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Standard model of quantum many-body system
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(i) well defined dispersion relation F(k)
(i) long (infinite) life-time 7
(iii) proper set of quantum numbers

(Iv) statistics



Dispersions and kinks

Coupling/hybridization V between different particles/modes
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Df. kinks are abrupt slope changes in the dispersion relations

Provide information on modes and couplings



Dispersions and kinks - coupling to bosons

E(k)

electron

boson

energy of a kink is related to energy of a bosonic fluctuation



Dispersion of correlated electrons

One-particle spectral function - excitations at k and w

Dispersion relation Ey

Ex = {w where A(k,w) = max}

Dispersion relation is experimentally measured



Angular Resolved Photoemission Spectroscopy
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ARPES and graphene
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Kinks in HTC
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Kinks at 40 — 70meV

electron-phonon or electron-spin fluctuations coupling



Binding Energy (eV)

“Waterfalls” in HTC

different HTC systems, cond-mat/0607319

Kinks seen experimentally between 300-800 meV
Origin: phonos, spin fluctuations, not known yet



Kinks orbital selective
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Kink at 30meV in ~v-band only
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More examples of kinks in ARPES

SrVO;, cond-mat/0504075

Kinks seen experimentally at 150 meV
Pure electronic origin?



Kinks in LDA+DMFT study of SrVO;,

plain band model with local correlations, no other bosons, ... but kinks!

|.A. Nekrasov et al., cond-mat/0508313, PRB (2006)
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Not found in SIAM with simple hybridization function! — DMFT self-consistency effect



New purely electronic mechanism

e in strongly correlated systems
e characteristic energy scale

e range of validity for Fermi liquid theory



Hubbard model for strongly correlated electrons
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All what we know about Hubbard model
Solved in U = 0 limit (non-interacting limit)

1

Colkow) = W+ p— €k

Dispersion relation

€k = Z tz‘jeik(Ri_Rﬂ') Ab(k’“)

3 (%)

Spectral function - one-particle excitations / \I\I\H
k

As(k,w) = —lImG(k,w) = 0(w 4+ p — €x)

7

Density of states (DOS) - thermodynamics /'
No(w) =D Alk,w) =) 6w+ p—a)
k

k



All what we know about Hubbard model

Solved in ¢t = 0 limit (atomic limit)

G,(k,w) =

Real self-energy
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Spectral function
Ask,w)=(1—n_g)0(w+p)+n_s0(w—+pu—U)

Green function and self-energy are local,
l.e. k independent
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Weakly correlated system
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Kinks due to strong correlations

energy [eV]

Fermiliquid Zrp, < 1t Ex = Zprex for |Ex| < w,

Different renormalization Z¢op < 1: Ex = Zeopex £ ¢ for |Ey| > w.




Mathematical explanation of kinks within DMFT
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Microscopic predictions

Starting from:

e ¢, - bare dispersion relation

o /ry,

we predict that:




Microscopic predictions

e Kink position
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e Intermediate energy regime
Z Z !
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ReGy /G2

e Change in the slope Zr; /Z¢cp interaction independent
e Curvature of the kink ~ Z%,
e Sharpness of the kink ~ 1/7%,

e Sharper for stronger U



Outlook: possible origin of the “waterfalls”

“Waterfalls”: kinks at w, =~ 300-400 meV in cuprates

e crossover to Hubbard bands? Wang et al. (2006)

e U >t = dispersion goes from central peak to Hubbard band
K. Byczuk, M. Kollar (unpublished)
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Crossover to Hubbard bands

Hubbard model, square lattice, DMFT(NRG), U = 8t, n = 0.79
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» for large energies: Ex approaches E;

» waterfalls from central peak to LHB ¢ Bycauk. M. Kollar (unpublished)

Y.-F. Yang, K. Held (unpublished)



Conclusions

e Strong correlations (three peak spectral function) a sufficient condition for
electronic kinks

e Energy scale for electronic kinks w, = Zr; D determined by Fermi-liquid
renormalization and bare (LDA) density of states

e w, sets the energy scale for Fermi-liquid regime where Eyx = Zg e for
|Ek‘ < Wy

e Beyond Fermi-liquid regime the dispersion is still renormalized and useful
Ex = Zopex £ cfor |Eyx| > w, where the offset c and Z-p determined by Zr .
and D

e Electronic kinks are within cluster extension of DMFT (DCA)
Yk(w) =w— #(w) — A(Gk(w))

e Electronic kinks and waterfalls are generic feature of strongly correlated
systems



