
Verschränkung

Krzysztof Byczuk

Institute of Physics, Augsburg University

November 23th, 2005



What you would like to know about

entanglement

but you were afraid to ask



Main goal:

• Entanglement is a quantum correlation in quantum many body

system

• Entanglement does not depend on particular physical representation

• Entanglement is a resource like energy

• Entanglement can be quantified and measured



Plan of the talk:

1. EPR and Bell story (introduction of entanglement)

2. How to use entanglement

• no cloning theorem, quantum teleportation

3. How to characterize entanglement

• pure vs. mixed states entanglement

• measures of entanglement

4. How to quantify correlations in bulk systems

5. Conclusions and outlook: correlations without correlata?

6. Appendix

• How to entangle photons, electrons, ...experimentally

• Beating diffraction Rayleigh limit in classical wave optics



EPR theorem

Einstein, Podolsky, Rosen (1935)

π ee +− 0

π0 → e+ + e−

Stot = 0 and Sz = 0 - singlet state (Bohm 1954)

|Ψ〉 = [| ↑〉− ⊗ | ↓〉+ − | ↓〉− ⊗ | ↑〉+]/
√

2

H = H+ ⊗ H−

Orthodox (Copenhagen) view:

neither particle had either spin up or spin down until the act of measurement intervented: your measurment

of e− collapsed the wave function, and instanteneusly “produced” the spin of e+ 20 ly. far away

EPR - |Ψ〉 does not provide a complete description of physical reality with locality principle

spooky action at a distance, hidden variable, ghost field, ..., to keep locallity



EPR theorem today

locality

completnessreality

QM

|ΨEPR〉 = [| ↑〉− ⊗ | ↓〉+ − | ↓〉− ⊗ | ↑〉+]/
√

2

H = H+ ⊗ H−

Verschränkung - entanglement (Schrödinger 1935)

QM is nonlocal

correlations over distance

results of independent measurements will be correlated

no superluminal transfer of information, energy, etc.

π ee +− 0



Bell theorem

J. Bell (1964)

any local hidden variable theory is incompatible with quantum

mechanics

• has found inequalities for correlation functions that are violated in

QM (G. Boole (1862))

• first approach to quantify entanglement

• A. Aspect et al. (1982) first experiment

• now many others, hopefully without loopholes

NATURE ITSELF IS FUNDAMENTALLY NONLOCAL, EXPRESSED

IN A SUBTLE CORRELATIONS BETWEEN TWO LISTS OF

OTHERWISE RANDOM DATA



Bipartite pure entanglement

Let {|i〉A ⊗ |j〉B} ∈ H = HA ⊗ HB and AB distinguishable.

Any state

|Ψ〉 =
X

ij

γij|i〉A ⊗ |j〉B

that cannot be represented as a product state is called an entangled

state.

• Entanglement is a quantum correlation which does not have a

classical counterpart

• any entangled state cannot be prepared from a product state by

local operations and classical communications (LOCC)



Bell states

• classical two level system (0 or 1) codes one bit of information

• in QM two level system can be both 0 and 1 (spin, polarization,

vortex, energy structure)

• it was proposed to call it quantum bit or qbit (read: qiubit) in

general - Schumacher (1995)

Bell states - maximally entangled states of two qbits

|Ψ−〉 =
1√
2

[|01〉 − |10〉]

|Ψ+〉 =
1√
2

[|01〉 + |10〉]

|Φ−〉 =
1√
2

[|00〉 − |11〉]

|Φ+〉 =
1√
2

[|00〉 + |11〉]



No cloning theorem

Wootters, Zurek, and Dieks (1982)

the unknown quantum state cannot be copied

a.a.

let Ûclon exists, i.e. Ûclon|φ〉|0〉 = |φ〉|φ〉
and |φ〉 = α|0〉 + β|1〉 unknown

Ûclon|φ〉|0〉 = |φ〉|φ〉 = (α|0〉+β|1〉)(α|0〉+β|1〉) = α2|00〉+αβ(|01〉+|10〉)+β2|11〉

but

Ûclon|φ〉|0〉 = Ûclon(α|0〉+β|1〉)|0〉 = Ûclon(α|00〉+β|10〉) = α|00〉+β|11〉

contradiction!



Quantum teleportation

Bennett et al. (1993), photons (1998-2005), atoms (2004)

Alice and Bob share one entangled state, e.g. |Φ+〉.
Alice wants to send to Bob all necessary information about the

unknown quantum state |Φ〉 = a|0〉 + b|1〉 she has got such that

Bob could recreate this state using a particle he has at hand. This is a

task of quantum teleportation. The state at Alice will be destroyed.

