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Aim of this talk

New Purely Electronic Mechanism for Kinks in Electronic Dispersion Relations

e In strongly correlated electron systems
e characteristic energy scale

e range of validity for Fermi liquid theory



Standard model of guantum many-body system
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(i) well defined dispersion relation E (k)

(1) long (infinite) life-time 7
(i) proper set of quantum numbers

(iv) statistics



Dispersions and kinks
Coupling/hybridization V between different particles/modes
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anticrossing, lifting degeneracy, ...
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Df. Kinks are abrupt slope changes in the dispersion relations

They provide information on coupling between modes



Dispersions and kinks - coupling to bosons
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electron
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energy of a kink is related to energy of a bosonic fluctuation



Dispersion of correlated electrons

One-particle spectral function - excitations at k and w

Dispersion relation Ej

Eyx = {w where A(k,w) = max}

Dispersion relation is experimentally measured



Angular Resolved Photoemission Spectroscopy
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ARPES and graphene
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Kinks iIn HTC
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electron-phonon or electron-spin fluctuations coupling



Binding Energy (eV)

“Waterfalls” in HTC
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different HTC systems, cond-mat/0607319

Kinks seen experimentally between 300-800 meV
Origin: phonons, spin fluctuations, not known yet



Kinks orbital selective
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More examples of kinks in ARPES

SrVO3;, cond-mat/0504075

Kinks seen experimentally at 150 meV
Pure electronic origin?



Kinks in LDA+DMFT study of SrVO 5

plain band model with local correlations, no other bosons, ... but kinks!

|.LA. Nekrasov et al., cond-mat/0508313, PRB (2006)

2r— ‘ L B L R ‘
1; . — Real part
1.5 I - — Imaginary part
O\\/
1 S L
* ’ N
3 05 ’\.._2 -0.5 0 0.5
§ ,,,,,,,,,,,,,,,,,,,,,,,,,,, é T\ I |
2 N —05
7] 0] -3 % L ]
'SVO, L
05 -4~ LDA+DMFT(QMC) self-energy Wl \ 7
[ Vad(,) orbitds “r 05 |
-5 ]
- I ‘ Ehergy, e\/ —
_ PR R I NRT S PR IR T NSNS A S NN T !
: : O 43 2 1 0 1 2 3 4 5 6 7
- " % r R 02 0.4 0.6 Energy, eV
og Ao eV | -
<-2 -1.5 -1 -0.5 0] 0.5 1 1.5 =2
1
Gx(w) = — FEx 4+ pu— ex — ReX(Ey) =0
k wtpu—ep—3(w) kT M k k
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New purely electronic mechanism

e In strongly correlated systems
e characteristic energy scale

e range of validity for Fermi liquid theory



Hubbard model for strongly correlated electrons

3,00 = |5, 1) = 4,2) — i, l>+



All what we know about Hubbard model
Solved in U = 0 limit (non-interacting limit)

1

Ga(kaw) — W—I‘M—Gk

Dispersion relation

3 ()

€k = Z tijeik(Ri_Rj) Ab(k’(‘)

Spectral function - one-particle excitations / \l\l\‘l
k

As(k,w) = —lImG(k,w) = 0(w + b — €x)

7

Density of states (DOS) - thermodynamics /
No(w) =D Alk,w) =) d(w+p—al)
k

k



All what we know about Hubbard model

Solved in ¢ = 0 limit (atomic limit)
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Green function and self-energy are local,
l.e. k independent
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Hubbard subbands and quasiparticle peak
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at U = U, resonance disapears
gaped insulator

dynamical processes with spin-flips inject states into correlation the gap
giving rise to a



DMFT for lattice fermions

Replace (map) full many-body lattice problem by a single-site coupled to
dynamical reservoir and solve such problem self-consistently

Metzner, Vollhardt 89; Georges at al. 96
Kotliar, Vollhardt, Physics Today 57 No.3, 53 (2004)

All local dynamical correlations included exactly

Space correlations neglected - mean-field approximation



Weakly correlated system
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Fermi liquid Zpp < 1: Fx = Zppe for |Ex| < w.

Ey = ¢ for ‘Ek‘ > Wy



Kinks due to strong correlations

energy [eV]

Fermi liquid Zp < 1. By = Zprex for |Ey| < w,

Different renormalization Zop < 1: Ex = Zopex £ ¢ for |Ey| > w.




Mathematical explanation of kinks within DMFT
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Microscopic predictions

Starting from:

e ¢ - bare dispersion relation
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we predict that:




Microscopic predictions

e Kink position
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e Intermediate energy regime
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e Change in the slope Zr /Zcp interaction independent
e Curvature of the kink ~ Z%,
e Sharpness of the kink ~ 1/7%,

e Sharper for stronger U



Outlook: possible origin of the “waterfalls”

“Waterfalls”: kinks at w, = 300-400 meV in cuprates

e crossover to Hubbard bands?

Wang et al. (2006)

e U >t = dispersion goes from central peak to Hubbard band
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Crossover to Hubbard bands

Hubbard model, square lattice, DMFT(NRG), U = 8t, n = 0.79
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Conclusions

e Strong correlations (three peak spectral function) a sufficient condition for
electronic kinks

e Energy scale for electronic kinks w,, = Zg;, D determined by Fermi-liquid
renormalization and bare (LDA) density of states

e w, sets the energy scale for Fermi-liquid regime where Ey = Zp e for
|Ek‘ < Wy

e Beyond Fermi-liquid regime the dispersion is still renormalized and useful
Ex = Zopex £ cfor |Eyx| > w, where the offset c and Z-p determined by Zr .
and D

e Electronic kinks are within cluster extension of DMFT (DCA)
Yk(w) =w— m — A(Gk(w))

e Electronic kinks and waterfalls are generic feature of strongly correlated
systems



