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Aim of this talk

New Purely Electronic Mechanism for Kinks in Electronic Dispersion Relations

• in strongly correlated electron systems

• characteristic energy scale

• range of validity for Fermi liquid theory



Standard model of quantum many-body system
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E(k)

k

quasiparticle
quasihole
holon
spinon
plasmon
magnon
phonon
polariton
exciton
anyon
g-on
...

emergent particles

(i) well defined dispersion relation E(k)

(ii) long (infinite) life-time τ

(iii) proper set of quantum numbers

(iv) statistics



Dispersions and kinks

Coupling/hybridization V̂ between different particles/modes

〈Ψ|V̂ |Φ〉 6= 0

E(k)

k

E(k)

k

Df. Kinks are abrupt slope changes in the dispersion relations

anticrossing, lifting degeneracy, ...

They provide information on coupling between modes



Dispersions and kinks - coupling to bosons

E(k)

electron

k

boson

energy of a kink is related to energy of a bosonic fluctuation



Dispersion of correlated electrons

One-particle spectral function - excitations at k and ω

A(k, ω) = −
1

π
Im

1

ω + µ − ǫk − Σ(k, ω)

Dispersion relation Ek

Ek = {ω where A(k, ω) = max}

Dispersion relation is experimentally measured



Angular Resolved Photoemission Spectroscopy
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momentum distribution curve (MDC)

kx = k cosφ

ky = k sinφ

E = k2/2m

energy resolution 1meV



ARPES and graphene

Dirac linear dispersion relation for graphene

cond-mat/0608069



Kinks in HTC

Kinks at 40 − 70meV

electron-phonon or electron-spin fluctuations coupling

cond-mat/0604284



“Waterfalls” in HTC

different HTC systems, cond-mat/0607319

Kinks seen experimentally between 300-800 meV
Origin: phonons, spin fluctuations, not known yet



Kinks orbital selective
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Sr2RuO4, cond-mat/0508312

Kink at 30meV in γ-band only



More examples of kinks in ARPES

SrVO3, cond-mat/0504075

Kinks seen experimentally at 150 meV
Pure electronic origin?



Kinks in LDA+DMFT study of SrVO 3

plain band model with local correlations, no other bosons, ... but kinks!
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LDA+DMFT(QMC) self-energy

V3d(t
2g

) orbitals

Gk(ω) = 1
ω+µ−ǫk−Σ(ω) → Ek + µ − ǫk − ReΣ(Ek) = 0

I.A. Nekrasov et al., cond-mat/0508313, PRB (2006)

Not found in SIAM with simple hybridization function! → DMFT self-consistency effect



New purely electronic mechanism

• in strongly correlated systems

• characteristic energy scale

• range of validity for Fermi liquid theory



Hubbard model for strongly correlated electrons

H = −
∑

ijσ

tijc
†
iσcjσ + U

∑

i

ni↑ni↓

t

U

t
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|i, 0〉 → |i, ↑〉 → |i, 2〉 → |i, ↓〉

Local Hubbard physics



All what we know about Hubbard model

Solved in U = 0 limit (non-interacting limit)

Gσ(k, ω) =
1

ω + µ − ǫk

Dispersion relation
ǫk =

∑

j(i)

tije
ik(Ri−Rj)

Spectral function - one-particle excitations

Aσ(k, ω) ≡ −
1

π
ImG(k, ω) = δ(ω + µ − ǫk)

Density of states (DOS) - thermodynamics

Nσ(ω) ≡
∑

k

A(k, ω) =
∑

k

δ(ω + µ − ǫk)

k

ω

A(k,  )ω

ω

ωN(  )



All what we know about Hubbard model

Solved in t = 0 limit (atomic limit)

Gσ(k, ω) =
1 − n−σ

ω + µ
+

n−σ

ω + µ − U
=

1

ω + µ − Σσ(ω)

Real self-energy

Σσ(ω) = nσU + n−σ(1−n−σ)U2

ω+µ−(1−n−σ)U

Spectral function

Aσ(k, ω) = (1 − n−σ)δ(ω + µ) + n−σδ(ω + µ − U)

Green function and self-energy are local,
i.e. k independent

k

ω

A(k,  )ω

ω

ωN(  )LHB UHB

U

U



Hubbard subbands and quasiparticle peak

U

E

E+U

spin flip on central site

UHB

LHB

atomic levels

|t|=0 |t|>0

E

E+U

at U = Uc resonance disapears
gaped insulator

dynamical processes with spin-flips inject states into correlation the gap
giving rise to a quasiparticle resonance peak



DMFT for lattice fermions

Replace (map) full many-body lattice problem by a single-site coupled to
dynamical reservoir and solve such problem self-consistently

All local dynamical correlations included exactly

Space correlations neglected - mean-field approximation

Metzner, Vollhardt 89; Georges at al. 96

Kotliar, Vollhardt, Physics Today 57 No.3, 53 (2004)



Weakly correlated system
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Kinks due to strong correlations
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Mathematical explanation of kinks within DMFT

Σ(ω) = ω − 1/G(ω) − ∆(G(ω))

∆(G(ω)) ≈ (m2 − m2
1)G(ω) + ...

DMFT self-consistency condition

Three-peak structure sufficient condition

Fermi-liquid for |ω| < ω∗ ∼ ZFL



Microscopic predictions

Starting from:

• ǫk - bare dispersion relation

G0(ω) =
∑

k

1

ω − ǫk

• ZFL

we predict that:



Microscopic predictions

• Kink position

ω∗ = 0.41ZFL

Im1/G0

ReG′
0/G

2
0

• Intermediate energy regime

ZCP = ZFL

1

ReG′
0/G

2
0

• Change in the slope ZFL/ZCP interaction independent

• Curvature of the kink ∼ Z2
FL

• Sharpness of the kink ∼ 1/Z2
FL

• Sharper for stronger U



Outlook: possible origin of the “waterfalls”

“Waterfalls”: kinks at ω⋆ ≈ 300­400 meV in cuprates

• crossover to Hubbard bands? Wang et al. (2006)

• U ≫ t ⇒ dispersion goes from central peak to Hubbard band
K. Byczuk, M. Kollar (unpublished)
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Crossover to Hubbard bands

Hubbard model, square lattice, DMFT(NRG), U = 8t, n = 0.79

• ImΣ decays faster than ReΣ

• for large energies: Ek approaches E
UHB,LHB

k

• waterfalls from central peak to LHB
K. Byczuk, M. Kollar (unpublished)
Y.­F. Yang, K. Held (unpublished)



Conclusions

• Strong correlations (three peak spectral function) a sufficient condition for
electronic kinks

• Energy scale for electronic kinks ω∗ = ZFLD determined by Fermi-liquid
renormalization and bare (LDA) density of states

• ω∗ sets the energy scale for Fermi-liquid regime where Ek = ZFLǫk for
|Ek| < ω∗

• Beyond Fermi-liquid regime the dispersion is still renormalized and useful
Ek = ZCP ǫk ± c for |Ek| > ω∗ where the offset c and ZCP determined by ZFL

and D

• Electronic kinks are within cluster extension of DMFT (DCA)
ΣK(ω) = ω − 1

GK(ω) − ∆(GK(ω))

• Electronic kinks and waterfalls are generic feature of strongly correlated
systems