What about the entangled state they share?

|Φ〉|Φ+〉 ∼ [|Φ+〉(a|0〉 + b|1〉) + |Φ−〉(a|0〉 − b|1〉) + |Ψ+〉(a|1〉 + b|0〉) + |Ψ−〉(a|1〉 − b|0〉)]

A: performs projective measurement on her 2 qbits - LO

A: call Bob and tells her result (one of 4) - CC

B: depending on A info performs 1 or σx or/and σz - LO

cost: one Bell state is eatten up



Entanglement swapping

Qbit at Alice can be in entangled state with another qbit

Quantum teleporting one qbit she can exchange entanglement

Entanglement is swoped between different particles

Again it costs one Bell state



Mixed state

• density operator ρ̂ =
P

n pn|Ψn〉〈Ψn| describes a system coupled

to another system to which we do not have an access

• pure state - maximal knowledge ρ̂2 = ρ̂

• mixed state - statistical knowledge, mixture of different pure states

can lead to the same density operator and thereby the same mixed

state

• states from different ensembles having the same density operator

are experimentally indistinguishable

• when pure system has entangled subsystems then each subsystem

is in a mixed state, e.g.

|Ψ〉 = α|00〉 + β|11〉
reduced density operator

ρ̂A = TrBρ̂ = TrB|Ψ〉〈Ψ| = |α|2|0〉〈0| + |β|2|1〉〈1|



Entanglement in mixed state

A mixed state is not entangled if there exists a convex decomposition

into pure product state of its density operator, i.e.

ρ̂ =
X

n

pn|Ψn〉〈Ψn|

with

|Ψn〉 = |ΨA
n〉|Ψ

B
n 〉

for each n.

ρ̂sep =
X

n

pnρ̂A ⊗ ρ̂B

• mixture of separable states is always separable

• mixture of entangled states need not be entangled (see example)



Mixture of Bell states

ρ̂ =
1

2
|Φ+〉〈Φ+| + 1

2
|Φ−〉〈Φ−| =

1

2
|00〉〈00| + 1

2
|11〉〈11| =

1

2
[|0〉〈0|A ⊗ |0〉〈0|B + |1〉〈1|A ⊗ |1〉〈1|B]

• the mixed state can be realized by both an ensemble of maximally

entangled states and an ensemble of product states

• mixture is a process which destroys entanglement

Example: Werner state

ρ̂ =
1

4
(1 − λ)Îd + λ|Ψ−〉〈Ψ−|

is entangled for |λ| > 1/3.



Entanglement concentration, purification
and distillation

For various application one needs to have maximally entangled states.

How to get such states using only LOCC out of many nonmaximally

entangled states?

• Entanglement concentration - how to create maximally entangled

pure state from not maximally entangled pure states

• Entanglement purification - how to create maximally entangled

pure state from mixed entangled states

Both procedures are sometimes called distillation.

Two general approaches considered:

• global - operate on a large number of copies of a pure or mixed

states, i.e. ρ̂⊗n with n → ∞ - theoretically efficient but

practically hard to realize

• operates on a small number of copies - not so efficient but

experimentally possible



Entanglement measures

• finite regime - for a single copy of a quantum state

• asymptotic regime - for n copies of a quantum state with n → ∞

Maximally entangled state in pure bipartite states Hd ⊗ Hd

|Φmax〉 =
d

X

i=1

1
√

d
|φi〉 ⊗ |φi〉

Entanglement measure E(ρ̂) is a real-valued function

E : ρ̂ → E(ρ̂) ∈ R,

satisfying reasonable postulates:



Entanglement measures postulates

1. separability: E(ρ̂) = 0 for ρ̂ separable

2. normalization: E(ρ̂) = log2 d for maximally |Φmax〉 entangled

state

3. monotonicity: E(Λ̂ρ̂) 6 E(ρ̂) for any LOCC Λ̂ [LOCC does not

increase entanglement]

4. continuity: If ||ρ̂ − σ̂|| → 0 then E(ρ̂) − E(σ̂) → 0

5. additivity: E(ρ̂⊗n) = nE(ρ̂)

6. subadditivity: E(ρ̂ ⊗ σ̂) 6 E(ρ̂) + E(σ̂)

7. regularization: E∞(ρ̂) = limn→∞E(ρ̂⊗n)/n exists

8. convexity: E(λρ̂ + (1 − λ)σ̂) 6 λE(ρ̂) + (1 − λ)E(σ̂), for

0 6 λ 6 1 [mixing does not increase entanglement]



Pure bipartite states

relative von Neumann entropy (ρ̂ = |Ψ〉〈Ψ|)

E(|Ψ〉) = −Tr[ρ̂A log2 ρ̂A] = −Tr[ρ̂B log2 ρ̂B]

Schmidt rank r (|Ψ〉 ∈ HA ⊗ HB, dimHA 6 dimHB)

|Ψ〉 =

r
X

i=1

pi|Ψ̃A
i 〉|Ψ̃

B
i 〉

r 6 dimHA - number of nonzero terms in Schmidt decomposition

(number of entangled degrees of freedom)



