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Friction, dissipation ...

helps...

disturbs...



Friction absorbs energy

electric resistance

R [Ω = V/A]

viscosity

η [Pa · s]



Two supercases in nature

superfluidity

η = 0 [Pa · s]

superconductivity

R = 0 [Ω]



Superconductivity of metals

ideal conductor, R = 0 [Ω]

new stable thermodynamical phase



Superconductors

www.superconductors.org

https://en.wikipedia.org/wiki/Superconductivity

carbonaceous sulfur hydride CH8S

with Tc ≈ +15C at 267GPa (2020)



R = 0 - consequences

magnetic flux

Φ =
∫
~B · d~s = BS

Kirchhoff’s law for EMF

−SdBdt = RI + LdIdt

if R = 0 then −SdBdt = LdIdt hence d
dt(BS + LI) = 0

SB + LI = const - total magnetic flux constant in time



R = 0 - consequences

SB + LI = const - total magnetic flux constant in time



Meissner-Ochsenfeld effect

Φ = 0 in superconductor!

Electrodynamic corrected ... London’s equation ~j = −nse
2

m
~A



Ideal conductor (R = 0) vs superconductor

Φ = 0 in superconductor!

Φ = const in ideal conductor

~B = µ0
~H + ~M = 0

supercurrent induces magnetization

magnetic induction vanishes



Quantization of magnetic flux

Φ = h
2en,

h
2e = 2.07 · 10−15 [Wb]

where n = 0, 1, 2, ...

superconductor = ideal conductor + quantized flux



Two types of superconductors

Needed a clear definition!



A: Definition based on electromagnetic response

electric field, magnetic induction, vector and scalar potentials

~E = −∂
~A

∂t
− ~∇φ and ~B = ~∇× ~A

gauge transformation

~A→ ~A+ ~∇χ and φ→ φ− ∂χ
∂t

gauge invariant current (minimal coupling)

~jA(~r) = ~j(~r)︸︷︷︸
paramagnetic

− e
m
~A(~r)ρ(~r)︸ ︷︷ ︸

diamagnetic

~j(~r) =
e

2m

∑
α

(δ(~r − ~rα)~pα + ~pαδ(~r − ~rα)) and ρ(~r) = e
∑
α

δ(~r − ~rα)



A: Definition based on electromagnetic response

Perturbation

δH(t)A = −
∫
d3r ~A(~r, t) ·~j(~r) and δH(t)φ =

∫
d3rφ(~r, t)ρ(~r)

Linear response (Kubo) formula

〈jAa (~q, ω)〉 = [χRjajb(~q, ω)− ne
2

m
δab]Ab(~q, ω)− χRjaρ(~q, ω)φ(~q, ω)

where
χO1O2(~r, t;~r

′t′) =
i

~
θ(t− t′)〈[O1(~r, t), O2(~r

′, t′)]〉

Not yet a gauge invariant conductivity

〈jAa (~q, ω)〉 = σab(~q, ω)Eb(~q, ω)



A: Definition based on electromagnetic response

Helmholtz theorem

~F (~r) = ~FL(~r) + ~FT (~r)

~∇ · ~FT (~r) = 0 or ~q · ~FT (~q) = 0 (solenoidal)

~∇× ~FL(~r) = 0 or ~q × ~FL(~q) = 0 (potential)

transverse conductivity: Ey(qxω) = iωAy(qx, ω)

〈jAy (qx, ω)〉 = σTyy(qx, ω)Ey(qx, ω)

with
σTyy(qx, ω) =

1

iω
[χRjyjy(qx, ω)− ne

2

m
]



A: Definition based on electromagnetic response

Longitudinal conductivity:

gauge invariance→ current conservation

∂ρ(~q, t)

∂t
= −i~q ·~j(~q, t)

hence

−iωχRjxρ(qx, ω) = iqx
ne2

m
− iqxχRjxjx(qx, ω)

and

〈jAx (qx, ω)〉 =
1

iω
[χRjxjx(qx, ω)− ne

2

m
](iωAx(qx, ω)− iqxφ(qx, ω)) =

= [
1

iqx
χRjxρ(qx, ω)](iωAx(qx, ω)− iqxφ(qx, ω))



