NOTATKI DO CWICZEN Z ALGEBRY METODA FIZYCZNA
UPRAWIANEJ

Liczby zespolone

Kanoniczna postaé liczby zespolonej: z = x + iy. Liczba z = x zwie sie liczba (czysto)
rzeczywista, liczba z = iy zwie sie liczba (czysto) urojona. Oczywiscie 12 = —1. Czesci
rzeczywista i urojona liczby zespolonej z = = + iy: Rez = z, Imz = y (uwaga: czes¢
urojona liczby zespolonej z jest liczba rzeczywista!). Modul |z| liczby zespolonej z = x+iy:
|2] = /2% + 2.

Liczba zespolona sprzezona do danej liczby z = z+1y: 2* = 2z = v —1y. Zachodza zwiazki:
2| = [2*], 22 = 22" = [2|* = %] = 2 + y% |aize| = |21] |22], |21/ 22| = |21]/|22l. Po-
nadto z+z* = 2Rez (liczba zawsze rzeczywista), z — z* = 2iIm 2z (liczba zawsze urojona).

! na (dwa) pierwiastki kwadratowe z danej liczby z = x + iy:

Przydatny wzor

2 2

Postac trygonometryczna liczby zespolonej. Jedli liczbe zespolona z = a+-b reprezentowac
punktem na plaszczyznie o osiach a = Rez, b = Imz, to zamiast wspotrzednymi (a,b)
mozna te sama liczbe identyfikowaé¢ przez podanie jej wspotrzednych biegunowych (7, )

r=+a2+0=|z|, tggpzlm—z,
Rez

przy czym kat o, zwany argumentem, Argz, liczby zespolonej, aby liczba z byta repre-
zentowana “kanonicznie” (dlaczego? zeby sie matematycy cieszyli... A powazniej, to jest
kwestia umowy, ale umowa ta zacznie by¢ istotna, gdy bedziemy obliczaé¢ logarytmy liczb
zespolonych) trzeba wybraé¢ z przedziatu [0,27). Poniewaz wartosé¢ funkeji arctg(-) lezy
z definicji (przyjetej arbitralnie i dla niektorych celéw mogacej wymagaé zmienienia) w
przedziale (—%w, %7?), oznacza to, ze czasem trzeba kat ¢ uzyskany przez arctg “recz-
nie” poprawi¢. Zachodza (oczywiste) zwiazki (niezalezne od tego, czy kat ¢ nalezy do
“kanonicznego” przedziatu, czy nie)

Rez =a=rcosp, Imz=b=rsingp,
co najlepiej zapisa¢ w postaci

z=a+ib=r(cosp +ising) =re¥ = |z 8.

!Credit: Prof. Mikotaj Misiak. Wzor tatwo sprawdzi¢ bezposrednio podnosza jego prawa strone do
kwadratu.



Ostatnia réwnos¢ wynika z rozwiniecia w szereg Taylora

. o0 (igo)Q 0 (w)zn 00 (W)MH
=D T E +y
el £ (2n)! = (2n+1)!
= (D" o N D" 2n+1 _ -
_; (2n)! Y +n:0 (2n+1)!<ﬁ = cosp +ising.

Wynikaja z niej takze wazne wzory
1, By
oS = o (ew +e WJ) ,
1

sinp = — (e —e %) |
5 ( )

ktore warto poréwnaé z definicjami funkeji hiperbolicznych

1
chx = 3 (ex + e_x) ,
shr = 1 (ex — e_x) .
2
Jest wiec jasne, ze
cos(iz) = chx,  sin(ix) = ishx.

Oczywisty jest takze tzw. wzor de Moivre’a
(cosp +isinp)" = ()" = e™? = cos(ny) + isin(ngp).

W szkole (w trzeciej klasie liceum, ale to bylto za komuny, a nie za PiSu, bo dla PiSow-
skich ministrow takie rzeczy sa za trudne...) dowodzito sie go za pomoca indukeji dla
naturalnych n, ale wida¢, ze wzor jest stuszny nawet, gdy n jest liczba zespolona.

Zauwazmy, ze dodawanie (i odejmowanie) dwoch liczb zespolonych z; = ay + iby =
1€Y1 1 2o = ap +1by = T €'¥? jest latwiejsze w postaci kartezjariskiej 2y + 20 = (ay +az) +
i(by + by), ale ich mnozenie i dzielenie jest tatwiejsze w postaci trygonometrycznej:

. z .
2129 = (r172) ellertez) ) == (r1/72) eller=e2),
%)
Problemik: Obliczy¢ sume
N
Sy =sinz +sin2x + ... +sin Nz = Zsinnx.
n=1



Rozwigzanie: Wystarczy skorzysta¢ z liniowosci operacji brania czesci rzeczywistej i
czesci urojonej liczby zespolonej, (tj. z tego, ze Re(z; + 20+ ...) = Rez; + Rezy + ...,
Im(z; + 29 +...) = Imz; + Imzy + ...) i napisac

N N N-1
Sy = Z Im e = Im (Z ei":”) =Im (eim Z ei”m> .
n=1 n=1 n=0

Teraz, poniewaz wystepuje tu suma bedaca szeregiem (ale skoriczonym, wiec problem

zbieznosci tu nie ingeruje) geometrycznym o ”¢” = e, mozemy wykorzysta¢ znany wzor?

N—-1
1—¢gN N _1q
dt=14q+...+¢""= 7 -1 :
n=0 1_q q_l
Prowadzi on do
) z'Nx_l
sN:nn(ewe.i).
e —1

Teraz wystarczy tylko obliczy¢ czes¢ urojong, ale zeby sie nie zakatapuckaé, trzeba to
zrobié¢ sprytnie:

Sy = Im| e il i = Im ([ e/VH+1Dz/2 M
N 6ix/2 6ix/2 _ e—ix/2 Sln(:)ﬁ'/Q) .

Tloraz sinusow jest czysto rzeczywisty, a poniewaz jesli a jest liczba rzeczywista, Im(az) =
almz, wiec
sin(Nz/2) sin(Nzx/2)

= T iy (¢ WNHD2/2) = 2 gy x/2).
S = Ty ™ ) = SnGyy) S 1e/2)

Nietrudno tez zobaczy¢ (biorac czesé rzeczywista zamiast urojonej), ze

N
Cy = Zcosnm =cosr +cos2x+ ...+ cos Nx =

n=1

sin(Nz/2)

Sn(z/9) cos((N + 1)z /2).

Jesli ¢ = 27k, gdzie k € Z, to w mianownikach uzyskanych wzoréow robi sie zero. Ale
nietrudno ustali¢ biorac granice x — 0 (granice x — 27k musza dac to samo, bo funkcje sa
okresowe) uzyskanych wzorow, ze suma Sy sinusow da wtedy zero, a suma Cy kosinusoéw
N, tak jak powinno by¢.

Pierwiastki n-tego stopnia z liczby zespolonej z. Jesli w = z'/", to znaczy, ze szukamy
wszystkich takich liczb wy, ze wj = z. Liczb takich jest doktadnie n, czyli sa to wy, ...,
wy_1. Aby to zobaczy¢ piszemy

w = |w|(cos® +isinf) = |w|e?

z = |z| (cosp + isinp) = |z| €,

2Stopien wielomianu (1 —q)(14+¢+...+¢" 1) jest rowny N, wiec w liczniku po prawej stronie musi
byé ¢V.



i wtedy réwnosé z = w" oznacza, ze |z| = |w|" oraz, ze ¥ = ™. Pierwszy warunek

daje |w| = |z|*/™, przy czym tu |z|'/" oznacza zwykly, rzeczywisty i dodatni pierwiastek
n-tego stopnia z rzeczywistej i dodatniej liczby |z|; druga rownosé wymaga czujnosei: jesli
zamiast ¢ napiszemy ¢ + 27k z dowolnym k € Z, to dalej |z]e’**2™) = ~_ ale w zaleznosci
od wartosci k dostaniemy rézne katy 6y

po+2rk 1 k

n n n

k moze by¢ niby dowolng liczbg catkowita, ale tylko n réznych k£ da rozne liczby wy: jako
te r6zne przyjeto sie braé
wo = ‘Z|1/n€i€0, L= |Z‘1/n6i91 L= |Z‘1/nei9n,1 )

w , Wy,

Kat 6, liczby w,, mozna bowiem zapisaé¢ jako
1 1
0, = —<)0+27rﬁ =—p+ 27,
n n o n

czyli rozni sie on od kata 6y o 27 1 tym samym w,, = wy. Podobnie w,, .1 = wy, w_1 = w,_1
etc. Rzeczywiscie wiec roznych pierwiastkow n-tego stopnia z liczby zespolonej z jest tylko
(i az) n. Na plaszczyznie o osiach Rez, Imz wszystkie one leza na okregu o promieniu
|z|'/™ i dziela ten okrag na n réwnych czesci. Wystarczy wice znalezé potozenie jednego z
nich, by mozna bylo wyznaczy¢ (na rysunku) potozenia pozostatych n—1. Wynika z tego,
ze polozenia zespolonych pierwiastow n-tego stopnia z z = 1 szczegdlnie tatwo znalezé:
jednym z nich jest bowiem zawsze wy = 1 i pozostalte leza na okregu jednostkowym co 27 /n
(jesli n = 21 jest liczba parzysta, pierwiastkiem jest tez w; = —1; oczywiscie, jesli n jest
liczba nieparzysta, —1 pierwiastkiem nie jest). Nieco trudniej jest wyznaczy¢ polozenia
pierwiastow n-tego stopnia z z = —1, ale jesli n = 2[+1 jest liczba nieparzysta, to w; = —1
i majac ten pierwiastek juz tatwo wskazaé¢ potozenia pozostatych na jednostkowym okregu.

Problemik: Znalezé wszystkie rozne pierwiastki trzeciego stopnia z z = 1 + 4.
Rozwiazanie: |z| = V2, wiec
z=1/2 —+—) V2
<\f V2
Zatem 0, = 7/12 4 27(k/3), czyli
0

wo = 2l/6 <cos 17; —i—zsmﬁ)

9m 9 3m 3 1 ]
wy = 2'/° ( 08 75 —i—zsm%) :21/6< T —i—zsmzﬁ) = 21/ (—7+£),

177 17w
wy = 2V/6 (cos 5D + ¢ sin 6)

\)

Problemik: Znalezé wszystkie liczby 2z speliajace rownosé
5= (2 +1)°.
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Rozwigzanie: Niewatpliwie 2z = 0 nie jest rozwigzaniem. Mozna wiec bezpiecznie po-
dzieli¢ obie strony przez z, co da réwnosé

1= (Z i ) ,  czyli G (1)V/¢.
z z

Najpierw trzeba wiec znalezé¢ wszystkie pierwiastki szostego stopnia z jedynki. Sg nimi
w = cosby +isinby z 0, = 2n(k/6), k = 0,1,...,5. Poniewaz wg = 1, w3 = —1, a
wszystkie te pierwiastki powinny by¢ réwno roztozone na jednostkowym okregu, co /3,
wiec tatwo zobaczy¢, ze

1 V3 1 V3

Wiy =—-tt—, Wyg=—-FTi—.
15 = 5 5 2,4
Teraz tylko nalezy rozwiaza¢ rownania z* + 1 = wyz. Jesli weZzmiemy wy = 1, to daje to
2+ 1=z czyli

Zf—z=-1,

Poniewaz z* — z jest (zawsze) liczba urojona, a prawa stona, —1, jest liczba czysto rze-
czywistg, rownanie to nie ma rozwigzan. 7 kolei, gdy wezmiemy ws = —1, to daje to
2+ 1=—z czyli

¥+ 2=2Rez=—1.

Zatem Rez = —%, a czeS¢ urojona z moze byé¢ zupelnie dowolna. Dostajemy wiec jako
rozwiazania zbior liczb postaci z = —% + it, gdzie t jest dowolng liczba rzeczywista.

Trzeba jeszcze sprawdzi¢, co daja pierwiastki wy 5 1 wo4. Zbadajmy wy s:

1
z*+1:§(1:ti\/§>z,

co, po podstawieniu z = z + 1y jest rownowazne uktadowi dwoch réwnan na x i y:

1 V3
1 = — —
+x 2:)3:F 5 Y,
1 3
§yi—$a

lub, po uporzadkowaniu,

Teraz wystarczy drugie pomnozy¢ przez £1/+/3 by zobaczy¢, ze uklad rownan jest sprzeczny,
czyli nie posiada rozwigzan. W analogiczny sposéb mozna sprawdzi¢, ze pierwiastki ws 4
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rowniez prowadza do sprzecznego uktadu rownan. Zatem jedynymi rozwiazaniami jest
rodzina liczb z = —% + it, gdzie t jest dowolng liczba rzeczywista.

Problemik: Znalez¢ iloczyn epey - - - €,-1 wszystkich réznych pierwiastkow e n-tego stop-
nia z z = 1.

Rozwigzanie: Pierwiastkami n-tego stopnia z z = 1 sg ), = e2™%/?

, wobec czego

-1
. o o 2T <
E0E1 " Ep_1 = 6227r-0/nez27r 1/n . ez27r (n=1)/n _ exp( “n k.
k=0

Indukcyjnie tatwo udowodnié, ze

i
L

1
k:§n(n—1).

0

e
Il

Zatem
im(n— imyn—1 n—
Eo€1°""Ep—1 = € (n=1) — (6 ) :(—1) 1.

Problemik: Znalezé¢ wszystkie rozwigzania rownania®

1 o+ 2023
=1.
<1+z)

1—z*_
1+ 2

= &k,
gdzie e 0 k=0, ...,2022 sg pierwiastkami 2023 stopnia z jedynki. Ale trudno rozwiazaé
az 2023 rownan 1 — z* = g(1 + 2)... Jedno z nich jest jednak proste: €9 = 11 to daje
1—2"=1+2, czyli 2+ 2" = 0. Rozwiazaniami sa wiec liczby z = it, gdzie ¢ jest dowolna
liczba rzeczywista. Pozostate 2022 pierwiastkow, jako ze rok mamy nieparzysty, maja na
100% niezerowa cze$¢ urojona. Zapiszmy je wiec w postaci €, = cos by, + isin 6y, przy
czym 0y # nr. Kazde wiec z pozostatych do sprawdzenia 2022 réwnan ma postaé

Rozwigzanie: Oczywiscie

1 —2" = (cosb +isinby)(1+2),
co po podstawieniu z = z + 1y jest rownowazne uktadowi dwoch réwnan
l1—2 = (14 x)cosb —ysin b,
y = (14 x)sinf + ycosby.
Czy uktad ten moze mie¢ rozwigzania? 7 drugiego mamy

sin Qk

—(1 _ SOk
4 (+x)1—cosek’

32023, bo taki mamy wtasnie rok.



Rysunek 1: Zbior liczb z spelniajacych warunek 1 < |z +i| < 2. Pozioma kreska na
pierscieniu jest artefaktem Mathematiki - skanuje ona katy od 0 do 27 i stad slad.

(mianownik prawej strony sie nie moze zerowac, bo rozpatrujemy tu tylko pierwiastki z
jednosci rézne od g9 = 1) i to do pierwszego:
.2
sin” 0
l—x=(14+2x)cosbp — (1 +2) ———+
( ) b ) 1 — cos 0,
cos 0, (1 — cos B,) — sin” 6y,

=(1+2)

=—1+2x).
1 — cos B, ( )
Stad wiec 1 = —1, czyli sprzecznosé.* Innych rozwigzan niz to, ktore daje gq, wyjsciowy
uktad juz nie ma. W latach parzystych odpowiedz tez jest taka sama (dlaczego? - prosze
samemu sprawdzic).

Problemik: Na ptlaszczyznie zespolonej C (tzn. na plaszczyznie o osiach (Rez, Imz))
wyznaczy¢ zbior punktow reprezentujacych zespolone liczby z spelniajace warunek 1 <
|z +1i| < 2.

Rozwiagzanie: Gdy napiszemy =z = Rez, y = Imz, to |z + 1| = /22 + (y + 1)2. Zatem
liczby tworzace szukany zbiér spetniaja warunek

1<2®+(y+1)2*<4

Jest wiec to pierscien (zob. rysunek 1) zawarty pomiedzy dwoma wspotsrodkowymi okre-
gami (same te okregi tez naleza do zbioru) o §rodkach w punkcie zp = —i = (0,—1) i
promieniach r; =11 ry = 2.

Problemik: Na ptaszczyznie zespolonej C wyznaczy¢ zbior punktéw reprezentujacych
zespolone liczby w majace posta¢ w = (1 + it)/(1 — it), gdzie parametr t przebiega
wszystkie liczby rzeczywiste.

Rozwigzanie: Mozna to zadanie rozwiazaé¢ bezposrednio, tj. piszac

14t (14at)? 112420t
I e

w =x+1y.

4Przeprowadzone rozumowanie nie stosuje sie do §y = 0 z tego powodu, ze wtedy przy wyznaczaniu y
dzielitoby sie przez zero (inaczej: drugie rownanie nie wyznacza wtedy y bo ma posta¢ 0 = 0).
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Wzory

1 —¢? 2t
r=—>= =
14127 y 1+4¢27

powinny nam teraz nasunaé skojarzenie z podstawieniem t = tg(6/2) wykorzystywanym
przy catkowaniu funkcji wymiernych z funkcji trygonometrycznych: nawodzi to na mysl
(zamiast “sugeruje”, jak teraz by kazdy napisal...), by napisa¢ t = tg(6/2), co da

1 —¢2 2t

x:T:cose, y:1+t2:sin9.

Poniewaz, gdy t przebiega cala o$ rzeczywista, 0/2 przebiega zakres (—%7‘(‘, %7‘(‘), czyli 0
przebiega zakres (—m, 7) a, ponadto, 2% + y? = cos?f + sin?f = 1, staje sie jasne, ze
szukanym zbiorem jest okrag o srodku w wy = 0 = (0,0) i jednostkowym promieniu.

Inny sposob rozwiazania tego zadania polega na zauwazeniu, ze odwzorowanie

_1+iz
11—z

w = f(z)

jest homografig, a szukany zbidr jest obrazem osi rzeczywistej przy takim wtasnie od-
wzorowaniu. Zgodnie z metoda pokazang w filmiku dotaczonym do wyktadu prof. K.
Grabowskiej, odwracamy odwzorowanie f piszac

w—1
/L—
w41’

1 nastepnie, podstawiajac w = x + iy, otrzymujemy

Z,x—1+z'y__Z,[x—l—i-iy][:c—l—l—iy]
r+ 141y (1+xz)24y?
=14+ + 20y 2y —i(2z® — 14y

(14+z)2 492  (1+2)2+y2

Narzucamy teraz warunek z = ¢, czyli po prostu Imz = 0, co jest rownowazne warunkowi
2 2
z—1+y*=0.

