
NOTATKI DO ĆWICZEŃ Z ALGEBRY METODĄ FIZYCZNĄ
UPRAWIANEJ

Liczby zespolone

Kanoniczna postać liczby zespolonej: z = x + iy. Liczba z = x zwie się liczbą (czysto)
rzeczywistą, liczba z = iy zwie się liczbą (czysto) urojoną. Oczywiście i2 = −1. Części
rzeczywista i urojona liczby zespolonej z = x + iy: Rez = x, Imz = y (uwaga: część
urojona liczby zespolonej z jest liczbą rzeczywistą!). Moduł |z| liczby zespolonej z = x+iy:
|z| =

√

x2 + y2.

Liczba zespolona sprzężona do danej liczby z = x+iy: z∗ ≡ z̄ = x−iy. Zachodzą związki:
|z| = |z∗|, z∗z = z z∗ = |z|2 = |z2| = x2 + y2; |z1z2| = |z1| |z2|, |z1/z2| = |z1|/|z2|. Po-
nadto z+z∗ = 2Rez (liczba zawsze rzeczywista), z−z∗ = 2iImz (liczba zawsze urojona).

Przydatny wzór1 na (dwa) pierwiastki kwadratowe z danej liczby z = x+ iy:

z
1

2 = ±
(
√

|z|+ x

2
+ i sgn(y)

√

|z| − x
2

)

.

Postać trygonometryczna liczby zespolonej. Jeśli liczbę zespoloną z = a+ib reprezentować
punktem na płaszczyźnie o osiach a = Rez, b = Imz, to zamiast współrzędnymi (a, b)
można tę samą liczbę identyfikować przez podanie jej współrzędnych biegunowych (r, ϕ)

r =
√
a2 + b2 = |z| , tgϕ =

Imz

Rez
,

przy czym kąt ϕ, zwany argumentem, Argz, liczby zespolonej, aby liczba z była repre-
zentowana “kanonicznie” (dlaczego? żeby się matematycy cieszyli... A poważniej, to jest
kwestia umowy, ale umowa ta zacznie być istotna, gdy będziemy obliczać logarytmy liczb
zespolonych) trzeba wybrać z przedziału [0, 2π). Ponieważ wartość funkcji arctg(·) leży
z definicji (przyjętej arbitralnie i dla niektórych celów mogącej wymagać zmienienia) w
przedziale (−1

2
π, 1

2
π), oznacza to, że czasem trzeba kąt ϕ uzyskany przez arctg “ręcz-

nie” poprawić. Zachodzą (oczywiste) związki (niezależne od tego, czy kąt ϕ należy do
“kanonicznego” przedziału, czy nie)

Rez = a = r cosϕ , Imz = b = r sinϕ ,

co najlepiej zapisać w postaci

z = a+ ib = r(cosϕ+ i sinϕ) = r eiϕ = |z| eiArgz .

1Credit: Prof. Mikołaj Misiak. Wzór łatwo sprawdzić bezpośrednio podnoszą jego prawą stronę do
kwadratu.
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Ostatnia równość wynika z rozwinięcia w szereg Taylora

eiϕ =

∞
∑

n=0

(iϕ)2

n!
=

∞
∑

n=0

(iϕ)2n

(2n)!
+

∞
∑

n=0

(iϕ)2n+1

(2n+ 1)!

=

∞
∑

n=0

(−1)n
(2n)!

ϕ2n +

∞
∑

n=0

i (−1)n
(2n+ 1)!

ϕ2n+1 = cosϕ + i sinϕ .

Wynikają z niej także ważne wzory

cosϕ =
1

2

(

eiϕ + e−iϕ
)

,

sinϕ =
1

2i

(

eiϕ − e−iϕ
)

,

które warto porównać z definicjami funkcji hiperbolicznych

chx =
1

2

(

ex + e−x
)

,

shx =
1

2

(

ex − e−x
)

.

Jest więc jasne, że

cos(ix) = chx , sin(ix) = i shx .

Oczywisty jest także tzw. wzór de Moivre’a

(cosϕ+ i sinϕ)n =
(

eiϕ
)n

= einϕ = cos(nϕ) + i sin(nϕ) .

W szkole (w trzeciej klasie liceum, ale to było za komuny, a nie za PiSu, bo dla PiSow-
skich ministrów takie rzeczy są za trudne...) dowodziło się go za pomocą indukcji dla
naturalnych n, ale widać, że wzór jest słuszny nawet, gdy n jest liczbą zespoloną.

Zauważmy, że dodawanie (i odejmowanie) dwóch liczb zespolonych z1 = a1 + ib1 =
r1 e

iϕ1 i z2 = a2+ ib2 = r2 e
iϕ2 jest łatwiejsze w postaci kartezjańskiej z1+ z2 = (a1+a2)+

i(b1 + b2), ale ich mnożenie i dzielenie jest łatwiejsze w postaci trygonometrycznej:

z1z2 = (r1r2) e
i(ϕ1+ϕ2) ,

z1
z2

= (r1/r2) e
i(ϕ1−ϕ2) .

Problemik: Obliczyć sumę

SN = sin x+ sin 2x+ . . .+ sinNx =

N
∑

n=1

sin nx .
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Rozwiązanie: Wystarczy skorzystać z liniowości operacji brania części rzeczywistej i
części urojonej liczby zespolonej, (tj. z tego, że Re(z1 + z2 + . . .) = Rez1 + Rez2 + . . . ,
Im(z1 + z2 + . . .) = Imz1 + Imz2 + . . .) i napisać

SN =

N
∑

n=1

Im einx = Im

(

N
∑

n=1

einx

)

= Im

(

eix
N−1
∑

n=0

einx

)

.

Teraz, ponieważ występuje tu suma będąca szeregiem (ale skończonym, więc problem
zbieżności tu nie ingeruje) geometrycznym o ′′q′′ = eix, możemy wykorzystać znany wzór2

N−1
∑

n=0

qn = 1 + q + . . .+ qN−1 =
1− qN
1− q =

qN − 1

q − 1
.

Prowadzi on do

SN = Im

(

eix
eiNx − 1

eix − 1

)

.

Teraz wystarczy tylko obliczyć część urojoną, ale żeby się nie zakałapućkać, trzeba to
zrobić sprytnie:

SN = Im

(

eix
eiNx/2

eix/2
eiNx/2 − e−iNx/2

eix/2 − e−ix/2
)

= Im

(

ei(N+1)x/2 sin(Nx/2)

sin(x/2)

)

.

Iloraz sinusów jest czysto rzeczywisty, a ponieważ jeśli a jest liczbą rzeczywistą, Im(az) =
a Imz, więc

SN =
sin(Nx/2)

sin(x/2)
Im
(

ei(N+1)x/2
)

=
sin(Nx/2)

sin(x/2)
sin((N + 1)x/2) .

Nietrudno też zobaczyć (biorąc część rzeczywistą zamiast urojonej), że

CN =
N
∑

n=1

cosnx = cosx+ cos 2x+ . . .+ cosNx =
sin(Nx/2)

sin(x/2)
cos((N + 1)x/2).

Jeśli x = 2πk, gdzie k ∈ Z, to w mianownikach uzyskanych wzorów robi się zero. Ale
nietrudno ustalić biorąc granice x→ 0 (granice x→ 2πk muszą dać to samo, bo funkcje są
okresowe) uzyskanych wzorów, że suma SN sinusów da wtedy zero, a suma CN kosinusów
N , tak jak powinno być.

Pierwiastki n-tego stopnia z liczby zespolonej z. Jeśli w = z1/n, to znaczy, że szukamy
wszystkich takich liczb wk, że wn

k = z. Liczb takich jest dokładnie n, czyli są to w0, . . . ,
wn−1. Aby to zobaczyć piszemy

w = |w|(cos θ + i sin θ) = |w| eiθ ,
z = |z| (cosϕ+ i sinϕ) = |z| eiϕ ,

2Stopień wielomianu (1− q)(1 + q+ . . .+ qN−1) jest równy N , więc w liczniku po prawej stronie musi
być qN .
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i wtedy równość z = wn oznacza, że |z| = |w|n oraz, że eiϕ = einθ. Pierwszy warunek
daje |w| = |z|1/n, przy czym tu |z|1/n oznacza zwykły, rzeczywisty i dodatni pierwiastek
n-tego stopnia z rzeczywistej i dodatniej liczby |z|; druga równość wymaga czujności: jeśli
zamiast ϕ napiszemy ϕ+2πk z dowolnym k ∈ Z, to dalej |z|ei(ϕ+2πk) = z, ale w zależności
od wartości k dostaniemy różne kąty θk:

θk =
ϕ+ 2πk

n
=

1

n
ϕ+ 2π

k

n
.

k może być niby dowolną liczbą całkowitą, ale tylko n różnych k da różne liczby wk: jako
te różne przyjęło się brać

w0 = |z|1/neiθ0 , w1 = |z|1/neiθ1 , . . . wn−1 = |z|1/neiθn−1 .

Kąt θn liczby wn można bowiem zapisać jako

θn =
1

n
ϕ+ 2π

n

n
=

1

n
ϕ+ 2π ,

czyli różni się on od kąta θ0 o 2π i tym samym wn = w0. Podobnie wn+1 = w1, w−1 = wn−1
etc. Rzeczywiście więc różnych pierwiastków n-tego stopnia z liczby zespolonej z jest tylko
(i aż) n. Na płaszczyźnie o osiach Rez, Imz wszystkie one leżą na okręgu o promieniu
|z|1/n i dzielą ten okrąg na n równych części. Wystarczy więc znaleźć położenie jednego z
nich, by można było wyznaczyć (na rysunku) położenia pozostałych n−1. Wynika z tego,
że położenia zespolonych pierwiastów n-tego stopnia z z = 1 szczególnie łatwo znaleźć:
jednym z nich jest bowiem zawsze w0 = 1 i pozostałe leżą na okręgu jednostkowym co 2π/n
(jeśli n = 2l jest liczbą parzystą, pierwiastkiem jest też wl = −1; oczywiście, jeśli n jest
liczbą nieparzystą, −1 pierwiastkiem nie jest). Nieco trudniej jest wyznaczyć położenia
pierwiastów n-tego stopnia z z = −1, ale jeśli n = 2l+1 jest liczbą nieparzystą, to wl = −1
i mając ten pierwiastek już łatwo wskazać położenia pozostałych na jednostkowym okręgu.

Problemik: Znaleźć wszystkie różne pierwiastki trzeciego stopnia z z = 1 + i.
Rozwiązanie: |z| =

√
2, więc

z =
√
2

(

1√
2
+

i√
2

)

=
√
2 eiπ/4 .

Zatem θk = π/12 + 2π(k/3), czyli

w0 = 21/6
(

cos
π

12
+ i sin

π

12

)

,

w1 = 21/6
(

cos
9π

12
+ i sin

9π

12

)

= 21/6
(

cos
3π

4
+ i sin

3π

4

)

= 21/6
(

− 1√
2
+

i√
2

)

,

w2 = 21/6
(

cos
17π

12
+ i sin

17π

12

)

.

Problemik: Znaleźć wszystkie liczby z spełniające równość

z6 = (z∗ + 1)6 .
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Rozwiązanie: Niewątpliwie z = 0 nie jest rozwiązaniem. Można więc bezpiecznie po-
dzielić obie strony przez z, co da równość

1 =

(

z∗ + 1

z

)6

, czyli
z∗ + 1

z
= (1)1/6 .

Najpierw trzeba więc znaleźć wszystkie pierwiastki szóstego stopnia z jedynki. Są nimi
wk = cos θk + i sin θk z θk = 2π(k/6), k = 0, 1, . . . , 5. Ponieważ w0 = 1, w3 = −1, a
wszystkie te pierwiastki powinny być równo rozłożone na jednostkowym okręgu, co π/3,
więc łatwo zobaczyć, że

w1,5 =
1

2
± i
√
3

2
, w2,4 = −

1

2
± i
√
3

2
.

Teraz tylko należy rozwiązać równania z∗ + 1 = wkz. Jeśli weźmiemy w0 = 1, to daje to
z∗ + 1 = z, czyli

z∗ − z = −1 ,

Ponieważ z∗ − z jest (zawsze) liczbą urojoną, a prawa stona, −1, jest liczbą czysto rze-
czywistą, równanie to nie ma rozwiązań. Z kolei, gdy weźmiemy w3 = −1, to daje to
z∗ + 1 = −z, czyli

z∗ + z ≡ 2Rez = −1 .

Zatem Rez = −1
2
, a część urojona z może być zupełnie dowolna. Dostajemy więc jako

rozwiązania zbiór liczb postaci z = −1
2
+ it, gdzie t jest dowolną liczbą rzeczywistą.

Trzeba jeszcze sprawdzić, co dają pierwiastki w1,5 i w2,4. Zbadajmy w1,5:

z∗ + 1 =
1

2

(

1± i
√
3
)

z ,

co, po podstawieniu z = x+ iy jest równoważne układowi dwóch równań na x i y:

1 + x =
1

2
x∓
√
3

2
y ,

−y =
1

2
y ±
√
3

2
x ,

lub, po uporządkowaniu,

1 +
1

2
x = ∓

√
3

2
y ,

−3
2
y = ±

√
3

2
x ,

Teraz wystarczy drugie pomnożyć przez±1/
√
3 by zobaczyć, że układ równań jest sprzeczny,

czyli nie posiada rozwiązań. W analogiczny sposób można sprawdzić, że pierwiastki w2,4
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również prowadzą do sprzecznego układu równań. Zatem jedynymi rozwiązaniami jest
rodzina liczb z = −1

2
+ it, gdzie t jest dowolną liczbą rzeczywistą.

Problemik: Znaleźć iloczyn ε0ε1 · · · εn−1 wszystkich różnych pierwiastków εk n-tego stop-
nia z z = 1.
Rozwiązanie: Pierwiastkami n-tego stopnia z z = 1 są εk = ei2πk/n, wobec czego

ε0ε1 · · · εn−1 = ei2π·0/nei2π·1/n · · · ei2π·(n−1)/n = exp

(

i
2π

n

n−1
∑

k=0

k

)

.

Indukcyjnie łatwo udowodnić, że

n−1
∑

k=0

k =
1

2
n(n− 1) .

Zatem

ε0ε1 · · · εn−1 = eiπ(n−1) =
(

eiπ
)n−1

= (−1)n−1 .

Problemik: Znaleźć wszystkie rozwiązania równania3

(

1− z∗
1 + z

)2023

= 1 .

Rozwiązanie: Oczywiście

1− z∗
1 + z

= εk ,

gdzie εk o k = 0, . . . , 2022 są pierwiastkami 2023 stopnia z jedynki. Ale trudno rozwiązać
aż 2023 równań 1 − z∗ = εk(1 + z)... Jedno z nich jest jednak proste: ε0 = 1 i to daje
1− z∗ = 1+ z, czyli z+ z∗ = 0. Rozwiązaniami są więc liczby z = it, gdzie t jest dowolną
liczbą rzeczywistą. Pozostałe 2022 pierwiastków, jako że rok mamy nieparzysty, mają na
100% niezerową część urojoną. Zapiszmy je więc w postaci εk = cos θk + i sin θk, przy
czym θk 6= nπ. Każde więc z pozostałych do sprawdzenia 2022 równań ma postać

1− z∗ = (cos θk + i sin θk)(1 + z) ,

co po podstawieniu z = x+ iy jest równoważne układowi dwóch równań

1− x = (1 + x) cos θk − y sin θk ,
y = (1 + x) sin θk + y cos θk .

Czy układ ten może mieć rozwiązania? Z drugiego mamy

y = (1 + x)
sin θk

1− cos θk
,

32023, bo taki mamy właśnie rok.
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Rysunek 1: Zbiór liczb z spełniających warunek 1 ≤ |z + i| ≤ 2. Pozioma kreska na
pierścieniu jest artefaktem Mathematiki - skanuje ona kąty od 0 do 2π i stąd ślad.

(mianownik prawej strony się nie może zerować, bo rozpatrujemy tu tylko pierwiastki z
jedności różne od ε0 = 1) i to do pierwszego:

1− x = (1 + x) cos θk − (1 + x)
sin2 θk

1− cos θk

= (1 + x)
cos θk(1− cos θk)− sin2 θk

1− cos θk
= −(1 + x) .

Stąd więc 1 = −1, czyli sprzeczność.4 Innych rozwiązań niż to, które daje ε0, wyjściowy
układ juz nie ma. W latach parzystych odpowiedź też jest taka sama (dlaczego? - proszę
samemu sprawdzić).

Problemik: Na płaszczyźnie zespolonej C (tzn. na płaszczyźnie o osiach (Rez, Imz))
wyznaczyć zbiór punktów reprezentujących zespolone liczby z spełniające warunek 1 ≤
|z + i| ≤ 2.
Rozwiązanie: Gdy napiszemy x = Rez, y = Imz, to |z + i| =

√

x2 + (y + 1)2. Zatem
liczby tworzące szukany zbiór spełniają warunek

1 ≤ x2 + (y + 1)2 ≤ 4

Jest więc to pierścień (zob. rysunek 1) zawarty pomiędzy dwoma współśrodkowymi okrę-
gami (same te okręgi też należą do zbioru) o środkach w punkcie z0 = −i ≡ (0,−1) i
promieniach r1 = 1 i r2 = 2.

Problemik: Na płaszczyźnie zespolonej C wyznaczyć zbiór punktów reprezentujących
zespolone liczby w mające postać w = (1 + it)/(1 − it), gdzie parametr t przebiega
wszystkie liczby rzeczywiste.
Rozwiązanie: Można to zadanie rozwiązać bezpośrednio, tj. pisząc

w =
1 + it

1− it =
(1 + it)2

1 + t2
=

1− t2 + 2it

1 + t2
≡ x+ iy .

4Przeprowadzone rozumowanie nie stosuje się do θ0 = 0 z tego powodu, że wtedy przy wyznaczaniu y

dzieliłoby się przez zero (inaczej: drugie równanie nie wyznacza wtedy y bo ma postać 0 = 0).
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Wzory

x =
1− t2
1 + t2

, y =
2t

1 + t2
,

powinny nam teraz nasunąć skojarzenie z podstawieniem t = tg(θ/2) wykorzystywanym
przy całkowaniu funkcji wymiernych z funkcji trygonometrycznych: nawodzi to na myśl
(zamiast “sugeruje”, jak teraz by każdy napisał...), by napisać t = tg(θ/2), co da

x =
1− t2
1 + t2

= cos θ , y =
2t

1 + t2
= sin θ .

Ponieważ, gdy t przebiega całą oś rzeczywistą, θ/2 przebiega zakres (−1
2
π, 1

2
π), czyli θ

przebiega zakres (−π, π) a, ponadto, x2 + y2 = cos2 θ + sin2 θ = 1, staje się jasne, że
szukanym zbiorem jest okrąg o środku w w0 = 0 ≡ (0, 0) i jednostkowym promieniu.

Inny sposób rozwiązania tego zadania polega na zauważeniu, że odwzorowanie

w = f(z) =
1 + iz

1− iz ,

jest homografią, a szukany zbiór jest obrazem osi rzeczywistej przy takim właśnie od-
wzorowaniu. Zgodnie z metodą pokazaną w filmiku dołączonym do wykładu prof. K.
Grabowskiej, odwracamy odwzorowanie f pisząc

z = −i w − 1

w + 1
,

i następnie, podstawiając w = x+ iy, otrzymujemy

z = −i x− 1 + iy

x+ 1 + iy
= −i [x− 1 + iy][x+ 1− iy]

(1 + x)2 + y2

= −i x
2 − 1 + y2 + 2iy

(1 + x)2 + y2
=

2y − i(x2 − 1 + y2)

(1 + x)2 + y2
.

Narzucamy teraz warunek z = t, czyli po prostu Imz = 0, co jest równoważne warunkowi
x2 − 1 + y2 = 0.

Problemik: Na płaszczyźnie zespolonej C wyznaczyć zbiór punktów reprezentujących
zespolone liczby z spełniające warunek

0 < Arg
z + i

z − i <
π

4
.

Rozwiązanie: Bardziej uczenie, chodzi o przeciwobraz klina 0 < Argw < π
4

przy homo-
grafii w = f(z) = (z + i)/(z − i). Jeśli napiszemy

w =
(z + i)(z∗ + i)

(z − i)(z∗ + i)
=

(z + i)(z∗ + i)

|z|2 + 1 + i(z − z∗) ,
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Rysunek 2: Okręgi x2 + y2 = 1 i (x− 1)2 + y2 = 2.

to mianownik, jako wielkość czysto rzeczywista i dodatnia (bo to kwadrat modułu liczby
z − i !), nie będzie miał wpływu na argument (czyli fazę) liczby w:

Argw = Arg[(z + i)(z∗ + i)] = Arg
(

|z|2 − 1 + 2iRez
)

.

Warunek 0 < Argw < π
4

sprowadza się teraz do tego, by

0 < arctg

(

2Rez

|z|2 − 1

)

<
π

4
, i 2Rez > 0 .

(Drugi warunek ogranicza w do pierwszej ćwiartki, bo jak pamiętamy liczby w z trzeciej
ćwiartki, o fazie między π i 3

2
π, mają stosunek Imw/Rew też dodatni, tak jak liczby z

pierwszej ćwiartki, a trzeba je wykluczyć). Zatem, pisząc z = x + iy, mamy następujące
warunki: x > 0, x2 + y2 − 1 > 0 (z warunków 2Rez > 0 i 2Rez/(|z|2 − 1) > 0) oraz
2x < x2 + y2 − 1 (z warunku 2Rez/(|z|2 − 1) < 1). Innymi słowy, oprócz warunku x > 0,
który ogranicza zbiór szukanych liczb do prawej półpłaszczyzny, mamy

x2 + y2 > 1 ,

(x− 1)2 + y2 > 2 .

Pierwszy warunek jest jednak słabszy niż drugi, bo jak się można zorientować, na pół-
płaszczyźnie x > 0 okrąg x2 + y2 = 1 leży całkowicie wewnątrz okręgu (x− 1)2 + y2 = 2:
okręgi te mają tylko dwa punkty wspólne z = ±i na granicy dozwolonego obszaru x > 0
- zob. rysunek 2). Zatem szukane liczby z są reprezentowane przez punkty leżące w
półpłaszczyźnie x > 0 na zewnątrz okręgu (x− 1)2 + y2 = 2.

Problemik: Udowodnić, że

x2n+1 − 1 = (x− 1)
n
∏

k=1

(

x2 − 2x cos
2πk

2n+ 1
+ 1

)

.

Rozwiązanie: Lewa strona wzoru jest wielomianem stopnia 2n + 1 zmiennej x i prawa
stona też jest takimże wielomianem. Punkt dla nas. x = 1 jest pierwiastkiem wielomianu
po lewej stronie i pierwiastkiem wielomianu po prawej też. Drugi punkt dla nas. Dalej:
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każdy wielomian W2n+1(x) stopnia 2n+1 ma, w dziedzinie zespolonej 2n+1 pierwiastków
zk, k = 0, 1, . . . , 2n, takich, że W2n+1(zk) = 0 i można go przedstawić w postaci

W2n+1(x) = A(x− z0)(x− z1) · · · (x− x2n) ,

w której A jest współczynnikiem przy najwyższej potędze zmiennej x w wyjściowej postaci
wielomianu W2n+1(x). W przypadku wielomianu po lewej stronie dowodzonego wzoru
A = 1, a pierwiastkami są oczywiście wszystkie (zespolone) pierwiastki 2n + 1 stopnia z
jedności, czyli zk = ei

2π
2n+1

k, przy czym z0 = 1. Zatem

x2n+1 − 1 = (x− 1)

2n
∏

k=1

(

x− ei 2π
2n+1

k
)

= (x− 1)

n
∏

k=1

[(

x− ei 2π
2n+1

k
)(

x− ei 2π
2n+1

(2n+1−k)
)]

.

W drugiej linii czynniki iloczynu zostały trochę inaczej pogrupowane i teraz w każdym
nawiasie kwadratowym pierwiastki ei

2π
2n+1

k i ei
2π

2n+1
(2n+1−k) = e−i

2π
2n+1

k leżą naprzeciw siebie,
nad i pod osią rzeczywistą. Wymnażając zatem dwa wyrażenia w każdym z kwadratowych
nawiasów otrzymujemy
(

x− ei 2π
2n+1

k
)(

x− e−i 2π
2n+1

k
)

= x2 + 1− x
(

ei
2π

2n+1
k + e−i

2π
2n+1

k
)

= x2 + 1− 2x cos
2πk

2n+ 1
.

To kończy dowód.

Problemik: Dla jakiej wartości rzeczywistego parametru a wielomian piątego stopnia

W5(x) = x5 − ax2 − ax+ 1 ,

ma pierwiastek x = −1 o krotności większej niż jeden ?
Rozwiązanie: x = −1 jest oczywiście pierwiastkiem W5(x) niezależnie od wartości a.
Problem jednak w tym, kiedy x = −1 jest pierwiastkiem wielokrotnym. Ponieważ x = −1
jest pierwiastkiem W5(x), możemy napisać:

W5(x) = x5 − ax2 − ax+ 1 = (x+ 1) ·W4(x) .

Aby znaleźć W4(x) dzielimy wielomian W5(x) przez x + 1. Nie umiem tego w latexie
napisać - pokazałem na tablicy. Dostajemy

W4(x) = x4 − x3 + x2 − (a + 1)x+ 1 .

No i teraz żądamy, by W4(−1) = 0. Ponieważ W4(−1) = 4 + (a + 1) więc a musi być
równe −5. Przy tej wartości a x = −1 jest conajmniej pierwiastkiem dwukrotnym. A
może jest więcejkrotnym? Żeby to sprawdzić, dzielimy W4(x) = x4 − x3 + x2 + 4x+ 1 (z
położonym już a = −5) przez x+ 1 i znajdujemy, że

W4(x) = (x3 − 2x2 + 3x+ 1)(x+ 1) = (x+ 1)W3(x) .
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Ponieważ W3(−1) = −1−2−3+1 = −5 6= 0, x = −1 jest tylko dwukrotnym pierwiastkiem
wielomianu W5(x).

Oczywiście ten sam problem można rozwiązać korzystając z tego, że jeśli x0 jest pier-
wiastkiem r-krotnym równania Wn(x) = 0 (n ≥ r, oczywiście), to nie tylko Wn(x0) = 0,
ale także W ′

n(x0) = 0, W ′′
n (x0) = 0, . . . ,W

(r−1)
n (x0) = 0, tzn. w x0 zerują się wszyst-

kie pochodne Wn(x) aż do r − 1 włącznie. Żeby nie komplikować, niech r = 2, czyli
x0 jest pierwiastkiem podwójnym. Wtedy Wn(x) da się przedstawić w postaci Wn(x) =
(x− x0)2Wn−2(x) i

W ′
n(x) = 2(x− x0)Wn−2(x) + (x− x0)2W ′

n−2(x) ,

skąd już widać, że W ′
n(x0) = 0. Jak się to Obliczy W ′

5(x), to zażądanie, by W ′
5(x0) = 0

da od razu a = −5.

Równania trzeciego stopnia. Przepis kuchenny. Równanie takie mające postać ogólną
x3 + a2x

2 + a1x+ a0 = 0 (stałe a2, a1 i a0 mogą być zespolone; pierwiastków szukamy też
w dziedzinie zespolonej) sprowadzamy do postaci

w3 + pw + q = 0 ,

podstawieniem x = w − 1
3
a2. Przy tym p = a1 − 1

3
a22, q = a0 − 1

3
a1a2 +

2
27
a32. Jeśli akurat

p = 0, to już mamy rozwiązanie: w = (−q)1/3 - są to trzy (zespolone) pierwiastki trzeciego
stopnia z q. jeśli p 6= 0, to kolejne podstawienie w = y − p/3y sprowadza wypisane wyżej
równanie do równania trój-kwadratowego

(y3)2 + q y3 − p3

27
= 0 .

Znajdujemy zatem dwa zespolone pierwiastki ζ i ζ ′ równania ζ2+qζ−p3/27 = 0. Jeśli nie
są one akurat takie same (jeden pierwiastek podwójny) to mamy, wyciągając z każdego z
nich trzy pierwiastki trzeciego stopnia, jakby sześć rozwiązań: y1, y2 i y3 oraz y′1, y

′
2 i y′3.

Naprawdę są jednak tylko trzy różne pierwiastki równania w3+ pw+ q = 0 (tego, o które
nam tu chodzi). Niech bowiem ε0 = 1, ε1 ≡ ε = −1

2
+ i

√
3
2

i ε2 ≡ ε2 = ε∗ będą trzema
pierwiastkami trzeciego stopnia z 1. Mamy wtedy5

y1 , y2 = ε y1 , y3 = ε2 y1

y′1 , y′2 = ε y′1 , y′3 = ε2 y′1 .

5To, czy ktoś to widzi od razu jest sprawdzianem tego, czy przyswoił już sobie w należytym stopniu
pierwiastkowanie liczb zespolonych... Ale żeby nie było: jeśli ζ = reiϕ, to yk = r1/3ei(ϕ+2πk)/3 (y0, y1 i
y2 to pierwiastki trzeciego stopnia z ζ), czyli

(

ei2πk/3
)

r1/3eiϕ/3 ≡ εk y1 ,

bo pierwszy pierwiastek trzeciego stopnia z ζ nazwaliśmy y1, a nie y0. Poza tym, trzy pierwiastki trzeciego
stopnia z −1 można zapisać jako −1, −ε i −ε2.
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Oczywiści mamy stąd jakby sześć rozwiązań równania w3 + pw + q = 0:

w1 = y1 −
p

3y1
, w2 = y2 −

p

3y2
, w3 = y3 −

p

3y3
,

w′1 = y′1 −
p

3y′1
, w′2 = y′2 −

p

3y′2
, w′3 = y′3 −

p

3y′3
.

Ze wzoru Viete’a wiemy jednak, że ζ ′ζ = −p3/27, czyli (yi y′i)
3 = −p3/27, i = 1, 2, 3.

Można więc wybrać y1 i y′i tak, by y1 y
′
1 = −p/3 (bo −p/3 jest jednym z pierwiastków

trzeciego stopnia prawej strony). Mamy wtedy

y′1 = (ζ ′)1/3 = − p

3y1
,

y′2 = ε y′1 = −ε
p

3y1
= − p

3ε2y1
≡ − p

3y3
,

y′3 = ε2y′1 = −ε2
p

3y1
= − p

3εy1
≡ − p

3y2
.

Kiedy więc tworzymy rozwiązania w′1, w
′
2, w

′
3, równania w3+pw+q = 0, to otrzymujemy,

w′1 = y′1 −
p

3y′1
= − p

3y1
− p

3(−p/3y1)
= w1 ,

w′2 = y′2 −
p

3y′2
= − p

3y3
− p

3(−p/3y3)
= w3 ,

w′3 = y′3 −
p

3y′3
= − p

3y2
− p

3(−p/3y2)
= w2 ,

Są zatem tylko trzy różne rozwiązania równania w3 + pw + q = 0, które zwykle zapisuje
się w postaci (sa to właśnie wzory Tartagli, które temuż podwędził Cardano)

w1 = y1 + y′1 , w2 = ε y1 + ε2y′1 , w3 = ε2y1 + ε y′1 ,

przy czym y1 i y′1 są tak wybrane (jako pierwiastki trzeciego stopnia z liczb ζ i ζ ′, które
są dwoma rozwiązaniami równania ζ2 + qζ − p3/27 = 0), że y′1y1 = −p/3.

Jeśli współczynniki a2, a1 i a0 wyjściowego równania są rzeczywiste, czyli rzeczywiste
są także p i q, to wzory w postaci Cardano prowadzą natychmiast do wniosku, że gdy
∆ = q2+4p3/27 = 0, czyli gdy ζ = ζ ′ i rozwiązanie ζ jest rzeczywiste, wyjściowe równanie
ma jeden pierwiastek podwójny i jeden pojedyńczy (wszystkie, oczywiście, rzeczywiste).
No bo rzeczywiście: wtedy y′1 = y1 (liczba rzeczywista) i w1 = 2y1, w2 = εy1 + ε∗y′1 =
y1(ε+ε

∗) = w3. (Oczywiście to samo wynika z napisania wi = yi−p/3yi, i = 1, 2, 3, gdzie
teraz y1 jest liczbą rzeczywistą, y2 = εy1 i y3 = ε∗y1 oraz wzoru Viete’a y1 = −p/3y1.)
Jest też jasne, że jeśli wyjściowe równanie ma pierwiastek potrójny (nawet zespolony), to
ζ = ζ ′ = 0 i stąd y1 = y2 = y3 = 0.

Z kolei, gdy ∆ < 0, to ζ ′ = ζ∗ = r e−iϕ/3 i y′1 = y∗1, więc w1 = y1 + y′1 jest liczbą
rzeczywistą, ale także w2 = y1ε + y∗1ε

∗ i w3 = ε∗y1 + εy∗1 są, jak widać, rzeczywiste.
Zatem, gdy ∆ < 0 wyjściowe równanie ma trzy pierwiastki rzeczywiste. Gdy zaś ∆ > 0,
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pierwiastki y1 i y′1 są rzeczywiste i różne i prowadzą do rzeczywistego w1 = y1 + y′1 i
wzajemnie sprzężonych w2 i w3: w3 = ε∗y1 + εy′1 = w∗2 = (εy1 + ε∗y′1)

∗.

Problemik: Znaleźć pierwiastki równania

x3 − 3x2 + 6x− 2 = 0 .

Rozwiązanie: Podstawiamy x = w + 1 co daje równanie w3 + 3w + 2 = 0, czyli p = 3,
q = 2. Rozwiązujemy równanie kwadratowe ζ2 + 2ζ − 1 = (ζ + 1)2 − 2 = 0. Znajdujemy
ζ = −1 −

√
2, ζ ′ = −1 +

√
2. Mamy zatem

y1 = −(1 +
√
2 )1/3 , y′1 = (−1 +

√
2 )1/3 ,

tak wybrane, by spełniały warunek y1y′1 = −p/3 = −1. Możemy więc napisać rozwiązania
wyjściowego równania

x1 = 1− (1 +
√
2 )1/3 + (−1 +

√
2 )1/3 ,

x2 = 1− ε (1 +
√
2 )1/3 + ε2(−1 +

√
2 )1/3 ,

x3 = 1− ε2(1 +
√
2 )1/3 + ε (−1 +

√
2 )1/3 .

Problemik: Znaleźć pierwiastki równania

x3 + 6x2 + 6x− 2 = 0 .

Rozwiązanie: Podstawiamy x = w− 2 co daje równanie w3− 6w+2 = 0, czyli p = −6,
q = 2. Rozwiązujemy równanie kwadratowe ζ2 + 2ζ + 8 = (ζ + 1)2 + 7 = 0. Znajdujemy
ζ = −1 − i

√
7, ζ ′ = −1 + i

√
7. Mamy zatem ζ = 2

√
2 eiϕ, ζ ′ = 2

√
2 eiϕ

′

, gdzie ϕ =
π + arctg

√
7, ϕ′ = π − arctg

√
7, (żeby kąt ϕ był w trzeciej ćwiartce, a ϕ′ w drugiej);

zatem ϕ′ = −ϕ (modulo 2π, tj. ϕ′ = −ϕ + 2π) i stąd6 y1 =
√
2 eiϕ/3, y′1 =

√
2 e−iϕ/3 i

oczywiście, tak jak trzeba, y1 y′1 = 2 = −p/3. Z podanych wzorów mamy więc

x1 = w1 − 2 = −2 + y1 + y′1 = −2 + 2
√
2 cos(ϕ/3) ,

x2 = w2 − 2 = −2 + ε y1 + ε2y′1 = −2 +
√
2
(

ei(ϕ+2π)/3 + ei(−ϕ+4π)/3
)

= −2 +
√
2
(

ei(ϕ+2π)/3 + ei(−ϕ−2π+6π)/3
)

= −2 + 2
√
2 cos((ϕ+ 2π)/3) ,

x3 = w3 − 2 = −2 + ε2y1 + ε y′1 = −2 +
√
2
(

ei(ϕ+4π)/3 + ei(−ϕ+2π)/3
)

= −2 +
√
2
(

ei(ϕ+4π)/3 + ei(−ϕ+4π−6π)/3) = −2 + 2
√
2 cos((ϕ+ 4π)/3) .

6Bo pierwiastki trzeciego stopnia z ζ′ = 2
√
2 eiϕ

′

to
√
2 ei(ϕ

′+2πk′)/3 =
√
2 ei(−ϕ+2π+2πk′)/3 ,

i teraz widać, że k′ = −1 (albo k′ = 2) da y∗1 jako jeden z pierwiastków trzeciego stopnia z ζ′.
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Przestrzenie wektorowe

Zadanie 0
Rozwiązać układ równań

2x+ 3y + z = 2 ,

3x+ 2y − z = 3 ,

x+ 2y + 2z = −1 .

Rozwiązanie: W zadaniu tym nie tyle chodzi o wynik, co o praktyczną metodę rozwią-
zywania układów równań liniowych, ponieważ wiele z dalszych zadań wymaga sprawnego
radzenia sobie z takimi problemami (w zadaniach tych istotne jest co innego, a rozwiązy-
wanie równań jest tylko środkiem do celu; chodzi więc o to, by nam “piłka nie przeszka-
dzała w grze”). Systematyczny algorytm rozwiązywania takich równań, zwany eliminacją
Gaussa, polega na dodaniu takiej wielokrotności pierwszego równania do następnych, by
wyeliminować z każdego z nich zmienną x (jeśli akurat zmienna x nie występuje w pier-
szym równaniu, to eliminujemy z pozostałych y itd.):

2x+ 3y + z = 2 ,

y + z = 0 ,

y + 3z = −4 .

Równania drugie i trzecie są więc teraz układem dwu równań na dwie niewiadome, czyli
cały problem zredukował się o jedną niewiadomą i o jedno równanie. Nie ruszając już
więcej pierwszego równania, dodajemy taką wielokrotność drugiego do następnych (tzn.
tu do trzeciego, bo więcej równań już niema), by wyeliminować z nich drugą niewiadomą,
tj. y (gdyby y akurat nie występował w drugim równaniu, to z itd.):

2x+ 3y + z = 2 ,

y + z = 0 ,

z = −2 .

I teraz już możemy już jechać zurück, od dołu, do góry: z = −2, y − 2 = 0 więc y = 2 i
wreszcie, 2x + 6 − 2 = 2, czyli x = −1. “Sapienti sat” (po naszemu “mądrej głowie dość
dwie słowie”), czyli jeden przykład powinien wystarczyć, by zorientować się w metodzie.

Przypomnienie
Przestrzeń wektorowa (p.w.) V nad ciałem K (którym w tym skrypcie będzie zawsze
albo ciało liczb rzeczywistych R, albo zespolonych C) jest to zbiór elementów v ∈ V , w
którym określone są dwa działania: przemienne dodawanie elementów v1 + v2 = v2 + v1

oraz mnożenie elementów przez liczby z ciała λv (λ ∈ K). W zbiorze tym musi być też
“pępek świata”, czyli wektor zerowy 0 taki, że 0+v = v (dla dowolnego v ∈ V ). Ponadto
0v = 0 (nietłuste zero, to min. Z.Z., pardon, to element zerowy ciała K).
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Wobec ogólności i abstrakcyjności powyższej definicji, wektorami mogą być obiekty bardzo
różne: uporządkowane n-ki liczb z jakiegoś ciała, np. z R - wtedy taką p.w. nazywam
tu Rn (choć matematycy oznaczają ją chyba VRn), takie “szkolne” strzałki (każdy, kto
przeszedł przez szkolną fizykę wie, o co chodzi), macierze ustalonego wymiaru m × n,
wielomiany stopnia nie większego niż n (lub dowolnego - wtedy ich przestrzeń jest dość
duża, ale jeszcze nie tak duża, żeby sobie tego nie móc wyobrazić), a nawet funkcje, np.
odwzorowujące R w R (wtedy ta przestrzeń wektorowa jest naprawdę duuuuża7). Takie
obiekty, należące do V będą w tym skrypcie nazywane “żywymi” wektorami (i oznaczane
tłustymi literami), aby je odróżnić od składowych wektorów (czyli zbiorów liczb), które
są używane do reprezentowania wektorów i na nieszczęście wyglądają jak wektory z Rn

lub Cn, ale które wektorami jednak nie są (bo ten sam wektor może mieć różne składowe,
zależnie od tego w jakiej bazie są to jego składowe). Niezrozumiałe pojęcia tu użyte staną
się jasne w dalszym toku przyswajania sobie algebry.

Przypomnienie
Kombinacją liniową wektorów vi, i = 1, 2, . . . z p.w. V nad ciałem K nazywamy wektor
λ1v1 + λ2v2 + . . ., w którym λ1, λ2, . . . są liczbami z ciała K.

Przypomnienie
Mówimy, że układ (czyli taki mały podzbiorek) k wektorów v1, . . . ,vk należących do danej
p.w. V jest liniowo niezależny, jeśli jedynym rozwiązaniem równania

λ1v1 + λ2v2 + . . .+ λkvk = 0 ,

(tłuste zero to zero przestrzeni wektorowej, czyli wektor zerowy!) w którym λ1, λ2, . . . są
liczbami z ciała K, jest rozwiązanie λ1 = λ2 = . . . = λk = 0. Jeśli zaś istnieje jakieś inne
rozwiązanie tego równania z niezerowymi współczynnikami λi, to układ tych k wektorów
jest liniowo zależny. Oznacza to, że jeden (lub kilka) z nich da się (dadzą się) przedstawić
jako kombinacja (kombinacje) liniowe pozostałych.

Zadanie 1
Zbadać czy wektor v ∈ R3 można przedstawić jako kombinację liniową wektorów e1 i e2,
gdzie

i) v =





1
2
3



 , e1 =





4
5
6



 , e2 =





7
8
9



 ,

7Ale okazuje się, że jeśli np. narzucić na funkcje warunek
∫ ∞

−∞
dx f2(x) <∞ ,

- czyli rozpatrywać p.w. zwaną L2(R) - p. funkcji “całkowalnych z kwadratem” (jakby to bez sensu nie
brzmiało) - to taka przestrzeń jest już “tylko” tak duża, jak przestrzeń wielomianów dowolnego stopnia.
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oraz

ii) v =





1
2
3



 , e1 =





1
1
−1



 , e2 =





−1
1
1



 ,

Odpowiedź: Z jawnej postaci tych wektorów łatwo widać, że: i) tak, bo v = 2 e1 − e2,
ale ii) nie.

Zadanie 2
Czy wektory

w1 =

[

1 + 2i
i

]

, w2 =

[

7− i
3 + i

]

,

są liniowo zależne? Zbadać sprawę nad ciałem R i nad ciałem C.
Rozwiązanie: Pytamy, czy równanie

x1w1 + x2w2 = 0 ,

ma rozwiązanie z xi ∈ R, gdy badamy sprawę nad ciałem R oraz z xi ∈ C gdy nad C.
Rozwiążmy więc układ:

x1(1 + 2i) + x2(7− i) = 0 ,

x1 i+ x2(3 + i) = 0 ,

Z drugiego x1 = (−1 + 3i)x2 i to do pierwszego, co da: [(1 + 2i)(−1 + 3i) + 7− i]x2 = 0.
To istotnie jest zero, niezależnie od wartości x2. Rozwiązaniami są więc dowolne x2 i
x1 = (−1 + 3i)x2. Widać jednak, że jeśli x2 ∈ R, to x1 jest zespolone. Zatem nad R

wektory w1 i w2 są liniowo niezależne, ale nad C zależne.

Zadanie 3
Zbadać liniową niezależność nad ciałem R i nad C wektorów

i) e1 =





1
1
0



 , e2 =





0
1
1



 , e3 =





1
1
1



 , e4 =





1
0
1



 ,

oraz

ii) f1 =





0
1
2



 , f2 =





1
i
−i



 , f3 =





i
1
1



 .

Rozwiązanie: W przypadku i) widać gołym okiem, że są liniowo zależne nad R bo
równanie λ1 e1 + λ2 e2 + λ3 e3 + λ4 e4 = 0 ma rozwiązanie λ1 = λ2 = λ4 = λ, λ3 = −2λ z
dowolną rzeczywistą liczbą λ, a skoro są liniowo zależne nad R, to i nad C też, bo R ⊂ C.
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W przypadku ii) rozwiązujemy równanie ξ1f1 + ξ2f2 + ξ3f3 = 0, czyli układ

ξ2 + iξ3 = 0 ,

ξ1 + iξ2 + ξ3 = 0 ,

2ξ1 − iξ2 + ξ3 = 0 .

Dodając pierwsze pomnożone przez i do trzeciego dostajemy ξ1 = 0. Uwzględniając to, z
drugiego dodanego do trzeciego znajdujemy 2ξ3 = 0 czyli ξ3 = 0 i wtedy (z pierwszego)
ξ2 = 0 też. Zatem wektory f1, f2, f3 są liniowo niezależne nad obydwoma ciałami, R i C.

Uwaga 1: Stwierdzona wyżej liniowa zależność e1, e2, e3 i e4 oznacza, że np. e3 =
1
2
e1+

1
2
e2+

1
2
e4, tj., że e3 jest kombinacją liniową pozostałych. W zasadzie zamiast badać

istnienie niezerowych rozwiązań równania λ1 e1 + λ2 e2 + λ3 e3 + λ4 e4 = 0 moglibyśmy
postawić problem, czy wektor e3 jest liniowo zależny od pozostałych. To jest jednak
mniej ogólne: mogłoby się np. okazać, że sam wektor e3 nie daje się przedstawić jako
kombinacja liniowa e1, e2 i e4, ale te trzy wektory są liniowo zależne. Np. gdyby badać
problem liniowej zależności wektorów

v1 =





0
1
0



 , v2 =





0
0
1



 , v3 =





1
0
1



 , v4 =





0
1
1



 ,

to okazałoby się (co w przypadku bardziej skomplikowanych wektorów nie musiałoby być
od razu tak łatwo widoczne), że v3 nie jest kombinacją liniową v1, v2 i v4, niemniej te
trzy wektory: v1, v2 i v4 są liniowo zależne i tym samym cztery wektory v1, v2, v3 i v4

są liniowo zależne. Badając ich liniową zależność przez pytanie o istnienie niezerowych
rozwiązań równania λ1v1 + λ2v2 + λ3v3 + λ4v4 = 0 dostalibyśmy, że niezerowym rozwią-
zaniem jest λ1 = λ2 = −λ4 = λ i λ3 = 0, czyli v1 + v2 − v4 = 0. Jest jasne, że to nie
pozwala wyrazić v3 przez pozostałe (bo λ3 = 0).

Uwaga 2: Często badanie ile w danym zbiorze wektorów należących do Rn jest wekto-
rów liniowo niezależnych przeprowadza się metodą tzw. redukcji kolumnowej. Pokażemy
to tu na przykładzie wektorów z poprzedniego zadania. Mianowicie sprawdzimy tą me-
todą ile jest wektorów liniowo niezależnych w zbiorze (v1,v2,v3,v4). Badając ich liniową
niezależność, pytalibyśmy o to, czy można znaleźć niezerowe współczynniki λi tak by

λ1





0
1
0



+ λ2





0
0
1



+ λ3





1
0
1



+ λ4





0
1
1



 =





0
0
0



 .

Można się do tego zabrać tak: wyobrażmy sobie, że λ1 = λ′1 − λ4, a λ2 = λ′2 − λ3 − λ4.
Wtedy powyższa równość przybierze postać

λ′1





0
1
0



+ λ′2





0
0
1



+ λ3





1
0
0



+ λ4





0
0
0



 =





0
0
0



 .
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Teraz już gołym okiem widać, że współczynnik λ4 może być równy zeru, bo i tak mnoży
wektor zerowy (wektor v4 okazał się kombinacją liniową pozostałych trzech wektorów), a
pozostałe współczynniki, λ′1, λ

′
2 i λ3, żeby dać zerowy wektor po prawej stronie, muszą

być równe zeru. Tym samym v1, v2 i v3 już tworzą układ liniowo niezależnych wektorów.
Całą tak zawile tu opisaną procedurę przeprowadza się zwykle “mechanicznie” pakując
wszystkie cztery żywe wektory w R4 v1, v2, v3, v4 w jedną macierz (tzn. stawia się je
obok siebie na “sztorc”):





0 0 1 0
1 0 0 1
0 1 1 1



 ,

i na tej macierzy robi operacje zwane “redukcją kolumnową”, tzn. odejmuje się od jed-
nych kolumn kombinacje liniowe innych kolumn (wolno także wszystkie liczby w jakiejś
kolumnie pomnożyć przez jakąś niezerową liczbę) tak długo, aż dostanie się kilka kolumn
mających same zera i kilka mających po jednej jedynce i samych zerach i to tak, że w
macierzy na każdym poziomie jest już tylko jedna jedynka. Jak się chwilę zstanowić to
procedurę tę można robić systematycznie tak jak eliminatkę Gaussa (tylko tu na kolum-
nach).8 Należy jednak zrobić zastrzeżenie, że taka metoda (w tej wersji) działa, dzieki
specyficznej postaci żywych wektorów z Rn (lub z Cn).

Zadanie 4
Zbadać liniową zależność wektorów.

w1 =





2
i
−i



 , w2 =





2i
−1
1



 , w3 =





1
2
3



 .

Rozwiązanie: Rozwiązujemy równanie x1w1 + x2w2 + x3w3 = 0, czyli układ

2x1 + 2ix2 + x3 = 0 ,

ix1 − x2 + 2x3 = 0 ,

−ix1 + x2 + 3x3 = 0 .

Dodanie drugiego do trzeciego daje x3 = 0. Wtedy pierwsze sprowadza się do x1+ix2 = 0,
a drugie do ix1 − x2 = 0, czyli do pierwszego pomnożonego przez i. Zatem szukanym
rozwiązaniem jest x2 = ix1, x3 = 0 i dowolne x1. Ponieważ albo x1 albo x2 jest zespo-
lone (albo nawet obie te liczby) to wektory w1, w2 oraz w3 są liniowo zależne nad C,
ale nie nad R. Gdybyśmy to zadanie rozwiązywali metodą redukcji kolumnowej, to w
przypadku traktowania tych wektorów jak należących do p.w. nad ciałem R dopuszczali-
byśmy dodawanie do kolumn kombinacji innych kolumn z rzeczywistymi współczynnikami

8Procedurę tę w tym skrypcie stosuję wyjątkowo bo nie do niej się treść algebry sprowadza. Niestety
na skutek jej nadużywania w zadaniach (przez innych prowadzących ćwiczenia) studenci mają często
wrażenie, że cała ta algebra sprowadza się do takich fiku-miku na macierzach.
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(i dopuszczali mnożenie wszystkich liczb w danej kolumnie przez tę samą niezerową liczbę
rzeczywistą), a przy zadeklarowaniu, że p.w. jest nad ciałem C, wolno by było mnożyć
kolumny także przez liczby zspolone i brać kombinacje liniowe z zespolonymi współczyn-
nikami.

Zadanie 4′

Niech V będzie przestrzenią wektorową (oczywiście nad ciałem R) wielomianów stopnia
nie wyższego niż 3. Zbadać liniową zależność wektorów-wielomianów

w1 = x3 + x2 − x− 1 ,

w2 = − 3x+ 4 ,

w3 = −x3 + x2 − 2x+ 1 ,

w4 = − x2 + 2 ,

Rozwiązanie: Pytamy, czy układ

λ1w1 + λ2w2 + λ3w3 + λ4w4 = 0 ,

w którym 0 jest wielomianem zerowym, tj. funkcją f(x) = 0x3 + 0x2 + 0x + 0, ma
rozwiązanie różne od λ1 = λ2 = λ3 = λ4 = 0 (nie chodzi tu więc w żadnym razie o
znalezienie x-a, dla którego wartość jakiegoś wielomianu jest równa zeru!!!). Wymaga to
rozwiązania układu

λ1 − λ3 = 0 ,

λ1 + λ3 − λ4 = 0 ,

−λ1 − 3λ2 − 2λ3 = 0 ,

−λ1 + 4λ2 + λ3 + 2λ4 = 0 .

Rozwiązanie: λ1 = ξ, λ2 = −ξ, λ3 = ξ, λ4 = 2ξ, gdzie ξ jest dowolną liczbą rzeczywistą.
Układ tych czterech wielomianów jest wiec liniowo zależny, gdyż

w2 = w1 +w3 + 2w4 .

Zadanie 5
Dowieść, że jeśli wektory e1, e2 oraz e3 są liniowo niezależne (nad R lub C) to takimiż są
i wektory

f1 = e1 + e2 + e3 ,

f2 = e1 + e2 ,

f3 = e2 + e3 .

Rozwiązanie: Jak zwykle pytamy, czy z faktu, że λ1f1 + λ2f2 + λ3f3 = 0 wynika, że
λ1 = λ2 = λ3 = 0. Wiemy także, jako że wektory e1, e2 i e3 są liniowo niezależne, iż
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równanie ξ1e1 + ξ2e2 + ξ3e3 = 0 ma tylko rozwiązanie ξ1 = ξ2 = ξ3 = 0. Piszemy więc:

0 = λ1f1 + λ2f2 + λ3f3 = λ1(e1 + e2 + e3) + λ2(e1 + e2) + λ3(e2 + e3)

= (λ1 + λ2) e1 + (λ1 + λ2 + λ3) e2 + (λ1 + λ3) e3 .

Zatem na mocy założenia musimy mieć λ1+λ2 = 0, λ1+λ2+λ3 = 0 i λ1+λ3 = 0. Drugie
z pierwszym daje λ3 = 0, wtedy trzecie daje λ1 = 0 i na koniec z drugiego wynika wtedy
że i λ2 = 0. Zatem układ trzech wektorów f1, f2, f3 jest liniowo niezależny.

Zadanie 6
Dowieść, że wektory

f1 = sin x , f2 = sin3 x , f3 = sin 3x ,

należące do przestrzeni wektorowej V = Map(R,R) są liniowo zależne.
Rozwiązanie: To proste

sin 3x = sin(2x+ x) = sin 2x cosx+ sin x cos 2x

= 2 sin x cos2 x+ sin x(1 − 2 sin2 x) = 3 sin x− 4 sin3 x .

Czyli f3 = 3f1 − 4f2, co dowodzi, że f1, f2, f3 są liniowo zależne.

Zadanie 7
Dowieść, że następujące zbiory wektorów-funkcji (tj. wektorów z bardzo duuuużej prze-
strzeni wektorowej V = Map(R,R) nad R) są liniowo niezależne (czy odpowiedź mogła
by być inna, gdyby funkcje te traktować jak odwzorowania odcinka (a, b) w R?)

a) sin x, cosx ,

b) 1, sin x, cosx ,

c) sin x, sin 2x, . . . , sin nx ,

d) 1, cosx, cos 2x , . . . , cos nx

e) 1, cosx, sin x, cos 2x, sin 2x, . . . , cos nx, sinnx .

Rozwiązanie: W przypadku a) jest jasne, że λ sin x + ξ cosx = 0 może dla wszystkich
x ∈ (a, b) ⊂ R zachodzić tylko dla λ = ξ = 0: jeśli x = kπ i x = lπ + 1

2
π (z jakimiś

całkowitymi k i l) należą do (a, b) to jest to trywialne, jesli nie, to można zróżniczkować9 i
ma się λ cosx−ξ sin x = 0 oraz λ sin x+ξ cosx = 0 i znów jedynym rozwiązaniem obu dla
wszystkich x-ów jest λ = ξ = 0. To samo w przypadku b): f(x) ≡ η1+λ sin x+ξ cosx = 0
dla wszystkich x ∈ (a, b) ⊂ R też wymaga η = λ = ξ = 0 (aby to zobaczyć, można
zróżniczkować f(x) dwakroć, co da −λ sin x − ξ cos x = 0, i po dodaniu f ′′(x) = 0 do
f(x) = 0 wyjdzie, że η = 0; dalej problem jest już taki sam, jak w punkcie a). W

9No bo jeśli funkcja f(x) = λ sinx + ξ cosx ma być tożsamościowo równa zeru (w przedziale (a, b)),
to jej pochodna też taka musi być.

20



przypadku c) możemy posłużyć się indukcją. Zakładamy, że n pierwszych wektorów
twory układ liniowo niezależny (jeśli n = 1, jest to oczywiste) i sprawdzamy, czy z tego
wynika, że po dołączeniu doń n + 1-szego wektora, układ wektorów nadal będzie liniowo
niezależny, to znaczy, że równanie

f(x) ≡ λ1 sin x+ λ2 sin 2x+ . . .+ λn sin nx+ λn+1 sin(n+ 1)x ≡ 0 ,

(symbol ≡ przypomina, że ma to być 0 dla wszystkich x) nadal będzie miało tylko roz-
wiązanie λ1 = λ2 = λn = λn+1 = 0. Skoro równość ta ma zachodzić dla wszystkich x, to
znaczy że i

f ′′(x) = −λ1 sin x− 22λ2 sin 2x+ . . .− n2λn sinnx− (n+ 1)2λn+1 sin(n+ 1)x ≡ 0 .

Mnożymy f(x) przez (n+ 1)2 i dodajemy do tego tu wyżej, co da

[(n + 1)2 − 1]λ1 sin x+ [(n+ 1)2 − 4]λ2 sin 2x+ . . .+ [(n+ 1)2 − n2]λn sinnx ≡ 0 .

To zaś na mocy indukcyjnego założenia o liniowej niezależności wektorów sin x, . . ., sinnx
oznacza, ze [(n + 1)2 − 1]λ1 = [(n + 1)2 − 4]λ2 = . . . = [(n + 1)2 − n2]λn = 0. Stąd zeru
muszą być równe wszystkie λi o i = 1, . . . , n z wyjątkiem ewentualnie k-tej, o takim k, że
(n+1)2−k2 = 0. Ale to się nie może zdarzyć, bo w indukcji rozpatrujemy tylko n+1 > k.
Zatem λ1 = λ2 = . . . λn = 0 i z tożsamościowego znikanie f(x) wynika, iż także λn+1 = 0.
W przypadku d) także posługujemy się indukcją. Najpierw, podobnie jak w punkcie b)
pokazujemy, że wektory 1 i cosx są liniowo niezależne, a następnie zakładamy, że teza
(liniowa niezależność) jest prawdziwa dla n i musimy pokazać, że

g(x) ≡ η + λ1 cosx+ λ2 cos 2x+ . . .+ λn cosnx+ λn+1 cos(n + 1)x ≡ 0 ,

pociąga za sobą η = λ1 = . . . = λn = λn+1 = 0. Mnożymy więc g(x) przez (n + 1)2 i
dodajemy do tego dwakroć zróżniczkowane g(x) = 0. Jak wyżej wynika stąd, że λ1 =
λ2 = . . . λn = 0 i zostaje nam w g(x) = 0 tylko η + λn+1 cos(n + 1)x = 0, co znów
(choćby na mocy tego, że teza jest prawdziwa dla n = 1, bo czymże się różni x od
(n + 1)x? - tylko dziedziną...) wymaga by η = λn+1 = 0 . Wreszcie w przypadku
e) o prawdziwość tezy dla n = 1 wnosimy analogicznie jak w punkcie b), a następnie
zakładamy, że η + λ1 cosx+ ξ1 sin x+ λn cos nx+ ξn sinnx = 0 tylko jeśli η = λ1 = ξ1 =
. . . = λn = ξn = 0 i robimy dla n + 1 sztuczkę z drugą pochodną, co zostawia nam
η + λn+1 cos(n + 1)x+ ξn+1 sin(n+ 1)x = 0. To też wymaga, by η = λn+1 = ξn+1 = 0.

Przypomnienie:
Bazą uporządkowaną przestrzeni wektorowej V nad ciałem K jest każdy uporządkowany
(czytaj: ponumerowany zgodnie z jakimś porządkiem) maksymalny układ liniowo nieza-
leżnych wektorów z V . Liczba wektorów takiego układu jest wymiarem przestrzeni V
(oznaczanym dimV ); dowodzi się, że wymiar V nie zależy od wyboru bazy, tzn. że liczba
wektorów bazy (w przypadku przestrzeni o skończonym wymiarze) jest zawsze taka sama.
Konstruktywnym stwierdzeniem, umożliwiającym sprawdzanie, czy dany układ wektorów
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z jakiejś p.w. V stanowi jej bazę (tzn., czy jest to maksymalny układ liniowo niezależ-
nych wektorów), jest to, że każdy wektor z V daje się przedstawić jako kombinacja liniowa
wektorów tworzących bazę i kombinacja ta jest jednoznaczna (tzn. jest tylko jedna taka).

Aby stwierdzić, że dany układ wektorów jest bazą, trzeba mieć albo dostęp do żywych
wektorów (tj. umieć na nich działać bezpośrednio, czyli wiedzieć, czym jest “fizycznie”
p.w., do której one należą), albo (tak jak w Zadaniu 8’ niżej) mieć wektory podane jako
kombinacje liniowe innych kilku, o których już skądeś się wie, że tworzą bazę one bazę.
Np. w Zadaniu 5 nie możemy pytać o to, czy wektory f1, f2 i f3 tworzą bazę, bo nic nie
wiemy o p.w., do której one należą; ponieważ o wektorach e1, e2 i e3 nie powiedziano
tam, że tworzą bazę (powiedziane jest tylko, że są liniowo niezależne) to możemy tylko
sprawdzić, czy f1, f2 i f3 są liniowo niezależne też, ale nie to, czy tworzą one bazę.

Ponieważ każdy wektor z przestrzeni wektorowej Rn można zapisać jako kombinację
liniową n wiektorów ei (i = 1, . . . , n) mających na i-tym “pięterku” jedykę, a poza tym
same zera, wektory te tworzą bazę (obdarzoną ulubionym przez matematyków przymiot-
nikiem “kanoniczna”). Stąd też jest jasne, że dim Rn = n. W analogiczny sposób każdy
wielomian stopnia ≤ r można stworzyć jako kombinację liniową r+ 1 wielomianów kano-
nicznych ek(x) = xk, gdzie 0 ≤ k ≤ r. Zatem wymiar takiej przestrzeni wektorowej W(r)

jest równy dimW(r) = r + 1.

Zadanie 8
Dowieść, że (żywe) wektory

e1 =





1
2
3



 , e2 =





3
1
2



 , e3 =





2
3
1



 ,

tworzą bazę przestrzeni wektorowej R3.
Uwaga: jeśli w wektorach, tj. w tych kwadratowych nawiasikach, mają być tylko liczby
rzeczywiste - bo tak sobie definiujemy tę przestrzeń - to musi to być przestrzeń wektorowa
nad ciałem R; gdybyśmy bowiem dopuścili mnożenie wektorów przez liczby zespolone, to
w nawiasikach wystąpiłyby z konieczności także liczby zespolone wbrew naszemu okre-
śleniu tej przestrzeni. W drugą zaś stronę rzecz jest możliwa: możemy sobie arbitralnie
określić przestrzeń wektorową w taki sposób, że w nawiasikach (prostokątnych) mogą wy-
stąpić także liczby zespolone, ale dopuszczać tylko kombinacje liniowe o współczynnikach
rzeczywistych. W takim przypadku stosują się uwagi o bazie i wymiarze takiej przestrzeni
umieszczone na końcu tego zadania.
Rozwiązanie: Trzeba pokazać, że dowolny żywy wektor w można przedstawić jako kom-
binację liniową tych trzech, tj. w postaci x1 e1 + x2 e2 + x3 e3 = w. Niech w = [a, b, c].
Trzeba pokazać, że układ równań

x1 + 3x2 + 2x3 = a , 2x2 + 4x3 = a + b− c ,
2x1 + x2 + 3x3 = b , 4x1 + 2x3 = −a+ b+ c

3x1 + 2x2 + x3 = c , 2x1 + 4x2 = a− b+ c ,
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ma rozwiązanie.10 Mnożąc pierwsze równanie przez −2 i dodając je do trzeciego otrzy-
mujemy

2x2 + 4x3 = a+ b− c ,
4x1 + 2x3 = −a + b+ c ,

2x1 − 8x3 = −a− 3b+ 3c .

Teraz trzecie razy −2 i dodać do drugiego. Otrzymujemy 18x3 = a+7b−5c. Czyli mamy
x3. W podobny sposób można znaleźć 18x1 = −5a + b + 7c oraz 18x2 = 7a − 5b + c
(symetria równań!). Łatwo sprawdzić, że to dobry wynik. Skoro jest (jednoznaczne) roz-
wiązanie dla dowolnego wektora w, to wektory (e1, e2, e3) tworzą bazę.
Uwaga: Wyjaśnijmy sobie na najprostszym przykładzie jeszcze jedną sprawę: dwa wek-
tory

e1 =

[

1
0

]

, e2 =

[

0
1

]

,

rozpinają całą przestrzeń wektorową V nad ciałem R składającą się z wektorów postaci

w =

[

x1
x2

]

, o x1, x2 ∈ R ,

bo dowolny taki wektor można przedstawić jako w = x1 e1 + x2 e2, tj. jako kombinację
liniową e1 i e2 z rzeczywistymi współczynnikami. Przestrzeń ta jest zatem dwuwymiarowa,
bo jej baza składa się z dwu wektorów. Te same dwa wektory e1 i e2 nie rozpinają jednak
całej przestrzeni wektorowej W , też nad ciałem R, składającej się z wektorów postaci

w =

[

z1
z2

]

, o z1, z2 ∈ C ,

bo np. wektora
[

1
i

]

,

nie można dostać z kombinacji linowej x1 e1 + x2 e2 o rzeczywistych współczynnikach x1 i
x2. Do tego trzeba wziąć większą bazę, np.:

e1 =

[

1
0

]

, e2 =

[

0
1

]

, e3 =

[

i
0

]

, e4 =

[

0
i

]

.

Czyli taka przestrzeń wektorowa (nad ciałem R) jest czterowymiarowa. Oczywiście, jeśli
przestrzeń wektorowa jest nad ciałem C to te cztery powyższe wektory są parami do siebie
proporcjonalne (e2 = i e1, e4 = i e3), czyli liniowo zależne. Wtedy baza ma dwa wektory
i ta przestrzeń wektorowa (nad ciałem C) jest tylko dwuwymiarowa.

10Oczywiście można też do tego układu zastosować systematycznie eliminację Gaussa z Zadania 0.
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Zadanie 8′

Wiadomo, że trzy wektory f1, f2 i f3 stanowią bazę (uporządkowaną) przestrzeni wekto-
rowej V . Czy bazę stanowią też trzy wektory e1, e2 i e3 zdefiniowane jako kombinacje

e1 = f1 + f2 + f3 ,

e2 = 4 f1 + 5 f2 + 6 f3 ,

e3 = f1 − f2 + f3 ,

? A czy bazą są też wektory

w1 = f1 + f2 + f3 ,

w2 = 4 f1 + 5 f2 + 6 f3 ,

w3 = f1 + 3f2 + 5f3 .

?
Rozwiązanie: W tym zadaniu nie mamy dostępu do żywych wektorów z przestrzeni V
(nawet nie wiemy, czym one są, strzałkami, wielomianami, czy czymś innym), więc nie
możemy sprawdzić bezpośrednio, czy każdy wektor da się zapisać jako kombinacja liniowa
e1, e2 i e3 (w1, w2 i w3). Ale wiemy, że bazą są wektory fi, czyli wiemy, że każdy v z V
można przedstawić w postaci

v = f1 v
1
(f) + f2 v

2
(f) + f3 v

3
(f) =

3
∑

i=1

fi v
i
(f) ≡ fi v

i
(f)

Wprowadziliśmy tu specjalne oznaczenie współczynników rozkładu wektora v na wektory
bazy fi (tak się to nazywa): współczynnik przy fi nazywamy vi(f) pisząc numer i wektora
bazy (widać po co baza ma być uporządkowana!) u góry i zaopatrując współczynnik
w subskrypt (fuj, jaki anglicyzm!) (f), żeby pamiętać, że to jest i-ta składowa (znów
standardowa nazwa) wektora v w bazie wektorów fi. Notacja ta - choć niespotykana
gdzie indziej - jest bardzo wygodna i będzie używana w całym tym skrypcie. Ostatnia
postać tego wzoru wykorzystuje powszechnie dziś używaną konwencję sumacyjną wujka
Einsteina, polegającą na niepisaniu znaku sumy: jeśli wskaźnik (tu wskaźnik i) powtarza
się na dwóch różnych poziomach, domyślnie musi być zsumowany.

Wracając do meritum: spróbujmy najpierw odwrócić związki definiujące wektory ei, tj.
wyrazić przez wektory ei wektory bazy. Można to zrobić znów eliminatką Gaussa: związki
definiujące wektory ei traktujemy jak układ zwykłych równań liniowych i odejmujemy od
drugiego i od trzeciego odpowiednio 4 razy i 1 razy pierwsze; dwa te równania przybierają
wówczas postać

f2 + 2 f3 = e2 − 4 e1 ,

−2 f2 = e3 − e1 ,

Stąd od już razu f2 =
1
2
e1 − 1

2
e3, dalej: 4 f3 = 2 e2 − 8 e1 − 2 f2, czyli

f3 =
1

4
(−9 e1 + 2 e2 + e3) ,
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i wreszcie f1 = e1 − f2 − f3, czyli

f1 =
1

4
(11 e1 − 2 e2 + e3) ,

Skoro się udało odwrócić te związki, to możemy w rozkładzie v na wektory bazy fi wyrazić
te wektory przez wektory ei i napisać:

v =

(

11

4
e1 −

1

2
e2 +

1

4
e3

)

v1(f) +

(

1

2
e1 −

1

2
e3

)

v2(f) +

(

−9
4
e1 +

1

2
e2 +

1

4
e3

)

v3(f)

= e1

(

11

4
v1(f) +

1

2
v2(f) −

9

4
v3(f)

)

+ e2

(

−1
2
v1(f) +

1

2
v3(f)

)

+ e3

(

1

4
v1(f) −

1

2
v2(f) +

1

4
v3(f)

)

.

Pokazaliśmy więc, że każdy wektor v z przestrzeni V można jednoznacznie przedstawić
jako kombinację liniową wektorów ei; współczynnikami takiej kombinacji liniowej są liczby
w nawiasach, które w naszej notacji oznaczymy vi(e). Wykonany rachunek pokazuje też
od razu, że wektory ei są liniowo niezależne: skoro fi są, to wektor zerowy 0 przestrzeni
V ma w bazie fi składowe 0i(f) = 0 (z definicji liniowej niezależności wektorów fi). Zatem
zerowe są też współczynniki 0i(e) = 0. Tym samym pokazaliśmy, że wektory ei są bazą
przestrzeni V .

W przypadku wektorów wi wykonując te same co poprzednio operacje na definiujących
je związkach otrzymamy

f2 + 2 f3 = w2 − 4w1 ,

2 f2 + 4 f3 = w3 − w1 .

Ponieważ lewe strony tych równości są do siebie nawzajem proporcjonalne, widzimy, że
2w2 − 8w1 = w3 − w1, czyli 7w1 − 2w2 + w3 = 0. Trzy wektory wi są więc liniowo
zależne i nie mogą być bazą.

Przypomnienie
Podprzestrzenią wektorową V (czasem mówi się “podprzestrzenią liniową” albo “powłoką
liniową”) przestrzeni wektorowej U nad ciałem K nazywa się podzbiór wektorów nale-
żących do U zamknięty ze względu na działania, które można wykonywać na wektorach.
Oznacza to, że suma wektorów podzbioru V jest też wektorem z tego podzbioru, podobnie
jak należy doń każdy wektor z tego podzbioru pomnożony przez liczbę z K. Oczywiście
z warunków tych wynika, że do każdej podprzestrzeni wektorowej przestrzeni U należy
wektor zerowy, 0, przestrzeni U . Podprzestrzeń można zadać (zdefiniować) podając np.
zbiór (niekoniecznie liniowo niezależnych) rozpinających ją wektorów (tzn. mówiąc, że V
tworzą wszystkie możliwe kombinacje liniowe podanych wektorów) - wtedy jest to auto-
matycznie podprzestrzeń wektorowa - lub np. w sposób uwikłany, podając jakieś warunki,
które muszą spełniać wektory należące do V - w tym przypadku może się okazać, że zbiór
wektorów wyznaczanych przez podane warunki nie jest podprzestrzenią wektorową (tylko
takim sobie zbiorem).
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Przykład
Sprawdzić, czy zbiór A wektorów





x
y
z



 ,

spełniających warunek x+ y = 2 tworzy w R
3 podprzestrzeń wektorową.

Rozwiązanie: Nie tworzy. Gdyby tworzył, to suma wektorów

v1 =





x1
2− x1
z1



 , v2 =





x2
2− x2
z2



 ,

z których każdy sam z siebie należy do zbioru A (bo suma liczb z pierwszego i drugiego11

“pięterka” w każdym z tych wektorów jest równa 2) do zbioru A nie należy, bowiem suma
liczb z pierwszego i drugiego pięterka wektora

v1 + v2 =





x1 + x1
4− x1 − x2
z1 + z2



 ,

nie jest już równa 2, tylko 4. Podobnie widać, że jeśli v należy do A, to λv już nie należy.
Do A nie należy również wektor zerowy R3.

Zadanie 9
Znaleźć wymiar i jakąś bazę podprzestrzeni wektorowej E ⊂ R

4 rozpinanej przez wektory
v1, . . . ,v5

v1 =









2
1
2
1









, v2 =









3
3
4
2









, v3 =









3
−1
−1
3









, v4 =









−1
1
−1
1









, v5 =









2
3
7
−2









,

Rozwiązanie: Ponieważ R4 ma wymiar 4, zatem przynajmniej jeden z tych wektorów
musi być liniowo zależny od pozostałych. Odrzućmy ostatni (bo ma brzydkie liczby).
Aby zobaczyć, czy pierwsze cztery są liniowo zależne spróbujmy (trochę na “chybił-trafił”)
zapisać czwarty jako kombinację liniową trzech pierwszych, tj. jako v4 = x1v1 + x2v2 +
x3v3. To daje układ równań

2x1 + 3x2 + 3x3 = −1 ,
x1 + 3x2 − x3 = 1 ,

2x1 + 4x2 − x3 = −1 ,
x1 + 2x2 + 3x3 = 1 .

11Świadomie nie chcemy tu użyć słowa “składowej” - czy jest jasne, dlaczego?
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Weźmy trzy pierwsze na razie. Odjąć od trzeciego pierwsze. To da x2 = 4x3. Wstawiamy
to do dwu pierwszych i mamy układ

2x1 + 15x3 = −1 ,
x1 + 11x3 = 1 .

To łatwo rozwiązać (drugie razy dwa i odjąć od pierwszego). Stąd mamy jako rozwiązanie
układu trzech pierwszych równań

x1 = −
26

7
, x2 =

12

7
, x3 =

3

7
.

Teraz możemy sprawdzić ostatnie

−26
7

+ 2 · 12
7

+ 3 · 3
7
= 1 .

(Cztery równania na trzy zmienne - trzeba mieć szczęście żeby tak się udało!!) To dowodzi,
że cztery pierwsze wektory są liniowo zależne bo

−26
7
v1 +

12

7
v2 +

3

7
v3 − v4 = 0 .

Zarazem z jednoznaczności tego rozwiązania wynika, że jak byśmy wzięli którekolwiek
dwa wektory spośród v1, v2, v3 to się nie uda, tzn. v4 nie jest kombinacją liniową tylko
dwu z nich. Zatem wymiar podprzestrzeni E jest równy conajmniej 3. Skoro jednak się
okazało, że z czterech wektorów v1, v2, v3 i v4 tylko trzy są liniowo niezależne, to trzeba
wrócić i zapytać, czy nie jest w takim razie możliwe dołączenie v5, tzn. trzeba sprawdzić
czy układ wektorów v1 v3, v4 i v5, nie jest przypadkiem liniowo niezależny.12 Jeśli jest
liniowo zależny, to v5 powinien dać się zapisać jako x1 v1 + x3 v3 + x4 v4. Sprawdźmy to:

2x1 + 3x3 − x4 = 2 ,

x1 − x3 + x4 = 3 ,

2x1 − x3 − x4 = 7 ,

x1 + 3x3 + x4 = −2 .

Najpierw rozwiązujemy pierwsze trzy: od pierwszego trzecie da 4x3 = −5, czyli x3 = −5
4
.

To do drugiego i trzeciego:

x1 + x4 =
7

4
,

2x1 − x4 =
23

4
.

Dodanie stronami da x1 = 10
4

i wtedy z pierwszego wyżej x4 = 7
2
− 10

4
= −3

4
. Łatwo

sprawdzić, że to jest dobre rozwiązanie trzech pierwszych równań. Sprawdzamy teraz

12Zamiast v2 bierzemy tu v4, bo v2 ma brzydsze liczby. Jest to dopuszczalne, bo jak wynika z wyko-
nanego rachunku v2 można (dzięki temu, że x2 6= 0) wyrazić przez v1 v3 i v4.
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ostatnie, czwarte: x1 + 3x3 + x4 = 10
4
− 3 · 5

4
− 3

4
= −8

4
= −2. Czyli to czwarte też jest

wtedy spełnione! Zatem ostatecznie v5 jest kombinacją liniową v1, v3, i v4 czyli jest od
nich liniowo zależny. Ponieważ już wiemy, że v1, v3 i v4 są liniowo niezależne, więc mogą
one tworzyć bazę podprzestrzeni E, której wymiar jest zatem równy 3.

Zadanie 10
Jak w zadaniu 9 tylko z wektorami

v1 =









1
0
0
−1









, v2 =









2
1
1
0









, v3 =









1
1
1
1









, v4 =









1
2
3
4









, v5 =









0
1
2
3









,

Rozwiązanie: Jak i poprzednio (nawet nad ciałem R, bo wszystkie liczby w kolumienkach
są czysto rzeczywiste) pięć wektorów nie może być liniowo niezależnych. Teraz jednak
postąpimy bardziej regulaminowo i zbadamy warunek

λ1v1 + λ2v2 + λ3v3 + λ4v4 + λ5v5 = 0 .

Mamy zatem układ równań:

λ1 + 2λ2 + λ3 + λ4 = 0 ,

λ2 + λ3 + 2λ4 + λ5 = 0 ,

λ2 + λ3 + 3λ4 + 2λ5 = 0 ,

−λ1 + λ3 + 4λ4 + 3λ5 = 0 .

Drugie odjęte od trzeciego daje λ4 + λ5 = 0; pomijając trzecie piszemy więc pozostałe
równania (eliminując z nich λ5):

λ1 + 2λ2 + λ3 + λ4 = 0 ,

λ2 + λ3 + λ4 = 0 ,

−λ1 + λ3 + λ4 = 0 .