Pure bipartite states - example

Single qbit

|φ〉 =
2

X

ij=1

γij|i〉A|j〉B

Trγγ+ = 1

E(|φ〉) = F(
1

2
+

1

2

p

1 − 4 det γγ+)

where

F(x) = −x log2 x − (1 − x) log2(1 − x)

concurrency

C = 2
p

det γγ+

Bell state γ = σx

C = 1, E = F(1/2) = 1, r = 2

Product state |ii〉
C = 0, E = F(0) = 0, r = 1



Mixed bipartite states

not completely resolved because of the intricate relation between

classical and quantum correlations in mixed states

• Ec - entanglement cost (minimal number of Bell states to create a

given state using LOCC) [cont]

• ED - entanglement of distillation (maximal number of Bell states

extracted from a system using LOCC) [cont]

• EF - entanglement of formation (optimized average von Neumann

entropy of reduced density operators for pure states) [add]

EF(ρ̂) = min
{pi,|Ψi〉}

X

i

piS(ρ̂i,red)

• ER - relative entropy (distance between entangled ρ̂ and the

closest separated σ̂) [add]

ER(ρ̂) = min
σ̂

[Trρ̂(log2 ρ̂ − log2 σ̂)]

(quite useful)

• many others ...

ED 6 EF 6 EC



Multipartite systems

• Quantum mutual information (Total correlation) between the two

subsystems ρ̂1 and ρ̂2 of the joint state ρ̂12

I(ρ̂1 : ρ̂2; ρ̂12) = S(ρ̂1) + S(ρ̂2) − S(ρ̂12)

where S = −Trρ̂ log2 ρ̂ von Neumann entropy

• Quantum relative entropy between σ̂ and ρ̂

S(σ̂||ρ̂) = Tr[σ̂(log2 σ̂ − log2 ρ̂)]

• Quantum mutual information is a distance of ρ̂12 to the closest

uncorrelated ρ̂1 ⊗ ρ̂2

I(ρ̂1 : ρ̂2; ρ̂12) = S(ρ̂12||ρ̂1 ⊗ ρ̂2)

• Multipartite quantum mutual information in ρ̂ (generalization)

I(ρ̂1 : ρ̂2 : ... : ρ̂n; ρ̂) = S(ρ̂||ρ̂1⊗ρ̂2⊗...⊗ρ̂n) =
X

i

S(ρ̂i)−S(ρ̂)

e.g. S(ρ̂||ρ̂MF) = ln ZMF − ln Z + β〈HMF − H〉H > 0.



Entanglement for multipartite system

Relative entanglement

E(ρ̂) = minσ̂∈{separable}S(ρ̂||σ̂)

the relative entanglement is a distance between ρ̂ and the closest

classically correlated state

E(ρ̂) 6 I(ρ̂)

If we take σ̂ = ρ̂MF (???)

E(ρ̂) = ln ZMF − ln Z + β〈HMF − H〉H

χ =
∂2 ln Z

∂B2
, χsep − χ =

∂2E(ρ̂)

∂B2
+ β

∂2〈HMF − H〉H

∂B2

Th. general bound for multipartite entanglement (Vedral 2003)

E(ρ̂) 6 ln ZMF − ln Z + β〈HMF − H〉H.



Entanglement and the III law

Nernst theorem says that S(T ) → S0 = const, or equivalently

CV (T ) = T (∂S(T )/∂T )V → 0 when T → 0.

Th. Wiesniak et al. (2005): Only if entanglement develops at low

temperatures the Nernst theorem is satisfied.

because: separable states give bound for the ground state energy

U(T = 0) > EB and hence for all separable states

C =
∂U(T )

∂T
= γ

U(T ) − E0

T
> γ′EB − E0

T 1(2)

1 for gapless, 2 for gapped systems.

Only when EB = E0, C(T ) → 0

In general C(T ) → ∞ for all separable states.



Summary

• Entanglement is a quantum correlation in quantum many body

system

• Entanglement does not depend on particular physical representation

• Correlation without correlata

• Entanglement is a resource for certain tasks

• Entanglement can be quantified and measured



Source of entangled photons

l=0

l=1

l=0

parametric down-conversion, Kwiat et al. (1995)

light emitting quantum dots, beam-splitters,...



Source of entangled fermions

electronhole

Fermi sea

en
er

gy

position

ba
rri

er

E   + eVF

EF

V

metal
tunnel barrier

(insulator)

spin-entangled electron-hole pair

metal

voltage source

Beenakker et al. (2003) | ↑〉e| ↑〉h + eiφ| ↓〉e| ↓〉h

electron-electron scattering, quantum dots, Cooper pairs,

Kondo scattering, ...