Problemik: Na ptaszczyznie zespolonej C wyznaczy¢ zbior punktéw reprezentujacych
zespolone liczby z spelniajace warunek

z4+1 T

zZ—1 4

0 < Arg

Rozwigzanie: Bardziej uczenie, chodzi o przeciwobraz klina 0 < Argw < 7 przy homo-
grafii w = f(z) = (2 +1)/(z —4). Jesli napiszemy

(z44)(z" +1i)  (244)(z" +1)

(z—i)(z*+1) |22+ 1+i(z—2%)’

8



Rysunek 2: Okregi 22 +¢y> =11 (z —1)2 +¢y> = 2.

to mianownik, jako wielko$¢ czysto rzeczywista i dodatnia (bo to kwadrat modutu liczby
z —1i!), nie bedzie mial wplywu na argument (czyli faze) liczby w:

Argw = Arg[(z +i)(z* +i)] = Arg(]z]* — 1 + 2iRez) .

Warunek 0 < Argw < 7 sprowadza si¢ teraz do tego, by

2Rez) T { 2Rex>0.

0< arctg(wi_l < Z,

(Drugi warunek ogranicza w do pierwszej ¢wiartki, bo jak pamietamy liczby w z trzeciej
¢wiartki, o fazie miedzy m i %7‘(‘, maja stosunek Imw/Rew tez dodatni, tak jak liczby z
pierwszej ¢wiartki, a trzeba je wykluczy¢). Zatem, piszac z = x + iy, mamy nastepujace
warunki: z > 0, 22 + y?> — 1 > 0 (z warunkow 2Rez > 0 i 2Rez/(|z]*> — 1) > 0) oraz
2z < 2%+ y*> — 1 (z warunku 2Rez/(]2|?> — 1) < 1). Innymi stowy, oprocz warunku x > 0,

ktory ogranicza zbiér szukanych liczb do prawej poiptaszczyzny, mamy

Pyt >1,
(x—1)°+y*>2.

Pierwszy warunek jest jednak stabszy niz drugi, bo jak sie mozna zorientowaé¢, na pot-
plaszczyznie x > 0 okrag 2% + y* = 1 lezy calkowicie wewnatrz okregu (x — 1) + % = 2:
okregi te maja tylko dwa punkty wspolne z = +7 na granicy dozwolonego obszaru x > 0
- zob. rysunek 2). Zatem szukane liczby z sa reprezentowane przez punkty lezace w
polplaszezyznie x > 0 na zewnatrz okregu (z — 1)% + ¢% = 2.

Problemik: Udowodnié, ze

“ 2k
2n+1_1: -1 2_2 1.
x (x )g x :ccos2n+1+

Rozwigzanie: Lewa strona wzoru jest wielomianem stopnia 2n + 1 zmiennej x i prawa
stona tez jest takimze wielomianem. Punkt dla nas. z = 1 jest pierwiastkiem wielomianu
po lewej stronie i pierwiastkiem wielomianu po prawej tez. Drugi punkt dla nas. Dalej:
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kazdy wielomian W, (x) stopnia 2n+ 1 ma, w dziedzinie zespolonej 2n+ 1 pierwiastkow
2k, k=0,1,...,2n, takich, ze W, ,1(zx) = 0 i mozna go przedstawi¢ w postaci

Wonyi(r) = A(z — 20)(x — 21) - -+ (T — T90),

w ktorej A jest wspoltezynnikiem przy najwyzszej potedze zmiennej x w wyjSciowe]j postaci
wielomianu W, 1(z). W przypadku wielomianu po lewej stronie dowodzonego wzoru
A =1, a pierwiastkami sg oczywiscie wszystkie (zespolone) pierwiastki 2n + 1 stopnia z
jednosci, czyli z = eimiTh , przy czym zo = 1. Zatem

2
1= (r—1) (a: - ei%k>

k
- 27 - 27
[(x 62—2n+1k) (1, 62—2n+1(2n+1—k))] .

W drugiej linii czynniki iloczynu zostaly troche inaczej pogrupowane i teraz w kazdym

- 27 - 27 ;27
nawiasie kwadratowym pierwiastki e’7i1¥ i ¢! zi1 21k — =157k Jo7a naprzeciw siebie,
nad i pod osia rzeczywista. Wymnazajac zatem dwa wyrazenia w kazdym z kwadratowych

nawiasow otrzymujemy

N

Il
—

=(z—1)

—=

B
Il
—

2k
2n+1°

j_2m g2 j_2m 2
<gj — 622n+1k> <l’ —e Z2n+1k) — ;1;'2 +1—2 (622n+1k +e Z2n+1k) = ;1;'2 + 1 —2xcos

To koniczy dowdod.

Problemik: Dla jakiej wartosci rzeczywistego parametru a wielomian piatego stopnia

Ws(z) = 2° — az® —ax + 1,

ma pierwiastek x = —1 o krotnosci wickszej niz jeden 7
Rozwigzanie: x = —1 jest oczywiscie pierwiastkiem Wj(x) niezaleznie od wartosci a.
Problem jednak w tym, kiedy © = —1 jest pierwiastkiem wielokrotnym. Poniewaz r = —1

jest pierwiastkiem Ws(x), mozemy napisac:
Ws(x) =2° —az® —ax + 1= (z+ 1) - Wy(x).

Aby znalez¢ Wy(z) dzielimy wielomian Ws(z) przez x + 1. Nie umiem tego w latexie
napisa¢ - pokazatem na tablicy. Dostajemy

Wy(z) =2'—2®+2° — (a+ 1)z + 1.

No i teraz zadamy, by W,(—1) = 0. Poniewaz Wy(—1) = 4 + (a + 1) wigc a musi by¢

rowne —5. Przy tej warto$ci a x = —1 jest conajmniej pierwiastkiem dwukrotnym. A
moze jest wiecejkrotnym? Zeby to sprawdzié¢, dzielimy Wy(x) = 2% — 23 + 22 + 42 + 1 (z
potozonym juz a = —5) przez x + 1 i znajdujemy, ze

Wy(z) = (2% =202 + 3z + D)(z + 1) = (x + 1) Wa(2).
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Poniewaz W3(—1) = —1-2—3+1 = =5 # 0, = = —1 jest tylko dwukrotnym pierwiastkiem
wielomianu Wi(z).

Oczywiscie ten sam problem mozna rozwiaza¢ korzystajac z tego, ze jesli zy jest pier-
wiastkiem r-krotnym roéwnania W,,(x) = 0 (n > r, oczywiscie), to nie tylko W, (zy) = 0,
ale takze W/ (zo) = 0, W/ (x9) = 0,. ..,Wér_l)(xo) = 0, tzn. w o zeruja sie wszyst-
kie pochodne W, (z) az do r — 1 wiacznie. Zeby nie komplikowaé, niech r = 2, czyli
xg jest pierwiastkiem podwojnym. Wtedy W, (x) da sie przedstawi¢ w postaci W,,(z) =
(x — 20)*W,_o(x) i

W(z) = 2(z — 20) Waa(@) + (z — 20)* W, (),
skad juz wida¢, ze W) (x¢) = 0. Jak si¢ to Obliczy W{(x), to zazadanie, by W (zo) = 0
da od razu a = —5.

Rownania trzeciego stopnia. Przepis kuchenny. Roéwnanie takie majace postaé¢ ogdlnag
23+ axx® + ayx + ag = 0 (stake ay, a; i ag moga by¢ zespolone; pierwiastkow szukamy tez
w dziedzinie zespolonej) sprowadzamy do postaci

wi+pw+qg=0,

podstawieniem x = w — %ag. Przy tym p = a; — %a%, q=ay— %alag + 2—27a§. Jesli akurat
p = 0, to juz mamy rozwiazanie: w = (—¢q)'/? - sg to trzy (zespolone) pierwiastki trzeciego
stopnia z ¢. jesli p # 0, to kolejne podstawienie w = y — p/3y sprowadza wypisane wyzej

rOwnanie do réwnania troj-kwadratowego

p3

3\2 3
——=0.
(v°)" +ay” = 5=
Znajdujemy zatem dwa zespolone pierwiastki ¢ i ¢/ rtéwnania (?+q( —p?/27 = 0. Jesli nie
sa one akurat takie same (jeden pierwiastek podwojny) to mamy, wyciagajac z kazdego z
nich trzy pierwiastki trzeciego stopnia, jakby sze$¢ rozwiazan: vy, yo i y3 oraz yy, y5 1 y5.
Naprawde sa jednak tylko trzy rézne pierwiastki réwnania w? + pw + ¢ = 0 (tego, o ktore

V3

nam tu chodzi). Niech bowiem gy = 1, & = ¢ = —% +i5° 1eg = e? = ¢* beda trzema

pierwiastkami trzeciego stopnia z 1. Mamy wtedy®

Ui, Y2 =€, y3:€2y1
Yi,  Yh=euyr,  ys=¢u.

5To, czy ktoé to widzi od razu jest sprawdzianem tego, czy przyswoil juz sobie w nalezytym stopniu
pierwiastkowanie liczb zespolonych... Ale zeby nie bylo: jesli ¢ = re?, to y = r!/3ei@+27R)/3 (yo ) i
Y2 to plerwiastki trzeciego stopnia z (), czyli

(ei27rk/3) P31/ = ¢y

bo pierwszy pierwiastek trzeciego stopnia z ¢ nazwaliSmy y1, a nie yo. Poza tym, trzy pierwiastki trzeciego
stopnia z —1 mozna zapisaé jako —1, —e i —&2.
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Oczywisci mamy stad jakby szeéé rozwigzan réwnania w® + pw + ¢ = 0:

b b b
w1:y1—3—y1> 7~U2:y2—3—y2> 7~U3:y3—3—y3a
I p I p I p
wl _yl_ 3y/7 w2_y2_ 3y/7 _y3_ By/ .

1 2 3

Ze wzoru Viete’a wiemy jednak, ze ¢'¢ = —p®/27, czyli (y; 4})® = —p3/27, i = 1,2,3.
Mozna wiec wybraé¢ y; i y. tak, by y1 5 = —p/3 (bo —p/3 jest jednym z pierwiastkow
trzeciego stopnia prawej strony). Mamy wtedy

IR AN VL _i
y/:gy/:_gi:_ p __ P
2 ! 31 3e2y, 3ys
2 2 D b _ p
yp=cy ===,
s ! 3y 3ey 3y

Kiedy wiec tworzymy rozwiazania w/, wh, wh, rownania w®+pw+¢q = 0, to otrzymujemy,

VR B N T
N 3y 3y 3(—p/3u) ’

w/ = y/ J— £ — _i — L — w3
27 3y, 3ys  3(—p/3ys) ’
. D D D

W3 = Y3 = -9, = W2,

B 3—% B 3y2 3(—P/3y2) B

Sa zatem tylko trzy rézne rozwigzania rownania w3 + pw + g = 0, ktore zwykle zapisuje
sie w postaci (sa to wlasnie wzory Tartagli, ktore temuz podwedzit Cardano)

wy =y +y), wo=cy+eX,, ws=cy+ey),

przy czym y; i ¥} sa tak wybrane (jako pierwiastki trzeciego stopnia z liczb ¢ i (', ktore
sa dwoma rozwigzaniami rownania ¢? + q¢ — p*/27 = 0), ze yjy1 = —p/3.

Jesli wspotezynniki as, a; i ap wyjéciowego rownania sa rzeczywiste, czyli rzeczywiste
sg takze p i q, to wzory w postaci Cardano prowadza natychmiast do wniosku, ze gdy
A = ¢*>+4p3/27 = 0, czyli gdy ¢ = ¢’ i rozwigzanie  jest rzeczywiste, wyjsciowe réwnanie
ma jeden pierwiastek podwojny i jeden pojedynczy (wszystkie, oczywiscie, rzeczywiste).
No bo rzeczywiscie: wtedy y; = y; (liczba rzeczywista) 1 wy = 2y, we = cy; + ™y} =
y1(e+¢&*) = ws. (Oczywiscie to samo wynika z napisania w; = y; —p/3y;, i = 1,2, 3, gdzie
teraz 1y, jest liczba rzeczywista, yo = ey; 1 y3 = £*y; oraz wzoru Viete’a y; = —p/3y;.)
Jest tez jasne, ze jesli wyjsciowe rownanie ma pierwiastek potrojny (nawet zespolony), to
(=¢=0istad y1 =y2 =y3 =0.

Z kolei, gdy A < 0, to ¢! = * = re ™3 iy = yi, wiec w; = y; + v} jest liczba
rzeczywista, ale takze wy = y16 + yie* 1 wy = £*y1 + €y sa, jak widaé, rzeczywiste.
Zatem, gdy A < 0 wyjsciowe rownanie ma trzy pierwiastki rzeczywiste. Gdy zas A > 0,
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pierwiastki y; 1 ¥} sa rzeczywiste i rézne i prowadza do rzeczywistego w; = y; + y; i
wzajemnie sprzezonych we 1 ws: w3 = €%y + ey = wi = (ey; + *y})*.

Problemik: Znalez¢ pierwiastki réwnania
2 — 32+ 62 —-2=0.

Rozwigzanie: Podstawiamy z = w + 1 co daje réwnanie w® + 3w + 2 = 0, czyli p = 3,
q = 2. Rozwigzujemy réwnanie kwadratowe (2 +2¢ — 1 = (( + 1)? — 2 = 0. Znajdujemy
(=—-1—-+2, ¢ =—-14+/2. Mamy zatem

SV = (14 VR

tak wybrane, by speliaty warunek y;y; = —p/3 = —1. Mozemy wiec napisaé¢ rozwiazania
wyjsciowego réwnania

z=1—(1+vV2)3+ (-1 +v2)3,

T =1—c(1+V2)/3+3(-1+Vv2)"3,

25 =1-*14+V2)Y3 fe(=14+V2)/3.

Problemik: Znalez¢é pierwiastki rownania
2> 4+ 62° 4+ 62 —-2=0.

Rozwigzanie: Podstawiamy z = w — 2 co daje réownanie w® — 6w +2 = 0, czyli p = —6,
q = 2. Rozwigzujemy réwnanie kwadratowe ¢ +2¢ +8 = (¢ +1)? + 7 = 0. Znajdujemy
¢ =—1—iJ/7, ¢ = =1 +iV/7. Mamy zatem ¢ = 22 e, (' = 22 €%, gdzie ¢ =
T + arctgy/7, ¢ = T — arctg\/7, (zeby kat ¢ byl w trzeciej ¢wiartce, a ¢’ w drugiej);
zatem ' = —¢ (modulo 27, tj. ¢ = —p + 27) i stad® y; = V23, ¢ = /273§
oczywiscie, tak jak trzeba, y; yf = 2 = —p/3. Z podanych wzoréw mamy wiec

xl:w1—2:—2+y1+y1——2+2\/§cos(<p/3)
Ty =wy — 2= —2+ ey + ey = —2+ V2 (eleH2M/3  gileram/3)
:—2—1—\/_( “”*2“ /3—|—e( e 2”6“)/3) = —242v2cos((p + 27)/3)
x3:w3—2:—2—|—5y1—|—5y1——2+\/_( g0+47r/3+€(4p+27r)/3)
= —24+V2 ( (pHam)/3 4 o= S0+4’T_67r)/3) = —2+42v2cos((p + 47m)/3) .

6Bo pierwiastki trzeciego stopnia z ¢/ = 2v/2 ¢’ to
\/5 i(o'+2mk’) /3 _ \/_ez( 22k’ )/3

i teraz wida¢, ze k' = —1 (albo k' = 2) da y7 jako jeden z pierwiastkow trzeciego stopnia z (’.
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Przestrzenie wektorowe

Zadanie 0
Rozwiaza¢ uktad réwnan

20+3y+ z= 2,
r+2y— z= 3,
T4+ 2y+22z2=-1.

Rozwigzanie: W zadaniu tym nie tyle chodzi o wynik, co o praktyczna metode rozwia-
zywania uktadow rownan liniowych, poniewaz wiele z dalszych zadan wymaga sprawnego
radzenia sobie z takimi problemami (w zadaniach tych istotne jest co innego, a rozwiazy-
wanie rownan jest tylko srodkiem do celu; chodzi wiec o to, by nam “pitka nie przeszka-
dzala w grze”). Systematyczny algorytm rozwiazywania takich réwnan, zwany eliminacjg
Gaussa, polega na dodaniu takiej wielokrotnosci pierwszego réwnania do nastepnych, by
wyeliminowa¢ z kazdego z nich zmienng x (jesli akurat zmienna x nie wystepuje w pier-
szym réwnaniu, to eliminujemy z pozostatych y itd.):

20 +3y+ z= 2,
y+ 2= 0,
y+3z=—4.

Rownania drugie i trzecie sa wiec teraz ukladem dwu réwnan na dwie niewiadome, czyli
caly problem zredukowal si¢ o jednag niewiadoma i o jedno réwnanie. Nie ruszajac juz
wiecej pierwszego rownania, dodajemy taka wielokrotnosé drugiego do nastepnych (tzn.
tu do trzeciego, bo wiecej rownan juz niema), by wyeliminowaé z nich druga niewiadoma,
tj. vy (gdyby y akurat nie wystepowal w drugim réwnaniu, to z itd.):

20+3y+ z= 2,

y+ z= 0,

z=—-2.
I teraz juz mozemy juz jechaé zuriick, od dotu, do gory: z = =2, y —2 =0 wiecy = 2 i
wreszcie, 2z + 6 — 2 = 2, czyli x = —1. “Sapienti sat” (po naszemu “madrej gltowie dosé

dwie stowie”), czyli jeden przyktad powinien wystarczy¢, by zorientowaé sie w metodzie.