Teraz ostatnie minus przedostatnie da λ1 + λ2 = 0. Po wykorzystaniu tego pierwsze i
trzecie stają się tożsame z drugim. Zatem zostaje do spełnienia tylko λ2 + λ3 + λ4 = 0;
mamy więc jedno równanie na trzy niewiadome! Widać, że rozwiązanie można napisać w
postaci

λ1 = ξ , λ2 = −ξ , λ3 = ξ − η , λ4 = η , λ5 = −η .

ξ i η są tu zupełnie dowolnymi liczbami. Mamy zatem dla dowolnych wartości ξ i η
związek

ξ v1 − ξ v2 + (ξ − η)v3 + η v4 − η v5 = 0 .
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Możemy tu np. położyć ξ = 0 i η = 1 albo ξ = 1 i η = 0, co da związki

v5 = −v3 + v4 , v1 = v2 − v3 ,

pokazujące, że np. v1 oraz v5 można przedstawić w postaci kombinacji liniowych v2, v3 i
v4. Te trzy wektory mogą więc stanowić bazę całej podprzestrzeni rozpiętej przez v1, v2,
v3, v4 i v5.

Przypomnienie
Jeśli V i W są dwiema podprzestrzeniami tej samej przestrzeni wektorowej U , to sumą
algebraiczną V +W nazywa się zbiór wszystkich wektorów postaci v+w takich, że v ∈ V ,
w ∈ W . Suma taka jest nazywana sumą prostą podprzestrzeni V iW (i oznaczana V⊕W ),
jeśli jedynym elementem wspólnym podprzestrzeni V i W jest wektor zerowy 0 (jeśli V i
W są podprzestrzeniami, to obie, i V i W , muszą ten wektor w sobie zawierać). Między
wymiarami V , W i V +W zachodzi związek dim(V +W ) = dimV+ dimW− dim(V ∩W ), w
którym V ∩W jest podprzestrzenią wektorową tworzoną przez wszystkie wektory należące
i do V i do W (prawda, że zbiór takich wektorów jest podprzestrzenią w U?)

Zadanie 11
Pokazać, że podprzestrzeń liniowa E ⊂ R4 złożona z wektorów postaci









x
y
z
t









,
3z − 4t = 0

x− y + z + t = 0
,

jest rozpinana przez dwa wektory.
Rozwiązanie: Warunki są dwa na cztery liczby na kolejnych pięterkach wektora. Weźmy
x i z jako niezależne. Wtedy t = 3

4
z oraz (po wstawieniu tego do drugiego warunku)

x− y + 7
4
z = 0, czyli y = x+ 7

4
z. Zatem każdy wektor z E musi mieć postać

λ1









1
1
0
0









+ λ3
1

4









0
7
4
3









.

Zadanie 12
Znaleźć sumę (algebraiczną) i przecięcie dwu podprzestrzeni w R

3 rozpinanych przez dwa
zbiory wektorów:

V =











1
3
1



 ,





1
1
−1



 ,





1
3
3











,
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W =











1
2
3



 ,





2
3
−1



 ,





1
1
−4











.

Rozwiązanie: Najpierw znajdziemy ich sumę. Jeśli wszystkie trzy wektory V (lub W )
są liniowo niezależne, to siłą rzeczy rozpinają one całą przestrzeń wektorową R

3 i V = R
3

(W = R3) i wtedy w oczywisty sposób V +W = R3. Sprawdźmy więc liniową niezależność
wektorów z V . Układ

x1 + x2 + x3 = 0 ,

3x1 + x2 + 3x3 = 0 ,

x1 − x2 + 3x3 = 0 ,

ma jak łatwo sprawdzić tylko rozwiązanie x1 = x2 = x3 = 0, zatem rzeczywiście V = R3

i V +W = R3. Jeśli zaś chodzi o W , to gołym okiem widać, że w3 = −w1 + w2, więc
podprzestrzeń W jest tylko dwuwymiarowa i jest rozpinana np. przez w1 i w2. Ponieważ
V = R3, przecięcie V ∩W , tj. podprzestrzeń utworzona przez takie wektory, które należą
zarazem do V i do W jest po prostu samą podprzestrzenią W (bo W ⊂ V = R

3). Widać,
że związek dim(V +W ) =dimV+dimW−dim(V ∩W ) jest tu spełniony.

Zadanie 13
Znaleźć wymiar i podać jakąś bazę podprzestrzeni E ⊂ R4 rozpiętej przez wektory

w1 =









1
2
3
4









, w2 =









1
1
3
1









, w3 =









0
2
1
3









, w4 =









1
3
3
7









.

Znaleźć ogólną postać wektora z E, a także zadać tę samą podprzestrzeń w sposób uwi-
kłany (tj. podać równanie lub równania, jakie muszą spełniać liczby na kolejnych “pieter-
kach” wektora, by należał on do E).
Rozwiązanie: Znów zobaczmy, czy się da przedstawić w4 w postaci x1w1+x2w2+x3w3.
Aby się dało musi być spełniony układ równań:

x1 + x2 = 1 ,

2x1 + x2 + 2x3 = 3 ,

3x1 + 3x2 + x3 = 3 ,

4x1 + x2 + 3x3 = 7 .

Rozwiążmy trzy pierwsze, a potem sprawdzimy ostatnie. Drugie minus pierwsze daje
x3 = 1− 1

2
x1. To do trzeciego i mamy razem z pierwszym układ

x1 + x2 = 1 ,
5

2
x1 + 3x2 = 2 .
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Stąd już łatwo i mamy jako rozwiązanie trzech pierwszych

x1 = 2 , x2 = −1 , x3 = 0 .

(Łatwo sprawdzić, że to rozwiązuje trzy pierwsze równania). Teraz sprawdzamy czwarte:

2 · (4)− 1 · (1) + 0 · (3) = 7 .

Hurra! Znów się udało! Czyli w4 jest liniowo zależny od w1, w2 i w3: w4 = 2w1 − w2.
Co więcej znów rozwiązanie jest jednoznaczne,13 więc wszystkie trzy, w1, w2 i w3, są już
liniowo niezależne. Zatem wymiar dimE = 3, a jej bazą mogą być te trzy wektory.

Oczywiście dowolny wektor należący do E ma postać

x1w1 + x2w2 + x3w3 =









x1 + x2
2x1 + x2 + 2x3
3x1 + 3x2 + x3
4x1 + x2 + 3x3









=









a
b
c
d









.

Na użytek zadania 15 wygodnie będzie przedstawić ten wektor tak, że trzy jego pierwsze
składowe będą dowolne, a czwarta będzie się wyrażała przez trzy pierwsze. Zadamy tym
samym tę podprzestrzeń w sposób uwikłany. W tym celu zastępujemy w drugim, trzecim
i czwartym wierszu x1 + x2 przez a, tak by znikło z nich x1









a
2a− x2 + 2x3

3a+ x3
4a− 3x2 + 3x3









=









a
b
c
d









.

W następnym kroku zastępujemy 3a + x3 przez c a w drugim i czwartym wierszu zastę-
pujemy x3 przez c− 3a. W ten sposób









a
−4a + 2c− x2

c
−5a + 3c− 3x2









=









a
b
c
d









.

Wreszcie, w drugim wierszu zastępujemy −4a + 2c − x2 przez b, a w czwartym zamiast
x2 dajemy −4a+ 2c− b. W ten sposób ogólna postać wektora należącego do E jest taka:









a
b
c

7a+ 3b− 3c









.

Podprzestrzeń E można więc zadać w sposób uwikłany mówiąc, że należą do niej wszystkie
wektory [a, b, c, d] spełniające warunek 7a+ 3b− 3c− d = 0.

13Oczywiście patrząc czujnie na wektory w1, w2, w3 i w4 można by było od razu zobaczyć, że w4 =
2w1−w2; nie wiedzielibyśmy wtedy jednak jeszcze, czy jest to jednoznaczny sposób wyrażenia w4 przez
w1, w2 i w3 czyli tego, że te trzy wektory są liniowo niezależne.
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Zadanie 14
Znaleźć wymiar i bazę podprzestrzeni (dobrze najpierw uzasadnić, że to naprawdę jest
podprzestrzeń!) F ⊂ R4 rozpiętej przez wszystkie wektory postaci









x
y
z
t









,
2y − 2z − t = 0

x− 4y + 4z + 2t = 0
.

Rozwiązanie: dwa razy pierwszy warunek plus drugi da x = 0. Z pierwszego zaś mamy,
że t = 2y − 2z. Wektory rozpinające E są więc postaci









0
y
z

2y − 2z









= y









0
1
0
2









+ z









0
0
1
−2









≡ y f1 + z f2 .

Wektory f1 i f2 są ewidentnie liniowo niezależne. Zatem dimF = 2 i jej bazą mogą być f1
i f2 (ale może też być nią jakieś dwie inne liniowo niezależne kombinacje tych wektorów,
np. w1 = f1 + f2 i w2 = f1 − f2).

Zadanie 15
Znaleźć wymiary i podać jakieś bazy sumy algebraicznej oraz przecięcia podprzestrzeni
E z zadania 13 i podprzestrzeni F z zadania 14. Czy suma algebraiczna E +F jest sumą
prostą?
Rozwiązanie: Conajmniej jeden z pięciu wektorów

w1 =









1
2
3
4









, w2 =









1
1
3
1









, w3 =









0
2
1
3









, w4 ≡ f1 =









0
1
0
2









, w5 ≡ f2 =









0
0
1
−2









,

rozpinających sumę E+F musi być liniowo zależny od pozostałych. Wyrzućmy pierwszy
bo najbardziej skomplikowany. Zobaczmy następnie, czy w2 się da zapisać jako kombina-
cja liniowa w3, w4 i w5. Gołym okiem widać, że się nie da. Co więcej, łatwo sprawdzić, że
równanie xw3+yw4+zw5 = 0 ma tylko rozwiązanie x = y = z = 0. Zatem E+F = R4,
bo jest rozpinana przez cztery wektory w2, w3, w4 i w5, które można przyjąć za jej bazę.

Teraz przecięcie E i F . Tworzą je wektory należące i do E i do F . Oznacza to, że
wektory te muszą się dać jednocześnie przedstawić w dwu postaciach









a
b
c

7a+ 3(b− c)









=









0
y
z

2y − 2z









.
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Widać, że aby tak było musi być a = 0, b = y, c = z i do tego jeszcze musi zachodzić
równość 7a + 3(b − c) = 2(y − z). Ale skoro a = 0, b = y, c = z, to może tak być tylko,
jeśli b = c. Zatem ogólną postacia wektora należącego do przecięcia podprzestrzeni E i F
jest









0
b
b
0









.

Przecięcie E i F jest więc podprzestrzenią jednowymiarową rozpinaną przez jakikolwiek
wektor powyższej postaci (np. z b = 1). Skoro przecięcie E i F nie składa się z samego
tylko wektora zerowego, to suma E+F nie jest sumą prostą. Zgadza się to też ze wzorem
dim(E + F ) =dimE+dimF−dim(E ∩ F ): 4 = 3 + 2− 1.

Zadanie 15′

W przestrzeni wektorowej R4 zadane są (poprzez podanie tzw. rozpinaczy, czyli rozpina-
jących je wektorów) dwie podprzestrzenie

U =























−2
1
1
1









,









1
1
−3
1























, V =























1
−3
1
1









,









1
1
1
−5























.

Podać wymiar oraz jakieś bazy podprzestrzeni U + V oraz U ∩ V . Obie te podprzestrze-
nie zadać także w sposób uwikłany, podając równania, jakie muszą spełniać liczby na
kolejnych pięterkach wektorów należących do tych podprzestrzeni.
Rozwiązanie: Najpierw sprawdzimy, czy podane cztery wektory są liniowo zależne, czy
nie. Gdyby nie były, to oczywiście rozpinałyby całą przestrzeń R4 i suma U +V podprze-
strzeni by była całą tą przestrzenią. Jak zwykle, zamiast działać regulaminowo, wybie-
rzemy bardziej pokrętny sposób i zapytamy, czy ostatni wektor jest kombinacją liniową
trzech pierwszych. Sprowadza się to do rozwiązania układu czterech równań

−2x1 + x2 + x3 = 1 ,

x1 + x2 − 3x3 = 1 ,

x1 − 3x2 + x3 = 1 ,

x1 + x2 + x3 =−5 .

Jak zwykle można sprawdzić, czy układ ten ma rozwiązanie próbując najpierw rozwiązać
trzy pierwsze równania, a jak się uda, to sprawdzając, czy spełnione jest też i ostatnie.
Ale okaże się później, że warto jako pierwszy krok rozwiązać trochę ogólniejszy układ:

−2x1 + x2 + x3 = a ,

x1 + x2 − 3x3 = b ,

x1 − 3x2 + x3 = c .
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Potrzebny nam układ odpowiada położeniu a = b = c = 1. No to dzieła! Odejmujemy
ostatnie od drugiego i dodajemy dwa razy ostatnie do pierwszego, eliminując z nich x1:

−5x2 + 3x3 = a + 2c ,

4x2 − 4x3 = b− c .

To już łatwo rozwiązać względem x2 i x3, a potem z dowolnego z trzech równań wyznaczyć
x1. Otrzymujemy w ten sposób:

x1 = −
1

8
(8a+ 4b+ 4c) , x2 = −

1

8
(4a+ 3b+ 5c) , x3 = −

1

8
(4a+ 5b+ 3c) .

jeśli podstawimy tu a = b = c = 1 dostaniemy x1 = −2, x2 = x3 = −3
2
. Wstawiamy te

liczby do czwartego równania (pierwszego z wypisanych układów) i znajdujemy, że jest ono
też spełnione. Zatem z czterech podanych wektorów - nazwijmy je w1, . . . ,w4 - ostatni
jest liniowo zależny od pozostałych: w4 = −2w1 − 3

2
w2 − 3

2
w3. Zatem podprzestrzeń

U +V jest rozpinana przez trzy wektory, np. w1, w2 i w3 (tworza one jedna z możliwych
jej baz) i jej wymiar jest równy 3. Z równości dim(U + V ) =dimU+dimV−dim(U ∩ V )
wynika więc od razu, iż podprzestrzeń U∩V jest jednowymiarowa, tj. jest rozpinana przez
jeden wektor, który z definicji należy i do U i do V . Aby go znaleźć możemy znaleziony
związek miedzy wektorami w1, . . . ,w4 napisać w postaci

−4w1 − 3w2 = 3w3 + 2w4 .

W takiej formie od razu daje nam on to co trzeba: wektor −4w1 − 3w2 należy bowiem
do U , a wektor 3w3 + 2w4 należy do V . Są one sobie równe, więc dają właśnie wektor
należący (i zatem ją rozpinający, i zarazem będący jej bazą) podprzestrzeń U ∩V . Jawnie
wektor ten ma postać

−4w1 − 3w2 =









5
−7
5
−7









= 3w3 + 2w4 .

Na koniec możemy się zająć sprawą zadania podprzestrzeni U + V i U ∩ V w sposób
uwikłany. Najpierw U + V : Każdy wektor do niej należący jest kombinacją liniową w1,
w2 i w3

x1w1 + x2w2 + x3w3 =









−2x1 + x2 + x3
x1 + x2 − 3x3
x1 − 3x2 + x3
x1 + x2 + x3









≡









a
b
c
d









.

Teraz widać w jakim celu rozwiązaliśmy wcześniej układ równań z a, b i c po prawej
stronie. Znalezione x1, x2 i x3 możemy teraz wstawić do sumy x1 + x2 + x3 na dolnym
pięterku wypisanego wyżej wektora należącego do U+V . Zatem dowolny wektor należący
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zapisany jak tu wyżej po prawej należy do U + V , jeśli 2a+ 3
2
(b+ c) + d = 0. Zadać zaś

podprzestrzeń U ∩ V w sposób uwikłany jest bardzo prosto: wszystkie wektory do niej
należące są proporcjonalne do wektora [5,−7, 5,−7], zatem mają one pierwsze pięterko
a równe trzeciemu c, a drugie b czwartemu d, a na dodatek pierwsze i drugie są ze sobą
związane tak, że 7a+5b = 0. Można więc te podprzestrzeń w sposób uwikłany zadać tak:

U ∩ V =























a
b
c
d









,
a− c = 0
b− d = 0
7a+ 5b = 0















.

Zadanie 16
Pokazać, że podprzestrzeń E ⊂ C4 rozpięta przez wektory v1, v2, v3, v4 postaci

v1 =









1
0
2
i









, v2 =









0
i
1

1− i









, v3 =









2
−i
1
0









, v4 =









3
0
4
1









,

zawiera wektory

w1 =









1
i
3
1









, oraz w2 =









2
0
2

1− i









,

oraz, że wektory w1, w2, v3, v4 rozpinają tę samą podprzestrzeń E.
Rozwiązanie: Najpierw trzeba pokazać, że równania x1 v1 + x2 v2 + x3 v3 + x4 v4 = w1

oraz y1 v1 + y2 v2 + y3 v3 + y4 v4 = w2 mają rozwiązania. Pierwsze daje układ równań

x1 + 2x3 + 3x4 = 1 ,

ix2 − ix3 = i ,

2x1 + x2 + x3 + 4x4 = 3 ,

ix1 + (1− i)x2 + x4 = 1 .

Z drugiego x2 − x3 = 1, czyli x2 = 1 + x3. To do pozostałych trzech, co da układ

x1 + 2x3 + 3x4 = 1 ,

2x1 + 2x3 + 4x4 = 2 ,

ix1 + (1− i)x3 + x4 = i .

Od drugiego odjąć pierwsze: x1 = 1− x4. To do pierwszego i trzeciego

2(x3 + x4) = 0 ,

(1− i)(x3 + x4) = 0 .
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Czyli da się przedstawić w1, z tym przecież, że nie w sposób jednoznaczny. (O! Wyszło mi
zdanie jak z T. Parnickiego!) To zaś oznacza, że same wektory v1, v2, v3 i v4 są liniowo
zależne (czyli dimE < 4). Istotnie: widać, że v4 = v1 + v2 + v3. Zatem by dowieść, że
w2 ∈ E, wystarczy pokazać, że w2 = y1v1 + y2v2 + y3v3. Widać, że w2 = v2 + v3 po
prostu. Ogólniej, można zauważyć, że

w1 = v1 + v2 + λ(v1 + v2 + v3 − v4) ,

w2 = v2 + v3 + ξ(v1 + v2 + v3 − v4) ,

dla dowolnych λ i ξ, ponieważ v1+v2+v3−v4 = 0. Stąd dla λ = −1 uzyskujemy związek

v4 = w1 + v3 .

Następnie kładąc raz λ = 1, ξ = 2, a drugi raz λ = 1, ξ = 1 dostajemy dwa układy
równań

w1 = 2v1 + 2v2 + v3 − v4 , w1 = 2v1 + 2v2 + v3 − v4 ,

w2 = 2v1 + 3v2 + 3v3 − 2v4 , w2 = v1 + 2v2 + 2v3 − v4 .

Z pierwszego układu, odejmując pierwsze od drugiego otrzymujemy

w2 −w1 = v2 + 2v3 − v4 = v2 + 2v3 −w1 − v3 = v2 + v3 −w1 ,

gdzie w drugim kroku wykorzystany został otrzymany już wyżej związek v4 = w1 + v3.
Z drugiego zaś układu, odejmując od pierwszego drugie, dostajemy

w1 −w2 = v1 − v3 .

Tak więc możemy wyrazić v1 i v2 przez w1, w2 oraz v3:

v2 = w2 − v3 ,

v1 = w1 −w2 + v3 ,

(co łatwo sprawdzić). Zatem każdy wektor postaci αv1 + βv2 + γv3 ∈ E można napisać
jako

α(w1 −w2 + v3) + β(w2 − v3) + γv3 = αw1 + (β − α)w2 + (α− β + γ)w3 .

Zatem wektory w1, w2 i v3 także rozpinają E. Zauważmy jeszcze na koniec, że nie
zastanawialiśmy się tutaj, nad jakim ciałem rozpięta jest przestrzeń wektorowa, do której
należą rozpatrywane tu wektory. Ponieważ liczby występujące w wektorach v2, v3, w1

i w2 są zespolone, a priori odpowiedź na postawione pytania mogłaby zależeć od tego,
czy ciałem tym jest C, czy tylko R (por. uwagi w Zadaniach 2 i 8). Wyszło nam jednak,
że wektory w1 i w2 są kombinacjami liniowymi o współczynnikach czysto rzeczywistych
wektorów vi, a to oznacza, że odpowiedź nie zależy od tego, czy ciałem jest C czy R.
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Uwaga. Jak dotąd liniową (nie)zależność zbioru wektorów sprawdzaliśmy badając bez-
pośrednio warunek zerowania się ich kombinacji liniowej. Później nauczymy się robić to
badając rząd odpowiedniej macierzy utworzonej ze składowych tych wektorów w jakiejś
(dowolnej) bazie i wykorzystywać do tego wyznaczniki macierzy.

Zadanie 17
W pewnej bazie pewnej trójwymiarowej przestrzeni wektorowej V (o której charakterze
nic nie musimy w zasadzie wiedzieć; widać jednak, że dimV = 3) wektory v1, v2 v3 mają
składowe

v1 :=





1
1
1



 , v2 :=





1
1
2



 , v3 :=





1
2
3



 .

Pokazać, że v1, v2 v3 są także bazą tej przestrzeni i podać w tej nowej bazie składowe
wektora w, który w pierwotnej bazie ma składowe (6, 9, 14).
Uwaga: Użyliśmy wyżej symbolu := aby podkreślić, że w zasadzie nie należy utożsa-
miać wektora z jego składowymi: wektor pozostaje sobą niezależnie od naszego wyboru
bazy; składowe zaś od tego wyboru jak najbardziej zależą! W tych notatkach składowe
wektorów będziemy zawsze pisać w nawiasach okrągłych aby podkreślić, że nie należy
ich mylić z wektorami z przestrzeni Rn, które zawsze pedantycznie piszemy w nawiasach
prostokątnych. Np. jeden i ten sam wektor w z R3

w =





1
2
3



 ,

ma w kanonicznej bazie ei, i = 1, 2, 3

e1 =





1
0
0



 , e2 =





0
1
0



 , e3 =





0
0
1



 ,

składowe (1, 2, 3), bo w = 1 · e1 + 2 · e2 + 3 · e3, a w bazie fi, i = 1, 2, 3

f1 =





1
1
0



 , f2 =





0
1
1



 , f3 =





1
0
1



 ,

składowe (0, 2, 1) bo, jak łatwo zobaczyć, w = 0 · f1+2 · f2+1 · f3. Zauważmy jednak, że w
zadaniu, w odróżnieniu od tego przykładu (w którym wektory są kolumnami liczbowymi,
na których umiemy bezpośrednio wykonywać działania), nie mamy dostępu do “żywych”
wektorów: nie wiemy, czym są e1, e2, e3 (mogą one być strzałkami w przestrzeni, wie-
lomianami, albo żyrafami, jeśli komuś się uda nadać zbiorowi żyraf strukturę przestrzeni
wektorowej) i jedyne czym dysponujemy, to informacja, że e1, e2, e3 są wektorami liniowo
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niezależnymi oraz składowymi wektorów v1, v2, v3 i w w bazie tworzonej przez wektory
e1, e2, e3.
Rozwiązanie: Niech wyjściową bazą będą wektory e1, e2, e3 (nic o nich nie wiemy - poza
tym, że skoro tworzą bazę, to są liniowo niezależne - ale jakieś oznaczenia ich możemy
sobie wprowadzić). Wykorzystując podane w tej bazie składowe wektorów v1, v2 i v3

możemy napisać

v1 = e1 + e2 + e3 ,

v2 = e1 + e2 + 2 e3 ,

v3 = e1 + 2 e2 + 3 e3 .

Odejmijmy pierwsze od drugiego:

e3 = −v1 + v2 .

To do dwu pozostałych:

v2 = e1 + e2 + 2(−v1 + v2) ,

v3 = e1 + 2 e2 + 3(−v1 + v2) .

czyli

e1 + e2 = 2v1 − v2 ,

e1 + 2 e2 = 3v1 − 3v2 + v3 .

Od drugiego pierwsze oraz od dwa razy pierwszego drugie. Razem więc mamy

e1 = v1 + v2 − v3 ,

e2 = v1 − 2v2 + v3 ,

e3 = −v1 + v2 .

Udało się jednoznacznie wyrazić trzy liniowo niezależne (z założenia) wektory e1, e2 i e3
przez wektory v1, v2 i v3, co oznacza, że te drugie też są liniowo niezależne, czyli też
mogą być bazą przestrzeni.14 Możemy teraz przerobić wektor w:

w = 6 e1 + 9 e2 + 14 e3

= 6 (v1 + v2 − v3) + 9 (v1 − 2v2 + v3) + 14 (−v1 + v2)

= v1 + 2v2 + 3v3 ,

14W dalszym toku ćwiczeń zobaczymy, że liniową niezależność wektorów v1, v2 i v3, można sprawdzić
badając rząd macierzy utworzonej z postawionych obok siebie ich składowych (w dowolnej bazie), co z
kolei można sprowadzić do sprawdzenia, czy wyznacznik takiej macierzy jest niezerowy. Tu jednak dzięki
przyjętemu sposobowi sprawdzania mamy od razu wynik przydatny dalej w tym zadaniu.
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czyli składowe w w bazie v1, v2 i v3 to (1, 2, 3). Zapiszmy uzyskany wyżej związek za
pomocą macierzy:

(e1, e2, e3) = (v1,v2,v3)





1 1 −1
1 −2 1
−1 1 0



 .

Mnożenie “paluchowe” podrazumywajetsia. Stojąca tu macierz jest tzw. macierzą zmiany
bazy lub macierzą przejścia; dokładniej, jest to macierz przejścia z bazy ei, i = 1, 2, 3 do
bazy vi, i = 1, 2, 3. Macierz taką będziemy oznaczać Rv←e, aby podkreślić, że pozwala
one ze składowych wektora w bazie e1, e2 i e3 otrzymać jego składowe w bazie v1, v2, v3.

Stosując wprowadzoną już (w Zadaniu 8′) konwencję sumacyjną wujka A.E. można
powyższy wzór z macierzą zapisać jako ek = vj [Rv←e]

j
k. Przypomnijmy, że konwencja

polega na niepisaniu w prawej stronie sumy po wartościach wskaźnika j od 1 do 3. Jawnie
wzór ten mówi, że np. e1 = v1 [Rv←e]

1
1 + v2 [Rv←e]

2
1 + v3 [Rv←e]

3
1, gdzie [Rv←e]

1
1 = 1,

[Rv←e]
2
1 = 1, [Rv←e]

3
1 = −1, etc.

Jeśli teraz napiszemy wektor w w postaci w = eiw
i
(e) (indeksik e u wi

(e) ma przypomi-
nać że wi

(e) = (6, 9, 14) to są składowe tego wektora w bazie ei), to będziemy mieć:15

w = eiw
i
(e) = vk [Rv←e]

k
iw

i
(e) ≡ vk w

i
(v) .

gdzie (Rv←e)
k
i jest macierzą zmiany bazy,16 a związek wi

(v) = [Rv←e]
k
iw

i
(e) jawnie wygląda

tak:




w1
(v)

w2
(v)

w3
(v)



 =





1 1 −1
1 −2 1
−1 1 0









6
9
14



 =





1
2
3



 .

Takie właśnie składowe wi
(v) otrzymaliśmy już wcześniej (w istocie rzeczy w ten sam spo-

sób, tylko bez tego sztafażu, który jednakowoż na dłuższą metę jest niezwykle wygodny).
Jak już wszystko “rozebraliśmy” w szczegółach, to możemy teraz macierz Rv←e otrzy-

mać prostszym sposobem. Rozłóżmy najpierw całkiem ogólny wektor w = ae1+be2+ce3

15Wykorzystujemy tu to, że skończone sumy są przemienne, tzn.

3
∑

j=1

(

3
∑

k=1

vk[R(v←e)]
k
j

)

w
j
(e) =

3
∑

k=1

vk





3
∑

j=1

[R(v←e)]
k
jw

j
(e)



 .

Na tym też opiera się cała konwencja sumacyjna Einsteina.
16Matematycy z Katedry Metod Matematycznych Fizyki zwykli macierz Rv←e oznaczać Id (w ich nota-

cji jest to [Id]ve), co jest dobrze uzasadnione, jako że (jak to się stanie dalej jasne) jest to w istocie rzeczy
macierz odwzorowania identycznościowego - tj. liniowego odwzorowania Id: V → V , które każdemu
wektorowi v ∈ V przypisuje ten sam wektor v ∈ V , tylko zapisana “z dwu stron” (co to znaczy wyjaśni
się dalej) w dwu różnych bazach; ponieważ fizycy muszą się jednak różnić od matematyków (niechby i
mniejszą logiką stosowanych oznaczeń!), w tym skrypcie macierz zmiany bazy w przestrzeni wektorowej
oznaczam R, a macierz zmiany bazy w przestrzeni kowektorów (pojawi się dalej) P .
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na wektory v1, v2 i v3. Sprowadza się to do rozwiązania układu równań:17

α





1
1
1



 + β





1
1
2



+ γ





1
2
3



 =





a
b
c



 .

Rozwiązujemy (stosując np. eliminatkę Gaussa) i znajdujemy: α = a+b−c, β = a−2b+c,
γ = −a + b. Liczby te są składowymi wektora w w bazie wektorów vi. Powinno się je
otrzymywać z działania macierzy Rv←e na składowe wektora w w bazie ei:

Rv←e ·





a
b
c



 =





α
β
γ



 =





a+ b− c
a− 2b+ c
−a + b



 =





1 1 −1
1 −2 1
−1 1 0









a
b
c



 .

W drugim kroku po zapisaliśmy wynik działania (nieznanej jeszcze!) macierzy Rv←e na
składowe (a, b, c) w postaci konkretnej macierzy działającej na (a, b, c). Ponieważ składowe
te są dowolne (za a, b i c można podstawić dowolne liczby), to co się otrzymuje musi być
właśnie macierzą Rv←e!

Zadanie 18
Jak w zadaniu 17 tylko teraz

v1 :=





2
1
−3



 , v2 :=





3
2
−5



 , v3 :=





1
−1
1



 ,

a wektor w w pierwotnej bazie ma składowe (6, 2,−7).
Rozwiązanie: Znów piszemy

v1 = 2 e1 + e2 − 3 e3 ,

v2 = 3 e1 + 2 e2 − 5 e3 ,

v3 = e1 − e2 + e3 .

Trzecie dodać do pierwszego, a potem dwa razy trzecie do drugiego

v1 + v3 = 3 e1 − 2 e3 ,

v2 + 2v3 = 5 e1 − 3 e3 ,

17Po prostu składowe wektora w w bazie ei ale potraktowane tu jakby były wektorami z R3, muszą
być kombinacjami liniowymi składowych wektorów vi (w bazie ei) też potraktowanych jak wektory z R3.
Trzeba jednak pamiętać, że to nie są wektory tylko składowe. I jak tu nie dostać algebraicznego kręćka?!
Ale rzeczywiście: równość

a e1 + b e2 + c e3 = αv1 + β v2 + γ v3

= α (e1 + e2 + e3) + β (e1 + e2 + 2 e3) + γ (e1 + 2 e2 + 3 e3) ,

sprowadza się do równości a = α+β+γ, b = α+β+2γ, c = α+2β+3γ, które są właśnie tymi podanymi
w tekscie.
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Teraz pierwsze razy 3, drugie razy 2 i odjąć, oraz pierwsze razy 5, a drugie razy 3 i odjąć:

e1 = −3v1 + 2v2 + v3 ,

e3 = −5v1 + 3v2 + v3 .

Do tego jeszcze

e2 = e1 − v3 + e3

= (−3v1 + 2v2 + v3)− v3 + (−5v1 + 3v2 + v3)

= −8v1 + 5v2 + v3 .

Razem więc

e1 = −3v1 + 2v2 + v3 ,

e2 = −8v1 + 5v2 + v3 ,

e3 = −5v1 + 3v2 + v3 .

Czyli macierz Rv←e zmiany bazy ma postać

Rv←e =





−3 −8 −5
2 5 3
1 1 1



 .

a składowe wi
(v) wektora w w bazie vi i = 1, 2, 3 to





w1
(v)

w2
(v)

w3
(v)



 =





−3 −8 −5
2 5 3
1 1 1









6
2
−7



 =





1
1
1



 .

Oczywiście mając wyjściowe wzory wyrażające wektory v1, v2 i v3 w postaci kombina-
cji liniowych bazowych wektorów e1, e2 i e3, mamy od razu “za darmo” macierz przejścia
Re←v (jej kolumny tworzą postawione obok siebie kolumienki składowych wektorów v1,
v2, v3 w bazie e1, e2, e3):

Re←v =





2 3 1
1 2 −1
−3 −5 1



 .

Macierze Re←v i Rv←e muszą być ze sobą oczywiście jakoś związane. Związek ten jest
oczywisty: skoro macierz Rv←e robi ze składowych wi

(e) w bazie ei dowolnego wektora
w jego składowe wi

(v) w bazie ej , a macierz Re←v zamienia na powrót składowe wi
(v) w

składowe wi
(e), to powinniśmy mieć

wi
(e) = [Re←v]

i
jw

j
(v) = [Re←v]

i
j [Rv←e]

j
kw

k
(e) .
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tj.18 [Re←v]
i
j [Rv←e]

j
k = δik. Macierzowo:

Re←v · Rv←e =





2 3 1
1 2 −1
−3 −5 1









−3 −8 −5
2 5 3
1 1 1



 =





1 0 0
0 1 0
0 0 1



 .

(Zachęcam do sprawdzenia, że istotnie iloczyn daje macierz jednostkową!). Oczywiście
mamy także

Rv←e · Re←v =





−3 −8 −5
2 5 3
1 1 1









2 3 1
1 2 −1
−3 −5 1



 =





1 0 0
0 1 0
0 0 1



 .

Tak więc [Rv←e]
−1 = Re←v, a [Re←v]

−1 = Rv←e.

Uwaga: W związku z powyższym zadaniem zauważmy, że znaleźliśmy sposób odwracania
macierzy kwadratowych.19 Inny bardziej “teoretyczny” sposób zostanie podany dalej. Nie-
mniej sposób tu znaleziony (oraz podana przy okazji jeszcze inna “mechaniczna” metoda)
pozostanie i tak naogół najużyteczniejszym z praktycznego punktu widzenia.

Zadanie 19
Znaleźć macierze odwrotne do macierzy

(

a b
c d

)

,





1 2 −3
0 1 2
0 0 1



 ,









1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1









.

Rozwiązanie: Zacznijmy od drugiej macierzy (wymiaru 3 × 3) wykorzystując to, co
ustaliliśmy wyżej: interpretujemy sobie tę macierz jako macierz zmiany bazy Re←v, co
pozwala napisać

v1 = e1 ,

v2 = 2 e1 + e2 ,

v3 = −3 e1 + 2 e2 + e3 .

Układ ten traktujemy jak układ równań na ei i rozwiązujemy względem ei, co tu akurat
jest proste:

e1 = v1 ,

e2 = −2v1 + v2 ,

e3 = 7v1 − 2v2 + v3 .

18Definicja symbolu δi k czyli tzw. delta Kroneckera: δi k = 1 gdy i = k i δi k = 0 gdy i 6= k. Kronecker
to ten, co mówił, że dobry Pan Bóg stworzył liczby naturalne, a inne to już ludzie.

19Tzw. nieosobliwych macierzy kwadratowych. Nie każda macierz kwadratowa daje się odwrócić
(macierze niekwadratowe naogół nie mają odwrotnych, choć może się zdarzyć, że iloczyn macierzy A

wymiaru n×r, czyli mającej n wierszy i r 6= n kolumn, i macierzy r×n da macierz jednostkową wymiaru
n×n). Ale macierze zmiany bazy - nieodmiennie kwadratwe - z samej swojej istoty są zawsze odwracalne,
czyli należą do pospolitego gatunku macierzy nieosobliwych.
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Stąd odczytujemy, że

Rv←e = [Re←v]
−1 =





1 −2 7
0 1 −2
0 0 1



 ,

Sprawdzamy:




1 2 −3
0 1 2
0 0 1









1 −2 7
0 1 −2
0 0 1



 =





1 0 0
0 1 0
0 0 1



 ,

tak jak być powinno.

W przypadku trzeciej macierzy postępujemy analogicznie:

v1 = e1 + e2 + e3 + e4 ,

v2 = e1 + e2 − e3 − e4 ,

v3 = e1 − e2 + e3 − e4 ,

v4 = e1 − e2 − e3 + e4 .

Biorąc sumę i różnicę pierwszego i trzeciego równania oraz sumę i różnicę drugiego i
czwartego (jak kto woli, można też równania dobrać w pary inaczej) otrzymujemy

v1 + v3 = 2 e1 + 2 e3 ,

v1 − v3 = 2 e2 + 2 e4 ,

v2 + v4 = 2 e1 − 2 e3 ,

v2 − v4 = 2 e2 − 2 e4 .

Robiąc to samo raz jeszcze znajdujemy, że

e1 =
1

4
(v1 + v2 + v3 + v4) ,

e2 =
1

4
(v1 + v2 − v3 − v4) ,

e3 =
1

4
(v1 − v2 + v3 − v4) ,

e4 =
1

4
(v1 − v2 − v3 + v4) ,

Mamy więc (mnożenie macierzy przez liczbę to oczywiście mnożenie przez tę liczbę każdego
elementu owej macierzy):

Re←v ·Rv←e =









1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1









1

4









1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1









=









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









43



(z dokładnością do czynnika 1/4 macierz odwrotna jest tu równa macierzy wyjściowej).

Wreszcie, w przypadku pierwszej macierzy 2 × 2 można by robić tak jak wyżej, ale
prościej (i na przyszłośc bardziej przydatnie) jest zapamiętać regułkę:

(

a b
c d

)−1

=
1

ad− bc

(

d −b
−c a

)

.

Zakładamy tu, że ad−bc 6= 0; jeśli ad−bc = 0, to macierz jest osobliwa i nie ma odwrotnej.
(Wyrażenie ad− bc jest to jej wyznacznik - będzie o nich dalej).

Zapowiedziany “mechaniczny” sposób otrzymywania macierzy odwrotnej do danej ma-
cierzy kwadratowej polega na jednoczesnym wykonywaniu na kolumnach danej macierzy
(którą chcemy odwrócić) i kolumnach macierzy jednostkowej identycznych operacji (któ-
rymi mogą być dodawanie do jakiejś kolumny dowolnej kombinacji liniowej pozostałych
kolumn, mnożeniu kolumny przez liczbę i, wreszcie, przestawianie kolumn).

Zademonstrujemy tę metodę na przykładzie odwracanej wyżej macierzy 4× 4. Usta-
wiamy w tym celu obok siebie tę macierz i macierz jednostkową:









1 1 1 1 | 1 0 0 0
1 1 −1 −1 | 0 1 0 0
1 −1 1 −1 | 0 0 1 0
1 −1 −1 1 | 0 0 0 1









.

Dokonujemy najpierw operacji C4 → C4 + C1 i C3 → C3 − C2 (tj. czwartą kolumnę
zastępujemy sumą czwartej i pierwszej, a trzecią różnicą trzeciej i drugiej), co prowadzi
do:









1 1 0 2 | 1 0 0 1
1 1 −2 0 | 0 1 −1 0
1 −1 2 0 | 0 0 1 0
1 −1 0 2 | 0 0 0 1









.

Następnymi operacjami są: C2 → C2 +
1
2
C3, C1 → C1 − 1

2
C4; dają one









0 1 0 2 | 1
2

0 0 1
1 0 −2 0 | 0 1

2
−1 0

1 0 2 0 | 0 1
2

1 0
0 −1 0 2 | − 1

2
0 0 1









−→









0 1 0 0 | 1
2

0 1 1
1 0 0 0 | 0 1

2
−1 −1

1 0 4 0 | 0 1
2

1 −1
0 −1 0 4 | − 1

2
0 −1 1









.

Strzałka oznacza wykonanie dwu następnych operacji: C4 → C4−2C2 oraz C3 → C3+2C1.
Kolejne ruchy, to C1 → C1 − 1

4
C3 oraz C2 → C2 +

1
4
C4:









0 1 0 0 | 1
4

1
4

1 1
1 0 0 0 | 1

4
1
4
−1 −1

0 0 4 0 | − 1
4

1
4

1 −1
0 0 0 4 | − 1

4
1
4
−1 1









−→









1 0 0 0 | 1
4

1
4

1
4

1
4

0 1 0 0 | 1
4

1
4
−1

4
−1

4

0 0 1 0 | 1
4
−1

4
1
4
−1

4

0 0 0 1 | 1
4
−1

4
−1

4
1
4









.
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Ostatnie dwie operacje zaznaczone strzałką polegały na przestawieniu miejscami kolumn
pierwszej i drugiej oraz na podzieleniu kolumn trzeciej i czwartej przez 4. W rezultacie
po prawej stronie otrzymaliśmy macierz odwrotną (tę samą, co poprzednio) do wyjściowej
macierzy 4× 4.

Alternatywna wersja tej metody polega na jednoczesnym wykonywaniu wymienionych
wyżej operacji, ale nie na kolumnach, lecz na wierszach macierzy danej i macierzy jed-
nostkowej.20 W tej wersji metodę tę łatwo uzasadnić. Równość









a11 a12 . . . a1n
a21 a22 . . . a2n
· · . . . ·
an1 an2 . . . ann

















x11 x12 . . . x1n
x21 x22 . . . x2n
· · . . . ·
xn1 xn2 . . . xnn









=









1 0 · · · 0
0 1 · · · 0
· · . . . ·
0 0 . . . 1









,

wyznaczająca macierz X odwrotną do A można bowiem traktować, jak zestaw n układów
każdy po n równań na n niewiadomych:

a11x1k + a12x2k + . . .+ a1nxnk = 1, 0, . . . 0,

a21x1k + a22x2k + . . .+ a2nxnk = 0, 1, . . . 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

an1x1k + an2x2k + . . .+ annxnk = 0, 0, . . . 1.

Powyższy zapis należy czytać tak, że gdy w wierszach po lewej stronie k = 1, tak iż
są to równania na x11, x21, . . ., xn1, prawą ich stroną jest pierwsza kolumna; gdy w
wierszach po lewej stronie k = 2 (równania na x12, x22, . . ., xn2), prawą stroną jest druga
kolumna, itd. Każdy z n tych układów równań rozwiązujemy stosując eliminatkę Gaussa z
Zadania 0. Ponieważ jednak lewe strony tych układów są (formalnie) takie same, robimy to
jednocześnie dodając do siebie z odpowiednimi współczynnikami równania; jeśli “oderwać
się” od x-ów, sprowadza się to do wykonywania na wierszach macierzy A po lewej i na
wierszach macierzy jednostkowej po prawej wymienionych wyżej operacji. Gdy po lewej
powstanie już macierz jednostkowa, rozwiązaniami na elementy x1k, x2k, . . ., xnk k-tej
kolumny macierzyX będą właśnie kolejne elementy k-tej kolumy macierzy wytworzonej po
prawej stronie. Metodę zastosowaną w przykładzie polegającą na wykonywaniu operacji
na kolumnach można uzasadnić analogicznie, rozpatrując równania wynikające z równości
X · A = I lub, wygodniej, z równości21 (X · A)T = IT , czyli z AT ·XT = I.

W opisanej metodzie łatwo się pomylić, albo dostać oczopląsu od śledzenia dwu macie-
rzy na raz; wydaje mi się, choć może to być subiektywne wrażenie, że metoda odwracania
macierzy polegająca na wyobrażeniu sobie, iż jest ona macierzą zmiany bazy i odwróceniu
odpowiedniego jednego układu n równań na n wektorów jest jednak bezpieczniejsza.

Jak już jesteśmy przy odwracaniu macierzy, to rozpatrzmy jeszcze takie

20Pamiętać przy tym należy o tym, żeby nie mieszać: jeśli decydujemy się na operacje na kolumnach,
to nie możemy nagle zacząć ich robić na wierszach.

21MT oznacza tu macierz otrzymaną z macierzy M przez transpozycję, tj. (w przypadku macierzy
kwadratowych) odbicie elementów M względem diagonali.
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Zadanie 19′

Niech A, B, C, D będą macierzami wymiaru n×n odwracalnymi, tzn. macierze A−1, B−1,
C−1, D−1 istnieją i zakładamy, że je znamy (lub umiemy je znaleźć). Napisać macierze
odwrotne do macierzy wymiaru 2n× 2n

(

A 0
C D

)

,

(

A B
0 D

)

,

(

A B
C D

)

,

(0 oznacza tu macierz zerową wymiaru n× n).
Rozwiązanie: Poszukajmy najpierw macierzy odwrotnej do macierzy mającej macierz
zerową w prawym górnym rogu. Macierz odwrotną piszemy też w postaci zawierającej
cztery bloki n× n; powinna ona być taka, że

(

A 0
C D

)(

M K
L N

)

=

(

A ·M + 0 · L A ·K + 0 ·N
C ·M +D · L C ·K +D ·N

)

≡
(

A ·M A ·K
C ·M +D · L C ·K +D ·N

)

=

(

I 0
0 I

)

.

Widać stąd, że M = A−1 oraz, że zero w prawym górnym rogu można dostać kładąc22

K = 0. Wtedy patrząc na prawy dolny blok widzimy, że N = D−1. Wreszcie, lewy dolny
blok daje wtedy równanie

C ·A−1 = −D · L , czyli L = −D−1 · C · A−1 .

Zatem (drugą macierz odwracamy w podobny sposób)

(

A 0
C D

)−1
=

(

A−1 0
−D−1 · C · A−1 D−1

)

,

(

A B
0 D

)−1
=

(

A−1 −A−1 ·B ·D−1
0 D−1

)

.

Aby odwrócić trzecią macierz, piszemy równanie
(

A B
C D

)(

M K
L N

)

=

(

A ·M +B · L A ·K +B ·N
C ·M +D · L C ·K +D ·N

)

=

(

I 0
0 I

)

.

Daje ono dwa niezależne (macierzowe) układy:

A ·M +B · L = I , A ·K +B ·N = 0 ,

C ·M +D · L = 0 , C ·K +D ·N = I .

Aby rozwiązać lewy (prawy) układ, mnożymy górne równanie z lewej macierzowo przez
B−1, a dolne z lewej przez D−1, co da

B−1 · A ·M + L = B−1 , B−1 · A ·K +N = 0 ,

D−1 · C ·M + L = 0 , D−1 · C ·K +N = D−1 .

22Nie jest oczywiste, czy to jest jedyna możliwość; przy zadanej macierzy A może może istnieć jakaś
niezerowa macierz K, taka że A ·K = 0. Niemniej próbujemy, czy się tak uda
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Odejmujemy teraz w lewym (prawym) układzie równanie dolne (górne) od górnego (dol-
nego), co da

(B−1 · A−D−1 · C) ·M = B−1 , (D−1 · C − B−1 · A) ·K = D−1 .

Stąd M = (B−1 · A − D−1 · C)−1 · B−1 oraz K = (D−1 · C − B−1 · A)−1 ·D−1. Możemy
teraz skorzystać z łatwego do sprawdzenia wzoru, słusznego dla dowolnych kwadratowych,
odwracalnych macierzy X i Y

(X · Y )−1 = Y −1 ·X−1 ,

by napisać

M = (B · (B−1 · A−D−1 · C))−1 = (A−B ·D−1 · C)−1 ,
K = (D · (D−1 · C − B−1 ·A))−1 = (C −D ·B−1 · A)−1 .

W analogiczny sposób możemy wyjściowe dwa układy macierzowe rozwiązać ze względu
na macierze L i N , otrzymując ostatcznie

(

A B
C D

)−1
=

(

(A− B ·D−1 · C)−1 (C −D · B−1 · A)−1
(B − A · C−1 ·D)−1 (D − C · A−1 · B)−1

)

.

Zadanie 19′′

Niech U i V będą dwoma pozbiorami wektorów przestrzeni wektorowej Rn zdefiniowanymi
warunkami

U :=























x1
x2
·
xn









: x1 + x2 + . . .+ xn = 0















,

V :=























x1
x2
·
xn









: x1 = x2 = . . . = xn















.

Pokazać, że U i V są podprzestrzeniami wektorowymi Rn oraz, że U + V = U ⊕ V = R
n.

Podać jakieś bazy podprzestrzeni U i V i wyrazić wektory ei kanonicznej (zero-jedynkowej)
bazy Rn przez wybrane wektory baz przestrzeni U i V . Podać też jawnie odpowiednie
macierze zmiany baz i sprawdzić, że są one wzajemnie odwrotne.
Rozwiązanie: To, że U i V są wektorowymi podprzestrzeniami jest oczywiste: wektor
zerowy należy do każdej z nich, pomnożenie wektora z U (V ) przez liczbę λ nie wyrzuca go
z U (V ), gdyż jeśli x1+x2+. . .+xn = 0 (x1 = x2 = . . . = xn) to także λx1+λx2+. . .+λxn =
0 (λx1 = λx2 = . . . = λxn) i suma wektorów z U (z V ) też należy do U (do V ): jeśli
x1+x2+ . . .+xn = 0 i y1+y2+ . . .+yn = 0 (jeśli x1 = x2 = . . . = xn i y1 = y2 = . . . = yn)
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to także (x1+ y1)+ (x2+ y2)+ . . .+(xn + yn) = 0 (x1+ y1) = (x2+ y2) = . . . = (xn+ yn).
Jest też jasne, że U ∩ V = {0}, czyli że U + V = U ⊕ V . Jako bazę U można wziąć
wektory

f1 =













1
0
0
·
−1













, f2 =













0
1
0
·
−1













, . . . , fn−1 =













0
·
0
1
−1













,

(każdy wektor U jest jednoznaczną kombinacją liniową wektorów f1, f2, . . ., fn−1), a bazą
V może być wektor

fn =













1
1
1
·
1













.

Zatem dimU = n−1, dimV = 1, a ponieważ dim(U∩V ) = 0, dim(U+V ) =dim(U⊕V ) =
n. Stąd już wynika, że U + V = U ⊕ V = Rn. Można też podać jawny wzór wyrażający
dowolny (żywy) wektor [a1, a2, . . . , an] z Rn przez wektory f1, f2, . . ., fn−1 rozpinające U i
wektor fn rozpinający V . W tym celu należy rozwiązać równanie wektorowe













a1
a2
a3
·
an













= λ1f1 + λ2f2 + . . .+ λnfn ,

czyli układ zwykłych równań

λ1 + λn = a1 ,

λ2 + λn = a2 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λn−1 + λn = an−1 ,

−λ1 − λ2 − λn−1 + λn = an .

Aby rozwiązać ten układ, dodajemy do ostatniego równania wszystkie poprzednie, co
daje λn = (a1 + . . . + an)/n. Pozostałe niewiadome λk o 1 ≤ k < n są więc równe
λk = ak−(a1+. . .+an)/n. Każdy wektor z Rn daje się więc przedstawić jako jednoznaczna
kombinacja liniowa wektorów f1, . . ., fn−1 rozpinających U i wektora fn rozpinającego V .
Znalezione rozwiązanie pozwala też bez trudu wyrazić wektory e1, . . . , en zero-jedynkowej
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kanonicznej bazy p.w. Rn przez wektory f1, . . . , fn−1 i fn: żywy wektor ek ma liczby
niezerową tylko liczbę ak = 1. Zatem

ek =
1

n
(−f1 − f2 . . .− fn−1 + fn) + fk , 1 ≤ k < n ,

en =
1

n
(−f1 − f2 . . .− fn−1 + fn) .

i wzajemnie odwrotnymi (sprawdzić!) macierzami zmiany bazy są

R(f←e) =

















1− 1
n
− 1

n
. . . − 1

n
− 1

n

− 1
n

1− 1
n

. . . − 1
n
− 1

n

· · · ·
· · · ·
− 1

n
− 1

n
. . . 1− 1

n
− 1

n
1
n

1
n

. . . 1
n

1
n

















, R(e←f) =

















1 0 . . . 0 1
0 1 . . . 0 1
· · · ·
· · · ·
0 0 . . . 1 1
−1 −1 . . . −1 1

















.

Zadanie 20
Sprawdzić, że wielomiany

w1 = x+ 1 , w2 = x− 1 , w3 = x2 + x ,

tworzą bazę przestrzeni wektorowej wielomianów stopnia nie większego niż dwa i znaleźć
składowe w tej bazie wielomianu v = 2x2 + 3x+ 1.
Rozwiązanie: Trzeba sprawdzić, że w1, w2, w3 są liniowo niezależne, czyli, że równość

λ1w1 + λ2w2 + λ3w3 = 0 ,

dla wszystkich wartości x zachodzi tylko gdy λ1 = λ2 = λ3 = 0. To widać (tu znów
możemy operować na “żywych” wektorach): zachodzenie dla dowolnego x równości

λ1 (x+ 1) + λ2 (x− 1) + λ3 (x
2 + x) = (λ1 − λ2) + (λ1 + λ2 + λ3)x+ λ3 x

2 = 0 ,

wymaga by λ3 = 0, oraz by λ1−λ2 = 0 i λ1+λ2 = 0. A to rzeczywiście zachodzi tylko dla
λ1 = λ2 = 0. Czyli są liniowo niezależne. W ogólności nie wynika z tego jeszcze, tworzą
bazę. Ponieważ jednak jest oczywiste, że wymiar rozpatrywanej przestrzeni jest równy 3
(bo 3 wielomiany 1, x oraz x2 są bazą, jako że każdy wielomian stopnia niewyższego niż 3
jest w oczywisty sposób ich kombinacją liniową), to każde 3 liniowo niezależne wielomiany,
w szczególności w1, w2, w3, tworzą bazę. Chcemy teraz napisać

v = 2x2 + 3x+ 1 = w1 v
1
(w) +w2 v

2
(w) +w3 v

3
(w)

= (x+ 1) v1(w) + (x− 1) v2(w) + (x2 + x) v3(w) .

Czyli v3(w) = 2 oraz v1(w)+v
2
(w)+v

3
(w) = 3 i v1(w)−v2(w) = 1. Stąd v1(w) = 1, v2(w) = 0. Istotnie:

1 · (x+ 1) + 2 · (x2 + x) = 2x2 + 3x+ 1 .
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Zadanie 21
W pewnej bazie e1, e2, e3 wektory v1, v2, v3 mają składowe (1, 2, 1), (2, 3, 3) oraz (3, 8, 2),
zaś wektory w1, w2, w3 mają w tejże samej bazie składowe (3, 5, 8), (5, 14, 13) i (1, 9, 2).
Sprawdzić, że trzy wektory v1, v2, v3 lub trzy wektory w1, w2, w3 także tworzą dwie
inne bazy tej samej przestrzeni i znaleźć macierz przejścia z jednej z nich do drugiej.
Rozwiązanie: Tu z kolei nie wiemy, czym są w istocie te wektory i operujemy wyłącznie
na składowych. Mamy

v1 = e1 + 2 e2 + e3 ,

v2 = 2 e1 + 3 e2 + 3 e3 ,

v3 = 3 e1 + 8 e2 + 2 e3 ,

Drugie od 2×pierwszego: 2v1−v2 = e2− e3, czyli e3 = e2− 2v1 + v2. To do pierwszego
i trzeciego:

v1 = e1 + 2 e2 + e2 − 2v1 + v2 ,

v3 = 3 e1 + 8 e2 + 2 (e2 − 2v1 + v2) ,

czyli

3v1 − v2 = e1 + 3 e2 ,

4v1 − 2v2 + v3 = 3 e1 + 10 e2 ,

Teraz 3× pierwsze od drugiego i mamy e2 = −5v1 + v2 + v3. Zatem

e1 = 3v1 − v2 − 3(−5v1 + v2 + v3) ,

e3 =−5v1 + v2 + v3 − 2v1 + v2 .

Tak więc trzy liniowo niezależne wektory e1, e2, e3 udało się wyrazić przez trzy wektory
v1, v2, v3

e1 = 18v1 − 4v2 − 3v3 ,

e2 = −5v1 + v2 + v3 ,

e3 = −7v1 + 2v2 + v3 ,

więc v1, v2, v3 też mogą być (są) bazą. W podobny sposób można wyrazić ei także przez
wj , ale już nie będziemy tu tego robić (w zasadzie trzeba by, aby dowieść, że wj też są
bazą). Mamy teraz związki (w konwencji sumacyjnej):

ej = vl [Rv←e]
l
j , wi = ej [Re←w]

j
i .

Rv←e jest macierzą przejścia z bazy ej do bazy vl, którą odczytujemy ze wzorów wyra-
żających wektory ej przez wektory vl, a macierz Re←w jest macierzą przejścia z bazy wi
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do bazy ej , odwrotną do macierzy Rw←e przejścia z bazy ej do bazy wi (której tu nie
wyliczyliśmy). Łącząc te wzory otrzymujemy

wi = vl [Rv←e]
l
j [Re←w]

j
i .

Zatem jeśli u = wi u
i
(w), to u = vl u

l
(v), gdzie ul(v) = [Rv←e]

l
j [Re←w]

j
i u

i
(w), przy czym

Rv←e · Re←w =





18 −5 −7
−4 1 2
−3 1 1









3 5 1
5 14 9
8 13 2



 =





−27 −71 −41
9 20 9
4 12 8



 .

Macierz ta jest oczywiście macierzą zmiany bazy Rv←w.

Zadanie 22
Znaleźć składowe należącego do przestrzeni R4 wektora

v =









5
1
1
1









,

w bazie

f1 =









1
−1
0
0









, f2 =









0
1
−1
0









, f3 =









0
0
1
−1









, f4 =









1
0
0
1









.

Następnie znaleźć macierze przejścia z bazy f1, f2, f3, f4 do bazy “kanonicznej”

e1 =









1
0
0
0









, e2 =









0
1
0
0









, e3 =









0
0
1
0









, e4 =









0
0
0
1









,

i z powrotem. Znaleźć składowe wektora v w bazie kanonicznej.
Rozwiązanie: Tu znów wiemy, czym są “żywe” wektory. Trzeba rozwiązać układ v =
x f1 + y f2 + z f3 + t f4:

x+ t = 5 ,

−x+ y = 1 ,

−y + z = 1 ,

−z + t = 1 .

To się łatwo rozwiązuje bo z trzech ostatnich t = 1 + z = 1 + 1 + y = 2 + 1 + x = 3 + x.
Czyli 2x+3 = 5 i x = 1, y = 2, z = 3, t = 4. Składowymi v w bazie f1, f2, f3, f4 są liczby
(1, 2, 3, 4).
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Teraz zmiana bazy. Zachodzi oczywisty związek fi = ej(Re←f)
j
i, czyli jawnie

(f1, f2, f3, f4) = (e1, e2, e3, e4)









1 0 0 1
−1 1 0 0
0 −1 1 0
0 0 −1 1









.

Aby mieć to samo w drugą stronę trzeba albo odwrócić stojącą tu macierz (co umiemy już
robić mechanicznie, ale to dobre dla wprawnych w robieniu “fiku-miku” na kolumnach lub
wierszach - w tym ostatnim powinni być dobrzy poeci!), albo po prostu rozwiązać cztery
równania (na szczęście są one proste). Pierwsze z nich, e1 = x1 f1 + y1 f2 + z1 f3 + t1 f4,
daje układ

x1 + t1 = 1 ,

−x1 + y1 = 0 ,

−y1 + z1 = 0 ,

−z1 + t1 = 0 ,

którego jednoznacznym rozwiązaniem są x1 = y1 = z1 = t1 = 1
2

(widać gołym okiem, że
to jest ok.). Drugie, e2 = x2 f1 + y2 f2 + z2 f3 + t2 f4, daje układ

x2 + t2 = 0 ,

−x2 + y2 = 1 ,

−y2 + z2 = 0 ,

−z2 + t2 = 0 ,

o rozwiązaniu x2 = −1
2
, y2 = z2 = t2 = 1

2
(też widać, że to ok.). Trzecie e3 = x3 f1 +

y3 f2 + z3 f3 + t3 f4, prowadzi do

x3 + t3 = 0 ,

−x3 + y3 = 0 ,

−y3 + z3 = 1 ,

−z3 + t3 = 0 ,

i ma rozwiązanie x3 = y3 = −1
2
, z3 = t3 =

1
2
. Wreszcie, czwarte e4 = x4 f1 + y4 f2 + z4 f3 +

t4 f4, czyli

x4 + t4 = 0 ,

−x4 + y4 = 0 ,

−y4 + z4 = 0 ,

−z4 + t4 = 1 ,
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daje x4 = y4 = z4 − 1
2
, t4 = 1

2
. Możemy więc napisać związek ej = fk [Rf←e]

k
j jawnie:

(e1, e2, e3, e4) = (f1, f2, f3, f4)
1

2









1 −1 −1 −1
1 1 −1 −1
1 1 1 −1
1 1 1 1









.

Sprawdźmy, że to jest istotnie macierz odwrotna

Rf←e · Re←f =
1

2









1 −1 −1 −1
1 1 −1 −1
1 1 1 −1
1 1 1 1

















1 0 0 1
−1 1 0 0
0 −1 1 0
0 0 −1 1









=









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









.

Czyli jest ok. Teraz składowe v w bazie ei. Mamy v = fi v
i
(f) = ej [Re←f ]

j
iv

i
(f), czyli

vj(e) = [Re←f ]
j
i v

i
(f). Jawnie:









1 0 0 1
−1 1 0 0
0 −1 1 0
0 0 −1 1

















1
2
3
4









=









5
1
1
1









,

co powinno było od początku być oczywiste.

Przypomnienie.
Odwzorowanie F z p. wektorowej V w inną (lub tę samą) p. wektorową W (oczywiście
w ogólności przestrzenie V i W mogą mieć inne wymiary), F : V →W jest liniowe jeśli

F (λ1v1 + λ2v2) = λ1F (v1) + λ2F (v2) .

Zadanie działania takiego odwzorowania na (wszystkie) wektory bazy ei p. V wyznacza
jednoznacznie jego działanie na dowolny wektor v z tej przestrzeni.

Przykłady
i) Odwzorowanie F : V −→ W dane wzorem F (v) = a, gdzie v ∈ V , a a jest ustalo-
nym wektorem z W nie jest liniowe; ii) F (v) = v + a również nie jest; iii) odwzorowanie
F (v) = αv, gdzie α jest liczbą z ciała jest liniowe; iv) F (v) = (a|v)b, gdzie a i b są
ustalonymi wektorami, a (·|·) jakimś iloczynem skalarnym23 jest liniowe, v) zaś odwzo-
rowanie F (v) = (a|v)v nie jest. Jeszcze inny przykład: niech V = Map(R,R) będzie
przestrzenią wektorową funkcji odwzorowujących R w R (to jest przestrzeń wektorowa!).
Niech F odwzorowuje V w V w taki sposób, że każdej funkcji f ∈ V przypisuje funkcję

23O iloczynach skalarnych jeszcze nie było więc powiedzmy tu, że jest to maszynka, do której wsadza
się dwa wektory i otrzymuje liczbę z ciała, przy czym maszynka ta działa liniowo (jak u Lema: “sepulki
- patrz sepulkowanie, sepulkowanie - patrz sepulki”, - przecież właśnie usiłujemy ustalić, co to znaczy
“liniowe”...) względem każdego z tych wektorów.

53



g ∈ V zdefiniowaną wzorem g(x) = f(x+ 1)− f(x); w innym zapisie (zgodnym z bardzo
właściwym widzeniem funkcji jako maszynek z dziurkami - dwiema, jeśli to są funkcje
z V = Map(R,R) - do pierwszej z których wrzuca się liczbę z R i otrzymuje z drugiej
dziurki inną liczbę z R) wygląda to tak: F [f(·)] = g(·) ≡ f( · +1)− f(·); kropka oznacza
właśnie dziurkę do której wsadza się liczbę. Odwzorowanie F też jest liniowe.

Zwykle obraz wektora v przy liniowym odwzorowaniu F nazywa się wynikiem dziłania
F na v. Poza tym zamiast F (v) pisze się zwykle F · v.

Zadanie 23
Czy odwzorowanie V = R

3 w W = R
2 zadane wzorem

H









x
y
z







 =

[

(x+ 2)2 − x− z − 4
4x+ 2y + 6z

]

jest odwzorowaniem liniowym? Jeśli jest, znaleźć jego macierz w kanonicznych zero-
jedynkowych bazach R3 i R2.
Rozwiązanie: Pytamy, czy

H



λ1





x1
y1
z1



+ λ2





x2
y2
z2







 ≡ H









λ1x1 + λ2x2
λ1y1 + λ2y2
λ1z1 + λ2z2









=

[

(λ1x1 + λ2x2 + 2)2 − (λ1x1 + λ2x2)− (λ1z1 + λ2z2)− 4
4(λ1x1 + λ2x2) + 2(λ1y1 + λ2y2) + 6(λ1z1 + λ2z2)

]

jest tym samym, co

λ1H









x1
y1
z1







+ λ2H









x2
y2
z2









= λ1

[

(x1 + 2)2 − x1 − z2 − 4
4x+ 2y + 6z

]

+ λ2

[

(x2 + 2)2 − x2 − z2 − 4
4x2 + 2y2 + 6z2

]

.

Oczywiście nie jest, bo tu np. nie wystąpi wyraz λ1λ2x1x2. To zamyka sprawę.

Zadanie 24
Wzór

F









x1
x2
x3







 =





x1
x1 + 2x2
x2 + 3x3



 ,

zadaje odwzorowanie liniowe przestrzeni wektorowej R3 w nią samą: F : R3 → R3.
Znaleźć macierz tego odwzorowania w bazie kanonicznej (zero-jedynkowej) e1, e2, e3,
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oraz w bazie tworzonej przez trzy wektory v1, v2, v3:

v1 = e1 + e2 + e3 ,

v2 = e1 + e2 + 2 e3 ,

v3 = e1 + 2 e2 + 3 e3 .

Sprawdzić działanie otrzymanych macierzy na wektorze w, który w bazie kanonicznej ma
składowe (3, 2, 1).
Rozwiązanie: W tym zadaniu mamy do czynienia z “żywymi” wektorami (kwadratowe
nawiasy!), tj. mamy jawny przepis na znalezienie obrazu dowolnego wektora bez odnie-
sienia do jakichkolwiek baz. Podanie macierzy jest więc tu sztuką dla sztuki. Ponieważ
F odwzorowuje R3 w tę samą przestrzeń R3 naturalne (ale nie obowiązkowe!) będzie
znalezienie najpierw jego macierzy w tej samej kanonicznej zerojedynkowej bazie ei “z
obu stron” (co to znaczy, wyjaśni sie w dalszych zadaniach). Aby ten wybór był jasny
będziemy tę macierz oznaczać F(e)(e). W celu znalezienia tej macierzy F(e)(e) odwzoro-
wania liniowego F w jakiejś bazie (tu: w bazie kanonicznej) obliczamy (i to jest przepis
ogólny!) F na wektorach tejże bazy i otrzymane wektory-obrazy rozkładamy znów w
bazie (wektorowej przestrzeni, w którą F odwzorowuje):

F (e1) ≡ F









1
0
0







 =





1
1
0



 = e1 + e2 ,

F (e2) ≡ F









0
1
0







 =





0
2
1



 = 2 e2 + e3 ,

F (e3) ≡ F









0
0
1







 =





0
0
3



 = 3 e3 .

Następnie otrzymane trójki liczb: (1, 1, 0), (0, 2, 1) oraz (0, 0, 3) będące współczynnikami
rozkładów wektorów F (ei) na wektory bazy tej drugiej przestrzeni (która tu jest tą samą
przestrzenią R

3), tj. na wektory e1, e2 i e3, stawiamy po kolei “na sztorc”. Otrzymujemy
w ten sposób macierz F (ei) = ej F

j(ei) ≡ ej [F(e)(e)]
j
i. Jawnie:

F(e)(e) =





1 0 0
1 2 0
0 1 3



 .

Jeśli teraz chcemy znaleźć wartość F na wektorze w (“wartość” tzn. wektor będący
obrazem w przy odwzorowaniu F ) o składowych (3, 2, 1) w bazie ei (tj. wartość F na
wektorze w = 3e1 + 2e2 + e3), to działamy na te składowe macierzą F(e)(e):





1 0 0
1 2 0
0 1 3









3
2
1



 =





3
7
5



 ,
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czyli, w zapisie wskaźnikowym: F (w) = ei F
i(w) = ei [F(e)(e)]

i
j w

j
(e), tj. F (w) = 3 e1 +

7 e2 + 5 e3. Ponieważ tu mamy podany przepis, jak odwzorowanie F działa na żywe
wektory, można ten sam wynik dostać bezpośrednio:

F









3
2
1







 =





3
3 + 2 · 2
2 + 3 · 1



 =





3
7
5



 = 3 e1 + 7 e2 + 5 e3 .

Teraz znajdziemy macierz odwzorowania F w tej drugiej bazie. Ponieważ znamy vi

jako kombinacje liniowe ei, mamy też od razu macierz przejścia Re←v:

Re←v =





1 1 1
1 1 2
1 2 3



 ,

a odwrotną do niej macierz Rv←e również nietrudno znaleźć (patrz zadania 18 i 19):

Rv←e =





1 1 −1
1 −2 1
−1 1 0



 .

Działając na składowe wektorów w bazie vi macierz F(v)(v) powinna dawać składowe
obrazów tych wektorów w bazie vi. Zgodnie z logiką musi więc ona być dana iloczynem
macierzy Rv←e ·F(e)(e) ·Re←v:

F(v)(v) = Rv←e · F(e)(e) · Re←v =





1 1 −1
1 −2 1
−1 1 0









1 0 0
1 2 0
0 1 3









1 1 1
1 1 2
1 2 3





= Rv←e · F(e)(v) =





1 1 −1
1 −2 1
−1 1 0









1 1 1
3 3 5
4 7 11



 =





0 −3 −5
−1 2 2
2 2 4



 .

“Po drodze” powstała macierz F(e)(v) (ta z jedenastką w prawym dolnym rogu; jest to
właśnie macierz odwzorowania zapisana w różnych bazach “po obu stronach”, co jest
naturalne, gdy F odwzorowuje przestrzeń wektorową V w przestrzeń wektorową W inną
niż V , ale co, gdy F odwzorowuje V w nią samą, jest pewną ekstrawagancją), którą
skądinąd łatwo można dostać bezpośrednio działając odwzorowaniem F według podanego
przepisu na “żywe” wektory vi i rozkładając ich obrazy w bazie kanonicznej ei:

F (v1) ≡ F









1
1
1







 =





1
3
4



 = e1 + 3 e2 + 4 e3 ,

F (v2) ≡ F









1
1
2







 =





1
3
7



 = e1 + 3 e2 + 7 e3 ,

F (v3) ≡ F









1
2
3







 =





1
5
11



 = e1 + 5 e2 + 11 e3 .
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Bezpośrednie znalezienie w ten sposób macierzy F(v)(v) wymaga dalszego rozłożenia wekto-
rów po prawej stronie na wektory bazy vi. Zamiast tego łatwiej patrząc na już otrzymaną
macierz F(v)(v) (tj. biorąc liczby z jej kolumn i tworząc z nimi kombinacje liniowe wektorów
bazy vi) sprawdzić, że jest ona z tym, co by wyszło z tej procedury:

0v1 − v2 + 2v3 = 0





1
1
1



−





1
1
2



+ 2





1
2
3



 =





1
3
4



 ,

−3v1 + 2v2 + 2v3 = −3





1
1
1



+ 2





1
1
2



+ 2





1
2
3



 =





1
3
7



 ,

−5v1 + 2v2 + 4v3 = −5





1
1
1



+ 2





1
1
2



+ 4





1
2
3



 =





1
5
11



 .

Możemy też sprawdzić działanie otrzymanych macierzy F(e)(v) oraz F(v)(v) na składowe
wi

(v) w bazie vi wektora w = 3e1 + 2e2 + e3. Składowe te, w1
(v), w

2
(v) i w3

(v) w naszej
notacji, należałoby dostać rozwiązując układ równań





1
1
1



w1
(v) +





1
1
2



w2
(v) +





1
2
3



w3
(v) =





3
2
1



 ,

(po prawej stoi żywy wektor w), ale prościej jest wykorzystać znalezioną już macierz
Rv←e:




w1
(v)

w2
(v)

w3
(v)



 =





1 1 −1
1 −2 1
−1 1 0









w1
(e)

w2
(e)

w3
(e)



 =





1 1 −1
1 −2 1
−1 1 0









3
2
1



 =





4
0
−1



 .

(Można sprawdzić, że jest to rozwiązanie podanego układu równań). Możemy teraz spraw-
dzić działanie macierzy F(e)(v) na wi

(v):




1 1 1
3 3 5
4 7 11









4
0
−1



 =





3
7
5



 ,

czyli, że F (w) = 3e1 + 7e2 + 5e3, oraz F(v)(v) na wi
(v):





0 −3 −5
−1 2 2
2 2 4









4
0
−1



 =





5
−6
4



 ,

czyli F (w) = 5v1 − 6v2 + 4v3, co oczywiście jest tym samym żywym wektorem:

5





1
1
1



− 6





1
1
2



+ 4





1
2
3



 =





3
7
5



 .
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Uwaga: Tak jak składowe wektora v piszemy w tym skrypcie jako vi(e) lub vi(f), aby
pamiętać, w jakiej bazie są to składowe, tak też i macierz odwzorowania liniowego opa-
trujemy24 symbolami mówiącymi w jakich bazach jest ona dana. Zauważmy przy tym, że
wprowadzona tu notacja jest niezwykle sugestywna: symbole przypominające, co jest w
jakiej bazie oraz symbole na macierzach przejścia układają się w logiczne ciągi, nie po-
zostawiając miejsca na wątpliwości, przez jaką macierz, z której strony trzeba pomnożyć,
by przejść z jednej bazy do drugiej.

Zadanie 25
W przestrzeni wszystkich odwzorowań R w R (matematycy oznaczają ją Map(R,R), ale
jak ją zwał tak ją zwał..., w każdym razie jest to taka wieeeelka przestrzeń) podprzestrzeń
wektorowa V jest rozpięta przez funkcje f1(x) = sin x i f2(x) = cosx (czyli to jest jakaś
tam maciupeńka podprzestrzeń w tej wielkiej przestrzeni). Czy odwzorowanie wektorów
tej podprzestrzeni zadane wzorem F α[f(x)] → f(x + α) jest odwzorowaniem liniowym?
Jeśli jest, to czy można podać jego macierz F α

(f)(f) w bazie wektorów fi(x), i = 1, 2 ?
Rozwiązanie: Odwzorowanie F α jest liniowe, bo

F α[λs sin x+ λc cosx] = λs sin(x+ α) + λc cos(x+ α)

= λsF
α[sin x] + λcF

α[cosx] .

Macierz F α
(f)(f) w bazie wektorów fi(x), i = 1, 2 można podać tylko pod warunkiem, że

F odwzorowuje podprzestrzeń V w nią samą (nie wyprowadza wektorów poza tę pod-
przestrzeń). Aby sprawdzić, czy tak jest, znajdujemy działanie F α na wektory bazowe i
patrzymy, czy wynik (obraz wektora fi(x)) da się znów rozłożyć na te wektory. Okazuje
się, że się da:

F α(f1) ≡ F α[sin x] = sin(x+ α) = cosα sin x+ sinα cosx ,

F α(f2) ≡ F α[cosx] = cos(x+ α) = cosα cosx− sinα sin x .

Zatem, stawiając współczynniki “na sztorc” (i pamiętając, że baza jest uporządkowana,
najpierw sin x potem cosx),

F α
(f)(f) =

(

cosα − sinα
sinα cosα

)

.

Zadanie 25′

Odwzorowanie F : V → V trójwymiarowej przestrzeni V , której bazę stanowią wektory
e1, e2 i e3, w tę samą przestrzeń V jest zadane wzorem

F (v) = aS(v|a) ,

w którym a = e1−2e3, a S(·|·) jest iloczynem skalarnym (o którym ogólniej będzie dalej),
tj. funkcją “połykającą” dwa wektory i dającą w zamian liczbę z ciała, którym jest tu R.;

24Przynajmniej dopóki jesteśmy w algebraicznym “przedszkolu”.
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funkcja ta, jako że jest biliniowa, tzn. liniowa w każdym ze swoich argumentów jest na
użytek tego zadania zdefiniowana “szkolnym” wzorem

S(ei|ej) = δij .

(Symbol δij , czyli delta Kroneckera, już w tym skrypcie był). Napisać macierz F(e)(e)

odwzorowania F w bazie ei.
Rozwiązanie: Zgodnie z przepisem z Zadania 25 znajdujemy działanie F na wektory
bazy ei:

F (e1) = (e1 − 2 e3)S(e1|e1 − 2 e3) = e1 − 2 e3 ,

F (e2) = (e1 − 2 e3)S(e2|e1 − 2 e3) = 0 ,

F (e3) = (e1 − 2 e3)S(e3|e1 − 2 e3) = −2 e1 + 4 e3 .

Dalej zgodnie z tymże przepisem, współczynniki rozkładu w bazie ei otrzymanych wek-
torów (obrazów wektorów bazowych) stawiamy na “sztorc”:

F(e)(e) =





1 0 −2
0 0 0
−2 0 4



 .

Zadanie 25′′

Napisać macierz odwzorowania liniowego F : M2×2 → M2×2 (tj. odwzorowującego prze-
strzeń wektorową M2×2 macierzy M wymiaru 2 × 2 o rzeczywistych elementach w nią
samą) zadanego wzorem F (M) = X ·M , w którym

X =

[

a b
c d

]

.

w “kanonicznej” bazie25 tworzonej przez cztery zero-jedynkowe macierze

m1 =

[

1 0
0 0

]

, m2 =

[

0 1
0 0

]

, m3 =

[

0 0
1 0

]

, m4 =

[

0 0
0 1

]

, .

Rozwiązanie: Postępujemy standardowo:

F (m1) =

[

a b
c d

] [

1 0
0 0

]

=

[

a 0
c 0

]

= am1 + cm3 ,

F (m2) =

[

a b
c d

] [

0 1
0 0

]

=

[

0 a
0 c

]

= am2 + cm4 ,

F (m3) =

[

a b
c d

] [

0 0
1 0

]

=

[

b 0
d 0

]

= bm1 + dm3 ,

F (m4) =

[

a b
c d

] [

0 0
0 1

]

=

[

0 b
0 d

]

= bm2 + dm4 .

25Piszemy macierze w kwadratowych nawiasach, gdyż są one tu “żywymi” wektorami z przestrzeni
M2×2.
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Stawiając na “sztorc” współczynniki rozkładu obrazów wektorów bazowych mi na wektory
bazowe znajdujemy

F(m)(m) =









a 0 b 0
0 a 0 b
c 0 d 0
0 c 0 d









.

