\left|\alpha_{1}\right\rangle \rho_{\alpha_{1}, \alpha_{2}}\left\langle\alpha_{2}\right|$.
Subsystem A is in a mixed state (reduced information).
Introduce projector and transition operators

$$
\hat{P}_{i}=|i\rangle\langle i|, \quad \hat{T}_{i j}=|i\rangle\langle j|,
$$

then

$$
\rho_{\alpha_{1} \alpha_{2}}=\sum_{\beta} \Psi_{\alpha_{1}, \beta} \Psi_{\beta, \alpha_{2}}^{\dagger}=\langle\Psi| \hat{P}_{\alpha_{1}} \hat{T}_{\alpha_{1}, \alpha_{2}} \hat{P}_{\alpha_{2}}|\Psi\rangle^{\dagger}
$$

Calculation details

Consider a single lattice site (DMFT) as the A subsystem

$$
|\alpha\rangle=\{|0\rangle,|\uparrow\rangle,|\downarrow\rangle,|\uparrow \downarrow\rangle\},
$$

then

$$
\hat{P}_{\alpha}=\left\{\begin{array}{c}
\left(1-\hat{n}_{\uparrow}\right)\left(1-\hat{n}_{\downarrow}\right) \\
\hat{n}_{\uparrow}\left(1-\hat{n}_{\downarrow}\right) \\
\left(1-\hat{n}_{\uparrow} \hat{n}_{\downarrow}\right. \\
\hat{n}_{\uparrow} \hat{n}_{\downarrow},
\end{array}\right.
$$

and

$$
\hat{T}_{\alpha_{1}, \alpha_{2}}=\left(\begin{array}{cccc}
1 & c_{\uparrow} & c_{\downarrow} & c_{\downarrow} c_{\uparrow} \\
c_{\uparrow}^{\dagger} & 1 & c_{\uparrow}^{\dagger} c_{\downarrow} & -c_{\downarrow} \\
c_{\downarrow}^{\dagger} & c_{\downarrow}^{\dagger} c_{\uparrow} & 1 & c_{\uparrow} \\
c_{\uparrow}^{\dagger} c_{\downarrow}^{\dagger} & -c_{\downarrow}^{\dagger} & c_{\uparrow}^{\dagger} & 1
\end{array}\right) .
$$

Assuming absence of any off-diagonal order $\langle\Psi| c_{\sigma}|\Psi\rangle=\langle\Psi| c_{\sigma} c_{-\sigma}|\Psi\rangle$ the reduced density operator is diagonal

$$
\rho_{\alpha_{1} \alpha_{2}}=p_{1}|0\rangle\langle 0|+p_{2}|\uparrow\rangle\langle\uparrow|+p_{3}|\downarrow\rangle\langle\downarrow|+p_{4}|\uparrow \downarrow\rangle\langle\uparrow \downarrow|,
$$

Calculation details

with matrix elements

$$
p_{\alpha}=\langle\Psi| \hat{P}_{\alpha}|\Psi\rangle
$$

determined with an arbitrary pure state $|\Psi\rangle$ (exact, DMFT, HF, etc.) of the full system.

It is straightforward to derive for an arbitrary mixed state $\hat{\rho}$ of the full system.

Calculation details

Local entropy

$$
S(\hat{\rho})=-T r_{A} \hat{\rho}_{A} \log \hat{\rho_{A}}=-\sum_{\alpha} p_{\alpha} \log p_{\alpha} .
$$

Local relative entropy

$$
E(\hat{\rho} \| \hat{\sigma})=-\operatorname{Tr}_{A} \hat{\rho}_{A}\left(\log \hat{\rho}_{A}-\log \hat{\sigma}_{A}\right)=-\sum_{\alpha} p_{\alpha}\left(\log p_{\alpha}-\log p_{\alpha}^{\sigma}\right)
$$

Correlation and Mott Transition

$$
\begin{aligned}
& \quad S(\hat{\rho})=-\operatorname{Tr}[\hat{\rho} \ln \hat{\rho}] \\
& E(\hat{\rho} \| \hat{\sigma})=-\operatorname{Tr}[\hat{\rho} \ln \hat{\rho}-\hat{\rho} \ln \hat{\sigma}] \\
& S=S\left(\hat{\rho}_{D M F T}\right) \\
& S_{1}=S\left(\hat{\rho}_{0}\right) \\
& S_{2}=S\left(\hat{\rho}_{a}\right) \\
& \\
& E_{1}=E\left(\hat{\rho}_{D M F T} \| \hat{\rho}_{0}\right) \\
& E_{2}=E\left(\hat{\rho}_{0} \| \hat{\rho}_{D M F T}\right) \\
& E_{3}=E\left(\hat{\rho}_{a} \| \hat{\rho}_{D M F T}\right)
\end{aligned}
$$

Product (HF) states:

$$
|0\rangle=\prod_{k \sigma}^{k_{F}} a_{k \sigma}^{\dagger}|v\rangle-U=0 \text { limit }
$$

$$
|a\rangle=\prod_{i}^{N_{L}} a_{i \sigma_{i}}^{\dagger}|v\rangle \text { - atomic limit }
$$

Interaction, U

Correlation and Antiferromagnetic Order

$$
S(\hat{\rho})=-\operatorname{Tr}[\hat{\rho} \ln \hat{\rho}]
$$

$$
E(\hat{\rho} \| \hat{\sigma})=-\operatorname{Tr}[\hat{\rho} \ln \hat{\rho}-\hat{\rho} \ln \hat{\sigma}]
$$

$$
S=S\left(\hat{\rho}_{D M F T}\right)
$$

$$
S_{1}=S\left(\hat{\rho}_{0}\right)
$$

$$
S_{2}=S\left(\hat{\rho}_{a}\right)
$$

Product (HF) states:

$$
\begin{aligned}
& |0\rangle=\prod_{k_{F}(A, B)}^{k_{F}} a_{k_{A} \uparrow}^{\dagger} a_{k_{B} \downarrow}^{\dagger}|v\rangle \text { - Slater limit } \\
& |a\rangle=\prod_{i \in(A, B)}^{N_{L}} a_{i_{A} \uparrow \uparrow}^{\dagger} i_{i_{B} \downarrow}^{\dagger}|v\rangle \text { - Heisenberg limit }
\end{aligned}
$$

$$
\begin{aligned}
& E_{1}=E\left(\hat{\rho}_{D M F T} \| \hat{\rho}_{0}\right) \\
& E_{2}=E\left(\hat{\rho}_{0} \| \hat{\rho}_{D M F T}\right) \\
& E_{3}=E\left(\hat{\rho}_{a} \| \hat{\rho}_{D M F T}\right)
\end{aligned}
$$

Summary

- We used entropy and relative entropies to quantify in numbers correlation in correlated electron systems.
- Examples for Hubbard model.
- Different correlations in paramagnetic and in antiferromagnetic cases.