Przypomnienie

Przestrzen wektorowa (p.w.) V nad cialem K (ktérym w tym skrypcie bedzie zawsze
albo ciato liczb rzeczywistych R, albo zespolonych C) jest to zbior elementow v € V', w
ktorym okreslone sa dwa dziatania: przemienne dodawanie elementow vy + vy = vy + vy
oraz mnozenie elementéow przez liczby z ciata Av (A € K). W zbiorze tym musi by¢ tez
“pepek swiata”, czyli wektor zerowy 0 taki, ze 0+v = v (dla dowolnego v € V). Ponadto
Ov = 0 (nietluste zero, to min. Z.Z., pardon, to element zerowy ciata K).
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Wobec ogbélnosci i abstrakeyjnosci powyzszej definicji, wektorami moga by¢ obiekty bardzo
rozne: uporzadkowane n-ki liczb z jakiego$ ciata, np. z R - wtedy taka p.w. nazywam
tu R™ (cho¢ matematycy oznaczaja ja chyba VR™), takie “szkolne” strzaltki (kazdy, kto
przeszedl przez szkolng fizyke wie, o co chodzi), macierze ustalonego wymiaru m x n,
wielomiany stopnia nie wiekszego niz n (lub dowolnego - wtedy ich przestrzen jest dosé
duza, ale jeszcze nie tak duza, zeby sobie tego nie moéc wyobrazic¢), a nawet funkcje, np.
odwzorowujace R w R (wtedy ta przestrzen wektorowa jest naprawde duuuuza’). Takie
obiekty, nalezace do V' beda w tym skrypcie nazywane “Zywymi” wektorami (i oznaczane
thustymi literami), aby je odréznié¢ od sktadowych wektorow (czyli zbiorow liczb), ktore
sg uzywane do reprezentowania wektoréw i na nieszczedcie wygladaja jak wektory z R”
lub C", ale ktore wektorami jednak nie sa (bo ten sam wektor moze mie¢ rozne sktadowe,
zaleznie od tego w jakiej bazie sa to jego sktadowe). Niezrozumiale pojecia tu uzyte stana
sie jasne w dalszym toku przyswajania sobie algebry.

Przypomnienie
Kombinacja liniowa wektorow v;, ¢+ = 1,2,... z p.w. V nad cialem K nazywamy wektor
A1Vi 4 Aovo + ..., w ktorym Aq, Ao, ... sa liczbami z ciala K.

Przypomnienie
Moéwimy, ze uktad (czyli taki maty podzbiorek) k wektorow vy, . .., v, nalezacych do danej
p.w. V jest lintowo niezalezny, jesli jedynym rozwiazaniem réwnania

)\1V1—|—)\2V2—|—...—|—)\kvk:0,

(thuste zero to zero przestrzeni wektorowej, czyli wektor zerowy!) w ktorym Aq, Ao, ... sa
liczbami z ciala K, jest rozwigzanie A\ = Ay = ... = A\ = 0. Jesli za$ istnieje jakies inne
rozwigzanie tego réwnania z niezerowymi wspotczynnikami A;, to uktad tych k& wektorow
jest liniowo zalezny. Oznacza to, ze jeden (lub kilka) z nich da sie (dadza sie) przedstawi¢
jako kombinacja (kombinacje) liniowe pozostatych.

Zadanie 1
Zbada¢ czy wektor v € R mozna przedstawi¢ jako kombinacje liniows wektorow e i e,
gdzie

1 1 7
Z) v=|2 s e = 5) s €y = 8 s
3 6 9

7 Ale okazuje sie, ze jedli np. narzuci¢ na funkcje warunek

/Oodxfz(x)<oo,

— 00

- czyli rozpatrywaé p.w. zwana Lo(R) - p. funkeji “catkowalnych z kwadratem” (jakby to bez sensu nie
brzmialo) - to taka przestrzen jest juz “tylko” tak duza, jak przestrzen wielomianow dowolnego stopnia.
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oraz

1 1 -1
i7) v= |21, er=| 11|, e=]|1],
3 -1 1

Odpowiedz: Z jawnej postaci tych wektorow tatwo widaé, ze: i) tak, bo v =2e; — ey,
ale 7i) nie.

Zadanie 2
Czy wektory

w _ [1H2 wo [T
1 — i ) 2 — 3"—7, )

sg liniowo zalezne? Zbadaé sprawe nad ciatem R i nad ciatem C.
Rozwigzanie: Pytamy, czy rownanie

T1W1 + T9Wg = 0,

ma rozwiazanie z x; € R, gdy badamy sprawe nad cialem R oraz z z; € C gdy nad C.
Rozwiazmy wiec uktad:

21 (1+20) +a9(7—1) =0,
I11+$2(3+Z):0,

Z drugiego x; = (—1 + 3i)x2 i to do pierwszego, co da: [(1 + 2¢)(—1 + 3i) + 7 — iJzy = 0.
To istotnie jest zero, niezaleznie od wartoéci x,. Rozwigzaniami sa wiec dowolne xy i
r1 = (=1 + 3i)xe. Widaé jednak, ze jesli xo € R, to x; jest zespolone. Zatem nad R
wektory wy 1 wy sg liniowo niezalezne, ale nad C zalezne.

Zadanie 3
Zbada¢ liniowa niezaleznos¢ nad cialem R i nad C wektorow
1 0 1 1
Z) e = 1 s €y = 1 s €3 = 1 s ey = 0 s
0 1 1 1
oraz
0 1 1
it) fi= 111, =111, f; =
2 —1 1

Rozwigzanie: W przypadku i) wida¢ golym okiem, zZe sa liniowo zalezne nad R bo
rOwnanie \; e; + Ap ey + A\3e3 + Ay e = 0 ma rozwigzanie A\ = Ao = Ay = A\, A3 = =2\ 2
dowolna rzeczywista liczba A, a skoro sa liniowo zalezne nad R, to i nad C tez, bo R C C.
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W przypadku i) rozwiazujemy rownanie &1f; + &ofy + E3f5 = 0, czyli uktad

§o+1i63 =10,
§i1+i6+8=0,
26 — 16+ & =0.

Dodajac pierwsze pomnozone przez ¢ do trzeciego dostajemy & = 0. Uwzgledniajac to, z
drugiego dodanego do trzeciego znajdujemy 2&3 = 0 czyli £&3 = 0 i wtedy (z pierwszego)
& = 0 tez. Zatem wektory fi, fy, f3 sa liniowo niezalezne nad obydwoma cialami, R i C.

Uwaga 1: Stwierdzona wyzej liniowa zaleznos¢ eq, es, e3 i e4 oznacza, ze np. es =
%el + %62 + %e4, tj., ze e3 jest kombinacja liniowa pozostatych. W zasadzie zamiast badac
istnienie niezerowych rozwiazan réwnania A\ €; + Ay €3 + A3 e3 + Ay 4 = 0 mogliby$Smy
postawi¢ problem, czy wektor ez jest liniowo zalezny od pozostatych. To jest jednak
mniej ogdlne: mogtoby sie np. okazaé¢, ze sam wektor es nie daje sie przedstawi¢ jako
kombinacja liniowa e, e, i ey4, ale te trzy wektory sa liniowo zalezne. Np. gdyby badaé
problem liniowej zaleznosci wektoréw

0 0 1 0
VvV = 1 y Vo = 0 y V3 = 0 y V4 = 1 y
0 1 1 1

to okazatoby sie (co w przypadku bardziej skomplikowanych wektoréw nie musiatoby by¢
od razu tak tatwo widoczne), ze vs nie jest kombinacja liniowa vy, vy i v4, niemniej te
trzy wektory: vy, vo i v4 sa liniowo zalezne i tym samym cztery wektory vy, vo, v3 i vy
sg liniowo zalezne. Badajac ich liniowa zaleznosé przez pytanie o istnienie niezerowych
rozwigzan réwnania A\;vy + Aovae + A\3vs + A\yvy = 0 dostalibyémy, ze niezerowym rozwia-
zaniem jest A\y = Ay = =\ = A1 A3 =0, czyli vi{ + vy — vy = 0. Jest jasne, ze to nie
pozwala wyrazi¢ v przez pozostale (bo A3 = 0).

Uwaga 2: Czesto badanie ile w danym zbiorze wektoréw nalezacych do R™ jest wekto-
row liniowo niezaleznych przeprowadza si¢ metoda tzw. redukcji kolumnowej. Pokazemy
to tu na przyktadzie wektoréw z poprzedniego zadania. Mianowicie sprawdzimy ta me-
toda ile jest wektoréw liniowo niezaleznych w zbiorze (vy, vy, vs, v4). Badajac ich liniowa
niezaleznos¢, pytaliby$Smy o to, czy mozna znalezé niezerowe wspotezynniki A; tak by

0 0 1 0 0
M1 +X 0] +X [0 +X 1] =10
0 1 1 1 0

Mozna sie do tego zabraé¢ tak: wyobrazmy sobie, ze Ay = A| — Ay, a Ay = A, — A3 — Ay
Wtedy powyzsza réwnosé przybierze postac

0 0 1 0 0
NI +XN |0 +X |0 +X]0] =10
0 1 0 0 0
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Teraz juz golym okiem wida¢, ze wspolczynnik Ay moze by¢ réwny zeru, bo i tak mnozy
wektor zerowy (wektor v, okazal sie kombinacja liniowa pozostalych trzech wektorow), a
pozostate wspotezynniki, |, X, i A3, zeby da¢ zerowy wektor po prawej stronie, musza
by¢ réwne zeru. Tym samym vy, vy i vy juz tworzg uktad liniowo niezaleznych wektoréw.
Cala tak zawile tu opisana procedure przeprowadza sie zwykle “mechanicznie” pakujac
wszystkie cztery zywe wektory w R* vy, vy, v3, v4 w jedng macierz (tzn. stawia sie je
obok siebie na “sztorc”):

O = O
_ o O
=
)

i na tej macierzy robi operacje zwane “redukcja kolumnowsa”’, tzn. odejmuje si¢ od jed-
nych kolumn kombinacje liniowe innych kolumn (wolno takze wszystkie liczby w jakiejs
kolumnie pomnozy¢ przez jakas niezerows liczbe) tak dlugo, az dostanie sie kilka kolumn
majacych same zera i kilka majacych po jednej jedynce i samych zerach i to tak, ze w
macierzy na kazdym poziomie jest juz tylko jedna jedynka. Jak sie chwile zstanowié¢ to
procedure te mozna robi¢ systematycznie tak jak eliminatke Gaussa (tylko tu na kolum-
nach).® Nalezy jednak zrobi¢ zastrzezenie, ze taka metoda (w tej wersji) dziala, dzieki
specyficznej postaci zywych wektorow z R™ (lub z C").

Zadanie 4
Zbada¢ liniowa zalezno$¢ wektorow.
2 2 1
W = 1 s Wy = -1 5 W3 = 2
—1 1 3

Rozwigzanie: Rozwigzujemy réwnanie x1wy + xows + 23wz = 0, czyli uklad

21’1+2i$2+l’320,
il’1—$2+2$320,
—il’1+l’2+31’3:0.

Dodanie drugiego do trzeciego daje x5 = 0. Wtedy pierwsze sprowadza sie do x1+ixy = 0,
a drugie do izy — o = 0, czyli do pierwszego pomnozonego przez ¢. Zatem szukanym
rozwigzaniem jest xo = 1wy, r3 = 0 i dowolne z;. Poniewaz albo x; albo xy jest zespo-
lone (albo nawet obie te liczby) to wektory w;, wy oraz ws sa liniowo zalezne nad C,
ale nie nad R. Gdybysmy to zadanie rozwiazywali metoda redukcji kolumnowej, to w
przypadku traktowania tych wektoréw jak nalezacych do p.w. nad cialem R dopuszczali-
by$my dodawanie do kolumn kombinacji innych kolumn z rzeczywistymi wspotczynnikami

8Procedure te w tym skrypcie stosuje wyjatkowo bo nie do niej sie tresé algebry sprowadza. Niestety
na skutek jej naduzywania w zadaniach (przez innych prowadzacych ¢wiczenia) studenci maja czesto
wrazenie, ze cala ta algebra sprowadza sie¢ do takich fiku-miku na macierzach.
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(i dopuszczali mnozenie wszystkich liczb w danej kolumnie przez te sama niezerows, liczbe
rzeczywista), a przy zadeklarowaniu, ze p.w. jest nad ciatem C, wolno by bylo mnozy¢
kolumny takze przez liczby zspolone i braé¢ kombinacje liniowe z zespolonymi wspotczyn-
nikami.

Zadanie 4’
Niech V' bedzie przestrzenia wektorows (oczywiscie nad cialem R) wielomianéw stopnia
nie wyzszego niz 3. Zbadaé liniowa zalezno$é wektorow-wielomianow

wi= 224+27— -1,
Wy = —3x+4,
wy = —2° +2° — 20+ 1,
Wy = — 22 + 2,

Rozwigzanie: Pytamy, czy uktad
)\1W1 + >\2W2 + )\3W3 + >\4W4 = O,

w ktorym O jest wielomianem zerowym, tj. funkcja f(z) = 023 + 02? + Ox + 0, ma
rozwigzanie rozne od A\; = Ay = A3 = Ay = 0 (nie chodzi tu wiec w zadnym razie o
znalezienie z-a, dla ktorego wartosé jakiego$ wielomianu jest rowna zeru!!!). Wymaga to
rozwigzania uktadu

)\1 - >\3 :O,
M + A3— A =0,
—)\1—3)\2—2>\3 :O,

=M1 +4h + A3 +2X0 =0.

Rozwigzanie: A\ = &, Ay = —&, A3 = &, Ay = 2¢, gdzie € jest dowolng liczba rzeczywista.
Uktad tych czterech wielomianéw jest wiec liniowo zalezny, gdyz

W2:W1—|—W3—|—2W4.

Zadanie 5
Dowiesé, ze jesli wektory e, ey oraz ez sa liniowo niezalezne (nad R lub C) to takimiz sa
i wektory

f1 = e1+e2—|—e3,
f2 = e1+e2,

f3 = e, +e3.

Rozwiazanie: Jak zwykle pytamy, czy z faktu, ze A\if; + Aofs + A\3f3 = 0 wynika, ze
A1 = Ay = A3 = 0. Wiemy takze, jako ze wektory ey, ey i e3 sg liniowo niezalezne, iz
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rownanie &1e; + &6 + E3e3 = 0 ma tylko rozwigzanie & = & = &3 = 0. Piszemy wigc:

0= )\1f1 —+ )\gfg —+ )\3f3 = )\1(61 + €9 + 63) + )\2(61 + 62) + )\3(62 + 63)
= ()\1 +)\2)e1+()\1 +)\2+)\3)62+()\1+)\3)63.

Zatem na mocy zalozenia musimy mie¢ Ay +Xy = 0, Ay + Ao+ A3 = 01 A\ + A3 = 0. Drugie
z pierwszym daje A3 = 0, wtedy trzecie daje \; = 0 i na koniec z drugiego wynika wtedy
ze 1 Ag = 0. Zatem uktad trzech wektorow fi, fy, f3 jest liniowo niezalezny.

Zadanie 6
Dowies¢, ze wektory

fi =sinz, f, = sin® x| f3 = sin 3z,

nalezace do przestrzeni wektorowej V' = Map(RR, R) sa liniowo zalezne.
Rozwigzanie: To proste

sin 3x = sin(2z + x) = sin 2z cos x + sin x cos 2x

= 2sinx cos® x + sinz(1 — 2sin®x) = 3sinx — 4sin®x.
Czyli f3 = 3f; — 4f;, co dowodzi, ze f;, f5, f3 sa liniowo zalezne.

Zadanie 7

Dowiesé, ze nastepujace zbiory wektorow-funkeji (tj. wektorow z bardzo duuuuzej prze-
strzeni wektorowej V' = Map(R,R) nad R) sa liniowo niezalezne (czy odpowiedz mogta
by by¢ inna, gdyby funkcje te traktowaé jak odwzorowania odcinka (a,b) w R?)

a) sinx, cosw,

b) 1, sinz, cosz,

c) sinx, sin2x, ..., sinnz,

d) 1, coswx, cos2x, ..., cosnx

e) 1, cosxz, sinz, cos2r, sin2x, ..., cosnx, sinnz.

Rozwigzanie: W przypadku a) jest jasne, ze Asinx + £ cosx = 0 moze dla wszystkich
z € (a,b) C R zachodzi¢ tylko dla A = § = 0: jesli ¢ = kr i 2 = 7 + 37 (z jakimis
catkowitymi k i [) naleza do (a, b) to jest to trywialne, jesli nie, to mozna zrézniczkowac? i
ma sie Acosx—¢sine = 0 oraz Asinx+¢& cosx = 01 znéw jedynym rozwigzaniem obu dla
wszystkich z-6w jest A = £ = 0. To samo w przypadku b): f(z) =nl+Asinz+£cosz =0
dla wszystkich z € (a,b) C R tez wymaga n = A\ = £ = 0 (aby to zobaczy¢, mozna
zrozniczkowaé f(x) dwakro¢, co da —Asinaz — {cosz = 0, i po dodaniu f”(z) = 0 do
f(z) = 0 wyjdzie, ze n = 0; dalej problem jest juz taki sam, jak w punkcie a). W

9No bo jedli funkcja f(x) = Asinx + £ cosz ma byé tozsamosciowo rowna zeru (w przedziale (a, b)),
to jej pochodna tez taka musi byé.
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przypadku ¢) mozemy postuzyé sie indukcja. Zakladamy, ze n pierwszych wektorow
twory uktad liniowo niezalezny (jesli n = 1, jest to oczywiste) i sprawdzamy, czy z tego
wynika, ze po dotaczeniu don n + 1-szego wektora, uktad wektoréw nadal bedzie liniowo
niezalezny, to znaczy, ze réwnanie

f(x) = Aisinz 4+ A\ysin2z + ...+ A\, sinnx + A,y sin(n+ 1)z =0,

(symbol = przypomina, ze ma to by¢ 0 dla wszystkich x) nadal bedzie miato tylko roz-
wigzanie A\ = Ay = A\, = A\,11 = 0. Skoro rownosé ta ma zachodzi¢ dla wszystkich z, to
znaczy ze i

f(z) = =Aysine — 22 \gsin 2z + ... — n? A\, sinnx — (n + 1)*\, 1 sin(n + )z = 0.
Mnozymy f(z) przez (n + 1)? i dodajemy do tego tu wyzej, co da
[(n+ 1) — 1A sing + [(n+ 1) —4]X\ysin 22 + ...+ [(n+ 1) —n?]\,sinnz = 0.