Zadanie 25′′′

Niech Vn będzie przestrzenią wektorową wielomianów stopnia ≤ n i niech odwzorowanie
F będzie operacją wzięcia pochodnej wielomianu: F [W (x)] = W ′(x). Traktując tu F jak
odwzorowanie Vn w Vn podać jego macierz F(e)(e) w bazie kanonicznej ek = xk uporządko-
wanej następująco: (en, en−1, . . . , e1, e0) oraz macierz F(f)(f) tego samego odwzorowania
w (uporządkowanej) bazie

f0 = 1 , f1 = x− 1 , f2 =
1

2!
(x− 1)2 . . . fn =

1

n!
(x− 1)n .

Rozwiązanie: Jak łatwo sprawdzić,

F(e)(e) =

















0 0 0 . . . 0 0
n 0 0 . . . 0 0
0 n− 1 0 . . . 0 0
· · · . . . · ·
· · · . . . · ·
0 0 0 . . . 1 0

















.

Istotnie: w rozpatrywanej bazie ogólny wielomian W (x) = anx
n+. . . a1x+a0 ma składowe

(an, an−1 , . . . , a1, a0), a F [W ] ma składowe (0, nan, (n−1)an−1 , . . . , a1), które oczywiście
dostaje się działając podaną tu macierzą na składowe (an, an−1 , . . . , a1, a0). A gdyby
wektory bazy uszeregować odwrotnie, tj. (e0, e1, . . . , en−1, en), to macierz F(e)(e) miałaby
postać

F(e)(e) =

















0 1 0 . . . 0 0
0 0 2 . . . 0 0
· · · . . . · ·
· · · . . . · ·
0 0 0 . . . 0 n
0 0 0 . . . 0 0

















.

Działając odwzorowaniem F na wektory bazy fk znajdujemy, że F (fk) = fk−1 (przy
czym F (f0) = 0, czyli tak jakby f−1 ≡ 0). Stąd macierz F w bazie (f0, f1, . . . , fn−1, fn),
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ma postać

F(f)(f) =

















0 1 0 . . . 0 0
0 0 1 . . . 0 0
· · · . . . · ·
· · · . . . · ·
0 0 0 . . . 0 1
0 0 0 . . . 0 0

















.

Zauważmy na koniec że de facto F odwzorowuje Vn w Vn−1 w związku z czym, jeśli
potraktować F w ten sposób, to macierz F(f)(f) będzie wymiaru (n−1)×n, tj. będzie miała
o jeden (ostatni, zerowy) wiersz mniej (macierz F(e)(e) spłaszczyłaby się zaś o pierwszy
zerowy wiersz).

Zadanie 26
Mamy przestrzeń wektorową wielomianów stopnia ≤ 3. Definiujemy odwzorowanie F z
tej przestrzeni w przestrzeń wektorową wielomianów stopnia ≤ 2 wzorem

F [W (x)] =W ′(x) + x2W (0) + 12x

∫ 1

0

dtW (t) .

Sprawdzić, czy odwzorowanie F jest liniowe. Jeśli tak, to znaleźć jego macierz w bazach
kanonicznych (e0, e1, e2, e3) przestrzeni wielomianów stopnia ≤ 3 i (e0, e1, e2) przestrzeni
wielomianów stopnia ≤ 2, gdzie en ≡ xn.
Rozwiązanie: F jest liniowe bo jeśli W (x) = α1W

(1)(x) + α2W
(2)(x) to

F [W (x)] =
d

dx
[α1W

(1)(x) + α2W
(2)(x)] + x2[α1W

(1)(0) + α2W
(2)(0)]

+12x

∫ 1

0

dt [α1W
(1)(t) + α2W

(2)(t)]

= α1
d

dx
W (1)(x) + α1x

2W (1)(0) + α1 12x

∫ 1

0

dtW (1)(t)

+α2
d

dx
W (2)(x) + α2x

2W (2)(0) + α2 12x

∫ 1

0

dtW (2)(t)

= α1F [W
(1)(x)] + α2F [W

(2)(x)] .

Teraz możemy znaleźć macierz odwzorowania F w bazach kanonicznych. Dowolny wielo-
mian stopnia ≤ 3 jest postaci:

W = e0W
0
(e) + e1W

1
(e) + e2W

2
(e) + e3W

3
(e) ≡ W 0

(e) +W 1
(e)x+W 2

(e)x
2 +W 3

(e)x
3 .

gdzieW i
(e) ∈ R są składowymi wielomianu W w bazie ei. Co F robi z wektorów bazowych?

F [e0] ≡ F [1] = x2 + 12x = 12 e1 + e2 ,

F [e1] ≡ F [x] = 1 + 6x = e0 + 6 e1 ,

F [e2] ≡ F [x2] = 6x = 6 e1 ,

F [e3] ≡ F [x3] = 3x2 + 3x = 3 e1 + 3 e2 .
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Z liniowości F mamy więc (w konwencji sumacyjnej: powtarzające się wskaźniki są wy-
sumowane):

F [W] = F [ei]W
i
(e) = ek [F(e)(e)]

k
iW

i
(e) ,

gdzie ek[F(e)(e)]
k
i = F [ei]. Korzystając ze znalezionego wyżej działania F na wektory bazy

ei łatwo znajdujemy macierz [F(e)(e)]
k
i (k numeruje jej wiersze, a i kolumny) odwzorowania

F :

[F(e)(e)]
k
i =





0 1 0 0
12 6 6 3
1 0 0 3



 .

Sprawdźmy jak to działa. Niech W (x) = 2x3−3x2+7. Działanie F na W możemy łatwo
znaleźć bezpośrednio ze wzoru:

F [W] = 6x2 − 6x+ x2 · 7 + 12x

∫ 1

0

dt (2t3 − 3t2 + 7) = 72x+ 13x2 = 72 e1 + 13 e2 .

Składowymi W i
(e) wielomianu-wektora W w bazie (e0, e1, e2, e3) są









7
0
−3
2









.

Działając na te składowe macierzą [F(e)(e)]
k
i dostajemy





0 1 0 0
12 6 6 3
1 0 0 3













7
0
−3
2









=





0
72
13



 ,

czyli istotnie składowe Xk
(e) wielomianu X = F [W] w bazie (e0, e1, e2).

Przypomnienie.
Obrazem26 (imF ) odwzorowania liniowego F : V → W nazywa się zbiór wszystkich
wektorów w ∈ W , dla których istnieje taki wektor v ∈ V , że w = F (v). Jądro (kerF )
odwzorowania liniowego F tworzą wszystkie te wektory v ∈ V , na których F daje zero
(tzn. przeprowadza je na wektor zerowy przestrzeni W ).27 Zarówno obraz, jak i jądro F

26Nie mylić symbolu “im” z częścią urojoną (oznaczaną “Im”) liczby zespolonej!
27Jeden z naszych kolegów - nomina sunt odiosa, jak mówili w takich przypadkach starożytni Rzymianie

- z którym miewałem przyjemność wykładać studentom ten “Początek algebraicznego mocarstwa” (patrz
rozdział XVII niezwykle zajmujących Wykładów z historii matematyki M. Kordosa) zasłynął usilnym
wtłaczaniem w studenckie głowy pojęcia kojądra. Ponieważ mimo uprawiania przez ponad 30 lat fizyki
teoretycznej spotkałem się tylko z jądrami kobaltu 60Co (byłyżby to owe kojądra?!), które pani C.S. Wu
posłużyły do przeprowadzenia przełomowego doświadczenia dowodzącego naruszenia przez oddziaływa-
nia słabe parzystości, wysunąłem konstruktywną propozycję wysłania tego kolegi w ramach reedukacji
fizycznej natychmiast w kosmos i to z napędem kojądrowym!

62



są podprzestrzeniami wektorowymi odpowiednio przestrzeni W i przestrzeni V . Zachodzi
też związek

dimV = dim(kerF ) + dim(imF ) .

Zadanie 27
Znaleźć jądro (ker) i obraz (im) odwzorowania F trójwymiarowej przestrzeni wektorowej
V w inną (a może tę samą - nie jest to istotne) przestrzeń wektorową W mającą również
wymiar 3; w bazach vi ∈ V i wi ∈ W macierz F ma postać

F(w)(v) =





1 2 3
4 5 6
7 8 9



 .

Rozwiązanie: Znajdźmy najpierw jądro. Szukamy zatem wszystkich takich wektorów
u = vi u

i
(v), że F (u) = 0. Jest to równoważne żądaniu, by





1 2 3
4 5 6
7 8 9









u1(v)
u2(v)
u3(v)



 =





0
0
0



 ,

czyli, by

u1(v) + 2u2(v) + 3u3(v) = 0 ,

4u1(v) + 5u2(v) + 6u3(v) = 0 ,

7u1(v) + 8u2(v) + 9u3(v) = 0 .

Odejmując od trzeciego trzy razy pierwsze, a od drugiego dwa razy pierwsze dowiadujemy
się, że 2 u1(v) + u2(v) = 0, a stąd, po wstawieniu tego do pierwszego, że u3(v) = u1(v). Zatem
wszystkie wektory jądra są postaci

λ (v1 − 2v2 + v3) ≡ λ j ∈ kerF ,

z dowolnym czynnikiem λ. Zatem dim(kerF ) = 1, co oznacza, że dim(imF ) = 2.
Szukamy następnie obrazu (imF ), czyli pytamy, jakie wektory t = wi t

i
(w) daje się

otrzymać z jakiegoś u ∈ V . Inaczej mówiąc, dla jakich ti(w) istnieją jakieś ui(v), z którymi
spełniony jest związek





1 2 3
4 5 6
7 8 9









u1(v)
u2(v)
u3(v)



 =





t1(w)

t2(w)

t1(w)



 ,

lub, co równoważne, spełniony jest układ równań

u1(v) + 2u2(v) + 3u3(v) = t1(w) ,

4u1(v) + 5u2(v) + 6u3(v) = t2(w) ,

7u1(v) + 8u2(v) + 9u3(v) = t3(w) .
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Znów odejmując od trzeciego trzy razy pierwsze, a od drugiego dwa razy pierwsze dosta-
jemy równania:

2u1(v) + u2(v) = t2(w) − 2 t1(w) ,

4u1(v) + 2u2(v) = t3(w) − 3 t1(w) .

Widać z nich, że aby istniało jakieś rozwiązanie, składowe wektora t (w bazie wi) muszą
spełniać związek 2 t2(w) − 4 t1(w) = t3(w) − 3 t1(w), czyli t1(w) − 2 t2(w) + t3(w) = 0. Jeśli jest on
spełniony, to możemy rozwiązywać dwa pierwsze równania (drugie przerobione jak wyżej)

u1(v) + 2u2(v) + 3u3(v) = t1(w) ,

2u1(v) + u2(v) = t2(w) − 2 t1(w) .

Widać, że dla dowolnego u3(v) (i dowolnych t1(w) i t2(w)) można tak dobrać u1(v) i u2(v), by te
równania były spełnione. Zatem jeśli składowe ti(w) (w bazie wektorów wi) wektora t ∈ W
spełniają związek

t1(w) − 2 t2(w) + t3(w) = 0 ,

to t jest obrazem jakiegoś wektora z V . Co więcej, wektor, którego t jest obrazem, nie
jest wyznaczony jednoznacznie; wynika to jasno choćby z tego, że można sobie wybrać
dowolne u3(v) i znaleźć rozwiązania na u1(v) i u2(v). Jest to oczywiście związane z tym, że
jądro odwzorowania, kerF , jest nietrywialne (nietrywialne tzn. zawierające więcej niż
tylko wektor zerowy!). Ponieważ składowe wektora t, który może być obrazem jakiegoś u
wiąże tylko jeden warunek, imF jest podprzestrzenią 3− 1 = 2 wymiarową; jako jej bazę
można wybrać np. liniowo niezależne wektory

h1 = w1 −w3 , h2 = w2 + 2w3 ,

których składowe (w bazie wi) spełniają powyższy warunek.

Alternatywnym spojrzeniem na problem wyznaczenia obrazu F jest zauważenie że
skoro F (vi) = wj [F(w)(v)]

j
i, to każdy wektor należący do obrazu odwzorowania F ma

zawsze postać jakiejś kombinacji liniowej wektorów

n1 = wj [F(w)(v)]
j
1 = w1 + 4w2 + 7w3 ,

n2 = wj [F(w)(v)]
j
2 = 2w1 + 5w2 + 8w3 ,

n3 = wj [F(w)(v)]
j
3 = 3w1 + 6w2 + 9w3 ,

i problem wyznaczenia wymiaru obrazu odwzorowania F sprowadza się do wybrania li-
niowo niezależnych wektorów ni (wiemy przy tym, że trzy wektory wi są liniowo nie-
zależne, bo tworzą bazę). To zaś jest równoważne sprawdzeniu, czy kolumny macierzy
F(w)(v) potraktowane jak wektory z R3 są liniowo zależne, czy nie, a jeśli tak, to ile z nich
jest liniowo niezależnych (wtedy te liniowo niezależne kolumny przemnożone odpowiednio
przez wektory wi stanowią dobrą bazę podprzestrzeni imF ). Z wykonanych już w tym
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zadaniu rachunków łatwo zobaczyć, że tylko dwa z wektorów ni są liniowo niezależne bo
np. n3 = −n1+2n2. Zatem jako bazę imF można przyjąć n1 i n2. Łatwo też zobaczyć, że
n1 = h1+4h2 i n2 = 2h1+5h2, czyli n1 i n2 rzeczywiście rozpinają tę samą podprzestrzeń
imF .

Zadanie 27′

Znaleźć jądro (ker) i obraz (im) odwzorowania F z czterowymiarowej przestrzeni V w nią
samą zadanego jej bazie ei macierzą

F(e)(e) =









1 1 1 1
1 0 1 2
1 2 1 0
0 1 0 −1









.

Rozwiązanie: Nietrudno zobaczyć (gołym okiem!), że macierz F(e)(e) daje zera, gdy
działa na kolumienki









1
0
−1
0









,









0
1
−2
1









.

Zatem jądro kerF rozpinają dwa liniowo niezależne (widać, że one takie są!) wektory

j1 = e1 − e3 , j2 = e2 − 2 e3 + e4 .

Stąd dim kerF = 2, a więc dim imF = dimV− dim kerF = 4 − 2 = 2. Aby znaleźć
wektory (już wiemy, że muszą być dwa) rozpinające obraz imF (jeśli weźmiemy dwa
takie, to będą one bazą imF ) wystarczy zauważyć, że kolumienki składowych wektorów
będących obrazami F są kombinacjami liniowymi kolumienek Ci (zarówno kolumienki
składowych wektorów jak i kolumienki macierzy możemy przez chwilę potraktować jak
wektory z R4) macierzy F(e)(e)









t1(e)
t2(e)
t3(e)
t4(e)









= C1v
1
(e) +C2v

2
(e) +C3v

3
(e) +C4v

4
(e) ,

gdzie vi(e) są składowymi wektora v, na który działa F . Z kolei z tego, że jądro roz-
pinają podane wyżej wektory j1 i j2 wynika, że jako wektory cztery kolumienki Ci są
liniowo zależne; liniowo niezależne są tylko dwie z nich: np. C2 i C3. Zatem wszystkie
kolumienki-wektory składowych wektorów będących obrazami F można dostać także jako
kombinacje liniowe tylko kolumienek C2 i C3 macierzy F(e)(e). Stąd już wynika, że za
wektory rozpinające imF można np. przyjąć wektory

o1 = e1 + e2 + e3 , o2 = e1 + 2 e3 + e4 ,
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tj. kombinacje liniowe wektorów bazy, współczynnikami których to kombinacji są elementy
kolumienek C1 i C2 macierzy F(e)(e).

Jest pouczające sprawdzenie, że rzeczywiście wektory o1 i o2 rozpinają cały obraz F .
W tym celu działamy na składowe dowolnego wektora ae1+ be2+ ce3+de4 z V macierzą
F(e)(e) i pytamy, czy otrzymany w wyniku tego odwzorowania wektor (a+ b+ c+ d)e1 +
(a + c + 2d)e2 + (a + 2b + c)e3 + (b − d)e4 jest, przy dowolnych a, b, c i d, kombinacją
liniową o1 i o2, czyli, czy można zawsze tak dobrać współczynniki α i β, by zachodziła
równość

(a+ b+ c+ d) e1 + (a + c+ 2d) e2 + (a+ 2b+ c) e3 + (b− d) e4 = α o1 + β o2

≡ α (e1 + e2 + e3) + β (e1 + 2 e3 + e4) .

Po przyrównaniu współczynników przy tych samych wektorach bazy sprowadza się to do
pytania, czy przy dowolnych a, b, c i d istnieją takie α i β, że spełnione są równości

α + β = a+ b+ c+ d ,

α = a+ c + 2d ,

α + 2β = a+ 2b+ c ,

β = b− d .

I rzeczywiście tak jest: równania drugie i trzecie wyznaczają α i β, które spełniają też
równania pierwsze i trzecie.

Zadanie 28
Znaleźć jądro (ker) i obraz (im) odwzorowania F z Zadania 26.
Rozwiązanie: Jądro jest to w tym przypadku podprzestrzeń liniowa przestrzeni wie-
lomianów stopnia ≤ 3 tworzona przez takie wielomiany W (x), że F [W (x)] = 0 (zero 0

oczywiście rozumiane jako wektor-wielomian zerowy). NiechW (x) = a3x
3+a2x

2+a1x+a0.
Zobaczymy, jakie muszą być współczynniki a3, a2, a1, a0, żeby W (x) należał do jądra F .
Zażądajmy by

F [W] = 3a3x
2 + 2a2x+ a1 + a0x

2 + 12x

(

1

4
a3 +

1

3
a2 +

1

2
a1 + a0

)

= 0 .

Wymaga to, by a1 = 0, 3a3 + a0 = 0 oraz 3a3 + 6a2 + 6a1 + 12a0 = 0, czyli by cztery
współczynniki ai spełniały trzy równania. Przyjmijmy a0 za niezależną wielkość. Wtedy
a3 = −1

3
a0 i a2 = −11

6
a0. Zatem jądro odwzorowania F jest w przestrzeni wielomianów

stopnia ≤ 3 podprzestrzenią jednowymiarową rozpiętą przez wektor o składowych








1
0
−11

6

−1
3









,
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w bazie en = xn, takiej jak w Zadaniu 26. Możemy teraz skorzystać ze znalezionej tam
macierzy [F(e)(e)]

j
i odwzorowania F by sprawdzić, że istotnie





0 1 0 0
12 6 6 3
1 0 0 3













λ
0
−11

6
λ

−1
3
λ









=





0
0
0



 ,

dla dowolnego λ. Zatem do jądra odwzorowania F należą wektory-wielomiany postaci

λ(e0 −
11

6
e2 −

1

3
e3) = λ(1− 11

6
x2 − 1

3
x3) .

Jeśli zaś chodzi o to, jak obraz odwzorowania F ma się do przestrzeni wielomianów, to
odpowiedź zależy od trochę akademickiego problemu, co uznamy za przestrzeń wektorową,
w którą wielomiany stopnia ≤ 3 odwzorowuje F . Jeśli umówimy się, że jest to przestrzeń
wielomianów stopnia ≤ 2, to musimy zbadać, czy każdy wielomian postaci b0+ b1x+ b2x2

jest F -obrazem jakiegoś wielomianu stopnia ≤ 3. W tym celu musimy zbadać, czy układ
równań

a1 = b0

4a0 + 2a1 + 2a2 + a3 =
1

3
b1

a0 + 3a3 = b2 ,

ma rozwiązanie względem ai, dla zupełnie dowolnych bi. Z pierwszego a1 musi być równe
b0, to następnie do drugiego i przenosimy na drugą stronę. Mamy wtedy

4a0 + 2a2 + a3 =−2b0 +
1

3
b1

4a0 + 12a3 = 4b2 ,

i stąd 2a2 − 11a3 = −2b0 + 1
3
b1 − 4b2. Wybrawszy dowolnie np. a3 mamy stąd, dla

dowolnych b0, b1 i b2, wyznaczone potrzebne a2, a z pozostałych równań a1 i a0. Jak
więc widać rozwiązanie zawsze istnieje, czyli obrazem F , tj. imF , jest cała przestrzeń
wielomianów stopnia ≤ 2. To, że rozwiązanie jest niejednoznaczne (tylko 2a2 − 11a3 jest
wyznaczone), tzn. ten sam wielomian stopnia ≤ 2 można dostać jako obraz F z różnych
wielomianów stopnia ≤ 3 jest oczywistym wnioskiem w tego, że kerF jest nietrywialne,
tzn. nie składa się wyłącznie z wektora (wielomianu) zerowego.

Oczywiście jeśli dla jakiegoś kaprysu zechcemy uznać, że F odwzorowuje wielomiany
stopnia ≤ 3 w przestrzeń wektorową wielomianów stopnia ≤ n o n ≥ 3, to oczywiście
imF już nie będzie całą tą przestrzenią, bo np. wielomianu W = 5x3 nie da się nijak za
pomocą F z wielomianu stopnia ≤ 3 otrzymać.
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Zadanie 29
Niech wektory f0 = 1 + x, f1 = x + x2, f2 = x2 + x3, f3 = x3 będą inną bazą przestrzeni
wektorowej wielomianów stopnia ≤ 3 (można sprawdzić, że istotnie są one bazą). Znaleźć
tej bazie macierz odwzorowania F z Zadania 26. Wyznaczyć także postać wektorów-
wielomianów należących do jądra odwzorowania F .
Uwaga: w przestrzeni wielomianów stopnia ≤ 2 trzymamy starą, “kanoniczną” bazę
en = xn, tj. chcemy by nowa macierz odwzorowania F działając na składowe wielo-
mianu stopnia ≤ 3 w bazie fk dawała składowe odpowiedniego wielomianu stopnia ≤ 2 w
bazie en.
Rozwiązanie: To zadanie możemy wykonać posługując się bezpośrednio procedurą wy-
znaczania macierzy w danych bazach obu przestrzeni: po prostu działamy po kolei odwzo-
rowaniem F na nowe bazowe wektory-wielomiany fi i wynik takiego działania rozpisujemy
w bazie kanonicznej ek:

F (f0) ≡ F (1 + x) = 1 + x2 + 12x
3

2
= e0 + 18 e1 + e2

F (f1) ≡ F (x+ x2) = 1 + 2x+ 12x
5

6
= e0 + 12 e1

F (f2) ≡ F (x2 + x3) = 2x+ 3x2 + 12x
7

12
= 9 e1 + 3 e2

F (f3) ≡ F (x3) = 3x2 + 12x
1

4
= 3 e1 + 3 e2 .

Stąd od razu, stawiając odpowiednie współczynniki na sztorc, dostajemy

F(e)(f) =





1 1 0 0
18 12 9 3
1 0 3 3



 .

W celach pedagogicznych otrzymamy teraz F(e)(f) innym sposobem. Będziemy po-
trzebować macierzy przejścia Re←f z bazy fk do bazy en odwrotnej do macierzy Rf←e

przejścia z bazy en do bazy fk. Tę pierwszą, tu właśnie potrzebną, Re←f , znajdziemy
łatwo bo mamy

f0 = e0 + e1 ,

f1 = e1 + e2 ,

f2 = e2 + e3 ,

f3 = e3 .

Stąd

(f0, f1, f2, f3) = (e0, e1, e2, e3)









1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1









,
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czyli, w zapisie na wskaźniczkach, fk = ej [Re←f ]
j
k. Jeśli mamy teraz dany wektor (wie-

lomian) v w postaci v = fj v
j
(f) (gdzie vj(f) są składowymi v w bazie fj), to28

v = fk v
k
(f) = ej [Re←f ]

j
k v

k
(f) ≡ ej v

j
(e) ,

gdzie vj(e) = [Re←f ]
j
k v

k
(f). Niech teraz u = F [v]. Macierz odwzorowania F zapisana “z

obu stron” w bazach kanonicznych en, zarówno w przestrzeni wielomianów stopnia ≤ 3
jak i wielomianów stopnia ≤ 2, działa tak, że jeśli u = ei u

i
(e), to

ei u
i
(e) = F [v] = F [ek] v

k
(e) = ei [F(e)(e)]

i
k v

k
(e) .

Wyrażając tu vk(e) przez vj(f) za pomocą macierzy [Re←f ]
k
j dostajemy

ei u
i
(e) = ei [F(e)(e)]

i
k [Re←f ]

k
j v

j
(f) .

Tak więc składowe w bazie ei wielomianu u (otrzymywanego jako obraz wielomianu v

przy odwzorowania liniowym F ) ze składowych v w bazie fj daje nam macierz

[F(e)(f)]
i
j = [F(e)(e)]

i
k [Re←f ]

k
j .

Jawnie macierzowo:

F(e)(f) =





0 1 0 0
12 6 6 3
1 0 0 3













1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1









=





1 1 0 0
18 12 9 3
1 0 3 3



 .

Oczywiście jest to ta sama macierz, którą już otrzymaliśmy na początku.

Sprawdźmy teraz to wszystko na wielomianie W = 2x3−3x2+7, który już nam służył
za przykład w zadaniu 26. Zapiszmy go najpierw w bazie fi. W tym celu wyrażamy
najpierw wektory ei przez fj . Idąc “od dołu” mamy: e3 = f3, e2 = f2 − e3 = f2 − f3, etc.
Łatwo więc znajdujemy, że

e0 = f0 − f1 + f2 − f3 ,

e1 = f1 − f2 + f3 ,

e2 = f2 − f3 ,

e3 = f3 .

Znaleźliśmy zatem macierz Rf←e

Rf←e =









1 0 0 0
−1 1 0 0
1 −1 1 0
−1 1 −1 1









,

28Zdaje się, że się powtarzam. Ale to nic: “powtarienija - mat’ uczenija”, jak mówią tam, gdzie nas
będą wywozić (a wtedy znajomość tego pięknego języka się przyda...).
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odwrotną do Re←f . Istotnie,








1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1

















1 0 0 0
−1 1 0 0
1 −1 1 0
−1 1 −1 1









=









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









.

Możemy teraz rozłożyċ wektor W w bazie fi:

W = 2 e3 − 3 e2 + 7e0 = 2 f3 − 3 (f2 − f3) + 7 (f0 − f1 + f2 − f3)

= 7 f0 − 7 f1 + 4 f2 − 2 f3 .

W bazie fi wielomian W ma więc składowe








7
−7
4
−2









.

Jeśli na te składowe podziałamy macierzą F(e)(f) to dostaniemy





1 1 0 0
18 12 9 3
1 0 3 3













7
−7
4
−2









=





0
72
13



 ,

czyli to samo, co poprzednio (bo to co wychodzi to mają być składowe F [W] w tej samej
bazie, co poprzednio, czyli w bazie ei).

Wektory należące do jądra odwzorowania F muszą mieć takie składowe V i
(f) ≡ ai, na

których zeruje się macierz F(e)(f):





1 1 0 0
18 12 9 3
1 0 3 3













a0
a1
a2
a3









=





0
0
0



 .

Nietrudno ustalić, przyjmując np. składową a0 ≡ λ jako dowolną, że są to wektory o
składowych a1 = −λ, a2 = −5

6
λ, a3 = 1

2
λ, czyli wektory-wielomiany postaci

λ(f0 − f1 −
5

6
f2 +

1

2
f3) = λ [1 + x− (x+ x2)− 5

6
(x2 + x3) +

1

2
x3]

≡ λ [1− 11

6
x2 − 1

3
x3] ,

takiej samej, jak ustaliliśmy to w Zadaniu 28. Oczywiście te same składowe V 0
(f) = λ,

V 1
(f) = −λ, V 2

(f) = −5
6
λ V 3

(f) =
1
2
λ, można było też otrzymać działając macierzą Rf←e na

składowe V 0
(e) = λ, V 1

(e) = 0, V 2
(e) = −11

6
λ V 3

(e) = −1
3
λ znalezione w Zadaniu 28.
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Zadanie 30
Zapisać macierz odwzorowania F z zadań 26 i 29 w bazie en = xn, n = 0, 1, 2, 3 przestrzeni
wektorowej wielomianów stopnia ≤ 3 oraz w bazie gj, j = 0, 1, 2 danej wzorami

g0 = e0 + 2 e1 + 3 e2 ,

g1 = 3 e1 + 4 e2 ,

g2 = 2 e2 ,

(tj. w bazie tworzonej przez wielomiany g0 = 1 + 2x + 3x2, g1 = 3x + 4x2 i g2 = 2x2)
bedącej bazą przestrzeni wielomianów stopnia ≤ 2.
Rozwiązanie: Znów musimy znaleźć macierz przejścia z bazy en do bazy gj . Z trzeciego
związku mamy e2 =

1
2
g2. Z drugiego wtedy 3 e1 = g1 − 2g2. W końcu

e0 = g0 −
2

3
(g1 − 2g2)−

3

2
g2 = g0 −

2

3
g1 −

1

6
g2 .

Ostatecznie więc mamy

(g0, g1, g2) = (e0, e1, e2)





1 0 0
2 3 0
3 4 2



 .

czyli gj = ei [Re←g]
i
j oraz

(e0, e1, e2) = (g0, g1, g2)





1 0 0
−2

3
1
3

0
−1

6
−2

3
1
2



 ,

czyli ek = gj [Rg←e]
j
k. Musi oczywiście być ek = gj [Rg←e]

j
k = ei [Re←g]

i
j [Rg←e]

j
k, czyli

[Re←g]
i
j [Rg←e]

j
k = δi k. Można to jawnie sprawdzić:

Re←g · Rg←e =





1 0 0
2 3 0
3 4 2









1 0 0
−2

3
1
3

0
−1

6
−2

3
1
2



 =





1 0 0
0 1 0
0 0 1



 ,

Podobnie powinno być gj = ei [Re←g]
i
j = gk [Rg←e]

k
i [Re←g]

i
j, tj. [Rg←e]

k
i [Re←g]

i
j = δkj :

Rg←e · Re←g =





1 0 0
−2

3
1
3

0
−1

6
−2

3
1
2









1 0 0
2 3 0
3 4 2



 =





1 0 0
0 1 0
0 0 1



 .

Możemy teraz zapisywać sobie związek u = F [v] w dowolnych bazach:

ei u
i
(e) = ei [F(e)(e)]

i
j v

j
(e) , czyli ui(e) = [F(e)(e)]

i
j v

j
(e) ,

lub, wyrażając ei przez gj ,

gj [Rg←e]
j
i [F(e)(e)]

i
j v

j
(e) ≡ gj [F(g)(e)]

j
j v

j
(e) , czyli ui(g) = [F(g)(e)]

i
j v

j
(e) ,
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gdzie [F(g)(e)]
i
j = [Rg←e]

i
k [F(e)(e)]

k
j. Jawnie (macierz F(e)(e) jest podana w zadaniach 26

i 28):

F(g)(e) =





1 0 0
−2

3
1
3

0
−1

6
−2

3
1
2









0 1 0 0
12 6 6 3
1 0 0 3



 =





0 1 0 0
4 4

3
2 1

−15
2
−25

6
−4 −1

2



 .

Można też mieć macierz odwzorowania F w bazie fk przestrzeni wielomianów stopnia ≤ 3
i bazie gj przestrzeni wielomianów stopnia ≤ 2. W tym celu trzeba vj(e) zapisać jako

vj(e) = [Re←f ]
j
kv

k
(f), co da [F(g)(f)]

j
k = [F(g)(e)]

j
l [Re←f ]

l
k, czyli jawnie (biorąc macierz

[Re←f ]
l
k z poprzedniego zadania)

F(g)(f) =





0 1 0 0
4 4

3
2 1

−15
2
−25

6
−4 −1

2













1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1









=





1 1 0 0
16
3

10
3

3 1
−35

3
−49

6
−9

2
−1

2



 .

Tę samą macierz F(g)(f) można także otrzymać z macierzy F(e)(f) znalezionej w poprzednim
zadaniu: [F(g)(f)]

j
k = [Rg←e]

j
l [F(e)(f)]

l
k czyli

F(g)(f) =





1 0 0
−2

3
1
3

0
−1

6
−2

3
1
2









1 1 0 0
18 12 9 3
1 0 3 3



 =





1 1 0 0
16
3

10
3

3 1
−35

3
−49

6
−9

2
−1

2



 .

Sprawdźmy to wszystko na naszym wielomianie W = 2x3 − 3x2 + 7, który w bazie ej
miał składowe (7, 0,−3, 2). Działając na te składowe macierzą F(g)(e) dostajemy





0 1 0 0
4 4

3
2 1

−15
2
−25

6
−4 −1

2













7
0
−3
2









=





0
24
−83

2



 ,

to jest składowe F [W] w bazie gj. Zatem

F [W] = 0 · g0 + 24 · g1 −
83

2
· g2 = 24 · (3x+ 4x2)− 83

2
· (2x2) = 72x+ 13x2 ,

tak, jak być powinno (F [W] jest wektorem i nie może zależeć od wyboru baz, które są
czymś pomocniczym jedynie). Podobnie, działając macierzą F(g)(f) na znalezione w po-
przednim zadaniu składowe (7,−7, 4,−2) naszego wielomianu W w bazie fj otrzymujemy





1 1 0 0
16
3

10
3

3 1
−35

2
−49

6
−9

2
−1

2













7
−7
4
−2









=





0
24
−83

2



 ,
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czyli te same składowe F [W] w bazie gj .

Zadanie 31
Pewne odwzorowanie liniowe G z R3 w R3 jest takie, że

G









1
1
1







 =





3
2
2



 , G









1
2
−1







 =





−1
1
4



 , G









−1
1
0







 =





−1
1
−3



 .

Znaleźć macierz G(e)(e) tego odwzorowania w bazie kanonicznej

e1 =





1
0
0



 , e2 =





0
1
0



 , e2 =





0
0
1



 .

Znaleźć także wynik działania

G









2
0
−1







 .

Rozwiązanie: Dla porządku trzeba najpierw sprawdzić, czy wektory

f1 =





1
1
1



 , f2 =





1
2
−1



 , f3 =





−1
1
0



 ,

na których zadane jest działanie G, są liniowo niezależne. Jeśli są, to rozpinają całą
przestrzeń R

3 i mogą być jej bazą. W takim przypadku zadanie odwzorowania G na
tych trzech wektorach wyznacza już działanie G na każdy wektor z przestrzeni będącej
dziedziną G, bo każdy wektor z tej dziedziny można zapisać jako kombinację liniową trzech
wektorów, na których działanie G jest znane. Gdyby się okazało (ale się nie okaże), że
trzy wektory fi, na których działanie G jest zadane, są liniowo zależne, to trzeba by
sprawdzić, czy takie zdefiniowanie G jest niesprzeczne, tzn. czy spełniona jest liniowość;
nie dałoby się jednak wtedy znaleźć całej macierzy odwzorowania G w żadnej bazie.
Niemniej, nawet jeśli trzy wektory fi nie rozpinałyby całej dziedziny G, nie przekreślałoby
to z góry możliwości znalezienia wartości G na podanym w zadaniu wektorze: mogłoby
się bowiem okazać, że akurat ten wektor jest liniową kombinacją tych, na których G jest
zadane. Dopiero, gdyby ten wektor nie był liniowo zależny od tych, na których działanie
G jest zadane, druga część zadania nie mogłaby być rozwiązana.

Zatem do dzieła! Równanie λ1f1 + λ2f2 + λ3f3 = 0 daje układ równań

λ1 + λ2 − λ3 = 0 ,

λ1 + 2λ2 + λ3 = 0 ,

λ1 − λ2 = 0 .
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Z trzeciego λ2 = λ1 do pierwszego i drugiego, co da układ dwu równań 2λ1− λ3 = 0 oraz
3λ1 + λ3 = 0, czyli 5λ1 = 0 etc. Widać, że jedynym rozwiązaniem jest λ1 = λ2 = λ3 = 0,
czyli wektory fi są liniowo niezależne. To samo możemy sprawdzić gdy chodzi o wektory

g1 =





3
2
2



 , g2 =





−1
1
4



 , g3 =





−1
1
−3



 .

Równanie ξ1g1 + ξ2g2 + ξ3g3 = 0 daje układ równań

3ξ1 − ξ2 − ξ3 = 0 ,

2ξ1 + ξ2 + ξ3 = 0 ,

2ξ1 + 4ξ2 − 3ξ3 = 0 ,

który też ma tylko rozwiązanie ξ1 = ξ2 = ξ3 = 0, czyli - jak się tego kiedyś dowiemy
- odwzorowanie G jest nieosobliwe bo przeprowadza R3 w całe R3 (ma więc trywialne
jądro do którego należy tylko wektor zerowy). Zatem w bazach: fi przestrzeni wektorów
odwzorowywanych i gj przestrzeni wektorów będących wynikiem odwzorowania, macierz
G ma postać trywialną

G(g)(f) =





1 0 0
0 1 0
0 0 1



 .

Oznacza to, że jeśli G[v] = w i v = fi v
i
(f), a w = gj w

j
(g), to macierz G(g)(f) robi

składowe wi
(g) ze składowych vi(f) według przepisu: wj

(g) = [G(g)(f)]
j
i v

i
(f), czyli tu po

prostu wj
(g) = vj(f).

Jeśli teraz fi = ek [Re←f ]
k
i to vk(e) = [Re←f ]

k
i v

i
(f) i odwrotnie, vi(f) = [Rf←e]

i
k v

k
(e).

W podobny sposób, jeśli gi = ek [Re←g]
k
i, to wk

(e) = [Re←g]
k
i w

i
(g) i odwrotnie, wi

(g) =

[Rg←e]
i
k w

k
(e). Jeśli więc znajdziemy macierze [Re←g] i [Rf←e], to będziemy mogli napisać

wk
(e) = [Re←g]

k
iw

i
(g) = [Re←g]

k
i [G(g)(f)]

i
jv

j
(f)

= [Re←g]
k
i [G(g)(f)]

i
j [Rf←e]

j
l v

l
(e) ≡ [G(e)(e)]

k
l v

l
(e) .

Zatem [G(e)(e)]
k
l = [Re←g]

k
i [G(g)(f)]

i
j [Rf←e]

j
l. Aby więc znaleźć macierz G(e)(e) odwzoro-

wania G w bazie kanonicznej trzeba znaleźć macierze [Re←g] oraz [Rf←e]. Pierwsza jest
banalna, bo mamy dane wektorki gi = F [fi]: np. g1 = 3 e1 + 2 e2 + 2 e3, etc. Stąd

[Re←g] =





3 −1 −1
2 1 1
2 4 −3



 .

Podobnie banalnie jest dana macierz [Re←f ]:

[Re←f ] =





1 1 −1
1 2 1
1 −1 0



 ,
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ale my potrzebujemy [Rf←e]. Musimy więc rozwiązać układ równań wektorowych

f1 = e1 + e2 + e3 ,

f2 = e1 + 2 e2 − e3 ,

f3 = −e1 + e2 .

Od drugiego odjąć pierwsze: e2−2e3 = f2−f1. Do drugiego dodać trzecie: 3e2−e3 = f2+f3.
Dalej już łatwo:

3 e2 − 6 e3 = 3 f2 − 3 f1 , e2 − 2 e3 = f2 − f1 ,

3 e2 − e3 = f2 + f3 , 6 e2 − 2 e3 = 2 f2 + 2 f3 .

Stąd: 5 e3 = 3 f1 − 2 f2 + f3 oraz 5 e2 = f1 + f2 + 2 f3 i teraz e1 =
1
5
(5 f1 − f1 − f2 − 2 f3 −

3 f1 + 2 f2 − f3). Ostatecznie mamy

e1 =
1

5
(f1 + f2 − 3f3) ,

e2 =
1

5
(f1 + f2 + 2f3) ,

e3 =
1

5
(3f1 − 2f2 + f3) ,

czyli macierz Rf←e ma postać

[Rf←e] =
1

5





1 1 3
1 1 −2
−3 2 1



 .

Aby sprawdzić, czy się nie pomyliliśmy w rachunkach i przećwiczyć mnożenie macierzy
sprawdzamy

[Re←f ] · [Rf←e] =





1 1 −1
1 2 1
1 −1 0



 · 1
5





1 1 3
1 1 −2
−3 2 1



 =





1 0 0
0 1 0
0 0 1



 .

W drugą stronę też można sprawdzić:

[Rf←e] · [Re←f ] =
1

5





1 1 3
1 1 −2
−3 2 1



 ·





1 1 −1
1 2 1
1 −1 0



 =





1 0 0
0 1 0
0 0 1



 .

No to świetnie. Zatem możemy już znaleźć macierz G(e)(e) odwzorowania G w bazie kano-
nicznej ei: [G(e)(e)]

k
l = [Re←g]

k
i[G(g)(f)]

i
j[Rf←e]

j
l = [Re←g]

k
i[Rf←e]

i
l ponieważ [G(g)(f)]

i
j =

δi j. Czyli macierzowo

G(e)(e) =





3 −1 −1
2 1 1
2 4 −3



 · 1
5





1 1 3
1 1 −2
−3 2 1



 =





1 0 2
0 1 1
3 0 −1



 .
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Wspomniana wyżej nieosobliwość odwzorowania G odbija się w tym, że wyznacznik

det(G(e)(e)) = det





1 0 2
0 1 1
3 0 −1



 ≡

∣

∣

∣

∣

∣

∣

1 0 2
0 1 1
3 0 −1

∣

∣

∣

∣

∣

∣

= −7 ,

czyli jest różny od zera. Ten sam wniosek wynikał już z postaci G(g)(f) (det(G(g)(f)) = 1
po prostu), bo - jak kiedyś się dowiemy - det(G(e)(e)) = det(Re←g · G(g)(f) · Rf←e) =
det(Re←g) · det(G(g)(f)) · det(Rf←e), a macierze zmiany bazy są zawsze nieosobliwe, tj.
det(Re←g) 6= 0 i det(Rf←e) 6= 0. Jeśli więc macierz odwzorowania liniowego (w dowolnych
bazach) jest macierzą kwadratową o niezerowym wyznaczniku, to jądro odwzorowania jest
trywialne (można więc w celu sprawdzenia tego obliczać - jak się już umie - wyznacznik
macierzy odwzorowania). Jeśli jednak macierz odwzorowania nie jest kwadratowa, to wy-
znacznik całej tej macierzy nie jest zdefiniowany i w celu sprawdzenie jądra trzeba badać
liniową (nie)zależność kolumn macierzy odwzorowania (co - jak się tego dowiemy dalej -
też można robić wyznacznikami, ale nie całej macierzy, tylko pewnych jej podmacierzy
kwadratowych).

Gdy mamy już [G(e)(e)] w bazie kanonicznej e1, i = 1, 2, 3, to możemy łatwo znaleźć
działanie G na wektor

w =





2
0
−1



 .

W bazie kanonicznej ma on oczywiste składowe (2, 0,−1) a zatem składowe wektora G(w)
w bazie kanonicznej są dane przez





1 0 2
0 1 1
3 0 −1









2
0
−1



 =





0
−1
7



 .

Innym (szybszym) sposobem znalezienia G(w) jest rozłożenie w w bazie wektorów fi,
i = 1, 2, 3, na których działanie G zostało zadane, tzn. znalezienie współczynników yi,
i = 1, 2, 3 we wzorze

y1





1
1
1



+ y2





1
2
−1



+ y3





−1
1
0



 =





2
0
−1



 .

Łatwy rachunek daje y1 = −1
5
, y2 = 4

5
, y3 = −7

5
. Zatem korzystając z liniowości odwzo-

rowania G możemy napisać:

G









2
0
−1







 = −1
5
G









1
1
1







+
4

5
G









1
2
−1







− 7

5
G









−1
1
0









= −1
5





3
2
2



+
4

5





−1
1
4



− 7

5





−1
1
−3



 =





0
−1
7



 ,
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tak jak poprzednio.
To co zrobiliśmy w ostatnim punkcie podpowiada pewien szybki sposób znajdowa-

nia macierzy odwzorowania G(e)(e) (podobny do podanego na końcu Zadania 17 sposobu
znajdowania macierzy przejścia z bazy do bazy). Rozłóżmy ogólny wektor z R

3 na trzy
liniowo niezależne wektory fi, na których działanie odwzorowania G jest znane. Dość
łatwo znajdujemy, że





a
b
c



 =
1

5
(a+ b+ 3c)





1
1
1



+
1

5
(a+ b− 2c)





1
2
−1



+
1

5
(−3a+ 2b+ c)





−1
1
0





Działając zatem na ten ogólny wektor odwzorowaniem G możemy, tak jak wyżej,
napisać:

G









a
b
c







 =
1

5
(a + b+ 3c)





3
2
2



+
1

5
(a + b− 2c)





−1
1
4



+
1

5
(−3a + 2b+ c)





−1
1
−3



 .

Zbierając to do kupy mamy

G









a
b
c







 =
1

5





5a+ 0b+ 10c
0a+ 5b+ 5c
15a+ 0b− 5c



 .

Ekstrahując zurück ogólny wektor możemy prawą stronę przedstawić w postaci

G









a
b
c







 =
1

5





5 0 10
0 5 5
15 0 −5









a
b
c



 .

Wciągając 1/5 widzimy, że otrzymaliśmy macierz G(e)(e). Jest tu jednak pewna pojęciowa
trudność polegająca na tym, że (zgodnie z przyjętym przez nas sposobem zapisu) liczby w
kwadratowych nawiasach oznaczają “żywe” wektory z R

n (a nie ich składowe), a macierz
odwzorowania powinna być macierzą w jakiejś bazie. Tu oczywiście, ponieważ “żywy”
wektor z Rn wygląda dokładnie tak, jak jego składowe w kanonicznej zero-jedynkowej
bazie, należałoby najpierw zapisać przedostatnią równość w postaci

G









a
b
c







 =
1

5





5a+ 0b+ 10c
0a+ 5b+ 5c
15a+ 0b− 5c





i czytać ją: “działając na wektor, którego składowymi w kanonicznej zero-jedynkowej
bazie R

3 są (a, b, c) odwzorowanie G daje taki wektor z R
3, którego składowymi są równe

(5a + 0b + 10c, 0a + 5b + 5c, 15a + 0b − 5c).” Po czym zrobić to co zrobiliśmy wyżej i
uzyskać macierz, która wobec tego jest macierzą G(e)(e) odwzorowania G w kanonicznych
zero-jedynkowych bazach (z “obu stron”).
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Zadanie 32
O odwzorowaniu liniowym H z R3 w R3 wiadomo, że

H









1
3
0







 =





2
0
1



 , H









0
−1
1







 =





−1
1
−3



 , H









1
0
3







 =





−1
3
−8



 .

Znaleźć wynik działania odwzorowania H na wektor




−1
−5
2



 .

Czy da sie znaleźć macierz H(e)(e) tego odwzorowania np. w bazie kanonicznej (zero-
jedynkowej)?
Rozwiązanie: Zadanie to ma zilustrować uwagi poczynione na początku rozwiązania
poprzedniego zadania. Nietrudno sprawdzić, że trzeci z wektorów, na których znane jest
działanie odwzorowania H , jest liniowo zależny od dwu pierwszych:





1
0
3



 =





1
3
0



+ 3





0
−1
1



 .

Trzeba więc najpierw sprawdzić, czy rzeczywiście jest to odwzorowanie liniowe. Na szczę-
ście jest:

H









1
0
3







 = H









1
3
0







 + 3H









0
−1
1







 =





2
0
1



+ 3





−1
1
−3



 =





−1
3
−8



 .

Ponieważ znamy działanie H tylko na dwa liniowo niezależne wektory, a przestrzeń jest
trójwymiarowa, więc zadanie mogłoby nie dać się rozwiązać. Ale się daje, bo akurat

v ≡





−1
−5
2



 = −





1
3
0



+ 2





0
−1
1



 .

Zatem

H









−1
−5
2







 = −H









1
3
0







+ 2H









0
−1
1







 = −





2
0
1



+ 2





−1
1
−3



 =





−4
2
−7



 .

Oczywiście wektor v możnaby rozłożyć inaczej na trzy wektory, na których działanie H
jest zadane. Najogólniej:

v ≡





−1
−5
2



 = (α− 1)





1
3
0



+ (3α + 2)





0
−1
1



− α





1
0
3



 ,
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(dodaliśmy tu do v wektor zerowy zapisany jako α(f1 +3f2 − f3) = 0). Można sprawdzić,
że niezależnie od wartości α, która jest tu dowolna, otrzyma się to samo G(v), co wyżej.

Jako że nie znamy działania H na wystarczajacej liczbie liniowo niezależnych wekto-
rów, powinno być jasne, że nie uda się podać całej macierzy tego odwzorowania (w żadnej
bazie). Jeśli do dwu pierwszych (liniowo niezależnych) wektorów f1 i f2, na których zadane
jest działanie H dokooptować jakiś trzeci f3 - dowolny, byle od f1 i f2 liniowo niezależny,
a do dwu wektorów g1 i g2 będących H-obrazami f1 i f2 też dokooptować jakiś trzeci g3

liniowo niezależny od g1 i g2, to można powiedzieć tyle, że w tak utworzonych bazach
(f1, f2, f3) oraz (g1, g2, g3) macierz odwzorowania H ma postać:

H(g)(f) =





1 0 ?
0 1 ?
0 0 ?



 .

O jej elementach oznaczonych znakami zapytania nic nie możemy powiedzieć (są one
współczynnikami w rozkładzie H(f3) na g1, g2 i g3). Jeśli przejść do innych baz, np.
do kanonicznych, to po pomnożeniu H(g)(f) z lewej i z prawej strony przez odpowiednie
macierze przejścia, nieznane elementy H(g)(f) “rozpropagują” się po całej macierzy i naogół
nie będziemy znać żadnego z jej elementów.

Zadanie 33
Odwzorowanie liniowe F : R3 → R3 działając na trzy wektory

f1 =





1
2
1



 , f2 =





2
0
3



 , f3 =





1
4
1



 ,

daje

F (f1) =





−1
1
0



 ≡ g1 , F (f2) =





2
−3
1



 ≡ g2 , F (f3) =





−3
3
0



 ≡ g3 .

Znaleźć, jeśli to możliwe postać macierzy F(e)(e) tego odwzorowania w bazach kanonicznych
(zero-jedynkowych).
Rozwiązanie: Po pierwsze sprawdzamy, czy trzy wektory f1, f2 i f3 są liniowo niezależne.
Są. Mogą więc stanowić bazę przestrzeni R3. Następnie sprawdzamy, czy trzy wektory
g1, g2 oraz g3 są liniowo niezależne. Oczywiście nie są: g3 = 3g1. Czy tak może być? tzn.
czy odwzorowanie F jest naprawdę liniowe? Z liniowości wynika, że gdyby trzy wektory
f1, f2 i f3 były liniowo zależne, to ich obrazy, tj. trzy wektory g1, g2 oraz g3 też musiałyby
być liniowo zależne (zob. uwagi w rozwiązaniu zadania 31). Na szczęście w drugą stronę
stwierdzenie nie zachodzi: z liniowej zależności wektorów g1, g2, g3 nie wynika liniowa
zależność wektorów f1, f2 i f3. Jeśli jądro kerF odwzorowania F jest nietrywialne (tj.
nie składa się wyłącznie z wektora zerowego), to istnieją jakieś wektory j 6= 0, takie że
F (j) = 0. Wówczas

F (f1 + λj) = F (f1) + λF (j) = F (f1) ,
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ale same wektory f1 i f1 + λ j są liniowo niezależne (muszą być, bo gdyby były liniowo
zależne, to f1 by musiał należeć do jądra) i tak też musi być w rozpatrywanym tu przy-
padku.29

Możemy teraz dokooptować jakiś wektor g′3, który jest liniowo niezależny od g1 i g2

i razem z tymi dwoma będzie tworzyć drugą bazę przestrzeni R3. Może to być dowolny
wektor

g′3 =





a
b
c



 ,

pod warunkiem, że a + b + c 6= 0 (jest to warunek liniowej niezależności g′3 od g1 i g2

znaleziony najprostszą metodą tj. wyznacznikową - będzie dalej). W bazach (g1, g2, g
′
3) i

(f1, f2, f3) macierz odwzorowania F ma postać

F(g)(f) =





1 0 3
0 1 0
0 0 0



 .

Z kolei macierz F(e)(e) otrzymamy obliczając iloczyn macierzy:

F(e)(e) = Re←g · F(g)(f) · Rf←e .

Musimy więc znaleźć macierze przejścia Re←g oraz Rf←e. Tę pierwszą mamy “za darmo”,
bo

(g1, g2, g
′
3) = (e1, e2, e3)





−1 2 a
1 −3 b
0 1 c



 .

Występująca tu macierz jest właśnie macierzą Re←g. Aby zaś znaleźć macierz Rf←e

musimy odwrócić oczywiste związki

f1 = e1 + 2 e2 + e3

f2 = 2 e1 + 3 e3

f3 = e1 + 4 e2 + e3 .

Odejmując od trzeciego pierwsze mamy natychmiast e2. Wstawiając tak wyznaczone e2
do pierwszego i drugiego otrzymujemy rẃnania na e1 i e3, które już łatwo rozwiązać. W
ten sposób znajdujemy, że

e1 = 6 f1 − f2 − 3 f3

e2 = −1
2
f1 +

1

2
f3

e3 = −4 f1 + f2 + 2 f3 .

29Zauważmy, że jest to typowa sytuacja, gdy F odwzorowuje wektory z p.w. V w wektory z p.w. W o
wymiarze mniejszym niż wymiar V (tj., gdy dimW<dimV ).
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Mamy więc juże wszystkie potrzebne elementy:

F(e)(e) = Re←g · F(g)(f) · Rf←e =





−1 2 a
1 −3 b
0 1 c









1 0 3
0 1 0
0 0 0









6 −1
2
−4

−1 0 1
−3 1

2
2





=





−1 2 −3
1 −3 3
0 1 0









6 −1
2
−4

−1 0 1
−3 1

2
2



 .

Jak widać i jak się należało spodziewać, dowolne elementy wektora g′3 nie wejdą do koń-
cowej postaci macierzy F(e)(e). Wykonując ostatnie mnożenie macierzy, znajdujemy, że

F(e)(e) =





1 −1 0
0 1 −1
−1 0 1



 .

Mając F(e)(e) nietrudno znaleźć składowe ji(e) wektora z należącego do jądra (in fatti,
rozpinającego w tym przypadku całe kerF ), a tym samym jego jawną postać j = ei j

i
(e):

j =





1
1
1



 ∈ kerF .

Oczywiście f3 = 3 f1 − 2 j.

Macierz F(e)(e) można też znaleźć prościej, bez konstruowania dodatkowego wektora g′3,
stosując tę samą sztuczkę, co już w kilku poprzednich zadaniach. Rozkładamy mianowicie
dowolny wektor [α, β, γ] na wektory f1, f2 i f3:





α
β
γ



 = (6α− 1

2
β − 4γ)





1
2
1



+ (−α + γ)





2
0
3



+ (−3α +
1

2
β + 2γ)





1
4
1



 ,

co po skorzystaniu z liniowości oraz z tego, że w zerojedynkowej bazie kanonicznej prze-
strzeni R3 wektory mają składowe równe odpowiednim swoim pięterkom (jako żywe wek-
tory) pozwala napisać, że

F(e)(e) ·





α
β
γ



 = (6α− 1

2
β − 4γ)





−1
1
0



+ (−α + γ)





2
−3
1



 + (−3α +
1

2
β + 2γ)





−3
3
0





=





α− β
β − γ
γ − α



 ,

skąd już łatwo odczytać macierz F(e)(e), która ma oczywiście postać znalezioną wyżej.
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Zadanie 34
Odwzorowanie liniowe F : V →W odwzorowuje wektory o składowych

(

3
1

)

,

(

7
2

)

,

w bazie ei, i = 1, 2 przestrzeni V odpowiednio w wektory o składowych




4
5
−1



 ,





−3
0
5



 ,

w bazie gi, i = 1, 2, 3 przestrzeni W . Podać macierz tego odwzorowania. Wyznaczyć jego
jądro i obraz.
Rozwiązanie: Sprawa jest banalna. Niech [F(g)(e)]

i
j ≡ aij (żeby mniej pisać). Mamy





a11 a12
a21 a22
a31 a32





(

3
1

)

=





4
5
−1



 ,





a11 a12
a21 a22
a31 a32





(

7
2

)

=





−3
0
5



 .

Mamy więc trzy niezależne układy równań, każdy na dwa elementy odpowiedniego wiersza
macierzy F(g)(e). Np. na elementy a11 i a12 mamy

3 a11 + a12 = 4 ,

7 a11 + 2 a12 = −3 ,

itp. Rozwiązując je znajdujemy, że

F(g)(e) =





−11 37
−10 35
7 −22



 .

Ponieważ na dwu liniowo niezależnych wektorach z V , v1 = 3e1+ e2 i v2 = 7e1+2e2
odwzorowanie daje niezerowe wektory (z W ), a dimV = 2, więc jądro F jest trywialne
(składa się tylko z wektora zerowego). Jeśli zaś chodzi o obraz, to oczywiste jest, że
skoro przestrzeń W jest trójwymiarowa, a odwzorowywane są tylko dwa liniowo niezależne
wektory, to dim(imF ) = 2 (to samo bardziej formalnie: dim(imF ) =dimV−dim(kerF ) =
2 − 0 = 2). Tymi dwoma liniowo niezależnymi wektorami rozpinającymi obraz są np.
wektory o1 = 4 g1 + 5 g2 − g3 i o2 = −3 g1 + 5 g3 będące po prostu obrazami wektorów,
na których (składowych) jest zadane odwzorowanie (tj. jego macierz). Mogłyby to też
być wektory o′1 = −11 g1 − 10 g2 + 7 g3, o′2 = 37 g1 + 35 g2 − 22 g3 czyli kombinacje
liniowe wektorów bazy gi ze współczynnikami będącymi elementami kolumn macierzy
F(g)(e) (zobacz zadania 27 i 27′). Oczywiście o1 = 3o′1 + o′2, a o2 = 7o′1 + 2o′2.
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Zadanie 35
Znaleźć w zero-jedynkowych kanonicznych bazach przestrzeni R3 i R2 macierz odwzoro-
wania liniowego F zadanego poprzez jego działanie na trzy wektory z R3:

F









1
2
3







 =

[

1
2

]

, F









1
1
1







 =

[

1
0

]

, F









1
1
0







 =

[

1
1

]

.

Rozwiązanie: Najprostszym sposobem rozwiązania jest oczywiście rozłożenie ogólnego
wektora z R3 na wektory, na których działanie F jest zadane:





a
b
c



 = (−a+ b)





1
2
3



+ (3a− 3b+ c)





1
1
1



+ (−a + 2b− c)





1
1
0



 ,

(ponieważ się to daje zrobić, wektory te są liniowo niezależne) i skorzystanie z liniowości
F :

F









a
b
c







 = (−a+ b)

[

1
2

]

+ (3a− 3b+ c)

[

1
0

]

+ (−a+ 2b− c)
[

1
1

]

=

[

a
−3a+ 4b− c

]

.

Utożsamiając następnie wektory z ich składowymi w bazach kanonicznych możemy stąd
natychmiast (tak, jak w zadaniu 17 i na końcu zadania 31) odczytać szukaną macierz

F(e)(e) =

(

1 0 0
−3 4 −1

)

.

Innym (wyjątkowo często praktykowanym przez studentów na kolokwium) sposobem
jest po prostu rozwiązanie (po mniej lub bardziej świadomym utożsamieniu “żywych”
wektorów w Rn z ich składowymi - litościwie nie należy wnikać w stopień tej świadmości...)
układów równań:

(

f11 f12 f13
f21 f22 f23

)





1
2
3



 =

(

1
2

)

,

(

f11 f12 f13
f21 f22 f23

)





1
1
1



 =

(

1
0

)

,

(

f11 f12 f13
f21 f22 f23

)





1
1
0



 =

(

1
1

)

.

Trochę to żmudne, ale wychodzi.
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Rozpatrzmy jeszcze metodę wykorzystywaną w zadaniu 31, tj. przyjmijmy trzy liniowo
niezależne wektory vi, na których działanie F jest zadane, za bazę przestrzeni R3. Mamy
wtedy

(v1,v2,v3) = (e1, e2, e3)





1 1 1
2 1 1
3 1 0



 .

Macierz ta jest macierzą Re←v zmiany bazy. Trzeba ją odwrócić, by znaleźć macierz Rv←e.
Postępując standardowo, tj. rozwiązując układ równań na vi znajdujemy, że

(e1, e2, e3) = (v1,v2,v3)





−1 1 0
3 −3 1
−1 2 −1



 .

Stojąca tu macierz to właśnie Rv←e.
Ponieważ F odwzorowuje w przestrzeń o wymiarze równym 2, przeto jest oczywiste

(powinno być!), że trzy wektory będące obrazami wektorów vi nie mogą być razem bazą.
Musimy sobie wybrać dowolne dwa z nich (bo dowolne dwa już są liniowo niezależne).
Weźmy zatem za bazę

g1 =

[

1
0

]

, g2 =

[

1
1

]

, Re←g =

(

1 1
0 1

)

,

i wtedy
[

1
2

]

= −g1 + 2g2 .

W związku z tym, że F (v1) = −g1 + 2g2, F (v2) = g1, a F (v3) = g2, mamy macierz
odwzorowania F w bazach vi i gj

F(g)(v) =

(

−1 1 0
2 0 1

)

.

Macierz F(e)(e) otrzymamy obkładając powyższą macierzami zmiany baz:

F(e)(e) = Re←g · F(g)(v) · Rv←e =

(

1 1
0 1

)(

−1 1 0
2 0 1

)





−1 1 0
3 −3 1
−1 2 −1





=

(

1 1
0 1

)(

4 −4 1
−3 4 −1

)

=

(

1 0 0
−3 4 −1

)

.

Oczywiście za bazę R2 możnaby przyjąć inne dwa z trzech wektorów będących obrazami
vi. Wtedy inną postać by miały macierze F(g)(v) oraz Re←g ale końcowa macierz F(e)(e)

wyszłaby taka sama.
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Zadanie 36
Dane są dwie macierze

F = ( 1 2 3 ) , i G =





1
2
3



 .

Znaleźć iloczyny F ·G i G · F .
Rozwiązanie: Macierz F jest (może być traktowana jak) macierzą jakiegoś odwzorowa-
nia F p.w. V o wymiarze 3 w jakąś p.w. W o wymiarze 1, macierz zaś G - macierzą
odwzorowania G : W → V ; obie one są dane w jakichś bazach. Aby mnożenia miały sens
trzeba przyjąć, że odpowiednie bazy są zgodne. W notacji wprowadzonej w poprzednich
zadaniach powinno być tak

F ·G ≡ F(g′)(f) ·G(f)(g) = ( 1 2 3 )





1
2
3



 = (14) ,

G · F ≡ G(f ′)(g) ·G(g)(f) =





1
2
3



 ( 1 2 3 ) =





1 2 3
2 4 6
3 6 9



 .

Macierz F · G jest macierzą odwzorowania z przestrzeni wektorowej W w przestrzeń
wektorową W i wtedy możemy przyjąć, że bazami tej przestrzeni (“po prawej i po lewej
stronie”) są jakieś bazy gi, gdzie i = 1 i g′i z i = 1; mogą one (ale nie muszą) być tożsame;
a baza fi z i = 1, 2, 3 przestrzeni V w której dana jest macierz G(f)(g) musi być (żeby
mnożenie macierzy miało sens) tą samą bazą w przestrzeni V , w której jest dana macierz
F((g′)f).

Z kolei macierz G ·F jest macierzą odwzorowania z V w V i żeby mnożenie miało sens
nie musimy zakładać, że bazy fi z i = 1, 2, 3 i f ′i z i = 1, 2, 3 są tą samą bazą, ale musimy
założyć, że baza w przestrzeni W w której dane są macierze F i G jest ta sama.

Oczywiście macierze jako takie można sobie mnożyć (jako sztuka dla sztuki) bez przej-
mowania się bazami.

Zadanie 37
Jeśli jest to możliwe, znaleźć iloczyny A · B oraz B · A macierzy:

i) A =

(

1 n
0 1

)

, B =

(

1 m
0 1

)

,

ii) A =

(

1 5 3
2 −3 1

)

, B =





2 −3 5
−1 4 −2
3 −1 1



 ,

Rozwiązanie: i) Ponieważ obie macierze są kwadratowe oba mnożenia są wykonalne

A · B = B · A =

(

1 n+m
0 1

)

.
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Tu akurat A · B = B · A, choć naogół tak nie jest.
Odp. ii) Można tylko obliczyć A · B:

A · B =

(

1 5 3
2 −3 1

)





2 −3 5
−1 4 −2
3 −1 1



 =

(

6 14 −2
10 −19 17

)

.

Zadanie 37′

Niech F będzie odwzorowaniem przestrzeni wektorowej M2×2 macierzy wymiaru 2 × 2
(macierze są tu żywymi wektorami) o rzeczywistych elementach w nią samą zadanym
wzorem

F

([

α β
γ δ

])

=

[

δ γ
β α

]

,

a G niech będzie odwzorowaniem tejże przestrzeni wektorowej M2×2 w przestrzeń wekto-
rową W2 wielomianów stopnia niewyższego niż drugi według przepisu

G

([

a b
c d

])

= (c− b)x2 + (a− c)x+ (b− d) .

Napisać macierze tych odwzorowań, tj. macierze F(m)(m) oraz G(w)(m) w bazach kano-
nicznych przestrzeni M2×2 i W2 oraz napisać (w tych samych bazach) macierz (GF )(w)(m)

złożenia tych dwu odwzorowań i sprawdzić jak ma się ona do macierzy F(m)(m) i G(w)(m).
Rozwiązanie: Macierz F(m)(m) tworzymy według standardowego przepisu odwzorowując
po kolei wektory m1, m2, m3, m4, bazy kanonicznej, rozkładając to co wyjdzie na te same
wektory bazowe:

F (m1) = F

([

1 0
0 0

])

=

[

0 0
0 1

]

= 0m1 + 0m2 + 0m3 +m4 ,

F (m2) = F

([

0 1
0 0

])

=

[

0 0
1 0

]

= 0m1 + 0m2 +m3 + 0m4 ,

F (m3) = F

([

0 0
1 0

])

=

[

0 1
0 0

]

= 0m1 +m2 + 0m3 + 0m4 ,

F (m4) = F

([

0 0
0 1

])

=

[

1 0
0 0

]

= m1 + 0m2 + 0m3 + 0m4 .

i stawiając współczynniki tych rozkładów “na sztorc”

F(m)(m) =









0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0









.
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Postępując analogicznie znajdujemy macierz G(w)(m):

G(m1) = G

([

1 0
0 0

])

= x = 0w0 +w1 + 0w2 ,

G(m2) = G

([

0 1
0 0

])

= −x2 + 1 = w0 + 0w1 −w2 ,

G(m3) = G

([

0 0
1 0

])

= x2 − x = 0w0 −w1 +w2 ,

G(m4) = G

([

0 0
0 1

])

= −1 = −w0 + 0w1 + 0w2 .

i stad

G(w)(m) =





0 1 0 −1
1 0 −1 0
0 −1 1 0



 .

Jak łatwo się zorientować, złożenie odwzorowań F i G działa na macierze 2×2 według
przepisu

(GF )

([

a b
c d

])

= (b− c)x2 + (d− b)x+ (c− a) .

i powtarzając te same operacje, co wyżej, tj. odwzorowując w ten sposób w wielomiany
po kolei wektory bazowe m1, m2, m3, m4, otrzymamy macierz

(GF )(w)(m) =





−1 0 1 0
0 −1 0 1
0 1 −1 0



 .

Łatwo też sprawdzić, że zgdnie z tym, czego by należało oczekiwać, (GF )(w)(m) = G(w)(m) ·
F(m)(m):





0 1 0 −1
1 0 −1 0
0 −1 1 0













0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0









=





−1 0 1 0
0 −1 0 1
0 1 −1 0



 .

(W odwrotnej kolejności się tych dwóch macierzy, z uwagi na ich wymiary, nie da pomno-
żyć).

Przypomnienie.
Odwzorowanie liniowe F : V → K, gdzie K jest jakimś ciałem liczbowym, naogół R lub C,
zwie się kowektorem albo (jedno)-formą liniową.30 Przy ustalonej przestrzeni wektorowej

30Oczywiście, skoro istnieją jedno-formy, to należy domniemywać, że są też i dwu- i więcej-formy;
istotnie są (troszkę o nich będzie dalej), i to prowadzi do teorii form różniczkowych, twierdzenia Stokesa,
kohomologii i innych cudów matematyki z nimi związanych i niezwykle użytecznych w fizyce...
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V można rozpatrywać przestrzeń wszystkich odwzorowań liniowych V w K. Ma ona także
strukturę przestrzeni wektorowej. Jest ona zwana przestrzenią dualną do V i oznaczana
V ∗. Tak jak w każdej przestrzeni wektorowej, można w niej wprowadzać różne bazy, np.
f̂ i, gdzie i = 1, 2, . . . , dimV ∗. (W przypadku skończeniewymiarowej przestrzeni V - a tylko
takie tu będziemy rozpatrywać - dimV ∗ = dimV ). W tym skrypcie elementy przestrzeni
dualnej oznaczamy tłustymi literami z daszkiem. Każdą formę ω̂ ∈ V ∗ można zapisać
jako kombinację liniową form bazowych

ω̂ = ω
(f)
i f̂ i .

ω
(f)
i są składowymi kowektora (formy) w bazie f̂ i o czym przypomina symbolik (f) w na-

wiasiku u góry. Zwróćmy uwagę na to, że numery form bazowych i indeksy ich składowych
są w porównaniu z podobnymi indeksami wektorów umiejscowione “na odwyrtkę”!

Oczywiście trzeba znać działanie form bazowych f̂ i na jakiś zupełny (tak się to na-
zywa w mechanice kwantowej), tj. rozpinający całą przestrzeń V , zbiór wektorów. Z
nieskończenie wielu możliwych baz w przestrzeni V ∗ wyróżnia się baza dualna do ustalo-
nej (choć też przecież dowolnie wybranej) bazy przestrzeni V . Jeśli wektory ei są bazą
V , to wektory êk bazy dualnej są takie, że

êk(ei) = δki .

Jeśli mamy wektor v = eiv
i
(e) ∈ V oraz formę ω̂ = ω

(e)
i êi ∈ V ∗, rozpisaną w bazie dualnej,

to wynik jej działania na v jest dany prostym wzorem:

ω̂(v) = ω̂(ei) v
i
(e) = ω

(e)
k êk(ei) v

i
(e) = ω

(e)
k δki v

i
(e) = ω

(e)
i vi(e) .

Zapis ten może się wydawać podobny do iloczynu skalarnego, ale na razie nic tu o iloczynie
skalarnym nie mówimy!

Zadanie 38
Niech dimV = 3 i niech bazą V będą trzy wektory ei. Dana jest też forma (kowektor) ω̂,
o której wiadomo, że na wektory ei działa następująco:

ω̂(e1) = 3 , ω̂(e2) = 2 , ω̂(e3) = 1 .

Znaleźć działanie ω̂ na wektor v = 4 e1 + 5 e2 + 6 e3 (czyli wartość formy ω̂ na wektorze
v) oraz podać składowe kowektora ω̂ w bazie dualnej do bazy ei.
Rozwiązanie: Działanie ω̂ na wektor v wynika z liniowości formy:

ω̂(v) = ω̂(e1) v
1
(e) + ω̂(e2) v

2
(e) + ω̂(e3) v

3
(e) = 3 · 4 + 2 · 5 + 1 · 6 = 28 .

Składowe formy ω̂ w bazie dualnej są dość oczywiste: ω(e) = (3, 2, 1). Jeśli ktoś nie
widzi od razu, to wypisujemy:

ω̂(e1) = ω
(e)
1 ê1(e1) + ω

(e)
2 ê2(e1) + ω

(e)
3 ê3(e1) = ω

(e)
1 = 3 .
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W drugim kroku wykorzystaliśmy dualność baz êi oraz ek. W taki sam sposób z działania
na e2 i e3 dowiadujemy się, że ω(e)

2 = 2 i ω(e)
1 = 1.

Zadanie 39
Niech trzy kowektory:

f̂1 = [1, 1, 0] , f̂2 = [1, 0, 1] , f̂3 = [0, 1, 1] ,

stanowią bazę przestrzeni V ∗ dualnej do przestrzeni wektorowej V = R
3. Działanie “ży-

wego” kowektora α̂ = [a, b, c] ∈ V ∗ na (też “żywy”) wektor

v =





x
y
z



 ∈ R
3 ,

jest zdefiniowane naturalnym wzorem

α̂(v) = ax+ by + cz .

Podać wynik działania formy ω̂ = 3 f̂1 + 2 f̂2 + f̂3 na wektor v o x = 2, y = 1, z = −1.
Znaleźć ponadto składowe formy ω̂ w bazie êk dualnej do kanonicznej (zero-jedynkowej)
bazy ei, a także postać bazy fi przestrzeni R3 dualnej do bazy f̂ i przestrzeni kowektorów.
Rozwiązanie: Na podany wektor v forma ω̂ działa następująco:

ω̂(v) = 3 f̂1









2
1
−1







 + 2 f̂2









2
1
−1







+ f̂3









2
1
−1









= 3 · (2 + 1) + 2 · (2− 1) + 1 · (1− 1) = 11 .

Ponieważ tu mamy dostęp do “żywych” form i “żywych” wektorów, tj. umiemy jawnie
wykonywać operacje na samych formach i wektorach (a nie tylko na ich składowych), to
składowe formy ω̂ w bazie êk, która jako dualna do kanonicznej zero-jedynkowej bazy ei
przestrzeni R3, musi mieć postać

ê1 = [1, 0, 0] , ê2 = [0, 1, 0] , ê3 = [0, 0, 1] ,

też łatwo ustalić:

ω̂ = 3[1, 1, 0] + 2[1, 0, 1] + [0, 1, 1] = 5[1, 0, 0] + 4[0, 1, 0] + 3[0, 0, 1] .

Zatem

ω̂ = 5 ê1 + 4 ê2 + 3 ê3 .

Ponieważ mamy tu dostep do żywych wektorów i żywych kowektorów znaleźć bazę fi
przestrzeni R3 dualną do bazy f̂k przestrzeni form można bezpośrednio rozwiązując trzy
niezależne układy równań. Np. aby znaleźć postać wektora f1 piszemy

f1 =





x1
y1
z1



 ,
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działamy nań formami f̂k według podanego przepisu i żądamy by

x1 + y1 = 1 , x1 + z1 = 0 , y1 + z1 = 0 ,

etc. Pouczające i bardziej perspektywiczne jest jednak przeprowadzenie w tym celu bar-
dziej ogólnych rozważania.

Wprowadzając odpowiednią notację zapiszmy zmiany bazy w przestrzeni form w po-
staciach

(

P e→f
)j

i
f̂ i = êj ,

(

P f→e
)k

l
êl = f̂k .

Macierze P e→f i P f→e są oczywiście wzajemnie odwrotne, tj. P e→f ·P f→e = P f→e·P e→f =
I (I oznacza macierz jednostkową, tu wymiaru 3 × 3). Stosując wprowadzoną notację
mamy

ω̂ = ω
(f)
i f̂ i = ω

(f)
i

(

P f→e
)i

l
êl ≡ ω

(e)
l êl ,

tj. ω(e)
l = ω

(f)
i

(

P f→e
)i

l
. (Widać, że notacja dla form jest podobna do notacji dla wektorów

z tym, że wskaźniki są umieszczone na innych poziomach; ponadto teraz składowe formy
piszemy z lewej strony form bazowych). Znajdźmy macierz P f→e: z postaci form f̂ i mamy
od razu

f̂1 = ê1 + ê2

f̂2 = ê1 + ê3

f̂3 = ê2 + ê3 .

Kładziemy teraz współczynniki z każdego wiersza “na płask” i mamy




1 1 0
1 0 1
0 1 1









ê1

ê2

ê3



 =





f̂1

f̂2

f̂3



 .

Widniejąca tu macierz jest właśnie macierzą P f→e. Służy ona do przerabiania składowych
formy danych w bazie f̂ i na jej składowe w bazie êi, tak jak wskazuje zwrot strzałki. Np.
składowymi formy ω̂ w bazie f̂ i były ω(f)

i = (3, 2, 1), jej składowymi w bazie êi są więc

(3, 2, 1)





1 1 0
1 0 1
0 1 1



 = (5, 4, 3) ,

tak jak to już wyżej napisaliśmy “spod dużego palucha”.
Możemy też wyrazić bazowe formy êi przez bazowe formy f̂ i odwracając wypisane

wyżej równania: np. odejmując od pierwszego z nich drugie dostajemy równanie, które w
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połączeniu z trzecim pozwala wyznaczyć ê2 i ê3 (a potem ê1 już jest łatwo wyznaczyć).
Znajdujemy w ten sposób:

ê1 =
1

2

(

f̂1 + f̂2 − f̂3
)

ê2 =
1

2

(

f̂1 − f̂2 + f̂3
)

ê3 =
1

2

(

−f̂1 + f̂2 + f̂3
)

.

Daje to macierz P e→f :

P e→f =
1

2





1 1 −1
1 −1 1
−1 1 1



 ,

która jest oczywiście odwrotna do macierzy P f→e, co łatwo sprawdzić.
Powróćmy teraz do naszego zadania. Szukamy takiej bazy fi przestrzeni R3, żeby

f̂k(fi) = δki .

Wykorzystując odpowiednie macierze zmian baz oraz liniowość form możemy napisać:

δki = f̂k(fi) =
(

P f→e
)k

l
êl(fi) =

(

P f→e
)k

l
êl(ej) (Re←f)

j
i

=
(

P f→e
)k

l
δl j (Re←f)

j
i =

(

P f→e
)k

j
(Re←f)

j
i .

W przedostatnim kroku wykorzystana została wzajemna dualność baz êk i ei. Dowia-
dujemy się stąd, że macierz Re←f , pozwalająca wyrazić poszukiwane wektory fi przez
wektory bazy kanonicznej ei, jest macierzą odwrotną do macierzy P f→e:

Re←f =
(

P f→e
)−1

= P e→f .

Ponieważ macierze P f→e oraz P e→f już znaleźliśmy, więc możemy napisać

(f1, f2, f3) = (e1, e2, e3)
1

2





1 1 −1
1 −1 1
−1 1 1



 ,

czyli

f1 =
1

2
e1 +

1

2
e2 −

1

2
e3 ≡





1
2
1
2

−1
2





f2 =
1

2
e1 −

1

2
e2 +

1

2
e3 ≡





1
2

−1
2

1
2





f3 = −1
2
e1 +

1

2
e2 +

1

2
e3 ≡





−1
2

1
2
1
2



 .
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To, że f̂1 = [1, 1, 0] działając na f1 daje 1, a na f2 i f3 daje zero, widać gołym okiem.

