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Friction, dissipation ... every day experience

helps...

disturbs...



Friction dissipates energy

electric resistance

R [Ω = V/A]

viscosity

η [Pa · s]

Transport - generically non-equilibrium phenomenon!



Drude semi-classical approach to transport

E = ρj↔ j = σE

linear response approach: ρ-resistivity and σ-conductivity

Ohm’s law
V = RI ↔ I = GV

R-resistance and G-conductance

Ohmic conductors

V = EL and I = Sj then R = ρ
L

S
and G = σ

S

L



Drude semi-classical approach to transport

relaxation time - average time τ
between to successive collisions
that change momentum p

dp

dt
=

1

τ
p due to collisions,

dp

dt
= eE between collisions

Since j = env at steady state we get ρ = m
ne2τ

and σ = ne2τ
m .

Resistance - amount of momentum change during collisions
(momentum relaxation).



Relaxation processes

• elastic scattering - momentum relaxes, single-particle energy conserved (τ )

• inelastic scattering - momentum and single particle energy relaxes (τE),
incoherent transport, phase of the wave function changed

• dephasing process - a change of the phase without change of energy
considerably (τφ)

All these relaxation processes lead to approaching a local equilibrium of the
system.

Typical theoretical approaches describing transport: semi-classical Drude model,
Kubo formalism, Boltzmann kinetic equation, Landauer approach,...



Nanosystems

Nanoscale dimension 1nm = 10−9m at least in one direction

If I = 1µA and S = 10Å2 then j = I/A = 109A/cm2!

Landauer quantum scattering theory takes into account quantum effects in
this transport.
Quantum of conductance:

I =
e

∆t
, V =

∆E

e
, ∆E∆t = h, hence G =

I

V
=

e2

∆E∆t
=
e2

h
=

1

25, 8kΩ



Landauer approach - Approximation 1

Ĥtot = Ĥs ⊗ 1̂battery + 1̂s ⊗ Ĥbattery + Ĥint

V = µL−µR
e ρ̂s(t) = Trbatteryρ̂tot(t)

The closed system, battery and electrode-junction-electrode structure, is
replaced by open system, electrode-junction-electrode structure dynamically
coupled to two reservoirs at different chemical potentials.



Landauer approach - Approximation 2

Lindblad type evolution
d

dt
ρ̂s(t) = Lρ̂s(t)

with initial condition ρ̂s(t = t0).

Assume that the ideal steady-state (time independent) solution exists ρ̂sss that at
every instant of time

〈Î〉t = Tr
(
ρ̂s(t)Î

)
→ Tr

(
ρ̂sss Î

)
= 〈Î〉 = constant.

The problem is ideally stationary but ρ̂sss is practically not obtainable.



Landauer approach - Approximation 3

We are going to work with Ĥs only.

We replace dynamical coupling with reservoirs with scattering boundary
conditions at infinity. The system is closed but infinite.



Landauer approach - Approximation 3

Time dependent Schrodinger equation

i~
∂

∂t
|Ψ(t)〉 = Ĥs|Ψ(t)〉

with eigen-problems

Ĥs|ΨEi,α〉 = Ei|ΨEi,α〉 and Ĥs|ΨE,α〉 = E|ΨEi,α〉.

General stationary solution of time dependent Schrodinger equation:

|Ψ(t)〉 =
∑
Ei,α

cEi,α|ΨEi,α〉e
− i~Eit +

∑
α

∫
dEcE,α|ΨE,α〉e−

i
~Et.



Landauer approach - Approx. 2 & 3 - consequences

Approx. 2 - lost information on the history of the system.

No dynamical information on current density (clearly present in the real system)
can be obtained after the static approximation is made. Capturing of the
non-linear dynamical effects is impossible.

Approx. 3 - the amount of correlations lost in the process of going from a
non-equlibrium mixed state to a pure stationary state

ρ̂tot(t)→ ρ̂s(t)→ ρ̂sss → Ĥs

cannot be determined even in principle.

Other methods, like Kubo formalism, let this perturbatively, at least in principle.



Landauer approach - Approximation 4

True many-body Hamiltonian of the system is replaced by some type of
mean-field single-particle models

Ĥs = Ĥmf + V̂

E.g.,

Hartree model

Ĥs = − ~2

2m
∇2 + e2

∫
n(r′)

|r− r′|
dr′ + V̂ext(r)

or density-functional model

Ĥs = − ~2

2m
∇2 + e2

∫
n(r′)

|r− r′|
dr′ + V̂xc(r) + V̂ext(r)

or single-particle model

Ĥs = − ~2

2m
∇2 + V̂ext(r)

as we will do.



Landauer approach - Approximation 5

Definition:

A channel - a set of quantum numbers {E,α} that describes a scattering
solution.

Approximation 5: We neglect correlations between different channels.

Off-diagonal elements of the density matrix connecting {E,α} and {E′, α′} are
exactly zero. The system evolved into a totally incoherent (independent) set of
single-particle channels. This decoherence time must be extremely short.

How are these independent channels populated?



Landauer approach - Approximation 5

The answer is not obvious:

”Hot electrons” with larger velocity component along the current flow will have
less time to relax to local equilibrium energy-momentum distribution then ”cold
electrons” with smaller velocity component along the current flow.

In principle, they are described by different distribution functions! However, ....