To zas na mocy indukcyjnego zatozenia o liniowej niezaleznosci wektoréw sinz, .. ., sinnz
oznacza, ze [(n+ 1) —1JA\; = [(n+1)2 —4]dy = ... = [(n + 1)? — n?]\, = 0. Stad zeru
musza by¢ rowne wszystkie A\; o7 =1,...,n z wyjatkiem ewentualnie k-tej, o takim k, ze
(n+1)2—k% = 0. Ale to si¢ nie moze zdarzy¢, bo w indukcji rozpatrujemy tylko n+1 > k.
Zatem A\; = Ay = ...\, = 01 z tozsamosciowego znikanie f(x) wynika, iz takze A\, 11 = 0.
W przypadku d) takze postugujemy sie indukcja. Najpierw, podobnie jak w punkcie b)
pokazujemy, ze wektory 1 i cosx sa liniowo niezalezne, a nastepnie zaktadamy, ze teza
(liniowa niezaleznosc¢) jest prawdziwa dla n i musimy pokazaé, ze

g(x) =n+ A\cosz+ Aycos2z + ...+ A\, cosnx + A\,r1cos(n+ 1)z =0,

pocigga za soba . = A\ = ... = A\, = A1 = 0. Mnozymy wiec g(z) przez (n + 1)? i
dodajemy do tego dwakroé¢ zrozniczkowane g(z) = 0. Jak wyzej wynika stad, ze \; =
Ao = ...\, = 01 zostaje nam w g(z) = 0 tylko n + A,11cos(n 4+ 1)z = 0, co znoéw

(cho¢by na mocy tego, ze teza jest prawdziwa dla n = 1, bo czymze sie rézni = od
(n + 1)z? - tylko dziedzing...) wymaga by n = A\,.1 = 0 . Wreszcie w przypadku
e) o prawdziwosé¢ tezy dla n = 1 wnosimy analogicznie jak w punkcie b), a nastepnie
zaktadamy, ze 7 4+ Ay cosx + & sinx + A, cosnx + &, sinnx = 0 tylko jesli n = A\ =& =
o= Ay =&, = 01 robimy dla n + 1 sztuczke z druga pochodna, co zostawia nam
N+ Apg1cos(n+ 1)z + & q1sin(n + 1)z = 0. To tez wymaga, by n = \,p1 = &1 = 0.

Przypomnienie:

Bazq uporzgdkowang przestrzeni wektorowej V' nad ciatem K jest kazdy uporzadkowany
(czytaj: ponumerowany zgodnie z jakim§ porzadkiem) maksymalny uktad liniowo nieza-
leznych wektorow z V. Liczba wektorow takiego uktadu jest wymiarem przestrzeni V
(oznaczanym dimV'); dowodzi sie, ze wymiar V nie zalezy od wyboru bazy, tzn. ze liczba
wektorow bazy (w przypadku przestrzeni o skoriczonym wymiarze) jest zawsze taka sama.
Konstruktywnym stwierdzeniem, umozliwiajacym sprawdzanie, czy dany uktad wektorow
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z jakiejs p.w. V stanowi jej baze (tzn., czy jest to maksymalny uktad liniowo niezalez-
nych wektorow), jest to, ze kazdy wektor z V' daje sie przedstawié¢ jako kombinacja liniowa
wektorow tworzacych baze i kombinacja ta jest jednoznaczna (tzn. jest tylko jedna taka).
Aby stwierdzi¢, ze dany uktad wektoroéw jest bazg, trzeba mieé¢ albo dostep do zywych
wektorow (tj. umie¢ na nich dziata¢ bezposrednio, czyli wiedzie¢, czym jest “fizycznie”
p.w., do ktorej one naleza), albo (tak jak w Zadaniu 8 nizej) mie¢ wektory podane jako
kombinacje liniowe innych kilku, o ktérych juz skades sie wie, ze tworza baze one baze.
Np. w Zadaniu 5 nie mozemy pyta¢ o to, czy wektory fi, f5 i f3 tworza baze, bo nic nie
wiemy o p.w., do ktorej one naleza; poniewaz o wektorach e;, e; i e3 nie powiedziano
tam, ze tworza baze (powiedziane jest tylko, ze sa liniowo niezalezne) to mozemy tylko
sprawdzié, czy fi, f5 i f3 sa liniowo niezalezne tez, ale nie to, czy tworza one baze.

Poniewaz kazdy wektor z przestrzeni wektorowej R™ mozna zapisa¢ jako kombinacje
liniowa n wiektorow e; (i = 1,...,n) majacych na i-tym “pieterku” jedyke, a poza tym
same zera, wektory te tworza baze (obdarzona ulubionym przez matematykow przymiot-
nikiem ‘“kanoniczna”). Stad tez jest jasne, ze dim R” = n. W analogiczny sposob kazdy
wielomian stopnia < r mozna stworzy¢ jako kombinacje liniowa r 4+ 1 wielomianéw kano-
nicznych ey (x) = z*, gdzie 0 < k < r. Zatem wymiar takiej przestrzeni wektorowej Wi
jest rowny dim Wy =7+ 1.

Zadanie 8
Dowies¢, ze (zywe) wektory

1 3 2
e = 2 s €y — 1 s €3 = 3 s
3 2 1

tworza baze przestrzeni wektorowej R3.

Uwaga: jesli w wektorach, tj. w tych kwadratowych nawiasikach, maja by¢ tylko liczby
rzeczywiste - bo tak sobie definiujemy te przestrzeni - to musi to by¢ przestrzen wektorowa
nad ciatem R; gdybysmy bowiem dopuscili mnozenie wektoréow przez liczby zespolone, to
w nawiasikach wystapityby z koniecznosci takze liczby zespolone wbhrew naszemu okre-
Sleniu tej przestrzeni. W druga za$ strone rzecz jest mozliwa: mozemy sobie arbitralnie
okresli¢ przestrzen wektorowa w taki sposob, ze w nawiasikach (prostokatnych) moga wy-
stapi¢ takze liczby zespolone, ale dopuszczaé tylko kombinacje liniowe o wspotezynnikach
rzeczywistych. W takim przypadku stosuja siec uwagi o bazie i wymiarze takiej przestrzeni
umieszczone na koncu tego zadania.

Rozwigzanie: Trzeba pokazaé, ze dowolny zywy wektor w mozna przedstawié¢ jako kom-
binacje liniowa tych trzech, tj. w postaci z; e; + z3 €9 + 23 €3 = w. Niech w = [a, b, ¢].
Trzeba pokazaé, ze uktad réwnan

1+ 39 + 223 = a, 2r9 +4r3 =a+b—c,
2$1+l’2+31’3:b, 41’1 +2x3:—a+b+c
31’1—'—21’2—'—1’3:0, 25(71—'—41’2 :CL—b+C,
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ma rozwigzanie.!® Mnozac pierwsze réwnanie przez —2 i dodajac je do trzeciego otrzy-
mujemy

209 +4x3 = a+b—c,
dxy + 223 —a+b+c,
21 — 8xr3 = —a—3b+ 3c.

Teraz trzecie razy —2 i doda¢ do drugiego. Otrzymujemy 18x3 = a+ 7b— 5c. Czyli mamy
x3. W podobny spos6b mozna znalezé¢ 18z, = —ba + b + 7c oraz 18z, = Ta — 5b + ¢
(symetria rownan!). Latwo sprawdzi¢, ze to dobry wynik. Skoro jest (jednoznaczne) roz-
wigzanie dla dowolnego wektora w, to wektory (e, ey, e3) tworza baze.

Uwaga: Wyjasnijmy sobie na najprostszym przyktadzie jeszcze jedna sprawe: dwa wek-
tory

bo dowolny taki wektor mozna przedstawi¢ jako w = x; e; + x5 €5, tj. jako kombinacje
liniowg e i e, z rzeczywistymi wspotczynnikami. Przestrzen ta jest zatem dwuwymiarowa,
bo jej baza sktada sie z dwu wektoréow. Te same dwa wektory e; i e, nie rozpinaja jednak
calej przestrzeni wektorowej W, tez nad ciatem R, sktadajacej sie z wektoréw postaci

z
W:[I], o z1,20€C,

Hl

nie mozna dostaé¢ z kombinacji linowej z1 €, + x5 €3 0 rzeczywistych wspodtczynnikach x; i
x2. Do tego trzeba wzia¢ wieksza baze, np.:

S A e}

Czyli taka przestrzen wektorowa (nad ciatem R) jest czterowymiarowa. Oczywiscie, jesli
przestrzen wektorowa jest nad cialem C to te cztery powyzsze wektory sa parami do siebie
proporcjonalne (e; = ieq, €4 = ies), czyli liniowo zalezne. Wtedy baza ma dwa wektory
i ta przestrzen wektorowa (nad ciatem C) jest tylko dwuwymiarowa.

bo np. wektora

0Qczywiscie mozna tez do tego ukladu zastosowaé systematycznie eliminacje Gaussa z Zadania 0.
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Zadanie 8’
Wiadomo, ze trzy wektory f;, fs i f3 stanowia baze (uporzadkowana) przestrzeni wekto-
rowej V. Czy baze stanowia tez trzy wektory eq, es i e3 zdefiniowane jako kombinacje

ee= H+ L+ f5,
€9 :4f1+5f2+6f3,
es= f — L+ fs,

? A czy baza sa tez wektory

wi= fi+ fL+ f3,
W2:4f1+5f2+6f3,
W3 = fl‘l‘ 3f2+ 5f3

2

Rozwigzanie: W tym zadaniu nie mamy dostepu do zywych wektoréw z przestrzeni V
(nawet nie wiemy, czym one sa, strzatkami, wielomianami, czy czyms innym), wiec nie
mozemy sprawdzié¢ bezposrednio, czy kazdy wektor da si¢ zapisa¢ jako kombinacja liniowa
e, ey 1eg (wy, wo i w3). Ale wiemy, ze baza sa wektory f;, czyli wiemy, ze kazdy v z V
mozna przedstawi¢ w postaci

3
v=fioly + oy + ol =) _fivfy =fivf,

i=1
Wprowadziliémy tu specjalne oznaczenie wspotczynnikow rozktadu wektora v na wektory
bazy f; (tak sie to nazywa): wspotczynnik przy f; nazywamy Uf f) biszac numer i wektora
bazy (wida¢ po co baza ma by¢ uporzadkowana!) wu gdry i zaopatrujac wspotczynnik
w subskrypt (fuj, jaki anglicyzm!) (f), zeby pamietaé, ze to jest i-ta sktadowa (znéow
standardowa nazwa) wektora v w bazie wektorow f;. Notacja ta - cho¢ niespotykana
gdzie indziej - jest bardzo wygodna i bedzie uzywana w calym tym skrypcie. Ostatnia
postaé tego wzoru wykorzystuje powszechnie dzis uzywana konwencje sumacyjng wujka
Einsteina, polegajaca na niepisaniu znaku sumy: jesli wskaznik (tu wskaznik 7) powtarza
sie na dwoch réznych poziomach, domy$lnie musi by¢ zsumowany.

Wracajac do meritum: sprobujmy najpierw odwrocié zwiazki definiujgce wektory e;, tj.
wyrazi¢ przez wektory e; wektory bazy. Mozna to zrobié¢ znéow eliminatka Gaussa: zwigzki
definiujgce wektory e; traktujemy jak uktad zwyklych réwnan liniowych i odejmujemy od
drugiego i od trzeciego odpowiednio 4 razy i 1 razy pierwsze; dwa te rownania przybieraja
wowczas postac

f2+2f3:e2—4e1,
—21, =e3— e,
Stad od juz razu f; = %el - %eg, dalej: 4f3 =2e; —8e; — 215, czyli

1
f3 = Z(—9e1 —|—282+e3),
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i wreszcie f; = e; — fy — f3, czyli
1
f1 = Z(llel —292+83),

Skoro si¢ udato odwroci¢ te zwiazki, to mozemy w rozkladzie v na wektory bazy f; wyrazic¢
te wektory przez wektory e; i napisac:

/1 1 . 1 1, 9 1 1
V = 181—5624—183 U(f)+ 561—583 U(f)+ —1e1—|—§e2+1e3 U(f)

m, 1, 9., 1, 1, 1, 1, 1.,
:el<zv<f>+§v<f>—ﬂ(f>>+ez<—§”<f>+§v<f> Tel v T Rvin T v )

Pokazalismy wiec, ze kazdy wektor v z przestrzeni V mozna jednoznacznie przedstawié
jako kombinacje liniowg wektorow e;; wspotczynnikami takiej kombinacji liniowej sa liczby
w nawiasach, ktére w naszej notacji oznaczymy vfe). Wykonany rachunek pokazuje tez
od razu, ze wektory e; sa liniowo niezalezne: skoro f; sa, to wektor zerowy 0 przestrzeni
V' ma w bazie f; sktadowe Of n=20 (z definicji liniowej niezaleznosci wektorow f;). Zatem
zerowe sa tez wspoOlczynniki OZ('E) = 0. Tym samym pokazalismy, ze wektory e; sa baza
przestrzeni V.

W przypadku wektorow w; wykonujac te same co poprzednio operacje na definiujacych
je zwiazkach otrzymamy

f2+2f3:W2—4W1,
2f2—|—4f3:W3— Wi.

Poniewaz lewe strony tych réwnosci sa do siebie nawzajem proporcjonalne, widzimy, ze
2wy — 8wy = w3 — Wy, czyli Twy; — 2wy + wy = 0. Trzy wektory w; sa wiec liniowo
zalezne i nie mogg by¢ bazg.

Przypomnienie

Podprzestrzeniq wektorowq V' (czasem mowi sie “podprzestrzenia liniowa” albo “powloka
liniowa”) przestrzeni wektorowej U nad cialem K nazywa sie podzbior wektoréw nale-
zacych do U zamkniety ze wzgledu na dziatania, ktére mozna wykonywaé¢ na wektorach.
Oznacza to, ze suma wektoréw podzbioru V jest tez wektorem z tego podzbioru, podobnie
jak nalezy don kazdy wektor z tego podzbioru pomnozony przez liczbe z K. Oczywiscie
z warunkoéw tych wynika, ze do kazdej podprzestrzeni wektorowej przestrzeni U nalezy
wektor zerowy, 0, przestrzeni U. Podprzestrzen mozna zadaé (zdefiniowaé) podajac np.
zbior (niekoniecznie liniowo niezaleznych) rozpinajacych ja wektorow (tzn. mowiac, ze V
tworza wszystkie mozliwe kombinacje liniowe podanych wektorow) - wtedy jest to auto-
matycznie podprzestrzen wektorowa - lub np. w sposob uwwiktany, podajac jakies warunki,
ktore musza spetnia¢ wektory nalezace do V' - w tym przypadku moze sie okazaé, ze zbior
wektorow wyznaczanych przez podane warunki nie jest podprzestrzenia wektorowa (tylko
takim sobie zbiorem).
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Przyktad
Sprawdzi¢, czy zbior A wektorow

IS NS

spelniajacych warunek z + y = 2 tworzy w R? podprzestrzent wektorows.
Rozwigzanie: Nie tworzy. Gdyby tworzyl, to suma wektorow

T T2
Vi = 2— Ty, Vo = 2— T2 |,
21 22

z ktorych kazdy sam z siebie nalezy do zbioru A (bo suma liczb z pierwszego i drugiego!!
“pieterka” w kazdym z tych wektorow jest rowna 2) do zbioru A nie nalezy, bowiem suma
liczb z pierwszego i drugiego picterka wektora

£L'1+ZL’1
vitve= [4—x1 —12 |,
Zl+22

nie jest juz rowna 2, tylko 4. Podobnie widaé, ze jesli v nalezy do A, to Av juz nie nalezy.
Do A nie nalezy réwniez wektor zerowy R3.

Zadanie 9
Znalez¢ wymiar i jaka$ baze podprzestrzeni wektorowej £ C R* rozpinanej przez wektory
Vi, ..., Vg5

3 -1 2
-1 1 3
7

-1 9 Vy =

3 1 -2

Vi = V3 =

DN =~ W W

Rozwigzanie: Poniewaz R* ma wymiar 4, zatem przynajmniej jeden z tych wektoréw
musi by¢ liniowo zalezny od pozostalych. Odrzuémy ostatni (bo ma brzydkie liczby).
Aby zobaczy¢, czy pierwsze cztery sa liniowo zalezne sprobujmy (troche na “chybit-trafil”)
zapisa¢ czwarty jako kombinacje liniowa trzech pierwszych, tj. jako vy, = x1vy + x9vy +
x3vs. To daje uktad réwnan

2x1 4+ 320 + 323 = —1,
r1+ 3y —x3 = 1,
21 +4x9o —x3 = —1,
1+ 2x9+ 33 = 1.

1 Swiadomie nie chcemy tu uzy¢ stowa “sktadowej” - czy jest jasne, dlaczego?
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WeZmy trzy pierwsze na razie. Odjac¢ od trzeciego pierwsze. To da xy = 4z3. Wstawiamy
to do dwu pierwszych i mamy uktad

207 + 1523 = —1,
SL’1+11£L’3 = 1.

To tatwo rozwiaza¢ (drugie razy dwa i odja¢ od pierwszego). Stad mamy jako rozwiazanie
uktadu trzech pierwszych réwnan

26 12 3
Ty = —— Ty = — T3 = =
1 7 ; 2 7 ) 3 7
Teraz mozemy sprawdzi¢ ostatnie
26 12 3
—+2- —4+3--=1.
7 + 7 + 7

(Cztery rownania na trzy zmienne - trzeba mie¢ szczescie zeby tak sie udato!!) To dowodzi,
ze cztery pierwsze wektory sa liniowo zalezne bo
26 12 B
—7V1—|—7V2—|—?V3—V4—0.

Zarazem z jednoznaczno$ci tego rozwigzania wynika, ze jak bysmy wzieli ktorekolwiek
dwa wektory sposréd vy, va, vs to sie nie uda, tzn. v, nie jest kombinacja liniows tylko
dwu z nich. Zatem wymiar podprzestrzeni F jest réwny conajmniej 3. Skoro jednak sie
okazalo, ze z czterech wektorow vy, vao, v3 i v4 tylko trzy sa liniowo niezalezne, to trzeba
wrocic i zapytac, czy nie jest w takim razie mozliwe dotaczenie vs, tzn. trzeba sprawdzié
czy uklad wektoréw v vs, v4 i vs, nie jest przypadkiem liniowo niezalezny.!? Jedli jest
liniowo zalezny, to vs powinien dac si¢ zapisac¢ jako x; vi + x3vs + x4 v4. Sprawdzmy to:

25(71+35L’3—SL’4 = 2,

Ty — T3+T4 = 3,
21’1 — X3 — Ty = 7,
SL’1+35L’3—|—SL’4 = —-2.
Najpierw rozwiazujemy pierwsze trzy: od pierwszego trzecie da 4x3 = —5, czyli x3 = —%.
To do drugiego i trzeciego:
7
Tt x4 = 1
23
2:171 — Ty = Z .
Dodanie stronami da z; = % i wtedy z pierwszego wyzej x4 = % — 17? = —%. Latwo

sprawdzié¢, ze to jest dobre rozwiazanie trzech pierwszych réwnan. Sprawdzamy teraz

127 amiast v, bierzemy tu v4, bo vo ma brzydsze liczby. Jest to dopuszczalne, bo jak wynika z wyko-
nanego rachunku vy mozna (dzieki temu, ze xo # 0) wyrazi¢ przez vy vs i vy.
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ostatnie, czwarte: z; + 3x3 + 24 = 17? -3 Z — % = —% = —2. Czyli to czwarte tez jest

wtedy spelnione! Zatem ostatecznie vs jest kombinacja liniowa vy, vs, i v4 czyli jest od
nich liniowo zalezny. Poniewaz juz wiemy, ze vy, v3 i v4 sa liniowo niezalezne, wiec moga
one tworzy¢ baze podprzestrzeni E, ktérej wymiar jest zatem rowny 3.