Uwaga: Kowektory należące do przestrzeni dualnej V ∗ do przestrzeni wektorowej V po-
zwalają zadawać w V podprzestrzenie liniowe (wektorowe) przez podanie zbioru (nieko-
niecznie liniowo niezależnych) kowektorów zerujących się na wszystkich wektorach należą-
cych do podprzestrzeni. Łatwo zobaczyć, że tak wyznaczony zbiór wektorów rzeczywiście
jest podprzestrzenią liniową.

Zadanie 40
Sprawdzić, że każde odwzorowanie liniowe F : V →W (gdzie dimV = nV , a dimW = nW )
można zapisać w postaci

F = [F(w)(v)]
j
iwj ⊗ v̂i

(domyślnie suma po i od 1 do nV , a po j od 1 do nW ), jeśli przyjąć, że działanie tego
dziwnego zwierzęcia na dowolny wektor u ∈ V jest określone wzorem (w kórym v̂i tworzą
bazę kowektorów nad V dualną do bazy vi przestrzeni V )

F (u) ≡ [F(w)(v)]
j
iwj v̂

i(u) .

(Zauważmy że po prawej ten bulwersujacy symbol “⊗” już nie występuje: v̂i(u) jest liczbą
- jak widać musi być to liczba z ciała K, nad którym jest rozpięta przestrzeń wektorowa
W , i z którego są elementy macierzy F(w)(v), ale takie drobiazgi fizyka nie zaprzątają).
Rozwiązanie: Właściwie to niema co sprawdzać: jeśli u = vk u

k
(v), to zgodnie z podaną

definicją i liniowością działania kowektorów v̂i mamy

F (u) = [F(w)(v)]
j
iwj v̂

i(vk u
k
(v)) = wj [F(w)(v)]

j
i v̂

i(vk)u
k
(v)

= [F(w)(v)]
j
iwj δ

i
k u

k
(v) = wj[F(w)(v)]

j
iu

i
(v) ,

a to nie jest nic innego, jak właśnie wektor z W będący wynikiem działania F na u ∈ V
(zobacz np. Zadanie 29). W szczególności, jeśli W = V i obie bazy są jedną i tą samą
bazą vi, to odwzorowanie Id≡ I (które z wektorem z V nie robi nic) można zapisać w
wymyślnej formie

Id = vi ⊗ v̂i .

Z tego wszystkiego wynika, że ogólnie rzecz ujmując, odwzorowanie liniowe F : V →
W jest elementem przestrzeni (też wektorowej, bo iloczyn tensorowy dwu przestrzeni
wektorowych jest p. wektorową) W ⊗ V ∗.

Uwaga: W mechanice kwantowej mamy do czynienia z przestrzenią wektorową nad cia-
łem C, zwaną przestrzenią Hilberta H (taka nazwa przysługuje przestrzeniom wektoro-
wym z normą i zupełnym w sensie zbieżności w nich w tej normie wszystkich ciągów
Cauchy’ego). Jej wektory za P.A.M. Dirakiem przyjęło się oznaczać |ψ〉, |χ〉 etc. Taki
wektor zwie się “ket”-em. Oczywiście zwykle wybiera się jakąś bazę |ψi〉 lub |χi〉 (naogół
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ma ona nieskończenie wiele elementów). Formy z przestrzeni H∗ dualnej do przestrzeni
Hilberta zapisuje się w postaci “bra” 〈ψ|, 〈χ|. Działanie takich form na wektory z H
przyjmuje w tej notacji postać 〈χ|ψ〉 ∈ C. Oczywiście do każdej bazy |ψi〉 przestrzeni H
istnieje w H∗ baza dualna 〈ψi|, taka że 〈ψi|ψj〉 = δij . Podany wyżej wzór Id= vi ⊗ v̂i w
tej notacji przybiera postać (suma po i jest domyślna; ponadto w mechanice kwantowej
każde odwzorowanie liniowe H w H nazywa się operatorem i oznacza literką z czapeczką
- francuzi zwą to “chapeau de Napoleon” - więc zamiast pisać Id w mechanice kwantowej
pisze się 1̂ - operator jednostkowy)

Id = |ψi〉〈ψi| .

Feynman nazywa to31 “Wielkim prawem mechaniki kwantowej”.

Zadanie 4132

Niech V będzie przestrzenią wektorową wielomianów (rzeczywistych) stopnia nie wyższego
niż 2. Pokazać, że trzy kowektory (czyli odwzorowania liniowe V w R): f̂1 ≡ F̂α(·),
f̂2 ≡ F̂β(·), f̂3 ≡ F̂γ(·), których działanie na wektor-wielomian W ≡ W (x) należący do
p.w. V jest zadane wzorem

F̂x0
(W) =W (x0) ,

stanowią, jeśli trzy liczby α, β i γ są różne, bazę przestrzeni kowektorów. Znaleźć bazę fi
przestrzeni wielomianów dualną do bazy f̂ i. Znaleźć w bazie f̂ i składowe I(f)i kowektora Î

(odwzorowania linowego z V w R) działającego na wektor-wielomian W według przepisu:

Î(W) =

∫ 1

0

dxW (x) .

Podać jawną postać wielomianów bazowych oraz składowe I(f)i kowektora Î, gdy α = −1,
β = 0, γ = +1.
Rozwiązanie: Wykonamy polecenia w odwrotnej kolejności (dalej stanie się jasne, dla-
czego) i najpierw znajdziemy bazę dualną. Albo, żeby nie denerwować matematyków
słowem “baza dualna”, skoro jeszcze nie udowodniliśmy, że trzy kowektory f̂ i rzeczywi-
ście są bazą, poszukamy (a nuż się uda?) trzech wielomianów fi takich, że f̂ i(fj) = δi j .
Ponieważ najogólniejszy wielomian z V ma postać W (x) = a2x

2 + a1x + a0, sprowadza
się to do rozwiązania trzech układów trzech równań liniowych. Np. szukając wielomianu
f1 = a2x

2 + a1x+ a0 takiego, że f̂1(f1) = 1, f̂2(f1) = 0, f̂3(f1) = 0, rozwiązujemy układ

f̂1(f1) ≡ F̂α(a2x
2 + a1x+ a0) = a2α

2 + a1α + a0 = 1 ,

f̂2(f1) ≡ F̂β(a2x
2 + a1x+ a0) = a2β

2 + a1β + a0 = 0 ,

f̂3(f1) ≡ F̂γ(a2x
2 + a1x+ a0) = a2γ

2 + a1γ + a0 = 0 ,

31R.P. Feynman, R. Leighton, M. Sands Feynmana Wykłady z fizyki, t. III, wzór (8.9).
32Zadanie to w wersji ogólnej wykorzystuje rzeczy, które są w tym skrypcie wprowadzone dopiero dalej.

W wersji z konkretnymi liczbami α, β i γ jest ono jednak wykonalne dostępnymi już środkami, a jego
miejsce jest ewidentnie tutaj.
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lub, równoważnie, układ




α2 α 1
β2 β 1
γ2 γ 1









a2
a1
a0



 =





1
0
0



 .

względem niewiadomych a2, a1, a0. Możemy tu zastosować Kramersięta: wyznacznik
macierzy A układu jest po prostu wyznacznikiem Vandermonda (Zadanie 46) tyle, że ze
zmienionym znakiem (bo tu potęgi rosną z prawa na lewo, a macierz ma wymiar 3× 3):
det(A) = (α − β)(α − γ)(β − γ). Widać, że jednoznaczne rozwiązanie istnieje, jeśli trzy
liczby α, β i γ są różne. Ponieważ wektor po prawej stronie ma jedynkę i dwa zera, więc
obliczenie trzech pozostałych wyznaczników jest (dzięki Laplace’owi) proste i znajdujemy

a2 =
β − γ
detA

, a1 =
−(β − γ)(β + γ)

detA
, a0 =

βγ(β − γ)
detA

,

czyli

a2 =
1

(α− β)(α− γ) , a1 =
−(β + γ)

(α− β)(α− γ) , a0 =
βγ

(α− β)(α− γ) .

Nietrudno zobaczyć (symetria równań jest fizykowi zawsze pomocna!), że współczynniki
drugiego wielomianu f2 = b2x

2 + b1x + b0 bazy dualnej można otrzymać z powyższych
wzorów na a2, a1 i a0 przez cykliczne zamiany: α → β, β → γ, γ → α, a współczynnki
trzeciego wielomianu f2 = c2x

2 + c1x+ c0 tej bazy przez zamiany α→ γ, β → α, γ → β:

b2 =
1

(β − γ)(β − α) , b1 =
−(γ + α)

(β − γ)(β − α) , b0 =
γα

(β − γ)(β − α) ,

c2 =
1

(γ − β)(γ − α) , c1 =
−(β + α)

(γ − β)(γ − α) , c0 =
βα

(γ − β)(γ − α) .

Zauważmy, że przy okazji znaleźliśmy macierz A−1 odwrotną do macierzy A występu-
jącej we wszystkich trzech rozwiązywanych (w celu znalezienia wielomianów bazowych)
układach równań:

A−1 =
1

detA





β − γ γ − α α− β
−(β − γ)(β + γ) −(γ − α)(γ + α) −(α− β)(α+ β)

(β − γ)βγ (γ − α)γα (α− β)αβ



 .

Możemy teraz bez kłopotu wykazać formalnie, że kowektory f̂ i są liniowo niezależne (a
że są ich trzy, więc stanowią bazę, bo dimV ∗ =dimV = 3). Musimy pokazać, że równość

λ1f̂
1 + λ2f̂

2 + λ3f̂
3 = 0̂ ,

może być spełniona tylko dla λ1 = λ2 = λ3 = 0. Symbol 0̂ oznacza tu zerowy kowektor,
czyli taki, który na każdym wielomianie daje zero. W szczególności musi też dawać zero
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na znalezionych wyżej wielomianach-wektorach f1, f2 i f3. Ale na pierwszym daje on λ1, na
drugim λ2, a na trzecim λ3. Stąd już wynika, że powyższy kowektor jest równy 0̂ tylko dla
λ1 = λ2 = λ3 = 0, co oznacza, że trzy f̂ i są liniowo niezależne, czyli są bazą. Oczywiście
można było ten dowód przeprowadzić najpierw, ale albo trzeba by było zgadnąć te trzy
szczególne wielomiany (matematycy tak często robią: gdzieś na boku wyznaczają takie
wielomiany, a potem przed publiką wyjmują je “z kapelusza” i dowód idzie gładko...)
albo obliczyć λ1f̂1 + λ2f̂

2 + λ3f̂
3 na trzech losowo wybranych (byle liniowo niezależnych)

wielomianach i pokazać (np. sprawdzając, że wyznacznik macierzy problemu nie znika),
że układ trzech jednorodnych równań na λi otrzymanych z przyrównania do zera wyników
działania λ1f̂1 + λ2f̂

2 + λ3f̂
3 na te trzy wielomiany nie ma nietrywialnych rozwiązań.

Jeśli wprowadzimy kanoniczną bazę przestrzeni V wielomianów:

e2 = x2 , e1 = x , e0 = 1 ,

to, jak można się łatwo zorientować,

A−1 = Re←f ,

gdyż w kolumnach macierzy A−1 stoją właśnie składowe wielomianów fi w bazie e2, e1 i
e0.

Działając na wielomian

W (x) = w2
(e)x

2 + w1
(e)x+ w0

(e) ≡ e2w
2
(e) + e1w

1
(e) + e0w

0
(e) ,

kowektor Î daje 1
3
w2

(e) +
1
2
w1

(e) + w0
(e). Zatem w bazie êi kowektorów dualnych do ei (tj.

takich, że êi(ej) = δi j) jego składowymi muszą być

I
(e)
i = (

1

3
,
1

2
, 1) .

Aby znaleźć jego składowe I(f)i w bazie f̂ i piszemy:

(
1

3
,
1

2
, 1)





w2
(e)

w1
(e)

w0
(e)



 = I
(e)
i wi

(e) = Î(W) = I
(f)
i wi

(f) = I
(f)
i [Rf←e]

i
jw

j
(e) .

Wynika stąd natychmiast, że (zobacz Zadanie 39)

I
(f)
j = I

(e)
i [P e→f ]i j = I

(e)
i [Re←f ]

i
j ≡ I

(e)
i [A−1]i j ,

czyli że składowe I(f)j kowektora Î w bazie f̂ j otrzymujemy przykładając (1
3
, 1

2
, 1) z lewej

strony do macierzy P e→f = Re←f = A−1 i wykonując działanie.

Wypiszemy to wszystko teraz i sprawdzimy na konkretnym przykładzie. Przyjmując
α = −1, β = 0, γ = +1 otrzymamy (α − β)(α − γ) = 2, −(β + γ) = −1, βγ = 0 dla
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pierwszego wielomianu, (β − γ)(β − α) = −1, −(γ + α) = 0, γα = −1 dla drugiego oraz
(γ − β)(γ − α) = 2, −(β + α) = 1, βα = 0 dla trzeciego. Trzy wielomiany bazowe mają
wtedy postacie

f1 =
1

2
(x2 − x) , f2 = −x2 + 1 , f3 =

1

2
(x2 + x) .

Są to akurat tzw. wielomiany interpolacyjne Lagrange’a (ale nie jest to tu istotne).
Macierz A ma dla α = −1, β = 0, γ = 1 prostą postać

A =





1 −1 1
0 0 1
1 1 1



 .

Macierzą do niej odwrotną, będącą jednocześnie potrzebną nam macierzą przejścia (zmiany
bazy) jest macierz33

A−1 = Re←f =
1

2





1 −2 1
−1 0 1
0 2 0



 .

Składowe wielomianu W (x) = w2
(e)x

2 + w1
(e)x + w0

(e) w bazie fi można dostać działając
na nie macierzą A = Rf←e. Są więc one równe w1

(f) = w2
(e) − w1

(e) + w2
(e), w

2
(f) = w0

(e) i
w3

(f) = w2
(e) + w1

(e) + w2
(e). Łatwo to sprawdzić:

W (x) = f1w
1
(f) + f2w

2
(f) + f3w

3
(f)

≡ 1

2
(x2 − x)(w2

(e) − w1
(e) + w0

(e)) + (1− x2)w0
(e) +

1

2
(x2 + x)(w2

(e) + w1
(e) + w0

(e))

= w2
(e)x

2 + w1
(e)x+ w0

(e) ,

tak jak być powinno. Zgodnie z wyprowadzonym wyżej wzorem, składowe kowektora Î w
bazie f̂ i są równe

(

1

3
,
1

2
, 1

)

1

2





1 −2 1
−1 0 1
0 2 0



 =

(

− 1

12
,
2

3
,
5

12

)

.

Sprawdzamy:

Î(W) = I
(f)
j wj

(f) =

(

− 1

12
,
2

3
,
5

12

)





w2
(e) − w1

(e) + w0
(e)

w0
(e)

w2
(e) + w1

(e) + w0
(e)



 =
1

3
w2

(e) +
1

2
w1

(e) + w0
(e) ,

33Ponieważ A ma w tym przypadku tak prostą postać, macierz A−1 można znaleźć bezpośrednio przez
tzw. “inspekcję”, tj. przykładając jej kolumny do macierzy A i zgadując, co w nich powinno być, by
A·A−1 = I.
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tak jak miało być.

Zadanie 4234

Znaleźć rzut należącego do V = R5 wektora

w =













−2
0
2
2
0













,

“wzdłuż” podprzestrzeni rozpinanej przez wektory v3, v4 i v5 na dwuwymiarową podprze-
strzeń rozpiętą przez wektory v1 i v2, gdzie wektory

v3 =













1
1
1
1
1













, v4 =













0
0
3
2
1













, v5 =













0
0
1
0
1













, v1 =













−1
1
2
3
4













, v2 =













0
0
1
2
3













,

stanowią bazę przestrzeni V . Znaleźć także macierz odwzorowania tego rzutu (zwaną
macierzą operatora rzutu) w kanonicznej zero-jedynkowej bazie ei, i = 1, . . . , 5 przestrzeni
R5.
Rozwiązanie: Rzut w→ Π(w) wektora w na wektory v1 i v2 wzdłuż wektorów v3, v4 i
v5 polega na zapisaniu w w postaci kombinacji liniowej wektorów v1, v2, v3, v4 oraz v5:

w = λ1v1 + λ2v2 + λ3v3 + λ4v4 + λ5v5 ,

a następnie wyzerowaniu współczynników tego rozkładu mnożących v3, v4 oraz v5:

w→ Π(w) = λ1v1 + λ2v2 .

Konieczne jest oczywiście, by wektory v1, v2, v3, v4 oraz v5 były liniowo niezależne; nie
jest konieczne by rozpinały one całą przestrzeń V (tu akurat rozpinają, bo jest ich pięć)
ale rzutowany wektor w musi się dać na nie rozłożyć. Ogólnie jednak, aby dowolny wektor
z danej przestrzeni V dało się zrzutować na podprzestrzeń W wzdłuż podprzestrzeni U ,
V musi być sumą prostą W i U : V = W ⊕U , bo tylko wtedy rozkład dowolnego wektora
z V na wektor z W i wektor z U jest jednoznaczny.

Rozkładamy zatem w. Trzeba w tym celu rozwiązać układ równań:

−2 = −λ1 + λ3

0 = λ1 + λ3

2 = 2λ1 + λ2 + λ3 + 3λ4 + λ5

2 = 3λ1 + 2λ2 + λ3 + 2λ4

0 = 4λ1 + 3λ2 + λ3 + λ4 + λ5 .

34Jednym z celów tego zadania jest wybicie studiującym z głowy błędnej myśli, jakoby rzut musiał
mieć coś wspólnego z iloczynem skalarnym (o którym tu nie będzie ani słowa).
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To się daje łatwo zrobić: z pierwszych dwu równań znajdujemy natychmiast, że λ1 = 1,
λ3 = −1. Po wstawieniu tych wartości do pozostałych równań przybierają one postać

1 = λ2 + 3λ4 + λ5

0 = 2λ2 + 2λ4

−3 = 3λ2 + λ4 + λ5 .

Teraz pierwsze minus trzecie wraz z drugim

4 = −2λ2 + 2λ4

0 = 2λ2 + 2λ4 ,

dają λ4 = 1, λ2 = −1, a zatem λ5 = −1. Mając te współczynniki mamy szukany rzut w:

Π(w) = v1 − v2 =













−1
1
1
1
1













.

W bazie przestrzeni R5 tworzonej przez wektory v1, v2, v3, v4 oraz v5 macierz tego
rzutu, który jest odwzorowaniem liniowym, ma oczywistą postać35

Π(v)(v) =













1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













.

Szukana macierz Π(e)(e) jest wobec tego dana wzorem

Π(e)(e) = Re←v · Π(v)(v) ·Rv←e .

Ponieważ

v1 = −e1 + e2 + 2 e3 + 3 e4 + 4 e5

v2 = e3 + 2 e4 + 3 e5

v3 = e1 + e2 + e3 + e4 + e5

v4 = 3 e3 + 2 e4 + e5

v5 = e3 + e5 .

35Gdyby zadanie polegało tylko na znalezieniu rzutu wektora w na wektory v1 i v2 “wzdłuż” wektorów
v3, v4 i v5 (na które w się daje rozłożyć) ale sama przestrzeń V miała wymiarów więcej niż pięć,
to macierzy rzutu nie dałoby się wyznaczyć: nie wiadomo bowiem by było, czy rzutować należy na

dodatkowe wektory dopełniające do pełnej bazy wektory vi, i = 1, . . . , 5, czy wzdłuż nich. Oczywiście nie
wpływałoby to na rzut samego wektora w, ale nie pozwalałoby rzutować wektorów liniowo niezależnych
od pięciu wektorów vi.
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więc macierz Re←v otrzymujemy natychmiast, stawiając “na sztorc” współczynniki powyż-
szych pięciu kombinacji liniowych. Aby zaś znaleźć Rv←e trzeba wyrazić wektory ek przez
wektory vi. Nie jest to przyjemne, ale daje się zrobić. Najpierw od wszystkich równań
odejmujemy wielokrotność ostatniego eliminując z nich e5:

v1 − 4v5 = −e1 + e2 − 2 e3 + 3 e4

v2 − 3v5 = − 2 e3 + 2 e4

v3 − v5 = e1 + e2 + e4

v4 − v5 = 2 e3 + 2 e4 .

Następnie dodając do pierwszego i drugiego czwarte eliminujemy e3:

v1 + v4 − 5v5 = −e1 + e2 + 5 e4

v2 + v4 − 4v5 = + 4 e4

v3 − v5 = e1 + e2 + e4 .

Dalej już łatwo. Wstawiamy ze środkowego

e4 =
1

4
(v2 + v4 − 4v5) ,

do pierwszego i trzeciego i przenosimy na drugą stronę:

−e1 + e2 = v1 + v4 − 5v5 −
5

4
(v2 + v4 − 4v5)

e1 + e2 = v3 − v5 −
1

4
(v2 + v4 − 4v5) .

Stąd

e1 =
1

4
(−2v1 + 2v2 + 2v3)

e2 =
1

4
(2v1 − 3v2 + 2v3 − v4) .

Mając e4, z czwartego równania dostajemy

e3 =
1

4
(−v2 + v4 + 2v5) .

Wreszcie, z ostatniego równania, v5 = e3 + e5 mamy

e5 =
1

4
(v2 − v4 + 2v5) .

Zatem

Π(e)(e) =













−1 0 1 0 0
1 0 1 0 0
2 1 1 3 1
3 2 1 2 0
4 3 1 1 1

























1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













1

4













−2 2 0 0 0
2 −3 −1 1 1
2 2 0 0 0
0 −1 1 1 −1
0 0 2 −4 2












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=













−1 0 0 0 0
1 0 0 0 0
2 1 0 0 0
3 2 0 0 0
4 3 0 0 0













1

4













−2 2 0 0 0
2 −3 −1 1 1
2 2 0 0 0
0 −1 1 1 −1
0 0 2 −4 2













.

Ostatecznie więc

Π(e)(e) =
1

4













2 −2 0 0 0
−2 2 0 0 0
−2 1 −1 1 1
−2 0 −2 2 2
−2 −1 −3 3 3













.

Działając tą macierza na składowe wi
(e) wektora w otrzymujemy oczywiście uzyskany już

wcześniej wynik.

Istnieje też bardziej wyrafinowany sposób znalezienia tej macierzy wykorzystujący to,
że odwzorowanie liniowe będące rzutem jest jednoznacznie wyznaczone przez swoje jądro
(czyli podprzestrzeń wzdłuż której się rzutuje) i obraz (czyli podprzestrzeń na którą się
rzutuje) oraz charakterystyczną właściwość takiego odwzorowania polegającą na tym, że
Π2 = Π (właściwość tę musi też wykazywać oczywiście także każda macierz reprezentująca
rzut - proszę sprawdzić, że wykazuje ją znaleziona wyżej macierz Π(e)(e)!). Podprzestrzeń
będąca obrazem rzutu jest w naszym przypadku rozpinana przez wektory v1 i v2. Jądro
zaś (rozpinane przez wektory v3 v4 i v5) możemy scharakteryzować podając wszystkie
liniowo niezależne kowektory v̂ zerujące się na wszystkich wektorach należących do jądra.36

Z istnienia bazy przestrzeni kowektorów (odwzorowujacych V w ciało R) dualnej do bazy
vi przestrzeni V wynika, że są dwa takie kowektory. W bazie êk dualnej do kanonicznej
zero-jedynkowej bazy ei przestrzeni R5 mają one postać v̂ = v

(e)
k êk, gdzie składowe v(e)k

muszą spełniać trzy równania:

v
(e)
1 + v

(e)
2 + v

(e)
3 + v

(e)
4 + v

(e)
5 = 0 ,

3 v
(e)
3 + 2 v

(e)
4 + v

(e)
5 = 0 ,

v
(e)
3 + v

(e)
5 = 0 .

Odejmując ostatnie od dwu pierwszych łatwo się zorientować, że najogólniejszym rozwią-
zaniem tych warunków są składowe v(e)1 = a, v(e)2 = −(a + b), −v(e)3 = v

(e)
4 = v

(e)
5 = b,

w których stałe a i b są dowolne. Zatem dwa takie liniowo niezależne kowektory mają
postać

v̂1 = a1 ê
1 − (a1 + b1) ê

2 − b1 ê3 + b1 ê
4 + b1 ê

5 ,

v̂2 = a2 ê
1 − (a2 + b2) ê

2 − b2 ê3 + b2 ê
4 + b2 ê

5 .

36Oczywiście teraz musimy przyjąć, że dimV = 5.
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Stałe a1,2 i b1,2 można by było dobrać np. tak, by

v̂k(vj) = δkj dla k, j = 1, 2 .

ale dla naszego celu nie jest to konieczne. Wystarczy założyć, że są one takie, że kowektory
v̂1 i v̂2 są linowo niezależne (odpowiedni warunek na a1,2 i b1,2 wyjdzie nam “w praniu”).
Jasne jest jednak teraz w jakim sensie dwa kowektory charakteryzują jądro: rzut wyzna-
czany przez wektory v1, v2 ∈ imΠ i v3, v4, v5 ∈ kerΠ potraktowane jako baza p.w. V
można zadać podając bazę v1, v2 obrazu oraz dualne do v1, v2 kowektory v̂1, v̂2 zerujace
sie na wektorach v3, v4 i v5 rozpinających podprzestrzeń, wzdłuż której rzutujemy.

Skonstruujemy teraz macierz rzutu w bazie kanonicznej w postaci

Π(e)(e) =













−1 0
1 0
2 1
3 2
4 3













(

α β
γ δ

)(

a1 −(a1 + b1) −b1 b1 b1
a2 −(a2 + b2) −b2 b2 b2

)

.

Macierz po lewej jest utworzona z ustawionych “na sztorc” składowych (w kanonicznej
zero-jedynkowej bazie) wektorów v1 i v2. Jest to uzasadnione tym, że - co powinno być
jasne z podanego powyżej sposobu znajdowania macierzy rzutu - działając tą macierzą
na składowe jakiegoś wektora nienależącego całkowicie do jądra, musimy otrzymać jakąś
kombinację liniową wektorów v1 i v2. Macierz po prawej jest utworzona ze składowych
kowektorów zadających jądro. Zapewnia ona zerowanie się Π(e)(e) w działaniu na kano-
niczne składowe wektorów należących do jądra. (Kiedyś tam - jak zajmiemy się rzędami
macierzy - stanie się też jasne, że zbudowanie macierzy Π(e)(e) z ”przejściem” przez środ-
kową macierz wymiaru 2 × 2 powoduje, że rząd macierzy Π(e)(e) jest równy dwa, tak jak
powinien). Macierz środkową trzeba dobrać tak, by Π(e)(e) ·Π(e)(e) = Π(e)(e). Przystawiając
do siebie dwie macierze Π(e)(e) widzimy, że musi zachodzić równość

(

α β
γ δ

)

=













(

a1 −(a1 + b1) −b1 b1 b1
a2 −(a2 + b2) −b2 b2 b2

)













−1 0
1 0
2 1
3 2
4 3

























−1

.

Wymnażamy więc i odwracamy:

(

α β
γ δ

)

=

(

4b1 − 2a1 4b1
4b2 − 2a2 4b2

)−1
=

1

4(b1a2 − b2a1)

(

2b2 −2b1
−2b2 + a2 2b1 − a1

)

.

Jak widać czynnik b1a2 − b2a1 musi być różny od zera - to jest właśnie warunek liniowej
niezależności dwu kowektorów zadających jądro.
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Aby otrzymać Π(e)(e) trzeba już tylko pracowicie powymnażać macierze:












−1 0
1 0
2 1
3 2
4 3













(

2b2 −2b1
−2b2 + a2 2b1 − a1

)

=













−2b2 2b1
2b2 −2b1

2b2 + a2 −2b1 − a1
2b2 + 2a2 −2b1 − 2a1
2b2 + 3a2 −2b1 − 3a1













,

i wreszcie












−2b2 2b1
2b2 −2b1

2b2 + a2 −2b1 − a1
2b2 + 2a2 −2b1 − 2a1
2b2 + 3a2 −2b1 − 3a1













(

a1 −(a1 + b1) −b1 b1 b1
a2 −(a2 + b2) −b2 b2 b2

)

= (b1a2 − b2a1)













2 −2 0 0 0
−2 2 0 0 0
−2 1 −1 1 1
−2 0 −2 2 2
−2 −1 −3 3 3













.

(Każdy element powstającej macierzy wychodzi proporcjonalny do czynnika (b1a2−b2a1),
który wydzieliliśmy tu przed macierz). Po podzieleniu przez czynnik 4(b1a2 − b2a1) do-
stajemy tę samą macierz Π(e)(e), którą już otrzymaliśmy innym sposobem.

Uwaga: Powinno być jasne, że rzut jest wyznaczony nie przez same wektory v1, . . . ,v5,
lecz przez rozpinane przez dwa zbiory wektorów: v1 i v2 oraz v3, v4 i v5 dwie podprze-
strzenie, na które rozłożona zostaje wyjściowa przestrzeń R5 (która musi być sumą prostą
tych dwu podprzestrzeni).

Uwaga: Gdybyśmy chcieli rzutować wektory na podprzestrzeń rozpiętą przez v3, v4 i v5

“wzdłuż” podprzestrzeni rozpiętej przez v1, v2, czyli dokładnie odwrotnie niż zrobiliśmy
to w powyższym Zadaniu, to odpowiednią macierzą takiego rzutu w bazie ei byłaby
macierz Π′(e)(e) = I − Π(e)(e) (I oznacza tu macierz jednostkową). Że Π′(v)(v) = I − Π(v)(v)

jest oczywiste; obłożenie tego związku wzajemnie odwrotnymi macierzami zmiany bazy
Re←v z lewej i Rv←e z prawej prowadzi natychmiast do Π′(e)(e) = I − Π(e)(e). Nietrudno
też zobaczyć, że Π′(v)(v) · Π′(v)(v) = Π′(v)(v) oraz że (niezależnie od bazy) Π′(v)(v) · Π(v)(v) =

Π(v)(v) · Π′(v)(v) = 0 (macierz zerowa).

Zadanie 43
W bazie ei, i = 1, 2, 3 pewnej trówymiarowej przestrzeni wektorowej wektory v1, v2, v3

oraz u mają odpowiednio składowe

v1 :=





1
1
1



 , v2 :=





1
1
2



 , v3 :=





1
2
3



 , u :=





1
0
−1



 .
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Znaleźć rzut wektora u na wektor v1 “wzdłuż” podprzestrzeni rozpinanej przez wektory
v2 i v3. Podać macierz rzutu w bazie ei.
Rozwiązanie: Po poprzednim zadaniu sprawa już jest prosta: musimy zapisać u w
postaci kombinacji liniowej vi. Możemy to zrobić posługując się składowymi:





1
0
−1



 = λ1





1
1
1



+ λ2





1
1
2



+ λ3





1
2
3



 .

Rozwiązując ze względu na λi otrzymujemy λ1 = 2, λ2 = 0, λ3 = −1. Stąd

Π(u) = 2v1 .

Aby znaleźć macierz rzutu w bazie ei musimy mieć macierze zmiany bazy Re←v oraz Rv←e.
Tę pierwszą mamy od ręki. Aby znaleźć drugą odwracamy układ

v1 = e1 + e2 + e3 ,

v2 = e1 + e2 + 2 e3 ,

v3 = e1 + 2 e2 + 3 e3 .

To jest proste: od drugiego odejmujemy pierwsze i mamy e3 = −v1+v2; to do pierwszego
i trzeciego daje

e1 + e2 = 2v1 − v2 ,

e1 + 2 e2 = 3v1 − 3v2 + v3 .

Znów od drugiego pierwsze da od razu e2 = v1 − 2 v2 + v3 i teraz wyznaczone e2 i e3
do pierwotnego pierwszego i e1 = v1 + v2 − v3. W odruchu samokontroli37 sprawdzamy
mnożenie macierzy przejścia:

Re←v · Rv←e =





1 1 1
1 1 2
1 2 3









1 1 −1
1 −2 1
−1 1 0



 =





1 0 0
0 1 0
0 0 1



 .

Dobrze. Teraz możemy już napisać macierz rzutu:

Π(e)(e) = Re←v ·Π(v)(v) · Rv←e =





1 1 1
1 1 2
1 2 3









1 0 0
0 0 0
0 0 0









1 1 −1
1 −2 1
−1 1 0





=





1 1 −1
1 1 −1
1 1 −1



 .

37Odruch ten należy sobie wyrabiać przy każdej nadarzającej się okazji!
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Oczywiście spełnia ona podstwowy wymóg: Π(e)(e) ·Π(e)(e) = Π(e)(e). Dla kontroli (kontroli
nigdy dość!) podziałajmy jeszcze macierzą Π(e)(e) na składowe w bazie ei wektora u:





1 1 −1
1 1 −1
1 1 −1









1
0
−1



 =





2
2
2



 .

Wyszły oczywiście podwojone składowe wektora v1.
Przy okazji można się przekonać, że rzut wektora u na podprzestrzeń rozpiętą przez

wektor v1 w istotny sposób zależy od tego “wzdłuż” jakiej podprzestrzeni rzutujemy:
Gdybyśmy rzutowali, tak jak powyżej na podprzestrzeń rozpiętą przez v1, ale “wzdłuż”
podprzestrzeni rozpiętej przez np. v2 i v′3 = v3 + v1, to wynik rzutowania byłby inny:
jeśli napisalibyśmy u jako kombinację liniową

u = λ′1v1 + λ′2v2 + λ′3v
′
3 = (λ′1 + λ′3)v1 + λ′2v2 + λ′3v3 ,

to (co oczywiste z już wykonanych rachunków) otrzymalibyśmy λ′2 = 0, λ′3 = −1 oraz
λ′1 + λ′3 = 2, czyli λ′1 = 3 i rzut u byłby równy 3v1 (a nie 2v1, jak poprzednio).

Szczególnie prosto znajduje się macierz Π(e)(e) drugim ze sposobów pokazanych w Za-
daniu 42 (metoda ta jest tym prostsza im mniej wymiarów ma podprzestrzeń na którą
rzutujemy, bo liczba tych wymiarów jest równa liczbie niezależnych kowektorów zerują-
cych się na wektorach podprzestrzeni “wzdłuż” której rzutujemy). Obraz rzutu rozpina tu
jeden wektor i jeden też tylko kowektor zeruje się na wszystkich wektorach będących kom-
binacjami liniowymi v2 i v3. Kowektor ten, który można reprezentować jego składowymi
(a, b, c) w bazie êi (dualnej do bazy ei) wyznaczają równania

a+ b+ 2c = 0 ,

a+ 2b+ 3c = 0 .

Najogólniejszy taki kowektor ma postać (−c,−c, c). Zatem

Π(e)(e) =





1
1
1



 · p · (−c −c c ) .

p jest tu macierzaą wymiaru 1× 1, czyli po prostu liczbą. Ponieważ

Π(e)(e) · Π(e)(e) = p2





−c −c c
−c −c c
−c −c c



 ·





−c −c c
−c −c c
−c −c c



 = p2





c2 c2 −c2
c2 c2 −c2
c2 c2 −c2



 ,

widać, że równość Π(e)(e) · Π(e)(e) = Π(e)(e) wymaga, by pc = −1. Otrzymujemy więc
ponownie tę samą macierz Π(e)(e), co powyżej.

Zadanie to warto rozwiązać jeszcze jednym, prostszym sposobem. Rozłóżmy najpierw
całkiem ogólny wektor w = ae1 + be2 + ce3 na wektory v1, v2 i v3. Sprowadza się to do
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rozwiązania układu równań (zobacz Zadania 17 i 31):

α





1
1
1



 + β





1
1
2



+ γ





1
2
3



 =





a
b
c



 .

Rozwiązujemy i znajdujemy: α = a + b − c, β = a − 2b + c, γ = −a + b. Zatem
po wyrzutowaniu na wektor v1 wzdłuż v2 i v3 wektor w przejdzie w wektor αv1, co w
działaniu na składowe oznacza, że

Π(e)(e) ·





a
b
c



 = α





1
1
1



 =





a+ b− c
a+ b− c
a+ b− c



 =





1 1 −1
1 1 −1
1 1 −1









a
b
c



 .

Sztuczka (ta sama, co w Zadaniu 31 - w końcu rzut to też odwzorowanie liniowe, a wektory
vi definiujące rzut są właśnie tymi wektorami, na których działanie tego odwzorowania-
rzutu znamy!) polega na tym, by składowe wektora otrzymanego w wyniku rzutu przed-
stawić w postaci macierzy działającej na składowe tegoż wektora. Ponieważ sam wektor w
był najogólniejszy z możliwych, otrzymaliśmy macierz rzutu Π(e)(e) (tę samą oczywiście,
co uprzednio).

Zadanie 44
Znaleźć wszystkie macierze X wymiaru 2× 2 (nad ciałem C) takie, że X2 = K, gdzie

K =

(

κ 0
0 κ

)

, κ ∈ C.

Rozwiązanie: Oczywistymi macierzami X spełniającymi podany warunek są cztery ma-
cierze postaci

X =

(

±√κ 0
0 ±√κ

)

,

gdzie znaki pierwiastków na diagonali są ze sobą nieskorelowane. Jednak nie są to wszyst-
kie takie macierze. Np. nietrudno sprawdzić, że podniesiona do kwadratu macierz

X =

(

1 2
1 −1

)

daje macierz K z κ = 3 i nie jest ona żadną z podanych powyżej czterech macierzy. Widać
więc, że rozwiązań może być “dużo”, więcej niż naiwnie by można oczekiwać.

Aby znaleźć wszystkie macierze X takie, że X2 = K, zastosujemy prosty chwyt
(słuszny w dowolnej liczbie wymiarów).38 Po pierwsze sprowadzamy problem do szu-
kania pierwiastków macierzy jednostkowej, tj. szukamy wszystkich macierzy Y takich,
że

Y 2 = I .
38Chwyt ten podał mi dr hab. Maciej Nieszporski w odpowiedzi na moje pytanie dotyczące pierwiast-

kowania macierzy.
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W oczywisty sposób X =
√
κ Y . Następnie podstawiamy Y = I − 2P . Spełnienie

warunku Y 2 = I jest wtedy równoważne spełnianiu przez P równania:

P 2 = P .

Macierz P jest więc rzutem (patrz Zadania 42 i 43). Dwa trywialne rzuty: P = I i P = 0
(macierz zerowa) dają dwa oczywiste “pierwiastki” z macierzy jednostkowej, a mianowicie
−I i I, ale innych rzutów w przestrzeni n-wymiarowej jest rzeczywiście “dużo” (w istocie,
jak zaraz zobaczymy, nieprzeliczalnie wiele39).

W przypadku przestrzeni dwuwymiarowej można te wszystkie rzuty łatwo napisać.
Przypomnijmy, że aby w takiej przestrzeni zadać rzut, trzeba wybrać jakieś dwa wektory
w1 i w2 rozpinające całą przestrzeń i w bazie tworzonej przez te dwa wektory macierz
P(w)(w) rzutu może mieć jedną z czterech postaci:

(

0 0
0 0

)

,

(

1 0
0 0

)

,

(

0 0
0 1

)

,

(

1 0
0 1

)

.

Dwie skrajne macierze dadzą oczywiście P = 0 i P = I (w każdej bazie). Jeśli w pierwot-
nej bazie e1 i e2 przestrzeni V wektory w1 i w2 są postaci

w1 = a e1 + b e2, w2 = c e1 + d e2,

to wówczas macierzami zmiany bazy są

Re←w =

(

a c
b d

)

, Rw←e =
1

ad− bc

(

d −c
−b a

)

.

Warunek ad− bc 6= 0 jest oczywiście warunkiem liniowej niezależności wektorów w1 i w2.
Macierz P(e)(e) = Re←w ·P(w)(w)·Rw←e otrzymana z drugiej macierzy P(w)(w) (tej z jedynką
w lewym górnym rogu) ma postać

P(e)(e) =
1

ad− bc

(

ad −ac
bd −bc

)

.

(Nietrudno sprawdzić bezpośrednim rachunkiem, że P(e)(e)·P(e)(e) = P(e)(e)). Wobec dowol-
ności stałych a, b, c i d, druga nietrywialna macierz P(e)(e) (otrzymana z trzeciej macierzy
P(w)(w), tej z jedynką w prawym dolnym rogu) mająca postać

P ′(e)(e) =
1

ad− bc

(

−bc ac
−bd ad

)

.

nie daje już nic nowego (tj. zmieniając a, b, c i d w P(e)(e) wyczerpujemy zbiór wszyst-
kich rzutów na podprzestrzenie jednowymiarowe). Zatem w przestrzeni dwuwymiarowej

39Czyli jest ich tyle, ilu Wielowców (ska̧d to?)
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wszystkie pozostałe (poza tymi czterema oczywistymi) pierwiastki z macierzy diag(κ, κ)
są postaci

X =
√
κ

{(

1 0
0 1

)

− 2

ad− bc

(

ad −ac
bd −bc

)}

=

√
κ

ad− bc

(

−ad − bc 2ac
−2bd ad+ bc

)

.

W przestrzeni n wymiarowej rzutów jest odpowiednio więcej (rzutować można na
podprzestrzeń n, n−1, n−2, . . . , 0 wymiarową) i nie daje się łatwo napisać potrzebnych
macierzy przejścia, ale poza tym wszystko inne pozostaje bez zmian.

Zadanie 45
Funkcję exp(A), której argumentem jest macierz A definiujemy przez rozwinięcie w szereg
Taylora:

exp(A) = I + A +
1

2!
A2 +

1

3!
A3 +

1

4!
A4 + . . .

(I, jest tu macierzą mającą na diagonali jedynki, i zera wszędzie poza diagonalą; kiedyś
się dowiemy, że szereg ten jest zawsze zbieżny). Obliczyć eksponensy macierzy tA, tB
oraz tC (gdzie t ∈ R)

A =









0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0









, B =









1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1









, C =





0 1 −1
−1 0 1
1 −1 0



 .

Rozwiązanie: Obliczmy najpierw A ·A · A = A · A2 = A3:

A3 =









0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

















0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

















0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0









=









0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

















0 0 2 0
0 0 0 6
0 0 0 0
0 0 0 0









=









0 0 0 6
0 0 0 0
0 0 0 0
0 0 0 0









.

Nietrudno spostrzec, że A4 = 0. Zatem w tym przypadku

exp(tA) = I + tA+
t2

2!
A2 +

t3

3!
A3 =









1 t t2 t3

0 1 2t 3t2

0 0 1 3t
0 0 0 1









.
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Podobnie obliczmy B · B = B2









1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

















1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1









=









4 0 0 0
0 4 0 0
0 0 4 0
0 0 0 4









.

Widzimy, że B2 = 22I. Wnioskujemy stąd, że B3 = 22B, B4 = 24I, etc. Ogólnie
B2n = 22nI, B2n+1 = B2n ·B = 22nB = 22n+1 1

2
B. Możemy więc napisać

exp(tB) =

∞
∑

n=0

1

(2n)!
(tB)2n +

∞
∑

n=0

1

(2n+ 1)!
(tB)2n+1

= I
∞
∑

n=0

(2t)2n

(2n)!
+

1

2
B
∞
∑

n=0

(2t)2n+1

(2n + 1)!
= I ch(2t) +

1

2
B sh(2t) .

Obliczmy znowu C2 = C · C oraz C3 = C2 · C:

C3 =





0 1 −1
−1 0 1
1 −1 0









0 1 −1
−1 0 1
1 −1 0









0 1 −1
−1 0 1
1 −1 0





=





−2 1 1
1 −2 1
1 1 −2









0 1 −1
−1 0 1
1 −1 0



 =





0 −3 3
3 0 −3
−3 3 0



 .

Widzimy więc, że C3 = −3C. Ogólnie zatem C2n = (−3)n−1C2, a C2n+1 = (−3)nC

exp(t C) = I − C2

3

∞
∑

n=1

(−1)n(
√
3 t)2n

(2n)!
+

C√
3

∞
∑

n=0

(−1)n(
√
3 t)2n+1

(2n+ 1)!

= I − C2

3

(

−1 + cos(
√
3 t)
)

+
C√
3
sin(
√
3 t) .

Uwaga: W tym zadaniu udało nam się znaleźć jawnie funkcję (eksponens) od macie-
rzy, bo same macierze miały pewne szczególne właściwości.40 Aby móc znajdować takie
funkcje od dowolnych macierzy będziemy musieli jeszcze trochę rozbudować teorię.

40Np. macierz C jest w istocie rzeczy sumą trzech generatorów grupy obrotów SO(3) w reprezentacji o
spinie 1, tj. w reprezentacji wektorowej; macierz exp(tC) jest więc macierzą obrotu wokół osi wyznaczanej
przez wektor n = 1√

3
(ex + ey + ez) o kąt φ =

√
3 t.
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Przypomnienie.
Permutacją π nazywa się bijekcję (czyli odwzorowanie jeden-do-jednego) na siebie n-
elementowego zbioru, np. podzbioru S liczb naturalnych N. Permutować można wszyst-
kie zbiory skończone: np. zbiór słoni bojowych41 w szyku albo zbiór wektorów bazy
uporządkowanej jakiejś przestrzeni wektorowej (z permutacji wektorów bazy będziemy tu
korzystać, bo już się z bazami oswoiliśmy, a ze słoniami jeszcze nie).

Permutację n liczb naturalnych będziemy zapisywać następująco (tzw. “zapis piętru-
sowy” - od piętrusów-autobusów, albo wagonów-piętrusów):

(

1 2 3 4 5 6 7
π(1) π(2) π(3) π(4) π(5) π(6) π(7)

)

.

Oczywiście zapis
(

2 1 3 7 6 5 4
π(2) π(1) π(3) π(7) π(6) π(5) π(4)

)

,

oznacza tę samą permutację, tylko inaczej zapisaną. Dla przejrzystości, żeby lepiej kon-
trolować operacje permutowania staramy się zawsze permutowane elementy zbioru jakoś
uporządkować przyczepiając im numerki. Podzbiory liczb naturalnych są oczywiście same
z siebie takimi numerkami. Ogólnie więc permutację zbioru n-elementowego zbioru upo-
rządkowanego (a1, a2, . . . , an) można zapisywać jako

(

a1 a2 a3 a4 a5 a6 a7
aπ(1) aπ(2) aπ(3) aπ(4) aπ(5) aπ(6) aπ(7)

)

.

Tu już te ai i aπ(i) są elementami permutowanego zbioru uporządkowanego (czyli na
przykład tymi słoniami bojowymi z numerami przyczepionymi na ogonach). Wszystkich
możliwych permutacji zbioru o n elementach jest n!

Permutację π n-elementowego zbioru (a1, a2, . . . , an) nazywa się cyklem o długości
k (k ≤ n), jeśli zamyka się ona “w kółko” po k elementach. Jakoś trudno to zapisać
przejrzyście, więc będzie przykład. Każda permutacja zbioru n-elementowego składa się
z jednego n-elementowego cyklu lub kilku rozłącznych cykli o długościach k1, k2, . . .,
takich, że k1 + k2 + . . . = n. Permutację można więc rozłożyć na cykle. Cykl o długości
k = 2 nazywa się transpozycją (cykl o długości k = 1 jest oczywiście trywialny). Każdą
permutację można oczywiście złożyć z kilku transpozycji. Minimalna liczba transpozycji,
z których można złożyć cykl o długości k wynosi k− 1. Nieminimalna liczba transpozycji
z jakiej można złożyć dany cykl (można przecież trochę “błądzić” składając cykl!) różni
się od minimalnej zawsze o liczbę parzystą.

41Tych, co to je Hannibal przez Alpy ciągnął by, po wielu zwycięstwach nad Rzymianami, m.in. nad
jeziorem Trazymeńskim, czy pod Kannami w sierpniu roku 216 p. Chr., w końcu, dzięki przebiegłej
taktyce Fabiusza Kunktatora (a mówią, że kunktatorów w d. . . biją!), ugrzęznąć w południowej Italii i
ewakuować się w końcu zurück do Afryki, czyli do Kartaginy...
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Ważny w różnych zastosowaniach jest znak permutacji sgn π. Jeśli π jest permutacją
rozkładającą się na p rozłącznych cykli o długościach k1, k2, . . ., kp, to42

sgnπ = (−1)k1−1 · (−1)k2−1 · . . . · (−1)kp−1 .
Znak transpozycji jest z definicji ujemny, znak cyklu jest iloczynem znaków transpozycji,
z których się on składa, a znak permutacji jest iloczynem znaków cykli, na które ta
permutacja się rozkłada. Zatem dwie permutacje różniące się o jedną transpozycję mają
przeciwne znaki. Ponadto sgnπ = sgnπ−1.

Wszystkie permutacje zbioru n-elementowego tworzą grupę (tzw. grupę skończoną, bo
są jeszcze grupy ciągłe, które mają nieprzeliczalnie wiele elementów) Sn.: złożenie dwóch
permutacji jest permutacją, każdej permutacji odpowiada permutacja odwrotna, istnieje
permutacja trywialna (“jedynka grupowa”) taka, że jej złożenie z dowolną permutacją π
daje tę samą permutację π. Grupa ta jest (gdy n ≥ 3) nieprzemienna: π2 · π1 6= π1 · π2.

Zadanie 45.1
Napisać permutację odwrotną do permutacji

(

1 2 3 4 5 6 7
2 1 4 3 6 7 5

)

.

Rozwiązanie: Patent jest prosty: należy zamienić “pięterka” miejscami (odwrócić pię-
trusa do góry kołami) i właściwie już jest. Ale że umówiliśmy się pisać permutowane
zbiory w sposób uporządkowany, to, jako drugi krok, porządkujemy górne piętro wraz z
tym, co na dole:

(

2 1 4 3 6 7 5
1 2 3 4 5 6 7

)

→
(

1 2 3 4 5 6 7
2 1 4 3 7 5 6

)

.

Inny sposób polega na potraktowaniu permutacji jak liniowego odwzorowania π n-wymia-
rowej przestrzeni wektorowej V w nią samą, takiego, że obrazami wektorów ei, i = 1, . . . , n
pewnej jej bazy są też wektory tej samej bazy tylko w innej kolejności. Byłoby najwy-
godniej odwzorowanie to zdefiniować tak, by π(e1) = e2, . . . , π(e7) = e5. Z przyczyny,
która niżej się wyjaśni, przyjmujemy jednak inną definicję: mianowicie definiujemy od-
wzorowanie π tak, iż π(e1) = e2, π(e2) = e1, π(e3) = e4, π(e4) = e3, π(e5) = e7,
π(e6) = e5, π(e7) = e6. Odpowiada to przyporządkowaniu wektorowi ei o numerze i wek-
tora ej o numerze j znajdującym się w piętrusie nad numerkiem i. Następnie, zgodnie ze
standardowymi regułami tworzymy macierz Sπ ≡ π(e)(e) odwzorowania π:

Sπ =





















· 1 · · · · ·
1 · · · · · ·
· · · 1 · · ·
· · 1 · · · ·
· · · · · 1 ·
· · · · · · 1
· · · · 1 · ·





















.

42Matematycy z niewiadomych powodów piszą (−1)k1+1 itd. (i tak jest też to pisane w zadaniach), co
oczywiście daje ten sam znak permutacji, ale ukrywa fakt, że chodzi o minimalną liczbę transpozycji.
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(Kropki oznaczają zera - czyni to zapis łatwiej czytelnym.) Znalezienie permutacji od-
wrotnej do danej sprowadza się teraz do napisania macierzy S−1π odwrotnej do Sπ, która
to macierz S−1π , podobnie jak Sπ, w każdym wierszu i w każdej kolumnie może mieć tylko
jedną jedynkę a poza tym same kropki (zera); dzięki temu nietrudno tę macierz napisać:43

Sπ−1 = S−1π =





















· 1 · · · · ·
1 · · · · · ·
· · · 1 · · ·
· · 1 · · · ·
· · · · · · 1
· · · · 1 · ·
· · · · · 1 ·





















.

Po przetłumaczeniu na zapis dwupiętrowy macierz S−1π da to, co już wiemy.

Przedstawienie permutacji za pomocą macierzy pozwala zatem łatwo je składać: zło-
żeniu dwóch permutacji π2 ·π1 odpowiada oczywiście iloczyn macierzy Sπ2

·Sπ1
. To właśnie

to składanie permutacji “od prawej do lewej” (tzn. najpierw wykonujemy permutację π1
zbioru, a potem wykonujemy permutację π2) zmusza nas do przyjęcia takiej definicji od-
wzorowania π przestrzeni wektorowej V w nią samą (przyjęcie bardziej naturalnej definicji
prowadziłoby do przyjęcia odwrotnej kolejności mnożenia macierzy w stosunku składania
permutacji). Inny prosty sposób składania permutacji bezpośrednio na piętrusach jest
pokazany w zadaniu o grupie permutacji S3. Przyporządkowanie każdej permutacji π
macierzy Sπ w taki sposób, że Sπ2·π1

= Sπ2
· Sπ1

nazywa się reprezentacją grupy przez od-
wzorowania liniowe pewnej przestrzeni wektorowej V w nią samą. Tu widzimy, że łatwo
jest napisać wierną (tzn. taką, że jeśli π2 6= π1, to Sπ2

6= Sπ1
) n-wymiarową reprezentację

grupy Sn.

Zadanie 45.2
Rozłożyć na rozłączne cykle permutację

(

1 2 3 4 5 6 7 8
2 1 4 3 6 7 5 8

)

.

Ustalić jej znak.
Rozwiązanie: Tu sposób polega na “wyciąganiu nitki z kłębka”. Zaczynamy od 1. 1
przechodzi na 2, a 2 na 1. Jest więc to cykl. Następnie zaczynamy od pierwszego elementu
nie uwikłanego w poprzedni cykl: 3 przechodzi na 4, a 4 na 3; jest więc drugi cykl.
Następnie 5 przechodzi na 6, 6 na 7, a 7 na 5 i jest to trzeci cykl. Ostatni cykl jest
trywialny: 8 przechodzi na 8. W notacji piętrusowej wygląda to następująco
(

1 2 3 4 5 6 7 8
1 2 3 4 6 7 5 8

)(

1 2 3 4 5 6 7 8
1 2 4 3 5 6 7 8

)(

1 2 3 4 5 6 7 8
2 1 3 4 5 6 7 8

)

,

43Można też zauważyć, że macierze reprezentujące permutacje zbioru n-elementowego są podzbiorem
macierzy ortogonalnych, czyli tworzących grupę klasyczną O(n), i wobec tego macierz odwrotna jest po
prostu macierzą transponowaną.
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(ostatniego, trywialnego cyklu już nie piszemy, bo i po co?) albo znacznie prościej:

(5, 6, 7)(3, 4)(1, 2),

co należy czytać tak, jak to, co napisane jest wyżej. Można to wreszcie przedstawić
macierzowo
























· 1 · · · · · ·
1 · · · · · · ·
· · · 1 · · · ·
· · 1 · · · · ·
· · · · · 1 · ·
· · · · · · 1 ·
· · · · 1 · · ·
· · · · · · · 1

























=

























1 · · · · · · ·
· 1 · · · · · ·
· · 1 · · · · ·
· · · 1 · · · ·
· · · · · 1 · ·
· · · · · · 1 ·
· · · · 1 · · ·
· · · · · · · 1

















































1 · · · · · · ·
· 1 · · · · · ·
· · · 1 · · · ·
· · 1 · · · · ·
· · · · 1 · · ·
· · · · · 1 · ·
· · · · · · 1 ·
· · · · · · · 1

















































· 1 · · · · · ·
1 · · · · · · ·
· · 1 · · · · ·
· · · 1 · · · ·
· · · · 1 · · ·
· · · · · 1 · ·
· · · · · · 1 ·
· · · · · · · 1

























.

Tu kolejność, w jakiej stoją te trzy macierze (czwartemu cyklowi odpowiada macierz
jednostkowa, której już nie napisaliśmy) jest dowolna, bo cykle są rozłączne (wszyst-
kie trzy wypisane macierze są każda z każdą przemienne). Odpowiada to temu, że
(5, 6, 7)(3, 4)(1, 2) = (5, 6, 7)(1, 2)(3, 4) = (1, 2)(3, 4)(5, 6, 7), etc.

Ponieważ badana permutacja rozkłada się na cztery cykle o długościach (2, 2, 3, 1), jej
znak to (−1)1(−1)1(−1)2(−1)0 = +1.

Zadanie 45.3
Znaleźć π24, czyli permutację będącą złożeniem 24-ech identycznych permutacji π danych
wzorem

(

1 2 3 4 5 6 7 8 9 10 11
5 8 9 1 3 10 4 2 7 11 6

)

.

Rozwiązanie: Wygląda to na trudne zadanie, ale jest bardzo proste. Najpierw metodą
“wyciągania nitki z kłębka” rozkładamy π na rozłączne cykle:

(6, 10, 11)(2, 8)(1, 5, 3, 9, 7, 4) .

Składa się więc ona z trzech rozłącznych cykli o długościach 6, 2 oraz 3. Jest jednak mniej
więcej oczywiste, że p-krotne złożenie cyklu o długości p daje permutację trywialną, czyli
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tożsamość. Ponieważ 24 jest wielokrotnością długości każdego z rozłącznych cykli, na
które rozkłada się permutacja π (i ponieważ kolejność składania rozłącznych cykli jest
bez znaczenia), π24 = id, tj. złożenie 24-ech permutacji π jest permutacją trywialną
(tożsamościową).

Zadanie 45.4
Rozłożyć na rozłączne cykle dwie permutacje będące każda z osobna złożeniem trzech
nierozłącznych cykli:

(1, 2, 3, 4)(1, 2, 3)(1, 2) oraz (1, 2)(1, 2, 3)(1, 2, 3, 4) .

Rozwiązanie: Zapis wskazuje, że każda z podanych permutacji jest złożeniem trzech
innych permutacji (bo cykl to też jest pewna permutacja) zbioru 4-elementowego. Dwa
przypadki różnią się porządkiem, w jakim składane są te trzy permutacje: pierwsza to
π3 ·π2·π1, a druga to π1 ·π2·π3. Wyreprezentujemy te trzy permutacje składowe macierzami
4× 4:

Sπ1
=









· 1 · ·
1 · · ·
· · 1 ·
· · · 1









, Sπ2
=









· 1 · ·
· · 1 ·
1 · · ·
· · · 1









, Sπ3
=









· 1 · ·
· · 1 ·
· · · 1
1 · · ·









.

Następnie mnożymy te trzy macierze w dwu różnych kolejnościach:

Sπ3
· Sπ2

· Sπ1
=









· · · 1
· · 1 ·
· 1 · ·
1 · · ·









, Sπ1
· Sπ2

· Sπ3
=









· · 1·
· 1 · ·
· · · 1
1 · · ·









.

Teraz można otrzymane permutacje zapisać piętrusowo:

Sπ3
· Sπ2

· Sπ1
=

(

1 2 3 4
4 3 2 1

)

, Sπ1
· Sπ2

· Sπ3
=

(

1 2 3 4
3 2 4 1

)

.

Pierwsza z nich składa się z dwóch rozłącznych cykli o długości 2: (1, 4)(2, 3), a druga
z cyklu trzyelementowego (1, 3, 4) i cyklu trywialnego. Otrzymany wynik pokazuje, że
permutacje tworzą grupę nieprzemienną (inaczej: nieabelową).

Zadanie 45.5
Dana jest permutacja

π =

(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
15 13 11 12 7 10 4 5 6 1 14 8 9 3 2

)

.

Napisać permutację odwrotną, czyli π−1. Rozłożyć π na cykle. Wyznaczyć znak permu-
tacji π. Podać permutację będącą 27-krotnym złożeniem permutacji π z nią samą, tj.
π27.
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Rozwiązanie: Permutacja odwrotna: odwracamy piętrusa do góry kołami i porządku-
jemy:

(

15 13 11 12 7 10 4 5 6 1 14 8 9 3 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

)

→
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
10 15 14 7 8 9 5 12 13 6 3 4 2 11 1

)

.

Teraz rozkład na rozłączne cycle. Z permutacji

π =

(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
15 13 11 12 7 10 4 5 6 1 14 8 9 3 2

)

,

wyciagamy nitkę z kłębka:

π = (1, 15, 2, 13, 9, 6, 10)(3, 11, 14)(4, 12, 8, 5, 7).

π składa się więc z trzech rozłącznych cykli o długościach 7, 3 i 5 (razem 15, więc się
zgadza). Zatem jej znak to

sgn(π) = (−1)7−1 · (−1)3−1 · (−1)5−1 = +1 .

Jest to permutacja parzysta. Przy 27-krotnym złożeniu π z nią samą środkowy cykl
długości 3 przejdzie w identyczność (permutację trywialną, czyli żadną), bo 27 jest pełną
wielokrotnością trzech. Cykl długości 5 po 25-krotnym złożeniu da też identyczność, więc
efektywnie zostają tylko dwa złożenia (inaczej: 27-krotne złożenie tego cyklu jest tym
samym, co jego złożenie dwukrotne). Przy złożeniu (4, 12, 8, 5, 7)(4, 12, 8, 5, 7)

4→ 12→ 8, 12→ 8→ 5, 8→ 5→ 7, 5→ 7→ 4, 7→ 4→ 12 ,

czyli dostajemy cykl (4, 8, 7, 12, 5). Wreszcie, 28-krotne złożenie cyklu o długości 7 dałoby
identyczność, więc jego złożenie 27-krotne jest tym samym co cykl będący permutacją
odwrotną. Zapiszmy więc ten cykl w postaci piętrusa (na razie jako pełną permutację
piętnastu liczb):

(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
15 13 3 4 5 10 7 8 6 1 11 12 9 14 2

)

,

obróćmy do góry kołami i uporządkujmy:
(

15 13 3 4 5 10 7 8 6 1 11 12 9 14 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

)

→
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
10 15 3 4 5 9 7 8 13 6 11 12 2 14 1

)

,

czyli jest to cykl (znów nitkę z kłębka) postaci (1, 10, 6, 9, 13, 2, 15). Widać, że gdybyśmy
pisali odwracany cykl (1, 15, 2, 13, 9, 6, 10) w postaci (1, 15, 2, 13, 9, 6, 10, 1), czyli z tą 1,
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której z oszczędności nie piszemy, to odwrócić cykl by było banalnie łatwo: po prostu
przepisalibyśmy go w odwrotnej kolejności: (1, 10, 6, 9, 13, 2, 15, 1). No i teraz usuwamy
tę ostatnią 1, której zgodnie z umową nie piszemy i już mamy!

Zatem permutacja π złożona sama ze sobą 27-krotnie składa się z dwóch nietrywialnych
rozłącznych cykli

π27 = (1, 10, 6, 9, 13, 2, 15)(4, 8, 7, 12, 5) .

Teraz możemy (jeśli nam to do czegoś potrzebne) przerobić to na piętrusa

π27 =

(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
10 15 3 8 4 9 12 7 13 6 11 5 2 14 1

)

.

Zadanie 45.6
Podać tabelkę składania permutacji zbioru trójelementowego.
Rozwiązanie: Najpierw trzeba jakoś te permutacje ponazywać. Niech

π1 =

(

1 2 3
1 2 3

)

, π2 =

(

1 2 3
3 1 2

)

, π3 =

(

1 2 3
2 3 1

)

,

π4 =

(

1 2 3
2 1 3

)

, π5 =

(

1 2 3
1 3 2

)

, π6 =

(

1 2 3
3 2 1

)

.

Musimy poskładać wszystkie możliwe pary permutacji, tj. cierpliwie wykonać 3! · 3! = 36
operacji typu πi · πj . Oczywiście π1 · πj = πj · π1 = πj , więc operacji jest o 11 mniej, czyli
tylko 25. No to do dzieła.

π2 · π2 =
(

1 2 3
3 1 2

)(

1 2 3
3 1 2

)

=

(

1 2 3
2 3 1

)

= π3 .

Po prostu patrzymy (idąc od prawej strony): przy prawym π2 1 przechodzi na 3, a 3
przy lewym π2 na 2, więc w piętrusie będącym złożeniem π2 · π2 pod 1 piszemy 2. I tak
dalej. Na piętrusach składanie permutacji jest dość proste. Można też mnożyć macierze
3 × 3 podane w następnym zadaniu. No to jeszcze 24 takie operacje i mamy tabelkę 1.
Tabelka pokazuje, że grupa S3 jest nieprzemienna: πi ·πj 6= πj ·πi. Poza tym można w niej
wyróżnić cztery bloki 3 × 3: w lewym górnym i prawym dolnym są permutacje parzyste
(bo parzysta z parzystą i nieparzysta z nieparzystą dają parzystą), a w lewym dolnym i
prawym górnym - nieparzyste (bo parzysta z nieparzystą daje nieparzystą).

Zadanie.
Jeśli w przestrzeni wektorowej, w której grupa jest reprezentowana, można tak wybrać
bazę, że wszystkie macierze odpowiadające elementom grupy będą miały strukturę klat-
kową (wszystkie taką samą) i na mniejsze klatki tych macierzy (wszystkich jednocześnie)
rozłożyć dalszą zmianą bazy już nie daje, to mówimy, że udało nam się rozłożyć re-
prezentację na reprezentacje nieprzywiedlne (dane przez te klatki). Rozłożyć naturalną
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π1 π2 π3 π4 π5 π6

π1 π1 π2 π3 π4 π5 π6
π2 π2 π3 π1 π5 π6 π4
π3 π3 π1 π2 π6 π4 π5
π4 π4 π6 π5 π1 π3 π2
π5 π5 π4 π6 π2 π1 π3
π6 π6 π5 π4 π3 π2 π1

Tablica 1: Tabelka działań grupy permutacji S3. W rubryczkach są złożenia πlewe · πgora.

reprezentację trójwymiarową grupy S3 (permutacji zbioru trójelementowego) na reprezen-
tacje nieprzywiedlne.
Rozwiązanie: Trójwymiarową naturalną reprezentację grupy S3 tworzy 6 macierzy

Sπ1 =





1 · ·
· 1 ·
· · 1



 , Sπ2 =





· · 1
1 · ·
· 1 ·



 , Sπ3 =





· 1 ·
· · 1
1 · ·



 ,

Sπ4 =





· 1 ·
1 · ·
· · 1



 , Sπ5 =





1 · ·
· · 1
· 1 ·



 , Sπ6 =





· · 1
· 1 ·
1 · ·



 .

Traktujemy je jak macierze sześciu różnych odwzorowań przestrzeni wektorowej V w V
w pewnej bazie (e1, e2, e3) więc, zgodnie z wprowadzoną w tym skrypcie notacją, Sπj ≡
S
πj

(e)(e). Jest jasne, że jeśli zmienimy bazę przestrzeni V tak, by jednym z wektorów bazy
był wektor f1 ∝ e1 + e2 + e3, to jego obrazem przy każdym z tych sześciu odwzorowań
będzie on sam, czyli f1. Podprzestrzeń rozpięta na wektorze V jest więc podprzestrzenią
niezmienniczą względem tych sześciu odwzorowań. Każde z nich ma jeszcze tę dodatkową
właściwość, że zachowuje długości wektorów ei (przy naturalnym iloczynie skalarnym
ei ·ej = δij , w którym baza (e1, e2, e3) jest bazą ortonormalną). Możemy więc unormować
wektor f1 i dokombinować dwa inne tak, by stworzyć bazę ortonormalną (f1, f2, f3). Np.
może to być baza dana wzorami

(f1, f2, f3) = (e1, e2, e3)





1√
3

1√
6

1√
2

1√
3

−2√
6

0
1√
3

1√
6

−1√
2



 .

Macierz tu stojąca, to macierz zmiany bazy Re←f . Ponieważ łączy ona dwie bazy orto-
normalne (względem zwykłego iloczynu skalarnego), macierz odwrotna jest dana przez
transpozycję: Rf←e = [Re←f ]

T .
Reszta jest sprawą tępego mnożenia macierzy:

S̃πj ≡ S
πj

(f)(f) = [Re←f ]
T · Sπj

(e)(e) · [Re←f ] .

116



Otrzymujemy:

S̃π1 =





1 · ·
· 1 ·
· · 1



 , S̃π2 =







1 · ·
· −1

2
−
√

3
2

·
√

3
2
−1

2






, S̃π3 =







1 · ·
· −1

2

√

3
2

· −
√

3
2
−1

2






,

S̃π4 =







1 · ·
· −1

2

√

3
2

·
√

3
2

1
2






, S̃π5 =







1 · ·
· −1

2

√

3
2

·
√

3
2

1
2






, S̃π6 =





1 · ·
· 1 ·
· · −1



 .

Sześć klatek 2 × 2 w prawych dolnych rogach tych macierzy tworzy dwuwymiarową nie-
przywiedlną reprezentację grupy permutacji zbioru trójelementowego, tzn. ich składanie
podlega tym samym regułom składania elementów grupy S3 zebranym w tabelce 1.

Otrzymane klatki 2× 2 muszą być jakimiś macierzami z grupy O(2) (bo klatki te są,
jak łatwo dostrzec, macierzami ortogonalnymi). Grupę O(2) tworzą wszystkie ortogonalne
macierze O(α)

O(α) =

(

cosα sinα
− sinα cosα

)

,

z 0 ≤ α < 2π o wyznaczniku równym +1, tworzące przemienną grupę SO(2) obrotów
dwuwymiarowych, i ortogonalna macierz

(

1 0
0 −1

)

,

“parzystości” o wyznaczniku równym −1. To właśnie dołączenie tej macierzy powoduje,
że grupa O(2) jest nieprzemienna (i dlatego niema tu sprzeczności z nieprzemiennością
grupy S3):

(

cosα sinα
− sinα cosα

)(

1 0
0 −1

)

6=
(

1 0
0 −1

)(

cosα sinα
− sinα cosα

)

.

Pozostaje sprawdzić jakim elementom O(2) odpowiadają otrzymane klatki 2×2 - oznaczmy
je Sπi

2×2 - macierzy reprezentacji grupy S3. Należy tu najpierw zauważyć, że wyznacznik
równy +1 lub −1 macierzy Sπi

2×2 odpowiada parzystości permutacji. Zatem macierze Sπ1

2×2,
Sπ2

2×2, S
π3

2×2 reprezentujące permutacje π1, π2 i π3 muszą być macierzami z SO(2), a więc
tworzą podgrupę przemienną (istotnie: lewy górny blok 3 × 3 tabelki 1 z poprzedniego
Zadania jest symetryczny i występują w nim tylko permutacje π1, π2 i π3 - składając
tylko te ze sobą nigdy nie dostajemy permutacji π4, π5 i π6; zatem parzyste permutacje
tworzą podgrupę w S3). π1 odpowiada oczywiście α = 0, π2 - α = 2

3
π, a π3 - α = 4

3
π.

Z kolei każda z macierzy Sπ4

2×2, S
π5

2×2, S
π6

2×2 reprezentujących permutację nieparzystą musi
być iloczynem jakiejś macierzy z SO(2) i macierzy P (bo wtedy wyznacznik jest równy
−1). Żeby zobaczyć, czemu odpowiadają dwuwymiarowe macierze reprezentujące permu-
tacje π4, π5 i π6 umówmy sie, że przypasujemy je do macierzy P · O(α). Wtedy można
zobaczyć, że π4 odpowiada α = 4

3
π, π5 - α = 2

3
π, a π6 odpowiada α = 0.
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Jest mniej więcej oczywiste, że otrzymana tu nieprzywiedlna i wierna dwuwymiarowa
reprezentacja grupy S3 nie jest jednoznaczna: gdyby inaczej skierować wektory bazy e2
i e3 otrzymalibyśmy inne macierze również stanowiące dwuwymiarową reprezentację S3,
Nietrudno zrozumieć, że każdy zbiór macierzy otrzymanych z Sπi

2×2 przez obłożenie ich
macierzami: z lewej przez OT (β), a z prawej przez O(β) z dowolnym β (ale takim samym
dla wszystkich Sπi

2×2) da również dwuwymiarową reprezentację grupy S3 (tzn. da macierze
2× 2 spełniające reguły składania zebrane w tabelce 1).

Przypomnienie.
Wyznacznikiem macierzy kwadratowej (wyznacznika macierzy niekwadratowej nie można
zdefiniować w sposób, który by był sensowny, tj. użyteczny!)

A =









a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .
an1 an2 . . . ann









,

nazywamy liczbę (z ciała K, z którego są elementy aij macierzy A) daną wzorem

detA ≡

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .
an1 an2 . . . ann

∣

∣

∣

∣

∣

∣

∣

∣

=
∑

π

sgn(π) a1π(1)a2π(2) . . . anπ(n) .

Jest to suma n! składników, z których każdy jest iloczynem n czynników będących ele-
mentami macierzy A. sgn(π) jest znakiem permutacji π czyli (−1)k, gdzie k jest równe
liczbie pierestanowok potrzebnych do ustawienia ciągu liczb π(1), π(2), π(3), . . . , π(n) w
porządku 1, 2, 3, . . . , n.
Należy zauważyć, iż w każdym składniku a1π(1)a2π(1) . . . anπ(1) sumy definiującej wyznacz-
nik występuje dokładnie po jednym elemencie z każdej kolumny i po jednym elemencie z
każdego wiersza macierzy A, tzn. w każdym iloczynie będącym składnikiem sumy każda
kolumna ma dokładnie jednego “reprezentanta” i każdy wiersz ma też dokładnie jednego
“reprezentanta” (jest to tzw. reguła reprezentantów). Z powyższej definicji natychmiast
otrzymujemy wzory

det

(

a11 a12
a21 a22

)

≡
∣

∣

∣

∣

a11 a12
a21 a22

∣

∣

∣

∣

= a11a22 − a12a21 ,
∣

∣

∣

∣

∣

∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣

∣

∣

∣

∣

∣

= a11a22a33 + a12a23a31 + a21a13a32 − a31a13a22 − a12a21a33 − a11a32a23 ,

jako mające należne liczby składników (n!) i spełniające regułę “reprezentantów”. Ten
ostatni wynik wygodnie zapamiętuje się jako regułę “mnożenia po skosach”.
Uwaga: Studenci niekiedy mają nadzieję, że podobną metodę “mnożenia po skosach”
można zastosować np. do obliczania wyznaczników macierzy 4 × 4. Niestety, to nie
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działa, co widać choćby z tego, że nie dostaje się wtedy koniecznej liczby składników
sumy (4! = 24).

Wygodnie jest też traktować wyznacznik macierzy A jak funkcję jej kolumn Ci, i =
1, . . . , n

A =









a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .
an1 an2 . . . ann









= (C1 C2 . . .Cn) ,

a kolumny Ci, i = 1, . . . , n traktować z kolei jak wektory z Rn lub Cn (ogólniej z Kn)

C1 =









a11
a21
. . .
an1









, C2 =









a12
a22
. . .
an2









, . . . Cn =









a1n
a2n
. . .
ann









.

Właściwości wyznacznika

• jeśli choć jeden wiersz lub choć jednak kolumna macierzy A składa się z samych zer
to detA = 0 (“reguła reprezentantów”!)

• zamiana miejscami dwu kolumn lub dwu wierszy macierzy A zmienia znak wy-
znacznika (wyznacznik jest całkowicie antysymetryczną funkcją kolumn i wierszy
macierzy A)

det (C1 . . .Ck . . .Cl . . .Cn) = −det (C1 . . .Cl . . .Ck . . .Cn) ,

dla dowolnych 1 ≤ k, l ≤ n

• jeśli wszystkie elementy jednej z kolumn A lub wszystkie elementy jednego z wierszy
A pomnożymy przez λ to wyznacznik też ulegnie pomnożeniu przez λ

det (C1 . . . λCk . . .Cn) = λdet (C1 . . .Ck . . .Cn) ,

• wyznacznik jest liniową funkcją każdej z kolumn (każdego z wierszy):

det
(

C1 . . . λ1C
(1)
k + λ2C

(2)
k . . .Cn

)

= λ1 det
(

C1 . . .C
(1)
k . . .Cn

)

+λ2 det
(

C1 . . .C
(2)
k . . .Cn

)

• wyznacznik nie zmienia się jeśli jedną z jego kolumn (lub wiersz) zastąpimy sumą
tejże kolumy (wiersza) i dowolnej innej kolumny (wiersza) pomnożonej przez do-
wolną liczbę

det
(

C1 . . . C̃k . . .Cn

)

= det (C1 . . .Ck . . .Cn) ,

gdzie C̃k = Ck +
∑

j 6=k λjCj.
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• detA =detAT , gdzie macierz transponowaną AT tworzy się z A przez odbicie ele-
mentów A symetrycznie względem diagonali wyznaczonej przez elementy akk:

AT =









a11 a21 . . . an1
a12 a22 . . . an2
. . . . . . . . . . . .
a1n a2n . . . ann









,

Z tego wynika również, że wyznacznik można traktować jak funkcję wierszy R1, . . .,
Rn macierzy A, które to wiersze też można uważać za wektory z R

n lub C
n

Z przedostatniej właściwości wynika natychmiast, że wyznacznik znika (tj. równa się zeru)
zawsze, gdy wektory Ci, i = 1, n tworzące kolumny (lub wiersze) macierzy A są liniowo
zależne (można bowiem wtedy takimi operacjami wyzerować jakąś całą kolumnę lub cały
wiersz).

Przykłady Zadanie 45.7 Pokazać, że
∣

∣

∣

∣

∣

∣

∣

∣

a11 0 . . . 0
0 a22 . . . 0
. . . . . . . . . . . .
0 0 . . . ann

∣

∣

∣

∣

∣

∣

∣

∣

= a11a22 . . . ann ;

wynika to z tego, że w składnikach sumy występuje tylko po jednym elemencie z każdej
kolumny i po jednym elemencie z każdego wiersza macierzy A. Stąd wyznacznik macierzy
jednostkowej wymiaru n× n (o dowolnym n) jest równy zawsze 1.

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

∣

∣

∣

∣

∣

∣

∣

∣

= −1 ,

bo trzeba zamienić miejscami kolumny drugą i czwartą.
∣

∣

∣

∣

∣

∣

∣

∣

3 1 1 2
1 7 1 2
a 1 1 2
1 1 1 2

∣

∣

∣

∣

∣

∣

∣

∣

= 0 ,

bo odejmując od czwartej kolumy dwa razy trzecią dostajemy zerową czwartą kolumnę.
∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 1
0 2 1 1
0 0 3 1
0 0 0 4

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0 0
0 2 1 1
0 0 3 1
0 0 0 4

∣

∣

∣

∣

∣

∣

∣

∣

= 2

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0 0
0 1 1 1
0 0 3 1
0 0 0 4

∣

∣

∣

∣

∣

∣

∣

∣

= 2

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0 0
0 1 0 0
0 0 3 1
0 0 0 4

∣

∣

∣

∣

∣

∣

∣

∣

= 2 · 3

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 4

∣

∣

∣

∣

∣

∣

∣

∣

= 6

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 4

∣

∣

∣

∣

∣

∣

∣

∣

= 24 ,
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gdzie w pierwszym kroku od kolumn drugiej, trzeciej i czwartej odjęliśmy pierwszą, po-
tem wyprowadziliśmy czynnik 2 przed wyznacznik, potem od kolumn trzeciej i czwartej
odjęliśmy kolumnę drugą, potem wyprowadziliśmy czynnik 3 przed wyznacznik etc.

