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Standard model of quantum many-body system
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Dispersions and kinks

Coupling/hybridization V between different particles/modes
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Df. kinks are abrupt slope changes in the dispersion relations

Provide information on modes and couplings



Dispersions and kinks - coupling to bosons

E(k)
A electron

boson

energy of a kink is related to energy of a bosonic fluctuation



Dispersion of correlated electrons

One-particle spectral function - excitations at k and w

Dispersion relation Ey

Eyx = {w where A(k,w) = max}

Dispersion relation is experimentally measured



Angular Resolved Photoemission Spectroscopy
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ARPES and graphene
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Dirac linear dispersion relation for graphene

cond-mat/0608069



Kinks in HTC
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Kinks at 40 — 70meV

DCoping, &

electron-phonon or electron-spin fluctuations coupling



Binding Energy (eV)

“Waterfalls” iIn HTC

different HTC systems, cond-mat/0607319

Kinks seen experimentally between 300-800 meV
Origin: phonos, spin fluctuations, not known yet



Kinks orbital selective
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More examples of kinks in ARPES

SrVO3;, cond-mat/0504075

Kinks seen experimentally at 150 meV
Pure electronic origin?



Kinks in LDA+DMFT study of SrVOs;

plain band model with local correlations, no other bosons, ... but kinks!

|.LA. Nekrasov et al., cond-mat/0508313, PRB (2006)
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New purely electronic mechanism

e In strongly correlated systems
e characteristic energy scale

e range of validity for Fermi liquid theory



Hubbard model for strongly correlated electrons

TIME +
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All what we know about Hubbard model

Solved in U = 0 limit (non-interacting limit)
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All what we know about Hubbard model

Solved in ¢ = 0 limit (atomic limit)
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Green function and self-energy are local,
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Weakly correlated system
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Kinks due to strong correlations

Fermi liquid Zr;, < 1: Ex = Zprex for |Ey| < wy

Different renormalization Zocp < 1: Ex = Zegpex £ ¢ for |Ey| > w,




Mathematical explanation of kinks within DMFT
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Microscopic predictions

Starting from:

e ¢, - bare dispersion relation

o /ry,

we predict that:




Microscopic predictions

e Kink position

Iml/Go
wy = 0.417F7,
ReG}/G?
e Intermediate energy regime
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Zc
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e Change in the slope Zr1/Z¢p interaction independent
e Curvature of the kink ~ 7%,
e Sharpness of the kink ~ 1/7%

e Sharper for stronger U



Outlook: possible origin of the “waterfalls”

“Waterfalls”: kinks at w, = 300-400 meV in cuprates

e crossover to Hubbard bands?

Wang et al. (2006)

e U >t = dispersion goes from central peak to Hubbard band

10

w1 =50+ 210 (1)

U

1
EMSHE & E[eki\/ei+cU2] o

K. Byczuk, M. Kollar (unpublished)

O N N O o
LI L

U=8t=2, n=0.79
'_ (0,0)-(0,m)
* (O
-
=1
& ="
N
Mllllll|||||N||||||colQ)
-15 1 0.5 0 0.5 1
T
//
— —
- J
2
__./'\
e —
T . . T .




Crossover to Hubbard bands

Hubbard model, square lattice, DMFT(NRG), U = 8t, n = 0.79
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 waterfalls from central peak to LHB ¢ Bycauk. M. Kollar (unpublished)

Y.-F. Yang, K. Held (unpublished)



Conclusions

e Strong correlations (three peak spectral function) a sufficient condition for
electronic kinks

e Energy scale for electronic kinks w, = Zp;, D determined by Fermi-liquid
renormalization and bare (LDA) density of states

e w, Sets the energy scale for Fermi-liquid regime where Ey = Zpy e for

e Beyond Fermi-liquid regime the dispersion is still renormalized and useful
Eyx = Zcpex £ ¢ for |Ex| > w, where the offset ¢ and Z¢p determined by Zp 1,
and D

e Electronic kinks are within cluster extension of DMFT (DCA)
Y(w) =w— #(w) — A(Gk(w))

e Electronic kinks and waterfalls are generic feature of strongly correlated
systems