Zadanie 10
Jak w zadaniu 9 tylko z wektorami
1 2 1 1 0
Vi = 0 Vo = 1 V3 = 1 V4 = 2 V5 = 1
0’ 1] 1] 317 2|7
-1 0 1 4 3

Rozwiazanie: Jak i poprzednio (nawet nad cialem R, bo wszystkie liczby w kolumienkach
sa czysto rzeczywiste) pie¢ wektoréw nie moze by¢ liniowo niezaleznych. Teraz jednak
postapimy bardziej regulaminowo i zbadamy warunek

)\1V1 + >\2V2 + )\3V3 + >\4V4 + )\5V5 =0.
Mamy zatem uktad réwnan:

A2 4 A3+ Ay =0,
Ao+ A3+ 20+ A5 =0,
Ao+ A3+ 3M+2)5 =0,
N\ F A3+ 4N+ 3Xs = 0.

Drugie odjete od trzeciego daje Ay + A5 = 0; pomijajac trzecie piszemy wiec pozostate
rownania (eliminujac z nich Az):

A2+ A3+ M =0,
)\2+>\3—|—)\4:0,
-1 + A3+ =0.

Teraz ostatnie minus przedostatnie da A\; + Ay = 0. Po wykorzystaniu tego pierwsze i
trzecie staja sie tozsame z drugim. Zatem zostaje do spelnienia tylko Ao + A3 + Ay = 0;
mamy wiec jedno rownanie na trzy niewiadome! Wida¢, ze rozwiazanie mozna napisa¢ w
postaci

AM=&, ==, M={-n, M=n, A=-0n.

¢ 1 m sa tu zupelnie dowolnymi liczbami. Mamy zatem dla dowolnych wartosci £ i n
zwiazek

Evi—Eva+(E—n)Vvs+nvy—nvs=0.
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Mozemy tu np. potozy¢ £ =0in=1albo & =11in=0, coda zwigzki
Vs = —V3 + Vy, Vi =Vy— V3,

pokazujace, ze np. vy oraz v mozna przedstawi¢ w postaci kombinacji liniowych vo, v3 i
vy. Te trzy wektory moga wiec stanowi¢ baze catej podprzestrzeni rozpietej przez vy, vo,
V3, Vyu i Vs.

Przypomnienie

Jesli V1 W sa dwiema podprzestrzeniami tej samej przestrzeni wektorowej U, to suma
algebraiczna V + W nazywa sie zbior wszystkich wektoréw postaci v+w takich, ze v e V|
w € W. Suma taka jest nazywana suma prosta podprzestrzeni V i W (i oznaczana V@),
jesli jedynym elementem wspolnym podprzestrzeni V i W jest wektor zerowy 0 (jesli V' i
W sa podprzestrzeniami, to obie, i V' i W, musza ten wektor w sobie zawiera¢). Miedzy
wymiarami V, Wi V+W zachodzi zwiazek dim(V+W) = dimV+ dimW — dim(VNW), w
ktorym V NW jest podprzestrzenia wektorows tworzona przez wszystkie wektory nalezace
ido Vido W (prawda, ze zbior takich wektorow jest podprzestrzenia w U?)

Zadanie 11

Pokazaé, ze podprzestrzeii liniowa E C R* zlozona z wektoréw postaci

3z—4t=0
’ r—y+z+ t=0"

e 8

jest rozpinana przez dwa wektory.

Rozwigzanie: Warunki sa dwa na cztery liczby na kolejnych pieterkach wektora. Wezmy
3

x i z jako niezalezne. Wtedy t = {z oraz (po wstawieniu tego do drugiego warunku)

rT—y+ %z =0,czyliy=2+ Zz. Zatem kazdy wektor z F/ musi mie¢ postaé

1
+ Ao

A1 1

S O =
W = J O

Zadanie 12
Znalez¢ sume (algebraiczna) i przeciecie dwu podprzestrzeni w R? rozpinanych przez dwa
zbiory wektorow:

1 1 1
v=<13l, | 1|, 3]},
1 —1 3
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w=<12], | 3], |1

Rozwigzanie: Najpierw znajdziemy ich sume. Jesli wszystkie trzy wektory V' (lub W)
sq liniowo niezalezne, to sily rzeczy rozpinaja one calg przestrzen wektorows R3 iV = R3
(W = R3) i wtedy w oczywisty sposob V +W = R3. Sprawdzmy wiec liniowa niezaleznosé
wektorow z V. Uktad

T1+To+ X3 = 0,
35(714‘1’2"‘31’3 = 0,

1’1—1’2+3{L’3 = 0,

ma jak latwo sprawdzi¢ tylko rozwigzanie x; = xo = x3 = 0, zatem rzeczywiscie V = R3
iV +W =R3 Jedli zas chodzi o W, to golym okiem wida¢, ze w3 = — w + Wy, wicc
podprzestrzen W jest tylko dwuwymiarowa i jest rozpinana np. przez wi i wo. Poniewaz
V = R3, przeciccie V NW, tj. podprzestrzen utworzona przez takie wektory, ktore naleza
zarazem do V i do W jest po prostu samg podprzestrzeniag W (bo W C V = R?). Widag,
ze zwiazek dim(V + W) =dimV+ dimW —dim(V N W) jest tu speiony.

Zadanie 13
Zmalez¢ wymiar i podaé¢ jakas baze podprzestrzeni £ C R* rozpietej przez wektory

Wo = W3 =

W~ N O
<
N
I

N W W =

1
1
3 )
1

Zmalez¢ ogblna posta¢ wektora z E, a takze zadac te samg podprzestrzen w sposdb uwi-
ktany (tj. podaé¢ rownanie lub rownania, jakie musza spelniaé¢ liczby na kolejnych “pieter-
kach” wektora, by nalezal on do FE).

Rozwigzanie: Znéw zobaczmy, czy sie da przedstawi¢ w, w postaci x1wy + oW + x3W3.
Aby sie dato musi by¢ spetniony uktad réwnan:

T+ X2

2x1 + 19 + 223 =
3x1 4+ 319 + 13 =
dxy + 19 + 33 =

N W W =

Rozwiazmy trzy pierwsze, a potem sprawdzimy ostatnie. Drugie minus pierwsze daje
r3=1-— %xl. To do trzeciego i mamy razem z pierwszym uktad

T+ T = 1,

D
51’1—'—31’2 = 2.
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Stad juz tatwo i mamy jako rozwiazanie trzech pierwszych
T =2, To = —1, z3=0.
(Latwo sprawdzi¢, ze to rozwiazuje trzy pierwsze rownania). Teraz sprawdzamy czwarte:
2.(4)—1-(1)+0-(3)=T7.

Hurra! Znow sie udato! Czyli wy jest liniowo zalezny od wy, wo 1 W3: Wy = 2w — Wo.

Co wiecej znéw rozwigzanie jest jednoznaczne,'3 wiec wszystkie trzy, wi, wy i w3, sa juz

liniowo niezalezne. Zatem wymiar dimFE = 3, a jej baza moga by¢ te trzy wektory.
Oczywiscie dowolny wektor nalezacy do E ma postaé

T+ T a

201 + 10 + 22 b

T1W1 + ToWo + T3W3 = 3x1 4 3;2 4 332 = c
41’1 + xo + 3!13'3 d

Na uzytek zadania 15 wygodnie bedzie przedstawi¢ ten wektor tak, ze trzy jego pierwsze
sktadowe beda dowolne, a czwarta bedzie si¢ wyrazata przez trzy pierwsze. Zadamy tym
samym te podprzestrzen w sposob uwikltany. W tym celu zastepujemy w drugim, trzecim
i czwartym wierszu z, + x5 przez a, tak by zniklo z nich x,

a a

2a — T2 + 25(73 . b
3a + x3 e

4a — 31’2 + 31’3 d

W nastepnym kroku zastepujemy 3a + x3 przez ¢ a w drugim i czwartym wierszu zaste-
pujemy x3 przez ¢ — 3a. W ten sposob

a a
—4a+2c—x | | D

c e
—5a + 3¢ — 3z, d

Wreszcie, w drugim wierszu zastepujemy —4a + 2c¢ — x9 przez b, a w czwartym zamiast
x9 dajemy —4a + 2¢ —b. W ten sposob ogdlna postaé wektora nalezacego do E jest taka:

a
b
c

Ta + 3b— 3¢

Podprzestrzen E mozna wigc zadaé¢ w sposob uwiktany mowiac, ze naleza do niej wszystkie
wektory [a, b, ¢, d| speliajace warunek 7a + 3b — 3¢ — d = 0.

13Qczywiscie patrzac czujnie na wektory wi, wa, Wz i wy mozna by bylo od razu zobaczyé¢, ze wy =
2wy — wg; nie wiedzieliby$my wtedy jednak jeszcze, czy jest to jednoznaczny sposéb wyrazenia w, przez
w1, Wo 1 W3 czyli tego, ze te trzy wektory sa liniowo niezalezne.
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Zadanie 14
Znalez¢ wymiar i baze podprzestrzeni (dobrze najpierw uzasadni¢, ze to naprawde jest
podprzestrzeni!) I C R?* rozpietej przez wszystkie wektory postaci

20—2z— t=0
’ r—A4dy+4z+2t=0"

-+ N8

Rozwigzanie: dwa razy pierwszy warunek plus drugi da x = 0. Z pierwszego za$ mamy,
ze t = 2y — 2z. Wektory rozpinajace F sa wiec postaci

0 0 0
1
Z =Yy +z 1 =yfh +z25.
2y — 2z 2 —2

Wektory f; i f; s ewidentnie liniowo niezalezne. Zatem dimF = 2 i jej baza moga by¢ f;
i fy (ale moze tez by¢ nia jakies dwie inne liniowo niezalezne kombinacje tych wektorow,
np. w; :f1—|—f2 iW2 :fl —fg)

Zadanie 15

Zmalez¢ wymiary i poda¢ jakies bazy sumy algebraicznej oraz przeciecia podprzestrzeni
E z zadania 13 i podprzestrzeni F z zadania 14. Czy suma algebraiczna F + F' jest sumg
prosta?

Rozwiazanie: Conajmniej jeden z pieciu wektorow

Wi = Wo = W3 = s W4Ef1: W5Ef2:

0
0
1

= W N =
— W = =
W = NN O
N O~ O

-2

rozpinajacych sume E + F musi by¢ liniowo zalezny od pozostatych. Wyrzuémy pierwszy
bo najbardziej skomplikowany. Zobaczmy nastepnie, czy wy sie da zapisaé¢ jako kombina-
cja liniowa ws, w4 i wy. Golym okiem widaé, ze si¢ nie da. Co wiecej, tatwo sprawdzié, ze
rownanie £ ws+ 4y w4+ 2wy = 0 ma tylko rozwigzanie x = y = z = 0. Zatem E+ F = R?,
bo jest rozpinana przez cztery wektory wo, w3, w4 i ws, ktére mozna przyjac za jej baze.

Teraz przeciecie E i F. Tworza je wektory nalezace i do F i do F. Oznacza to, ze
wektory te musza sie da¢ jednoczesnie przedstawi¢ w dwu postaciach

a 0

b _ y

c N 2
Ta+3(b—c¢) 2y — 2z
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Widag¢, ze aby tak bylo musi by¢ a = 0, b = y, ¢ = 2 i do tego jeszcze musi zachodzié¢
rownosé 7a + 3(b — ¢) = 2(y — z). Ale skoro a = 0, b =y, ¢ = z, to moze tak by¢ tylko,
jesli b = c. Zatem ogblng postacia wektora nalezacego do przeciecia podprzestrzeni F i F
jest

o ot o O

Przeciecie E i F' jest wiec podprzestrzenig jednowymiarows rozpinana przez jakikolwiek
wektor powyzszej postaci (np. z b = 1). Skoro przeciecie F i F' nie sktada sie z samego

tylko wektora zerowego, to suma E + F' nie jest sumg prosta. Zgadza si¢ to tez ze wzorem
dim(F + F) =dimE+ dimF—dim(E N F): 4=3+2— 1.

Zadanie 15’
W przestrzeni wektorowej R* zadane sa (poprzez podanie tzw. rozpinaczy, czyli rozpina-
jacych je wektorow) dwie podprzestrzenie

-2 1 1 1
1 1 -3 1
U= 1|7 -3 ’ V= 1|7 1
1 1 1 -5

Poda¢ wymiar oraz jakies bazy podprzestrzeni U + V oraz U N V. Obie te podprzestrze-
nie zada¢ takze w sposéb uwiktany, podajac rownania, jakie muszg spetniaé liczby na
kolejnych pieterkach wektoréw nalezacych do tych podprzestrzeni.

Rozwigzanie: Najpierw sprawdzimy, czy podane cztery wektory sa liniowo zalezne, czy
nie. Gdyby nie byty, to oczywiscie rozpinatyby calg przestrzen R* i suma U +V podprze-
strzeni by byla cala ta przestrzenia. Jak zwykle, zamiast dziala¢ regulaminowo, wybie-
rzemy bardziej pokretny sposéb i zapytamy, czy ostatni wektor jest kombinacjg liniowa
trzech pierwszych. Sprowadza si¢ to do rozwiazania uktadu czterech rownan

—21’1 + To+ X3 = 1 s
T+ To — 31’3 =1 y
1 — 31’2 + x3 = 1 s
T+ To+ X3 = —5.
Jak zwykle mozna sprawdzi¢, czy uktad ten ma rozwiazanie prébujac najpierw rozwiazac
trzy pierwsze réwnania, a jak sie uda, to sprawdzajac, czy spelnione jest tez i ostatnie.
Ale okaze sie pozniej, ze warto jako pierwszy krok rozwigzaé troche ogélniejszy uktad:
—21’1 + X9+ T3 = a,
1+ To — 3113'3 = b,

1’1—31’2+ r3 = C.
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Potrzebny nam uktad odpowiada potozeniu @ = b = ¢ = 1. No to dziela! Odejmujemy
ostatnie od drugiego i dodajemy dwa razy ostatnie do pierwszego, eliminujac z nich zy:

—9x2 4+ 313 = a+ 2c,

4:172—4253 =b—c.

To juz tatwo rozwiaza¢ wzgledem x5 i x3, a potem z dowolnego z trzech réwnan wyznaczyé
x1. Otrzymujemy w ten sposob:

1 1 1
x1:—§(8a—|—4b+40), x2:—§(4a—|—3b—|—50), x3:—§(4a—|—5b—|—30).

jesli podstawimy tu a = b = ¢ = 1 dostaniemy x; = —2, 5 = 23 = —%. Wstawiamy te
liczby do czwartego rownania (pierwszego z wypisanych uktadow) i znajdujemy, ze jest ono
tez spetnione. Zatem z czterech podanych wektoréw - nazwijmy je wy,..., w, - ostatni
jest liniowo zalezny od pozostatych: w, = —2w; — %WQ — %Wg. Zatem podprzestrzen
U +V jest rozpinana przez trzy wektory, np. wi, wy i ws (tworza one jedna z mozliwych
jej baz) i jej wymiar jest rowny 3. Z rownosci dim(U + V') =dimU+ dimV — dim(U N V')
wynika wiec od razu, iz podprzestrzenn UNV jest jednowymiarowa, tj. jest rozpinana przez
jeden wektor, ktory z definicji nalezy i do U i do V. Aby go znalezé¢ mozemy znaleziony

zwiazek miedzy wektorami wy, ..., w, napisa¢ w postaci
—4W1 — 3W2 = 3W3 + 2W4 .

W takiej formie od razu daje nam on to co trzeba: wektor —4w; — 3wy nalezy bowiem
do U, a wektor 3ws + 2wy nalezy do V. Sa one sobie rowne, wiec daja wlasnie wektor
nalezacy (i zatem ja rozpinajacy, i zarazem bedacy jej baza) podprzestrzen U NV. Jawnie
wektor ten ma postacé

—4W1 — 3W2 = = 3W3 + 2W4 .

b}
-7

Na koniec mozemy sie zajaé¢ sprawa zadania podprzestrzeni U +V i U NV w sposéb
uwiktany. Najpierw U + V: Kazdy wektor do niej nalezacy jest kombinacja liniowa wr,
Wo i W3

—21’1 + X9 + 23
1+ Tg — 35(73
xTry — 3LU2 + 23
1+ X9 + 23

T1W] + ToWy + T3W3 =

QL O o

Teraz wida¢ w jakim celu rozwigzaliSmy wcze$niej uktad rownan z a, b i ¢ po prawej
stronie. Znalezione xy, xo i x3 mozemy teraz wstawi¢ do sumy z; + z2 + r3 na dolnym
pieterku wypisanego wyzej wektora nalezacego do U+ V. Zatem dowolny wektor nalezacy
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zapisany jak tu wyzej po prawej nalezy do U + V, jedli 2a + %(b +¢)+d=0. Zadac zas
podprzestrzen U NV w sposob uwiklany jest bardzo prosto: wszystkie wektory do niej
nalezace sa proporcjonalne do wektora [5, —7,5, —7|, zatem maja one pierwsze pieterko
a réwne trzeciemu c, a drugie b czwartemu d, a na dodatek pierwsze i drugie sa ze soba
zwiazane tak, ze 7Ta+5b = 0. Mozna wiec te podprzestrzenn w sposéb uwiktany zadac tak:

a
b a— c=0
unv = M b— d=0
d 7a+5b=0
Zadanie 16
Pokazaé, ze podprzestrzein E C C* rozpicta przez wektory vy, vo, Vs, v4 postaci
1 [0 2 3
vy = 0 Vo = ! vy = — \% 0
1 — 2 ) 2 — 1 ) 3 — 1 ) 4 — 4 )
l 1—1 0 1

zawiera wektory

W = s oraz Wo =

e SURES T et

oraz, ze wektory wi, wg, V3, v4 rozpinaja te sama podprzestrzen F.
Rozwigzanie: Najpierw trzeba pokazac, ze rownania x, vy + To Vo + T3 V3 + T4 V4 = Wy
oraz yi Vi + Ya Vo + Y3 V3 + Y4 V4 = W9 maja rozwigzania. Pierwsze daje uktad rownan

T +2x34+3x4 = 1,

1T9 — 123 = 1,
211 +xo+a3+4ry = 3,
iz + (1 — i)z +x4 =

Z drugiego x9 — x3 = 1, czyli x5 = 1 + x3. To do pozostatych trzech, co da uktad

T + 25(73 + 35(74 = 1 ,
2!13'1 + 2:13'3 + 4:13'4 = 2 s
il’1+(1—i)$3+l’4 = 1.