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 1
1 2 1 1
1 1 3 1
1 1 1 4

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

1 0 0 0
1 1 0 0
1 0 2 0
1 0 0 3

∣

∣

∣

∣

∣

∣

∣

∣

= 6 .

Najpierw od kolumn drugiej, trzeciej i czwartej odjęliśmy pierwszą, a potem zauważyliśmy,
że wynik wynika (a coż innego wynik mógłby robić, jak nie wynikać?) już z tego, iż
w składnikach sumy dającej wyznacznik występuje tylko po jednym elemencie z każdej
kolumny i po jednym elemencie z każdego wiersza. (Można też od wierszy drugiego,
trzeciego i czwartego odjąć pierwszy i wyjdzie macierz diagonalna).

Z przykładów tych wynika wniosek: wyznacznik macierzy “górno-trójkątnej” lub “dolno-
trójkątnej”, tj. macierzy













a11 a12 a13 . . . a1n
0 a22 a23 . . . a2n
0 0 a33 . . . a3n

0 0 0 . . . ann













, lub













a11 0 0 . . . 0
a21 a22 0 . . . 0
a31 a32 a33 . . . 0

an1 an2 an3 . . . ann













,

jest równy iloczynowi jej elementów diagonalnych, bo przez dozwolone operacje na kolum-
nach lub wierszach (tj. operacje nie zmieniające wartości wyznacznika), które tu można
przeprowadzić nie zmieniając elementów diagonalnych, można ją zawsze sprowadzić do
macierzy diagonalnej.

Inny przykład. Zadanie 45.8. Obliczmy wyznacznik macierzy n× n












1 n n . . . n
n 2 n . . . n
n n 3 . . . n
. . . . . . . . . . . . . . .
n n n . . . n













.

Odejmujemy od n−1 pierwszych kolumn ostatnią (tj. Ci → Ci−Cn dla i = 1, . . . , n−1),
co da

















1− n 0 0 . . . 0 n
0 2− n 0 . . . 0 n
0 0 3− n . . . 0 n
. . . . . . . . . . . . . . . . . .
0 0 0 . . . −1 n
0 0 0 . . . 0 n

















.
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Jest to już macierz górnotrójkątna i jej wyznacznik jest równy (−1)n−1 n (n − 1) . . . 1 =
(−1)n−1 n!.

Na koniec przykładów obliczmy jeszcze dla naprzykładu44 wyznacznik macierzy 3× 3

∣

∣

∣

∣

∣

∣

8 7 6
5 4 3
2 1 0

∣

∣

∣

∣

∣

∣

= 8 · 4 · 0 + 7 · 3 · 2 + 5 · 1 · 6− 2 · 4 · 6− 8 · 1 · 3− 5 · 7 · 0 = 0 .

Zerowanie się wyznacznika zawsze sygnalizuje liniową zależność jego kolumn. I istotnie:
w powyższej macierzy C3 = −C1 + 2C2.

Przypomnienia
Minorem stopnia r macierzy A o wymiarach n×m (ważne: minory można także wybierać
w macierzach niekwadratowych o m 6= n) nazywamy wyznacznik podmacierzy r × r
utworzonej z macierzy A przez skreślenie n− r jej wierszy i m− r jej kolumn.

Dopełnieniem algebraicznym Ajk elementu ajk macierzy kwadratowej A o wymiarach n×n
(uwaga: tu znów mowa o macierzach kwadratowych!) nazywamy liczbę

Ajk ≡ (−1)j+kMjk ,

gdzie Mjk jest minorem macierzy A utworzonym przez skreślenie jej j-tego wiersza i k-tej
kolumny. Np. w przypadku macierzy









1 0 2 3
3 −2 4 3
5 8 −1 2
−2 3 0 1









,

dopełnieniem algebraicznym elementu a13 (a13 = 2) jest

A13 = (−1)(1+3)

∣

∣

∣

∣

∣

∣

3 −2 3
5 8 2
−2 3 1

∣

∣

∣

∣

∣

∣

= 117 .

Rozwinięciem Laplace’a wyznacznika macierzy A wymiaru n×n względem j-tego wiersza
nazywamy wzór

detA = aj1Aj1 + aj2Aj2 + aj3Aj3 + . . .+ ajnAjn ,

(niema tu sumowania po j !). Wyznacznik można także rozwinąć względem k-tej kolumny:

detA = a1kA1k + a2kA2k + a2kA2k + . . .+ ankAnk .

44jak by powiedział Jacek Fedorowicz
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Wiersz j lub kolumna k mogą być wybrane dowolnie. Wobec tego, przy praktycznym
stosowaniu tego rozwinięcia do obliczania wyznaczników najlepiej jest rozwijać względem
kolumny (wiersza), w której jest najwięcej zer; dobrze jest też operacjami nie zmieniają-
cymi wyznacznika trochę zer powytwarzać przed przystąpieniem do rozwijania.

Przykład tzn. Zadanie 45.9
Zastosujmy Laplace’a do macierzy górnotrójkątnej (wiemy co powinno wyjść). Rozwijamy
jej wyznacznik względem ostatniego wiersza
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12 a13 . . . a1n
0 a22 a23 . . . a2n
0 0 a33 . . . a3n

0 0 0 . . . ann

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= annAnn = ann(−1)n+n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12 a13 . . . a1n−1
0 a22 a23 . . . a2n−1
0 0 a33 . . . a3n−1

0 0 0 . . . an−1n−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Ponieważ w ostatnim wierszu tylko element ann jest niezerowy, suma (rozwinięcie wy-
znacznika względem ostatniego wiersza) an1An1 + an2An2 + an3An3 + . . .+ annAnn składa
się tylko z ostatniego wyrazu. Następnie rozwijamy ponownie pozostały wyznacznik,
względem ostatniego, (n − 1)-ego, wiersza itd. Widać, że w rezultacie dostaje się znany
wynik, że wyznacznik macierzy górno-trójkątnej jest iloczynem jej elementów diagonal-
nych. Można było uzyskać to samo rozwijając wyznacznik względem pierwszej kolumny
(tylko żeby to przyzwoicie zapisywać, trzeba by było w każdym kolejnym kroku przenu-
merowywać elementy macierzy...)

Przykład tzn. Zadanie 45.10
Ma on ilustrować pożytki z wytwarzania zer.

detA =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

3 2 −1 −5 4
7 6 −3 −7 12
−9 −6 4 3 −2
4 3 −2 −2 1
5 −2 6 −3 4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

3 2 −1 −5 4
−2 0 0 8 0
−1 0 0 −1 0
4 3 −2 −2 1
5 −2 6 −3 4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Przechodząc od jednej postaci macierzy do drugiej dokonaliśmy operacji W2 → W2 −
3W1, W3 → W3 + 2W4. Druga postać już jest lepsza do potraktowania jej Laplacem:
rozwijamy względem trzeciego wiersza:

detA = (−1)

∣

∣

∣

∣

∣

∣

∣

∣

2 −1 −5 4
0 0 8 0
3 −2 −2 1
−2 6 −3 4

∣

∣

∣

∣

∣

∣

∣

∣

− (−1)

∣

∣

∣

∣

∣

∣

∣

∣

3 2 −1 4
−2 0 0 0
4 3 −2 1
5 −2 6 4

∣

∣

∣

∣

∣

∣

∣

∣

.

Teraz z kolei oba wyznaczniki najłatwiej zlaplaceować względem ich drugich wierszy, co
sprowadzi obliczenie każdego z nich do obliczenia jednego wyznacznika 3× 3. Co więcej,
oba wyznaczniki 3× 3 są takie same! Ostatecznie więc

detA = (8 + 2)

∣

∣

∣

∣

∣

∣

2 −1 4
3 −2 1
−2 6 4

∣

∣

∣

∣

∣

∣

= 10 · (−16 + 2 + 72− 16− 12 + 12) = 10 · 42 = 420.
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Zadanie 46 (uświęcony tradycją wyznacznik Vandermonde’a45)
Obliczyć wyznacznik

Vn =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 x1 x21 x31 . . . xn−21 xn−11

1 x2 x22 x32 . . . xn−22 xn−12

1 x3 x23 x33 . . . xn−23 xn−13

. . . . . . . . . . . . . . . . . . . . .
1 xn x2n x3n . . . xn−2n xn−1n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Wyznacznik taki pojawił się już w Zadaniu 41.
Rozwiązanie: Sprawdźmy najpierw przypadki z n = 2 i n = 3:

n = 2 :

∣

∣

∣

∣

1 x1
1 x2

∣

∣

∣

∣

= x2 − x1 .

n = 3 :

∣

∣

∣

∣

∣

∣

1 x1 x21
1 x2 x22
1 x3 x23

∣

∣

∣

∣

∣

∣

= (x3 − x1)(x3 − x2)(x2 − x1) .

Stawiamy więc hipotezę, że

Vn =
∏

k>l

(xk − xl) .

Dowód przeprowadzamy posługując się indukcją matematyczną. Zakładamy, że teza jest
prawdziwa dla Vn−1. Na Vn dokonujemy następujących operacji (nie zmieniających wy-
znacznika): Cn → Cn − xnCn−1, Cn−1 → Cn−1 − xnCn−2,. . . C2 → C2 − xnC1. Daje
to

Vn =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 x1 − xn x1(x1 − xn) x21(x1 − xn) . . . xn−31 (x1 − xn) xn−21 (x1 − xn)
1 x2 − xn x2(x2 − xn) x22(x2 − xn) . . . xn−32 (x2 − xn) xn−22 (x2 − xn)
1 x3 − xn x3(x3 − xn) x23(x3 − xn) . . . xn−33 (x3 − xn) xn−23 (x3 − xn)
. . . . . . . . . . . . . . . . . . . . .
1 0 0 0 . . . 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Teraz dokonujemy rozwinięcia Laplace’a Vn względem ostatniego wiersza, który ma tylko
jeden niezerowy element:

Vn = (−1)n+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x1 − xn x1(x1 − xn) x21(x1 − xn) . . . xn−21 (x1 − xn)
x2 − xn x2(x2 − xn) x22(x2 − xn) . . . xn−22 (x2 − xn)
x3 − xn x3(x3 − xn) x23(x3 − xn) . . . xn−23 (x3 − xn)
. . . . . . . . . . . . . . .

xn−1 − xn xn−1(xn−1 − xn) x2n−1(xn−1 − xn) . . . xn−2n−1(xn−1 − xn)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

45Nie mylić z Valdemortem czyli SamWieszZKim
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Wyciągamy następnie z wiersza pierwszego wspólny czynnik (x1−xn), z drugiego czynnik
(x2 − xn), . . . i z ostatniego wiersza czynnik (xn−1 − xn) i znajdujemy, że

Vn = (−1)n+1(x1 − xn)(x2 − xn) . . . (xn−1 − xn) · Vn−1
= (xn − x1)(xn − x2) . . . (xn − xn−1) · Vn−1 .

To zaś kończy dowód, bo na mocy założenia indukcyjnego Vn−1 jest już dany przez odpo-
wiedni iloczyn.

Zadanie 46′46

Niech w wektorowej przestrzeni R7 zadana będzie forma objętości, tj. całkowicie an-
tysymetryczna forma 7-liniowa Vol = ê1 ∧ . . . ∧ ê7, gdzie jedno-formy êi są dualne do
kanonicznej zero-jedynkowej bazy ei przestrzeni V . Obliczyć objętość równoległościanu
rozpiętego na siedmiu wektorach





















7
1
1
1
1
1
1





















,





















6
7
1
1
1
1
1





















,





















5
1
6
1
1
1
1





















,





















4
1
1
5
1
1
1





















,





















3
1
1
1
4
1
1





















,





















2
1
1
1
1
3
1





















,





















1
1
1
1
1
1
2





















.

A jak zmieni się objętość jeśli przedostatnia składowa drugiego wektora zmieni się w 2 ?
Rozwiązanie: Objętość jest z deficji wartością formy Vol = ê1 ∧ . . . ∧ ê7 na podanych
(żywych) wektorach. Obliczenie tej wartości sprowadza się do obliczenia wyznacznika
macierzy

A =





















7 6 5 4 3 2 1
1 7 1 1 1 1 1
1 1 6 1 1 1 1
1 1 1 5 1 1 1
1 1 1 1 4 1 1
1 1 1 1 1 3 1
1 1 1 1 1 1 2





















.

W tym celu odejmujemy pierwszą kolumnę od pozostałych sześciu, co daje macierz




















7 −1 −2 −3 −4 −5 −6
1 6 0 0 0 0 0
1 0 5 0 0 0 0
1 0 0 4 0 0 0
1 0 0 0 3 0 0
1 0 0 0 0 2 0
1 0 0 0 0 0 1





















.

46Treść tego zadanie dotyczy form antysymetrycznych wieloliniowych; niemniej jest ono po prostu
ćwiczeniem w obliczaniu wyznaczników i dlatego znalazło się tutaj.
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Dalej już prosto: jeśli do pierwszego wiersza dodamy ostatni pomnożony przez 6
1
, to w

ostatniej kolumnie pozostanie tylko jedynka na siódmym miejscu i poza tym element 11
przejdzie w 7+6

1
; można teraz zlaplasować macierz względem ostatniej kolumny. Następnie

w powstałej macierzy 6 × 6 dodajemy ostatni wiersz pomnożony przez 5
2

do pierwszego,
co znów zostawi tylko jeden niezerowy element w ostatniej kolumnie i zmieni element 11
na 7 + 6

1
+ 5

2
. Widać, że procedurę tę można kontynuować. W rezultacie wyznacznik jest

równy

detA = 1 · 2 · 3 · 4 · 5 · 6 ·
(

7 +
6

1
+

5

2
+

4

3
+

3

4
+

2

5
+

1

6

)

= (7 + 6) · 720 + 6 · 52 · 4 · 3 + 6 · 5 · 42 · 2 + 6 · 5 · 32 · 2 + 6 · 4 · 3 · 22 + 5 · 4 · 3 · 2
= 9360 + 30 · (60 + 32 + 18 + 4) + 24 · 12 = 9360 + 3420 + 288 = 13068.

Jeśli przedostatnia składowa drugiego wektora zmieni się w 2, to wyznacznik można
obliczać tak jak wyżej, z tym, że w drugim kroku, gdy dodajemy szósty (w tym momencie
jest to już ostatni) wiersz pomnożony przez 5

2
do pierwszego, zmieni się też element 12

macierzy: przejdzie on w y = −1+ 5
2
. Dalej wszystko idzie jak poprzednio, aż do momentu,

gdy wskutek sukcesywnego laplasowania zostanie już tylko macierz 2×2; w tym momencie
(oznaczając na chwilę x element 11) mamy

detA = 1 · 2 · 3 · 4 · 5 · det
(

x y
1 6

)

≡ 1 · 2 · 3 · 4 · 5 ·
[(

7 +
6

1
+

5

2
+

4

3
+

3

4
+

2

5

)

· 6− 1 ·
(

−1 + 5

2

)]

= 1 · 2 · 3 · 4 · 5 · 6 ·
[

7 +
6

1
+

5

2
+

4

3
+

3

4
+

2

5
− 1

6

(

−1 + 5

2

)]

= 13068− 1 · 3 · 4 · 52 = 13068− 300 = 12768 .

Zadanie 47
Udowodnić, że detC=detA·detB jeśli

C =

(

Ap×p [0]p×l
[0]l×p Bl×l

)

.

A i B są tu macierzami wymiarów odpowiednio p×p i l× l, a [0]p×l i [0]l×p są macierzami
zerowymi wymiarów p× l i l × p.
Rozwiązanie: Można posłużyć się indukcją matematyczną względem l. Gdy l = 1, tzn.
gdy macierz B składa się tylko z jednego elementu, wzór jest prawdziwy na mocy rozwinię-
cia Laplace’a (zastosowanego do ostatniej kolumny bądź ostatniego wiersza). Zakładamy
więc, że wzór jest prawdziwy dla macierzy B wymiaru (l−1)×(l−1) i badamy przypadek
macierzy B wymiaru l× l. Rozwijamy wyznacznik całej macierzy C względem ostatniego
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wiersza, w którym niezerowe są elementy cp+l p+1 ≡ bl1, cp+l p+2 ≡ bl2, . . . cp+l p+l ≡ bll:
∣

∣

∣

∣

Ap×p [0]p×l
[0]l×p Bl×l

∣

∣

∣

∣

= cp+l p+1 (−1)p+l+p+1MC
p+l p+1 + cp+l p+2 (−1)p+l+p+2MC

p+l p+2 + . . .

+cp+l p+l (−1)p+l+p+lMC
p+l p+l

= bl1 (−1)p+l+p+1MC
p+l p+1 + bl2 (−1)p+l+p+2MC

p+l p+2 + . . .

+bll (−1)p+l+p+lMC
p+l p+l .

Każdy z minorów MC
p+l p+k (k = 1, . . . , l) macierzy C jest teraz wyznacznikiem podma-

cierzy o wymiarach (p + l − 1) × (p + l − 1) składającej się z dwu niezerowych bloków:
bloku wymiarów p × p w lewym górnym rogu i bloku o wymiarach (l − 1) × (l − 1) w
prawym dolnym rogu; do takiego wyznacznika stosuje się zatem założenie indukcyjne.
Na mocy tego założenia odpowiednie minory MC

p+k p+l (k = 1, . . . l) macierzy C są równe
odpowiednim minorom macierzy B razy wyznacznik macierzy A:

MC
p+k p+l = detA ·MB

kl , k = 1, . . . l .

Zatem

detC = (detA) · (−1)p+p ·
{

bl1 (−1)l+1MB
l1 + bl2 (−1)l+2MB

l2 + . . .+ bll (−1)l+lMB
ll

}

= (detA) · (detB) ,

bo wyrażenie w nawiasie jest niczym innym, jak rozwinięciem Laplace’a wyznacznika
macierzy B względem jej ostatniego wiersza.

Uwaga: Warto też pamiętać, choć nie dowodzimy tu tego, że

det(A · B) = (detA)(detB)

i, co za tym idzie (bo wyznacznik macierzy jednostkowej jest równy 1),

det(A−1) =
1

detA
.

Zadanie 47′

Obliczyć wyznacznik macierzy wymiaru n × n trójpasmowej tj. mającej na diagonali
potrójny pas (“pas słucki, pas lity” - z czego to Młodzieży kochana?) jedynek (kropki
oznaczają zera):

A =

























1 1 · · · · · · · ·
1 1 1 · · · · · · ·
· 1 1 1 · · · · · ·
· · 1 1 1 · · · · ·
· · · · · · · · · ·
· · · · · · 1 1 1 ·
· · · · · · · 1 1 1
· · · · · · · · 1 1

























.
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Rozwiązanie: Oznaczmy Dn wyznacznik macierzy A wymiaru n×n. Oczywiście D1 = 1
i D2 = 0. Rozwijając wyznacznik Dn+2 macierzy wymiaru (n + 2) × (n + 2) względem
ostatniego wiersza dostrzegamy natychmiast prosty związek rekurencyjny

Dn+2 = Dn+1 −Dn .

Ponieważ znamy D1 i D2, możemy obliczyć na piechotę

D1 D2 D3 D4 D5 D6 D7 D8 D9 . . .
1 0 −1 −1 0 1 1 0 −1 . . .

Widać, że powtarzać się będą ciągi sześcioliczbowe (bo D7 = D1 i D8 = D2, a dwie
kolejne liczby całkowicie determinują liczby następne). Jest więc to w zasadzie kompletne
rozwiązanie, bo np.

D237 = D39·6+3 = D3 = −1 ,

etc. Spróbujemy jednak znaleźć jakąś zwartą postać rozwiązania.
Znaleziony związek rekurencyjny można zapisać w formie macierzowej

(

Dn+2

Dn+1

)

=

(

1 −1
1 0

)(

Dn+1

Dn

)

.

Oznaczmy występującą tu macierz F . Iterując moglibyśmy więc napisać, że
(

Dn+2

Dn+1

)

=

(

1 −1
1 0

)n(
D2

D1

)

,

i w zasadzie, biorąc pod uwagę, że D2 = 0, a D1 = 1 mielibyśmy rozwiązanie:

Dn+2 = (F n)12 .

Trzeba by tylko umieć podnieść macierz F do dowolnej potęgi, a tego jeszcze nie umiemy
(ale jak się nauczymy, to będziemy takie rzeczy tak rozwiązywać - zob. Zadanie 72).
Musimy więc uciec się do innej metody. Spróbujmy poszukać rozwiązania związku reku-
rencyjnego podstawiając doń

Dn = Aλn .

Daje to równanie kwadratowe

λ2 − λ+ 1 = 0 ,

którego pierwiastkami są

λ± =
1

2
(1± i

√
3) ≡ e±i

π
3 .
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Ponieważ pierwiastki te są zespolone, a wyznacznik Dn musi być liczbą rzeczywistą, mo-
żemy od razu napisać

Dn = Aei
π
3
n + A∗ e−i

π
3
n .

Zespoloną stałą A wyznaczamy z warunków

1

2
(1 + i

√
3 )A +

1

2
(1− i

√
3 )A∗ = D1 = 1 ,

1

4
(1 + i

√
3 )2A+

1

4
(1− i

√
3 )2A∗ = D2 = 0 .

Daje to A = 1
2
√
3
(
√
3− i). Zatem

Dn =
1

2
√
3

[

(
√
3− i) eiπ3 n + (

√
3 + i) e−i

π
3
n
]

≡ cos
(π

3
n
)

+
1√
3
sin
(π

3
n
)

.

Można sprawdzić, że wzór ten odtwarza wyliczone wyżej liczby (wyznaczniki) D1, D2, . . .,
D9. Widać też, że Dn+6 = Dn.

Zadanie 47′′

Napisać odwzorowanie f : R4 × R4 × R4 → R4, tj. mówiąc po ludzku, funkcję robiącą
z trzech wektorów a, b i c przestrzeni R4 jakiś wektor d ∈ R

4: d = f(a,b, c), takie, że
wektor d jest prostopadły do wektorów a, b i c (w sensie kanonicznego iloczynu skalarnego
w przestrzeni wektorowej R4)47 i zarazem takie, że f(e1, e2, e3) = e4, gdzie ei są czterema
wektorami kanonicznej zero-jedynkowej bazy R4.
Rozwiązanie: Napiszmy sobie macierz

A =









a1 b1 c1 x1

a2 b2 c2 x2

a3 b3 c3 x3

a4 b4 c4 x4









,

i rozwińmy jej wyznacznik względem jej ostatniej kolumny:

detA = x1A14 + x2A24 + x3A34 + x4A44 .

Wygląda to jak iloczyn skalarny (taki szkolny, czyli właśnie kanoniczny) wektora x o
składowych xi z wektorem (tu żywym, bo to w R

4)








A14

A24

A34

A44









,

47Ponieważ o iloczynach skalarnych nic jeszcze nie było, to powiedzmy, że chodzi po prostu o to, żeby
d1a1 + d2a2 + d3a3 + d4a4 = 0, gdzie di i ai są odpowiednio składowymi wektorów d i a w kanonicznej
zero-jedynkowej bazie ei przestrzeni R4 i by analogiczne związki zachodziły z ai → bi oraz ai → ci.
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utworzonym z dopełnień algebraicznych macierzy A. Z właściwości wyznacznika (liniowa
zależność kolumn) wynika, że jeśli za xi weźmiemy składowe (w bazie kanonicznej, czyli
po prostu jego elementy, bo to R4) wektora a, lub b, lub c, to ten iloczyn skalarny
zniknie. Zatem definiując odwzorowanie f tak, że kolejnymi pięterkami wektora d (czyli
jego składowymi w kanonicznej zero-jedynkowej bazie R4) są dopełnienia algebraiczne
A14, A24, A34 i A44 (będące funkcjami elementów wektorów a, b i c), spełnimy warunek
ortogonalności d i wektorów a, b i c. Nietrudno zobaczyć, iż spełniony jest wtedy także
i drugi warunek: jeśli za a, lub b, lub c w macierzy A wstawimy zero-jedynkowe wektory
e1, e2 i e3, to niezerowe będzie tylko dopełnienie algebraiczne A44, czyli jako wektor d

otrzymamy e4.

Przypomnienie
Uogólnieniem rozwinięcia Laplace’a są wzory

al1Aj1 + al2Aj2 + al3Aj3 + . . .+ alnAjn = δlj · detA ,

a1kA1l + a2kA2l + a2kA2l + . . .+ ankAnl = δkl · detA ,

w których δlj = 1, gdy l = j i δlj = 0, gdy l 6= j.

Wzory te pozwalają napisać macierz odwrotną do danej. Mianowicie: jeśli

A =









a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .
an1 an2 . . . ann









,

to

A−1 =
1

detA









A11 A21 . . . An1

A12 A22 . . . An2

. . . . . . . . . . . .
A1n A2n . . . Ann









,

(ważne: w A−1 na miejscu kj stoi Ajk, nie zaś Akj!). Istotnie: gdy mnożymy A i A−1 to
element cjk macierzy C = A · A−1 jest równy

cjk =
1

detA
(aj1Ak1 + aj2Ak2 + . . .+ ajnAkn) ,

a to właśnie na mocy pierwszego ze wzorów będących uogólnionymi rozwinięciami La-
place’a da cjk = δjk. Nietrudno zobaczyć, że drugi z tych wzorów zapewnia, iż (A−1·A)jk =
δjk.

Mamy stad natychmiast wzór na macierz A−1 odwrotną do macierzy A wymiaru 2×2:

A =

(

a11 a12
a21 a22

)

, A−1 =
1

a11a22 − a12a21

(

a22 −a12
−a21 a11

)

.
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Zadanie 48
Korzystajac z powyższej metody48 odwrócić macierz

A =





1 2 1
2 3 1
0 1 2



 .

Rozwiązanie. Obliczamy dopełnienia algebraiczne wszystkich alementów macierzy:

A11 =

∣

∣

∣

∣

3 1
1 2

∣

∣

∣

∣

= 5 , A12 = −
∣

∣

∣

∣

2 1
0 2

∣

∣

∣

∣

= −4 , A13 =

∣

∣

∣

∣

2 3
0 1

∣

∣

∣

∣

= 2 ,

A21 = −
∣

∣

∣

∣

2 1
1 2

∣

∣

∣

∣

= −3 , A22 =

∣

∣

∣

∣

1 1
0 2

∣

∣

∣

∣

= 2 , A23 = −
∣

∣

∣

∣

1 2
0 1

∣

∣

∣

∣

= −1 ,

A31 =

∣

∣

∣

∣

2 1
3 1

∣

∣

∣

∣

= −1 , A32 = −
∣

∣

∣

∣

1 1
2 1

∣

∣

∣

∣

= 1 , A33 =

∣

∣

∣

∣

1 2
2 3

∣

∣

∣

∣

= −1 .

Wyznacznik macierzy A jest np. dany przez a11A11 + a21A21 + a31A31 = 1 · 5 + 2 · (−3) +
0 · (−1) = −1. Stąd A−1

A−1 =
1

−1





5 −3 −1
−4 2 1
2 −1 −1



 =





−5 3 1
4 −2 −1
−2 1 1



 .

Nietrudno sprawdzić, że istotnie jest to macierz odwrotna. Oczywiście, jeśli detA = 0, to
macierz odwrotna A−1 nie istnieje.

Przypomnienie
Układem Cramera nazywa się liniowy układ n równań na n niewiadomych

a11x1 + a12x2 + . . .+ a1nxn = b1 ,

a21x1 + a22x2 + . . .+ a2nxn = b2 ,

........................................... .. ...

an1x1 + an2x2 + . . .+ annxn = bn ,

który równoważnie można zapisać w postaci








a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .
an1 an2 . . . ann

















x1
x2
·
xn









=









b1
b2
·
bn









,

lub po prostu

A · x = b .

48Inna, naogół znacznie szybsza metoda odwracania macierzy była podana w zadaniu 19. Tamże była
podana także jeszcze inna metoda.
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Wzory na macierz odwrotną prowadzą natychmiast do wzorów Cramera będących
rozwiązaniem układu Cramera: x = A−1 · b, lub jawnie:









x1
x2
·
xn









=
1

detA









A11 A21 . . . An1

A12 A22 . . . An2

. . . . . . . . . . . .
A1n A2n . . . Ann

















b1
b2
·
bn









.

Widać stąd, że

xk =
1

detA

n
∑

l=1

Alkbl =
1

detA
(b1A1k + b2A2k + . . .+ bnAnk) .

Uważniejsze spojrzenie na ten wzór ujawnia, że suma po jego prawej stronie jest po
prostu rozwinięciem Laplace’a względem k-tej kolumny wyznacznika macierzy utworzonej
z wyjściowej macierzy (macierzy układu) A przez zastąpienie jej k-tej kolumny wektorem
b (tj. dokonaniu podstawień ajk → bj , j = 1, . . . , n):

xk =
1

detA

∣

∣

∣

∣

∣

∣

∣

∣

a11 . . . b1 . . . a1n
a21 . . . b2 . . . a2n
. . . . . . . . . . . . . . .
an1 . . . bn . . . ann

∣

∣

∣

∣

∣

∣

∣

∣

.

↑ k−ta kolumna

Tak więc dzięki wzorom Cramera rozwiązanie układu n liniowych równań na n niewiado-
mych sprowadza się do obliczenia n+1 wyznaczników macierzy n×n. Wzory Cramera nie
są szczególnie wygodnym sposobem rozwiązywania takiego układu równań ale jako jawne
mają ważne znaczenie teoretyczne. Co więcej jeśli ze wszystkich x-ów potrzebny jest np.
tylko xk to wzory Cramera pozwalają wyznaczyć od razu tę niewiadomą bez wyznaczania
pozostałych (sprowadza się to do obliczenia dwu wyznaczników tylko).

Ze wzorów Cramera można ponadto wysnuć dwa wnioski: po pierwsze, jeśli b 6= 0, a
detA = 0, to być może układ ma rozwiązanie ale nie można go znaleźć tą metodą (zobacz
dalej) i po drugie, jeśli b = 0 (jednorodny układ równań), to nietrywialne rozwiązanie
x 6= 0 istnieje tylko wtedy, gdy detA = 0 (bo jeśli detA 6= 0, to wzory Cramera dają
xi = 0). Ten wniosek jest w fizyce niezwykle często wykorzystywany; tu będzie nam
potrzebny m.in. przy rozwiązywaniu tzw. zagadnienia własnego operatora liniowego.

Zadanie 49
Z układu równań:

2x1 + x2 − x3 + x4 = 5 ,

x1 + x2 + x3 − 2x4 = −1 ,
x1 − 2x2 + x3 + x4 = 2 ,

x1 + x3 = 3 .
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wyznaczyć x1.
Rozwiązanie: Macierz tego układu ma postać

A =









2 1 −1 1
1 1 1 −2
1 −2 1 1
1 0 1 0









.

Jej wyznacznik obliczamy dokonując najpierw prostej operacji: C3 → C3 −C1, co daje








2 1 −3 1
1 1 0 −2
1 −2 0 1
1 0 0 0









i teraz detA = 1 · (−1)4+1

∣

∣

∣

∣

∣

∣

1 −3 1
1 0 −2
−2 0 1

∣

∣

∣

∣

∣

∣

= 9 .

Zgodnie z podanymi wzorami mamy więc

x1 =
1

9

∣

∣

∣

∣

∣

∣

∣

∣

5 1 −1 1
−1 1 1 −2
2 −2 1 1
3 0 1 0

∣

∣

∣

∣

∣

∣

∣

∣

=
1

9







−3 ·

∣

∣

∣

∣

∣

∣

1 −1 1
1 1 −2
−2 1 1

∣

∣

∣

∣

∣

∣

− 1 ·

∣

∣

∣

∣

∣

∣

5 1 1
−1 1 −2
2 −2 1

∣

∣

∣

∣

∣

∣







.

Stąd x1 = (1/9)[−3 · 3− 1 · (−18)] = 1. W podobny sposób można znaleźć (jeśli by były
potrzebne) x2 = 2, x3 = 2 i x4 = 3. (Ponieważ rozwiązanie takiego układu równań jest,
gdy detA 6= 0, jednoznaczne więc zgadnięcie lub ściągnięcie od kolegi/koleżanki x2, x3 i x4
i sprawdzenie, że wraz z x1 spełniają one układ załatwia sprawę sprawdzenia poprawności
wyliczonego własnoręcznie x1).

Przypomnienie
Rząd r(A) macierzy A wymiaru m× n (niekoniecznie kwadratowej), która ma n kolumn
C1, . . ., Cn: tworzących n wektorów o długości m (i elementach z ciała K = R lub C) jest
to maksymalna liczba liniowo niezależnych wektorów-kolumn Ci. Rząd macierzy jest więc
to wymiar podprzestrzeni liniowej Kn rozpinanej przez kolumny C1, . . ., Cn macierzy A.

Przykład. Rząd macierzy A (nad ciałem C)

A =





1 2 3
0 1 1
2 i 2 + i



 ,

jest równy 2, bo C3 = C1 +C2.

Właściwości rzędu macierzy. Rząd macierzy A i rząd macierzy transponowanej AT są
sobie równe:

r(A) = r(AT ) .
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(Inaczej: rząd “kolumnowy” macierzy i jej rząd “wierszowy” są takie same). Wynika stąd
natychmiast, że

r (Am×n) ≤ min(m,n) .

Rząd macierzy nie zmieni się jeśli

• którąś z kolumn (lub wierszy) pomnożymy przez jakąś liczbę λ 6= 0 (z ciała K)

• przestawimy kolumny (wiersze)

• do jednej z kolumn (wiersza) dodamy kombinację liniową pozostałych kolumn (wier-
szy)

Wykorzystując powyższe właściwości, rząd macierzy można ustalić stosując systematycz-
nie eliminatkę Gaussa, tj. systematycznie zerując wszystkie prócz jednego (wykorzysty-
wanego do tego celu) elementy w kolejnych wierszach (lub kolumnach).

Przykład
Znajdziemy rząd macierzy

A =









0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0









,

stosując eliminatkę Gaussa. Najpierw C2,3 → C2,3 −C4:








0 0 0 1
1 −1 0 1
1 0 −1 1
1 1 1 0









−→









0 0 0 1
1 0 0 0
1 1 −1 0
1 2 1 −1









.

Strzałka oznacza operacje: C2 → C2+C1 i C4 → C4−C1. Następnie C1,2 → C1,2+C3:








0 0 0 1
1 0 0 0
0 0 −1 0
2 3 1 −1









−→









0 0 0 1
1 0 0 0
0 0 −1 0
0 3 0 0









.

W ostatnim ruchu kolumna C2 została użyta do wyzerowania dolnego pięterka pozostałych
kolumn. Widać teraz, że cztery kolumny są wszystkie liniowo niezależne, czyli r(A) = 4,

Zadanie 50
Ustalić jaki jest rząd macierzy

A =





1 2 3 6
3 −1 2 4
4 1 5 10



 .
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Rozwiązanie: Oczywiście, rząd nie może być większy niż 3. Dokonajmy operacji: C3 →
C3 − (C1 +C2), C4 → C4 − 2(C1 +C2). Daje to





1 2 0 0
3 −1 0 0
4 1 0 0



 ,

i natychmiast49 widać, że r(A) = 2.

Zadanie 51
Jeszcze raz ustalić jaki jest rząd macierzy

A =









0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0









,

trochę inną metodą50 niż w podanym wyżej przykładzie Rozwiązanie: Dokonajmy ope-
racji: C4 → C4 −C1, C3 → C3 −C1, C2 → C2 −C1. Daje to









0 1 1 1
1 −1 0 0
1 0 −1 0
1 0 0 −1









.

A dalej można po prostu rozwiązywać problem liniowej (nie)zależności kolumn: λ1C1 +
λ2C2 + λ3C3 + λ4C4 = 0, czyli

λ2 + λ3 + λ4 = 0

λ1 − λ2 = 0

λ1 − λ3 = 0

λ1 − λ4 = 0 .

Wyrażając z ostatnich trzech równań λ2, λ3 i λ4 przez λ1 i wstawiając do pierwszego
znajdujemy sofort, że λ1 = 0, a stąd, z pozostałych równań λ2 = λ3 = λ4 = 0. Stąd
kolumny C1, C2, C3 i C4 są liniowo niezależne, a co za tym idzie rząd wyjściowej macierzy
jest równy 4, co można sprawdzić obliczając wyznacznik A (detA = −3 6= 0).

Przypomnienie
Rząd r(A) macierzy A jest równy najwyższemu ze stopni nk niezerowych minorów MA

k

jakie można z niej “wyjąć” (tj. utworzyć skreślając w A pewną liczbę kolumn i wierszy,
tak by otrzymać podmacierz wymiaru nk×nk). Ze stwierdzenia tego wynika natychmiast

49Jeszcze szybciej by poszło, gdyby na macierzy A dokonać operacji R3 → R3 − (R1 +R2).
50No, naprawdę to jest ta sama metoda tylko trochę inaczej zapisana.
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to, że “rząd kolumnowy” macierzy jest taki sam, jak jej “rząd wierszowy”. Stwierdzenie to
daje nam jeszcze jedną metodę badania rzędu macierzy.

Zadanie 52
Ustalić jaki jest rząd macierzy









2 1 3 4 5
3 1 2 5 4
5 2 5 9 10
1 0 −1 2 −1









.

Rozwiązanie: Niewątpliwie r(A) ≤ 4, bo macierz ma tylko cztery wiersze. Zanim
zaczniemy obliczać wyznaczniki lepiej wykonać parę operacji. Np.: C1 → C1 − 2C2,
C3 → C3 − 2C2, C4 → C4 − 4C2, C5 → C5 − 4C2. Dadzą one









0 1 1 0 1
1 1 0 1 0
1 2 1 1 2
1 0 −1 2 −1









.

Możemy teraz zaryzykować i utworzyć minor MA stopnia 4 skreślając pierwszą kolumnę:

MA =

∣

∣

∣

∣

∣

∣

∣

∣

1 1 0 1
1 0 1 0
2 1 1 2
0 −1 2 −1

∣

∣

∣

∣

∣

∣

∣

∣

= 1 · (−1)2+1

∣

∣

∣

∣

∣

∣

1 0 1
1 1 2
−1 2 −1

∣

∣

∣

∣

∣

∣

+ 1 · (−1)2+3

∣

∣

∣

∣

∣

∣

1 1 1
2 1 2
0 −1 −1

∣

∣

∣

∣

∣

∣

.

To już łatwo obliczyć: MA = −1 · (−2) − 1 · (1) = 1 6= 0. Znaleźliśmy więc w macierzy
otrzymanej z A niezerowy minor stopnia 4, a to oznacza, że macierz, której minor ten jest
wyznacznikiem, a zatem i sama macierz A jest rzędu 4 (gdyby wybrany minor okazał się
zerowy, to wciąż nie moglibyśmy wykluczyć, że r(A) = 4; trzeba by wtedy sprawdzić
kolejny z wszystkich pięciu minorów czwartego stopnia, jakie można wybrać w A).

Bez odwoływania się do kryterium minorowego rząd badanej macierzy moglibyśmy
ustalić robiąc na niej najpierw operacje C1 → C1−2C2, C3 → C3−3C2, C4 → C4−4C2,
C5 → C5 − 5C2, co dałoby









0 1 0 0 0
1 1 −1 1 −1
1 2 −1 1 0
1 0 −1 2 −1









−→









0 1 0 0 0
1 1 0 0 0
1 2 0 0 1
1 0 0 1 0









.

Strzałka oznacza operacje C3 → C3 + C1. C4 → C4 − C1, C5 → C5 + C1. Teraz już
wystarczy wykorzystując czwartą kolumnę wyzerować ostatni element pierwszej, wykorzy-
stując piątą wyzerować przedostatnie elementy pierwszej i drugiej kolumny i, na koniec,
wykorzystując otrzymaną w wyniku tego pierwszą kolumnę wyzerować drugi element dru-
giej kolumny, by otrzymać jedną całkowicie zerową kolumnę (trzecią) i pozostałe każdą z
jedną jedynką na innym pięterku, czyli cztery liniowo niezależne kolumny.

136



Przypomnienie
Ogólny układ m równań liniowych z n niewiadomymi postaci

a11x1 + a12x2 + . . . + a1nxn = b1 ,

a21x1 + a22x2 + . . . + a2nxn = b2 ,

............................................ ... ....

am1x1 + am2x2 + . . . + amnxn = bm ,

lub, równoważnie,








a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .
am1 am2 . . . amn

















x1
x2
·
xn









=









b1
b2
·
bm









,

lub, jeszcze inaczej, ale wciaż równoważnie,

x1









a11
a21
·
am1









+ x2









a12
a22
·
am2









+ . . .+ xn









a1n
a2n
·

amn









=









b1
b2
·
bm









,

ma rozwiązanie, czyli jest niesprzeczny, gdy rząd macierzy rozszerzonej AR układu








a11 a12 . . . a1n b1
a21 a22 . . . a2n b2
. . . . . . . . . . . . . . .
am1 am2 . . . amn bm









,

jest nie większy (mniejszy być nie może) niż rząd macierzy A układu








a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .
am1 am2 . . . amn









,

Jest to oczywiste jeśli zapisać ostatnią z podanych postaci układu równań jako równość

x1C1 + x2C2 + . . .+ xnCn = CB ,

która oznacza, że wektor-kolumna CB musi się dać przedstawić jako kombinacja liniowa
wektorów-kolumn Ci, i = 1, . . . , n macierzy A. Oznacza to bowiem, że kolumna CB musi
być liniowo zależna od kolumn Ci, czyli jej dostawienie do macierzy A w celu stworzenia
macierzy rozszerzonej AR nie może podwyższyć rzędu macierzy.

Ogólna postać rozwiązania. Jeśli r(AR) = r(A) = r, gdzie z konieczności r ≤min(n,m),
tj. jeśli układ jest niesprzeczny, to w macierzy A musi się dać wybrać niezerowy minor
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stopnia r, tj. musi w niej istnieć podmacierz Ared wymiaru r× r o niezerowym wyznacz-
niku (trzeba ją znaleźć). Załóżmy, że podmacierz ta składa się z r pierwszych kolumn i
r pierwszych wierszy macierzy A (zawsze można tak przenumerować równania i niewia-
dome xi, żeby tak było). Możemy wtedy odrzucić równania, których współczynniki ajk
nie wchodzą do znalezionej podmacierzy r× r o niezerowym wyznaczniku (czyli przy po-
wyższym założeniu, m−r ostatnich równań), a zmienne, xl, których współczynniki akl nie
wchodzą do owej podmacierzy (czyli tu zmienne xr+1, . . . , xn) należy uznać za dowolne
(żeby to podkreślić nadajemy im nowe nazwy xr+1 = α1, . . . , xn = αn−r) i przenieść na
drugą stronę równań. Następnie rozwiązujemy układ zredukowany

a11x1 + a12x2 + . . .+ a1rxr = b1 − a1r+1α1 + . . .− a1nαn−r

a21x1 + a22x2 + . . .+ a2rxr = b2 − a2r+1α1 + . . .− a2nαn−r

.......................................... ... ............................................

ar1x1 + ar2x2 + . . .+ arrxr = br − arr+1α1 + . . .− arnαn−r ,

Ten układ równań ma już, zgodnie z twierdzeniem Cramera, jednoznaczne rozwiązanie
(przy ustalonych wartościach α1, . . . , αn−r), bo odpowiadająca mu macierz problemu
Ared ma rząd równy r. Co więcej, zagwarantowane jest, że odrzucone równania są również
spełnione, bo kolumna CB jest liniowo zależna od kolumn C1, . . . ,Cn.

Wynika z tego wszystkiego, że układ m równań na n niewiadomych ma jedno (jed-
noznaczne) rozwiązanie tylko gdy r(A) = n (bo wtedy po prawej stronie powyższego
układu niema żadnych dowolnych αi. (To samo inaczej: wszystkie wektory-kolumny C1,
. . ., Cn są wtedy liniowo niezależne i rozłożenie na nie wektora-kolumny CB jest jedno-
znaczne). Jeśli r(A) = r(AR) = r < n, to rozwiązanie jest niejednoznaczne bo zależy
od n− r dowolnych stałych α1, . . . , αn−r (skądinąd jest tak zawsze, gdy n > m; czyli w
takim przypadku jeśli rozwiązanie istnieje, to nie może być jednoznaczne). W ogólnym
przypadku (gdy układ jest niesprzeczny), po skorzystaniu z macierzy A−1red odwrotnej do
macierzy Ared wypisanego wyżej układu zredukowanego (r równań na r zmiennych) roz-
wiązanie tegoż zredukowanego układu ma - ponieważ działanie A−1red na wektor stojący po
prawej stronie jest liniowe - ma strukturę









x1
x2
·
xr









= A−1red ·









b1
b2
·
br









− α1A
−1
red ·









a1,r+1

a2,r+1

·
ar,r+1









+ . . .− αn−r A
−1
red ·









a1,n
a2,n
·
ar,n









.

W pełnej krasie rozwiązanie całego układu można więc zapisać w postaci




















x1
x2
·
xr
xr+1

·
xn





















=





















x
(s)
1

x
(s)
2

·
x
(s)
r

0
·
0





















+ α1





















x̃
(1)
1

x̃
(1)
2

·
x̃
(1)
r

1
·
0





















+ . . .+ αn−r





















x̃
(n−r)
1

x̃
(n−r)
2

·
x̃
(n−r)
r

0
·
1





















,
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w której pierwsza kolumna (r pierwszych jej elementów jest danych działaniem A−1red na
pierwsze r elementów wektora-kolumny CB) jest szczególnym rozwiązaniem wyjściowego
układu niejednorodnego









a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .
am1 am2 . . . amn





























x
(s)
1

x
(s)
2

·
x
(s)
r

0
·
0





















=









b1
b2
·
bm









,

a kolejne kolumny są n− r liniowo niezależnymi rozwiązaniami równania jednorodnego









a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .
am1 am2 . . . amn





































x̃
(k)
1

x̃
(k)
2

·
x̃
(k)
r

0
·
1
·
0





























=









0
0
·
0









, k = 1, . . . , n− r .

(w wektorze po lewej jedynka jest na r+k-tym miejscu; wyrażamy tu minus k-tą kolumnę
przez r pierwszych kolumn, które przy przyjętych założeniach są liniowo niezależne). Dla-
tego mówimy, że przestrzeń rozwiązań wyjściowego układu równań jest n− r wymiarowa.

Przykład
Szukamy rozwiązań układu równań:

x1 − x2 + 2x3 − x4 = 1 ,

2x1 − 3x2 − x3 + x4 = −1 ,
x1 + 7x3 − 4x4 = 4 .

Macierzą tego układu jest

A =





1 −1 2 −1
2 −3 −1 1
1 0 7 −4



 .

Oczywiście r(A) ≤ 3. Aby wyznaczyć r(A) dokonujemy operacji: C4 → C4 +C1, C3 →
C3 − 2C1, C2 → C2 +C1, co sprowadza A do





1 0 0 0
2 −1 −5 3
1 1 5 −3



 .
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Widać teraz, że C4 = −3C2, a C3 = 5C2. Ponieważ kolumny C1 i C2 są liniowo niezależne
więc r(A) = 2. Jest też oczywiste, że macierz rozszerzona układu

AR =





1 −1 2 −1 1
2 −3 −1 1 −1
1 0 7 −4 4





ma ten sam rząd, bo jej ostatnia kolumna jest po prostu równa minus przedostatniej,
tj. CB = −C4. Z tego powodu przykład ten jest trywialny: gołym okiem widać, że
x1 = x2 = x3 = 0, x4 = −1 jest rozwiązaniem; nie jest to jednak rozwiązanie jedyne.
Zastosujmy ogólną teorię: niezerowym minorem stopnia 2 w A może być np. minor
utworzony z dwu pierwszych wierszy kolumn C1 i C2. Postępując teraz według podanego
przepisu odrzucamy trzecie równanie, a wyrazy z x3 i x4 po nadaniu im nowych nazw:
x3 ≡ α, x4 ≡ β, przenosimy na prawą stronę:

x1 − x2 = 1− 2α + β ,

2x1 − 3x2 = −1 + α− β .

Rozwiązujemy ten układ (np. metodą macierzy odwrotnej):
(

x1
x2

)

=
1

−3 + 2

(

−3 1
−2 1

)(

1− 2α + β
−1 + α− β

)

=

(

4− 7α + 4β
3− 5α + 3β

)

.

Czyli x1 = 4−7α+4β, x2 = 3−5α+3β. Sprawdzamy, że ostatnie (odrzucone) równanie też
jest spełnione (musi być; jest więc to sprawdzenie, czy się nie pomyliliśmy w rachunkach):

4− 7α+ 4β + 7α− 4β = 4 .

Ponieważ x3 = α, a x4 = β można ostatecznie rozwiązanie zapisać w postaci








x1
x2
x3
x4









=









4
3
0
0









+ α









−7
−5
1
0









+ β









4
3
0
1









.

Zapis ten czyni jawną ogólną strukturę rozwiązania: jest ono sumą jakiegoś jednego
szczególnego rozwiązania (pierwszy wektor po prawej stronie) pełnego niejednorodnego
układu równań oraz najogólniejszego rozwiązania układu jednorodnego reprezentowanego
po prawej stronie przez dowolną (z dowolnymi współczynnikami α i β) kombinację liniową
wszystkich wektorów, na których macierz A daje zero:





1 −1 2 −1
2 −3 −1 1
1 0 7 −4













−7
−5
1
0









=





0
0
0



 ,





1 −1 2 −1
2 −3 −1 1
1 0 7 −4













4
3
0
1









=





0
0
0



 .
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Wspomniane wyżej, widoczne na pierwszy rzut oka rozwiaząnie x1 = x2 = x3 = 0,
x4 = −1, jest szczególnym przypadkiem wypisanego wyżej najogólniejszego rozwiązania i
odpowiada przyjęciu α = 0 i β = −1.

Zadanie 53
Rozwiązać (jeśli to możliwe) układ:

x1 + 2x2 − x3 − x4 = 1 ,

x1 + x2 + x3 + 3x4 = 2 ,

3x1 + 5x2 − x3 + x4 = 3 .

Rozwiązanie: Badamy najpierw rząd macierzy układu

A =





1 2 −1 −1
1 1 1 3
3 5 −1 1



 .

Po operacjach: C2 → C2 −C1, C3 → C3 +C1 i C4 → C4 +C1 przyjmuje ona postać




1 1 0 0
1 0 2 4
3 2 2 4



→





1 1 0 0
1 0 2 0
3 2 2 0



→





0 1 0 0
1 0 2 0
1 2 2 0



 ,

gdzie w przedostatnim kroku zrobiono operację C4 → C4 − 2C3, a w ostatnim C1 →
C1−C2. Ponieważ teraz kolumny pierwsza i trzecia są wzajemnie do siebie proporcjonalne
(a czwarta jest zerowa), więc rząd macierzy układu jest równy 2. Następnie sprawdzamy
rząd macierzy rozszerzonej

AR =





1 2 −1 −1 1
1 1 1 3 2
3 5 −1 1 3



 .

Po wykonaniu tych samych operacji, co poprzednio na macierzy A dostajemy




0 1 0 0 1
1 0 2 0 2
1 2 2 0 3



 .

Widać, że minor stopnia 3
∣

∣

∣

∣

∣

∣

0 1 1
1 0 2
1 2 3

∣

∣

∣

∣

∣

∣

= 2 + 2− 3 = 1 6= 0 ,

z czego wniosek, że macierz rozszerzona ma rząd równy 3. Zatem układ równań jest
sprzeczny, mimo iż zmiennych jest więcej (cztery) niż równań do spełnienia (trzy).
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Zadanie 54
Znaleźć najogólniejsze rozwiązanie układu równań liniowych

2x − y + 3z = 7 ,

3x+ 2y − 5z = 4 ,

4x+ 5y − 13z = 1 .

Rozwiązanie: Macierz A tego problemu i macierz rozszerzona AR mają postacie

A =





2 −1 3
3 2 −5
4 5 −13



 , AR =





2 −1 3 7
3 2 −5 4
4 5 −13 1



 .

Po dokonaniu operacji (tych samych na obu macierzach) C3 → C3 + 3C2, a następnie
C1 → C1 − 3C3, C2 → C2 − 2C3 otrzymujemy z A i AR odpowiednio macierze

Ã =





2 −1 0
0 0 1
−2 1 2



 , ÃR =





2 −1 0 7
0 0 1 4
−2 1 2 1



 .

Widać, że pierwsza kolumna obu macierzy jest proporcjonalna do drugiej, więc rząd ma-
cierzy A jest równy 2. Obliczając zaś wyznacznik podmacierzy tworzonej przez ostatnie
trzy kolumny macierzy ÃR znajdujemy −1 − 7 + 8 = 0, skąd płynie wniosek, że rząd
macierzy rozszerzonej też jest równy 2. (Istotnie: C4 = −7C2 + 4C3). Zatem układ
jest niesprzeczny. Aby wypisać najogólniejsze jego rozwiązanie znajdziemy najpierw naj-
ogólniejsze rozwiązanie równania jednorodnego (użyjmy λ1, λ2, λ3 w miejsce x1, x2, x3;
czemu? a tak sobie!)

2λ1 − λ2 + 3λ3 = 0 ,

3λ1 + 2λ2 − 5λ3 = 0 ,

4λ1 + 5λ2 − 13λ3 = 0 .

Z pierwszego λ2 = 2λ1 + 3λ3. To do drugiego i trzeciego:

7λ1 + λ3 = 0 ,

14λ1 + 2λ3 = 0 .

Widać, że λ3 = −7λ1, λ2 = −19λ1 spełnia te równania niezależnie od wartości λ1.
Następnie szukamy jakiegoś szczególnego rozwiązania równania niejednorodnego. Mo-

żemy w tym celu51 położyć z = 0. Mamy wtedy

2x− y = 7 ,

51Gdybyśmy nie znaleźli wcześniej rozwiązania równania jednorodnego, to tak postępując ryzykowali-
byśmy trochę, bo zakładalibyśmy tym samym, że kolumna C3 macierzy A jest liniowo zależna od C1 i
C2 - mogłoby się akurat okazać, że nie jest. Ale skoro już mamy rozwiązanie równania jednorodnego,
to wiemy z niego, że dowolną z trzech kolumn można wyrazić jako kombinację liniową dwu pozostałych
i żanego ryzyka tu nie podejmujemy. W przyjętej tu metodzie chodzi o pokazanie, jak można próbować
rozwiązać układ nie pamiętając metody “regulaminowej”,

142



3x+ 2y = 4 ,

4x+ 5y = 1 .

skąd, dodając dwa razy pierwsze do drugiego, znajdujemy 7x = 18, a potem z pierwszego
y = 2x − 7 = −13

7
. Trzecie równanie jest wtedy też spełnione (co jest zagwaranto-

wane tym, że układ jest niesprzeczny, ale dobrze to sprawdzić jawnie, bo można wtedy
wykryć własne błędy rachunkowe). Najogólniejsze rozwiązanie wyjściowego układu jest
sumą szczególnego rozwiązania układu niejednorodnego i ogólnego rozwiązania układu
jednorodnego:





x
y
z



 =
1

7





18
−13
0



+ λ1





1
−19
−7



 .

Ten sam wynik uzyskuje się oczywiście metodą ogólną: Minor uworzony z elementów
dwu pierwszych kolumn i dwu pierwszych wierszy macierzy wyjściowego układu jest nieze-
rowy, więc skreślamy ostatnie równanie, a “wystające” poza minor wyrazy z niewiadomą z
przenosimy na drugą stronę podstawiając z = α. Rozwiązujemy więc układ zredukowany

2x− y = 7− 3α

3x+ 2y = 4 + 5α ,

skąd mamy
(

x
y

)

=
1

7

(

2 1
−3 2

)(

7− 3α
4 + 5α

)

=
1

7

(

18− α
−13 + 19α

)

,

Łatwo sprawdzić, że skreślone trzecie równanie jest też spełnione (z z = α):

4 · 1
7
(18− α) + 5 · 1

7
(−13 + 19α)− 13α = 1 .

Widać że otrzymuje się tą drogą to samo rozwiązanie, co poprzednio (tamto odpowiada
temu tu z α = −7λ1).

Zadanie 55
Zbadać istnienie rozwiązań (i znaleźć najogólniejsze, jeśli istnieje) układu równań





1 1 a
1 a 1
a 1 1









x1
x2
x3



 =





2
−1
−1



 ,

w zależności od wartości parametru a.
Rozwiązanie: Zobaczmy najpierw kiedy kolumny macierzy po lewej stronie są liniowo
niezależne i ile ich jest liniowo niezależnych (czyli jaki jest rząd tej macierzy). W tym
celu obliczamy wyznacznik tej macierzy:

detA = 3a− a3 − 2 = −(a− 1)(a2 + a− 2) = −(a− 1)2(a+ 2) .
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Wyznacznik zeruje się więc, gdy a = 1 lub gdy a = −2. a = 1 jest pierwiastkiem
podwójnym równania detA = 0 i, jak od razu widać, wszystkie trzy kolumny macierzy
są takie same czyli rząd macierzy jest równy 1 (tj. pierwiastek podwójny obniża rząd
macierzy o 2). Widać też, że układ jest wtedy sprzeczny. Gdy a = −2 rząd macierzy
wynosi 2 (np. po wstawieniu a = −2 zobaczyć, że nie znika lewy górny minor stopnia 2).
Rozwiązanie wtedy istnieje, bo ostatnia kolumna macierzy jest wtedy po prostu równa
minus wektorowi po prawej stronie (inaczej: gdy a = −2, rząd macierzy rozszerzonej nie
przewyższa rzędu macierzy wyjściowej). Jeśli a 6= 1 i a 6= −2, wyznacznik nie znika, czyli
trzy kolumny są liniowo niezależne i układ ma zawsze rozwiązanie, które można znaleźć
np. ze wzorów Cramera.

x1 =
1

detA

∣

∣

∣

∣

∣

∣

2 1 a
−1 a 1
−1 1 1

∣

∣

∣

∣

∣

∣

=
a2 + a− 2

detA
= (1− a)−1,

x2 =
1

detA

∣

∣

∣

∣

∣

∣

1 2 a
1 −1 1
a −1 1

∣

∣

∣

∣

∣

∣

=
a2 + a− 2

detA
= (1− a)−1,

x3 =
1

detA

∣

∣

∣

∣

∣

∣

1 1 2
1 a −1
a 1 −1

∣

∣

∣

∣

∣

∣

=
−2a2 − 2a+ 4

detA
= 2(a− 1)−1.

Widać, że gdy a = 1 rozwiązanie staje się osobliwe, ale zera mianowników w a = −2
skróciły się z zerami liczników. Pozornie więc nic tu nie wyróżnia przypadku a = −2.
Jednak dzięki zbadaniu rzędu macierzy problemu w funkcji parametru a wiemy, że gdy
a = −2 tylko dwie kolumny tej macierzy są liniowo niezależne i wobec tego przestrzeń
rozwiązań jest jednowymiarowa: do rozwiązania dawanego (w granicy a → −2) przez
Kramersięta możemy dodać jeszcze z dowolnym współczynnikiem wektor





1
1
1



 ,

na którym, gdy a = −2, macierz A problemu zeruje się.

Zadanie 56
Zbadać istnienie rozwiązań (i jeśli istnieją, podać je) układu równań





3a− 1 2a 3a+ 1
2a 2a 3a+ 1
a+ 1 a+ 1 2a+ 2









x1
x2
x3



 =





1
a
a2



 ,

w zależności od wartości parametru a.
Rozwiązanie: Zbadajmy najpierw rząd macierzy układu. Najpierw R2 → R2 −R1:





3a− 1 2a 3a+ 1
−a + 1 0 0
a+ 1 a + 1 2a+ 2



 ,
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a następnie C1 → C1 −C3 daje




−2 2a 3a+ 1
−a+ 1 0 0
−a− 1 a+ 1 2a+ 2



 −→





−2 2a 3a+ 1
−a+ 1 0 0
−2 a+ 1 2a+ 2



 ,

gdzie w kolejnym kroku zrobiliśmy R3 → R3 −R2. Nastepnie C3 → C3 − 2C2:




−2 2a −a + 1
−a + 1 0 0
−2 a + 1 0



 −→





0 a− 1 −a + 1
−a + 1 0 0
−2 a+ 1 0



 ,

gdzie w kolejnym kroku zrobiliśmy R1 → R1 −R3. Wreszcie, po C2 → C2 +C3 macierz
przybiera w miarę przejrzystą postać:





0 0 1− a
1− a 0 0
−2 a+ 1 0



 .

Jej wyznacznik jest równy52 detA = (1− a)2(1 + a). Widać więc, że szczególnymi warto-
ściami są a = 1 oraz a = −1. Jeśli a 6= 1 i a 6= −1 to rząd macierzy układu jest równy 3
i rozwiązanie zawsze istnieje i jest jednoznaczne. Jeśli a = −1 (jednokrotny pierwiastek
równania detA = 0) rząd macierzy jest równy 2, ale rząd macierzy rozszerzonej





−4 −2 −2 1
−2 −2 −2 −1
0 0 0 1



 ,

jest równy 3 i układ jest sprzeczny (rieszenije otsutstwujet). Wreszcie, gdy a = 1 rząd
macierzy jest równy 1, a macierz rozszerzona ma postać





2 2 4 1
2 2 4 1
2 2 4 1



 ,

(trzy pierwsze kolumny są oczywiście macierzą układu dla a = 1 - widać, że jej rząd
wynosi 1, co wynika także z tego, iż a = 1 jest podwójnym pierwiastkiem równania
detA = 0). Ponieważ jednak (co jest oczywiste) rząd macierzy rozszerzonej też jest równy
1, rozwiązanie istnieje, ale jest oczywiście niejednoznaczne - przestrzeń rozwiązań jest
dwuwymiarowa: zgodnie z ogólną metodą możemy w tym przypadku napisać





x1
x2
x3



 =





1
2

0
0



+ α





−1
1
0



+ β





−2
0
1



 .

52Można było też obliczyć od razu wyznacznik wyjściowej macierzy układu, albo jeszcze prościej -
zlaplasować względem drugiego wiersza wyznacznik macierzy otrzymanej po operacji R2 → R2 − R1;
wynik by był oczywiście taki sam.
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Zadanie 57
Traktując p jak parametr rozwiązać układ równań liniowych









0 3 −2 −6
1 0 3 −2
1 1 0 3
1 1 1 0

















x1
x2
x3
x4









=









−3
2p
1
p









.

Rozwiązanie: Najpierw znajdujemy rząd macierzy A układu. W tym celu robimy naj-
pierw R3 → R3 −R4 i obliczamy wyznacznik powstałej macierzy:
∣

∣

∣

∣

∣

∣

∣

∣

0 3 −2 −6
1 0 3 −2
0 0 −1 3
1 1 1 0

∣

∣

∣

∣

∣

∣

∣

∣

= −1 · (−1)3+3

∣

∣

∣

∣

∣

∣

0 3 −6
1 0 −2
1 1 0

∣

∣

∣

∣

∣

∣

+ 3 · (−1)3+4

∣

∣

∣

∣

∣

∣

0 3 −2
1 0 3
1 1 1

∣

∣

∣

∣

∣

∣

= 12− 12 = 0 .

Ponieważ wyznacznik macierzy A znika, jej rząd jest mniejszy niż 4. Łatwo sprawdzić, że
ma ona podmacierz 3× 3 o niezerowym wyznaczniku w prawym górnym rogu:

∣

∣

∣

∣

∣

∣

3 −2 −6
0 3 −2
1 0 3

∣

∣

∣

∣

∣

∣

= 27 + 4 + 18 6= 0 .

Zatem rząd A wynosi 3. Niezerowy wyznacznik wskazanej podmacierzy oznacza także, iż
kolumny C2, C3 i C4 macierzy A są liniowo niezależne. Kolumnę C1 można zaś przed-
stawić w postaci

C1 = aC2 + bC3 + cC4 ,

gdyż jest ona od C2, C3 i C4 liniowo zależna.
Żądając teraz by rząd macierzy rozszerzonej nie był większy niż 3 moglibyśmy znaleźć

wartość parametru p, dla której układ jest niesprzeczny. W tym celu trzeba by badać
rząd macierzy zbudowanej z kolumn (C1,C2,C3,C4,CB) ale ponieważ C1 jest liniowo
zależna od C2, C3 i C4, to wystarczyłoby badać rząd macierzy składającej się z kolumn
(C2,C3,C4,CB); żadanie, by jej rząd był mniejszy niż 4 sprowadza się do zażądania, by
jej wyznacznik

∣

∣

∣

∣

∣

∣

∣

∣

3 −2 −6 −3
0 3 −2 2p
1 0 3 1
1 1 0 p

∣

∣

∣

∣

∣

∣

∣

∣

,

był równy zeru. Stąd otrzymalibyśmy wartość parametru p, dla której układ równań jest
niesprzeczny. Wstawiając tę wartość p moglibyśmy następnie odrzucić czwarte równanie
(jako że jego współczynniki nie wchodzą w tę podmacierz wymiaru 3×3 macierzy A, której
niezerowy wyznacznik pokazał nam, że r(A) = 3) i przenieść x1 = α na prawą stronę,
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tak jak to opisane jest w Przypomnieniu ogólnej metody. Zamiast jednak obliczać ten
wyznacznik, po prostu zaczniemy rozwiązywać układ równań i wyjdzie nam “w praniu”
dla jakiego p się to da zrobić. Ponieważ kolumna C1 jest liniowo zależna od kolumn C2,
C3 i C4 to jej dołączenie nie może pomóc w wyrażaniu CB przez kolumny macierzy A.
Dlatego możemy na razie położyć x1 = 0 (albo nadać niewiadomej x1 jakąkolwiek inną
wartość x(0)1 ) i szukać rozwiązania układu

x2C2 + x3C3 + x4C4 = CB ,

(lub układu x2C2 + x3C3 + x4C4 = CB − x(0)1 C1), czyli

3x2 − 2x3 − 6x4 = −3 ,
3x3 − 2x4 = 2p ,

x2 + 3x4 = 1 ,

x2 + x3 = p .

Rozwiążmy najpierw układ trzech ostatnich równań. Po prostych fiku-miku znajdujemy

x2 = −
1

7
(2− 3p) , x3 =

1

7
(2 + 4p) , x4 =

1

7
(3− p) .

Wstawiamy to teraz do pierwszego (na razie nie uwzględnionego) równania i mamy mieć

3

(

−2
7
+

3

7
p

)

− 2

(

2

7
+

4

7
p

)

− 6

(

3

7
− 1

7
p

)

= −3 ,

co zachodzi tylko dla p = 1.
Dla p = 1 mamy zatem jedno szczególne rozwiązanie wyjściowego układu równań









x
(s)
1

x
(s)
2

x
(s)
3

x
(s)
4









=









0
1/7
6/7
2/7









.

Nie jest to jednak jeszcze najogólniejsze rozwiązanie bo niewiadomych było n = 4, a
rząd macierzy A był równy 3. Musimy do powyższego rozwiązania szczególnego układu
niejednorodnego dodać z dowolnym współczynnikiem jedno (bo n − r = 1) rozwiązanie
układu jednorodnego









0 3 −2 −6
1 0 3 −2
1 1 0 3
1 1 1 0

















x̃1
x̃2
x̃3
x̃4









=









0
0
0
0









.

Musi takowe istnieć bo detA = 0. Łatwo je znajdujemy








x̃1
x̃2
x̃3
x̃4









=









1
−4/7
−3/7
−1/7









.
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Najogólniejszym zatem rozwiązaniem wyjściowego układu równań (oczywiście tylko dla
p = 1) jest









x1
x2
x3
x4









=









0
1/7
6/7
2/7









+ λ









1
−4/7
−3/7
−1/7









,

gdzie λ jest dowolną stałą.

Zadanie 58
Rozwiązać układ równanń









−2 1 1 1
1 −3 1 1
1 1 −3 1
1 1 1 −5

















x1
x2
x3
x4









=









1
a
b
1









,

dla takich wartości parametrów a i b, dla których jest on niesprzeczny.
Rozwiązanie: Badamy najpierw rząd macierzy układu i macierzy rozszerzonej. Przy
odrobinie czujności (sprowadzającej się do tego, by do pierwszych czterech kolumn nie
dodawać nigdy ostatniej z różnym od zera współczynnikiem; do ostatniej zaś kolumny
kombinacje liniowe pierwszych czterech dodawać można) można to robić symultanicznie:

A/AR =









−2 1 1 1
1 −3 1 1
1 1 −3 1
1 1 1 −5

∣

∣

∣

∣

∣

∣

∣

∣

1
a
b
1









,

(pierwsze cztery kolumny tworzą oczywiście macierz A układu). Dokonujemy operacji:
C1 → C1 −C4, C2 → C2 −C4, C3 → C3 −C4, co daje









−3 0 0 1
0 −4 0 1
0 0 −4 1
6 6 6 −5

∣

∣

∣

∣

∣

∣

∣

∣

1
a
b
1









,

Taraz R4 → R4 + 2R1








−3 0 0 1
0 −4 0 1
0 0 −4 1
0 6 6 −3

∣

∣

∣

∣

∣

∣

∣

∣

1
a
b
3









,

i wreszcie C4 → C4 +
1
3
C1, C5 → C5 +

1
3
C1:









−3 0 0 0
0 −4 0 1
0 0 −4 1
0 6 6 −3

∣

∣

∣

∣

∣

∣

∣

∣

0
a
b
3









.
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Widać teraz, że kolumna C1 jest liniowo niezależna od pozostałych. Z kolei minor utwo-
rzony z trzech dolnych składowych C2, C3 i C4 znika:

∣

∣

∣

∣

∣

∣

−4 0 1
0 −4 1
6 6 −3

∣

∣

∣

∣

∣

∣

= −3 · 16 + 24 + 24 = 0 ,

co oznacza, że kolumny C2, C3 i C4 sa liniowo zależne (w istocie: −4C4 = C2 + C3).
Rząd macierzy układu jest więc równy 3. Rząd macierzy rozszerzonej nie może zatem być
większy. Po wykonanych już pracach przygotowawczych jest zupełnie jasne, że sprowadza
się to do żądania by w ostatniej macierzy wymiaru 4×5 kolumna C5 była liniowo zależna
od C2, C3. Aby tak było musi znikać minor (utworzony z trzech dolnych składowych
zainteresowanych kolumn)

∣

∣

∣

∣

∣

∣

−4 0 a
0 −4 b
6 6 3

∣

∣

∣

∣

∣

∣

= 48 + 24(a+ b) .

Zatem wyjściowy układ równań jest niesprzeczny gdy a + b = −2. Będziemy więc go
rozwiązywać położywszy b = −2 − a. Ponieważ rząd macierzy rozpatrywanego układu
równań z n = 4 niewiadomymi jest równy 3, przestrzeń rozwiązań jest jednowymiarowa i
rozwiązanie będzie zależało od jednego dowolnego parametru. Nie jest to jednak parametr
a! Dla różnych wartości a mamy różne układy równań i dla każdego konkretnego a
rozwiązanie układu odpowiadającego temu a będzie zależało od jednego parametru λ,
który wprowadzimy niżej.

Odstąpimy tu od kanonicznej metody przedstawionej parę stron wcześniej na rzecz
bardziej “fizycznego” podejścia (tj. takiego, jakiego by użył każdy zdrowy na umyśle
fizyk). Znajdźmy najpierw rozwiązanie równania jednorodnego. Zaczynamy jeszcze raz
od macierzy A układu. Łatwo zobaczyć, że np. minor stopnia 3 utworzony z pierwszych
trzech składowych trzech pierwszych jej kolumn jest niezerowy:

∣

∣

∣

∣

∣

∣

−2 1 1
1 −3 1
1 1 −3

∣

∣

∣

∣

∣

∣

= −8 6= 0 ,

więc te trzy kolumny są liniowo niezależne i można wyrazić przez nie czwartą, tj. znaleźć
lambdy w kombinacji ξ1C1 + ξ2C2 + ξ3C3 = C4:

−2ξ1 + ξ2 + ξ3 = 1 ,

ξ1 − 3ξ2 + ξ3 = 1 ,

ξ1 + ξ2 − 3ξ3 = 1 ,

ξ1 + ξ2 + ξ3 = −5 .

Rozwiązując trzy pierwsze równania stosując zwykłą “eliminatkę” znajdujemy łatwo ξ1 =
−2, ξ2 = ξ3 = −3

2
. Sprawdzamy, że czwarte równanie jest spełnione (musi być - to tylko
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element samokontroli). Stąd rozwiązanie równania jednorodnego ma postać








x1
x2
x3
x4









= λ









2
3/2
3/2
1









.

(λ jest właśnie parametrem, o którym była mowa wyżej).
Szukamy teraz jakiegoś jednego, szczególnego rozwiązania wyjściowego równania nie-

jednorodnego (z b = −2−a). Ponieważ już wiemy, że kolumna C4 macierzy A układu jest
liniowo zależna od trzech pozostałych, można ją usunąć, tj. szukać rozwiązania z x4 = 0.
Ponieważ już wiemy, że minor stopnia 3 z lewego górnego rogu macierzy A jest niezerowy
(wynosi on −8 - patrz wyżej), można rozwiązać tylko trzy górne równania





−2 1 1
1 −3 1
1 1 −3









x1
x2
x3



 =





1
a

−2 − a



 ,

Wykorzystując Kramersięta (tj. wzory Cramera) mamy

x1 = −
1

8

∣

∣

∣

∣

∣

∣

1 1 1
a −3 1

−2− a 1 −3

∣

∣

∣

∣

∣

∣

= −1
8
(9− 2− a+ a− 6− 3a− 1 + 3a) = 0 ,

x2 = −
1

8

∣

∣

∣

∣

∣

∣

−2 1 1
1 a 1
1 −2− a −3

∣

∣

∣

∣

∣

∣

= −1
8
(6a+ 1− 2− a− a + 3− 4− 2a) = −1

8
(−2 + 2a) ,

x3 = −
1

8

∣

∣

∣

∣

∣

∣

−2 1 1
1 −3 a
1 1 −2 − a

∣

∣

∣

∣

∣

∣

= −1
8
(−12− 6a+ a+ 1 + 3 + 2a+ 2 + a) = −1

8
(−6− 2a) .

Ostatecznie więc, gdy b = −2 − a najogólniejszym rozwiązaniem wyjściowego układu
równań jest









x1
x2
x3
x4









=
1

4









0
1− a
3 + a
0









+ λ









2
3/2
3/2
1









.

Na koniec sprawdzamy, że odrzucone równanie x1+x2+x3−5x4 = 1 jest spełnione (musi
być, bo to nam gwarantuje wybór b = −a−2): 2λ+ 1

4
(1−a)+ 3

2
λ+ 1

4
(3+a)+ 3

2
λ−5λ = 1.

Zadanie 59
Niech

A =









3 7 −1 0
−2 −4 2 1
2 0 −10 −7
1 5 5 4








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będzie macierzą odwzorowania liniowego A p.w. V w tę samą p.w. V . (Jeśli bazą p.w. V
są vi, to jest to A(v)(v) w naszej starej notacji, ale możemy tu pominąć te detale). Niech
V0 =kerA oraz V1 =imA będą odpowiednio jądrem i obrazem tego odwzorowania. Zbadać
czy wektor o składowych









1
1
1
1









(w tej samej bazie p.w. V , w której dana jest macierz A) należy do V0 + V1 ?
Rozwiązanie: Pytanie jest nietrywialne tylko w przypadku, gdy kerA∩ imA 6= {0} bo w
przeciwnym razie z równości dim(kerA)+dim(imA) =dimV wynikało by, że imA+kerA =
V i wtedy każdy wektor musiałby należeć do imA+kerA. Najpierw ustalmy więc rząd
macierzy A. Każda próba obliczenia jakiegoś jej minora stopnia 3 kończy się wynikiem
zero! Zatem zapewne jej rząd wynosi 2. Aby to potwierdzić dokonujemy standardowych
operacji: 53 C1 → C1 + 2C4, C2 → C2 + 4C4, C3 → C3 − 2C4, które przeprowadzają A
w macierz









3 7 −1 0
0 0 0 1
−12 −28 4 −7
9 21 −3 4









→









1 1 1 0
0 0 0 1
−4 −4 −4 −7
3 3 3 4









(w drugim kroku pierwszą, drugą i trzecią kolumnę podzieliliśmy odpowiednio przez 3, 7
i −1), której już rząd A jest oczywisty. Łatwo też ustalić, że kolumny C1 i C2 macierzy A
wyrażają się przez C3 i C4: C1 = −3C3+4C4, C2 = −7C3+10C4. W ogólności obrazem
odwzorowania A (imA) są wszystkie kombinacje liniowe C1, C2, C3 i C4, ale skoro C1

i C2 są liniowo zależne, to obrazem A w tym przypadku są wektory będące dowolnymi
kombinacjami liniowymi C3 i C4:

imA = {w : w = αC3 + βC4; gdzie α, β ∈ R} .

Trzeba jeszcze znaleźć najogólniejszą postać wektora należącego do kerA. Łatwo ją
napisać korzystając z tego (co już ustaliliśmy), że C1+3C3−4C4 = 0, C2+7C3−10C4 =

53Jeszcze prościej jest wykorzystać pierwszą kolumnę do wyzerowania dolnych pięterek pozostałych,
czyli C2,3 → C2,3 − 5C1, C4 → C4 − 4C1, co da macierz







3 −8 −16 −12
−2 6 12 9
2 −10 −20 −15
1 0 0 0






,

której trzy ostatnie kolumny są do siebie wzajemnie proporcjonalne.
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0. Wynika stąd, że wektory, na których A daje zero są postaci

ξ









1
0
3
−4









+ η









0
1
7
−10









.

Zatem pytanie będące treścią zadania brzmi: czy można tak dobrać η, ξ, α i β, by
spełnić równość

ξ









1
0
3
−4









+ η









0
1
7
−10









+ α









−1
2
−10
5









+ β









0
1
−7
4









=









1
1
1
1









,

w której dwa pierwsze wektory rozpinaja kerA, a dwa drugie imA? Aby ustalić jaki jest
wymiar kerA+imA tworzymy z wektorów rozpinających tę sumę macierz

H =









1 0 −1 0
0 1 2 1
3 7 −10 −7
−4 −10 5 4









−→









1 0 0 0
0 1 2 1
3 7 −7 −7
−4 −10 1 4









≡ H ′.