Landauer approach - Approximation 5

...we assume that all electrons approaching from the left reservoir
(right-movers) are populated with a local equilibrium distribution with a given
chemical potential of the left reservoir

fL(E) =
1

eβ(E−µL) + 1
,

and similarly for left-movers

fR(E) =
1

eβ(E−µR) + 1
.

Hence
ρ̂sss =

∑
L

|ΨL〉fL〈ΨL|+
∑
R

|ΨR〉fR〈ΨR|.



Landauer approach - Summary

Cartoon of the system described within Landauer approach:

Particles are injected at infinities with two different local equilibrium distributions.
The (macroscopic-averaged) local electrochemical potential µ(x) varies along
the whole structure.



Landauer approach - Summary

In Landauer approach the biased V = (µL − µR)/e is not a perturbation to the
system Hamiltonian. The biased here is a boundary condition on the system,
where wave-packet with given momenta carry the current across the
nano-junction. There is a finite probability that due to scattering the electron is
transmitted in a given direction or reflected.

Due to back reflection the local accumulation of charges appear. It happens on
the screening length distance ∼ 1Å (metals) - 100Å (semiconductors) or more in
systems with reduced dimensions. Local resistivity dipoles are formed and
some momentum is lost→ resistance.



Scattering boundary conditions

lim
x→−∞

Ĥs = − ~2

2m
∇2 + VL(r⊥) ≡ ĤL and lim

x→+∞
Ĥs = − ~2

2m
∇2 + VR(r⊥) ≡ ĤR

Separable problem in x and y-z directions with asymptotic solutions

ψαk(r) =

√
1

Lx
uα(r⊥)eikx with Eα(k) = εα +

~2k2

2m

for either ĤL or ĤR.



Transmission and reflection probabilities

We look for general solution of Ĥs, i.e.(
− ~2

2m
∇2 + V (r)

)
Ψαk(r) = EΨαk(r)

merging with asymptotic solutions with ĤL and ĤR. From Approx. 5, there are
right and left moving states. An initial right moving state ψiki(r) with

Ei(ki) = εi +
~2k2i
2m is scattered by the full Ĥs, such that

Ψ+
iki

(r)→
NR
c∑

f=1

Tifψfkf(r) at x→ +∞

and

Ψ+
iki

(r)→ ψiki(r) +

NL
c∑

f=1

Rifψfkf(r) at x→ −∞.



Transmission and reflection probabilities

Current across the surface S perpendicular to x-direction

I(Ei) =
e~

2im

∫
S

dydz
(

Ψ+
iki

(r)∗∂xΨ
+
iki

(r)−Ψ+
iki

(r)∂xΨ
+
iki

(r)∗
)

Deep in the left lead it is

IL(Ei) = Ii(Ei) +

NL
c∑

f=1

|Rif |2If(Ei) = Ii(Ei)−
NL
c∑

f=1

|Rif |2|If(Ei)| ≡

≡ Ii(Ei)

1−
NL
c∑

f=1

Rif(Ei)

 , where

Rif(Ei) ≡ |Rif |2
|If(Ei)|
|Ii(Ei)|

is a reflection probability,

Ii(Ei) = ~ki
mLx

and If(Ei) =
~kf
mLx

.



Transmission and reflection probabilities
Similarly

IR(Ei) ≡ Ii(Ei)
NR
c∑

f=1

Tif(Ei), where

Tif(Ei) ≡ |Tif |2
|If(Ei)|
|Ii(Ei)|

is transmission probability.

In ideal steady state (Approx. 2) two currents IL(EI) = IR(Ei). Hence

NR
c∑

f=1

Tif(Ei) +

NL
c∑

f=1

Rif = 1 for ψiki(r) ∈ L.

By symmetry L↔ R:

NL
c∑

f=1

Tif(Ei) +

NR
c∑

f=1

Rif = 1 for ψiki(r) ∈ R.

By symmetry t↔ −t (TRS) we get similar conservation laws with i↔ f .



Total current

From Approx. 5, the total current is a sum of currents from all channels with
given occupations

I = eTr
(
ρ̂sss Î

)
=

e

π~

+∞∫
−∞

dE[fL(E)− fR(E)]T (E),

where
T (E) = T̃RL(E) = T̃LR(E) − flux conservation

and

T̃RL(E) =

NR
c∑

i=1

NL
c∑

f=1

Tif(E)

T̃LR(E) =

NL
c∑

i=1

NR
c∑

f=1

Tif(E)

are total transmission coefficients.



Conductance from transmission

Zero-bias limit µL − µR → 0, where µL = εF + ε and µR = εF − ε, where ε→ 0,

T (εF ± ε) = T (εF )± ∂T (E)

∂E
|εF ε+ ...

fL(E) = fR(E)− ∂fR(E)

∂E
|µR(µL − µR) + ...

we obtain at kBT → 0

I =
2e2

h
T (εF )V.

Two probe conductance

G =
dI

dV
=

2e2

h
T (εF ).

At resonance T (E)→ 1 very sharply→ quantization of conductance.



Experimental verification of quantized conductance

Quantum point contact on a 2d electron gas. Wees et al. 1988.



Message to take home

In Landauer approach the external perturbation is replaced by boundary
conditions and the scattering solution is obtained for quantum system. It is well
suit approach to nano-scale systems and truly quantum effects are observable.

Multi-probe experiments, weak localization, universal quantum fluctuations,
Aharonov-Bohm effect, and many other phenomena are described by Landauer
theory.
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