Od drugiego odjac pierwsze: 1 = 1 — 4. To do pierwszego i trzeciego

2(1’3 +[L’4) = 0,
(1 —i)(x3 + z4)
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Czyli da sie przedstawi¢ wy, z tym przeciez, ze nie w sposob jednoznaczny. (O! Wyszto mi
zdanie jak z T. Parnickiego!) To za$ oznacza, ze same wektory vy, va, v3 i v4 sa liniowo
zalezne (czyli dimE < 4). Istotnie: wida¢, ze vy = vi + vy + v3. Zatem by dowiesé, ze
wy € E, wystarczy pokazaé, ze wo = y1v1 + y2Va + y3vy. Widaé, ze wy = vy + V3 po
prostu. Ogolniej, mozna zauwazy¢, ze

W1:V1—|—V2—|—)\(V1—|—V2—|—V3—V4),

Wo :V2+V3+£(V1+V2+V3—V4),
dla dowolnych A i &, poniewaz vi+ve+vy—vy = 0. Stad dla A = —1 uzyskujemy zwigzek
V4 = Wi + V3.

Nastepnie ktadac raz A = 1, £ = 2, a drugi raz A = 1, £ = 1 dostajemy dwa uktady
réwnan

W1:2V1—|—2V2—|—V3—V4, W1:2V1+2V2—|—V3—V4,

Wy = 2V 4 3vo + 3vg — 2vy, Wy = V] + 2Vvy + 2vy — V4.
7 pierwszego uktadu, odejmujac pierwsze od drugiego otrzymujemy
W2—W1:V2+2V3—V4:V2+2V3—W1—V3:V2—|—V3—W1,

gdzie w drugim kroku wykorzystany zostal otrzymany juz wyzej zwiazek v, = wy + vs.
7 drugiego za$ uktadu, odejmujac od pierwszego drugie, dostajemy

W1 — W9g = V] — V3.
Tak wiec mozemy wyrazi¢ vy i vy przez wy, wo oraz vs:

Vo = Wg — V3,

Vi =W — W3+ V3,

(co tatwo sprawdzi¢). Zatem kazdy wektor postaci avy + fvy + yvs € E mozna napisaé
jako

a(wy —wy +v3) + B(wWa —v3) + vy =aw; + ( — a)ws + (o — S+ 7)ws.

Zatem wektory wi, wyo i v3 takze rozpinaja E. Zauwazmy jeszcze na koniec, ze nie
zastanawialiémy sie tutaj, nad jakim ciatlem rozpieta jest przestrzen wektorowa, do ktorej
naleza rozpatrywane tu wektory. Poniewaz liczby wystepujace w wektorach vy, vi, w;
i wy sa zespolone, a priori odpowiedZ na postawione pytania mogtaby zaleze¢ od tego,
czy ciatem tym jest C, czy tylko R (por. uwagi w Zadaniach 2 i 8). Wyszto nam jednak,
ze wektory wy i wy 83 kombinacjami liniowymi o wspolczynnikach czysto rzeczywistych
wektorow v;, a to oznacza, ze odpowiedz nie zalezy od tego, czy ciatem jest C czy R.
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Uwaga. Jak dotad liniowa (nie)zaleznosé zbioru wektorow sprawdzaliémy badajac bez-
posrednio warunek zerowania si¢ ich kombinacji liniowej. Pdzniej nauczymy sie robié¢ to
badajac rzad odpowiedniej macierzy utworzonej ze sktadowych tych wektorow w jakiej$
(dowolnej) bazie i wykorzystywaé¢ do tego wyznaczniki macierzy.

Zadanie 17

W pewnej bazie pewnej trojwymiarowej przestrzeni wektorowej V' (o ktorej charakterze
nic nie musimy w zasadzie wiedzie¢; wida¢ jednak, ze dimV = 3) wektory vy, vy v3 maja
sktadowe

1 1 1
V] = 1 s Vo = 1 s V3 = 2
1 2 3

Pokazaé, ze vi, vy v3 sa takze baza tej przestrzeni i poda¢ w tej nowej bazie sktadowe
wektora w, ktory w pierwotnej bazie ma sktadowe (6,9, 14).

Uwaga: UzyliSmy wyzej symbolu := aby podkresli¢, ze w zasadzie nie nalezy utozsa-
mia¢ wektora z jego sktadowymi: wektor pozostaje soba niezaleznie od naszego wyboru
bazy; sktadowe za$ od tego wyboru jak najbardziej zaleza! W tych notatkach sktadowe
wektorow bedziemy zawsze pisa¢ w nawiasach okraglych aby podkreslié, ze nie nalezy
ich myli¢ z wektorami z przestrzeni R", ktére zawsze pedantycznie piszemy w nawiasach
prostokatnych. Np. jeden i ten sam wektor w z R?

1
w=|2],
3

ma w kanonicznej bazie e;, i = 1,2, 3

1 0 1
fl— 1 ; f2— 1 ) f3— 0 )
0 1 1

sktadowe (0,2, 1) bo, jak tatwo zobaczyé¢, w = 0-f; +2-f5 4+ 1 f3. Zauwazmy jednak, ze w
zadaniu, w odroznieniu od tego przyktadu (w ktorym wektory sa kolumnami liczbowymi,
na ktorych umiemy bezposrednio wykonywaé dzialania), nie mamy dostepu do “zZywych”
wektorow: nie wiemy, czym sa e;, €y, e3 (moga one by¢ strzatkami w przestrzeni, wie-
lomianami, albo zyrafami, jesli komus sie uda nada¢ zbiorowi zyraf strukture przestrzeni
wektorowej) i jedyne czym dysponujemy, to informacja, ze e, e,, e3 sa wektorami liniowo
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niezaleznymi oraz sktadowymi wektoréw vy, vo, v3 i w w bazie tworzonej przez wektory
€1, €9, €e3.

Rozwiazanie: Niech wyjsciowa baza beda wektory eq, ey, e3 (nic o nich nie wiemy - poza
tym, ze skoro tworza baze, to sa liniowo niezalezne - ale jakie$ oznaczenia ich mozemy
sobie wprowadzi¢). Wykorzystujac podane w tej bazie skladowe wektorow vy, vo i v
mozemy napisac

vi = e + e+ e,
vy = e + eyt 2es,

vy = e;+2e;+3e3.
Odejmijmy pierwsze od drugiego:
€3 = —V]+vVvy.
To do dwu pozostatych:

Vo = e] + 82—|—2(—V1+V2),
V3 = el+2€2+3(—V1+V2).

czyli

e + e = 2v;— vy,

el—|—2€2 = 3V1—3V2—|—V3.

Od drugiego pierwsze oraz od dwa razy pierwszego drugie. Razem wiec mamy

€ = Vi+Vy—V3,
€y = V1—2V2+V3,
€3 = —Vj+Vsy.

Udato sie jednoznacznie wyrazié¢ trzy liniowo niezalezne (z zalozenia) wektory eq, e; i e3
przez wektory vy, vo i v3, co oznacza, ze te drugie tez sa liniowo niezalezne, czyli tez
moga by¢ baza przestrzeni.'* Mozemy teraz przerobi¢ wektor w:

w = 681+9€2+14€3
= 6(V1 + vy —V3)+9(V1 —2V2—|—V3) —|—14(—V1—|—V2)
= V1—|—2V2—|—3V3,

14W dalszym toku éwiczen zobaczymy, ze liniows niezaleznosé wektoréw vi, v i v3, mozna sprawdzié
badajac rzad macierzy utworzonej z postawionych obok siebie ich sktadowych (w dowolnej bazie), co z
kolei mozna sprowadzi¢ do sprawdzenia, czy wyznacznik takiej macierzy jest niezerowy. Tu jednak dzieki
przyjetemu sposobowi sprawdzania mamy od razu wynik przydatny dalej w tym zadaniu.
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czyli sktadowe w w bazie vy, vo 1 v3 to (1,2,3). Zapiszmy uzyskany wyzej zwiazek za
pomoca macierzy:

(e1,€9,€e3) = (V1,vo,vy) [ 1 -2 1

Mnozenie “paluchowe” podrazumywajetsia. Stojaca tu macierz jest tzw. macierzqg zmiany
bazy lub macierzq przejscia; doktadniej, jest to macierz przejscia z bazy e;, 1 = 1,2,3 do
bazy v;, i = 1,2,3. Macierz taka bedziemy oznacza¢ R,. ., aby podkresli¢, ze pozwala
one ze sktadowych wektora w bazie e, e; i e3 otrzymac jego sktadowe w bazie vy, vq, vs.

Stosujac wprowadzona juz (w Zadaniu 8') konwencje sumacyjng wujka A.E. mozna
powyzszy wzOr z macierzg zapisaé jako e; = v; [Rm_e]j x- Przypomnijmy, ze konwencja
polega na niepisaniu w prawej stronie sumy po wartosciach wskaznika j od 1 do 3. Jawnie
wzor ten mowi, ze np. e; = vy [Ryc o]l + Vo [Roce)?) + Vs [Roce]?;, gdzie [Rye o]ty = 1,
[Ruce)?; = 1, [Ryee]®, = —1, etc.

Jesli teraz napiszemy wektor w w postaci w = eiwée) (indeksik e u wfe) ma przypomi-
naé ze wée) = (6,9, 14) to sa sktadowe tego wektora w bazie ;), to bedziemy mie¢:!®
W = ¢ wfe) = Vi, [Roce]® wfe) = v}, wfv) .
gdzie (Rye.)*; jest macierza zmiany bazy,'® a zwigzek wzv) = [RUFe]kiwée) jawnie wyglada
tak:

Wiy) 1 1 -1 6 1
wy =11 -2 1 9 | =12
w?) -1 1 0/ \u4 3

Takie wtasnie sktadowe wév) otrzymali$my juz wezesniej (w istocie rzeczy w ten sam spo-
sob, tylko bez tego sztafazu, ktory jednakowoz na dtuzsza mete jest niezwykle wygodny).

Jak juz wszystko “rozebraliémy” w szczegoétach, to mozemy teraz macierz R,. . otrzy-
mac prostszym sposobem. Rozl6zmy najpierw catkiem ogélny wektor w = ae; +bes+ces

>Wykorzystujemy tu to, ze skoiiczone sumy sa przemienne, tzn.

3 3

3 3
> <Z Vi [R@H)]’“j) Wiy = 2 Vi | 2[Rl 0,
k=1 k=1

j=1

Na tym tez opiera sie cala konwencja sumacyjna Einsteina.

6Matematycy z Katedry Metod Matematycznych Fizyki zwykli macierz R,. . oznaczaé Id (w ich nota-
cji jest to [Id]”,), co jest dobrze uzasadnione, jako ze (jak to sie stanie dalej jasne) jest to w istocie rzeczy
macierz odwzorowania identycznosciowego - tj. liniowego odwzorowania Id: V — V., ktére kazdemu
wektorowi v € V' przypisuje ten sam wektor v € V| tylko zapisana “z dwu stron” (co to znaczy wyjasni
sie dalej) w dwu roznych bazach; poniewaz fizycy musza sie jednak rézni¢ od matematykow (niechby i
mniejsza logika stosowanych oznaczen!), w tym skrypcie macierz zmiany bazy w przestrzeni wektorowej
oznaczam R, a macierz zmiany bazy w przestrzeni kowektorow (pojawi sie dalej) P.
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na wektory vq, vo i v3. Sprowadza sie to do rozwigzania ukladu réwnan:!?

1 1 1 a
all]l+p8|1|+~v2]=1|2D0
1 2 3 c

Rozwiazujemy (stosujac np. eliminatke Gaussa) i znajdujemy: o = a+b—c¢, f = a—2b+-c,
v = —a + b. Liczby te sa skltadowymi wektora w w bazie wektoréw v;. Powinno sie¢ je
otrzymywa¢ z dziatania macierzy R,. . na sktadowe wektora w w bazie e;:

a Q a+b—c 1 1 -1 a
Ryoe- b | =P ]=|a—-2b+c| = 1 -2 1
c 0 —a+b -1 1 0

W drugim kroku po zapisaliémy wynik dziatania (nieznanej jeszcze!) macierzy R,. . na
sktadowe (a, b, ¢) w postaci konkretnej macierzy dziatajacej na (a, b, ¢). Poniewaz sktadowe
te sa dowolne (za a, b i ¢ mozna podstawi¢ dowolne liczby), to co sie otrzymuje musi by¢
wtasnie macierza R,. !

Zadanie 18
Jak w zadaniu 17 tylko teraz

2 3 1
V] = 1 s Vg = 2 s V3 = —1 s
—3 -5 1

a wektor w w pierwotnej bazie ma sktadowe (6,2, —7).
Rozwigzanie: Znéw piszemy

Vi = 261—|— €9 —383,
Vo = 381+2€2—583,
V3 = e — ey + es3.

Trzecie dodaé¢ do pierwszego, a potem dwa razy trzecie do drugiego

vVi+ vy = 361—263,

vo+2vy = be; —3es,

17Po prostu sktadowe wektora w w bazie e; ale potraktowane tu jakby byly wektorami z R3, musza
by¢ kombinacjami liniowymi sktadowych wektoréw v; (w bazie e;) tez potraktowanych jak wektory z R3.
Trzeba jednak pamietac, ze to nie sa wektory tylko sktadowe. I jak tu nie dostaé¢ algebraicznego krecka?!
Ale rzeczywiscie: réwnosé

ae;+bes+ces=avy+ [Bve+yV3
=a(e;+e+e;3)+5(e;+ex+2e;3)+v(e +2ex+ 3e3),

sprowadza sie do réwnosci a = a+ S+, b = a+ 5+ 27, ¢ = a+ 25+ 3, ktore sg wlasnie tymi podanymi
w tekscie.
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Teraz pierwsze razy 3, drugie razy 2 i odjaé, oraz pierwsze razy 5, a drugie razy 3 i odjac:

e = —3vi+2vy+ vy,
e3 = —Hvi+3vye+vs.
Do tego jeszcze
e = e} —Vg+te;s

(—3V1 —|—2V2—|—V3) —V3+(—5V1 —|—3V2—|—V3)
= —8vyi+5Vvy+ vs.

Razem wiec

e = —3vi+2vy+ vy,
e = —8vi+95vy+vs,
e3s = —Hvi+3vy+vs.

Czyli macierz R,. . zmiany bazy ma postaé

-3 -8 =3
Ryce=1| 2 b} 3
1 1 1

a sktadowe wév) wektora w w bazie v; i = 1,2, 3 to

Wiy) -3 —8 =5 6 1
w%v) = 2 5 3 2 =11
w?v) 1 1 1 -7 1

zywiscl jac wyjSciowe wzory wyrazaj Wi Iy Vi, Vo1V W 1 ina-
Oc Scie majac Sciowe wzo azajace wektory vi, vo i vs ostaci kombina.
¢ji liniowych bazowych wektoréw eq, e, i e3, mamy od razu “za darmo” macierz przejscia
R (jej kolumny tworza postawione obok siebie kolumienki sktadowych wektorow vy,
vy, V3 W bazie eq, es, €3):

-3 -5 1

Macierze Re., i R, musza by¢ ze soba oczywiscie jakos zwiazane. Zwiazek ten jest
oczywisty: skoro macierz R,. . robi ze sktadowych wée) w bazie e; dowolnego wektora

w jego sktadowe wév) w bazie e;, a macierz R.., zamienia na powrét sktadowe wév) A
: . ., o,
sktadowe w(,), to powinnismy miec

Wiey) = [Reev]ijw?v) = [Reco]'j[Rocel gy -
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t).18 [Recs)’ -[Rm_e]jk = §',. Macierzowo:

J

1

Re<—v : Rv<—e = 3 = 0

—3 — 1 0 0

(Zachecam do sprawdzenia, ze istotnie iloczyn daje macierz jednostkowa!). Oczywiscie
mamy takze

0
0
1

—3 —8 1
Rv<—e ' Re<—v - -1 -
1

OO =
O = O
_ O O

Tak WIQC [Rv(—e]_l = Re(—va e(—v U(—e

Uwaga: W zwiazku z powyzszym zadaniem zauwazmy, ze znalezliSmy sposoéb odwracania
macierzy kwadratowych.'® Inny bardziej “teoretyczny” sposob zostanie podany dalej. Nie-
mniej sposob tu znaleziony (oraz podana przy okazji jeszcze inna “mechaniczna” metoda)
pozostanie i tak naog6t najuzyteczniejszym z praktycznego punktu widzenia.

Zadanie 19
Zmnalez¢ macierze odwrotne do macierzy

b 1 2 -3
(i’ d) , 01 2|,
0 0 1
Rozwigzanie: Zacznijmy od drugiej macierzy (wymiaru 3 x 3) wykorzystujac to, co

ustalilismy wyzej: interpretujemy sobie te¢ macierz jako macierz zmiany bazy R...,, co
pozwala napisac

1 1 1
1 -1 -1
-1 1 -1
-1 -1 1

— = = =

vy = €,
Vo = 281+ €y,
V3 :—3e1—|—2e2+eg.

Uktad ten traktujemy jak uktad rownan na e; i rozwiazujemy wzgledem e;, co tu akurat
jest proste:

€1 = Vi,
€ = —2Vv;+ vy,
e = 7V1—2V2+V3.

18Definicja symbolu 8%, czyli tzw. delta Kroneckera: 6°; =1 gdy i = ki §°, =0 gdy ¢ # k. Kronecker
to ten, co méwit, ze dobry Pan Bog stworzyt liczby naturalne, a inne to juz ludzie.