Strzałka oznacza tu dokonanie operacji polegającej na dodaniu pierwszej kolumny ma-
cierzy H do trzeciej. Rozwinięcie Laplace’a względem pierwszego wiersza pozwala łatwo
zobaczyć, że wyznacznik macierzy H ′ znika. Zatem rząd macierzy H ′, a zatem i macie-
rzy H jest mniejszy niż 4. Z kolei lewy górny minor stopnia 3 macierzy H ′ nie znika, a
zatem macierz H jest rzędu 3 i taki też jest wymiar kerA+imA. Oznacza to oczywiście,
bo dim(kerA) = 2 i dim(imA) = 2, że przecięcie kerA z imA jest różne od {0}, a zatem
imA+kerA ⊂ V , ale suma ta nie jest całą przestrzenią V . Może więc się zdarzyć, że wek-
tor z samych jedynek do kerA+imA nie należy. Że tak jest w istocie pokazuje następujące
rozumowanie: zróbmy H′3 → 1

3
(H′3+H′2), H

′
4 → 1

2
(H′4+H′2), (chodzi o kolumny macierzy

H ′) co da

H̃ =









1 0 0 0
0 1 1 1
3 7 0 0
−4 −10 −3 −3









.

Z wektorów rozpinających kerA+imA, którymi mogą być kolumy powyższej macierzy
wystarczają tylko trzy pierwsze by stworzyć bazę. Jeśli zaś jakaś ich kombinacja ξ1H̃1 +
ξ2H̃1 + ξ3H̃3 miała by dawać wektor mający same jedynki, to jest oczywiste, że ξ1 = 1.
Odejmując więc od tego wektora H̃1 musiały by być spełnione związki

ξ2





1
7
−10



 + ξ3





1
0
3



 =





1
−2
5




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(wypisaliśmy tu tylko trzy dolne składowe każdego z wektorów). Zatem ξ2 = −2
7

i ξ3 =
9
7

żeby sie zgodziły dwie pierwsze składowe, ale wtedy w trzeciej linii po lewej mamy
20
7
+ 27

7
6= 5, co dowodzi, że wektor z samych jedynek do kerA+imA nie należy.

Zadanie 60
Znaleźć najogólniejsze rozwiązanie układu równań liniowych54

x1 + x5 = a ,

2x1 + x2 + 2x3 − x4 + x5 = b ,

−x1 − x5 =−a ,
x1 − x2 − 2x3 + x4 + x5 = c .

Rozwiązanie: Macierz tego problemu i macierz rozszerzona mają postacie

A =









1 0 0 0 1
2 1 2 −1 1
−1 0 0 0 −1
1 −1 −2 1 1









, AR =









1 0 0 0 1 a
2 1 2 −1 1 b
−1 0 0 0 −1 −a
1 −1 −2 1 1 c









.

Widać, że w obu macierzach trzeci wiersz jest tym samym co pierwszy pomnożony przez
−1. Zatem rząd obu macierzy nie może być większy niż 3. Na macierzy A wykonajmy
następujące operacje: R2 → R2 −R1, R3 → R3 +R1, R4 → R4 −R1, co daje









1 0 0 0 1
1 1 2 −1 0
0 0 0 0 0
0 −1 −2 1 0









,

a następnie R2 → R2 +R4:








1 0 0 0 1
1 0 0 0 0
0 0 0 0 0
0 −1 −2 1 0









,

Pokazuje to, że rząd macierzy A jest równy 3. Zatem macierz ta ma taki sam rząd
jak macierz rozszerzona, bo ta (po wyzerowaniu trzeciego wiersza przez dodanie doń
pierwszego) ma rząd nie większy niż trzy (a ponieważ A jest częścią AR, rząd A jest
po prostu równy 3). Zatem układ ma rozwiązania. Zgodnie z ogólną metodą musimy
teraz w macierzy A znaleźć niezerowy minor stopnia 3. Jest nim np. minor będący

54Przykład jest wzięty z “kultowego” podręcznika Jacka Komorowskiego Od liczb zespolonych do tenso-

rów, spinorów, algebr Liego i kwadryk bez pytania Autora o zgodę. Ufam, że wbrew dość powszechnemu
mniemaniu o prawie do “własności intelektualnej” - bycie nieistniejącym i całkowicie sprzecznym z du-
chem nauki! - potraktuje On to jak częściowe rozwiązanie “problemu długu, który naturalną rzeczy koleją
(...) spłacany być powinien w większości następnym pokoleniom.”
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wyznacznikiem podmacierzy utworzonej z elementów kolumn: pierwszej, drugiej i piątej
i wierszy pierwszego, drugiego i ostatniego. Trzecie równanie, którego współczynniki do
tej podmacierzy nie wchodzą, skreślamy. Wyrazy z x3 i x4 z równań pierwszego, drugiego
i ostatniego “wystają” poza tę podmacierz, zatem zgodnie z ogólną metodą podstawiamy
w nich x3 = α, x4 = β, gdzie α i β są dowolnymi stałymi i przenosimy je na drugą stronę
otrzymując w ten sposób zredukowany układ równań:

x1 + x5 = a ,

2x1 + x2 + x5 = b− 2α + β ,

x1 − x2 + x5 = c+ 2α− β .

Układ ten można łatwo rozwiązać, np. stosując Kramersięta: Wyznacznik macierzy
układu jest równy 1− 2− 1 + 1 = −1, więc

x1 =
1

−1

∣

∣

∣

∣

∣

∣

a 0 1
b− 2α+ β 1 1
c+ 2α− β −1 1

∣

∣

∣

∣

∣

∣

= −

∣

∣

∣

∣

∣

∣

a 0 1
b− 2α+ β 1 2
c+ 2α− β −1 0

∣

∣

∣

∣

∣

∣

= −2a + b+ c ,

x2 =
1

−1

∣

∣

∣

∣

∣

∣

1 a 1
2 b− 2α+ β 1
1 c+ 2α− β 1

∣

∣

∣

∣

∣

∣

= −

∣

∣

∣

∣

∣

∣

0 a 1
1 b− 2α + β 1
0 c+ 2α− β 1

∣

∣

∣

∣

∣

∣

= a− c− 2α+ β ,

x5 =
1

−1

∣

∣

∣

∣

∣

∣

1 0 a
2 1 b− 2α+ β
1 −1 c+ 2α− β

∣

∣

∣

∣

∣

∣

= −

∣

∣

∣

∣

∣

∣

1 0 a
3 1 b− 2α+ β
0 −1 c+ 2α− β

∣

∣

∣

∣

∣

∣

= 3a− b− c .

Kompletne rozwiązanie można zapisać więc w postaci












x1
x2
x3
x4
x5













=













−2a+ b+ c
a− c
0
0

3a− b− c













+ α













0
−2
1
0
0













+ β













0
1
0
1
0













.

Ma ono oczywistą strukturę: pierwszy wektor po prawej stronie jest szczególnym rozwią-
zaniem równania niejednorodnego, a dwa następne wektory po prawej są dwoma liniowo
niezależnymi rozwiązaniami równania jednorodnego.
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Przypomnienie
Forma biliniowa (dwuliniowa) jest to takie odwzorowanie V × V w ciało K (u nas będzie
to naogół ciało R, rzadziej C), że

B(λ1v1 + λ2v2, w) = λ1B(v1, w) + λ2B(v2, w) ,

B(v, η1w1 + η2w2) = η1B(v, w1) + η2B(v, w2) .

Analogicznie można zdefiniować formę p-liniową, czyli odwzorowanie V ×V ×V × . . .×V
(p-razy) w K, jako odwzorowanie P (v1,v2, . . . ,vp), które jest liniowe względem każdego
ze swych p argumentów. Można też badać odwzorowania p-liniowe V × V × V × . . .× V
(p-razy) w przestrzeń wektorową W . (Odwzorowanie w ciało K jest więc przypadkiem
szczególnym - ciało jest też przestrzenią wektorową, bo jest strukturą bogatszą - i wtedy
nazywa się to formą). Na razie będziemy się zajmować odwzorowaniami V × V w K.

Formy biliniowe mogą być symetryczne:

B(v, w) = B(w, v) ,

lub antysymetryczne

B(v, w) = −B(w, v) .

Mogą też nie wykazywać żadnej symetrii, ale każdą formę B(v, w) zawsze można przed-
stawić w postaci sumy formy symetrycznej Bs(v, w) i antysymetrycznej Ba(v, w), które
są zdefiniowane wzorami

Bs(v, w) ≡ 1

2
[B(v, w) +B(w, v)] ,

Ba(v, w) ≡ 1

2
[B(v, w)−B(w, v)] .

W ustalonej bazie ei przestrzeni V formie biliniowej B(·, ·) odpowiada jej macierz B(e)
ij .

Jeśli wektory v i w mają w tej bazie składowe vi(e) oraz wj
(e), to

B(v,w) = B(ei, ej) v
i
(e)w

j
(e) ≡ B

(e)
ij v

i
(e)w

j
(e) ,

lub jawnie macierzowo:

B(v,w) = (v1(e), · · · , vn(e))









B
(e)
11 . . . B

(e)
1n

· ·
· ·

B
(e)
n1 · · · B

(e)
nn

















w1
(e)

·
·

wn
(e)









.

Ze wzorów tych natychmiast wynika przepis, według którego macierz formy biliniowej
przekształca się przy zmianie bazy ei na bazę fj :

B
(f)
ij = B

(e)
kl [Re←f ]

k
i[Re←f ]

l
j ,
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lub macierzowo:55

B(f) = [Re←f ]
T · B(e) · Re←f .

Jeśli forma biliniowa jest formą symetryczną (odpowiednio: antysymetryczną) okre-
śloną na n-wymiarowej przestrzeni wektorowej (nad R), to jej macierz jest symetryczna
B

(e)
ij = B

(e)
ji (antysymetryczna B(e)

ij = −B(e)
ji ) i ma wobec tego n+ 1

2
n(n− 1) = 1

2
n(n+1)

(odpowiednio: 1
2
n(n− 1)) niezależnych elementów.

Formę biliniową można przedstawić wykorzystując wprowadzone wcześniej jedno-formy
êi tworzące bazę dualną do bazy ei przestrzeni V . Tworzymy w tym celu iloczyny tenso-
rowe êi⊗ êj jedno-form bazowych. Jeśli dimV = n, to n2 takich dwu-form z i, j = 1, . . . , n
tworzy bazę przestrzeni wektorowej V ∗ ⊗ V ∗, której elementami są właśnie formy dwuli-
niowe nad V , czyli inaczej mówiąc, tensory kowariantne drugiego rzędu. Każdy taki tensor
(forma) B należący(a) do V ∗ ⊗ V ∗ daje się przedstawić w postaci

B = B
(e)
ij êi ⊗ êj ,

a jego (jej) działanie na parę dowolnych wektorów v i w jest dane wzorem

B(v, w) =
(

B
(e)
ij êi ⊗ êj

)

(v, w) ≡ B
(e)
ij êi(v) êj(w) = B

(e)
ij v

i
(e)w

j
(e) .

Wykorzystaliśmy tu fakt, że formy êi będąc dualnymi do wektorów bazy ei, dają êi(v) =
êi(ekv

k
(e)) = êi(ek) v

k
(e) = vi(e). Zauważmy też, że podobnie jak wektor v = eiv

i
(e) jest

“żywym” wektorem, niezależnym od wyboru bazy, tak też i tensor B = B
(e)
ij êi ⊗ êj jest

“żywym” tensorem i od wyboru bazy nie zależy. Istotnie: niech wektory fj będą inną bazą
p.w. V , a f̂k dualną do bazy fj bazą V ∗. Wtedy

B = B
(e)
ij êi ⊗ êj = B

(f)
kl [Rf←e]

k
i[Rf←e]

l
j ê

i ⊗ êj

= B
(f)
kl [P

f→e]kiê
i ⊗ [P f→e]l jê

j = B
(f)
kl f̂k ⊗ f̂ l .

Wykorzystaliśmy tu znaleziony już (Zadanie 39) związek macierzy zmiany bazy w p. V i
w p. V ∗: [P f→e]ki = [Rf←e]

k
i.

55Dla uzmysłowienia sobie różnicy w stosunku do przepisu na przekształcanie się przy zmianie bazy
macierzy odwzorowania liniowego, przypomnijmy, że jeśli odwzorowanie liniowe F z p.w. V w tę samą
p.w. V jest zapisane “z obu stron” w tej samej bazie, to przy zmianie (jednocześnie “z obu stron”) bazy
z ei na bazę fi

F(f)(f) = [Re←f ]
−1 · F(e)(e) ·Re←f ,

gdzie oczywiście [Re←f ]
−1 = Rf←e.
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Przykład
Obliczymy wartość formy B = ê1 ⊗ ê2 + ê2 ⊗ ê2 + ê3 ⊗ ê3 na uporządkowanej parze
wektorów v = 3e1 + 2e2 + e3 oraz w = 3e1 + 4e2 + e3:

B(v,w) = ê1 ⊗ ê2(v,w) + ê2 ⊗ ê2(v,w) + ê3 ⊗ ê3(v,w)

= ê1(v)·ê2(w) + ê2(v)·ê2(w) + ê3(v)·ê3(w) ,

a ponieważ jedno-forma êk “wycina” z wektora, na który działa, jego współczynnik przy
ek, więc

B(v,w) = 3 · 4 + 2 · 4 + 1 · 1 = 21 .

To samo można otrzymać macierzowo:

B(v,w) = (3, 2, 1)





0 1 0
0 1 0
0 0 1









3
4
1



 = 21 .

Wszystko to daje się łatwo uogólnić na formy wieloliniowe: jeśli dana jest forma p-
liniowa (W od “wieloliniowa”) W (v1,v2, . . . ,vp), czyli odwzorowanie W : V × . . .× V →
R, to w ustalonej bazie ei przestrzeni V jest ona reprezentowana przez swoje składowe
W

(e)
i1i2...ip

w bazie êi1⊗ êi2⊗ . . .⊗ êip przestrzeni wektorowej V ∗⊗ . . .⊗V ∗ (p-krotny iloczyn
tensorowy). “Żywa” zaś forma p-liniowa, czyli tensor kowariantny p-tego rzędu, ma postać

W = W
(e)
i1i2...ip

êi1 ⊗ êi2 ⊗ . . .⊗ êip .

Idąc “za ciosem” wprowadźmy też “żywe” tensory kontrawariantne, p-tego rzędu tj.
elementy przestrzeni V ⊗ . . .⊗ V (p-razy):

T = ei1 ⊗ ei2 ⊗ . . .⊗ eip T
i1i2...ip
(e) .

Ponieważ (V ∗)∗ = V , można takie tensory uważać za p-liniowe formy na przestrzeni jedno-
form, tzn. odwzorowania V ∗ × . . . × V ∗ w ciało R. Jeśli formy f̂1, . . ., f̂p mają w bazie
jedno-form êi dualnej do bazy ej przestrzeni wektorowej V składowe fk(e)

i , to

T (f̂1, . . . , f̂p) = T
i1i2...ip
(e) f

1(e)
i1

. . . f
p(e)
ip .

Wreszcie istnieją tensory mieszane kontra-i-kowariantne rzędu (p, q), będące elementami
przestrzeni V ⊗ . . .⊗ V ⊗ V ∗ ⊗ . . .⊗ V ∗ (p-krotnie i q-krotnie):

T = ei1 ⊗ . . .⊗ eip ⊗ êj1 ⊗ . . .⊗ êjq T
i1...ip
(e) j1...jq

.

Przypomnijmy tu, że z tensorem F = ei⊗ êj[F(e)(e)]
i
j typu (1, 1) utożsamialiśmy (Zadanie

40) zwykłe odwzorowanie liniowe przestrzeni V w nią samą. Ogólnie, tensor rzędu (p, q)
możemy utożsamić z wieloliniowym odwzorowaniem V × . . .×V ×V ∗× . . .×V ∗ (k-krotnie
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V i l-krotnie V ∗, przy czym k ≤ q i l ≤ p) w V ⊗ . . .⊗ V ⊗ V ∗ ⊗ . . .⊗ V ∗ (p− l-krotnie
V oraz q − k-krotnie V ∗).

Wśród form wieloliniowych szczególną rolę odgrywają formy wieloliniowe całkowicie
antysymetryczne, gdyż na nich opiera się, należąca już do analizy, teoria form różniczko-
wych. Dlatego też wprowadzona została dla nich specjalna notacja. Np. antysymetryczną
formę biliniową B zapisuje się następująco:

B = B
(e)
ij êi ⊗ êj =

1

2
B

(e)
ij

(

êi ⊗ êj − êj ⊗ êi
)

≡ 1

2
B

(e)
ij êi ∧ êj ≡

∑

i<j

B
(e)
ij êi ∧ êj .

“Dziubek” ∧ nazywa się iloczynem zewnętrznym dwu form (tu: jedno-form). Oczywiście
działanie takich “zdziubkowanych” dwu jedno-form na dwa wektory jest dane regułą

(êi ∧ êj)(v, w) ≡ êi(v) êj(w)− êj(v) êi(w) .

Iloczyny po prawej stronie tego wzoru są iloczynami zwykłych liczb. Ogólnie, bazę wszyst-
kich antysymetrycznych form p-liniowych stanowią p-formy

ω̂
i1...ip
(p) ≡

∑

π

sgn(π) êπ(i1) ⊗ êπ(i2) ⊗ . . . êπ(ip)

≡ êi1 ∧ . . . ∧ êip , o i1 < . . . < ip ,

w których suma przebiega p! permutacji π wskaźników i1, . . . , ip, z których każdy może
przyjmować n wartości (dimV = n). Na sztuki, liniowo niezależnych, całkowicie antysy-
metrycznych form p-liniowych nad n wymiarową przestrzenią wektorową V jest więc

(

n
p

)

.

Jest oczywiste, że (nad p.w. V o dimV = n) nie mogą istnieć całkowicie antysymetryczne
p-formy o p > n. n-forma jest, z dokładnością do liczby z ciała, tylko jedna.

Zadanko
Ustalić, jak przy zmianie [P e→f ]i j f̂

j = êi bazy êi jedno-form n-wymiarowej przestrzeni

V ∗ na bazę f̂ j przekształca się n-forma

ω̂(n) = a·ê1 ∧ . . . ∧ ên ,

w której a jest pewną stałą.
Rozwiązanie: Wykorzystując macierz [P e→ef ]i j zmiany bazy możemy napisać

ω̂(n) = a
∑

j1,...,jn

[P e→f ]1j1 [P
e→f ]2j2 . . . [P

e→f ]njn f̂
j1 ∧ f̂ jn ∧ . . . ∧ f̂ jn .

Z powodu antysymetrii f̂ j1 ∧ f̂ jn ∧ . . . ∧ f̂ jn z sumowania wypadają wyrazy, w których
choćby dwa wskaźniki jl i jk są równe. Dzięki temu w każdym wyrazie sumy występuje
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ta sama n-forma f̂1 ∧ f̂2 ∧ . . .∧ f̂n, tylko z różnym uporządkowaniem wskaźników 1, . . . , n;
doprowadzenie ich do porządku 1, . . . , n daje znak permutacji wskaźników j1, . . . , jn w
stosunku do porządku 1, . . . , n. Zatem

ω̂(n) = a· f̂1 ∧ f̂2 ∧ . . . ∧ f̂n
∑

j1,...,jn

sgn

(

1 . . . n
j1 . . . jn

)

[P e→f ]1j1[P
e→f ]2j2 . . . [P

e→f ]njn

= a·det(P e→f)· f̂1 ∧ f̂2 ∧ . . . ∧ f̂n .

Skorzystaliśmy tu z tego, że suma po j1, . . . , jn jest po prostu definicją wyznacznika ma-
cierzy P e→f . Jeśli macierz ta jest macierzą ortogonalną, [P e→f ]T ·[P e→f ] = I, to, ponieważ
wtedy (detP )2 = det(P T · P ) = 1, n-forma ω̂(n) ma formalnie (z dokładnością do znaku)
tę samą postać w obu bazach.

Przypomnienie:
W przestrzeni wektorowej V wymiaru n można zadać objętość (ze znakiem), jeśli wśród
wszystkich n-form wyróżnić (arbitralnie) jedną (oznaczaną Vol(n)). Istnieje wtedy upo-
rządkowana baza f̂ i przestrzeni V ∗ jedno-form, w której forma ta ma postać Vol(n) =

f̂1 ∧ . . . ∧ f̂n. Liczba

Vol(v1, . . . ,vn) = f̂1 ∧ . . . ∧ f̂n(v1, . . . ,vn) ,

jest wtedy (z definicji) objętością (ze znakiem) równoległościanu rozpiętego na wektorach
v1, . . . ,vn. Tak zdefiniowana objętość nie ma nic wspólnego z długościami rozpinających
równoległościan wektorów, ani z kątami pomiędzy nimi (dlatego można by ją nazwać
objętością “topologiczną”). Te charakterystyki układu wektorów wymagają wprowadzenia
w przestrzeni wektorowej V iloczynu skalarnego (którego tu jeszcze nie było).

Zadanie.
Obliczyć objętość równoległościanu rozpiętego na wektorach v1, . . . ,vn, które w bazie fi
dualnej do bazy jedno-form f̂k, w której Vol(n) = f̂1∧ . . .∧ f̂n, mają składowe vi(f)l (indeks
l numeruje tu wektory v1, . . . ,vn).
Rozwiązanie: Wykorzystujemy liniowość:

Vol(v1, . . . ,vn) =
∑

i1,...,in

vi1(f)1 . . . v
in
(f)n f̂

1 ∧ . . . ∧ f̂n(fi1 , . . . , fin)

=
∑

i1,...,in

∑

π

sgn(π) vi1(f)1 . . . v
in
(f)n f̂

π(1) ⊗ . . .⊗ f̂π(n)(fi1 , . . . , fin)

=
∑

i1,...,in

∑

π

sgn(π) vi1(f)1 . . . v
in
(f)n f̂

π(1)(fi1) · . . . · f̂π(n)(fin)

=
∑

π

∑

i1,...,in

sgn(π) vi1(f)1 . . . v
in
(f)nδ

π(1)
i1
· . . . · δπ(n)in

=
∑

π

sgn(π) v
π(1)
(f)1 . . . v

π(n)
(f)n .
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Wykorzystaliśmy tu to, że skończone sumy można przestawiać (
∑

i1,...,in

∑

π =
∑

π

∑

i1,...,in
)

oraz właściwość delty Kroneckera (pozwalającą łatwo wykonać sumy po i1, . . . , in). Wy-
nik jest oczywiście wyznacznikiem macierzy, której kolumnami są postawione na sztorc
składowe kolejnych wektorów (w bazie fi dualnej do bazy f̂k):

Vol(v1, . . . ,vn) = det









v1(f)1 v1(f)2 . . . v1(f)n
v2(f)1 v2(f)2 . . . v2(f)n
· · . . . ·

vn(f)1 vn(f)2 . . . vn(f)n









.

Zadanie.
Obliczyć wartość formy ω̂(3) = ê1 ∧ ê2 ∧ ê3 na uporządkowanej trójce wektorów a =
3e1 + 2e2 + e3, b = 3e1 + 4e2 + e3, c = e1. Pokazać bezpośrednim rachunkiem, że

ω̂(3)(v, ·, ·) = ê1(v) · ê2 ∧ ê3(·, ·) + ê2(v) · ê3 ∧ ê1(·, ·) + ê3(v) · ê1 ∧ ê2(·, ·) .

Rozwiązanie. Ponieważ znamy składowe wektorów a, b i c w bazie dualnej do tej, w
której zadana jest forma ω̂(3), więc

ω̂(3)(a,b, c) = det





3 3 1
2 4 0
1 1 0



 = −2 .

Drugi punkt sprawdza się łatwo: dla dowolnych dwu wektorów a i b

ω̂(3)(v, a,b) = (ê1 ∧ ê2 ∧ ê3)(v, a,b)

= ê1(v) · ê2(a) · ê3(b) + ê3(v) · ê1(a) · ê2(b) + ê2(v) · ê3(a) · ê1(b)
−ê1(v) · ê3(a) · ê2(b)− ê2(v) · ê1(a) · ê3(b)− ê3(v) · ê2(a) · ê1(b) .

Rozpisując podobnie

ω̂(3)(v, a,b) = ê1(v) · (ê2 ∧ ê3)(a,b) + ê2(v) · (ê3 ∧ ê1)(a,b) + ê3(v) · (ê1 ∧ ê2)(a,b) ,

stwierdzamy, że jest to to samo.

Przypomnienie
Jeśli ciałem jest C to zwykle - zwłaszcza z punktu widzenia fizyka - interesujące są formy
półtoraliniowe, czyli odwzorowanie V×V w ciało C liczb zespolonych, mające właściwość56

D(λ1v1 + λ2v2, w) = λ∗1D(v1,w) + λ∗2D(v2, w) ,

D(v, η1w1 + η2w2) = η1D(v, w1) + η2D (v, w2) .

56Logicznie byłoby formy takie oznaczać literą P , od słowa “półtora”. Ponieważ jednak P w tym
skrypcie już oznacza macierz zmiany bazy w przestrzeni jedno-form, formy półtoraliniowe będziemy
oznaczać literą D (od francuskiego demi-linéaire).
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Forma półtoraliniowa nie może oczywiście być symetryczna, ale może być hermitowska:

D(v, w) = [D(w, v)]∗ ,

lub antyhermitowska

D(v, w) = −[D(w, v)]∗ .

Oczywiście formę półtoraliniową, która nie jest ani taka ani siaka zawsze można przed-
stawić jako sumę formy hermitowskiej i antyhermitowskiej.

W ustalonej bazie ei przestrzeni V nad ciałem C formie biliniowej D(·, ·) odpowiada
jej macierz D(e)

ij . Jeśli wektory v i w mają w tej bazie składowe vi(e) oraz wj
(e), to

D(v,w) = D(ei, ej) (v
i
(e))
∗wj

(e) ≡ D
(e)
ij (v

i
(e))
∗wj

(e) ,

lub jawnie macierzowo:

D(v,w) = ((v1(e))
∗, · · · , (vn(e))∗)









D
(e)
11 . . . D

(e)
1n

· ·
· ·

D
(e)
n1 · · · D

(e)
nn

















w1
(e)

·
·

wn
(e)









Ze wzorów tych natychmiast wynika przepis, według którego przekształca się macierz
formy półtoraliniowej przy zmianie bazy:

D
(f)
ij = D

(e)
kl ([Re←f ]

k
i)
∗ [Re←f ]

l
j ,

lub macierzowo († oznacza macierz zespoloną sprzężoną i transponowaną):

D(f) = [Re←f ]
† ·D(e) · Re←f .

Macierz formy hermitowskiej (antyhermitowskiej) określonej na przestrzeni wektorowej
nad ciałem C jest macierzą hermitowską D(e)

ij = [D
(e)
ji ]
∗ (antyhermitowską D(e)

ij = −[D(e)
ji ]
∗)

i ma n+ 1
2
n(n−1) ·2 = n2 (odpowiednio: n+ 1

2
n(n−1) ·2 = n2 - bo diagonalne elementy

muszą być czysto urojone) rzeczywistych parametrów.

Przypomnienie
Forma kwadratowa jest to takie odwzorowanie przestrzeni wektorowej V w R lub C (tj.
w ciało), że po pierwsze

Q(λv) = λ2Q(v) ,

i po drugie odwzorowanie V × V zadane wzorem

B(v, w) ≡ 1

2
[Q(v +w)−Q(v)−Q(w)] ,
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jest uczciwą formą biliniową. Drugi warunek jest konieczny, by wykluczyć odwzorowania
takie, jak odwzorowanie z R2 w R zadane wzorem:

Q

([

x
y

])

=

{

x2y2/(x2 + y2), gdy x2 + y2 6= 0
0 gdy x = y = 0

,

które spełnia pierwszy warunek (jednorodność stopnia drugiego), ale nie jest dobrą formą
kwadratową.

W gruncie rzeczy prawdziwą formę kwadratową na p. wektorowej nad R można uwa-
żać za pewną formę biliniową B(·, ·) której obydwoma argumentami jest ten sam wektor:
Q(v) ≡ B(v,v). Oczywiście formę kwadratową produkuje tylko część symetryczna Bs(·, ·)
danej formy - jej część antysymetryczna Ba(·, ·) znika po wstawieniu do niej dwu takich
samych wektorów. I odwrotnie, mając formę kwadratową Q można odtworzyć część sy-
metryczną formy biliniowej, z której owa forma kwadratowa wzięła swój początek:

Bs(v, w) =
1

2
[Q(v +w)−Q(v)−Q(w)] .

Oczywiście w ustalonej bazie ei przestrzeni V formie kwadratowej odpowiada macierz
symetryczna:

Q(v) ≡ Q
(e)
ij v

i
(e)v

j
(e) , gdzie Q

(e)
ij = Q

(e)
ji .

Jak zwykle opatrzyliśmy macierz Q(e)
ij superskryptem (e), aby pamiętać, że jest to ma-

cierz formy Q w bazie ei. Przez odpowiednią zmianę bazy macierz formy Q można zawsze
sprowadzić do postaci diagonalnej. Postać diagonalna macierzy formy Q nie jest jedno-
znaczna już choćby dlatego, że nic (dopóki w przestrzeni wektorowej V nie wprowadzi
się iloczynu skalarnego) nie ustala “długości” wektorów bazy (nie jest to jednak jedyna
dowolność). Jednakże każda postać diagonalna danej formy Q (określonej na przestrzeni
wektorowej nad ciałem R) ma tę samą liczbę dodatnich, ujemnych i zerowych elementów
diagonalnych, tj. ma zawsze tę samą sygnaturę (twierdzenie Sylvestra).

Przypomnienie
Iloczyn skalarny S(·, ·) ≡ (·|·)S wektorów z przestrzeni wektorowej V nad ciałem R (nad
ciałem C) jest zadawany przez ustaloną symetryczną (hermitowską) formę biliniową (pół-
toraliniową) taką, że S(v, v) ≥ 0 i równość zachodzi tu tylko, gdy v = 0 (tj. dla wektora
zerowego).

Iloczyn skalarny w przestrzeni wektorowej jest tą strukturą, która pozwala zdefiniować
“długość” wektora, czyli jego normę:

||v|| =
√

S(v, v) ≡
√

(v|v)S .

(czyniąc tym samym z p. wektorowej p. unormowaną, co jest warunkiem dostatecznym,
by można w niej było uprawiać analizę, bo w przestrzeni wektorowej norma indukuje
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metrykę) oraz zdefiniować pojęcie wzajemnej prostopadłości dwóch wektorów: v i w są
do siebie nawzajem prostopadłe, gdy S(v,w) = 0.

Korzystając z iloczynu skalarnego można też, w przestrzeniach wektorowych nad cia-
łem R, zdefiniować kąt α(v,w) pomiędzy dwoma wektorami v i w:

cosα(v,w) =
S(v, w)

||v|| ||w|| .

Oczywiście taka długość wektora i taki kąt pomiędzy dwoma wektorami, w przypadku
żywych wektorów, którymi mogą być na przykład wielomiany (zobacz Zadanie X, w któ-
rym wprowadzony jest pewien iloczyn skalarny w przestrzeni wektorowej wielomianów)
mogą być dość abstrakcyjne. Niemniej w przestrzeni wektorowej Rn (najlepiej o n = 3) z
kanonicznym iloczynem skalarnym zdefiniowanym wzorem,57 (v i w są tu żywymi wekto-
rami),

S(v, w) = v1w1 + v2w2 + . . .+ vnwn , gdy v =









v1

v2

·
vn









, w =









w1

w2

·
wn









,

jeśli wektory kanonicznej bazy zero-jedynkowej utożsamimy ze “szkolnymi” wektorami-
strzałkami (z wersorami osi kartezjańskiego układu współrzędnych), tak zdefiniowane
długość i kąt są tymi, którymi posługuje się zwykła (a najpewniej analityczna) geometria.

Kanoniczny iloczyn skalarny w p. wektorowej Cn jest zadany wzorem

S(v, w) = (v1)∗w1 + (v2)∗w2 + . . .+ (vn)∗wn , gdy v =









v1

v2

·
vn









, w =









w1

w2

·
wn









,

(żywe wektory).

Przypomnienie
Ortonormalizacja Gramma-Schmidta. Jeśli w przestrzeni wektorowej V o dimV = n nad
ciałem58 R zadany jest iloczyn skalarny, to z dowolnego zbioru n liniowo niezależnych wek-
torów wi, i = 1, . . . , n można zbudować bazę w′i ortonormalną (względem tego iloczynu
skalarnego), tj. taką, że

S(w′i, w
′
j) ≡ (w′i|w′j)S = δij ,

(wszystkie wektory bazy w′i mają długość jednostkową i wektory różne są wzajemnie do
siebie prostopadłe w sensie tego iloczynu skalarnego). Konstrukcja ta zwana ortonorma-
lizacją Gramma-Schmidta jest prosta. Wybieramy ze zbioru wektorów wi jeden wektor,

57W tym przypadku dodatnia określoność formy Q(v) = S(v,v) jest oczywista: Q(v) = (v1)2+(v2)2+
. . .+ (vn)2. Taki iloczyn skarny wektorów v i w z Rn będziemy oznaczać “po szkolnemu”, tj. v ·w.

58Analogiczną konstrukcję można oczywiście przeprowadzić także z bazą p. wektorowej nad ciałem C,
z półtoraliniowym iloczynem skalarnym.
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powiedzmy w1 (kolejność wybierania wektorów jest dowolna, ale inna kolejność da inny
zbiór wektorów ortonormalnych) i tworzymy wektor w′1 według przepisu:

w′1 =
w1

||w1||
≡ w1
√

(w1|w1)S
,

tak, iż (w′1|w′1)S = 1. Następnie wybieramy drugi wektor, powiedzmy w2 i tworzymy
wektor:

w2 − (w′1|w2)S w
′
1 ,

“wycinając” z w2 jego rzut59 na wektor w′1. Tak utworzony wektor jest już ortogonalny
(w sensie iloczynu skalarnego (·|·)S) do w′1:

(w′1|w2 − (w′1|w2)S w
′
1)S = (w′1|w2)S − (w′1|w2)S (w

′
1|w′1)S

= (w′1|w2)S − (w′1|w2)S = 0 .

Skorzystaliśmy tu z tego, że (w′1|w′1) = 1. Drugim wektorem bazy ortonormalnej jest
więc wektor w′2:

w′2 =
w2 − (w′1|w2)S w

′
1

||w2 − (w′1|w2)S w′1||
,

który, jak łatwo sprawdzić, spełnia warunki (w′1|w′2)S = 0, (w′2|w′2)S = 1. Dalsze kroki
ortonormalizacji Gramma-Schmidta powinny już być oczywiste: wektorem w′3 jest wektor

w′3 =
w3 − (w′1|w3)S w

′
1 − (w′2|w3)S w

′
2

||w3 − (w′1|w3)S w′1 − (w′2|w3)S w′2||
,

który, jak znowu nietrudno sprawdzić spełnia warunki (w′1|w′3)S = 0, (w′2|w′3)S = 0,
(w′3|w′3)S = 1, itd.

W tej samej przestrzeni wektorowej można zdefiniować nieskończenie wiele różnych
iloczynów skalarnych bo może być nieskończenie wiele dodatnio określonych form dwu-
liniowych (półtoraliniowych). Aby jednak móc powiedzieć, czy dana forma biliniowa
(ograniczmy się teraz do p. wektorowych nad R) może być przyjęta za iloczyn skalarny,
trzeba móc powiedzieć, czy jest ona (jako forma kwadratowa) dodatnio określona. Tym
zajmiemy się więc w kolejnych zadaniach.

59Należy tu zwrócić uwagę na to, że sens terminu “rzut” jest tu inny niż w Zadaniach 42 i 43: tam “rzut”
był wyznaczony przez wektory rozpinające podprzestrzeń, na którą było przeprowadzane rzutowanie i inne
wektory, “wzdłuż” których następowało rzutowanie (tj. wektory rozpinające dopełniającą podprzestrzeń);
tu rzut definiuje iloczyn skalarny, jest więc to rzut na podprzestrzeń prostopadłą w sensie iloczynu
skalarnego (·|·)S do podprzestrzeni rozpinanej przez wektor w′1 (ogólniej: prostopadłą do podprzestrzeni
rozpinanej przez wszystkie już zortonormalizowane - w poprzednich krokach konstrukcji - wektory bazy).
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Przykład
Wektory ei, i = 1, 2, 3 tworzą bazę przestrzeni wektorowej V nad R (dimV = 3). Syme-
tryczna forma biliniowa B(v,w) = B(w,v) jest zadana na wektorach tej bazy:

B(e1, e1) = 1 , B(e2, e2) = 2 , B(e3, e3) = 3 ,

B(e1, e2) = 1 , B(e1, e3) = 1 , B(e2, e3) = 2 .

Sprawdzić, że forma B(·, ·) może być iloczynem skalarnym w V . Obliczyć długości, jakie
w tym iloczynie skalarnym mają wektory

v = e2 + e3 , w = −4 e1 + e2 + 3 e3 ,

i obliczyć kosinus kąta α(v,w) pomiędzy tymi wektorami. Z bazy ei zbudować także me-
todą Gramma-Schmidta bazę ortonormalną w iloczynie skalarnym zadanym przez formę
B.
Rozwiązanie: Forma B(·, ·) jest symetryczna, wiec wystarczy pokazać, że jest ona, jako
forma kwadratowa, dodatnio określona. Jej macierz w bazie ei ma postać

B
(e)
ij ≡ B(ei, ej) =





1 1 1
1 2 2
1 2 3



 .

Dowolny wektor p. V ma postać v = e1x+e2y+e3z , gdzie (x, y, z) są jego składowymi w
tej bazie. Wartość na takim wektorze formy kwadratowej utworzonej z B(·, ·) jest równa

B(v,v) = (x, y, z)





1 1 1
1 2 2
1 2 3









x
y
z



 = x2 + 2y2 + 3z2 + 2xy + 2xz + 4yz .

Że jest ona zawsze dodatnia, chyba, że wektor v jest wektorem zerowym, można się
przekonać stosując metodę Lagrange’a, czyli zwijając powyższe wyrażenie do pełnych
kwadratów:

B(v,v) = (x+ y + z)2 + y2 + 2z2 + 2yz = (x+ y + z)2 + (y + z)2 + z2 .

Forma ta jest zatem dodatnio określona i może być iloczynem skalarnym. Oznaczymy
go (·|·)B. Zauważmy tylko, że wektory bazy e1, e2, e3 nie są w tym ilocznie skalarnym
ortonormalne.

Długości wektorów v i w oraz ich iloczyn skalarny są więc równe

||v||2 = (0, 1, 1)





1 1 1
1 2 2
1 2 3









0
1
1



 = (0, 1, 1)





2
4
5



 = 9 ,

||w||2 = (−4, 1, 3)





1 1 1
1 2 2
1 2 3









−4
1
3



 = (−4, 1, 3)





0
4
7



 = 25 ,

(v|w)B = (0, 1, 1)





1 1 1
1 2 2
1 2 3









−4
1
3



 = (0, 1, 1)





0
4
7



 = 11 .

165



Zatem ||v|| = 3, ||w|| = 5 i

cosα(v,w) =
(v|w)B
||v|| ||w|| =

11

15
.

Konstrukcja bazy ortonormalnej fi, i = 1, 2, 3 jest tu prosta:

f1 =
e1

||e1||
= e1 ,

bo (e1|e1)B ≡ B(e1, e1) = 1. Następnie

f ′2 = e2 − f1 (f1|e2)B = e2 − f1 (e1|e2)B = e2 − e1 .

Zatem

f2 =
e2 − e1

||e2 − e1||
=

e2 − e1
√

(e2 − e1|e2 − e1)B
=

e2 − e1
√

(e1|e1)B + (e2|e2)B − 2(e1|e2)B
= −e1 + e2 .

Wreszcie

f ′3 = e3 − f1(f1|e3)B − f2(f2|e3)B = e3 − e1(e1|e3)B − (e2 − e1) (e2 − e1|e3)B
= e3 − e1 − (e2 − e1)(2− 1) = −e2 + e3 .

Ponieważ || − e2 + e3|| = 1, baza ortonormalna ma postać

(f1, f2, f3) = (e1, e2, e3)





1 −1 0
0 1 −1
0 0 1



 .

Stojąca tu macierz to macierz zmiany bazy Re←f . Mając ją można sprawdzić, że macierz
formy B(·, ·) zapisana w bazie fi jest macierzą jednostkową:60 B(f)

ij = B
(e)
kl [Re←f ]

k
i[Re←f ]

l
j ,

czyli macierzowo

B(f) = [Re←f ]
T · B(e) ·Re←f

=





1 0 0
−1 1 0
0 −1 1









1 1 1
1 2 2
1 2 3









1 −1 0
0 1 −1
0 0 1



 =





1 0 0
0 1 0
0 0 1



 .

Oczywiście (fi|fj)B = B(fi, fj) = δij .

Zadanie
Z wielomianów w0(x) = 1, w1(x) = x, w2(x) = x2 i w3(x) = x3 rozpinających przestrzeń
wektorową wielomianów stopnia nie wyższego niż trzeci skonstruować metodą Gramma-
Schmidta bazę ortonormalną w iloczynie skalarnym

(w(x)|v(x)) =
∫ 1

0

dxw(x)v(x) ,

60Musi tak być, bo wektory fi są ortonormalne w iloczynie skalarnym zadawanym przez tę formę.
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zaczynając raz od jednego końca podanej listy wielomianów, a drugi raz od drugiego.
Rozwiązanie: Najpierw skonstruujemy bazę wielomianów ei, i = 0, 1, 2, 3 zaczynając od
w0(x). Wielomian w0(x) jest od razu prawidłowo unormowany, więc po prostu e0 = w0.
Następnie tworzymy wektor-wielomian

x− 1 ·
∫ 1

0

dt 1 · t = x− 1

2
,

i obliczamy całkę z (t− 1
2
)2, żeby znaleźć normalizację. Całka jest równa 1

12
, więc

e1 =
√
12 (x− 1

2
) .

Potem tworzymy wektor-wielomian

x2 − 1 ·
∫ 1

0

dt 1 · t2 −
√
12 (x− 1

2
)

∫ 1

0

dt
√
12 (t− 1

2
) t2 = x2 − x+ 1

6
.

Ponieważ całka z (t2 − t+ 1
6
)2 wynosi 1

180
,

e2 =
√
180 (x2 − x+ 1

6
) .

Wreszcie tworzymy wektor-wielomian

x3 − 1 ·
∫ 1

0

dt 1 · t3 −
√
12 (x− 1

2
)

∫ 1

0

dt
√
12 (t− 1

2
) t3

−
√
180 (x2 − x+ 1

6
)

∫ 1

0

dx
√
180 (x2 − x+ 1

6
)x3 = x3 − 3

2
x2 +

3

5
x− 1

20
.

Całka z (t3 − 3
2
t2 + 3

5
t− 1

20
)2 jest równa 1

1800
więc

e3 =
√
1800 (x3 − 3

2
x2 +

3

5
x− 1

20
) .

Wszystkie rachunki, choć proste, są żmudne i najlepiej podeprzeć się Mathematicą. Przy
zaczęciu konstrukcji od drugiego końca otrzymuje się bazę

f3 =
√
7x3

f2 =
√
180 (x2 − 7

6
x3)

f1 =
√
300 (x− 3x2 +

21

10
x3)

f0 =
√
16 (1− 15

2
x+ 15x2 − 35

4
x3) .
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Uwaga: Zastosowanie ortonormalizacji Gramma-Schmidta do utworzenia bazy prze-
strzeni wektorowej wielomianów dowolnego stopnia61 o współczynnikach rzeczywistych
określonych na całej osi R z iloczynem skalarnym

(wa(x)|wb(x))S =

∫ ∞

−∞
dx e−x

2

wa(x)wb(x) ,

daje, jeśli procedurę ortonormalizacji zastosować do wielomianów uporządkowanych ka-
nonicznie: w0(x) = 1, w1(x) = x, w2(x) = x2, itd., wielomiany Hermite’a:

H0(x) = C0 · 1 , H1(x) = C1 · 2x , H2(x) = C2 · 4x2 , H3(x) = C3 · (8x3 − 12x) , . . .

gdzie Cn = 1/
√

2nn!
√
π. Grają one ważną rolę w kwantowej teorii oscylatora harmo-

nicznego. Innymi układami wielomianów ortonormalnych (przy innej definicji iloczynu
skalarnego i/lub innej ich dziedzinie) są wielomiany Legendre’s, Laguerra, Gegenbauera,
Czebyszewa...

Zadanie 61
Dana jest forma kwadratowa

Q = x2 + 2y2 + 3z2 + 4xy + 5yz + 6xz .

Stosując metodę Lagrange’a sprowadzić ją do postaci diagonalnej. Jeśli to możliwe, podać
przykłady trójek liczb x, y, z takich, że Q > 0, takich, że Q < 0 i takich, że Q = 0.
Rozwiązanie: Interpretując zmienne x, y i z jako składowe vi(e) wektora v w pewnej
bazie e1, e2, e3, tj. pisząc x ≡ v1(e), y ≡ v2(e), z ≡ v3(e), możemy znaleźć macierz formy Q:

Q(v) = (x, y, z)





1 2 3
2 2 5/2
3 5/2 3









x
y
z



 ≡ Q
(e)
ij v

i
(e)v

j
(e) .

Zwróćmy tu uwagę na to, że elementy pozadiagonalne są połówkami odpowiednich wyra-
zów mieszanych w Q! Metoda Lagrange’a (szumna nazwa!) sprowadza się do sukcesyw-
nego “zwijania do pełnego kwadratu”:

Q = x2 + 2y2 + 3z2 + 4xy + 5yz + 6xz

= (x+ 2y + 3z)2 − 2y2 − 6z2 − 7yz

= (x+ 2y + 3z)2 − 2(y +
7

4
z)2 +

1

8
z2 .

61Przestrzeń ta jest wiec nieskończenie wymiarowa, ale jeszcze “do ogarnięcia”, bo jest ośrodkowa, tzn.
mająca przeliczalną bazę; cuda - czyli kwantowa teoria pola - zaczynają się, gdy przestrzeń Hilberta -
już było, ale żeby się utrwaliło: wektorowa przestrzeń nad C z iloczynem skalarnym, zupełna w normie
zadawanej przez ten iloczyn - ma bazę nieprzeliczalną...
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Z postaci tej odczytujemy, że w odpowiedniej bazie fi, którą znajdziemy poniżej, macierz
formy będzie postaci

Q
(f)
ij =





1 0 0
0 −2 0
0 0 1

8



 .

Przypomnijmy, że zmianę bazy reprezentujemy wzajemnie odwrotnymi macierzami Rf←e

i Re←f takimi, że

ei = fj[Rf←e]
j
i vi(f) = [Rf←e]

i
jv

j
(e) ,

fi = ej [Re←f ]
j
i vi(e) = [Re←f ]

i
jv

j
(f) .

W naszym przypadku, ponieważ wartość formy kwadratowej Q na wektorze v nie może
zależeć od wyboru bazy, powinno być jasne, że jeśli znajdziemy taką bazę fi, w której
składowe wektora v są postaci

v1(f) = v1(e) + 2v2(e) + 3v3(e) ,

v2(f) = v2(e) +
7

4
v3(e) ,

v3(f) = v3(e) ,

to będziemy mieć Q = [v1(f)]
2 − 2[v2(f)]

2 + 1
8
[v3(f)]

2, tj. w bazie fi macierz formy będzie
diagonalna. Z powyższego wzoru mamy natychmiast macierz Rf←e:

Rf←e =





1 2 3
0 1 7/4
0 0 1



 .

Macierz odwrotną też łatwo znaleźć wyrażając vi(e) przez vi(f): v
3
(e) = v3(f), v

2
(e) = v2(f)− 7

4
v3(f),

v1(e) = v1(f) − 2(v2(f) − 7
4
v3(f))− 3v3(f), co daje

Re←f =





1 −2 1
2

0 1 −7/4
0 0 1



 ,

czyli, zgodnie ze wzorem przypomnianym wyżej, f1 = e1, f2 = −2e1 + e2 i f3 = 1
2
e1 −

7
4
e2 + e3. Ale w gruncie rzeczy nie jest to nam tu do niczego potrzebne. To co ważne, to

to, że

Q(v) = Q
(e)
ij v

i
(e)v

j
(e) = Q

(e)
ij [Re←f ]

i
k[Re←f ]

j
lv

k
(f)v

l
(f) ≡ Q

(f)
kl v

k
(f)v

l
(f) ,

czyli Q(f)
kl = Q

(e)
ij [Re←f ]

i
k[Re←f ]

j
l (reguła ta jest taka sama, jak podana w Przypomnieniu

reguła przekształcania się przy zmianie bazy macierzy formy biliniowej). Sens tego wzoru
jest jasny: macierze Re←f przerabiają składowe wektora v dane w bazie fi na jego składowe
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w bazie ei, a na te z kolei działa już macierz Q(e). Macierzowo powyższy wzór wygląda
tak:

Q(f) = RT
e←f ·Q(e) · Re←f .

(symbol T oznacza transpozycję macierzy). Łatwo sprawdzić, że istotnie:




1 0 0
−2 1 0
1
2
−7/4 1









1 2 3
2 2 5/2
3 5/2 3









1 −2 1
2

0 1 −7/4
0 0 1



 =





1 0 0
0 −2 0
0 0 1

8



 .

Oczywiście można przejść np. do bazy gi której wektory są proporcjonalne do wektorów
bazy fi: gi = κifi (niema tu sumowania po i). Wtedy oczywiście vi(g) = (1/κi)v

i
(f) i

macierz formy kwadratowej Q w bazie gi ma postać

Q(g) =





κ21 0 0
0 −2κ22 0
0 0 1

8
κ23



 .

Widać że liczby na diagonali się zmienią ale nie ich znaki (pod warunkiem, że czynniki κi
nie mogą być zespolone - dlatego twierdzenie Sylvestra dotyczy tylko form kwadratowych
na p.w. nad ciałem R).

Niezmienniczość sygnatury formy względem przeskalowania wektorów bazy jest dość
oczywista. Aby zobaczyć, że i bardziej skomplikowane transformacje sygnatury tej nie
zmieniają zdagonalizujmy jeszcze raz naszą formę Q metodą Lagrange’a, ale zaczynając
“od innego końca”:

Q = x2 + 2y2 + 3z2 + 4xy + 5yz + 6xz = 3(z + x+
5

6
y)2 − 2x2 − 1

12
y2 − xy

= 3(z + x+
5

6
y)2 − 2(x+

1

4
y)2 +

1

24
y2 .

Widać, że jak poprzednio sygnatura jest (+,−,+) (kolejność plusów i minusów jest oczy-
wiście bez znaczenia - liczy się tylko liczba plusów i minusów!). Tak jak poprzednio mo-
żemy z powyższej postaci formy odczytać zmianę bazy przestrzeni wektorowej i macierz
przejścia prowadzące do diagonalnej postaci formy:

v1(h) = v1(e) +
5

6
v2(e) + v3(e)

v2(h) = v1(e) +
1

4
v2(e) Rh←e =





1 5
6

1
1 1

4
0

0 1 0



 ,

v3(h) = v2(e)

(zmiana bazy z ei na hi). Zatem

Q(h) = RT
e←h ·Q(e) · Re←h =





0 0 1
1 0 −1
−1

4
1 − 7

12









1 2 3
2 2 5/2
3 5/2 3









0 1 −1
4

0 0 1
1 −1 − 7

12




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=





0 0 1
1 0 −1
−1

4
1 − 7

12









3 −2 0
5
2
−1

2
1
24

3 0 0



 =





3 0 0
0 −2 0
0 0 1

24



 .

Jak widać liczby na diagonali się zmieniły, ale sygnatura - nie.

Na koniec znajdźmy takie wektory v+, v− oraz v0, że Q(v+) > 0, Q(v−) < 0 i
Q(v0) = 0. Ich postać w bazie fi jest oczywista62 (wynika z diagonalnej postaci macierzy
formy w tej bazie):

v+ = a′ f1 + b′ f3 , v− = c′ f2 , v0 = a f1 ±
√

1

2
a2 +

1

16
b2 f2 + b f3 .

a′, b′, c′ oraz a, b i c są tu dowolnymi liczbami; postacie wektorów v+ i v− nie są oczywiście
jedynymi możliwymi - np. druga składowa v+ nie musi być zupełnie zerowa, żeby wartość
formy na tym wektorze była dodatnia. Działając na kolumienki utworzone ze składowych
tych wektorów macierzą R(e←f) można podać postać tych wektorów w wyjściowej bazie
ei:

v+ = (a′ +
1

2
b′) e1 −

7

4
b′ e2 + b′ e3 ,

v− = −2c′ e1 + c′ e2 ,

v0 =

(

a +
1

2
b∓ 2

√

1

8
a2 +

1

16
b2

)

e1 +

(

−7
4
b±

√

1

2
a2 +

1

16
b2

)

e2 + b e3 .

Można sprawdzić bezpośrednim rachunkiem, że wypisana w treści zadania forma Q(x, y, z)
= x2 + 2y2 + 3z2 + 4xy + 5yz + 6xz jest równa a′2 + 1

8
b′2, gdy x = a′ + 1

2
b′, y = −7

4
b′,

z = b′, równa −2c′2, gdy x = −2c′, y = c′, z = 0 i zerowa, gdy x, y, z są równe
składowym w bazie ei wektora v0. Powinno być też jasne, że to, że można znaleźć takie
wektory, na których wartość formy Q jest dodatnia, ujemna i zerowa wynika z tego, że
ma ona sygnaturę mieszaną; gdyby jej sygnatura była np. (+,+,+), ujemnych wartości
nie dałoby się uzyskać, a zerową tylko na wektorze zerowym.

Zadanie 62
Sprowadzić do formy diagonalnej formę kwadratową

Q = x1x2 + x1x3 + x2x3 .

Jeśli to możliwe, podać przykłady trójek liczb x1, x2, x3 takich, że Q > 0, takich, że
Q < 0 i takich, że Q = 0.
Rozwiązanie: Akurat tu nie da się zastosować metody Lagrange’a od razu bo - jak
mówią komentatorzy meczów siatkarskich - “niema z czego uderzyć”. Trzeba więc naj-
pierw “ruszyć z posad bryłę” formy kwadratowej (a nie, jak kiedyś chcieli niektórzy -
“the commies” pod przewodem Ziutka Słoneczko, jak o nich mówił swoim niezrównanie

62W bazie hi też, ale podajmy je w bazie fi.
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bezpośrednim językiem Marek Hłasko - bryłę świata). Podstawmy zatem x1 = y1 − y2,
x2 = y1 + y2, x3 = y3. Forma przyjmie wtedy postać

Q = y21 − y22 + 2y1y3 = (y1 + y3)
2 − y22 − y23 .

i teraz już można przejść do zmiennych z1 = y1 + y3, z2 = y2, z3 = y3, czyli y1 = z1 − z3,
y2 = z2, y3 = z3. Ostatecznie więc zamiana zmiennych diagonalizująca formę kwadratową
ma postać

x1 = z1 − z2 − z3 ,
x2 = z1 + z2 − z3 ,
x3 = z3 ,

i w nowych zmiennych zi forma ma postać

Q = z21 − z22 − z23 .

Ma ona zatem sygnaturę (+,−,−). Postępujemy dalej jak w poprzednim zadaniu. Po-
wyższa transformacja wyrażająca stare zmienne (składowe w starej bazie) przez nowe (a
nie jak w poprzednim zadaniu nowe przez stare!) daje nam od razu potrzebną macierz
zmiany bazy Re←f :

Re←f =





1 −1 −1
1 1 −1
0 0 1



 .

Macierz ta rzeczywiście diagonalizuje macierz Q(e) formy Q:

RT
e←f ·Q(e) · Re←f =





1 1 0
−1 1 0
−1 −1 1









0 1
2

1
2

1
2

0 1
2

1
2

1
2

0









1 −1 −1
1 1 −1
0 0 1



 =





1 0 0
0 −1 0
0 0 −1



 .

Jeśli uznać, że x1 ≡ v1(e), x2 ≡ v2(e), x3 ≡ v3(e), są składowymi wektora v w bazie ei, to
z1 ≡ v1(f), z2 ≡ v2(f), z3 ≡ v3(f), są składowymi tego samego wektora w bazie tworzonej
przez wektory fi = ek(Re←f)

k
i:

(f1, f2, f3) = (e1, e2, e3)





1 −1 −1
1 1 −1
0 0 1



 .

Macierz odwrotną, Rf←e, też można znaleźć: wystarczy wyrazić zmienne zi przez xi.
Wtedy ei = fk[Rf←e]

k
i, czyli

(e1, e2, e3) = (f1, f2, f3)





1
2

1
2

1
−1

2
1
2

0
0 0 1



 .
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Znów, ponieważ sygnatura formy jest mieszana, można podać takie wektory v+, v−
oraz v0 że Q(v+) > 0, Q(v−) < 0 i Q(v0) = 0:

v+ = a′ f1 , v− = b′ f2 + c′ f3 , v0 = ±
√
b2 + c2 f1 + b f2 + c f3 .

a′, b′, c′ oraz a, b i c są tu dowolnymi liczbami; także i tu postacie wektorów v+ i v− nie są
jedynymi możliwymi. Działając na kolumienki utworzone ze składowych tych wektorów
macierzą R(e←f) można podać postać tych wektorów w wyjściowej bazie ei:

v+ = a e1 + a e2 ,

v− = −(b+ c) e1 + (b− c) e2 + c e3 ,

v0 =
(

±
√
b2 + c2 − b− c

)

e1 +
(

±
√
b2 + c2 + b− c

)

e2 + c e3 .

Można sprawdzić bezpośrednim rachunkiem, że przyjmując w formie Q(x1, x2, x3) za x1,
x2 i x3 składowe w bazie ei wypisanych powyżej wektorów dostaje się Q > 0, Q < 0 i
Q = 0.

Przypomnienie
Forma kwadratowa Q(x1, . . . , xn) jest dodatnio (ujemnie) określona, jeśli jej wartość na
dowolnym wektorze (x1, . . . , xn) jest dodatnia (ujemna). Ustalenie tego jest w wielu za-
gadnieniach, np. przy szukaniu ekstremów funkcji wielu zmiennych, istotne. Oczywiście
jeśli sygnaturą formy są same plusy (same minusy), to jest ona dodatnio (ujemnie) okre-
ślona. Innym użytecznym narzędziem pozwalającym badać określoność macierzy bez
jawnego jej diagonalizowania jest “kryterium minorowe”:
Jeśli dodatnie są wszystkie jej minory M11, M22 . . . Mnn (minor Mkk jest wyznacznikiem
macierzy k×k wyjętej z lewego górnego rogu macierzy formy Q), to forma Q jest dodatnio
określona.
(Alternatywnie zamiast żądać dodatniości kolejnych minorów wyjmowanych z lewego gór-
nego rogu, można żądać dodatniości kolejnych minorów wyjmowanych z prawego dolnego
rogu). Forma jest ujemnie określona, gdy dodatnio określona jest forma −Q, której ma-
cierz ma wszystkie elementy ze zmienionym znakiem; inaczej, Q jest ujemnie określona
gdy (−1)kMkk > 0.

Przykład
W przypadku formy kwadratowej

Q(x, y) = ax2 + b y2 + 2d xy = (x, y)

(

a d
d b

)(

x
y

)

dwu zmiennych regułę tę można natychmiast sprawdzić: warunki M11 = a > 0, M22 =
ab− d2 > zapewniają, że forma ta

Q(x, y) = ax2 + by2 + 2dxy = a(x+
d

a
y)2 +

ab− d2
a

y2

ma sygnaturę (+,+), co jest równoważne jej dodatniej określoności.
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Zadanie 63
Dla jakich rzeczywistych wartości parametru λ forma

Q(x, y, z) = 5x2 + y2 + λz2 + 4xy − 2xz − 2yz = (x, y, z)





5 2 −1
2 1 −1
−1 −1 λ









x
y
z





jest dodatnio określona?
Rozwiązanie: Kryterium “minorowe” daje warunki

M11 = 5 > 0, M22 = 1 > 0, M33 = λ− 2 > 0 ,

czyli forma jest dodatnio określona gdy λ > 2. To samo można zobaczyć stosując metodę
Lagrange’a:

Q(x, y, z) = 5(x+
2

5
y − 1

5
z)2 − 5(

2

5
y − 1

5
z)2 + y2 + λz2 − 2yz

= 5(x+
2

5
y − 1

5
z)2 +

1

5
y2 − 6

5
yz + (λ− 1

5
)z2

= 5(x+
2

5
y − 1

5
z)2 +

1

5
(y − 3z)2 + (λ− 2)z2,

co pokazuje, że gdy λ > 2, forma ma sygaturę (+,+,+), czyli jest dodatnio określona.63

Zadanie 64
Dla jakich rzeczywistych wartości parametru λ forma

Q = x2 + 4y2 + z2 + 2λxy + 10xz + 6yz = (x, y, z)





1 λ 5
λ 4 3
5 3 1









x
y
z



 ,

jest dodatnio określona?
Rozwiązanie: Kryterium “minorowe” daje warunki

M11 = 1 > 0, M22 = 4− λ2 > 0, M33 = −105 + 30λ− λ2 > 0 ,

Z ostatniego z nich, rozwiązując równanie kwadratowe M33(λ) = 0 mamy pierwiastki
λ1 = 15−2

√
30 oraz λ2 = 15+2

√
30; pomiędzy λ1, a λ2 minor M33 > 0. Ponieważ jednak

λ1 > 3, warunek M33 > 0 jest sprzeczny z warunkiem M22 > 0, który jest spełniony tylko
gdy |λ| < 2. Zatem forma ta nigdy nie jest dodatnio określona.

To samo można zobaczyć stosując diagonalizację Lagrange’a (zaczynając od końca)

Q = (z + 5x+ 3y)2 − 24x2 − 5y2 − (30− 2λ)xy

= (z + 5x+ 3y)2 − 5[y + (3− 1

5
λ)x]2 +

1

5
(15− λ)2x2 − 24x2.

63Uważnie patrząc można dostrzec, że współczynniki pojawiające się w metodzie Lagrange’a (stosowa-
nej sukcesywnie do x, y i z) przed kolejnymi pełnymi kwadratami mają coś wspólnego z minorami M11,
M22, . . . Na tym w istocie rzeczy polega dowód kryterium “minorowego”.
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Stąd już widać, że sygnatura formy jest mieszana, niezależnie od wartości λ.

Zadanie 65
Zbadać określoność i podać sygnaturę formy kwadratowej

Q = 2x2 + y2 + 3z2 + 2λxy + 2xz ,

w zależności od wartości parametru λ.
Rozwiązanie: Aby ustalić dla jakich wartości λ forma jest dodatnio określona, można
posłużyć się metodą wyznacznikową, tj. zażądać by dodatnie były minory

|2| > 0 ,

∣

∣

∣

∣

2 λ
λ 1

∣

∣

∣

∣

> 0 ,

∣

∣

∣

∣

∣

∣

2 λ 1
λ 1 0
1 0 3

∣

∣

∣

∣

∣

∣

> 0 .

Dostaje się stąd warunki λ2 < 2 i λ2 < 5
3
, z których drugi jest oczywiście silniejszy. Metodą

tą można jeszcze ustalić, dla jakich wartości λ forma jest ujemnie określona (oczywiście
nigdy, bo minor M11 jest dodatni, a nie ujemny), ale nie można ustalić jej sygnatury, gdy
nie jest ona ani dodatnio ani ujemnie określona. W tym celu trzeba ją zdiagonalizować,
np. metodą Lagrange’a. Zaczynając od x-a:

Q = 2

(

x+
λ

2
y +

1

2
z

)2

+

(

1− λ2

2

)

y2 − λyz + 5

2
z2

= 2

(

x+
λ

2
y +

1

2
z

)2

+

(

1− λ2

2

)[

y − λ

2− λ2 z
]2

+

[

5

2
− λ2

4− 2λ2

]

z2 .

Jeśli tylko λ2 6= 2, mamy stąd dodatni znak pierwszego wyrazu, dodatni (jeśli λ2 < 2)
bądź ujemny (jeśli λ2 > 2) drugiego i znak współczynnika trzeciego wyraz wyznaczony
przez

5

2
− λ2

4− 2λ2
≡ 5− 3λ2

2− λ2 .

Zatem gdy (sygnatura tej formy zależy tylko od λ2, a nie od λ) λ2 < 5
3

forma ma sygnaturę
(+,+,+), gdy λ2 = 5

3
sygnaturę (+,+, 0), gdy 5

3
< λ2 < 2 sygnaturę (+,+,−) i wreszcie,

gdy λ2 > 2 znów (kolejność plusów i minusów nie gra tu roli!) sygnaturę (+,+,−)
(bo wprawdzie ujemny robi się współczynnik drugiego wyrazu, ale z kolei dodatni staje
się współczynnik trzeciego). Przez ciągłość (cokolwiek by to pojęcie tu miało znaczyć!)
wynika, że gdy λ2 = 2, sygnaturą formy powinno być (+,−,+). Można to ustalić wracając
do przekształceń: jeśli λ = ±

√
2, to

Q = 2

(

x+
λ

2
y +

1

2
z

)2

∓
√
2 yz +

5

2
z2

= 2

(

x+
λ

2
y +

1

2
z

)2

+
5

2

(

z ∓ 1

5

√
2 y

)2

− 1

5
y2 .
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zgodnie z oczekiwaniami.
Nakomplikowaliśmy sobie, podczas gdy stosując metodę Lagrange’a w innej kolejności

otrzymalibyśmy:

Q = 2x2 + y2 + 3z2 + 2λxy + 2xz = 3(z +
1

3
x)2 +

5

3
x2 + 2λxy + y2 ,

= 3(z +
1

3
x)2 + (y + λx)2 + (

5

3
− λ2)x2 ,

co od razu (tak jak metoda minorowa) pokazuje, że forma jest dodatnio określona, gdy
λ2 < 5

3
, itd. Morał z tego jest taki, że przed zastosowaniem metody Lagrange’a dobrze

jest czujnie popatrzyć, jak ją zastosować...

Zadanie 66
Zdiagonalizować jednocześnie dwie formy kwadratowe

Q1(x, y) = 2x2 + 6xy + 5y2 , Q2(x, y) = 3x2 + 8xy + 6y2 .

Rozwiązanie: Przyjmując, że macierzami tych form w pewnej bazie ei są macierze

Q
(e)
1 =

(

2 3
3 5

)

, Q
(e)
2 =

(

3 4
4 6

)

.

należy przejść do takiej bazy fj, w której obie macierze Q
(f)
1 i Q(f)

2 będą diagonalne.
Nietrudno sprawdzić, że obie podane macierze (formy) są dodatnio określone. Możemy
zatem dowolną z nich, np. Q1 sprowadzić do postaci

Q
(f)
1 =

(

1 0
0 1

)

.

Stosując metodę Lagrange’a czyli, mówiąc mniej górnolotnie, zwijając do pełnych kwa-
dratów, otrzymujemy

Q1 =

(√
2x+

3√
2
y

)2

+

(

y√
2

)2

.

Odczytujemy więc, że v1(f) =
√
2 v1(e) +

3√
2
v2(e) i v2(f) =

1√
2
v2(e), czyli że

Rf←e =

(√
2 3/

√
2

0 1/
√
2

)

, Re←f =

(

1/
√
2 −3/

√
2

0
√
2

)

.

Sprawdzamy:

RT
e←f ·Q

(e)
1 · Re←f =

(

1/
√
2 0

−3/
√
2
√
2

)(

2 3
3 5

)(

1/
√
2 −3/

√
2

0
√
2

)

=

(

1 0
0 1

)

.
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Oczywiście po tej zmianie bazy druga forma nadal pozostaje niediagonalna:

Q
(f)
2 = RT

e←f ·Q
(e)
2 · Re←f =

(

1/
√
2 0

−3/
√
2
√
2

)(

3 4
4 6

)(

1/
√
2 −3/

√
2

0
√
2

)

=

(

3/2 −1/2
−1/2 3/2

)

.

Powstaje teraz pytanie, jakich dalszych zmian bazy możemy jeszcze dokonać, tak by nie
popsuć diagonalności formy Q1? Odpowiedź (oczywista dla fizyka) jest taka, że wciąż
dopuszczalne są przekształcenia ortogonalne bazy, tj. takie, których macierze O (to są
normalne macierze zmiany bazy fi na jakąś bazę f ′i , które dotąd oznaczaliśmy Rf ′←f , ale
teraz, aby podkreślić ich specjalną formę oznaczymy O, albo bardziej precyzyjnie Of ′←f)
są takie, że O ·OT = OT ·O = I. Z oczywistych powodów takie przekształcenia nie zepsują
diagonalności Q1:

Q
(f ′)
1 = OT

f←f ′ ·Q(f)
1 · Of←f ′ = OT

f←f ′ · I · Of←f ′ = OT
f←f ′ · Of←f ′ = I.

Pytanie jednak, czy przekształcenia ortogonalne wystarczają do zdiagonalizowania dowol-
nej formy kwadratowej? Na szczęście tak! Dowodzi się64 że tak właśnie jest. Wszystkie
dwuwymiarowe macierze ortogonalne można ująć jednym wzorem: zależą one od jed-
nego kąta α ∈ [0, 2π) (kąt ten odpowiada kątowi o jaki obracamy w przestrzeni złączone
sztywno razem dwa wektory bazy fi - oczywiście jeśli wektory te są “strzałkami”, a nie np.
wielomianami, bo jak tu interpretować kąt o jaki obracamy razem dwa wielomiany?...).
Piszemy zatem (cα ≡ cosα, sα ≡ sinα):

Q(f ′) = OT
f←f ′ ·Q(f) · Of←f ′

(

cα sα
−sα cα

)(

a d
d b

)(

cα −sα
sα cα

)

=

(

cα sα
−sα cα

)(

acα + dsα −asα + dcα
dcα + bsα −dsα + bcα

)

=

(

ac2α + bs2α + 2dcαsα (a− b)cαsα − d(c2α − s2α)
(a− b)cαsα − d(c2α − s2α) as2α + bc2α − 2dcαsα

)

.

W przypadku formy Q(f)
2 oczywiście a = b = 3

2
i d = −1

2
. Widać, że dla dowolnych ele-

mentów a, b, d symetrycznej macierzy Q(f)
2 można uzyskać macierz diagonalną wybierając

kąt α taki, że

tg(2α) =
2d

a− b ,

przy czym, gdy a = b kąt powinien być równy π
4
+ n π

2
.

Widać, że aby podany tu chwyt zadziałał, przynajmniej jedna z form musi być dodat-
nio (lub ujemnie - wtedy Q(f) = −I i metoda dalej działa) określona. W n wymiarowej

64Nie wiem gdzie i kiedy, bo to jest jak pytanie o to, gdzie dowiedziono, że 1 + 1 = 2. (A to, akurat
wiem: w Principia Mathematicae A.Whiteheade’a i B.Russela; dowód zajmuje maczkiem, specjalnie
wprowadzonymi symbolami ze dwie lub trzy strony - czyste szaleństwo!)
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przestrzeni macierz ortogonalna O zależy od 1
2
n(n − 1) kątów.65 W trzech wymiarach

mogą to być np. trzy kąty Eulera, z którymi zapewne studenci spotkają się przy okazji
zgłębiania zawiłości ruchu tak przez nich ulubionej bryły sztywnej.

Przypomnienie
Wektorem własnym (po angloniemiecku eigenvector) odwzorowania liniowego (które fizyk
zwykł, zwłaszcza w kontekście mechaniki kwantowej, nazywać operatorem) F : V → V
przestrzeni wektorowej V o dimV = n w nią samą, nazywa się taki wektor w ∈ V , że

F (w) = λw .

Oczywiście wskutek liniowości F wektor taki jest wyznaczony tylko z dokładnością do po-
mnożenia go przez dowolną liczbę. Liczba λ (też należąca do ciała K, nad którym rozpięta
jest przestrzeń wektorowa V ) nazywa się wartością własną (po angloniem. eigenvalue)
operatora (odwzorowania) F na wektorze w. Jeśli [F(e)(e)]

i
j jest macierzą odwzorowania

F w bazie66 ei, i = 1, 2, 3 . . . , a wi
(e) są składowymi w w tej samej bazie, to wtedy

[F(e)(e)]
i
jw

j
(e) = λwi

(e) .

czyli, zapisując to samo inaczej,67

[

F(e)(e) − λI
]i

j
wj

(e) ≡
(

[F(e)(e)]
i
j − λ δi j

)

wj
(e) = 0 ,

(zero po prawej stronie należy rozumieć jako wektor o zerowych składowych, czyli wektor
zerowy). Powyższy wzór jest po prostu linowym, jednorodnym układem n równań na n
współczynników wj

(e). Taki układ równań ma niezerowe rozwiązania wj
(e) tylko wtedy, gdy

zeruje się wyznacznik jego macierzy, tj. gdy

WF (λ) ≡ det
(

F(e)(e) − λ I
)

= 0 .

Wyrażenie po lewej stronie jest wielomianem, który nazywa się wielomianem charaktery-
stycznym macierzy (odwzorowania) F , a wypisane wyżej równanie - równaniem charak-
terystycznym. Niezerowe wektory własne (może być ich więcej niż jeden; maksymalnie
n), tj. rozwiązania na ich współczynniki wj

(e) w bazie ej , istnieją tylko dla tych wartości
λ, dla których wielomian charakterystyczny zeruje się. Wartości własne λ odwzorowa-
nia liniowego F są więc pierwiastkami wielomianu charakterystycznego WF (λ) macierzy

65Zbiór wszystkich macierzy O wymiaru n × n spełniających warunki OT · O = 1, det O = 1 tworzy
grupę (specjalną ortogonalną) SO(n).

66Ponieważ F odwzorowuje V w V , w tekście będziemy zawsze przyjmować, iż obraz F (v) wektora
v ∈ V jest rozpisany w tej samej bazie co sam wektor v. Jak już było wcześniej wspomniane, w
zasadzie nic nie zabrania, by obraz F (v) był rozpisywany w bazie innej niż ei, lecz prowadziłoby to do
niepotrzebnych komplikacji rachunkowych.

67Macierz I jest tu macierzą odwzorowania identycznościowego Id. Jeśli - tak jak zawsze przyjmujemy
w tego typu zagadnieniach - macierz odwzorowania F jest zapisana “z obu stron” w tej samej bazie, to
tak samo zapisana macierz I odwzorowania Id jest niezależna od bazy Id(e)(e) = Id(f)(f) ≡ I i Iij = δi j .
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tego odwzorowania. Pierwiastki wielomianu charakterystycznego nie zależą od wyboru
bazy,68 od której zależy postać macierzy F ; charakteryzują one odwzorowanie F jako
takie. Wektory własne macierzy odpowiadające różnym wartościom własnym są liniowo
niezależne. Istotnie, niech bowiem np. F (v1) = λ1v1, F (v2) = λ2v2 i F (v3) = λ3v3 i
niech v1 i v2 będą liniowo niezależne; gdyby v3 był liniowo zależny od v1 i v2, czyli gdyby
v3 = ξ1v1 + ξ2v2 to z liniowości F mielibyśmy z jednej strony

F (v3) = λ3v3 = λ3(ξ1v1 + ξ2v2) ,

a z drugiej

F (v3) = F (ξ1v1 + ξ2v2) = ξ1λ1v1 + ξ2λ2v2 .

Przyrównując te dwa wyrażenia na F (v3) do siebie i przenosząc wszystko na jedną stronę
otrzymalibyśmy

(λ3 − λ1)ξ1v1 + (λ3 − λ2)ξ2v2 = 0 ,

i z założonej liniowej niezależności wektorów v1 i v2 (która pociąga za sobą liniową nie-
zależność wektorów ξ1v1 i ξ2v2) otrzymalibyśmy λ3 = λ1 = λ2.

Jeśli przestrzeń wektorowa V o dimV = n jest nad ciałem R liczb rzeczywistych, to
możliwe są trzy różne sytuacje:

• WF (λ) może mieć n różnych pierwiastków rzeczywistych λa, a = 1, . . . , n. Każdemu
z nich odpowiada wtedy wektor własny wa (tj. jedno rozwiązanie na składowe
wi

a(e)) i zbiór tych n wektorów jest liniowo niezależny. Macierz F jest wtedy diago-
nalizowalna (tzn. przyjmuje postać diagonalną z wartościami własnymi λ1, . . . , λn
na diagonali) w bazie tworzonej przez wektory własne wa, a = 1, . . . , n. Jest teże
oczywiste, że det(F(e)(e)) = det(F(w)(w)) =

∏n
a=1 λa.

• WF (λ) może mieć n różnych pierwiastków ale tylko r rzeczywistych, a pozostałe
n − r pierwiastków są parami zespolone sprzężone. Ciało R, nad którym rozpięta
jest przestrzeń V można wtedy formalnie rozszerzyć do ciała liczb zespolonych C.
Istnieje wtedy n liniowo niezależnych wektorów własnych macierzy F z tym, że mają
one zespolone składowe (są kombinacjami liniowymi wektorów bazy ei, ale z zespolo-
nymi współczynnikami wi

(e)). W rozszerzonej przestrzeni wektorowej macierz F jest
diagonalizowalna. (I oczywiście det(F(e)(e)) jest iloczynem wartości własnych - jeśli
macierz F(e)(e) była rzeczywista, muszą one być parami sprzężone więc wyznacznik
jest liczba rzeczywistą).

68Dowód sprowadza się do zauważenia, że det
(

F(e)(e) − λ I
)

= det
[

Re←f · (F(f)(f) − λ I) · Rf←e

]

=

det(Re←f ) · det
(

F(f)(f) − λ I
)

· det(Rf←e) = det
(

F(f)(f) − λ I
)

, bo det(Rf←e) = det(R−1e←f ) =

[det(Re←f )]
−1. Bardziej ogólnie (ale to już mącenie w głowach studentom!) gdyby bazy “z dwu

stron” były jednak różne (bazy tej samej p.w. V - więc to szaleństwo i nieodpowiedzialność!) np.
fi z prawej “strony” i ei z lewej “strony”, warunek wyznaczający wartości własne by miał postać
det
(

F(e)(f) − λ I(e)(f)
)

= det(Re←f ) · det
(

F(f)(f) − λ I
)

= 0 i wobec nieosobliwości macierzy zmiany
bazy Re←f (tj. wobec tego, iż det(Re←f ) 6= 0), byłby równoważny warunkowi det

(

F(f)(f) − λ I
)

= 0.
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• Niektóre pierwiastki WF (λ) (rzeczywiste, lub zespolone) są pierwiastkami wielokrot-
nymi: mamy wtedy r pierwiastków λa, a = 1, . . . , r o krotnościach na (oczywiście
n1 + . . . + nr = n). Każdej z wartości własnych może wtedy odpowiadać ka, gdzie
1 ≤ ka ≤ na, liniowo niezależnych wektorów własnych. Macierz F jest diagonali-
zowalna tylko wtedy, gdy każdej z wartości własnych λa odpowiada dokładnie na

odpowiadających jej wektorów własnych. Jeśli choćby jednej z wartości własnych
λa odpowiada mniej wektorów własnych niż krotność na tej wartości własnej, to ma-
cierz F jest niediagonalizowalna. Mimo to wyznacznik macierzy F(e)(e) jest równy
iloczynowi jej n wartości własnych (gdy na > 1 liczymy λnr jako iloczyn nr czynni-
ków).

