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Conductors and Insulators – definitions:

Basic physical property of a system: how good/bad the charges

(masses) are transported through it.

V

A

R=
U
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School knowledge

R = ρ
L

A
[ρ] =

h

Ω · md−2
i

Transport occurs in a nonequilibrium processes.

Transport can be disturbed by: ions, electron – electron

interactions,external fields, etc.



Conductors and Insulators – definitions:

Exact definitions of a conductor or an insulator possible only at T = 0

within linear response theory.

weak external field – Ohm’s law

jα(q, ω) =
X

β

σα,β(q, ω)Eβ(q, ω)

σα,β(q, ω) – conductivity tensor

Definition:

Insulator is a system where

σ
DC
α,β (T = 0) = lim

T→0+
lim
ω→0

lim
|q|→0

<[σα,β(q, ω)] = 0



Conductors and Insulators – definitions:

Drude law for typical metal

<[σα,β(T = 0, ω → 0)] = (Dc)α,β

τ

π(1 + ω2τ2)

(Dc)α,β = πe2n
m∗ δα,β – Drude weight

τ – relaxation time for electron scattering, i.g. with ions

Definition:

Ideal conductor is a system where

<[σα,β(T = 0, ω → 0)] = (Dc)α,βδ(ω)

For a translationally invariant system τ−1 → 0

Warning: superconductor ≡ ideal conductor + ideal diamagnet



Gap in the Insulator

To get a charge transport in a conductor:

• There are low – energy excitations (electron – hole) above the

ground – state

• Excited states must be extended

occupied

empty

insulator

EF

metal

µ+(λ) = E0(N + 1, λ) − E0(N, λ)

µ−(λ) = E0(N, λ) − E0(N − 1, λ)

Gap: ∆(λ) =
ˆ

µ+(λ) − µ−(λ)
˜

extended

λ = λ(p, x, n) – control parameter

There is a gap ∆(λ) > 0 in the single – particle spectrum in an

insulator



Insulator at finite T

Experiment ∆(λ) � kBT > 0

good – bad conductor – obscure meaning

E.g.

semiconductor: ρsemi−cond ∼ 10−3 − 109 Ωcm

semimetal: ρsemi−metal ∼ 10−5 − 10−4 Ωcm

However, ρsemi−cond = ∞ and ρsemi−metal = 0 at T = 0!

activation energy ∆(λ):

<[σα,β(kBT � ∆(λ), ω → 0)] ∼ e
−∆(λ)

kBT

T

ρ(T)

insulator

metal

∆kT<<



Gap at finite T

robust gap – exists for all temperature

soft gap – vanishes for T > Tc

Roots to form a gap

• quantum phase transition – competition between Ekin and Epot

• thermodynamic phase transitions – competition between U and S

metal insulator

T

λλ c

bad conductorgood conductor

semiconductorsemimetal
crossover regime

metal insulator

T

λλ c

bad conductorgood conductor

disordered

ordered

Tc

H = H0 + H1, [H0, H1] 6= 0

Hkin – delocalized

Hpot – localized

robust gap without LRO

Hkin/Hpot = λ

SSB with LRO below T < Tc

U – ordered

S – disordered

soft gap with LRO

∆(λ, T < Tc) 6= 0



Types of insulators

• single – particle: due to electron – ion interactions

– Bloch – Wilson (band) insulators

– Peierls (lattice deformation) insulators

– Anderson (lattice randomness) insulators (!)

• many – particle: due to electron – electron interactions

– Slater (SDW) insulators

– Mott – Hubbard (PM) insulators (!!)

– Mott – Heisenberg (localized AF) insulators



Band insulators

ideal lattice – Ψk,n(r), Ek,n – Bloch states, 2N states in a band,

completely filled bands do not participate in transport, robust gap in a

single – particle spectrum

a b c d

E

EF

(a) wide gap (5 − 10eV ) insulator (diamond, noble atom crystals)

(b) narrow gap Ne = 2N (0, 1 − 1eV ) insulator (Si)

(c) two – band metal Ne = 2N (As, Sb, Bi)

(d) one – band metal Ne = N (Na, K, Ca, ...)

quantum MIT in Yb (iterb) at pc = 13kbar



Peierls insulators

Coupling electron – phonon leads to formation of lattice deformation

a

2a

T<Tc

T>Tc

E(k)

−1/a 1/a k −1/2a 1/2a

EF

k

E(k)

soft – gap in SSB at T < Tc

charge – density wave (CDW)

n(x) ∼ ∆ cos(2kFx)

E(k) = EF ±
q

ε2
k + ∆2, ∆(T ) ∼

√
Tc − T

thermodynamic MITs



Waves in random system:

self − averaging

propagation of waves in a randomly inhomogeneous medium

random conservative linear wave equation

∂2w
∂t2

= c(x)2∂2w
∂x2

i∂w
∂t = −∂2w

∂x2 + ν(x)w

diffusive motion, memory of ~V (0) lost,

“random walk” over long distances,

friction imposed by averaging



Anderson localization:

propagation of waves in a randomly inhomogeneous medium

random conservative linear wave equation

∂2w
∂t2

= c(x)2∂2w
∂x2

i∂w
∂t = −∂2w

∂x2 + ν(x)w

Anderson 1958: (no averaging) – strong scattering forms

“standing” waves, sloshing back and forth in a bounded region of space

Localization is a destruction of coherent

superposition of spatially separated states



Anderson MIT - cont.:

Returning probability Pj→j(t → ∞; V → ∞) ?