9Tzw. nieosobliwych macierzy kwadratowych. Nie kazda macierz kwadratowa daje sie odwrécié
(macierze niekwadratowe naog6! nie maja odwrotnych, choé¢ moze sie zdarzy¢, ze iloczyn macierzy A
wymiaru n X r, czyli majacej n wierszy i r # n kolumn, i macierzy r x n da macierz jednostkowa wymiaru
nxn). Ale macierze zmiany bazy - nieodmiennie kwadratwe - z samej swojej istoty sa zawsze odwracalne,
czyli nalezg do pospolitego gatunku macierzy nieosobliwych.
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Stad odczytujemy, ze

1 -2 7
Rv<—e [Re<—v]_1 - 0 1 —2 )
0 0 1
Sprawdzamy:
1 2 =3 1 -2 7 1 0 0
01 2 0o 1 -2|=101 0],
0 0 1 0 O 1 0 0 1

tak jak by¢ powinno.

W przypadku trzeciej macierzy postepujemy analogicznie:

Vi = e1+e2+eg+e4,
Vo = e t+e —e3—ey,
V3 = €] —exte3—ey,
V4 = el—eg—e3+e4.

Biorac sume i réznice pierwszego i trzeciego roéwnania oraz sume i réznice drugiego i
czwartego (jak kto woli, mozna tez rownania dobra¢ w pary inaczej) otrzymujemy

vi+vy = 2e;+2e3,
Vi—Vy = 2ey+2ey,
vo+vy = 2e; —2e3,
Vo—Vy = 2ey—2ey.

Robiac to samo raz jeszcze znajdujemy, ze

1
61:1(V1+V2+V3—|—V4),
1
6221(V1+V2—V3—V4),
1
63:Z(V1—V2+V3—V4),
1
64:—(V1—V2—V3—|—V4),

4

Mamy wiec (mnozenie macierzy przez liczbe to oczywiscie mnozenie przez te liczbe kazdego
elementu owej macierzy):

1 1 1 1 1 1 1 1 1 0 0 O
1 1 -1 1|11 1 -1 -1 01 0 0
Re(—v : Rv(—e = 1 -1 1 -1 Z 1 =1 1 —1 0O 01 o0
1 -1 -1 1 1 -1 -1 1 0O 0 0 1
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(z doktadnoscia do czynnika 1/4 macierz odwrotna jest tu rowna macierzy wyjsciowej).

Wreszcie, w przypadku pierwszej macierzy 2 x 2 mozna by robi¢ tak jak wyzej, ale
prosciej (i na przysztosc bardziej przydatnie) jest zapamietaé regutke:

a b\ 1 d —b
c d Cad—bec\—-c a )’

Zakladamy tu, ze ad—bc # 0; jesli ad—be = 0, to macierz jest osobliwa i nie ma odwrotne;j.
(Wyrazenie ad — be jest to jej wyznacznik - bedzie o nich dalej).

Zapowiedziany “mechaniczny” sposob otrzymywania macierzy odwrotnej do danej ma-
cierzy kwadratowej polega na jednoczesnym wykonywaniu na kolumnach danej macierzy
(ktora chcemy odwrocié) i kolumnach macierzy jednostkowej identycznych operacji (kto-
rymi moga by¢ dodawanie do jakiejs kolumny dowolnej kombinacji liniowej pozostatych
kolumn, mnozeniu kolumny przez liczbe i, wreszcie, przestawianie kolumn).

Zademonstrujemy te metode na przyktadzie odwracanej wyzej macierzy 4 x 4. Usta-
wiamy w tym celu obok siebie te macierz i macierz jednostkows:

1 1 1 1 |1000
1 1 -1 -1 0100
1 -1 1 =1 /00 10
1 -1 =1 1 |0 00 1

Dokonujemy najpierw operacji Cy — Cy 4+ C; i C3 — C3 — Cy (tj. czwarta kolumne
zastepujemy suma czwartej i pierwszej, a trzecia réznica trzeciej i drugiej), co prowadzi

do:

1 1 0 2 |1 0 0 1

1 1 -2 0|01 -1 0

1 -1 2 0 |0 0 1 O

1 =1 0 2 |00 0 1
Nastepnymi operacjami sa: Cy — Cy + %03, Cy—Cy— %04; daja one

o1 0 2] 3 0 0 1 0o 1 00 | 3 0 1 1

1 0 =20 1] 0 35 —10 1 0 00 | 0 2 -1 -1
1 — 1

1 0 2 0] 0 5 1 0 1 0 40 |0 3 1 -1

0 -1 0 2 |—-3 0 0 1 0 -1 04 |—-35 0 -1 1

Strzatka oznacza wykonanie dwu nastepnych operacji: Cy — Cy—2C5 oraz C3 — C3+2C].
Kolejne ruchy, to ¢y — C7 — iC’g oraz Cy — Cy + iC’4:

o100 | % 3 1 1 1000 |1 1 3+ 1
1000 | ¢ § -1 -1 010013 3 -3 —1

11 — S U 1
0040 |—3 3 1 -1 0010 |3 -+ 1+ =%
0004 [-5 7 -1 1 00013 —F -3 1



Ostatnie dwie operacje zaznaczone strzatka polegaly na przestawieniu miejscami kolumn
pierwszej i drugiej oraz na podzieleniu kolumn trzeciej i czwartej przez 4. W rezultacie
po prawej stronie otrzymaliSmy macierz odwrotna (te sama, co poprzednio) do wyjsciowej
macierzy 4 x 4.

Alternatywna wersja tej metody polega na jednoczesnym wykonywaniu wymienionych
wyzej operacji, ale nie na kolumnach, lecz na wierszach macierzy danej i macierzy jed-
nostkowej.2? W tej wersji metode te latwo uzasadni¢. Réwnosé

a1y A2 ... Qip r11 T12 ... Tip 1 0 --- 0
21 929 ... Qop T21 T922 ... Top . 0 1 0

= . ,
Apl QAp2 .. Gpn Tyl Tp2 ... Tpn 0 0 ... 1

wyznaczajaca macierz X odwrotng do A mozna bowiem traktowac, jak zestaw n ukladow
kazdy po n réwnan na n niewiadomych:

T + 12Tk + ...+ apTy = 1, 0, ... 0,
A1 X1k + @99kop + ...+ aspxny, = 0, 1, ... 0,
A1 X1k + Qoo + ...+ QT = 0, 0, ... 1.

Powyzszy zapis nalezy czyta¢ tak, ze gdy w wierszach po lewej stronie £k = 1, tak iz
sa to réwnania na iy, T2y, ..., Tp1, prawa ich strona jest pierwsza kolumna; gdy w
wierszach po lewej stronie k = 2 (rownania na 19, 99, ..., Tp2), Prawa strona jest druga
kolumna, itd. Kazdy z n tych uktadéw rownan rozwigzujemy stosujgc eliminatke Gaussa z
Zadania 0. Poniewaz jednak lewe strony tych uktadow sa (formalnie) takie same, robimy to
jednoczesnie dodajac do siebie z odpowiednimi wspoétczynnikami réwnania; jesli “oderwac
sie” od x-6w, sprowadza sie to do wykonywania na wierszach macierzy A po lewej i na
wierszach macierzy jednostkowej po prawej wymienionych wyzej operacji. Gdy po lewej
powstanie juz macierz jednostkowa, rozwigzaniami na elementy xy, Top, ..., Tnix k-tej
kolumny macierzy X beda wtasnie kolejne elementy k-tej kolumy macierzy wytworzonej po
prawej stronie. Metode zastosowana w przyktadzie polegajaca na wykonywaniu operacji
na kolumnach mozna uzasadni¢ analogicznie, rozpatrujac rownania wynikajace z réwnosci
X - A =T lub, wygodniej, z réwnosci®t (X - A)T =17, czyli z AT - XT = 1.

W opisanej metodzie tatwo si¢ pomyli¢, albo dosta¢ oczoplasu od §ledzenia dwu macie-
rzy na raz; wydaje mi sie, cho¢ moze to by¢ subiektywne wrazenie, ze metoda odwracania
macierzy polegajaca na wyobrazeniu sobie, iz jest ona macierza zmiany bazy i odwroceniu
odpowiedniego jednego uktadu n réwnan na n wektoréw jest jednak bezpieczniejsza.

Jak juz jesteSmy przy odwracaniu macierzy, to rozpatrzmy jeszcze takie

20Pamietaé przy tym nalezy o tym, zeby nie mieszaé: jesli decydujemy sie na operacje na kolumnach,
to nie mozemy nagle zaczac¢ ich robi¢ na wierszach.

2LMT oznacza tu macierz otrzymang z macierzy M przez transpozycje, tj. (w przypadku macierzy
kwadratowych) odbicie elementéow M wzgledem diagonali.
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Zadanie 19’

Niech A, B, C, D beda macierzami wymiaru n x n odwracalnymi, tzn. macierze A~!, B~!,
C~!, D7! istnieja i zakladamy, ze je znamy (lub umiemy je znalez¢). Napisa¢ macierze
odwrotne do macierzy wymiaru 2n x 2n

(cp) (05) (&0)

(0 oznacza tu macierz zerowa wymiaru n X n).

Rozwigzanie: Poszukajmy najpierw macierzy odwrotnej do macierzy majacej macierz
zerowg w prawym goérnym rogu. Macierz odwrotng piszemy tez w postaci zawierajacej
cztery bloki n x n; powinna ona by¢ taka, ze

A O\(M K\ _ [(A-M+0-L A-K+0-N

¢ p)J\L N) \C-M+D-L C-K+D-N
_ A-M A-K (I 0
~\¢-M+D-L ¢-K+D-N) \o 1)

Widaé stad, ze M = A~! oraz, Ze zero w prawym gérnym rogu mozna dostaé¢ kladgc?
K = 0. Wtedy patrzac na prawy dolny blok widzimy, ze N = D~!. Wreszcie, lewy dolny
blok daje wtedy réwnanie

C-A'=—-D-L, ceyli L=-D'.C-A".

Zatem (druga macierz odwracamy w podobny sposob)

A 0\ Al 0 A B\' (A —A'.B.D!
c D) ~\-D'.Cc.-A? D) o D) ~—\ o D! '

Aby odwréci¢ trzecia macierz, piszemy réwnanie
A B M K\ [(A-M+B-L A-K+B-N\ (I 0
C D L N) \C-M+D-L C-K+D-N) \0 I)°
Daje ono dwa niezalezne (macierzowe) uklady:

A-M+B-L=1, A-K+B-N=0,
C-M+D-L=0, C-K+D-N=1I.

Aby rozwigzaé lewy (prawy) uktad, mnozymy gorne rownanie z lewej macierzowo przez
B!, a dolne z lewej przez D!, co da

Bl A-M+L=B", B ' A K+N=0,
D'.C-M+L=0, D' C-K+N=D"'.

22Njie jest oczywiste, czy to jest jedyna mozliwosé; przy zadanej macierzy A moze moze istnie¢ jakas
niezerowa macierz K, taka ze A - K = (0. Niemniej probujemy, czy sie tak uda
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Odejmujemy teraz w lewym (prawym) uktadzie réownanie dolne (gorne) od gornego (dol-
nego), co da

(B'-A-D'.C)-M=B", (D' C—-B*-A).-K=D".

Stad M = (B -A—-D'.C)"' Bl oraz K=(D'-C—B"'- A~ D7!'. Mozemy
teraz skorzystac z tatwego do sprawdzenia wzoru, stusznego dla dowolnych kwadratowych,
odwracalnych macierzy X i Y

(X-y)yt=y1'.x1
by napisaé

M=B-(B' A-D'.C)'=(A-B-D*-C) ",
K=(D-(D*'-C-B ' A)y'=C~-D-B' A"

W analogiczny sposéb mozemy wyjsciowe dwa uktady macierzowe rozwigzaé¢ ze wzgledu
na macierze L i N, otrzymujac ostatcznie

(48)" —(Gombnon oopmany

Zadanie 19"
Niech U i V beda dwoma pozbiorami wektorow przestrzeni wektorowej R™ zdefiniowanymi
warunkami

PR
T

x
i+ a4 4z, =0 ,

\ _x"_

S5
Zy

T2

\ _x"_

Pokazac, ze U 1 V' sa podprzestrzeniami wektorowymi R” oraz, ze U +V =U @&V = R™
Podac¢ jakie$ bazy podprzestrzeni U i V i wyrazi¢ wektory e; kanonicznej (zero-jedynkowe;j)
bazy R"™ przez wybrane wektory baz przestrzeni U i V. Podaé tez jawnie odpowiednie
macierze zmiany baz i sprawdzi¢, ze sa one wzajemnie odwrotne.

Rozwigzanie: To, ze U i V sa wektorowymi podprzestrzeniami jest oczywiste: wektor
zerowy nalezy do kazdej z nich, pomnozenie wektora z U (V') przez liczbe A nie wyrzuca go

zU (V), gdyz jesli x14+xo+. . .4z, =0 (21 = 29 = ... = x,) to takze Az +Axo+. . . +Az, =
0 (Azy = Azg = ... = Azy,) 1 suma wektorow z U (z V) tez nalezy do U (do V): jesli
ritTo+.. 4, =01y +ye+.. . Fy,=0(edliz; =0 = ... =z, iy =y = ... = Ypn)
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to takze (z1+y1) + (T2 +12) +. ..+ (@n+uyn) =0 (21 +y1) = (2 +92) = ... = (T +Yn)-
Jest tez jasne, ze U NV = {0}, czyli ze U +V = U @& V. Jako baze U mozna wziaé
wektory

1 0 0
0 1
fl - 0 ; f2 - 0 ) ) fn—l - 0 )
. 1
-1 —1 —1
(kazdy wektor U jest jednoznaczna kombinacja liniowa wektorow fi, fp, ..., f,_1), a baza
V' moze by¢ wektor
1
1
f.= 11
1

Zatem dimU = n—1, dimV = 1, a poniewaz dim(UNV) = 0, dim(U+V) =dim(UaV) =
n. Stad juz wynika, ze U +V = U & V = R". Mozna tez podaé jawny wzoér wyrazajacy
dowolny (zywy) wektor [a1, ag, ..., a,| z R" przez wektory fi, fs, ..., f,_1 rozpinajace U i
wektor f, rozpinajacy V. W tym celu nalezy rozwiaza¢ réwnanie wektorowe

a1
a2
as :)\1f1+)\2f2+...+)\nfn,

Qn

czyli uktad zwyktych rownan

)\1 +)\n:a1>

—>\1—)\2 —>\n_1+)\n:an.

Aby rozwigza¢ ten uklad, dodajemy do ostatniego réwnania wszystkie poprzednie, co
daje A\, = (a1 + ... + a,)/n. Pozostale niewiadome Ay 0 1 < k < n sa wiec réwne
A = arp—(a1+. . .+a,)/n. Kazdy wektor z R™ daje sie wiec przedstawi¢ jako jednoznaczna
kombinacja liniowa wektorow fi, ..., f,,_; rozpinajacych U i wektora f,, rozpinajacego V.
Zmnalezione rozwiazanie pozwala tez bez trudu wyrazi¢ wektory ey, ..., e, zero-jedynkowej
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kanonicznej bazy p.w. R"™ przez wektory fi, ..., f,_1 i f,: zywy wektor e; ma liczby
niezerowg tylko liczbe ap = 1. Zatem
e, — (—fl—fg...—n_1+fn)+fk, 1§]€<7’L,

e, =

SIS

(—f —fp...— £, +£).

i wzajemnie odwrotnymi

—

sprawdzi¢!) macierzami zmiany bazy sa

1- -1 -z -1 1 0 ... 0 1

_% 1_% _% —% 0 1 ... 0 1
Rjee) = . o Reep = .

-1 -1 1-1 -1 0 0 1 1

1 1 1 1 1 -1 —1 1
Zadanie 20
Sprawdzi¢, ze wielomiany
wi=x+1, wy=x—1, wi =2+,

tworza baze przestrzeni wektorowej wielomianéw stopnia nie wiekszego niz dwa i znalezé
sktadowe w tej bazie wielomianu v = 222 + 3x + 1.
Rozwigzanie: Trzeba sprawdzi¢, ze wi, Wy, W3 sa liniowo niezalezne, czyli, ze réwnosé

)\1W1+)\2W2+)\3W3:0,

dla wszystkich wartosci z zachodzi tylko gdy Ay = Ay = A3 = 0. To wida¢ (tu znoéw
mozemy operowaé na “zywych” wektorach): zachodzenie dla dowolnego x réwnosci

)\1($+1)+)\2(1’—1)+)\3(1’2+1’):()\1—)\2)+()\1+)\2+)\3)£L’+)\3£L’2:0,

wymaga by A3 = 0, oraz by Ay — Ay =01 A1+ Xy = 0. A to rzeczywiscie zachodzi tylko dla
A1 = Ay = 0. Cgzyli sa liniowo niezalezne. W ogélnosci nie wynika z tego jeszcze, tworzg
baze. Poniewaz jednak jest oczywiste, ze wymiar rozpatrywanej przestrzeni jest réwny 3
(bo 3 wielomiany 1, x oraz x? sa baza, jako ze kazdy wielomian stopnia niewyzszego niz 3
jest w oczywisty sposob ich kombinacja liniowa), to kazde 3 liniowo niezalezne wielomiany,
w szczegblnosci wy, wy, W3, tworza baze. Chcemy teraz napisaé
v=2r"+3r+1 = w, v(lw) + Wy vfw) + w3 ,U?w)
= (24 1) 0}y + (2 = D)0}, + (2° 4+ 1) v, -
Czyli vf’w) = 2 oraz v} )+v(2w)+1)3 =31 v(lw) —vfw) = 1. Stad v(lw) =1, v(zw) = (. Istotnie:

(w (w

I-(x+1)+2- (2 +2) =222 +3z+1.
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Zadanie 21

W pewnej bazie eq, €y, e3 wektory vy, vo, vz maja sktadowe (1,2,1), (2,3, 3) oraz (3,8,2),
za$ wektory wi, wo, w3 maja w tejze samej bazie sktadowe (3,5,8), (5,14,13) 1 (1,9, 2).
Sprawdzi¢, ze trzy wektory vy, vo, v3 lub trzy wektory wi, wy, wj takze tworza dwie
inne bazy tej samej przestrzeni i znalezé macierz przejscia z jednej z nich do drugie;j.
Rozwigzanie: Tu z kolei nie wiemy, czym sa w istocie te wektory i operujemy wytacznie
na sktadowych. Mamy

Vi = e +2e+ e3,
Vo = 2€1+3€2+363,
V3 = 381+8€2+2€3,

Drugie od 2xpierwszego: 2vy — vy = €3 — €3, czyli e3 = €5 —2v; + vo. To do pierwszego
i trzeciego:

Vi = el+2€2+62—2V1+V2,
V3 = 361+8€2+2(€2—2V1+V2),

czyli
3V1—V2 = el+362,
4V1 —2V2—|—V3 = 361 —I—l()eg,
Teraz 3x pierwsze od drugiego i mamy e; = —5H vy + vy + v3. Zatem
e = 3V1 — Vg — 3(—5V1 + Vo —I—Vg),
€3 :—5V1 + Vo + V3 —2V1—|—V2.

