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Aim of this talk

CORRELATION

• What is it?

• How to quantify it?



Correlation

• Correlation [lat.]: con+relatio (“with relation”)

• Mathematics, Statistics, Natural Science:

〈xy〉 6= 〈x〉〈y〉

The term correlation stems from mathematical statistics and means that two
distribution functions, f(x) and g(y), are not independent of each other.

• In many body physics: correlations are effects beyond factorizing approximations

〈ρ(r, t)ρ(r′, t′)〉 ≈ 〈ρ(r, t)〉〈ρ(r′, t′)〉,

as in Weiss or Hartree-Fock mean-field theories



Spatial and temporal correlations everywhere

car traffic

air traffic

human traffic

electron traffic

more .....



Spatial and temporal correlations neglected

time/space average insufficient

〈ρ(r, t)ρ(r′, t′)〉 ≈ 〈ρ(r, t)〉〈ρ(r′, t′)〉 = disaster!

Boeing 757 and Tupolev 154 collided at 35,400ft. in 2001

Pilot of Tupolev received at the same time two conflicting (uncorrelated) instructions



Spatial and temporal correlations neglected

Local density approximation (LDA) disaster in HTC
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LaCuO4 Mott (correlated) insulator predicted to be a metal

Partially curred by (AF) long-range order ... but correlations are still missed



Correlated electrons

Narrow d,f-orbitals/bands → strong electronic correlations



Electronic bands in solids
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Band insulators, e.g. NaCl

Correlated metals, e.g. Ni, V2O3, Ce

Simple metals, e.g. Na, Al

Atomic levels, localized electrons |Riσ〉

Narrow bands, |Riσ〉 ↔ |kσ〉

Broad bands, extended Bloch waves |kσ〉

Wave function overlap ∼ tij = 〈i|T̂ |j〉 → |Ek| ∼ bandwidth W



Electronic bands in solids

Mean time τ spent by the electron on an atom in a solid
depends on the band width W

group velocity vk ≈
lattice spacing

mean time
=

a

τ

Heisenberg principle Wτ ∼ ~

a

τ
∼

aW

~
=⇒ τ ∼

~

W

Small W means longer interaction with another electron on the same atom
Strong electronic correlations



Optical lattices filled with bosons or fermions
Greiner et al. 02, and other works

atomic trap and standing waves of light create optical lattices a ∼ 400− 500nm

alkali atoms with ns1 electronic state J = S = 1/2

F = J + I

87Rb, 23Na, 7Li - I = 3/2: effective bosons
6Li - I = 1, 40K - I = 4: effective fermions

dipol interaction − hopping 

atom scattering − Hubbard U

Esolid
int ∼ 1− 4eV ∼ 104K, Esolid

kin ∼ 1− 10eV ∼ 105K

Eoptical
kin ∼ Eoptical

int ∼ 10kHz ∼ 10−6K



Quantifying correlations

How many correlation is there
in correlated electron systems?

We need information theory tools to address this issue.



Classical vs. Quantum Information Theory

Probability distribution vs. Density operator

pk ←→ ρ̂ =
∑

k

pk|k〉〈k|

Shannon entropy vs. von Neumann entropy

I = −〈log2 pk〉 = −
∑

k

pk log2 pk ←→ S = −〈ln ρ̂〉 = −Tr[ρ̂ ln ρ̂]

Two correlated (sub)systems have relative entropy

I = I1 + I2 −∆I ←→ S = S1 + S2 −E

∆I(pkl||pkpl) = −
∑

kl

pkl[log2

pkl

pkpl

]←→ E(ρ̂||ρ̂1 ⊗ ρ̂2) = −Tr[ρ̂(ln ρ̂− ln ρ̂1 ⊗ ρ̂2)]

Relative entropy vanishes in the absence of correlations (product states)



Asymptotic distiguishability

Quantum Sanov theorem:
Probability Pn that a state σ̂ is not distinguishable from a state ρ̂ in n
measurements, when n≫ 1, is

Pn ≈ e−nE(ρ̂||σ̂).

Relative entropy E(ρ̂||σ̂) as a ’distance’ between quantum states.

We calculate

• von Neumann entropies and

• relative entropies

for and between different correlated and uncorrelated
(product) states of the Hubbard model.



Correlated fermions on crystal and optical lattices

H = −
∑

ijσ

tijc
†
iσcjσ + U

∑

i

ni↑ni↓

t

U

t
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In
In

Out

TIME
|i, 0〉 → |i, ↑〉 → |i, 2〉 → |i, ↓〉

fermionic Hubbard model

P.W. Anderson, J. Hubbard, M. Gutzwiller, J. Kanamori, 1960-63

Local Hubbard physics



Origin of genuine many-body correlation

H = Hhopping + H interaction
loc

[

Hhopping, H interaction
loc

]

6= 0



DMFT for lattice fermions

Replace (map) full many-body lattice problem by a single-site coupled to dynamical
reservoir and solve such problem self-consistently

All local dynamical correlations included exactly

Space correlations neglected - mean-field approximation



Local Entropy and Local Relative Entropy

Local density operator:
ρ̂i = Trj 6=iρ̂

Local entropy:

S[ρ̂i] = −

4
∑

k=1

pk ln pk,

where

p1 = 〈(1−ni↑)(1−ni↓)〉, p2 = 〈ni↑(1−ni↓)〉, p3 = 〈(1−ni↑)ni↓〉, p4 = 〈ni↑ni↓〉.