Jeśli od początku przestrzeń wektorowa V jest rozpięta nad ciałem liczb zespolonych, to
oczywiście możliwości są dwie: macierz jest diagonalizowalna (gdy wszystkie pierwiastki
WF (λ) są różne lub gdy, mimo występowania pierwiastków wielokrotnych, istnieje n li-
niowo niezależnych wektorów własnych) lub niediagonalizowalna (gdy WF (λ) ma pier-
wiastki wielokrotne i mniej wektorów własnych niż n).

Ważnym i, jak zobaczymy, niezmiernie użytecznym faktem jest twierdzenie Cayleya-
Hamiltona głoszące, że

WF (F ) = 0 ,

tj., że każda macierz kwadratowa wymiarów n × n sama spełnia swoje równanie charak-
terystyczne. Ponieważ (nad ciałem C)

WF (λ) = (−1)n
r
∏

a=1

(λ− λa)na ≡ (−1)n(λ− λ1)n1 · . . . · (λ− λr)nr ,

(n1 + . . . + nr = n), tw. C-H można zapisać w postaci (pomijamy nieistotny czynnik
(−1)n)

r
∏

a=1

(F − λaI)na ≡ (F − λ1I)n1 · . . . · (F − λrI)nr = 0 .

gdzie I jest macierzą jednostkową n× n.
Użyteczne też będzie wiedzieć, że jeśli wartości własnej λa o krotności na odpowiada

ka liniowo niezależnych wektorów własnych to dodatkowo

W̃F (F ) ≡ (F − λ1I)n1 · . . . · (F − λaI)na−ka+1 · . . . · (F − λrI)nr = 0 .

Wielomian W̃F (λ) będziemy dalej nazywać zredukowanym wielomianem charakterystycz-
nym.69 Oczywiście podobne obniżenie potęgi odpowiedniego czynnika (o jeden na każdy
dodatkowy wektor własny) stosuje się do wszystkich czynników wielomianu. Może się

69Koledzy matematycy nazywają zdaje się taki wielomian zredukowany najniższego możliwego stopnia
wielomianem minimalnym.
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jednak zdarzyć (zob. Zadanie 70), że F spełnia równanie z obniżoną potęgą czynnika
(F − λI) odpowiadającego jakiejś wartości własnej, a mimo to wektorów własnych jest
mniej; pokazuje to, ze związek potęgi czynnika (F −λI) z tym, ile jest wektorów własnych
odpowiadających tej wartości własnej jest jednokierunkowy: każdy dodatkowy wektor
własny obniża potęgę (F − λI), ale możliwość obniżenia potęgi nie oznacza koniecznie
istnienia dodatkowego wektora własnego.

Oczywistym, a ważnym i użytecznym wnioskiem wynikającym z powyższych rozważań
jest to, że wyznacznik macierzy F jest iloczynem jej wartości własnych. Wynika to bezpo-
średnio z porównania definicji wielomianu charakterystycznego i jego postaci iloczynowej:
WF (λ) =det(F − λI), więc WF (0) =detF .

Zadanie 67
Wyznaczyć wartości własne oraz odpowiadające im wektory własne macierzy

F =





2 −1 2
5 −3 3
−1 0 −2



 .

Sprawdzić, że det(F ) = 12 + 3− 6− 10 = −1 jest równy iloczynowi wartości własnych.
Rozwiązanie: Znajdujemy najpierw pierwiastki wielomianu charakterystycznego

WF (λ) =

∣

∣

∣

∣

∣

∣

2− λ −1 2
5 −3− λ 3
−1 0 −2− λ

∣

∣

∣

∣

∣

∣

= −λ3 − 3λ2 − 3λ− 1 = −(λ+ 1)3 .

Jest więc tylko jeden pierwiastek λ1 = −1, ale za to trzykrotny (n1 = 3). Oczywiście
detF = λ31. Zgodnie z tym, co powiedziane było wyżej, mogą istnieć trzy, dwa lub jeden
wektor własny odpowiadający λ1 = −1. Aby sprawdzić ile ich jest, rozwiązujemy układ





3 −1 2
5 −2 3
−1 0 −1









w1

w2

w3



 = 0 .

Ostatni rządek mówi, że w1+w3 = 0, co wykorzystane sprowadza pierwszy i drugi rządek
do tego samego równania w1−w2 = 0. Rozwiązaniem tych dwu niezależnych równań jest
każdy wektor proporcjonalny do





1
1
−1



 .

Jest więc tylko jeden wektor własny. Sprawdźmy twierdzenie C-H:

WF (F ) = (F + I)3 =





3 −1 2
5 −2 3
−1 0 −1





3
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=





3 −1 2
5 −2 3
−1 0 −1









2 −1 1
2 −1 1
−2 1 −1



 =





0 0 0
0 0 0
0 0 0



 .

Ponieważ jak widać ani F + I ani (F + I)2 nie są macierzami zerowymi, więc zgodnie z
tym, co było powiedziane wyżej, może być70 tylko jeden liniowo niezależny wektor własny
F odpowiadający wartości własnej λ1 = −1.

Zadanie 68
Wyznaczyć wartości własne oraz odpowiadające im wektory własne macierzy

F =





0 1 0
−4 4 0
−2 1 2



 .

Rozwiązanie: Znajdujemy najpierw pierwiastki wielomianu charakterystycznego

WF (λ) =

∣

∣

∣

∣

∣

∣

−λ 1 0
−4 4− λ 0
−2 1 2− λ

∣

∣

∣

∣

∣

∣

= −(λ− 2)3 .

Jak w poprzednim zadaniu równanie charakterystyczne ma jeden pierwiastek λ1 = 2
trzykrotny (n1 = 3). Szukamy wektora(ów) własnego(ych):





−2 1 0
−4 2 0
−2 1 0









w1

w2

w3



 = 0 .

Gołym okiem widać, że są dwa liniowo niezależne (proporcjonalne do):




0
0
1



 oraz





1
2
0



 .

Zobaczmy, jak to się ma do twierdzenia C-H:

(F − 2I)2 =





−2 1 0
−4 2 0
−2 1 0









−2 1 0
−4 2 0
−2 1 0



 =





0 0 0
0 0 0
0 0 0



 ,

tak jak należało oczekiwać. Widać też, że detF = 8 (obliczony “po skosach”) jest równy
iloczynowi wartości własnych macierzy F : detF = λ31.

70Jak już podkreślaliśmy, gdyby się było okazało, że np. (F + I)2 = 0, nie oznaczałoby to, że musi
być dodatkowy wektor własny; jednak gdyby taki dodatkowy wektor był, to jego istnienie implikowałoby
(F + I)2 = 0.
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Zadanie 69
Jak poprzednio tylko

F =





4 −5 2
5 −7 3
6 −9 4



 .

Rozwiązanie: Znajdujemy, że WF (λ) = −λ2(λ − 1). Powinien być więc jeden wektor
własny odpowiadający λ1 = 1 i jeden lub dwa wektory odpowiadające wartości własnej
λ2 = 0. Sprawdźmy twierdzenie C-H:

F 2 · (F − I) =





4 −5 2
5 −7 3
6 −9 4





2



3 −5 2
5 −8 3
6 −9 3





=





4 −5 2
5 −7 3
6 −9 4









−1 2 −1
−2 4 −2
−3 6 −3



 =





0 0 0
0 0 0
0 0 0



 .

Ponieważ F · (F − I) 6= 0, może być tylko jeden wektor własny odpowiadający wartości
własnej λ2 = 0. Rozwiązując odpowiednie układy liniowe znajdujemy, że





1
1
1



 odpowiada λ1 = 1 , a





1
2
3



 odpowiada λ2 = 0 .

Skoro jedna wartość własna jest zerem, to wyznacznik znika. I rzeczywiście: detF = 0.

Zadanie 70
Jak poprzednio tylko

F =









3 −1 0 0
1 1 0 0
3 0 5 −3
4 −1 3 −1









.

Rozwiązanie: Obliczamy wyznacznik F − λI stosując rozwinięcie Laplace’a względem
pierwszego wiersza
∣

∣

∣

∣

∣

∣

∣

∣

3− λ −1 0 0
1 1− λ 0 0
3 0 5− λ −3
4 −1 3 −1− λ

∣

∣

∣

∣

∣

∣

∣

∣

= (3− λ)

∣

∣

∣

∣

∣

∣

1− λ 0 0
0 5− λ −3
−1 3 −1 − λ

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

1 0 0
3 5− λ −3
4 3 −1 − λ

∣

∣

∣

∣

∣

∣

= (3− λ)(1− λ)
∣

∣

∣

∣

5− λ −3
3 −1 − λ

∣

∣

∣

∣

+

∣

∣

∣

∣

5− λ −3
3 −1− λ

∣

∣

∣

∣

.
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Zatem WF (λ) = [(3−λ)(1−λ)+1][(5−λ)(−1−λ)+9] = (λ−2)4. Jest więc tylko jeden
pierwiastek λ1 = 2, za to poczwórny (n1 = 4). Sprawdzamy twierdzenie C-H

WF (F ) = (F − 2I)4 =









1 −1 0 0
1 −1 0 0
3 0 3 −3
4 −1 3 −3









2







1 −1 0 0
1 −1 0 0
3 0 3 −3
4 −1 3 −3









2

=









0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

















0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0









.

Skoro już (F − 2I)2 = 0, to mogą (ale nie muszą!) być aż trzy wektory własne odpowia-
dające λ1 = 2. Rozwiązując układ









1 −1 0 0
1 −1 0 0
3 0 3 −3
4 −1 3 −3

















w1

w2

w3

w4









=









0
0
0
0









,

czyli

w1 − w2 = 0 ,

w1 + w3 − w4 = 0 ,

4w1 − w2 + 3w3 − 3w4 = 0 ,

czyli dwa niezależne równania (bo wstawienie w3 − w4 = −w1 z drugiego do czwartego
sprowadza to ostatnie do pierwszego): w1 − w2 = 0 oraz w1 + w3 − w4 = 0 na cztery
składowe wi. Mimo więc iż potęgę czynnika (F −λI) dało się obniżyć aż o dwa, jest tylko
jeden dodatkowy wektor własny, a nie dwa. Za dwa liniowo niezależne wektory własne
możemy wziąć np









1
1
−1
0









,









1
1
0
1









.

Oczywiście detF = 16 = λ41.

Zadanie 70′

Obliczyć wyznacznik macierzy cyklicznej C wymiaru N ×N postaci

C =

















a1 a2 a3 . . . aN−1 aN
aN a1 a2 . . . aN−2 aN−1
aN−1 aN a1 . . . aN−3 aN−2
. . . . . . . . . . . . . . . . . .
a3 a4 a5 . . . a1 a2
a2 a3 a4 . . . aN a1

















.
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Rozwiązanie: Wyznacznik jest iloczynem wartości własnych macierzy. Okazuje się, że
można zgadnąć wszystkie wektory własne macierzy cyklicznej i w ten sposób wyznaczyć
także odpowiadające im wartości własne. Jeden wektor własny jest oczywisty - jest nim
wektor składający się z samych jedynek, a odpowiadającą mu wartością własną jest oczy-
wiście a1 + . . .+ aN . Nietrudno jednak zobaczyć, że pozostałymi wektorami własnymi są
wektory postaci71

wk =

















εk
ε2k
ε3k
. . .
εN−1k

εNk

















,

gdzie εk jest k-tym pierwiastkiem (jak wiemy, k = 0, 1, . . . , N − 1) N -tego stopnia z 1:

εk = exp

(

i
2π

N
k

)

.

Istotnie: macierz cykliczna C działając na taki wektor daje
















a1 εk + a2 ε
2
k + a3 ε

3
k + . . .+ aN−1 ε

N−1
k + aN ε

N
k

aN εk + a1 ε
2
k + a2 ε

3
k + . . .+ aN−2 ε

N−1
k + aN−1 ε

N
k

aN−1 εk + aN ε
2
k + a1 ε

3
k + . . .+ aN−3 ε

N−1
k + aN−2 ε

N
k

. . .
a3 εk + a4 ε

2
k + a5 ε

3
k + . . .+ a1 ε

N−1
k + a2 ε

N
k

a2 εk + a3 ε
2
k + a4 ε

3
k + . . .+ aN ε

N−1
k + a1 ε

N
k

















.

Widać, że na l-tym “pięterku” a1 jest mnożone przez εlk, z kolei a2εk jest też mnożone
przez εlk etc. Ogólnie, dzięki właściwości pierwiastków N -tego stopnia z jedności:

εrk = εr+N
k ,

każdy z wierszy tego wektora jest proporcjonalny do odpowiedniego wiersza wektora wyj-
ściowego, a współczynnikiem proporcjonalności jest w każdym wierszu ta sama liczba λk

λk = a1 + a2 εk + a3 ε
2
k + . . .+ aN−1 ε

N−2
k + aNε

N−1
k , k = 0, . . . , N − 1 ,

będąca zatem k-tą wartością własną (ε0 = 1, więc λ0 jest wartością własną odgadniętą
na początku) macierzy cyklicznej C.

Trzeba tylko jeszcze się upewnić, że wszystkie wektory własne wk, k = 0, 1, . . . , N −
1, są liniowo niezależne. Tworzyłyby one w takiej sytuacji bazę całej N -wymiarowej

71Wektory te mają oczywiście zespolone składowe. W przypadku konkretnych macierzy cyklicznych
mających wartości własne o krotnościach większych niż 1 może się okazać możliwe skonstruowanie wek-
torów własnych o rzeczywistych składowych - zob. Zadanie 74.
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przestrzeni i w tworzonej przez nie bazie badana macierz miałaby postać diagonalną z
liczbami λk na diagonali, co by oznaczało, że jej wyznacznik jest równy λ0λ1 . . . λN−1. W
celu udowodnienia liniowej niezależności wektorów wk, tworzymy z nich macierz N × N
stawiając je kolejno “na sztorc”:





















1 ε1 ε2 . . . εN−2 εN−1
1 ε21 ε22 . . . ε2N−2 ε2N−1
1 ε31 ε32 . . . ε3N−2 ε3N−1
. . . . . . . . . . . . . . . . . .

1 εN−11 εN−12 . . . εN−1N−2 εN−1N−1
1 εN1 εN2 . . . εNN−2 εNN−1





















.

Ponieważ ε2 = ε21, . . ., εN−1 = εN−11 , lub ogólniej, εpk = εkp, nietrudno się zorientować, że
jest to wyznacznik Vandermonda obliczony w zadaniu 46, w którym to wyznaczniku teraz
x1 = ε1, x2 = ε2, etc. Jest on zatem równy

N−1
∏

k>l=0

(εk − εl) 6= 0 ,

bo wszystkie pierwiastki εk są różne. Zatem wszystkie znalezione wektory własne macierzy
cyklicznej są liniowo niezależne i stąd mamy wniosek, że jej wyznacznik jest równy

detC =

N−1
∏

k=0

(

a1 + a2 εk + a3 ε
2
k + . . .+ aN−1 ε

N−3
k + aNε

N−1
k

)

.

Zadanie 71
Znaleźć wartości własne i odpowiadające im wektory własne macierzy

F =

(

1 1
1 −1

)

.

Jeśli to możliwe przejść do bazy, w której macierz odwzorowania F jest diagonalna. Na-
pisać także jawnie macierz F n, gdzie n jest dowolną liczbą naturalną
Rozwiązanie: Obliczamy wyznacznik macierzy F − λI:

det

(

1− λ 1
1 −1 − λ

)

= (1− λ)(−1− λ)− 1 = λ2 − 2 = (λ−
√
2 )(λ+

√
2 ) .

Pierwiastki wielomianu charakterystycznego są dwa. Są one rzeczywiste i różne. Macierz
jest więc diagonalizowalna nad ciałem R. Szukamy wektorów własnych odpowiadających
λ1 =

√
2 i λ2 = −

√
2.

λ1 =
√
2 :

(

1−
√
2 1

1 −1−
√
2

)(

a1
b1

)

=

(

0
0

)

.
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Ponieważ wyznacznik znika, tylko jedno z dwu wynikających stąd równań jest niezależne.
Kładąc np. a1 = 1, znajdujemy b1 = −1 +

√
2. Podobnie dla λ2 mamy

λ2 = −
√
2 :

(

1 +
√
2 1

1 −1 +
√
2

)(

a2
b2

)

=

(

0
0

)

,

i stąd, kładąc np. b2 = 1 mamy a2 = 1−
√
2. Sprawdzamy:

(

1 1
1 −1

)(

1
−1 +

√
2

)

=

( √
2

2−
√
2

)

=
√
2

(

1
−1 +

√
2

)

,

(

1 1
1 −1

)(

1−
√
2

1

)

=

(

2−
√
2

−
√
2

)

= −
√
2

(

1−
√
2

1

)

.

Oczywiście wektory własne nie są wyznaczone jednoznacznie, a tylko z dokładnością do
pomnożenia przez liczbę (w przestrzeni wektorowej z iloczynem skalarnym można by było
dodatkowo narzucić na nie warunek unormowania - ale po co wprowadzać zbędne dla
naszego celu struktury?).

Dana w zadaniu macierz jest oczywiście macierzą odwzorowania F w jakiejś bazie
(e1, e2), tj. powinna być oznaczona F(e)(e), a znalezione wektory są składowymi wektorów
własnych w tej bazie. Przejdźmy teraz do bazy (w1,w2) tworzonej przez znalezione wek-
tory własne w1 = e1 − (1 −

√
2 ) e2 oraz w2 = (1 −

√
2 ) e1 + e2 odwzorowania F (mogą

one być bazą bo są liniowo niezależne). Mamy więc wi = ej [R(e←w)]
j
i czyli

(w1,w2) = (e1, e2)

(

1 1−
√
2

−1 +
√
2 1

)

.

Macierz R(e←w) tworzą jak zwykle postawione “na sztorc” składowe znalezionych wektorów
własnych macierzy F . Odwracamy R(e←w) by dostać macierz R(w←e)

(e1, e2) = (w1,w2)

(

1 −1 +
√
2

1−
√
2 1

)

1

2(2−
√
2)
.

Sprawdzamy, że macierz F(w)(w) = R(w←e) ·F(e)(e) ·R(e←w) odwzorowania F w nowej bazie
jest macierzą diagonalną:

F(w)(w) =
1

2(2−
√
2)

(

1 −1 +
√
2

1−
√
2 1

)(

1 1
1 −1

)(

1 1−
√
2

−1 +
√
2 1

)

=
1

2(2−
√
2)

(

−4 + 4
√
2 0

0 4− 4
√
2

)

=

(√
2 0
0 −

√
2

)

.

Macierz F można teraz łatwo podnieść do n-tej potęgi pisząc

F n
(e)(e) = R(e←w) · (R(w←e) · F(e)(e) · R(e←w))

n · R(w←e) = R(e←w) ·
(

F(w)(w)

)n ·R(w←e)

=
1

2(2−
√
2)

(

1 1−
√
2

−1 +
√
2 1

)(√
2 0
0 −

√
2

)n(
1 −1 +

√
2

1−
√
2 1

)

=
2n/2

2(2−
√
2)

(

1 + (−1)n(1−
√
2)2 [(−1)n − 1](1−

√
2)

[(−1)n − 1](1−
√
2) (−1)n + (1−

√
2)2

)

.
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Gdy n = 1, daje to oczywiście znowu wyjściową macierz F(e)(e).

Macierz F n można też znaleźć sposobem, który nie wymaga użycia macierzy diagonali-
zujących. W tym celu zapisujemy dowolny wektor w postaci kombinacji liniowej wektorów
własnych macierzy F

(

a
b

)

= α

(

1
−1 +

√
2

)

+ β

(

1−
√
2

1

)

≡
(

1 1−
√
2

−1 +
√
2 1

)(

α
β

)

.

Współczynniki α i β nietrudno znaleźć:
(

α
β

)

=
1

2(2−
√
2)

(

1 −1 +
√
2

1−
√
2 1

)(

a
b

)

.

Działamy teraz macierzą F n na dowolny wektor

F n

(

a
b

)

= α 2n/2
(

1
−1 +

√
2

)

+ β (−1)n2n/2
(

1−
√
2

1

)

.

Wykorzystaliśmy tu fakt, że macierz F działając na wektor własny mnoży go przez od-
powiadającą mu wartość własną; działanie F n daje wtedy n-tą potęgę wartości własnej.
Mamy więc

F n

(

a
b

)

=
2n/2

2(2−
√
2)

(

[a+ b(−1 +
√
2)] + (−1)n[(1−

√
2)a + b](1−

√
2)

(−1 +
√
2)[a+ b(−1 +

√
2)] + (−1)n[(1−

√
2)a+ b]

)

=
2n/2

2(2−
√
2)

(

1 + (−1)n(1−
√
2)2 [(−1)n − 1](1−

√
2)

[(−1)n − 1](1−
√
2) (−1)n + (−1 +

√
2)2

)(

a
b

)

.

W ostatnim kroku zapisaliśmy ponownie wynik w postaci działania macierzy na dowolny
wektor; macierz ta jest właśnie poszukiwaną macierzą F n.

Zauważmy, że obie przedstawione metody podnoszenia macierzy do n-tej potęgi stosują
się, gdy macierz jest diagonalizowalna, tj. gdy jej wektorów własnych jest maksymalna
liczba, dzięki czemu rozpinają one całą przestrzeń V .

Na zakończenie sprawdźmy twierdzenie Cayleya-Hamiltona mówiące, że macierz speł-
nia swoje równanie charakterystyczne, tj., że WF (F ) = 0 (zero w sensie macierzy zerowej
oczywiście). Mieliśmy WF (λ) = λ2 − 2 więc WF (F ) = F 2 − 2 I, czyli jawnie:

WF (F ) =

(

1 1
1 −1

)(

1 1
1 −1

)

− 2

(

1 0
0 1

)

=

(

2 0
0 2

)

− 2

(

1 0
0 1

)

=

(

0 0
0 0

)

,

tak, jak być powinno. W zadaniu 73 pokażemy, jak twierdzenie to można wykorzystać
do znalezienia F n jeszcze innym sposobem, również nie wymagającym użycia macierzy
diagonalizujących.

Zadanie 72 (ciąg Fibonacciego)
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Podać wzór na n-ty wyraz ciągu zadanego warunkami:

an+2 = an+1 + an , a0 = 0 , a1 = 1 .

Rozwiązanie: Wzór rekurencyjny definiujący ciąg możemy przepisać w postaci macie-
rzowej:72

(

an+2

an+1

)

=

(

1 1
1 0

)(

an+1

an

)

≡ F ·
(

an+1

an

)

.

Z postaci tej od razu wynika, że
(

an
an−1

)

= F n−1
(

a1
a0

)

,

gdzie F jest macierzą występującą we wzorze powyżej. Jej wielomian charakterystyczny

WF (λ) = λ2 − λ− 1 ,

ma dwa pierwiastki różne i, co za tym idzie, istnieją dwa wektory własne, jako które
można wybrać

w1 =

(

1
1
2
(−1 +

√
5)

)

, λ1 =
1 +
√
5

2
,

w2 =

(

1
2
(1−

√
5)

1

)

, λ2 =
1−
√
5

2
.

Aby znaleźć działanie n − 1 potęgi macierzy F na wektor warunku początkowego zapi-
sujemy tenże w postaci kombinacji liniowej αw1 + βw2 wektorów własnych macierzy F .
Współczynniki α i β znajduje się łatwo i otrzymujemy:

(

1
0

)

=
5 +
√
5

10

(

1
1
2
(−1 +

√
5)

)

− 1√
5

(

1
2
(1−

√
5)

1

)

.

Działając teraz na lewą stronę macierzą (fizyk by powiedział raczej “operatorem”) F n−1

dostajemy

(

an
an−1

)

= F n−1
(

1
0

)

=
5 +
√
5

10

(

1 +
√
5

2

)n−1
(

1
1
2
(−1 +

√
5)

)

− 1√
5

(

1−
√
5

2

)n−1
(

1
2
(1−

√
5)

1

)

,

72F oczywiście bo ciąg Fibonacciego; nie mylić Fibonacciego z Wojciechem Fibakiem!
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gdyż działanie F n−1 na wektory w1,2 daje λn−11,2 w1,2. Dodając do siebie dwa wektory
występujące po prawej stronie odczytujemy z górnej składowej, że

an =

√
5(1 +

√
5)

10

(

1 +
√
5

2

)n−1

− 1√
5

(

1−
√
5

2

)n

=
1√
5

[(

1 +
√
5

2

)n

−
(

1−
√
5

2

)n]

.

Oczywiście an−1 otrzymane z dolnego pięterka zgadza się z tym, co się dostanie wstawiając
n− 1 zamiast n w otrzymanym wyżej an.

Zadanie to można rozwiązać także bez użycia macierzy (zobacz Zadanie 47′): postu-
lujemy po prostu, że an = Aλn i wstawiamy to do związku rekurencyjnego. Dostajemy
na λ równanie kwadratowe, które jest po prostu tym samym równaniem, co WF (λ) = 0.
Ponieważ są dwie różne lambdy, a wzór rekurencyjny jest liniowy w ak, najogólniejsze
rozwiązanie ma postać

an = A1λ
n
1 + A2λ

n
2 .

Stałe A1 i A2 można wyznaczyć z warunków, że a0 = 0 i a1 = 1. Daje to oczywiście ten
sam wzór na an, co otrzymany wyżej.

Zadanie 73
Znaleźć wartości własne i odpowiadające im wektory własne macierzy

F =

(

1 1
−1 1

)

.

Jeśli to możliwe przejść do bazy, w której macierz odwzorowania F jest diagonalna. Zna-
leźć F n oraz etF , dla dowolnej wartości parametru t ∈ R.
Rozwiązanie: Mamy

det

(

1− λ 1
−1 1− λ

)

= (1− λ)2 + 1 = λ2 − 2λ+ 2 .

Pierwiastkami wielomianu charakterystycznego są λ1 = 1 + i oraz λ1 = 1− i. Są to dwie
liczby zespolone wzajemnie sprzężone (bo współczynniki wielomianu charakterystycznego
są rzeczywiste). Macierz jest więc diagonalizowalna ale nad ciałem C.

Szukamy jej wektorów własnych
(

∓i 1
−1 ∓i

)(

a
b

)

=

(

0
0

)

.

Ponieważ wyznacznik macierzy znika, tylko jedno równanie jest niezależne. Wektory
można wybrać w postaci

(

1
i

)

dla λ1 = 1 + i ,

(

i
1

)

dla λ2 = 1− i .
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Wybierając jako nową bazę (skompleksyfikowanej) przestrzeni wektorowej wektory własne
w1 i w2 macierzy F(e)(e) (jak zwykle przyjmujemy, że dana w zadaniu macierz jest zapisana
w jakiejś bazie (e1, e2)) mamy macierz R(e←w) zbudowaną jak zwykle z postawionych “na
sztorc” składowych wektorów własnych macierzy F w bazie (e1, e2):

(w1,w2) = (e1, e2)

(

1 i
i 1

)

.

Macierz odwrotna ma postać

R(w←e) =
1

2

(

1 −i
−i 1

)

.

Oczywiście

F(w)(w) = R(w←e) · F(e)(e) · R(e←w) =
1

2

(

1 −i
−i 1

)(

1 1
−1 1

)(

1 i
i 1

)

=

(

1 + i 0
0 1− i

)

.

Posługując się macierzami R(w←e) i R(e←w) łatwo podnieść F do n-tej potęgi:

F n = R(e←w) ·[R(w←e) ·F(e)(e) ·R(e←w)]
n ·R(w←e)

=

(

1 i
i 1

)(

(1 + i)n 0
0 (1− i)n

)

1

2

(

1 −i
−i 1

)

=
1

2

(

(1 + i)n + (1− i)n −i(1 + i)n + i(1 − i)n
i(1 + i)n − i(1− i)n (1 + i)n + (1− i)n

)

.

Oczywiście gdy n = 1, otrzymuje się, jak łatwo sprawdzić, wyjściową macierz F . Za-
uważmy też, że wszystkie elementy macierzy F n są rzeczywiste, tak jak być powinno,
mimo, że macierze diagonalizujące R(w←e) i R(e←w) miały elementy zespolone. W po-
dobny sposób znajdujemy etF :

etF = R(e←w) ·
(

et(1+i) 0
0 et(1−i)

)

· R(w←e) =
et

2

(

1 i
i 1

)(

eit 0
0 e−it

)(

1 −i
−i 1

)

= et
(

cos t sin t
− sin t cos t

)

.

Możemy też sprawdzić że spełnione jest twierdzenie Cayleya-Hamiltona:

F 2 − 2F + 2I =

(

0 2
−2 0

)

−
(

2 2
−2 2

)

+

(

2 0
0 2

)

=

(

0 0
0 0

)

.

Twierdzenie to można wykorzystać do znalezienia F n innym sposobem (bez posługiwania
się macierzami diagonalizującymi). W tym celu rozkładamy jednowyrazowy wielomian
(czyli tzw. monomian) λn na iloczyn wielomianu charakterystycznego WF (λ) i jakiegoś
wielomianu Q(λ) oraz resztę r(λ), która, z uwagi na to, że WF (λ) jest stopnia 2, musi być
wielomianem stopnia nie wyższego niż pierwszy:

λn =WF (λ)Q(λ) + a1λ+ a0
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(ogólnie, gdy macierz odwzorowania F jest macierzą wymiaru p× p, a wielomian charak-
terystyczny WF (λ) jest stopnia p, reszta r(λ) jest wielomianem stopnia p − 1, mającym
p współczynników ap−1, . . ., a0). Współczynniki reszty a1λ+ a0 można znaleźć obliczając
wartość lewej i prawej strony dla wartości własnych λ1 i λ2 macierzy F :

λn1 ≡ (1 + i)n = a1λ1 + a0 = a1(1 + i) + a0 ,

λn2 ≡ (1− i)n = a1λ2 + a0 = a1(1− i) + a0 ,

gdzie skorzystaliśmy z tego, że WF (λ1,2) = 0. Stąd

a1 = −
i

2
[(1 + i)n − (1− i)n] ,

a0 =
i

2
[(1− i)(1 + i)n − (1 + i)(1− i)n] ,

Mając a i b, możemy teraz wyzyskać twierdzenie Cayleya-Hamiltona podstawiając F do
będącego tożsamością wielomianową wzoru λn = WF (λ)QF (λ) + a1λ+ a0. Daje to

F n = WF (F ) ·Q(F ) + a1F + a0I = a1F + a0I ,

ponieważ WF (F ) = 0. Zatem

F n =

(

a1 + a0 a1
−a1 a1 + a0

)

,

i nietrudno sprawdzić, że a1+a0 = 1
2
[(1 + i)n + (1− i)n], czyli otrzymujemy w ten sposób

ten sam wynik co poprzednio. W taki sam sposób można znaleźć etF , tj. pisząc73

etF = ã1F + ã0I ,

i znajdując ã1 i ã0 przez podstawienie w miejsce F wartości własnych F .

Metoda sformułowana w powyższy sposób działa oczywiście tylko wtedy, gdy wielo-
mian charakterystyczny stopnia p ma dokładnie p różnych pierwiastków; jeśli bowiem
miałby on jakieś pierwiastki wielokrotne, czyli macierz F miałaby mniej różnych warto-
ści własnych niż p, to byłaby niewystarczająca liczba równań, by wyznaczyć wszystkie p
współczynników ap−1, . . ., a0. Metodę daje się na szczęście (dla studentów to może na
nieszczęście?) rozciągnąć zarówno na macierze diagonalizowalne mające mniej różnych
wartości własnych ale nadal tyle wektorów własnych, ile wynosi ich wymiar (zobacz Za-
danie 74 poniżej), jak też i na macierze niediagonalizowalne, czyli mające mniej wektorów
własnych niż ich wymiar (zobacz zadanie 77).

Dygresja.
Metody opartej na wyzyskaniu twierdzenia Cayleya-Hamiltona nie daje się zastosować do
obliczania funkcji od macierzy w przypadku, gdy funkcja taka (potraktowana jak funkcja

73Pytanie-test: skoro etF nie jest monomianem, to dlaczego można to tak zrobić?
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x ∈ R) nie ma rozwinięcia w szereg Taylora wokół x = 0. Narzuca się myśl, by taką funkcję
f (np. pierwiastek) z macierzy F(e)(e) odwzorowania liniowego F (zapisanej w jakiejś bazie
e1, . . . , en), przynajmniej w tych przypadkach, w których F(e)(e) jest diagonalizowalna,
zdefiniować wzorem

f(F(e)(e)) = R(e←w) · f(F(w)(w)) · R(w←e) ,

w którym w1, . . . , wn są wektorami własnymi odwzorowania F , a F(w)(w) jest macierzą
diagonalną F(w)(w) = diag(λ1, . . . , λr), mającą na diagonali n (a nie r, jak może sugerować
zapis, bo niektóre lambdy się powtarzają) wartości własnych F (r ≤ n, bo niektóre z
nich mogą być pierwiastkami wielokrotnymi WF ; zakładamy jednak, że mimo to macierz
F(e)(e) jest diagonalizowalna!); w takiej sytuacji możnaby przyjąć, że (kropki w macierzy
oznaczają zera - zapis jest dzięki temu bardziej przejrzysty)

f(F(e)(e)) = R(e←w) ·









f(λ1) · . . . ·
· f(λ2) . . . ·
. . . . . . . . . . . .
· · . . . f(λr)









·R(w←e) .

Jakkolwiek przepis ten definiuje coś, co można uznać za f(F(e)(e)), to jeśli funkcja jest
określona tak jak pierwiastek - znaleźć taką macierz X, że X2 = F(e)(e), czyli X =

√

F(e)(e)

- może się okazać, że macierzy X spełniających warunek definiujący jest więcej niż można
otrzymać z podanego wyżej przepisu.

Np. w przypadku funkcji pierwiastek przekonaliśmy się w Zadaniu 44, że macierzy,
które po podniesieniu do kwadratu dają zadaną macierz proporcjonalną do macierzy jed-
nostkowej jest “dużo” - tyle ile możliwych rzutów w przestrzeni n wymiarowej, gdzie n
jest wymiarem tej zadanej macierzy proporcjonalnej do jednostkowej. Sytuacja przedsta-
wia się w tym przypadku następująco. Jeśli macierz diagonalna F(w)(w) wymiaru n × n
(powstała z jakiejś macierzy F(e)(e) przez “postawienie tejże na wektorach własnych”) ma
n różnych wartości własnych (tj. żadna z jej wartości własnych nie ma krotności więk-
szej niż 1), to różnych macierzy, które po podniesieniu do kwadratu dadzą F(w)(w) (a
po obłożeniu z dwu stron macierzami Re←w i Rw←e i podniesieniu do kwadratu dadzą
wyjściową macierz F(e)(e)) jest dokładnie 2n (wyciągając pierwiastki z elementów diago-
nalnych F(w)(w) możemy na 2n sposobów wybrać ich znaki). Jeśli jednak któraś wartość
własna λi ma krotność ri (ale macierz jest jednak diagonalizowalna), to macierz dającą
po podniesieniu do kwadratu macierz F(w)(w) (a po obłożeniu macierzami Re←w i Rw←e i
podniesieniu do kwadratu macierz F(e)(e)) można też otrzymać, wstawiając w odpowiedni
blok wymiaru ri× ri macierz skonstruowaną z jakiegoś rzutu (przestrzeni ri wymiarowej)
według przepisu z Zadania 44.

Pozostaje oczywiście kwestia, jak zdefiniować (i kiedy jest to w ogóle możliwe) funkcję
od macierzy, która nie jest diagonalizowalna. Np. w przypadku pierwiastka można się
odwołać do twierdzenia (o tzw. rozkładzie Jordana) mówiącego, że (w p.w. nad ciałem C)
zawsze istnieje baza, w której macierz niediagonalizowalnego odwzorowania F (tj. takiego,
które ma wielokrotne wartości własne i nie wszystkim z nich odpowiada maksymalna
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liczba wektorów własnych) ma postać jordanowską, czyli składa się z kawałka diagonalnego
wymiaru k×k, gdzie k jest liczbą wektorów własnych (niektóre z nich mogą odpowiadać tej
samej wartości własnej - do tych kwałków macierzy przy wyciąganiu pierwiastka stosuje
się konstrukcja z rzutem z Zadania 44) i rozmieszczonych na pozostałej długości diagonali
“klatek Jordana”, tj. podmacierzy mających na diagonali jakąś wartość własną i ponad
nią jedynki:













λi 1 . . . 0 0
0 λi . . . 0 0
. . . . . . . . . 1 0
0 0 . . . λi 1
0 0 . . . 0 λi













.

Jeśli tylko λi 6= 0, to nietrudno się przekonać bezpośrednim rachunkiem, że daje się
znaleźć macierz górnotrójkątną (przynajmniej w przypadku klatki jordanowskiej 2 × 2 i
3 × 3 się daje, ale wydaje się, że można to stwierdzenie rozciągnąć na dowolny wymiar
klatki) tego samego wymiaru, która po podniesieniu do kwadratu da daną klatkę Jordana.
Można więc wtedy nadal zdefiniować pierwiastek z macierzy. (Pozostaje tylko kwestia,
czy otrzyma się tak wszystkie możliwe “pierwiastki” z danej macierzy). Np. w przypadku
klatki Jordana wymiaru 2 × 2 łatwo w ten sposób znaleźć wszystkie klatki będące jej
pierwiastkami. Warunek (tu, to że macierz po lewej musi być górnotrójkątna wyszłoby i
tak z rachunku)

(

a b
0 d

)(

a b
0 d

)

=

(

λ 1
0 λ

)

daje a2 = d2 = λ oraz (a+ d)b = 1. Zatem jeśli tylko λ 6= 0, pierwiastkami ze stojącej po
prawej klatki Jordana są macierze

(

λ1/2 1
2
λ−1/2

0 λ1/2

)

,

(

−λ1/2 −1
2
λ−1/2

0 −λ1/2
)

(znaki a i d muszą być takie same, żeby można było spełnić drugie równanie). Jak się
wydaje,74 można to rozciągnąć na klatki Jordana dowolnego wymiaru (byle wartość wła-
sna, której odpowiada klatka była niezerowa). Konieczna korelacja znaków pierwiastków
(z takiego samego, jak w powyższym przykładzie powodu) powoduje, że jest teraz “mniej”
klatek pierwiastkowych niż dwa podniesione do potęgi równej wymiarowi klatki.

Zadanie 74
Dana jest macierz F i wektor (wszystko jak zwykle w jakiejś bazie ei, i = 1, 2, 3)

F =





2 1 1
1 2 1
1 1 2



 ,





1
0
0



 .

74Pewien historyk o królach Francji napisał: “Niektórzy królowie mieli kochanki, niektórzy - jak się

wydaje - ich nie mieli”. Przypuszczam, że miał na myśli Ludwika XI (raczej nie Ludwika IX, bo tu sprawa
jest jasna: ten był święty).
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Znaleźć wektory własne i wartości własne macierzy F oraz działanie etF , gdzie t ∈ R, na
podany wektor.
Rozwiązanie: Znajdujemy jak zwykle najpierw wielomian charakterystyczny

WF (λ) = det





2− λ 1 1
1 2− λ 1
1 1 2− λ



 = −λ3 + 6λ2 − 9λ+ 4 .

Łatwo zauważyć, że jednym z pierwiastków WF (λ) jest λ = 1. Można więc wydzielić
czynnik (λ− 1):

WF (λ) = −(λ− 1)(λ2 − 5λ+ 4) = −(λ− 1)2(λ− 4) .

Równanie charakterystyczne ma zatem dwa pierwiastki: pojedyńczy (n1 = 1) λ1 = 4
i podwójny λ2 = 1 (n2 = 2). Nie jest więc jeszcze jasne, czy macierz F ≡ F(e)(e) jest
diagonalizowalna. Możemy sprawdzić twierdzenie Cayleya-Hamiltona. Mamy

F =





2 1 1
1 2 1
1 1 2



 , F 2 =





6 5 5
5 6 5
5 5 6



 , F 3 =





22 21 21
21 22 21
21 21 22



 ,

i w macierzowym wyrażeniu −F 3+6F 2−9F+4I mamy na diagonali−22+6·6−9·2+4·1 =
0, a poza nią −21 + 6 · 5 − 9 · 1 + 4 · 0 = 0. Co więcej, można też zauważyć, że także
F 2− 5F +4I = 0 (na diagonali: 6− 5 · 2+ 4 · 1 = 0, poza: 5− 5 · 1+ 4 · 0 = 0). Świadczy
to o tym, że macierz może jednak być diagonalizowalna mimo, iż jeden z jej pierwiastków
jest podwójny.

Szukamy wektorów własnych macierzy F :

λ1 = 4





−2 1 1
1 −2 1
1 1 −2









a1
b1
c1



 =





0
0
0



 ,

λ2 = 1





1 1 1
1 1 1
1 1 1









a2
b2
c2



 =





0
0
0



 .

W przypadku λ1 widać gołym okiem, że rozwiązaniem jest a1 = b1 = c1. Dla λ2 zaś
mamy tylko jedno niezależne równanie na trzy współczynniki a2, b2, i c2. Można zatem
znaleźć dwa liniowo niezależne wektory własne odpowiadające podwójnemu pierwiastkowi
λ2. Możemy więc jako wektory własne wybrać75

λ1 = 4 :





1
1
1



 , λ2 = 1 :





1
−1
0



 ,





0
1
−1



 .

75Rozpatrywana tu macierz jest przykładem macierzy cyklicznej z Zadania 70′. Jej wartości własne
można więc było od razu otrzymać ze wzoru λa = 2+εa−1+ε2a−1, a = 1, 2, 3, gdzie ε1 = 1

2 (−1+i
√
3), ε2 =

1
2 (−1− i

√
3). Przepis podany w Zadaniu 70′ dałby wektory własne odpowiadające dwóm takim samym

wartościom własnym λ2 i λ3 o zespolonych składowych, które można otrzymać jako dwie kombinacje
liniowe (o zespolonych współczynnikach) rzeczywistych wektorów wybranych tutaj.
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Jeśli macierz F była macierzą F(e)(e) odwzorowania F w bazie (e1, e2, e3), to wektory
własne (w1,w2,w3) odpowiadające λ1 (w1) oraz λ2 (w2 i w3) mają następujące jawne
postacie

w1 = e1 + e2 + e3 ,

w2 = e1 − e2 ,

w3 = e2 − e3 ,

Możemy też odwrócić te związki (pierwsze po dodaniu doń trzeciego wraz z drugim da
układ równań na e1, e2, który już łatwo rozwikłać):

e1 =
1

3
(w1 + 2w2 +w3) ,

e2 =
1

3
(w1 −w2 +w3) ,

e3 =
1

3
(w1 −w2 − 2w3) .

Mamy zatem potrzebne do diagonalizacji macierze Re←w i Rw←e:

Re←w =





1 1 0
1 −1 1
1 0 −1



 , Rw←e =
1

3





1 1 1
2 −1 −1
1 1 −2



 ,

i oczywiście Rw←e · Re←w = Re←w · Rw←e = I oraz F(w)(w) = Rw←e · F(e)(e) · Re←w:

F(w)(w) =
1

3





1 1 1
2 −1 −1
1 1 −2









2 1 1
1 2 1
1 1 2









1 1 0
1 −1 1
1 0 −1



 =





4 0 0
0 1 0
0 0 1



 .

Znajdziemy teraz wektor

etF





1
0
0



 .

(bo takie rzeczy są często potrzebne do rozwiązania równań różniczkowych). Jeśli tylko
to wyrażenie jest potrzebne, można je znaleźć szybkim sposobem, który daje od razu
wynik, ale nie pozwala znaleźć samej macierzy etF . W tym celu rozkładamy podany
wektor na wektory własne macierzy F (tj. zapisujemy go w postaci kombinacji liniowej
tych wektorów):





1
0
0



 =
1

3





1
1
1



+
2

3





1
−1
0



 +
1

3





0
1
−1



 ,
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(znalezienie współczynników tej kombinacji liniowej jest sprawą prostego rachunku). Na-
stępnie działamy:

etF





1
0
0



 =
1

3
etF





1
1
1



+
2

3
etF





1
−1
0



 +
1

3
etF





0
1
−1





=
1

3
e4t





1
1
1



+
2

3
et





1
−1
0



+
1

3
et





0
1
−1



 =
1

3





e4t + 2et

e4t − et
e4t − et



 .

Skorzystaliśmy tu z liniowości etF i tego, że etF działając na wektor własny F o wartości
własnej λ daje ten sam wektor razy etλ.

Możemy też znaleźć samą macierz etF korzystając z macierzy diagonalizujących Re←w

i Rw←e:

etF =
∞
∑

n=0

tn

n!
F n = Re←w ·

[ ∞
∑

n=0

tn

n!
(Rw←e · F(e)(e) · Re←w)

n

]

· Rw←e

=





1 1 0
1 −1 1
1 0 −1









e4t 0 0
0 et 0
0 0 et





1

3





1 1 1
2 −1 −1
1 1 −2



 .

Wymnażając macierze znajdujemy

etF =
1

3





e4t + 2et e4t − et e4t − et
e4t − et e4t + 2et e4t − et
e4t − et e4t − et e4t + 2et



 .

Alternatywną metodą jest znalezienie działania etF na dowolny wektor




a
b
c



 =
1

3
(a+ b+ c)





1
1
1



+
1

3
(2a− b− c)





1
−1
0



+
1

3
(a+ b− 2c)





0
1
−1



 ,

rozłożony na wektory własne macierzy F (znalezienie współczynników tego rozkładu jest
znów sprawą nietrudnego - gdy ma się już wprawę w rozwiązywaniu standardowych pro-
blemów liniowych - rachunku). Działając na obie strony etF otrzmujemy

etF





a
b
c



 =
1

3
(a+ b+ c) e4t





1
1
1



 +
1

3
(2a− b− c) et





1
−1
0



 +
1

3
(a + b− 2c) et





0
1
−1





=
1

3





(a + b+ c) e4t + (2a− b− c) et
(a + b+ c) e4t + (−a + 2b− c) et
(a + b+ c) e4t + (−a− b+ 2c) et



 .

Prawą stronę możemy teraz zapisać w postaci macierzy M działającej na wektor o składo-
wych (a, b, c): elementem M11 musi wtedy być współczynnik przy a w pierwszej składowej
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wektora stojącego po prawej stronie ostatniego wzoru, elementem M12 jest współczynnik
przy b, etc.:

etF





a
b
c



 =
1

3





e4t + 2et e4t − et e4t − et
e4t − et e4t + 2et e4t − et
e4t − et e4t − et e4t + 2et









a
b
c



 .

Macierz M jest oczywiście tą samą macierzą etF , co znaleziona wyżej.
Na koniec spróbujmy znaleźć etF metodą opartą na twierdzeniu C-H. Ponieważ wielo-

mian charakterystyczny WF (λ) stopnia 3 ma tu pierwiastek podwójny i, co zatem idzie,
są tylko dwie różne wartości własne, nie można - jak to już było wyjaśnione - wykorzystać
samego wielomianu WF (λ), gdyż wtedy reszta r(λ) będąc wielomianem stopnia 2 miałaby
3 współczynniki, na które dałoby się wypisać tylko dwa równania. Na szczęście, w takim
przypadku dla λ = λ2 zeruje się nie tylko WF (λ) ≡ (λ − λ1)(λ − λ2)2, ale także zredu-
kowany wielomian charakterystyczny niższego stopnia W̃F (λ) ≡ (λ− λ1)(λ− λ2) mający
tym przypadku postać W̃F (λ) = λ2 − 5λ+ 4. Dzięki temu w rozkładzie

λn = W̃F (λ)Q̃(λ) + r̃(λ),

reszta r̃(λ) jest już wielomianem stopnia 1 postaci r̃(λ) = a1λ + a0 mającym tylko dwa
współczynniki.76 W przypadku rozpatrywanej tu macierzy F możemy więc napisać

etλ1 = e4t = a1λ1 + a0 = 4a1 + a0 ,

etλ2 = et = a1λ2 + a0 = a1 + a0 ,

czyli a1 = 1
3
(e4t − et), a0 = −1

3
e4t + 4

3
et, a stąd mamy

etF = a1F + a0I =





2a1 + a0 a1 a1
a1 2a1 + a0 a1
a1 a1 2a1 + a0



 ,

co oczywiście znów daje tę samą macierz, co poprzednio.

Uzupełnienie
Weźmy “kanoniczny” iloczyn skalarny w trójwymiarowej przestrzeni wektorowej V rozpa-
trywanej w Zadaniu 74, tj. przyjmijmy, że na wektorach ei (i = 1, 2, 3) bazy, w której
dana jest badana tam macierz F ≡ F(e)(e) daje on

(ei|ej) = δij .

Oznacza to, że iloczyn skalarny dwóch wektorów w = eiw
i
(e) i v = eiv

i
(e) jest dany wzorem

(w|v) = (eiw
i
(e)|ejvj(e)) = (ei|ej)wi

(e)v
j
(e) = δijw

i
(e)v

j
(e) .

76Ogólnie, gdy suma pomniejszonych o jeden krotności wszystkich pierwiastków wielomianu charakte-
rystycznego WF (λ) macierzy wymiaru p× p wynosi k, to zredukowany wielomian charakterystyczny jest
stopnia p − k, a reszta r̃(λ) jest wielomianem stopnia p − k − 1 mającym p − k współczynników, czyli
akurat tyle, ile można wyznaczyć wykorzystując p− k różnych wartości własnych.
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Przeprowadźmy ortonormalizację Gramma-Schmidta trzech wektorów własnych w1, w2 i
w3 (są one liniowo niezależne) macierzy F ≡ F(e)(e).

Jeśli do utworzenia bazy ortonormalnej jako pierwszy weźmiemy wektor w1, to wy-
starczy podzielić go przez

√
3, tj. przyjąć, że w′1 =

1√
3
(e1+e2+e3), by mieć (w′1|w′1) = 1.

Podobnie dzieląc wektor w2 przez
√
2 otrzymujemy wektor w′2 = 1√

2
(e1 − e2) o jednost-

kowej długości, który jest od razu prostopadły do w′1:

(w′2|w′2) = 1 , (w′2|w′1) = 0 .

Jednakże wektor 1√
2
(e2 − e3) otrzymany przez podzielenie w3 przez

√
2 nie jest prosto-

padły do w′2. Aby otrzymać taki wektor trzeba zastosować przedstawioną już wcześniej
procedurę Gramma-Schmidta:

w′3 =
1

N









0
1
−1



−
(

− 1√
2

)

1√
2





1
−1
0







 =
1

N





1
2
1
2

−1



 ,

(uwzględniliśmy już, że (w′1|w3) = 0), gdzie

N2 =









1
2
1
2

−1





∣

∣

∣

∣

∣

∣





1
2
1
2

−1







 =

(

1

2

)2

+

(

1

2

)2

+ (−1)2 = 3

2
.

Tak więc mamy ostatecznie trzy ortonormalne wektory

w′1 =
1√
3





1
1
1



 , w′1 =
1√
2





1
−1
0



 , w′3 =
1√
6





1
1
−2



 ,

które są nadal wektorami własnymi macierzy F . Kluczowe dla tego stwierdzenia jest to,
że w′2 (czyli i w2) był prostopadły do w′1 i że stworzyliśmy w′3 jako kombinację liniową
w2 i w3, tj. tylko wektorów własnych F(e)(e) odpowiadających tej samej wartości własnej
λ2 = 1. Gdyby bowiem iloczyny skalarne (w1|w2) i (w1|w3) nie znikały, procedura
Gramma-Schmidta spowodowałaby pomieszanie wektorów własnych i wektor w′3 nie byłby
już wektorem własnym macierzy F(e)(e). Powstaje więc ważne pytanie, co ma piernik
do wiatraka, tj. dlaczego arbitralnie przyjęty przez nas iloczyn skalarny (ei|ej) = δij
okazał się dobry, tj. dlaczego wektory własne macierzy F(e)(e) odpowiadające różnym
wartościom własnym okazały się być w tym iloczynie skalarnym wzajemnie do siebie
ortogonalne?

Enigmatyczna odpowiedź na to pytanie brzmi: jest tak dlatego, że odwzorowanie F
połączone z użytym iloczynem skalarnym (ei|ej)S = δij , dzięki symetryczności macie-
rzy F(e)(e), daje uczciwą symetryczną formę bilinową B(w,v) = B(v,w) zadaną wzorem
B(w,v) = (w|F (v))S, co oznacza, że macierz F jako macierz tej formy można uznać za
macierz formy kwadratowej, a każda forma kwadratowa, co już wiemy, jest diagonalizo-
walna. Ogólniej, jeśli rzeczywista macierz F (niekoniecznie symetryczna) jest diagonali-
zowalna nad ciałem R, to zawsze można w przestrzeni wektorowej, w której ona działa
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wprowadzić taki iloczyn skalarny (·|·)S, że (w|F (v))S jest symetryczną formą biliniową i w
tym iloczynie skalarnym wektory własne F odpowiadające różnym wartościom własnym
są wzajemnie ortogonalne.

Patrząc na to inaczej, jeśli dane jest odwzorowanie liniowe F przestrzeni wektorowej
V nad R w nią samą i na tej przestrzeni zadany jest iloczyn skalarny (·|·)S, to można
zdefiniować odwzorowanie F † sprzężone do F względem tego iloczynu skalarnego. Dzia-
łanie F † na wektory przestrzeni V jest zdefiniowane wzorem (mającym zachodzić dla
wszystkich v i wszystkich w):

(w|F †(v))S := (F (w)|v)S .

Ogólne stwierdzenie można teraz wyrazić nastepująco: jeśli odwzorowanie F jest diago-
nalizowalne nad R (tj. wartości i wektory własne macierzy tego odwzorowania są rzeczy-
wiste), to istnieje iloczyn skalarny, w którym F jest odwzorowaniem samosprzężonym (tj.
symetrycznym) w takim sensie, że F † = F , czyli

(w|F (v))S = (F (w)|v)S ,

a więc, tak jak było powiedziane wyżej, forma biliniowa B(w|v) ≡ (w|F (v))S jest syme-
tryczna:

B(w,v) ≡ (w|F (v))S = (w|F †(v))S = (F (w)|v)S = (v|F (w))S = B(v,w) .

Wykorzystana tu została najpierw samosprzeżoność F i warunek wyznaczający działanie
F † na wektory, a potem obowiązkowa symetryczność iloczynu skalarnego.77 I odwrotnie:
jeśli istnieje iloczyn skalarny (·|·)S, przy którym F jest odwzorowaniem samosprzężonym,
to jest ono diagonalizowalne nad R i jego wektory własne odpowiadające różnym wekto-
rom własnym są nawzajem ortogonalne w (·|·)S. Jeśli w jakiejś bazie ei iloczyn skalarny
(·|·)S jest kanoniczny, tj. S

(e)
il = δil (zawsze można taką bazę znaleźć), to w tej bazie

macierz [F †(e)(e)]
l
i odwzorowania sprzężonego do F jest transpozycją macierzy [F(e)(e)]

l
i

77To samo w notacji wskaźnikowej, tj. rozpisując wszystko w bazie ei, w której macierzą iloczynu
skalarnego (·|·)S jest S

(e)
ij (należy zwrócić uwagę na położenie wskaźników!). Warunek wyznaczający

działanie F † to

wk
(e)S

(e)
kl [F

†
(e)(e)]

l
iv

i
(e) = [F(e)(e)]

l
kw

k
(e)S

(e)
li vi(e) ,

czyli, po uwolnieniu się od dowolnych wk
(e) i vi(e), związek S

(e)
kl [F

†
(e)(e)]

l
i = [F(e)(e)]

l
kS

(e)
li . Ponadto, ponie-

waż F = F †, więc [F †(e)(e)]
l
i = [F(e)(e)]

l
i, czyli S(e)

kl [F(e)(e)]
l
i = [F(e)(e)]

l
kS

(e)
li . Wykorzystujemy teraz ten

związek w definicji macierzy B
(e)
ki formy biliniowej, by wykazać jej symetryczność:

B
(e)
ki ≡ S

(e)
kl [F(e)(e)]

l
i = [F(e)(e)]

l
kS

(e)
li = S

(e)
il [F(e)(e)]

l
k = B

(e)
ik .

W drugiej równości wykorzystana została obowiązkowa symetryczność macierzy iloczynu skalarnego, tj.
równość S

(e)
li = S

(e)
il .
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tegoż odwzorowania, tzn. [F †(e)(e)]
l
i = [F(e)(e)]

i
l, a macierz odwzorowania F samosprzężo-

nego względem tego iloczynu skalarnego jest w tej bazie oczywiście macierzą symetryczną
[F(e)(e)]

l
i = [F(e)(e)]

i
l.

Wszystko to można przenieść na przestrzenie wektorowe nad ciałem C. Jeśli macierz
H odwzorowania przestrzeni wektorowej V nad C w tę samą przestrzeń V jest diagona-
lizowalna, to istnieje półtoraliniowy iloczyn skalarny (·|·)S, przy którym H jest odwzo-
rowaniem samosprzężonym, albo inaczej78 hermitowskim tzn. takim, że H† = H , gdzie
działanie H† na wektory przestrzeni V jest zdefiniowane wzorem (mającym zachodzić dla
wszystkich v i wszystkich w):

(w|H†(v))S := (H(w)|v)S .

Wektory własne H odpowiadające różnym wartościom własnym są ortogonalne w tym
iloczynie skalarnym. Złożenie (·|·)S z H daje wtedy uczciwą hermitowską formę półtora-
liniową D(w,v) ≡ (w|H(v))S. Jej hermitowskość wynika z równości:

D(w,v) ≡ (w|H(v))S = (w|H†(v))S = (H(w)|v)S = (v|H(w))∗S = (D(v,w))∗ ,

w których wykorzystana została równość (u|v)S = (v|u)∗S, jaką musi obowiązkowo speł-
niać iloczyn skalarny zadany na przestrzeni wektorowej nad ciałem C. Ponownie poucza-
jące jest rozpisanie tego samego w dowolnej bazie ei przestrzeni V , w której macierzą
iloczynu skalarnego (·|·)S jest S(e)

kl , a macierzą odwzorowania H samosprzężonego wzgle-
dem tego iloczynu skalarnego jest [H(e)(e))]

l
i = [H†(e)(e))]

l
i:

D
(e)
ki = S

(e)
kl [H(e)(e))]

l
i = S

(e)
kl [H

†
(e)(e))]

l
i = [H(e)(e))]

l∗
kS

(e)
li = S

(e)∗
il [H(e)(e))]

l∗
k = D

(e)∗
ik .

Wykorzystany tu został rozpisany w bazie ei związek będący definicją odwzorowania
sprzężonego

wk∗
(e)S

(e)
kl [H

†
(e)(e)]

l
iv

i
(e) = ([H(e)(e)]

l
kw

k
(e))
∗S

(e)
li v

i
(e) = [H(e)(e)]

l∗
kw

k∗
(e)S

(e)
li v

i
(e) .

czyli, po uwolnieniu się od składowych dowolnych wektorów w i v, związek S(e)
kl [H

†
(e)(e)]

l
i =

[H(e)(e)]
l∗
kS

(e)
li . Jeśli w bazie ei iloczyn skalarny ma postać kanoniczną, tj. S(e)

ij = δij (tzn.

(w|v)S = wi∗
(e)δijv

j
(e)), to w tej bazie macierz [H†(e)(e)]

l
k odwzorowania sprzężonego do H

o macierzy [H(e)(e)]
l
k jest dana przez [H†(e)(e)]

l
k = [H(e)(e)]

k∗
l , a macierz samosprzężonego

odwzorowania H jest hermitowska, tj. [H(e)(e)]
l
k = [H(e)(e)]

k∗
l .

Dodatkowym wnioskiem, jaki otrzymuje się w przypadku odwzorowań przestrzeni wek-
torowych nad ciałem C jest ten, że jeśli odwzorowanie H jest w jakimś iloczynie skalarnym
(·|·)S hermitowskie (samosprzężone, symetryczne), to jego wartości własne są rzeczywiste.
Wynika to natychmiast z równości

(w|H(w))S = (H(w)|w)S .

78W przestrzeniach skończeniewymiarowych określenia te, jak i określenie odwzorowanie symetryczne,
są synonimami. Przestają one takimi być w przestrzeniach nieskończeniewymiarowych, kiedy to rolę
zaczynają odgrywać dziedziny odwzorowań.
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zastosowanej do wektora własnego w odwzorowania H . Z półtoraliniowości iloczynu ska-
larnego wynikają wtedy bowiem równości:

(w|H(w))S = (w|λw)S = λ(w|w)S ,

(H(w)|w)S = (λw|w)S = λ∗(w|w)S ,

które oznaczają, że λ∗ = λ.

Po tej długiej, ale dla fizyka niezwykle ważnej dygresji, wracamy do rozpatrywanego
przykładu. Mając nowe wektory własne w′i możemy powtórzyć diagonalizację macierzy
F . Mamy nową macierz Re←w′

(w′1,w
′
2,w

′
3) = (e1, e2, e3)





1√
3

1√
2

1√
6

1√
3
− 1√

2
1√
6

1√
3

0 − 2√
6



 ,

Potrzebna do diagonalizacji F macierz Rw′←e jest teraz dana “od ręki” przez transpozycję
macierzy Re←w′.

Rw′←e =





1√
3

1√
3

1√
3

1√
2
− 1√

2
0

1√
6

1√
6
− 2√

6



 .

Musi tak być, bo obie macierze Re←w′ i Rw′←e są zbudowane ze składowych wektorów,
które są wzajemnie ortonormalne (tj. ortogonalne i unormowane w iloczynie skalarnym,
który właśnie w używanej tu bazie ma postać kanoniczną, tj. (ei|ej) = δij). Stąd ilo-
czyn Rw′←e · Re←w′ można zapisać w poglądowej postaci (przez tłuste w′i rozumiemy tu
oczywiście nie żywe wektory tylko ich składowe w bazie ei)




← w′1 →
← w′2 →
← w′3 →









↑ ↑ ↑
w′1 w′2 w′3
↓ ↓ ↓



 =





(w′1|w′1) (w′1|w′2) (w′1|w′3)
(w′2|w′1) (w′2|w′2) (w′2|w′3)
(w′3|w′1) (w′3|w′2) (w′3|w′3)



 =





1 0 0
0 1 0
0 0 1



 .

W taki sam sposób jest oczywiste, że macierze Rw′←e i Re←w′ diagonalizują F ≡ F(e)(e):





← w′1 →
← w′2 →
← w′3 →



 · F ·





↑ ↑ ↑
w′1 w′2 w′3
↓ ↓ ↓



 =





← w′1 →
← w′2 →
← w′3 →









↑ ↑ ↑
λ1w

′
1 λ2w

′
2 λ2w

′
3

↓ ↓ ↓





=





λ1(w
′
1|w′1) λ2(w

′
1|w′2) λ2(w

′
1|w′3)

λ1(w
′
2|w′1) λ2(w

′
2|w′2) λ2(w

′
2|w′3)

λ1(w
′
3|w′1) λ2(w

′
3|w′2) λ2(w

′
3|w′3)



 =





λ1 0 0
0 λ2 0
0 0 λ2



 .
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Oczywiście wykorzystanie powyższych macierzy Rw′←e i Re←w′ do znalezienia etF daje
ten sam wynik, co poprzednio:

etF =
∞
∑

n=0

tn

n!
F n = Re←w′ ·

[ ∞
∑

n=0

tn

n!
(Rw′←e · F · Re←w′)n

]

· Rw′←e

=





↑ ↑ ↑
w′1 w′2 w′3
↓ ↓ ↓









e4t 0 0
0 et 0
0 0 et









← w′1 →
← w′2 →
← w′3 →





≡





1√
3

1√
2

1√
6

1√
3
− 1√

2
1√
6

1√
3

0 − 2√
6









e4t 0 0
0 et 0
0 0 et









1√
3

1√
3

1√
3

1√
2
− 1√

2
0

1√
6

1√
6
− 2√

6





=
1

3





e4t + 2et e4t − et e4t − et
e4t − et e4t + 2et e4t − et
e4t − et e4t − et e4t + 2et



 .

Zadanie 75
Zdiagonalizować formę kwadratową Q = 2x1x2 + 2x1x3 raz metodą Lagrange’a, a raz
metodą szukania wektorów własnych jej macierzy

Q =





0 1 1
1 0 0
1 0 0



 .

Rozwiązanie: Aby wygenerować jakieś “x2” przejdźmy najpierw do zmiennych

x1 = y1 − y2 ,
x2 = y1 + y2 ,

x3 = y3 ,

w których forma ma postać Q = 2y21 − 2y22 + 2(y1 − y2)y3 = 2(y1 +
1
2
y3)

2 − 2(y2 +
1
2
y3)

2.
Wynika stąd, że w zmiennych

z1 = y1 +
1

2
y3 ,

z2 = y2 +
1

2
y3 ,

z3 = y3 ,

forma ma postać diagonalną Q = 2z21 − 2z22 . Wyrażając zmienne xi przez zi

x1 = z1 − z2 ,
x2 = z1 + z2 − z3 ,
x3 = z3 ,
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mamy macierz diagonalizującą Re←f (Re←f bo daje ona stare zmienne w funkcji nowych -
zakładamy, że x1, x2 i x3 są składowymi wektora w bazie ei, a z1, z2 i z3 jego składowymi
w bazie fi) - tę jedyną potrzebną do diagonalizowania formy kwadratowej. Jak łatwo
sprawdzić

(Re←f)
T ·Q · Re←f =





1 1 0
−1 1 0
0 −1 1









0 1 1
1 0 0
1 0 0









1 −1 0
1 1 −1
0 0 1



 =





2 0 0
0 −2 0
0 0 0



 .

Forma kwadratowa jest więc diagonalna w bazie tworzonej przez wektory fi związane z
wyjściową bazą ei wzorem fi = ej [Re←f ]

j
i, tj.

f1 = e1 + e2 ,

f2 = −e1 + e2 ,

f3 = − e2 + e3 .

Możemy jednak zdiagonalizować Q inaczej. Możemy uznać, że forma Q powstała
z odwzorowania F połączonego z iloczynem skalarnym, takim, że w bazie ei, w której
zadana jest macierz F ma on postać (ei|ej) = δij. Przy takim iloczynie skalarnym ma-
cierz F w bazie ei (czyli w naszej niekonwencjonalnej, ale za to pozwalającej izbieżać
niedorozumienija notacji, macierz F(e)(e)) jest tożsama z macierzą Q (czyli Q(e)):

Q(v) = (v|F (v)) = vl(e)(el|ej[F(e)(e)]
j
iv

i
(e))

= vl(e)(el|ej)[F(e)(e)]
j
iv

i
(e) = δlj[F(e)(e)]

j
iv

l
(e)v

i
(e) ≡ Q

(e)
li v

l
(e)v

i
(e) .

Ponieważ z macierzowego punktu widzenia δlj jest macierzą jednostkową, czyli nic nie
zmieniającą79 możemy diagonalizować Q szukając wektorów własnych F

det





−λ 1 1
1 −λ 0
1 0 −λ



 = −λ(λ2 − 2) ,

i wartościami własnymi F są λ1 =
√
2, λ2 = −

√
2 oraz λ3 = 0. Nietrudno znaleźć

odpowiadające im wektory własne

λ1 =
√
2 :





1/
√
2

1/2
1/2



 , λ1 = −
√
2 :





1/
√
2

−1/2
−1/2



 , λ1 = 0 :





0
1/
√
2

−1/
√
2



 .

Wybraliśmy je od razu tak, by były ortonormalne (ponieważ istnieją trzy różne wartości
własne macierzy F , jej wektory własne są ortogonalne bez konieczności uciekania się do

79To co się zmienia przez macierz δlj = (el|ej) to jest interpretacja drugiego wektora, czyli vl(e): staje
się on de facto kowektorem (było już o nich wcześniej), ale nie musimy się tu tym przejmować.
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procedury Gramma-Schmidta). Macierz F , czyli także macierz formy kwadratowej Q jest
zatem diagonalna w ortonormalnej bazie wektorów własnych wi macierzy F

w1 =
1√
2
e1 +

1

2
e2 +

1

2
e3 ,

w2 =
1√
2
e1 −

1

2
e2 −

1

2
e3 ,

w3 =
1√
2
e2 −

1√
2
e3 ,

która jest zupełnie inna, niż baza wektorów fi znaleziona w pierwszej części zadania. W
bazie wektorów własnych wi mamy

Q(w) = F(w)(w) = [Re←w]
T · F(e)(e) · Re←w =





√
2 0 0
0 −

√
2 0

0 0 0



 .

Warto zauważyć, że jakkolwiek w ogólności wzory na diagonalizację formy kwadratowej i
macierzy odwzorowania są inne (pierwsze diagonalizują się przez macierze [Re←w]

T iRe←w,
a drugie przez Rw←e i Re←w), to są one w tym przypadku zgodne bo [Re←w]

T = Rw←e.
Przykład ten pokazuje, że dowolność w wyborze bazy, w której forma kwadratowa jest

diagonalna nie sprowadza się jedynie do przeskalowania wektorów: bazy wektorów fi i
wi są istotnie różne; różne są też diagonalne postacie formy Q (ale oczywiście sygnatura
formy jest zawsze taka sama, tak jak to gwarantuje twierdzenie Sylvestra).

Zadanie 75′

Znaleźć wszystkie iloczyny skalarne, w których wektory własne macierzy

F(f)(f) =





1 4 4/3
0 −1 −2/3
0 0 1



 ,

odpowiadające różnym wartościom własnym są ortogonalne.
Rozwiązanie: Podana macierz ma dwie wartości własne: podwójną λ1 = 1 i pojedynczą
λ2 = −1 oraz wektory własne

w1 :=





1
0
0



 , w2 :=





2
−1
0



 , w3 :=





0
1
−3



 ,

z których w1 i w3 odpowiadają λ1, a w2 odpowiada λ2. Wektory te są liniowo niezależne,
więc można przyjąć je jako bazę przestrzeni wektorowej, w której cała sprawa się rozgrywa.
Mamy więc

(w1,w2,w3) = (f1, f2, f3)





1 2 0
0 −1 1
0 0 −3



 ,
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co daje macierz zmiany bazy Rf←w (wektory fi tworzą bazę w której jest dana wyjściowa
macierz, której wartości i wektory własne są przedmiotem tego zadania), oraz

(f1, f2, f3) = (w1,w2,w3)





1 2 2/3
0 −1 −1/3
0 0 −1/3



 .

Stojąca tu macierz jest macierzą Rw←f .
Iloczyn skalarny, w którym wektory w1 i w2 oraz w3 i w2 (czyli pary wektorów od-

powiadających różnym wartościom własnym) są parami ortogonalne najłatwiej zadać po-
dając jego macierz S(w) (tj. macierz formy biliniowej) w bazie wektorów wi. W tej bazie
każda macierz postaci

S(w) =





A 0 E
0 D 0
E 0 B



 ,

jeśli tylko A > 0, D > 0 i AB−E2 > 0 (warunek dodatniej określoności) jest dobrym ilo-
czynem skalarnym, spełniającym warunki zadania. Macierz S(f) tego iloczynu skalarnego
w bazie wektorów fi otrzymujemy mnożąc S(w) przez macierze zmiany bazy:

S(f) = RT
w←f · S(w) · Rw←f =





A 2A (2A− E)/3
2A 4A +D (4A+D − 2E)/3

(2A−E)/3 (4A+D − 2E)/3 (4A+ 2B − 6E)/9



 .

Nietrudno sprawdzić, że wektory w1 i w2 oraz w3 i w2 są w tym iloczynie skalarnym pa-
rami ortogonalne. Widać też, że taki iloczyn skalarny nie może być “kanoniczny”, tj. mieć
(w tej bazie) macierzy propocjonalnej do macierzy jednostkowej. Co więcej (patrz Wnioski
poniżej), mnożąc macierz F z lewej przez macierz tego iloczynu skalarnego otrzymujemy
macierz symetryczną, która jest zatem macierzą formy kwadratowej: S(f)

ik [F(f)(f)]
k
j = Q

(f)
ij ;

jawnie




A 2A (2A− E)/3
2A 4A+D (4A+D − 2E)/3

(2A− E)/3 (4A+D − 2E)/3 (4A+ 2B − 6E)/9









1 4 4/3
0 −1 −2/3
0 0 1





=





A 2A (2A−E)/3
2A 4A−D (4A−D − 2E)/3

(2A−E)/3 (4A−D − 2E)/3 (4A+ 2B − 2D − 8E)/9



 .

Przyjmując A = 1, D = 1, E = −1, B = 9/2, otrzymuje się iloczyn skalarny, który
był użyty do skonstruowania tego przykładu: macierz

F(e)(e) =





1 0 0
0 −1 0
0 0 1



 ,
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dana w bazie ei, w której iloczyn skalarny był postaci u · v = δiju
i
(e)v

j
(e) została “przekrę-

cona” do bazy fi za pomocą macierzy

Rf←e =





1 −2 −1/3
0 1 −1/3
0 0 1



 , Re←f =





1 2 1
0 1 1/3
0 0 1



 ,

co dało macierz F(f)(f) = Rf←e · F(e)(e) ·Rf←e i macierz iloczynu skalarnego

S(f) = RT
e←f · S(e) · Re←f = RT

e←f · Re←f =





1 2 1
2 5 7/3
1 7/3 19/9



 .

Wnioski.

1. Symetryczna rzeczywista macierz F jest zawsze diagonalizowalna, bo zawsze można
uważać, że jest ona macierzą formy kwadratowej powstałej (jak w Zadaniu 75) z po-
łączenia kanoniczego (kanonicznego w bazie, w której dana jest ta macierz) iloczynu
iloczynu skalarnego i macierzy F , a formy kwadratowe są zawsze diagonalizowalne.

2. Jeśli macierz F nie jest symetryczna, ale okazuje się być diagonalizowalna (nad R),
to tak jak w Zadaniu 76 można znaleźć jakiś iloczyn skalarny S, w którym wektory
własne F odpowiadające jej różnym wartościom własnym są ortogonalne, a wektory
odpowiadające tym samym wartościom własnym można w takim iloczynie skalar-
nym zortogonalizować. Macierz F można wtedy uważać za powstałą z połączenia
pewnej formy kwadratowej Q z odwrotnością tego iloczynu skalarnego: F = S−1 ·Q.

3. Uwagi te mają zastosowanie w mechanice klasycznej w teorii małych drgań. Lagran-
gian wykonującego małe drgania układu o n stopniach swobody ma ogólną postać

L =
1

2
q̇iTij q̇

j − 1

2
qiVijq

j ,

przy czym obie (stałe) macierze, Tij oraz Vij , są symetryczne, a macierz energii
kinetycznej Tij musi być dodatnio określona (spełnia więc ona konieczny warunek,
by być macierzą iloczynu skalarnego). Lagrangian taki prowadzi do równań ruchu

Tij
d2

dt2
qj + Vijq

j = 0 .

Rozwiązania tego układu równań szuka się w postaci qj(t) = Aj exp(iωt), co prowa-
dzi do warunku

(V − ω2T )ijA
j = 0 ,

równoważnego warunkowi

(T−1 ·V − ω2I)ijA
j ≡ (F − ω2I)ijA

j = 0 .
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Jak widać jest to zagadnienie własne: wektory Aj są wektorami własnymi macierzy
F = T−1·V , która w ogólności nie jest symetryczna. Ponieważ jednak powstała ona z
połączenia iloczynu skalarnego T z formą kwadratową V , jest ona diagonalizowalna,
a jej wektory własne Ai

a, gdzie dolny wskaźnik a numeruje różne wektory własne,
można wybrać tak, by były ortonormalne w iloczynie skalarnym T : Ai

aTijA
j
b =

δab Zamiana zmiennych qi(t) = Ai
aQ

a(t) pozwala wtedy sprowadzić Lagrangian do
postaci kanonicznej

L =
1

2
Q̇a(t)Ai

aTijA
j
bQ̇

b(t)− 1

2
Qa(t)Ai

aVijA
j
bQ

b(t)

=
1

2
Q̇a(t)Q̇a(t)− 1

2
ω2
aQ

a(t)Qa(t) ,

(w drugim członie wykorzystane zostało to, że VijA
j
b = ω2

bTijA
j
b, a następnie, podob-

nie jak w pierwszym członie, ortonormalność wektorów Aa w iloczynie skalarnym
T ).

Przypomnienie
Twierdzenie o rozkładzie na podprzestrzenie niezmiennicze zwane też podprzestrzeniami
pierwiastkowymi względem odwzorowania. Każde odwzorowanie liniowe F : V → V
przestrzeni wektorowej V nad ciałem C (dimV = n) w nią samą zadaje rozkład tej
przestrzeni na podprzestrzenie niezmiennicze Xa:

V = ⊕r
a=1Xa ,

gdzie r jest liczbą różnych pierwiastków równania charakterystycznego WF (λ) = 0, przy
czym dimXa = na, gdzie na jest krotnością a-tego pierwiastka WF (λ), tak że dimV =
n1 + . . .+ nr. Przestrzenie Xa mają tę właściwość, że dla v ∈ Xa zachodzi80

F (v) ∈ Xa , oraz (F − λaI)na · v = 0 .

Symbol ⊕ oznacza sumę prostą podprzestrzeni Xa tj. Xa ∩ Xb = {0}, gdy a 6= b; każdy
wektor u ∈ V można wtedy jednoznacznie napisać w postaci u = v1 + . . . + vr, gdzie
va ∈ Xa.

Zadanie 76
Znaleźć wartości i wektory własne macierzy górnotrójkątnej

F =





1 1 1
0 1 1
0 0 1



 .

80W przypadku odwzorowań liniowych stosuje się zapis F (v) ≡ F ·v; drugi ze wzorów należy więc
rozumieć jako na-krotne działanie (F − λaI) na v.
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Znaleźć także macierze F n oraz etF .
Rozwiązanie: Równanie charakterystyczne ma postać

WF (λ) = −(λ− 1)3 = 0 .