Pj→j(t → ∞; V → ∞) = 0 for extended states

Pj→j(t → ∞; V → ∞) > 0 for localized states

|Ψ|

R

e− R/ ξ



Anderson MIT - cont.:

According to one-parameter scaling theory [g = g(L)] (noninteracting

system)

• If dim= 1 or 2 all states are localized

• If dim=3 there is a critical disorder above which the states are

localized

E

N(E)

Extended

Localized

∆c ∼ band − width



Characterization of Anderson localization:

• Decaying of wavefunction |Ψn(ri)| ∼ e−|r−ri|/ξ(En)

– metal ξ → ∞
– insulator ξ < ∞

• Inverse participation ratio P−1 [inverse number of sites that

contribute to Ψn(ri)]

– metal P−1 ∼ 1/N

– insulator P−1 ∼ const

• Conductance G

– metal G > 0

– insulator G = 0

• Local Density of States (LDOS)

ρi(E) =
PN

n=1 |Ψn(ri)|2δ(E − En)



Local DOS

Heuristic arguments:

Pj→j(t) = |Gj(t)|2

Gj(t) ∼ e
i(εj+Σ′

j)t−|Σ′′
j |t ∼ e− t

τesc

Fermi Golden Rule
1

τesc

∼ |tji|2ρj(EF )

E E

ρ ρj j
(E) (E)

metal insulator

E E
F F



Statistics of LDOS:

ρj(E) is different at different Rj!

Random quantity!

Statistical description P [ρj(E)]!
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Exact diagonalization – Schubert et al. cond-mat/0309015

Broadly distributed P [ρj(EF )]

Typical escape rate is determined by the typical LDOS

Multifractality - 〈M (k)〉 ∼ L−f(k)



Anderson MIT - cont.:

Near Anderson localization typical LDOS is approximated by

geometrical mean

ρtyp(E) ≈ ρgeom(E) = e〈ln ρi(E)〉
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Schubert et al. cond-mat/0309015

Theorem (F.Wegner 1981):

ρ(E)av = 〈ρi(E)〉 > 0

within a band for any finite ∆



Many body insulators;
when interaction becomes important

t

Kinetic energy

tij =
R

d3r Φi(r)
∗

h

−∇2

2m + V (r)
i

Φj(r)

Interaction energy

U =
R

d3rd3r
′ Φ∗

i (r)Φ
∗
i (r

′) e
|r−r′|Φi(r

′)Φi(r)

When U
|tij |

& 1 ?



Canonical example: V2O3

V ([Ar]3d24s2) gives V +3 valence band partially filled

should be metal?

Mott – Hubbard Insulator, Mott – Heisenberg Insulator, and Slater Insulator

True Mott insulator

persists above TN



Slater insulators

Weak coupling insulator due to LRO
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E(k)

−1/a 1/a k −1/2a 1/2a

EF

k

E(k)

soft – gap in SSB at T < Tc

spin – density wave (SDW)

〈Sz(x)〉 ∼ ∆ cos(2kFx)

E(k) = EF ±
q

ε2
k + ∆2, ∆(T ) ∼

√
Tc − T

thermodynamic MITs



Mott-Hubbard metal-insulator transition at
n = 1

U � |tij|, ∆p = 0 U � |tij|, ∆r = 0

Antiferromagnetic Mott insulator

typical intermediate coupling problem Uc ≈ |tij|



Hubbard model to capture right physics

t

t
U

ε0

ε0 + U

H =
X

iσ

εiniσ +
X

ijσ

tij a
†
iσajσ + U

X

i

ni↑ni↓

• long history, many contradictions

• exactly solvable in d = 1

• exactly solvable in d = ∞
• how to approximate in 1 < d < ∞?



Physical picture, n = 1

U

E

E+U

spin flip on central site

UHB

LHB

atomic levels

|t|=0 |t|>0

E

E+U

at U = Uc resonance disapears

gaped insulator

dynamical processes with spin-flips inject states into correlation gap

giving a quasiparticle resonance



Mott MIT in binary alloy
Byczuk et al., PRL03, PRB04

Disordered alloy AxB1−x

P(εi) = xδ(εi +
∆

2
) + (1 − x)δ(εi −

∆

2
)

When ∆ � |tij| the spectral function splits into lower and upper

alloy subbands

DOS

E E

∆

Is there Mott MIT at n 6= 1?

DMFT + G(ω) =
R

dεiP(εi)G(ω, εi)



Mott MIT in binary alloy at n 6= 1
Byczuk et al., PRL03, PRB04
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Anderson and Mott transitions:

Byczuk et al. PRL05, PhysicaB05

N0(ε) =
2

πD

p

D2 − ε2; η(ω) =
D2

4
G(ω)

T = 0, n = 1, W = 2D = 1, continous disorder, geometrical

averaging
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Summary

• Conductors and insulators, classification

• Transitions between conductors and insulators

• Mott – Hubbard MIT at n = 1

• Mott – Hubbard MIT at n 6= 1

– alloy band splitting

– Mott – Hubbard MIT in alloy subband

– Optical lattices possible realization

• Anderson and Mott MIT at n = 1