A.Rycerz, Eur. Phys. J B 52, 291 (2006);

D. Larsson and H. Johannesson, Phys. Rev. A 73, 042320 (2006)

Generalized equations for local relative entropy.
KB, D. Vollhardt, ’09

Expectation values for correlated states are determined from DMFT solution
and for uncorrelated states from Hartree-Fock solutions.



Calculation details

Consider a pure state (maximal information)

|Ψ〉 =
∑

αβ

Ψαβ|α〉|β〉

of a system which is composed of two subsystems A = {|α〉} and B = {|β〉}.

Density operator (Schmidt decomposition)

ρ̂ =
∑

k

pk|k〉〈k| = |Ψ〉〈Ψ|.

Entropy

S(ρ̂) = −〈log ρ̂〉 = −Trρ̂ log ρ̂ = −
∑

k

pk log pk = 0,

because
pk = δk,Ψ.



Calculation details

Trace out the B subsystem, reduced density operator

ρ̂A = TrB|Ψ〉〈Ψ| =
∑

β

〈β|Ψ〉〈Ψ|β〉 =
∑

α1,α2

|α1〉
∑

β

Ψα1,βΨ†
β,α2
〈α2| =

∑

α1,α2

|α1〉ρα1,α2〈α2|.

Subsystem A is in a mixed state (reduced information).

Introduce projector and transition operators

P̂i = |i〉〈i|, T̂ij = |i〉〈j|,

then
ρα1α2 =

∑

β

Ψα1,βΨ†
β,α2

= 〈Ψ|P̂α1T̂α1,α2P̂α2|Ψ〉
†.



Calculation details

Consider a single lattice site (DMFT) as the A subsystem

|α〉 = {|0〉, | ↑〉, | ↓〉, | ↑↓〉},

then

P̂α =















(1− n̂↑)(1− n̂↓)
n̂↑(1− n̂↓)
(1− n̂↑)n̂↓

n̂↑n̂↓,

and

T̂α1,α2 =











1 c↑ c↓ c↓c↑
c†↑ 1 c†↑c↓ −c↓
c†↓ c†↓c↑ 1 c↑

c†↑c
†
↓ −c†↓ c†↑ 1











.

Assuming absence of any off-diagonal order 〈Ψ|cσ|Ψ〉 = 〈Ψ|cσc−σ|Ψ〉 the reduced
density operator is diagonal

ρα1α2 = p1|0〉〈0|+ p2| ↑〉〈↑ |+ p3| ↓〉〈↓ |+ p4| ↑↓〉〈↑↓ |,



Calculation details

with matrix elements
pα = 〈Ψ|P̂α|Ψ〉

determined with an arbitrary pure state |Ψ〉 (exact, DMFT, HF, etc.) of the full
system.

It is straightforward to derive for an arbitrary mixed state ρ̂ of the full system.



Calculation details

Local entropy

S(ρ̂) = −TrAρ̂A log ρ̂A = −
∑

α

pα log pα.

Local relative entropy

E(ρ̂||σ̂) = −TrAρ̂A(log ρ̂A − log σ̂A) = −
∑

α

pα(log pα − log pσ
α).



Correlation and Mott Transition
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S(ρ̂) = −Tr[ρ̂ ln ρ̂]

E(ρ̂||σ̂) = −Tr[ρ̂ ln ρ̂− ρ̂ ln σ̂]

Product (HF) states:

|0〉 =
∏kF

kσ a†
kσ|v〉 - U = 0 limit

|a〉 =
∏NL

i a†
iσi
|v〉 - atomic limit

S = S(ρ̂DMFT )

S1 = S(ρ̂0)

S2 = S(ρ̂a)

E1 = E(ρ̂DMFT ||ρ̂0)

E2 = E(ρ̂0||ρ̂DMFT )

E3 = E(ρ̂a||ρ̂DMFT )



Correlation and Antiferromagnetic Order
S(ρ̂) = −Tr[ρ̂ ln ρ̂]

E(ρ̂||σ̂) = −Tr[ρ̂ ln ρ̂− ρ̂ ln σ̂]

Product (HF) states:

|0〉 =
∏kF

k∈(A,B) a†
kA↑a

†
kB↓|v〉 - Slater limit

|a〉 =
∏NL

i∈(A,B) a†
iA↑a

†
iB↓|v〉 - Heisenberg limit

S = S(ρ̂DMFT )

S1 = S(ρ̂0)

S2 = S(ρ̂a)

E1 = E(ρ̂DMFT ||ρ̂0)

E2 = E(ρ̂0||ρ̂DMFT )

E3 = E(ρ̂a||ρ̂DMFT )



Summary

• We used entropy and relative entropies to quantify in numbers correlation in
correlated electron systems.

• Examples for Hubbard model.

• Different correlations in paramagnetic and in antiferromagnetic cases.