A: Definition based on electromagnetic response

replacing gauge invariant combination of potentials

Ex(qx, ω) = iωAx(qx, ω)− iqxφ(qx, ω)

and from
〈jAx (qx, ω)〉 = σLxx(qx, ω)Ex(qx, ω)

we get longitudinal conductivity

σLxx(qx, ω) =
1

iω
[χRjxjx(qx, ω)− ne

2

m
] = [

1

iqx
χRjxρ(qx, ω)]

consequence of gauge invariance:

χRjxjx(qx, 0)− ne
2

m
= 0 − thermodynamic response, ω = 0 first

χRjxρ(0, ω) = 0



A: Definition based on electromagnetic response

uniform DC conductivity (qx = 0 first)

Re [σLxx(qx = 0, ω)] =
ImχRjxjx(qx = 0, ω)

ω
=

= P
ImχRjxjx(qx = 0, ω)

ω
− πδ(ω)

[
[Re[χRjxjx(qx = 0, ω)]− ne

2

m

]
Df. Drude weight

D = −π lim
ω→0

[
Re[χRjxjx(qx = 0, ω)]− ne

2

m

]
≥ 0

E.g., free electrons

Re [σLxx(qx = 0, ω)] = Dδ(ω) with D = π
ne2

m



A: Definition based on electromagnetic response

W. Kohn’s 1960’s criteria:

• metal - finite Drude weight at zero temperature

• insulator - zero Drude weight at zero temperature

Metallic behavior is an emergent property in infinite systems, like dissipation
(energy level spacing). The limits qx → 0 and ω → 0 cannot be exchanged.

In insulators

lim
ω→0

lim
qx→0

Re [χRjxjx(qx, ω)] = lim
qx→0

lim
ω→0

Re [χRjxjx(qx, ω)]

Existence of a gap is sufficient but not necessary condition to have an insulator.



A: Definition based on electromagnetic response

What is a superconductor?

London: the wave function of a superconductor is rigid (does not depend on ~A);
the only possible response is due to the diamagnetic term

〈jTa (~q, ω = 0)〉 = −nse
2

m
ATa (~q, ω = 0)

Hence London’s equation

∇2 ~B =
nse

2

m
µ0
~B,

with the solution

By(x) = By(0)e−
x
λ, where λ =

nse
2

m
µ0.



A: Definition based on electromagnetic response

What is a superconductor?

Earlier condition (gauge, f-sum rule) on thermodynamic response

χRjxjx(qx, 0)− ne
2

m
= 0

implies no response to a pure vector potential. This is correct only for a
longitudinal part of ~A. Gauge invariance does not force the transverse response
to vanish. Therefore, we can assume

χRjyjy(qx, 0)− ne
2

m
= −nse

2

m

with ns ≤ n.

Definition: superconductor has a non-vanishing ”transverse Drude weight”!



A: Definition based on electromagnetic response

D ≡ π lim
ω→0

[
ne2

m
− Re [χRjxjx(qx = 0, ω)]

]

DT
S ≡ π lim

qx→0

[
ne2

m
− Re [χRjyjy(qx, ω = 0)]

]

DL
S ≡ π lim

qx→0

[
ne2

m
− Re [χRjxjx(qx, ω = 0)]

]

D DL
S DT

S

metal 6= 0 0 0
insulator 0 0 0

superconductor 6= 0 0 6= 0



A: Definition based on electromagnetic response

Literature:

R. Schrieffer, Theory of superconductivity (1964)

A.-M. Tremblay, PHY-892 Quantum Material’s Theory, from perturbation theory to
dynamical-mean field theory (lecture notes) (2019)

S. Nakajima, Prog. Theor. Phys. 22, 430 (1959)

The author confesses that he has not made any picture in this presentation,
they all have been taken from WWW.