Ma ono jeden pierwiastek potrójny (tj. o n1 = 3) λ1 = 1. Mamy

F − I =





0 1 1
0 0 1
0 0 0



 , (F − I)2 =





0 0 1
0 0 0
0 0 0



 , (F − I)3 =





0 0 0
0 0 0
0 0 0



 .

Twierdzenie Cayleya-Hamiltona jest więc spełnione, ale ani (F − I)2 ani F − I nie jest
macierzą zerową, co oznacza, że macierz F nie jest z gatunku diagonalizowalnych bo
nie znajdzie się trzech liniowo niezależnych wektorów własnych. Niemniej, F n lub etF

są dobrze określonymi macierzami i powinien być jakiś sposób znalezienia ich (inny od
bezpośredniego podnoszenia macierzy do dowolnie wysokiej potęgi).

Rozwiązując równanie (F − I)·v = 0, tj.




0 1 1
0 0 1
0 0 0









a
b
c



 =





0
0
0



 ,

znajduje się, że w rzeczy samej jest tylko jeden wektor własny




1
0
0



 ,

(czyli po prostu F ·e1 = e1) odpowiadający λ1 = 1.
By znaleźć F n lub etF , możemy wykorzystać twierdzenie o rozkładzie na podprzestrze-

nie niezmiennicze, które w tym przypadku jest dość trywialne, bo (F − I)3 jest po prostu
macierzą zerową (jest tak dlatego, że jest tylko jedna wartość własna i cała przestrzeń
V jest jedną wielką podprzestrzenią niezmienniczą; skoro więc zgodnie z twierdzeniem
(F − I)3 ma dawać zero na każdym wektorze z całej przestrzeni V , to musi być po prostu
macierzą zerową). Dla każdego wektora v ∈ V wykorzystując rozwinięcie dwumianowe
Newtona możemy zatem napisać (oczywiście tu λ = 1)

F n · v = [λI + (F − λI)]n · v

=

[

λnI + nλn−1(F − λI) + 1

2
n(n− 1)λn−2(F − λI)2 + . . .

]

· v .

Ponieważ (F − λI)3 zeruje się na każdym wektorze v, wyrazy (zaznaczone kropkami),
w których występują potęgi (F − I) wyższe niż druga są macierzami zerowymi. Całe
rozwinięcie sprowadza się więc do trzech wyrazów:

F n = λnI + nλn−1(F − λI) + 1

2
n(n− 1)λn−2(F − λI)2 =





1 n n + 1
2
n(n− 1)

0 1 n
0 0 1



 ,
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(w ostatniej postaci wzoru wstawiliśmy już λ = 1). Nietrudno obliczyć F 2, czy F 3

mnożąc bezpośrednio macierz F przez siebie i sprawdzić, że to co wychodzi, zgadza się z
powyższym ogólnym wzorem.

Aby znaleźć etF postępujemy podobnie i piszemy:

etF = etλI · et(F−λI) = etλ
[

I + t(F − λI) + 1

2
t2(F − λI)2 + . . .

]

.

Znów, ponieważ (F − λI)3 i wyższe potęgi zerują się na każdym wektorze z V , wyrazy
zaznaczone kropkami nic nie wnoszą. Otrzymujemy więc (λ = 1)

etF = et





1 t t+ 1
2
t2

0 1 t
0 0 1



 .

Uwaga. Należy podkreślić, że wykorzystany w tym zadaniu trick (a po polsku “chwyt”)

eA+B = eA eB ,

nie jest (!!!) prawdziwy w przypadku dowolnych dwu macierzy A i B. Jest on jednak
prawdziwy jeśli A = λI czyli, gdy macierz A (lub macierz B) jest proporconalna do
macierzy jednostkowej, która jest przemienna (tj. komutuje - jak to się mówi w języku
mechaniki kwantowej) z dowolną macierzą B, tzn. spełnia [A,B] ≡ A · B − B · A = 0.

Zadanie 77
Dana jest macierz F i wektor u (wszystko jak zwykle w jakiejś bazie ei, i = 1, 2, 3):

F =





0 0 2
1 0 −5
0 1 4



 , u =





5
1
−2



 .

Znaleźć działanie etF na podany wektor.
Rozwiązanie: Wielomian charakterystyczny ma jeden łatwy do zgadnięcia pierwiastek
λ = 1:

WF (λ) = −λ3 + 4λ2 − 5λ+ 2 = −(λ− 1)(λ2 − 3λ+ 2) = −(λ− 1)2(λ− 2) .

Mamy więc dwa pierwiastki WF (λ): pojedyńczy λ1 = 2 i podwójny λ2 = 1. Wektor
własny odpowiadający λ1 = 2 można wybrać w postaci





1
−2
1



 ,

(jest on jednoznaczny z dokładnością do mnożenia przez liczbę). Szukając wektora wła-
snego odpowiadającego λ2 = 1 rozwiązujemy układ równań





−1 0 2
1 −1 −5
0 1 3









a
b
c



 =





0
0
0



 .
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Dwa z tych równań są niezależne (inaczej niż w przykładzie z diagonalizowalną macie-
rzą, która też miała pierwiastek podwójny) i wyznaczają ten wektor z dokładnością do
mnożenia przez liczbę, np.





2
−3
1



 .

Szukamy teraz drugiego wektora pierwiastkowego odpowiadającego λ2 = 1: powinien być
on taki, że działanie nań (F − λ2I)2 = (F − I)2 daje zero, tj.:





1 2 4
−2 −4 −8
1 2 4









a
b
c



 =





0
0
0



 .

Jak widać, tylko jedno z otrzymywanych z tego warunku równań jest niezależne. Nie wy-
znaczają więc one tego wektora jednoznacznie, co jednak nie jest zaskoczeniem: podprze-
strzeń niezmiennicza związana z λ2 = 1 jest dwuwymiarowa (bo λ2 = 1 jest pierwiastkiem
podwójnym WF (λ)). Jednym z należących do niej wektorów jest już jednak znaleziony
wyżej wektor własny odpowiadający λ2 = 1 (istotnie, powyższe równanie jest spełnione
przez a = 2, b = −3 i c = 1); trzeba więc dobrać drugi wektor, na którym zeruje się
(F − I)2, tak by był on liniowo niezależny od wektora własnego. Warunki te spełnia np.





2
−1
0



 ,

(oczywiście zawsze można do niego dodać wektor własny odpowiadający λ2 = 1 pomno-
żony przez jakąkolwiek liczbę). Mamy więc rozkład przestrzeni V na dwie podprzestrzenie
niezmiennicze

V =











1
−2
1











⊕











2
−3
1



 ,





2
−1
0











.

Dowolny wektor można jednoznacznie przedstawić jako kombinację liniową powyższych
wektorów rozpinających podprzestrzenie X1 i X2:





a
b
c



 = x





1
−2
1



+ y





2
−3
1



 + z





2
−1
0



 .

Rozwiązanie tego układu daje x = a + 2b + 4c, y = −a − 2b − 3c i z = a + b + c. Np.
rozkład podanego w zadaniu wektora ma postać





5
1
−2



 = −





1
−2
1



−





2
−3
1



 + 4





2
−1
0



 .
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Możemy teraz podziałać etF na ten lub, lepiej, dowolny wektor

etF





a
b
c



 = (a + 2b+ 4c) etF





1
−2
1



+ (−a− 2b− 3c) etF





2
−3
1



+ (a + b+ c) etF





2
−1
0





= (a+ 2b+ 4c) e2t





1
−2
1



 + (−a− 2b− 3c) et





2
−3
1





+(a+ b+ c) et [I + t(F − I) + . . .]





2
−1
0



 .

Wykorzystaliśmy tu to, że dwa pierwsze wektory są wektorami własnymi F i, co za tym
idzie, działanie etF na nie sprowadza się do pomnożenia ich przez etλi z odpowiadającą
danemu wektorowi wartością własną λi. W ostatnim wyrazie, jak poprzednio, wydzie-
liliśmy czynnik etλ2I = et i rozwinęliśmy et(F−λ2I) w szereg potęgowy. Wprawdzie teraz
macierz (F − λ2I)2 i wyższe potęgi (F − λ2I) nie są macierzami zerowymi, niemniej dają
one zawsze zero w działaniu na stojący za nimi wektor (bo jest on właśnie tak wybrany).
Można zatem, jak poprzednio, je opuścić. Zapisujemy teraz poszczególne składniki sumy
w postaci macierzy działających na składowe a, b i c naszego dowolnego wektora:

etF





a
b
c



 = e2t





1 2 4
−2 −4 −8
1 2 4









a
b
c



+ et





−2 −4 −6
3 6 9
−1 −2 −3









a
b
c





+ et





2 2 2
−1 −1 −1
0 0 0









a
b
c



+ t et





−2 −2 −2
3 3 3
−1 −1 −1









a
b
c



 ,

i łącząc na koniec wszystkie występujące tu macierze w jedną znajdujemy

etF =





e2t − 2tet 2e2t − 2et − 2tet 4e2t − 4et − 2tet

−2e2t + 2et + 3tet −4e2t + 5et + 3tet −8e2t + 8et + 3tet

e2t − et − tet 2e2t − 2et − tet 4e2t − 3et − tet



 .

Jeśli z jakichś powodów potrzebny jest tylko wynik działania etF na podany w zadaniu
wektor, to można go uzyskać szybko bez znajdowania całej macierzy etF . Wykorzystując
znaleziony jawnie rozkład tego wektora na wektory pierwiastkowe mamy

etF





5
1
−2



 = −e2t




1
−2
1



− et




2
−3
1



+ 4et





1− t 0 2t
t 1− t −5t
0 t 1 + 3t









2
−1
0





(macierz w ostatnim członie po prawej to I + t(F − I)). Wykonując operacje po prawej
stronie znajdujemy

etF





5
1
−2



 =





−e2t + 6et − 8tet

2e2t − et + 12tet

−e2t − et − 4tet



 ,
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co jest oczywiście tym, samym wynikiem, który dostaniemy działając na podany w zada-
niu wektor znalezioną wyżej całą macierzą etF .

Zadanie 78
Znaleźć wartości i wektory własne macierzy

F =





1 −3 4
4 −7 8
6 −7 7



 .

Znaleźć etF metodą rozkładu na podprzestrzenie pierwiastkowe oraz metodą wykorzystu-
jącą twierdzenie C-H.
Rozwiązanie: Równanie charakterystyczne ma postać

WF (λ) = −λ3 + λ2 + 5λ+ 3 = 0 .

Nietrudno zobaczyć (zgadnąć), że jednym z jego pierwiastków jest −1, a wiedząc już to,
że

WF (λ) = −(λ+ 1)2(λ− 3) .

Zatem wartości własne są tylko dwie: λ1 = −1 - dwukrotna oraz λ2 = 3 - jednokrotna.
Szukamy następnie wektorów własnych macierzy F :

λ1 = −1 :





2 −3 4
4 −6 8
6 −7 8









a
b
c



 = 0 .

Ponieważ pierwsze równanie jest po prostu drugim przemnożonym przez 2, bierzemy dwa
ostatnie i kładąc a = 1 (bo “normalizacja” wektorów własnych jest i tak nie ważna)
rozwiązujemy równania

4− 6b+ 8c = 0 ,

6− 7b+ 8c = 0 ,

które dają b = 2, c = 1. Podobnie dla

λ2 = 3 :





−2 −3 4
4 −10 8
6 −7 4









a
b
c



 = 0 ,

biorąc pierwsze dwa równania i kładąc a = 1 znajdujemy, że b = 2 i c = 2. Mamy zatem
tylko dwa wektory własne:

λ1 = −1 :





1
2
1



 , λ2 = 3 :





1
2
2



 .
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Macierz F jest z gatunku niediagonalizowalnych, więc aby znaleźć etF trzeba użyć roz-
kładu na podprzestrzenie pierwiastkowe, lub sposobu. Najpierw sprawdźmy, że się nie
pomyliliśmy: gdyby były dwa wektory własne odpowiadające λ1 = −1, to macierz
(F − λ1I)·(F − λ2I) byłaby macierzą zerową. Ale nie jest:

(F + I) · (F − 3I) =





2 −3 4
4 −6 8
6 −7 8









−2 −3 4
4 −10 8
6 −7 4



 =





8 −4 0
16 −8 0
8 −4 0



 6= 0 .

Oczywiście (F − λ1I)2 ·(F − λ2I) = 0, tak jak tego wymaga twierdzenie C-H:




2 −3 4
4 −6 8
6 −7 8









8 −4 0
16 −8 0
8 −4 0



 =





0 0 0
0 0 0
0 0 0



 .

Zgodnie z twierdzeniem o rozkładzie na podprzestrzenie pierwiastkowe istnieje zatem jesz-
cze wektor w = (x, y, z) liniowo niezależny od wektora własnego odpowiadającego warto-
ści własnej λ1 = −1, na którym to wektorze w zeruje się macierz (F − λ1I)2:

(F − λ1I)2 ·w =





16 −16 16
32 −32 32
32 −32 32









x
y
z



 =





0
0
0



 .

(Oczywiście wektor własny odpowiadający wartości własnej λ1 = −1 spełnia to równanie,
ale nie oń tu teraz chodzi!). Jako w możemy wziąć np.

w =





0
1
1



 .

Aby znaleźć etF wyobrażamy sobie jakiś ogólny wektor, na który macierz etF mogłaby
sobie działać i rozkładamy go na dwa wektory własne i wektor w





a
b
c



 = (a− b+ c)





1
2
2



 + (b− c)





1
2
1



 + (−2a+ b)





0
1
1





i działamy nań macierzą etF :

etF





a
b
c



 = (a− b+ c) e3t





1
2
2



 + (b− c) e−t




1
2
1



+ (−2a+ b) e−tet(F+I)





0
1
1



 .

W pierwszym i drugim składniku kombinacji liniowej wykorzystaliśmy to, że są to wektory
własne F i zastąpiliśmy w nich etF odpowiednio przez e3t i e−t. W ostatnim składniku jak
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zwykle wykorzystujemy to, że (F + I)2, a zatem i wszystkie wyższe potegi F + I, zerują
się na wektorze w i mamy

e−tet(F+I)





0
1
1



 = e−t [I + t(F + I)]





0
1
1



 = e−t









0
1
1



+ t





1
2
1







 .

Łącząc to wszystko znajdujemy, że

etF





a
b
c



 =





e3t(a− b+ c) + e−t(b− c) + t e−t(−2a+ b)
e3t(2a− 2b+ 2c) + e−t(2b− 2c) + e−t(−2a+ b) + t e−t(−4a+ 2b)
e3t(2a− 2b+ 2c) + e−t(b− c) + e−t(−2a + b) + t e−t(−2a + b)



 .

Grupując w każdym wierszu wyrazy proporcjonalne do a, b i c możemy to w koću zapisać
w jako macierz działającą na wektor (a, b, c):

etF





a
b
c



 =





e3t − 2t e−t −e3t + e−t + t e−t e3t − e−t
2e3t − 2e−t − 4t e−t −2e3t + 3e−t + 2t e−t 2e3t − 2e−t

2e3t − 2e−t − 2t e−t −2e3t + 2e−t + t e−t 2e3t − e−t









a
b
c



 .

Macierz stojąca po prawej stronie jest właśnie szukaną macierzą etF .

Na koniec otrzymamy tę samą macierz wykorzystując chytrze twierdzenie C-H. Zgod-
nie z regułami gry, możemy każdy monomian λn, a zatem także i etλ (bo funkcja exponens
jest co prawda nieskończoną, ale zawsze tylko sumą takich monomianów) napisać w po-
staci

etλ =WF (λ)Q(λ) + a2λ
2 + a1λ+ a0 ,

w której Q(λ) jest jakąś funkcją (która jest nieskończoną sumą jakichś wielomianów otrzy-
mywanych w tym wzorze wtedy, gdy po lewej jego stronie stoi monomian λn), a “reszta”
r(λ) = a2λ

2 + a1λ + a0 jest wielomianem stopnia mniejszego niż stopień WF (λ). Gdy
macierz F ma trzy wartości własne, to podstawiając je jako λ-y w powyższym wzo-
rze uzyskujemy trzy niezależne równania pozwalające wyznaczyć współczynniki a2, a1 i
a0. Gdy są tylko dwie wartości własne, ale macierz jest mimo to diagonalizowalna, to w
powyższym wzorze zamiast WF (λ) używamy zredukowanego wielomianu charakterystycz-
nego W̃F (λ) i reszta jest wtedy wielomianem niższego stopnia tak, iż znów mamy dość
lambd by wyznaczyć wszystkie jego współczynniki (patrz zadanie 58). Tu jednak mamy
jeszcze inny przypadek i musimy się wykazać sprytem: Skoro

WF (λ) = (λ− λ1)2(λ− λ2) ,

to nie tylko WF (λ1) =WF (λ2) = 0, ale także

d

dλ
WF (λ)

∣

∣

∣

∣

λ=λ1

≡W ′
F (λ1) = 0 .
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Możemy więc napisać następujące równania

etλ1,2 = WF (λ1,2)Q(λ1,2) + r(λ1,2) = r(λ1,2) ,

t etλ1 = W ′
F (λ1)Q(λ1) +WF (λ1)Q

′(λ1) + r′(λ1) = r′(λ1) .

Mamy więc znów trzy równania pozwalające wyznaczyć trzy wpółczynniki a2, a1 i a0
reszty r(λ)! W naszym przypadku równania te mają postać

e−t = a2 − a1 + a0 ,

e3t = 9a2 + 3a1 + a0 ,

t e−t =−2a2 + a1 ,

i dają

a2 =
1

16

(

e3t − e−t
)

− 1

4
t e−t ,

a1 =
1

8

(

e3t − e−t
)

+
1

2
t e−t ,

a0 =
1

16

(

e3t + 15 e−t
)

+
3

4
t e−t .

Ponieważ

F 2 =





1 −3 4
4 −7 8
6 −7 7









1 −3 4
4 −7 8
6 −7 7



 =





13 −10 8
24 −19 16
20 −18 17



 ,

można znaleźć łatwo (no, względnie łatwo...) całą macierz etF = a2F
2+a1F +a0I. Mamy

np.

(

etF
)

11
= 13 ·

[

1

16

(

e3t − e−t
)

− 1

4
t e−t

]

+ 1 ·
[

1

8

(

e3t − e−t
)

+
1

2
t e−t

]

+ 1 ·
[

1

16

(

e3t + 15 e−t
)

+
3

4
t e−t

]

= e3t − 2t e−t ,

albo

(

etF
)

21
= 24 ·

[

1

16

(

e3t − e−t
)

− 1

4
t e−t

]

+ 4 ·
[

1

8

(

e3t − e−t
)

+
1

2
t e−t

]

= 2e3t − 2e−t − 4t e−t ,

etc. Widać, że dostajemy w ten sposób tę samą macierz, którą już znaleźliśmy stosując
rozkład na podprzestrzenie pierwiastkowe.
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Powstaje pytanie, co by się stało, gdybyśmy w przypadku macierzy F , której wielomian
charakterystyczny ma wielokrotne pierwiastki (tzn. gdy, tak jak tu, niektóre wartości
własne mają krotności większe nież 1) ale diagonalizowalnej lub częściowo diagonalizo-
walnej (tzn. mającej więcej niż jeden wektor własny odpowiadający jakimś wielokrotnym
wartościom własnym) “zapomnieli” o tym, że przy wykorzystywaniu twierdzenia C-H do
znalezienia F n lub etF można zamiast WF (λ) posłużyć się zredukownym wielomianem
charakterystycznym W̃F (λ) i zamiast tego skorzystali z chwytu z pochodnymi takiego jak
wyżej? Odpowiedź jest taka, że dostalibyśmy oczywiście te same macierze F n lub etF ,
tylko byśmy się więcej napracowali. Mielibyśmy bowiem wtedy resztę r(λ) wyższego stop-
nia niż gdybyśmy użyli wielomianu zredukowanego i tym samym więcej współczynników
a0, a1, . . . do wyznaczenia; co więcej (w przypadku wyznaczania etF ) współczynniki te
zależałyby od t nie tylko poprzez czynniki etλi , ale także wielomianowo. Na końcu jednak,
po złożeniu reszty a0I + a1F + . . . “do kupy” okazałoby się, że wielomianowa zależność od
t powstała wskutek nieużycia wielomianu zredukowanego by znikła. Zalecam sprawdzić
to samemu znajdując w taki sposób etF w przypadku macierzy F z Zadania 74.

Zadanie J (konstrukcja bazy Jordanowskiej)
Dowodzi się (np. w “kultowym” podręczniku J. Komorowskiego Od liczb zespolonych
do ...), że przez wybór bazy można każde odwzorowanie F przestrzeni wektorowej nad
ciałem C w nią samą sprowadzić do kanonicznej postaci Jordanowskiej, tj. takiej, w której
macierz odwzorowania F składa się z r kwadratowych klatek rozmieszczonych wzdłuż
głównej swojej diagonali; klatki te są wymiaru ni × ni, gdzie ni, . . . , nr są krotnościami
(różnych) pierwiastków λ1, . . . , λr wielomianu charakterystycznego WF (λ), a i-ta klatka
ma na swojej diagonali ni-krotnie powtórzoną wartość własną λi, a nad nią pojedyńczy
rząd jedynek. Podać konstrukcję takiej bazy.
Rozwiązanie: Konstrukcja jest bardzo prosta i opiera się na zadawanym przez odwzro-
wanie F (przedstawionym tu już wcześniej) rozkładzie przestrzeni V na podprzestrzenie
niezmiennicze (pierwiastkowe) Xi, i = 1, . . . , r. Przestrzenie te są niezmiennicze w tym
sensie, że jeśli v ∈ Xi, to F ·v ∈ Xi. Wobec tego, jest jasne (z samej konstrukcji macierzy
odwzorowania w danej bazie), że jeśli baza przestrzeni V jest wybrana tak, że każdy jej
wektor należy całkowicie do którejś z podprzestrzeni Xi (inaczej mówiąc: bazę przestrzeni
V tworzą połączone bazy wszystkich r podprzestrzeni Xi), to macierz odwzorowania za-
pisana (z “obu stron”) w takiej bazie ma strukturę klatkową: składa się ona z r klatek o
rozmiarach ni × ni rozmieszczonych wzdłuż jej głównej diagonali. Wystarczy więc tylko
dobrać odpowiednio bazę w każdej z podprzestrzeni Xi.

W tym celu przypominamy sobie, że podprzestrzenie Xi są takie, że jeśli v ∈ Xi, to

(F − λiI)ni · v = 0 .

Wiemy też, że w każdej podprzestrzeni Xi jest jeden (lub więcej, ale załóżmy, że tylko
jeden) wektor własny wi, czyli taki, że (F − λiI) · v = 0. Nietrudno się zorientować, że
ni wektorów bazy podprzestrzeni Xi można wybrać tak, iż

(F − λiI) · vi = 0 ,
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(F − λiI) · ri1 = vi ,

. . . . . . . . . . . . . . . . . . . . . . . .

(F − λiI) · rini−1
= rini−2

.

Wektory ri1, . . . , rini−1
są wektorami pierwiastkowymi. (F − λiI)ni działając na każdy z

nich daje zero. Zostały tu one jednak wybrane tak, by tworzyć “matrioszkę”: na vi zeruje
się (F−λiI), na ri1 zeruje się (F−λiI)2, itd. aż do rini−1

, na którym zeruje się (F−λiI)ni .
Jeśli powyższe związki przepisze się w postaci

F · vi = λivi ,

F · ri1 = λiri1 + vi ,

F · ri2 = λiri2 + ri1 ,

. . . . . . . . . . . . . . . . . . . . . . . .

F · rini−1
= λirini−1

+ rini−2
,

to stanie się jasne, że w bazie przestrzeni Xi tworzonej przez wektory (vi, ri1, . . . , rini−1
)

macierz odwzorowania F ma właśnie kanoniczną postać Jordana. I już...
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Geometria analityczna (czyli przestrzenie afiniczne)

Przypomnienie
Przestrzeń afiniczna jest to taka przestrzeń bez “pępka świata” jakim w przestrzeni wek-
torowej jest wektor zerowy. Dokładniej, jest to zbiór A punktów i przestrzeń wekto-
rowa, przy czym określona jest operacja dodawania wektora v z przestrzeni wektorowej
do punktu p1 ∈ A, której wynikiem jest inny punkt p2 ∈ A. Inaczej mówiąc, dwa punkty
p1 i p2 przestrzeni A można od siebie (tzn. jeden od drugiego) odejmować i rezulatem
takiego odejmowania jest wektor: p2 − p1 = v.

Do uprawiania zwykłej geometrii analitycznej (n-wymiarowej) wystarcza model prze-
strzeni afinicznej, w którym punkty A są reprezentowane przez kolumienki n liczb (za-
pisywane w obłych nawiasach i nazywane dalej współrzędnymi punktu), a przestrzenią
wektorową jest Rn, czy lepiej, żeby się nie putało (“putanica” po rosyjsku to nie córka
Putina, co zresztą w zapisie może się Francuzom niewłaściwie kojarzyć z czymś jeszcze
gorszym, tylko właśnie plątanina), V Rn, przy czym operacja dodawania (żywego) wektora
do punktu zbioru A jest tu określona wzorem:
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x2
·
·
xn
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




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










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·
·
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
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




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





x1 + v1
x2 + v2
·
·

xn + vn













.

Jeśli w takiej przestrzeni wprowadzimy kanoniczny iloczyn skalarny

(v|w) ≡ v·w = v1w2 + . . .+ vnwn ,

to taką przestrzeń afiniczną będziemy oznaczać AEn. Można w niej z powodzeniem upra-
wiać “szkolną” (n-wymiarową) geometrię analityczną.

Przypomnienie
k-płaszczyzną w przestrzeni afinicznej A nazywa się zbiór jej punktów

p(λ1, . . . , λk) = p+ λ1v1 + . . .+ λkvk , gdzie λi ∈ R ,

p jest ustalonym punktem A, a v1, . . . , vn jest ustalonym zbiorem k liniowo niezależ-
nych wektorów (można to nazwać zadaniem k-płaszczyzny w sposób parametrycznym).
k-płaszczyznę można też zadać układem n−k równań liniowych spełnianych przez współ-
rzędne należących do niej punktów (jest to jej tzw. opis uwikłany). Jednopłaszczyznę
będziemy (zgodnie ze zdrowym rozsądkiem) nazywać prostą, a dwu-płaszczyznę, po pro-
stu płaszczyzną. Reszta to k-płaszczyzny (o k > 2) lub hiperpłaszczyzny.

Dwa twory: k-płaszczyzna i l-płaszczyzna są do siebie równoległe jeśli (zakładając bez
straty ogólności, że k ≤ l) każdy z k wektorów definiujących k-płaszczyzna jest pewną
kombinacją liniową wektorów rozpinających l-płaszczyznę.
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Przykład
Dwie proste (1-płaszczyzny) w czterowymiarowej p. afinicznej zadane wzorami

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x1
x2
x3
x4









=









100
1
2
4









+









1
2
3
4









t , t ∈ R
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s , s ∈ R ,

są do siebie nawzajem równoległe bo wektory
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,

są jeden do drugiego proporcjonalne.
Podobnie pierwsza z podanych wyżej prostych jest równoległa do płaszczyzny (2-

płaszczyzny) zadanej wzorem
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Przykład
Podając wektor i jakiś punkt w AR3 zadać prostą wyznaczoną w sposób uwikłany rów-
naniami

x+ y + z = 1 ,

x+ 2y + 3z = 3 .

Rozwiązanie: Należy w tym celu znaleźć najpierw jakiś jeden (dowolny) punkt spełnia-
jący te równania (czyli jedno szczególne rozwiązanie układu równań niejednorodnych). Tu
np. może to być punkt o współrzędnych x = −1, y = 2, z = 0. Następnie podstawiamy
to do definiujących prostą równań


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x
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

 =




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0


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

 ,
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i żądamy, by były one spełnione dla dowolnego t (inaczej mówiąc szukamy rozwiązania
układu jednorodnych liniowych równań (bo część niezależna od t spełnia te równania i
skasuje się zatem z ich prawą stroną):

a+ b+ c = 0 ,

a+ 2b+ 3c = 0 .

Rozwiązaniem jest np. a = 1, b = −2, c = 1, a zatem prostą definiuje wzór




x
y
z



 =
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

−1
2
0



+ t
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

1
−2
1



 .

Zadanie 79
Znaleźć zbiór punktów będących przecięciem w AE4 dwu płaszczyzn P1 i P2 zdefiniowa-
nych warunkami

P1 :
{

(x1, x2, x3, x4) ∈ AE4 : x1 + x2 + x3 + x4 = 2, x2 + x3 + x4 = 1
}

,

P2 :
{

(t1 + t2, t1 − t2, 4t1 + 2t2, 2t1 + 4t2) ∈ AE4, t1, t2 ∈ R
}

.

AE4 oznacza tu czterowymiarową przestrzeń euklidesową, tj. afiniczną przestrzeń nad
ciałem R z (kanonicznym) iloczynem skalarnym.
Rozwiązanie: Płaszczyzna P1 jest tu zadana (w sposób uwikłany) dwoma liniowymi
warunkami (ich liniowość jest tym, co powoduje, że jest to płaszczyzna, a nie jakaś inna
“krzywa” - cokolwiek by to mogło tu znaczyć - powierzchnia), a druga zadana jest pa-
rametrycznie. Płaszczyznę zadaną parametrycznie łatwo przedstawić w postaci równań:
wystarczy wyeliminować parametry. Np. w przypadku płaszczyzny P2 zadanej wzorami:

x1 = t1 + t2 ,

x2 = t1 − t2 ,
x3 = 4t1 + 2t2 ,

x4 = 2t1 + 4t2 ,

można to zrobić następująco: wstawiając 2t1 = x1 + x2, 2t2 = x1 − x2 z pierwszych dwu
związków do pozostałych dwu dostajemy

x3 = 3x1 + x2 ,

x4 = 3x1 − x2 ,

i tym samym otrzymujemy dwa równania zadające (w sposób uwikłany) płaszczyznę P2.

221



Równania definiujące P1 można uprościć (odejmując od pierwszego drugie) do x1 = 1
oraz x2 + x3 + x4 = 1. Parametryczne jej przedstawienie można (choć nie będzie nam
potrzebne) dostać kładąc np. x2 = τ1 i x3 = τ2:

x1 = 1 ,

x2 = τ1 ,

x3 = τ2 ,

x4 = 1− τ1 − τ2 .

Przecięcie dwu płaszczyzn są to punkty należące i do P1 i P2. Muszą więc one być
postaci takiej jak punkty P2 (tzn. muszą być otrzymywane dla jakichś wartości t1 i t2), a
zarazem spełniać równania definiujące P1. Zatem muszą dla nich zachodzić równości

t1 + t2 = 1 ,

(t1 − t2) + (4t1 + 2t2) + (2t1 + 4t2) = 1 ,

czyli

t1 + t2 = 1 ,

7t1 + 5t2 = 1 .

Równania te łatwo rozwiązać: t1 = −2, t2 = 3. Wstawiając te wartości parametrów do
związków zadających P2 dowiadujemy się, że przecięciem w AE4 płaszczyzn P1 i P2 jest
tylko jeden punkt p o współrzędnych

p = (1,−5,−2, 8) .

Może się wydawać niezgodnym z intuicją, że przecięciem dwu płaszczyzn jest tylko punkt:
w AE3 przecięciem dwu płaszczyzn jest zwykle prosta. Niema tu jednak błędu: w AE4

płaszczyznę definiują dwa równania liniowe, a w AE3 tylko jedno. Dlatego w AE4 punkty
należące do przecięcia dwu płaszczyzn spełniają cztery liniowe równania na cztery zmienne
(a E3 dwa równania na trzy zmienne). Jak wiemy z teorii równań liniowych może się też
zdarzyć, że układ taki nie ma wcale rozwiązań (płaszczyzny się wtedy nie przecinają wcale)
lub, że wymiar przestrzeni rozwiązań jest większy niż zero (wtedy przecięciem płaszczyzn
jest prosta lub nawet płaszczyzna). Ale najbardziej typowym przecięciem dwu płaszczyzn
w AE4 jest jeden punkt.

Zadanie 79′

Orzec, czy prosta w przestrzeni euklidesowej AE3 zadana w sposób uwikłany wzorami
x− z = 2, y = 2 jest prostopadła do płaszczyzny
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Rozwiązanie Najpierw trzeba znaleźć wektor wyznaczający prostą. Już to robiliśmy (w
Zadaniu przykładowym). Tu punktem należącym do prostej jest np. (1, 2,−1). Zatem
podaną prostą można przedstawić w postaci
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Następnie pytamy, jak się ma znaleziony wektor wyznaczający prostą do wektorów rozpi-
nających podaną płaszczyzną, tzn. po prostu liczymy iloczyny skalarne:
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Ponieważ oba iloczyny skalarne są równe zeru, czyli wektor wyznaczający prostą jest
prostopadły do obu wektorów rozpinających płaszczyznę, prosta jest do tej płaszczyzny
prostopadła. W AE3 musi więc być punkt, w którym prosta przecina płaszczyznę (w AEn

o n ≥ 4 mimo prostopadłości do płaszczyzny prosta nie musiałaby jej przecinać, podobnie
jak w AE3 dwie proste mogą być wzajemnie prostopadłe bez przecinanie się). Współrzędne
tego punktu można znaleźć szukając parametrów ξ1 i ξ2 takich, by odpowiadający im
punkt płaszczyzny

x = ξ1 + 2ξ2 , y = ξ2 + 1 , z = −ξ1 − 2ξ2 + 2 ,

spełniał równania definiujące prostą:

ξ1 + 2ξ2 − (−ξ1 − 2ξ2 + 2) = 2 , ξ2 + 1 = 2 .

Stąd ξ2 = 1 i ξ1 = 0. Współrzędnymi punktu przecięcia są więc (2, 2, 0).

Zadanie We1
Znaleźć kąt γ(a,b) pomiędzy wektorami a i b jeśli wiadomo, że wektor a + 3b jest
prostopadły (w sensie zadanego iloczynu skalarnego) do wektora 7a−5b, a wektor a−4b
do wektora 7a− 2b.
Rozwiązanie: Korzystając z definicji prostopadłości wektorów w sensie zadanego ilo-
czynu skalarnego (·|·), który tu i dalej będziemy zapisywać, tak jak w fizyce, tj. v ·w ≡
(v|w), oraz z biliniowości (i symetryczności) tegoż iloczynu, możemy napisać

0 = (a+ 3b)·(7a− 5b) = 7a·a− 15b·b+ 16a·b ,
0 = (a− 4b)·(7a− 2b) = 7a·a+ 8b·b− 30a·b .

Stąd (a·a ≡ a2, etc.)

7

16
a2 − 15

16
b2 + a·b = 0 ,

7

30
a2 +

8

30
b2 − a·b = 0 .
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Dodając te równości do siebie stronami, dowiadujemy się, iż po prostu a2 = b2. Wyko-
rzystując to w drugim z tych równań znajdujemy, że

1

2
a2 = a·b ,

czyli

cos γ(a,b) =
a·b√
a2
√
b2

=
a·b
a2

=
1

2
,

tj. γ(a,b) = π
3

lub 5π
3

.

Zadanie We2
Posługując się wektorami (a nie metodami wywodzącymi się z matematyki starożytnych
Greków) pokazać, że trzy wysokości każdego trójkąta przecinają się w jednym punkcie.
Rozwiązanie: Niech wierzchołkami trójkąta będą punkty A, B i C, a punkt O niech
będzie punktem przecięcia się wysokości tego trójkąta spuszczonych z jego wierzchołków
A i C. Wektor łączący np. punkt A z B będziemy tu oznaczać AB (przy czym oczywiście
AB = −BA) etc.

Ponieważ wysokość spuszczona z wierzchołka B jest (to ją właśnie definiuje!) prostopa-
dła do boku AC, czyli do wektora AC, wystarczy pokazać, że wektor ten jest prostopadły
do wektora OB. To zaś jest proste: piszemy oczywiste (zrobić rysunek!) równości

AB = AO+OB ,

BC = BO+OC ,

i obliczamy iloczyny skalarne obu ich stron odpowiednio w wektorem CO (który jest
prostopadły do AB na mocy definicji wysokości spuszczonej z wierzchołka C) i wektorem
AO (który jest prostopadły do BC na mocy definicji wysokości spuszczonej z wierzchołka
A). Mamy więc dwie równości

(AO) · (CO) + (OB) · (CO) = 0 ,

(BO) · (AO) + (OC) · (AO) = 0 ,

czyli

(AO) · (CO) = (BO) · (CO) ,

(BO) · (AO) = (CO) · (AO) .

Stąd (BO) · (CO) = (BO) · (AO), tj.

(BO) · [AO−CO] ≡ (BO) · [AO +OC] ≡ (BO) · (AC) = 0 .

To kończy sprawę.
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Zadanie We3
Pokazać, że przekątne rombu przecinają się pod kątem prostym
Rozwiązanie: Romb jest to równoległobok rozpięty na dwóch wektorach a i b o równych
długościach: ||a|| = ||b||. Niech wierzchołkami rombu (obiegamy go po obwodzie) będą
punkty A, B, C i D. a = AD, b = AB w notacji z poprzedniego Zadania. Oczywiście
wektory AC i DB będące przekątnymi rombu są dane przez

AC = a+ b ,

DB = a− b .

Zatem

(AC)·(DB) = (a+ b)·(a− b) = 0 .

Koniec dowodu.

Przypomnienie
Polem równoległoboku rozpinanego w przestrzeni81 AEn przez dwa wektory a i b jest
nieujemna liczba

Area(a,b) ≡ Vol2(a,b) = ||a|| ||b|| | sinα(a,b)| ,

gdzie α(a,b) jest kątem pomiędzy wektorami a i b. Wzór ten można zapisać przez iloczyny
skalarne

Area(a,b) = ||a|| ||b||
√

1− cos2 α(a,b) =
√

||a||2 ||b||2 − (a·b)2 .

Skorzystaliśmy tu z definicji cosα(a,b) ≡ (a·b)/||a|| ||b||. Zatem

Area(a,b) ≡ Vol2(a,b) =

√

det

(

a·a a·b
a·b b·b

)

=
√

det(gij) .

g ≡ det(gij) jest tu wyznacznikiem macierzy gij (macierz ta jest też znana jako ma-
cierz Grama) tzw. tensora metrycznego indukowanego na płaszczyźnie rozpinanej przez
wektory a i b przez iloczyn skalarny w AEn. Słuszny jest też ogólniejszy wzór82

Vold(a1, a1, . . . , ad) =
√

det(gij) ,

81Wszystko, co tu będzie o polach powierzchni i objętościach dotyczy również tworów rozpiętych na
wektorach dowolnej przestrzeni wektorowej z zadanym iloczynem skalarnym. Oczywiście w przypadku np.
przestrzeni wektorowej wielomianów pole powierzchni i objętość będą pojęciami dość abstrakcyjnymi...

82Wzór ten ma swój odpowiednik w geometrii różniczkowej. Jeśli w przestrzeni AEn (naprawdę, prze-
strzeń afiniczna nie jest konieczna, ale, żeby nie komplikować...), której bazą (tj. bazą odpowiedniej
p. wektorowej) są ortonormalne wektory ei jest zanurzona d-wymiarowa rozmaitość M (to jest takie
coś, co można jakoś matematycznie “obmacać”; M od ang. manifold, albo niem. Manifaltigkeit, albo
mnogoobrazije po ros.) zadana (przynajmniej lokalnie) wzorami

x1 = x1(ξ1, . . . , ξd) ,
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w którym

gij = ai ·aj ,

na objętość d-wymiarowego równoległościanu zbudowanego w n-wymiarowej przestrzeni
AEn z d wektorów a1, . . ., ad.

Przykład
Obliczymy objętość równoległościanu zbudowanego na trzech wektorach z VR4

w1 =









1
1
1
1









, w2 =









1
2
2
1









, w3 =









1
−1
−1
1









.

Łatwo znaleźć macierz iloczynów skalarnych

g =





4 6 0
6 10 −2
0 −2 4



 .

Obliczamy wyznacznik (po skosach): det (g) = 160− 16− 4 · 36 = 0. Odpowiedź wydaje
się sensowna, jeśli się zorientować, że 3w1− 2w2 = w3 - trzeci wektor jest liniowo zależny
od dwu pierwszych, więc ten równoległościan jest zupełnie “płaski”.

Powstaje tu natychmiast pytanie, jak zdefiniowana w ten sposób objętość równoległo-
ścianu zbudowanego na n wektorach v1, . . . ,vn ma się do objętości tego samego tworu

. . . . . . . . . . . . . . . . . .

xn = xn(ξ1, . . . , ξd) ,

gdzie ξ1, . . ., ξd są rzeczywistymi parametrami (zmieniającymi się w jakimś zakresie), to w każdym
punkcie p owej rozmaitości jest przyczepiona do niej wektorowa przestrzeń styczna TpM , której naturalną
bazę stanowią (stowarzyszone z układem współrzędnych ξi) wektory

ia = ei
∂xi

∂ξa
≡ e1

∂x1

∂ξa
+ . . .+ en

∂xn

∂ξa
.

Wzór

ddVold = ddξ
√
g ,

w którym g ≡ det(gab) ≡ det(ia · ib) daje wtedy objętość infinitezymalnego kawałka tej rozmaitości
mającego kszałt równoległościanu zbudowanego z d wektorów i1dξ

1, . . ., iddξd wychodzących z punktu
p. Całka z ddξ

√
g po całej rozmaitości (lub jej kawałku) daje jej d-wymiarową objętość (jej kawałka).

W przypadku d-płaszczyzny (która jest najprostszym rodzajem rozmaitości) rozpiętej w AEn przez d

wektorów ai, i = 1, . . . , d i przechodzącej przez punkt p współrzędnymi są po prostu parametry ξi

w definiującym ją wzorze p(ξ1, . . . , ξd) = p + aiξ
i. Objętość obliczana w tekście odpowiada wtedy

scałkowaniu ddξ
√
g po “kostce” 0 < ξi < 1, co daje właśnie objętość równoległościanu zbudowanego z

wektorów a1, . . . ad.

226



zdefiniowanej w sposób “topologiczny”, przez wyróżnienie jednej całkowicie antysyme-
trycznej formy n-liniowej? Odpowiedź jest taka, że objętość tu zdefiniowana jest warto-
ścią bezwzględną objętości “topologicznej”, jeśli używany tu iloczyn skalarny ma macierz
Sij = δij w bazie fi dualnej do bazy, w której forma objętości “topologicznej” ma postać
Vol(n) = f̂1 ∧ . . . ∧ f̂n. Rzeczywiście: jeśli wektory rozpinające równoległościan napisać w
bazie fi, to (zobacz Zadanie pod definicją objętości topologicznej)

Vol(n)(v1, . . . ,vn) = det









v1(f)1 v1(f)2 . . . v1(f)n
v2(f)1 v2(f)2 . . . v2(f)n
· · . . . ·

vn(f)1 vn(f)2 . . . vn(f)n









≡ det





↑ ↑ . . . ↑
v1 v2 . . . vn

↓ ↓ . . . ↓



 .

Z drugiej strony, skoro w tej bazie vk · vl = vi(f)kv
i
(f)l, to macierz tensora metrycznego gij

można napisać jako iloczyn dwu macierzy:

g =









v1 ·v1 v1 ·v2 . . . v1 ·vn

v2 ·v1 v2 ·v2 . . . v2 ·vn

· · . . . ·
vn ·v1 vn ·v2 . . . vn ·vn









=









← v1 →
← v2 →
. . . . . . . . .
← vn →













↑ ↑ . . . ↑
v1 v2 . . . vn

↓ ↓ . . . ↓



 .

Zatem g = JT · J . Ponieważ jednak det(JT · J) = (detJT )(detJ) = (detJ)2, to podane
wyżej stwierdzenie jest uzasadnione.

Wyrażenie pod pierwiastkiem we wzorze Area(a,b) =
√

||a||2 ||b||2 − (a·b)2 można
także zapisać inaczej:

||a||2 ||b||2 − (a·b)2 =
∑

i<j

(aibj − ajbi)2 .

Rzeczywiście: prawa strona po rozpisaniu daje
∑

i<j

(aiai)(bjbj) +
∑

i<j

(ajaj)(bibi)− 2
∑

i<j

(aibi)(ajbj) .

Dwie pierwsze sumy prawie dają
∑

i

(aiai)
∑

j

(bjbj) ≡ (a1a1 + . . .+ anan)(b1b1 + . . .+ bnbn) ,

brakuje tam tylko wyrazów
∑

i(a
iai)(bibi) = a1a1b1b1 + . . .+ ananbnbn. Zatem

∑

i<j

(aibj − ajbi)2 =
∑

i

(aiai)
∑

j

(bjbj)−
∑

i

(aiai)(bibi)− 2
∑

i<j

(aibi)(ajbj) ,

a to już jest to, co trzeba, czyli ||a||2 ||b||2 − (a·b)2. Otrzymujemy więc

Area(a,b) =

√

∑

i<j

(aibj − ajbi)2 .

227



Tej ostatniej postaci łatwo w dwóch i trzech wymiarach (tj. w E2 i E3) nadać geometryczną
interpretację, jeśli wprowadzić iloczyn wektorowy (Zadanie niżej).

Zadanie
Znaleźć bilinowe odwzorowanie f określone na V R3 × VR3 o wartościach w V R3 mające
następujące właściwości: i) jeśli wektory a i b są liniowo niezależne, to wektor c = f(a,b)
jest prostopadły (w sensie kanonicznego iloczynu skalarnego w V R3) zarówno do a, jak i
do b; ii) f(e1, e2) = e3 (wektory ei są tu ortonormalną bazą V R3). Co daje f(a,b), jeśli
a i b są liniowo zależne?
Rozwiązanie: Z biliniowości f wynika, że jeśli a = ei a

i
(e), b = ei b

i
(e), to f(a,b) =

f(ei, ej) a
i
(e)b

j
(e), czyli wystarczy zadać f na parach wektorów bazy. Co więcej, wektor

f(a,b) można zawsze napisać jako kombinację liniową wektorów bazy ei:

f(a,b) = ekf
k(ei, ej) a

i
(e)b

j
(e) ,

więc zadanie całego odwzorowania wymaga podania “tablicy” 33 = 27 liczb fk
ij ≡ fk(ei, ej).

Wykorzystajmy teraz informację, że a ·f(a,b) = 0 i b ·f(a,b) = 0. Skoro ei ·ej = δij ,
warunki te dają równości:83

akfk
ij a

ibj = bkfk
ij a

ibj = 0 .

Ponieważ mają zachodzić one: pierwsze dla dowolnego wektora a (byle liniowo nieza-
leżnego od ustalonego, ale też dowolnego, b), czyli dla niemal dowolnych trójek liczb
(a1, a2, a3), a drugie dla (niemal) dowolnych trójek liczb (b1, b2, b3), to jest mniej więcej
jasne84 (to “mniej więcej” to jest różnica między matematyką matematyczną, a matema-
tyką fizyczną...), że fk

ij = −f i
kj oraz fk

ij = −f j
ik. Z tego można jednak wysnuć wniosek,

że także fk
ij = −fk

ji:

fk
ij = −f i

kj = f j
ki = −fk

ji .

Symbol fk
ij jest więc całkowicie antysymetryczny względem transpozycji dowolnej pary

wskaźników. Samo odwzorowanie jest zatem także antysymetryczne: f(a,b) = −f(b, a).
Wynika stąd natychmiast odpowiedź na pytanie, co f(a,b) daje, gdy a i b są liniowo
zależne: oczywiście zero, tj. wektor zerowy 0.

Wystarczy teraz skorzystać z drugiej informacji o odwzorowaniu f , czyli z tego, że
f(e1, e2) = e3, by ustalić, że f 3

12 = 1, a zatem, że

fk
ij ≡ ǫijk =







+1 gdy ijk = 123, 312, 231 (parzyste permutacje)
−1 gdy ijk = 132, 321, 213 (nieparzyste permutacje)
0 w pozosta6 lych przypadkach

.

83Pominiemy już ten dopisek (e) na składowych wektorów - powoli wyrastamy już z przedszkola...
84No, jeśli ktoś nie widzi, to proszę: Oznaczmy na chwilę f i

jkb
k ≡ cij . Jeśli cijaiaj = 0 dla dowolnych

(a1, a2, a3), to biorąc a1 = 1, a2 = a3 = 0 widzimy, ze c11 = 0; potem bierzemy a2 = 1, a1 = a3 = 0 i
widzimy, ze c22 = 0 i podobnie c33 = 0; potem a1 = a2 = 1, a3 = 0 da c12+ c21 = 0 itd. Czyli cij = −cji,
co oznacza, że f i

jkb
k = −f j

ikb
k. Ale (b1, b2, b3) też są dowolne, więc musi po prostu być f i

jk = −f j
ik.

228



Wprowadziliśmy tu tradycyjny symbol ǫijk zwany tensorem Levi-Civity. Wprowadźmy
także drugie tradycyjne oznaczenie f(a,b) ≡ a × b. Znalezione odwzorowanie f(a,b)
jest bowiem znanym ze szkoły85 iloczynem wektorowym dwu wektorów. Definiującą go
(wraz z warunkiem biliniowości) wartość na wektorach bazy ortonormalnej można wtedy,
korzystając z tensora Levi-Civity, zapisać w postaci

ei × ej = ǫijk ek .

Zadanko
Obliczyć v×w, jeśli: a) v = 2e1 + e2− e3, w = e1 + e2 +2e3, oraz b) v = e1 +2e2− e3,
w = −2e1 + 4e2 + 2e3.
Rozwiązanie: Można skorzystać z biliniowości, by napisać

v ×w = (ei v
i)× (ej w

j) = ei × ej v
iwj = ǫijk ek v

iwj = ek ǫkij v
iwj .

Skorzystaliśmy ponadto z tego, że ǫijk = ǫkij. Stąd jawnie

v×w = e1(v
2w3 − v3w2) + e2(v

3w1 − v1w3) + e3(v
1w2 − v2w1) = 3 e1 − 5 e2 + e3 .

Można też posłużyć się znanym “patentem”:

v ×w =

∣

∣

∣

∣

∣

∣

e1 e2 e3
v1 v2 v3

w1 w2 w3

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

e1 e2 e3
2 1 −1
1 1 2

∣

∣

∣

∣

∣

∣

= 3 e1 − 5 e2 + e3 .

Sprawdzamy wynik obliczając iloczyny skalarne:

(3 e1 − 5 e2 + e3)·v = 3 · 2− 5 · 2 + 1 · (−1) = 0 ,

(3 e1 − 5 e2 + e3)·w = 3 · 1− 5 · 1 + 1 · 2 = 0 .

W przypadku b) v ×w = 8 e1 + 8 e3.

Uwaga: Patrząc na wzór na składowe wektora c będącego iloczynem wektorowym a×b

widzimy, że w przestrzeni VR3

Area(a,b) =
√

(a1b2 − a2b1)2 + (a1b3 − a3b1)2 + (a2b3 − a3b2)2 = || a× b || .

W V R2 oczywiście to nie działa, ale można sobie w myślach powiększyć V R2 do VR3,
czyli wziąć iloczyn kartezjański V R2× V R1, w którym wektory a i b leżą w tej pierwszej
podprzestrzeni (czyli mają zerowe składowe a3 i b3), i wtedy wzór

Area(a,b) =
√

(a1b2 − a2b1)2 = |a1b2 − a2b1| = || a× b || ,
85A może w szkolnym programie już iloczynu wektorowego niema? W końcu to chyba za trudne dla

ministrów...
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pozostaje słuszny, bo wtedy a× b można zdefiniować.
W przypadku pola powierzchni rozpinanej przez wektory a i b w V Rn o n > 3 z

kanonicznym iloczynem skalarnym, można zawsze wybrać bazę VRn tak, by wektory a i
b (jeśli nie są do siebie proporcjonalne, ale jeśli są, to Area(a,b) = 0 i jest to przypadek
nieciekawy) były jej pierwszymi dwoma wektorami. Po zastosowaniu do takiej bazy upo-
rządkowanej ortonormalizacji Grama-Schmidta dostajemy bazę ortonormalną ei, w której
e1 ∝ a, a e2 jest kombinacją liniową a i b, czyli b jest kombinacją liniową tylko e1 i e2.
Można wtedy zdefiniować wektor86 ”a×b”= e3 a

1b2 i formalnie utrzymać powyższy wzór.

W VR3 można też zdefiniować objętość Vol3(a,b, c) równoległościanu rozpiętego na
trzech wektorach a, b i c:

Vol3(a,b, c) = Area(a,b) · h = || a× b || ·
∣

∣

∣

∣

c · a× b

|| a× b ||

∣

∣

∣

∣

= |c·(a× b)|

=
∣

∣c1(a2b3 − a3b2) + c2(a3b1 − a1b3) + c3(a1b2 − a2b1)
∣

∣ .

Ponieważ c·(a×b) = ǫijka
ibjck, wzór ten jest w istocie symetryczny względem wszystkich

permutacji wektorów a, b i c, tzn. Vol3(a,b, c) =Vol3(c, a,b), etc. Można bezpośrednim
rachunkiem pokazać, że jest to to samo, co

Vol3(a,b, c) =
√

det(g) =

√

√

√

√

√det





a·a a·b a·c
b·a b·b c·c
c·a c·b c·c



.

86Jest to oczywiście konstrukcja sztuczna, bo do każdej pary wektorów a i b trzeba dobierać w opisany
sposób odpowiednią bazę; w ustalonej jednej bazie przestrzeni V Rn nie można podać wzoru sensownie
definiującego coś takiego, jak wektor “a×b”. Z powierzchnią rozpiętą w V R

n na wektorach a i b można
stowarzyszyć tylko tensor a ⊗ b należący do V Rn ⊗ V Rn. W V R3 jednak każdemu takiemu tensorowi
odpowiada jednoznacznie wektor, który właśnie nazywa się iloczynem wektorowym. Odpowiedniość ta
jest przykładem ogólniejszej dualności tensorów kontrawariantnych rzędu p (p ≤ n) i tensorów kowariant-
nych rzędu n− p. (Wektor jest tensorem kontrawariantnym rzędu 1, a kowektor tensorem kowariantnym
rzędu 1). Tensorowi T (p) = ei1⊗ . . .⊗eip t

i1...ip przyporządkowany jest jednoznacznie kowariantny tensor
dualny

T (n−p) = ê
j1 ⊗ . . .⊗ ê

jn−pǫj1...jn−pi1...ip t
i1...ip .

Symbol ǫi1...in jest uogólnieniem symbolu (tensora) Levi-Civity: ǫ12,...n = 1 (albo −1, zależnie od gustu,
byle się na coś zdecydować) i dalej przez permutacje parzyste i nieparzyste; jeśli dwa indeksy mają tę
samą wartość, to symbol znika. (Można to jeszcze bardzieje abstrakcyjnie i bardziej ogólnie podefiniować,
ale już na tym poprzestaniemy).

Zatem w V R
3 tensorowi drugiego rzędu a ⊗ b = ei ⊗ ej a

jbj odpowiada jedno-forma, czyli kowektor
f̂ = ê

k ǫkij a
ibj , ale przez izomorfizm Frecheta-Riesza można go utożsamić z wektorem ek ǫkij a

ibj = a×b.
Ogólnie, pod szumną nazwą “izomorfizm Frecheta-Riesza” kryje się utożsamienie kowektora ŵ z prze-

strzeni dualnej V ∗ z takim wektorem w z V , że przy dowolnym wektorze v z V zachodzi równość

ŵ(v) = (w|v)S .

Jak stąd widać, izomorfizm ten jest zadany przez jakiś wyróżniony iloczyn skalarny (·|·)S w przestrzeni
V .
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Najprościej jest w tym celu przyjąć bazę (związaną z wyjściową kanoniczną zero-jedynkową
bazą V R3 macierzą ortogonalną, nie zmieniającą macierzy iloczynu skalarnego), w której
c ma tylko pierwszą składową niezerową, a ma tylko dwie pierwsze składowe niezerowe,
a b wszystkie. W takiej bazie |c·(a× b)|2 = (c1a2b3)2, a obliczenie det(g) też się trochę
upraszcza (choć jest dalej nieco żmudne). Tak więc ta szkolna definicja objętości pokrywa
się z tą opartą na wyznaczniku tensora metrycznego (macierzy Grama), a ta z kolei (z
dokładnością do znaku) z definicją opartą na trój-formie objętości ê1 ∧ ê2 ∧ ê3. Defi-
nicja oparta na wyznaczniku tensora metrycznego stosuje się jednak w dowolnej liczbie
wymiarów.

Zadanie
Obliczyć objętość równoległoboku rozpiętego w VR3 na wektorach

a = e1 + 2 e2 + 3 e3 ,

b = 2 e1 − 3 e2 + 4 e3 ,

c = 3 e1 − 4 e2 − 5 e3 ,

jeśli trzy wektory ei tworzą bazę ortonormalną.
Rozwiązanie: Najprościej skorzystać ze wzoru Vol3(a,b, c) = |c · (a × b)|. Ponieważ
iloczyn wektorowy a× b jest dany sztuczką z wyznacznikiem

a× b =

∣

∣

∣

∣

∣

∣

e1 e2 e3
a1 a2 a3

b1 b2 b3

∣

∣

∣

∣

∣

∣

,

a iloczyn skalarny jest kanoniczny, nietrudno zobaczyć, że

Vol3(a,b, c) =

∣

∣

∣

∣

∣

∣

c1 c2 c3

a1 a2 a3

b1 b2 b3

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

3 −4 −5
1 2 3
2 −3 4

∣

∣

∣

∣

∣

∣

= 78.

Sprawdźmy to metodą macierzy Grama (macierzy tensora metrycznego). Ma ona postać




14 8 −20
8 29 −2
−20 −2 50



 ,

a jej wyznacznik jest równy 6084 = (78)2, tak jak być powinno.

Zadanie 80
Znaleźć odległość w AE4 punktu A = (5, 6, 7, 8) od hiperpowierzchni H (3-płaszczyzny)
zdefiniowanej następująco

H = {(x1, x2, x3, x4) ∈ E4 : 4x1 + 3x2 + 2x3 + x4 = 30} .
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Rozwiązanie: Odległość punktu A od hiperpowierzchni H jest to najmniejsza odległość
pomiędzy A i punktami PH ∈ H (minimalizujemy odległość ze względu na punkty PH).
Jest ona tym samym co odległość od A punktu przecięcia z H prostej l przechodzącej
przez A i prostopadłej do H (tj. prostopadłej w sensie kanonicznego iloczynu skalarnego
w E4 do wszystkich wektorów stycznych do H w punkcie przecięcia). Do rozwiązania
problemu wystarczy zatem znaleźć wektor prostopadły do H oraz prostą przechodzącą
przez A i mającą kierunek tego wektora.

Tu wygodnie jest zapomnieć o (nieistniejącym w rzeczywistości) podziale na analizę i
algebrę (to, co istnieje rzeczywiście, to konkretny problem do rozwiązania) i skorzystać z
tego, że gdy hiperpowierzchnia zadana jest ogólnym warunkiem

f(x1, x2, x3, x4) = 0 ,

(tu f(x1, x2, x3, x4) ≡ 4x1+3x2+2x3+x4−30), to wektor prostopadły do niej (w punkcie
o współrzędnych (x1, x2, x3, x4)) jest gradientem f , tj. ma składowe

(

∂f

∂x1
,
∂f

∂x2
,
∂f

∂x3
,
∂f

∂x4

)

.

W rozpatrywanym przypadku wektor prostopadły do H ma zatem postać87









4
3
2
1









.

Równanie parametryczne prostej l przechodzącej przez A i mającej kierunek tego wektora
możemy napisać “od ręki” (t ∈ (−∞,+∞) jest tu parametrem)









x1
x2
x3
x4









=









5
6
7
8









+ t









4
3
2
1









.

Punkt jej przecięcia z hiperpowierzchnią H wyznacza równanie (tj. wyznacza wartość
parametru t)

4(5 + 4t) + 3(6 + 3t) + 2(7 + 2t) + (8 + t) = 30 ,

87Można też ten wektor znaleźć czysto algebraicznie przechodząc najpierw do parametrycznego opisu
hiperpowierzchni H :







x1

x2

x3

x4






=







3
3
3
3






+ ξ1







3
−4
0
0






+ ξ2







1
0
−2
0






+ ξ3







1
0
0
−4






.

(Najpierw wybrane zostało jedno szczególne rozwiązanie (x1 = x2 = x3 = x4 = 3) równania 4x1 + 3x2 +
2x3 + x4 = 30, a następnie wybrane trzy liniowo niezależne wektory, na których zeruje się macierz 1× 4
A = (4, 3, 2, 1) problemu). Szukany wektor musi być prostopadły do tych trzech wektorów rozpinających
hiperpłaszczyznę H i ponieważ mają one po dwa pięterka zerowe każdy, łatwo go znaleźć.
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tj. 60 + 30t = 30. Punkt przecięcia l z H charakteryzuje się zatem parametrem t =
−1. Tak więc prosta l dla t = 0 przechodzi przez punkt A, dla t = −1 zaś przebija
hiperpowierzchnię H . Odległość d tych dwu punktów dana jest zatem przez

d2 = [x1(0)− x1(−1)]2 + [x2(0)− x2(−1)]2 + [x3(0)− x3(−1)]2 + [x4(0)− x4(−1)]2
= 42 + 32 + 22 + 12 = 30 .

Odległość A od H wynosi zatem
√
30.

Zadanie 81
Znaleźć odległość w E3 między prostymi l1 i l2 zadanymi następująco:

l1 : {(x1, x2, x3) ∈ E3 : x1 + x2 = 1, x1 + 2x2 + x3 = 2} .

l2 :





x1
x2
x3



 =





0
2
0



 + t





1
1
2



 .

Rozwiązanie: Odległość dwu prostych jest to długość łączącego je odcinka skonstruowa-
nego tak, że jest on prostopadły i do jednej i do drugiej prostej. Zapiszmy najpierw prostą
l1 w postaci patrametrycznej (co pozwoli nam zidentyfikować wektor do niej styczny). W
tym celu wystarczy znaleźć jakiś punkt do niej należący. Jest nim np. punkt (0, 1, 0).
Prosta l1 może zatem być zapisana jako

l1 :





x1
x2
x3



 =





0
1
0



 + t̃





α
β
γ



 ,

przy czym stałe α, β i γ należy tak dobrać by spełnione były (dla dowolnej wartości
parametru t̃) równości definiujące l1:

t̃α + (1 + t̃β) = 1 ,

t̃α+ 2(1 + t̃β) + t̃γ = 2 .

Musi wiec być α+ β = 0 i α+ 2β + γ = 0. Oczywiście wektor styczny do prostej l1 może
być dowolnej długości, więc możemy sobie wziąć jako rozwiązanie α = 1, β = −1, γ = 1.
Zatem w postaci parametrycznej

l1 :





x1
x2
x3



 =





0
1
0



+ t̃





1
−1
1



 .

Możemy teraz znaleźć wektor prostopadły zarówno do l1 jak i do l2. W E3 jest tylko
jeden taki wektor (z dokładnością do wyboru jego długości i zwrotu). Aby go znaleźć
najwygodniej skorzystać z iloczynu wektorowego wektorów stycznych do l1 i l2: iloczyn
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taki daje bowiem zawsze wektor prostopadły do każdego z przemnożonych przez siebie88

wektorowo wektorów.89 Wykorzystujemy tu znaną sztuczkę z wyznacznikiem: wektor
v = (eiw

i
(e))× (eju

j
(e)) jest dany przez

v =

∣

∣

∣

∣

∣

∣

e1 e2 e3
w1

(e) w2
(e) w3

(e)

u1(e) u2(e) u3(e)

∣

∣

∣

∣

∣

∣

.

Tu mamy

v =

∣

∣

∣

∣

∣

∣

e1 e2 e3
1 −1 1
1 1 2

∣

∣

∣

∣

∣

∣

= −3 e1 − e2 + 2 e3 .

Zatem wektor o składowych




−3
−1
2



 ,

jest prostopadły do prostych l1 i l2.
Możemy teraz przedstawić prostą l3 prostopadłą do l1 i l2 w ogólnej postaci

l3 :





x1
x2
x3



 =





a
b
c



+ τ





−3
−1
2



 ,

z parametrem τ ∈ R. Trzeba następnie dobrać a, b i c tak, by prosta l3 dla pewnej
wartości parametru τ , np. dla τ = 0, przecinała prostą l2 w jakimś punkcie A2 ∈ l2
scharakteryzowanym wartością t2 parametru t, a dla jakiejś innej wartości τ przecinała
prostą l1 w punkcie A1 ∈ l1 scharakteryzowanym przez t̃ = t1. Daje to układ sześciu
równań na sześć niewiadomych (a, b, c, τ , t1, t2):

a = t2 ,

b = 2 + t2 ,

c = 2t2 ,

a− 3τ = t1 ,

b− τ = 1− t1 ,
c+ 2τ = t1 .

88Tj. przemnożonych jeden przez drugi; jak w dowcipie: “Cezar i Pompejusz byli do siebie podobni.
Zwłaszcza Cezar.”

89Trzeba tu zwrócić uwagę, że coś takiego jak iloczyn wektorowy dwu wektorów istnieje tylko w E3; w
E4 np. dwa wektory wyznaczają płaszczyznę, do której prostopadłe są aż dwa wektory; znany z E3 iloczyn
wektorowy staje się tu tensorem (brr... straszne słowo! - zawsze budzi na widowni szmer popłochu...)
antysymetrycznym drugiego rzędu, o czym już było.
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Aby je rozwiązać sprawnie a systematycznie, eliminujemy najpierw a, b i c (biorąc je z
trzech pierwszych równań):

t2 − 3τ = t1 ,

2 + t2 − τ = 1− t1 ,
2t2 + 2τ = t1 .

Odejmując od ostatniego pierwsze mamy t2 = −5τ , a drugie i trzecie, po wstawieniu tego
do nich sprowadzają się do

2− 6τ = 1− t1 ,
−8τ = t1 ,

i stąd już gładko τ = 1/14, t1 = −8/14, t2 = −5/14. Wracając do równań z a, b i c
znajdujemy a = −5/14, b = 23/14 i c = −10/14. Zatem prosta l3 prostopadła do l1 i do
l2 ma postać

l3 :





x1
x2
x3



 =
1

14





−5
23
−10



+ τ





−3
−1
2



 ,

i dla τ = 0 przecina l2, a dla τ = 1/14 przecina l1. Zatem odległość d prostych l1 i l2 od
siebie jest dana przez

d2 = [x1(0)− x1(1/14)]2 + [x2(0)− x2(1/14)]2 + [x3(0)− x3(−1/14)]2 =
1

14
,

i wynosi 1/
√
14.

Zadanie 82
Rozwiązać poprzednie dwa zadania metodami analizy (aby przeciwdziałać powstawaniu
w młodych umysłach podziału matematyki na analizę i algebrę...).
Rozwiązanie: Szukania odległości punktu A = (5, 6, 7, 8) ∈ E4 od hiperpłaszczyzny H
zadanej warunkiem 4x1+3x2+2x3+x4 = 30 sprowadza się do problemu zminimalizowania
funkcji

f(x1, x2, x3, x4) = (x1 − 5)2 + (x2 − 6)2 + (x3 − 7)2 + (x4 − 8)2 ,

dającej kwadrat odległości od punktu A punktu X o współrzędnych (x1, x2, x3, x4) z
warunkiem ubocznym, by punkt X należał do hiperpłaszczyzny H

g(x1, x2, x3, x4) = 4x1 + 3x2 + 2x3 + x4 − 30 = 0 .

Zgodnie z ogólną metodą minimalizujemy więc funkcję

F (x1, x2, x3, x4) = f(x1, x2, x3, x4) + λ g(x1, x2, x3, x4) .
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Przyrównujemy do zera cztery pochodne

F ′x1
= 2(x1 − 5) + 4λ = 0 ,

F ′x2
= 2(x2 − 6) + 3λ = 0 ,

F ′x3
= 2(x3 − 7) + 2λ = 0 ,

F ′x4
= 2(x4 − 8) + λ = 0 ,

i rozwiązujemy powstałe równania razem z warunkiem g(x1, x2, x3, x4) = 0. Po wyzna-
czeniu xi z warunków F ′xi

= 0

x1 = 5− 2λ ,

x2 = 6− 3

2
λ ,

x3 = 7− λ ,
x4 = 8− 1

2
λ ,

i wstawieniu do g(x1, x2, x3, x4) = 0 znajdujemy 60 + 15λ = 30, czyli λ = 2. Stąd x1 = 1,
x2 = 3, x3 = 5 i x4 = 7. Macierz drugich pochodnych funkcji F (x1, x2, x3, x4)









2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2









,

jest niezależna od punktu, diagonalna i dodatnio określona. W znalezionym punkcie
(1, 3, 5, 7), w którym zerują się pierwsze pochodne mamy zatem minimum. Wartość funkcji
f(x1, x2, x3, x4) w tym punkcie wynosi 30, czyli odległość punktu A od hiperpłaszczyzny
H jest równa

√
30.

W drugim zadaniu wprowadzamy funkcję

f(x1, x2, x3, t) = (x1 − t)2 + (x2 − t− 2)2 + (x3 − 2t)2 ,

będącą kwadratem odległości punktu X o współrzędnych (x1, x2, x3) od punktu na prostej
l2 scharakteryzowanego parametrem t. Minimalizujemy zatem funkcję czterech zmien-
nych. Warunkiem dodatkowym jest to, że punkt X musi leżeć na prostej l1, co oznacza,
że współrzędne (x1, x2, x3) muszą spełniać warunki (uprościliśmy tu drugi z warunków
zadających prostą l2 odejmując odeń pierwszy)

g1(x1, x2, x3, t) = x1 + x2 − 1 = 0 ,

g2(x1, x2, x3, t) = x2 + x3 − 1 = 0 ,

(chociaż warunki g1 i g2 dotyczą tylko współrzędnych punktu X, to mimo to, należy je for-
malnie traktować jak funkcje wszystkich zmiennych, ze względu na które minimalizujemy
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funkcję f). Znów tworzymy funkcję pomocniczą zależną od dwu mnożników Lagrange’a
λ1 i λ2:

F (x1, x2, x3, t) = f(x1, x2, x3, t) + 2λ1g1(x1, x2, x3, t) + 2λ2g2(x1, x2, x3, t) ,

(żeby się ładniej liczby komponowały przyjęliśmy za mnożniki Lagrange’a 2λ1 i 2λ2) i
przyrównujemy do zera jej pochodne cząstkowe po x1, x2, x3 i t:

F ′x1
= 2(x1 − t) + 2λ1 = 0 ,

F ′x2
= 2(x2 − t− 2) + 2λ1 + 2λ2 = 0 ,

F ′x3
= 2(x3 − 2t) + 2λ2 = 0 ,

F ′t = −2(x1 − t)− 2(x2 − t− 2)− 4(x3 − 2t) = 0 .

W połączeniu z warunkami ubocznymi daje to układ sześciu równań

x1 − t+ λ1 = 0 ,

x2 − t+ λ1 + λ2 = 2 ,

x3 − 2t+ λ2 = 0 ,

x1 + x2 + 2x3 − 6t+ λ2 = 2 ,

x1 + x2 = 1 ,

x2 + x3 = 1 .

Aby je systematycznie rozwiązać wyznaczamy z pierwszych trzech x1 = t − λ1, x2 =
t − λ1 − λ2 + 2, x3 = 2t − λ2 i wstawiamy do pozostałych trzech. Pierwsze z nich daje
wtedy

2λ1 + 3λ2 = 0 ,

a pozostałe

2t− 2λ1 − λ2 = −1 ,
3t− λ1 − 2λ2 = −1 .

Po wyeliminowaniu λ1 otrzymujemy dwa równania

2t+ 2λ2 = −1 ,
3t− 1

2
λ2 = −1 ,

których rozwiązaniem są t = − 5
14

, λ2 = − 2
14

; dalej już łatwo: λ1 = 3
14

oraz

x1 = x3 = −
8

14
, x2 =

22

14
.
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Wartość minimalizowanej funkcji f(x1, x2, x3, t) w tym punkcie wynosi 1
14

(tak jak nam
to wyszło w zadaniu 81). Macierz drugich pochodnych F (x1, x2, x3, t, λ1, λ2) ma postać









2 0 0 −2
0 2 0 −2
0 0 2 −4
−2 −2 −4 12









.

Jest ona dodatnio określona bo największy jej minor jest też dodatni (aby to zobaczyć
wystarczy do ostatniego wiersza dodać wszystkie trzy poprzednie wiersze, co da macierz
górnotrójkątną o dodatnich wyrazach na diagonali), więc nie trzeba nawet jej badać na
wektorach stycznych do powierzchni g1(x1, x2, x3, x4) = 0 i g2(x1, x2, x3, x4) = 0. W
znalezionym punkcie jest zatem (tak jak należało oczekiwać) minimum.

Zadanie 83
Znaleźć w przestrzeni E4 (której współrzędne oznaczymy x, y, u i v) odległość pomiędzy
prostą ℓ zadaną wzorem









x
y
u
v









=









0
1
0
1









+ t









1
2
3
4









i płaszczyzną Σ wyznaczaną przez równania

x+ y + u+ v = 1 ,

x− y + u− v = 1 .

Rozwiązanie: Odległość prostej od płaszczyzny jest to najkrótsza odległość pomiędzy
dwoma punktami, z których jeden należy do prostej ℓ, a drugi do płaszczyzny Σ. Za-
uważmy, też że prosta k łącząca te dwa punkty prostej ℓ i płaszczyzny Σ, które realizują
minimum odległości, jest prostopadła (w sensie kanonicznego iloczynu skalarnego) za-
równo do prostej ℓ jak i do płaszczyzny Σ.

Tak jak i poprzednie, zadanie to można rozwiązać albo geometrycznie albo analitycz-
nie. Aby rozwiązać problem geometrycznie, musimy podać opis płaszczyzny analogiczny
do opisu prostej. Ponieważ równania definiujące płaszczyznę Σ są proste, łatwo zobaczyć,
że jest ona równoważnie zadana wzorem (ξ i η są rzeczywistymi parametrami)









x
y
u
v









=









1/2
0
1/2
0









+ ξ









1
0
−1
0









+ η









0
1
0
−1









.

Bez żadnych rachunków można natychmiast podać dwa liniowo niezależne wektory pro-
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stopadłe do obu wektorów rozpinających płaszczyznę Σ; są to np.:








1
0
1
0









,









0
1
0
1









.

Z tych dwóch wektorów robimy teraz kombinację liniową prostopadłą do wektora rozpi-
nającego prostą ℓ. Jest to kombinacja









3
−2
3
−2









.

Prosta k łącząca prostą ℓ z płaszczyzną Σ, na której leżą najbliżej siebie położone punkty
prostej i płaszczyzny musi zatem mieć postać









x
y
u
v









=









a
b
c
d









+ s









3
−2
3
−2









.

Parametr s można wybrać tak, by jego wartość s = 0 odpowiadała punktowi należącemu
do prostej ℓ. Przy takim wyborze a = t, b = 1 + 2t, c = 3t i d = 1 + 4t dla jakiegoś t.
Warunek, by dla prosta k przecinała płaszczyznę Σ dla jekiegoś s ma wtedy postać









t
1 + 2t
3t

1 + 4t









+









3s
−2s
3s
−2s









=









1
2
+ ξ
η

1
2
− ξ
−η









.

Są to cztery równania na cztery niewiadome, t, s, ξ i η. Aby się nie napracować, można
zauważyć, że odległość punktu należącego do ℓ od punktu płaszczyzny Σ, o którą chodzi
jest po prostu równa długości wektora









3s
−2s
3s
−2s









.

Rozwiązywać układ równań można więc tak, by wyznaczyć tylko s. Łatwo znajdujemy,
że s = 7/26, a stąd odległość prostej ℓ od płaszczyzny Σ wynosi 7/

√
26.

Analityczne rozwiązanie tego zadania polega na napisaniu kwadratu odległości

d2 = (x1 − x2)2 + (y1 − y2)2 + (u1 − u2)2 + (v1 − v2)2 ,
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między dwoma punktami przestrzeni E4. Pierwszy z nich, o współrzędnych (x1, y1, u1, v1),
należy do prostej ℓ, a drugi, o współrzędnych (x2, y2, u2, v2), należy do płaszczyzny Σ.
Wobec tego x1 = t, y1 = 1+2t, u1 = 3t, v1 = 1+4t (co pozwala sparametryzować zmienną
x1 wszystkie pozostałe współrzędne tego punktu) oraz x2+u2 = 1, y2+v2 = 0 (co pozwala
użyć x2 i y2 jako parametrów zadających położenie tego punktu w przestrzeni). Zatem d2

staje się funkcją trzech niezależnych i nie ograniczonych żadnymi warunkami zmiennych
x1, x2 i y2:

d2 = f(x1, x2, y2) = (x1 − x2)2 + (1 + 2x2 − y2)2 + (3x1 − 1 + x2)
2 + (4x1 + 1 + y2)

2 ,

Aby znaleźć minimum tej funkcji przyrównujemy do zera jej pochodne cząstkowe

f ′x1
= 2(x1 − x2) + 4(1 + 2x1 − y2) + 6(3x1 − 1 + x2) + 8(1 + 4x1 + y2) = 0

f ′x2
=−2(x1 − x2) + 2(3x1 − 1 + x2) = 0

f ′y2 = − 2(1 + 2x1 − y2) + 2(1 + 4x1 + y2) = 0 .

Dodając do pierwszego równania drugie i dwa razy trzecie upraszczamy ten układ równań
do

72x1 + 8x2 + 12y2 = −4
2x1 + 2x2 = 1

2x2 + 2y2 = 0 ,

a stąd już łatwo obliczamy, że

x1 = −
4

26
, x2 =

17

26
, y2 =

4

26
.

Macierz drugich pochodnych w funkcji f(x1, x2, y2) w tym punkcie ma postać




60 4 4
4 4 0
4 0 4





i jest dodatnio określona (znów więc nie trzeba już jej badać na wektorach stycznych do
powierzchni więzów). Funkcja f ma zatem w tym punkcie minimum. Obliczamy wartość
funkcji f w tym punkcie:

f(− 4

26
,
17

26
,
4

26
) =

[(−4 − 17)2 + (26− 8− 14)2 + (−12− 26 + 17)2 + (26− 16 + 4)2]

(26)2

=
2

(26)2
[

(21)2 + (14)2
]

=

(

7

26

)2

· 26 .

Odległość d prostej ℓ od płaszczyzny Σ wynosi zatem 7/
√
26, tak jak to poprzednio

obliczyliśmy metodą geometryczną.
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