B: Definition based on ODLRO

Off-Diagonal Long Range Order (ODLRO)

single-particle density matrix

ρ
(1)
αα′(~r, ~r

′) = 〈ψ†α(~r)ψα′(~r
′)〉

two-particle density matrix

ρ
(2)
αβα′β′(~r1, ~r2, ~r

′
1, ~r
′
2) = 〈ψ†α(~r1)ψ

†
β(~r2)ψβ′(~r

′
2)ψα′(~r

′
1)〉

or

ρ
(2)
αβα′β′(~r1, ~r2, ~r

′
1, ~r
′
2) = N(N − 1)

∫
d3r3...d3rN

∑
γ1..γN

∑
ν

e−βEν

Z

×Ψ∗ν(~r1, α, ~r2, β, ~r3γ3...)Ψν(~r
′
1, α
′, ~r′2, β

′, ~r3γ3...)



B: Definition based on ODLRO

Spectral decomposition with eigenvalues np

ρ
(2)
αβα′β′(~r1, ~r2, ~r

′
1, ~r
′
2) =

∑
p

npφ
∗
p(~r1, α, ~r2, β)φp(~r

′
1, α
′, ~r′2, β

′)

ODLRO is such a state where the largest n0 is of the order N

ρ
(2)
αβα′β′(~r1, ~r2, ~r

′
1, ~r
′
2)→ n0φ

∗
0(~r1, α, ~r2, β)φ0(~r

′
1, α
′, ~r′2, β

′)

in the limit |~ri − ~r′i| → ∞ with |~r1 − ~r2| and |~r′1 − ~r′2| finite

Theorem: A charge system with ODLRO exhibits a Miessner effect



B: Definition based on ODLRO

Gauge transformation
~A(~r)→ ~A0(~r) + ~∇φ(~r)

Take a small space displacement ~rj → ~rj − ~a, under which

V (rjk)→ V (rjk)

~A(~rj)→ ~A(~rj − ~a) = ~A(~rj) + ~∇j[~a · ~A0(~rj) + φ(~rj − ~a)− φ(~rj)︸ ︷︷ ︸
≡χ~a(~rj)

]

A space displacement induces a gauge transformation in the vector potential.

ρ
(2)
αβα′β′(~r1, ~r2, ~r

′
1, ~r
′
2) = ei

e
~(χ~a(~r1)+χ~a(~r2)−χ~a(~r

′
1)−χ~a(~r

′
2))ρ

(2)
αβα′β′(~r1−~a,~r2−~a,~r

′
1−~a,~r′2−~a)



B: Definition based on ODLRO

Factorization hypothesis (ODLRO) implies that

φ0(~r1, α, ~r2, β) = eiξ(~a)e−i
e
~(χ~a(~r1)+χ~a(~r2)φ0(~r1 − ~a, α, ~r2 − ~a, β)

Considering two consecutive displacements in alternate order (parallelogram
formed by ~a and ~b) in a simply connected space yields

e−i
e
~(χ~b(~r1)+χ~b(~r2)+χ~a(~r1−

~b)+χ~a(~r2−~b)) = e−i
e
~(χ~a(~r1)+χ~a(~r2)+χ~b(~r1−~a)+χ~b(~r2−~a))

since
χ~b(~r) + χ~a(~r −~b)− χ~a(~r)− χ~b(~r −~b) = ~B · (~a×~b)

we find
2e

~
~B · (~a×~b) = 2πn

Since ~a and ~b are continuous and n is arbitrary we get ~B = 0.



B: Definition based on ODLRO

Zero resistance Hamiltonian depending on macroscopic conjugate variables

H = H(n(~r, t), θ(~r, t))

where n0 ∼ O(N) macroscopic eigenstate

φ0(~r, α) =
√
n(~r, t)eiθ(~r,t)

Hamiltonian equations ∂θ
∂t = −δHδn and ∂n

∂t = δH
δθ

Electric potential U(~r, t) = δH/eδn(~r, t) for stationary currents

eU(~r, t) = −∂θ(~r, t)
∂t

= 0.

From U = RI one gets R = 0.



B: Definition based on ODLRO
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