Tak wiec trzy liniowo niezalezne wektory e;, es, es udato si¢ wyrazi¢ przez trzy wektory
Vi, V2, V3

e = 18V1—4V2—3V3,
€y = —5V1+V2—|—V3,
e3 = —7Tvi+2vy+ vy,

wiec vy, Vo, V3 tez moga by¢ (sa) baza. W podobny sposoéb mozna wyrazi¢ e; takze przez
w;, ale juz nie bedziemy tu tego robi¢ (w zasadzie trzeba by, aby dowies¢, ze w; tez sa
baza). Mamy teraz zwiazki (w konwencji sumacyjnej):

l
j 9

J

€; =V [Rw—e] W; = €5 [Re<—w] P

R, jest macierzg przejScia z bazy e; do bazy v;, ktérg odczytujemy ze wzoréw wyra-
zajacych wektory e; przez wektory v;, a macierz R..,, jest macierzg przejscia z bazy w;
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do bazy e;, odwrotng do macierzy R,.. przejicia z bazy e; do bazy w; (ktorej tu nie
wyliczylismy). Laczac te wzory otrzymujemy

W; =V; [Rm—e]lj [Re%w]ji .

Zatem jedli u = w; uéw), tou=v; ul(v), gdzie ul(v) = [Rm_e]lj [Re(_w]ji ul('w), przy czym
18 -5 -7 3 5 1 =27 =71 —-41
Ryce Reew=1|-4 1 2 5 14 9| = 9 20 9
-3 1 1 g8 13 2 4 12 8

Macierz ta jest oczywidcie macierza zmiany bazy Ry .

Zadanie 22
Znalez¢ skladowe nalezacego do przestrzeni R* wektora
)
v 1
=11
1
w bazie
1 0 0 1
—1 1 0 0
fl - 0 9 f2 - -1 ) f3 - 1 ) f4 — 0
0 0 —1 1

1 0 0 0

€ = 0 ) €2 = L ) €3 = 0 ) €4 = 0 )
0 0 1 0
0 0 0 1

1 z powrotem. Znalez¢ sktadowe wektora v w bazie kanoniczne;j.
Rozwigzanie: Tu znéw wiemy, czym sg “zywe” wektory. Trzeba rozwigza¢ uktad v =
ZL'fl —|—ny —|—Zf3+tf41

r+t =
—r+y =
—z+t =

— = = O

To sie tatwo rozwiazuje bo z trzech ostatnicht =14+z2=14+14y=24+14+2=3+=.
Czyli20+3=5ix=1,y=2, z=3,t =4. Sktadowymi v w bazie f;, f5, f3, f; sa liczby
(1,2,3,4).
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Teraz zmiana bazy. Zachodzi oczywisty zwiazek f; = e;(R. f)j ;» czyli jawnie

1 0 0 1
-1 1 0 0
(f1, f2,£3,£1) = (e1, €2, €3,€4) 0 -1 1 0
0 0 -1 1

Aby mie¢ to samo w druga strone trzeba albo odwrécié¢ stojaca tu macierz (co umiemy juz
robi¢ mechanicznie, ale to dobre dla wprawnych w robieniu “fiku-miku” na kolumnach lub
wierszach - w tym ostatnim powinni by¢ dobrzy poeci!), albo po prostu rozwiazaé cztery
rownania (na szczescie sa one proste). Pierwsze z nich, e = x1 ) + yi fo + 21 f3 + ¢4 £,

daje uktad

r1+t =1
—r1+y;1 =0
—y1+z21 =0,
-1+t =0

1

ktorego jednoznacznym rozwiazaniem sa r1 = y1 = 2 = t1 = 5 (wida¢ goltym okiem, zZe

to jest ok.). Drugie, ey = o f] + yo fo + 25 f5 + 5 4, daje uktad

To+1ty = 0
—To 1y =1
—Y2+ 29 = 0,
—29+1ty = 0

0 rozwigzaniu xy = —%, Yo = 29 = tg = % (tez widaé, ze to ok.). Trzecie e3 = x3f; +
ys o + 23 f3 4+ t3 £, prowadzi do

r3+1t3 =0
—x3+ys = 0,
—ys+z23 =1
—23+1t3 =0

i ma rozwiazanie x5 = y3 = —1, 23 = t3 = % Wreszcie, czwarte ey = x4 f) + ys f5 + 24 f5 +

29
t4 f4, czyli

Ta+ts =0
—z4+ys = 0,
—ys+2z4 = 0
—z+ty =1
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daje vy = ys = 24 — %, ty = % Mozemy wigc napisa¢ zwiazek e; = fj, [Rfee]kj jawnie:

1 -1 -1 -1

111 1 -1 -1

(61,62,63,64) = (flaf2>f3af4) 5 1 1 1 -1

1 1 1 1

Sprawdzmy, ze to jest istotnie macierz odwrotna

1 -1 -1 -1 1 0 0 1 1 0 0 0
R R I B By | -11 0 0] [0 1 0O
Jeer Tl Tl 11— 0 -1 1 0] |00 10
1 1 1 1 0o 0 -1 1 0 0 0 1

Czyli jest ok. Teraz sktadowe v w bazie ;. Mamy v = f; vff) = ej[Reef]jivéf), czyli

Uiy = [Reweyl; v(5)- Jawnie:

1 0 0 1\ /1 5
-1 1 0 of]2]| |1
0 -1 1 o3[ 1|
0 0 -1 1) \4 1

co powinno bylo od poczatku by¢ oczywiste.

Przypomnienie.
Odwzorowanie F' z p. wektorowej V w inna (lub te sama) p. wektorowa W (oczywiscie
w ogolnosci przestrzenie V' i W moga mie¢ inne wymiary), F': V. — W jest liniowe jesli

F()\lvl + >\2V2) = >\1F(V1) + )\QF(VQ) .

Zadanie dziatania takiego odwzorowania na (wszystkie) wektory bazy e; p. V wyznacza
jednoznacznie jego dziatanie na dowolny wektor v z tej przestrzeni.

Przyklady

i) Odwzorowanie F': V — W dane wzorem F(v) = a, gdzie v € V, a a jest ustalo-
nym wektorem z W nie jest liniowe; ii) F'(v) = v + a réwniez nie jest; iii) odwzorowanie
F(v) = av, gdzie « jest liczba z ciala jest liniowe; iv) F(v) = (a]v)b, gdzie a i b sa
ustalonymi wektorami, a (-|-) jakims iloczynem skalarnym? jest liniowe, v) za$ odwzo-
rowanie F'(v) = (a|v)v nie jest. Jeszcze inny przyklad: niech V' = Map(R,R) bedzie
przestrzenia wektorowa funkcji odwzorowujacych R w R (to jest przestrzen wektorowal).
Niech F' odwzorowuje V' w V w taki sposob, ze kazdej funkcji f € V' przypisuje funkcje

230 iloczynach skalarnych jeszcze nie byto wiec powiedzmy tu, ze jest to maszynka, do ktérej wsadza
sie dwa wektory i otrzymuje liczbe z ciala, przy czym maszynka ta dzialta liniowo (jak u Lema: “sepulki
- patrz sepulkowanie, sepulkowanie - patrz sepulki”, - przeciez wlasnie usitujemy ustali¢, co to znaczy
“liniowe”...) wzgledem kazdego z tych wektorow.
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g € V zdefiniowang wzorem g(x) = f(x + 1) — f(x); w innym zapisie (zgodnym z bardzo
wlasciwym widzeniem funkcji jako maszynek z dziurkami - dwiema, jesli to sa funkcje
z V. = Map(R,R) - do pierwszej z ktorych wrzuca sie liczbe z R i otrzymuje z drugiej
dziurki inna liczbe z R) wyglada to tak: F[f(-)] =¢g(-) = f(- +1) — f(); kropka oznacza
wtasnie dziurke do ktorej wsadza sie liczbe. Odwzorowanie F' tez jest liniowe.

Zwykle obraz wektora v przy liniowym odwzorowaniu F' nazywa si¢ wynikiem dzitania
F na v. Poza tym zamiast F'(v) pisze sie zwykle F' - v.

Zadanie 23
Czy odwzorowanie V = R w W = R? zadane wzorem

I * @+ 2)2—2—2—4
?ZJ - 4 + 2y + 62

jest odwzorowaniem liniowym? Jesli jest, znalez¢ jego macierz w kanonicznych zero-
jedynkowych bazach R? i R2.
Rozwigzanie: Pytamy, czy

Ty To A1T1 + Aoz
H{M |y | +X |y =H| | My + Ao
Z1 29 )\12’1 + )\222

_ |:(>\11’1 + >\2$2 + 2)2 — ()\11’1 + >\21’2) — ()\121 + >\222) — 4:|
411 + Aaw2) + 2(A1yr + Aayz) + 6(Aiz1 + Ag2)

jest tym samym, co

T T2
A H Y1 + X\ H Y2
21 22

) (11 +2)2 -2 — 20— 4 ) (r2+2)% —a9 — 20— 4
- 4 + 2y + 62 2 4o + 210 + 629 '

Oczywiscie nie jest, bo tu np. nie wystapi wyraz A\ Aox122. To zamyka sprawe.

Zadanie 24
Wzor
T T
F i) = |2+ 2!13'2 s
XT3 T2 + 31’3

zadaje odwzorowanie liniowe przestrzeni wektorowej R?® w nig samg: F : R3 — RS,
Znalez¢ macierz tego odwzorowania w bazie kanonicznej (zero-jedynkowej) e, es, es,
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oraz w bazie tworzonej przez trzy wektory vy, va, vs:

Vi = e+ e2+e3,
Vo = €1+ € —|—283,

V3 = el—|—262+3€3.

Sprawdzi¢ dziatanie otrzymanych macierzy na wektorze w, ktéry w bazie kanonicznej ma
sktadowe (3,2,1).

Rozwigzanie: W tym zadaniu mamy do czynienia z “zZywymi” wektorami (kwadratowe
nawiasy!), tj. mamy jawny przepis na znalezienie obrazu dowolnego wektora bez odnie-
sienia do jakichkolwiek baz. Podanie macierzy jest wiec tu sztuka dla sztuki. Poniewaz
F odwzorowuje R? w te sama przestrzen R?® naturalne (ale nie obowiazkowe!) bedzie
znalezienie najpierw jego macierzy w tej samej kanonicznej zerojedynkowej bazie e; “z
obu stron” (co to znaczy, wyjasni sie w dalszych zadaniach). Aby ten wyboér byt jasny
bedziemy t¢ macierz oznacza¢ Fleye). W celu znalezienia tej macierzy Fle).) odwzoro-
wania liniowego F' w jakiej$ bazie (tu: w bazie kanonicznej) obliczamy (i to jest przepis
ogolny!) F na wektorach tejze bazy i otrzymane wektory-obrazy rozkladamy znow w
bazie (wektorowej przestrzeni, w ktéra F' odwzorowuje):

:e1+e27

:282+93,

e
—~
o
(o)
SN—
Il
T
—o0 0 OO OO+
|
WO O RO O

F(83)EF :383.

Nastepnie otrzymane trojki liczb: (1,1,0), (0,2,1) oraz (0,0, 3) bedace wspotczynnikami
rozkladow wektorow F'(e;) na wektory bazy tej drugiej przestrzeni (ktoéra tu jest ta sama
przestrzenia R3), tj. na wektory e, e, i e, stawiamy po kolei “na sztorc”. Otrzymujemy
W ten sposob macierz F(e;) = e; F/(e;) = e; [F(¢)e))’;- Jawnie:

1
Feyey = | 1
0

=N O
w o O

Jesli teraz chcemy znalezé wartosé F' na wektorze w (“warto$¢” tzn. wektor bedacy
obrazem w przy odwzorowaniu F') o sktadowych (3,2,1) w bazie e; (tj. warto$¢ F' na
wektorze w = 3e; + 2e; + e3), to dzialamy na te skltadowe macierza Fie)e):

1 0 0\ /3 3
1 20]|(2=1(7],
01 3/ \1 5
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czyli, w zapisiec wskaznikowym: F(w) = e; F'(w) = €; [F(o))]"; Wiy . F(w) =3e; +
7 ey + 5 e3. Poniewaz tu mamy podany przepis, jak odwzorowanie F' dziala na zywe
wektory, mozna ten sam wynik dosta¢ bezposrednio:

3 3 3
F 2 =1|342-2| =|7|=3e;+7ey+5e3.
1 24+3-1 5

Teraz znajdziemy macierz odwzorowania I w tej drugiej bazie. Poniewaz znamy v;
jako kombinacje liniowe e;, mamy tez od razu macierz przejscia Re. ,:

1 1 1
Re<—v = 11 2 ’
1 2 3
a odwrotng do niej macierz R,. . rowniez nietrudno znalezé (patrz zadania 18 i 19):
1 1 -1
Ry e = 1 -2 1
-1 1 0

Dzialajac na skladowe wektoréw w bazie v; macierz [F(,).) powinna dawac skladowe
obrazow tych wektorow w bazie v;. Zgodnie z logika musi wiec ona by¢ dana iloczynem
macierzy Ry et Fleye)  Reco:

F(U)(U) = Ryee F(e)(e) “Reey = 1 -2 1

1
1
0
1 1 -1 11 1 -3 -5
=Rye Fom=[ 1 -2 1 (3 3 5 ]=(-1 2 2
-1 1 0 4 7 11 2 2 4
“Po drodze” powstala macierz Fio) ) (ta z jedenastka w prawym dolnym rogu; jest to
wtasnie macierz odwzorowania zapisana w réznych bazach “po obu stronach”, co jest
naturalne, gdy F' odwzorowuje przestrzen wektorowa V' w przestrzenn wektorowa W inng
niz V, ale co, gdy F' odwzorowuje V w nia sama, jest pewna ekstrawagancja), ktora
skadinad tatwo mozna dosta¢ bezposrednio dziatajac odwzorowaniem F' wedtug podanego
przepisu na “zywe” wektory v; i rozkladajac ich obrazy w bazie kanonicznej e;:

1 1

F(vi)=F 1 =|3| =e+3ey+4e;3,
1 1

F(ve)=F 1 =|3| =e+3ey+ Tes,
(1] [ 1

F(vy)=F | |2 =|5|=e +d5e+1le;.
_3_ _11
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Bezposrednie znalezienie w ten sposob macierzy F,,) wymaga dalszego roztozenia wekto-
rOw po prawej stronie na wektory bazy v;. Zamiast tego tatwiej patrzac na juz otrzymana
macierz F,)) (tj. biorac liczby z jej kolumn i tworzac z nimi kombinacje liniowe wektorow
bazy v;) sprawdzi¢, ze jest ona z tym, co by wyszto z tej procedury:

(1] 1 1 1
Ovi— vo+2vs= 01| — [1]+2]2]| =13},
1] 2] 3] 4]
(1] 1] (1] 1]
—3vi+2vo+2vy=-3|1|+2|1|+2|2]|=13],
| 1] 2] 3] |7
(1] (1] (1] [ 1
—5vi+2ve+4vs=—5|1|+2|1|+4|2|=1|5
1] 2] 3] | 11

Mozemy tez sprawdzi¢ dziatanie otrzymanych macierzy Fiey.) oraz Fi,w) na skladowe
wév) w bazie v, wektora w = 3e; + 2e, + e3. Skladowe te, w(lv), w(zv) i w?v) W naszej

notacji, nalezaloby dosta¢ rozwiazujac uktad rownan

1 1 1 3

1 2 3
1 UJ(U) + 1 ’LU(U) + 2 UJ(U) = 2 y
1 2 3 1

(po prawej stoi zywy wektor w), ale prosciej jest wykorzysta¢ znaleziona juz macierz
Ryc.:

W 11 -1\ [wg 11 -1\ /3 4
wly | =11 -2 1 wly | =1 -2 1 2 =10
w? -1 1 0 w? -1 1 0 1 ~1

(v) (e)
(Mozna sprawdzi¢, ze jest to rozwiazanie podanego uktadu rownan). Mozemy teraz spraw-
dzi¢ dzialanie macierzy Fie).,) na wfv):

11 1 4 3
33 5 0o |l=|(7],
4 7 11) \ =1 5

czyli, ze F(w) = 3e; + Tey + Ses, oraz [, na wzg,):

0 -3 -5 4 5
-1 2 2 0 |=|-6],
2 2 4 ~1 4

czyli F(w) = 5vy — 6vy + 4vs, co oczywiscie jest tym samym zywym wektorem:

1 1 1 3
Sl =6 (1| +4 (2| =|T7
1 2 3 o
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Uwaga: Tak jak skladowe wektora v piszemy w tym skrypcie jako vée) lub vé 'Y aby
pamictac¢, w jakiej bazie sa to sktadowe, tak tez i macierz odwzorowania liniowego opa-
trujemy?* symbolami méwigcymi w jakich bazach jest ona dana. Zauwazmy przy tym, ze
wprowadzona tu notacja jest niezwykle sugestywna: symbole przypominajace, co jest w
jakiej bazie oraz symbole na macierzach przejécia uktadaja sie w logiczne ciagi, nie po-
zostawiajac miejsca na watpliwosci, przez jaka macierz, z ktorej strony trzeba pomnozyé,
by przejs¢ z jednej bazy do drugie;j.

Zadanie 25

W przestrzeni wszystkich odwzorowari R w R (matematycy oznaczaja ja Map(R, R), ale
jak ja zwal tak ja zwal..., w kazdym razie jest to taka wieeeelka przestrzen) podprzestrzen
wektorowa V' jest rozpieta przez funkcje fi(x) =sinz i fo(x) = cosx (czyli to jest jakas
tam maciupenka podprzestrzen w tej wielkiej przestrzeni). Czy odwzorowanie wektorow
tej podprzestrzeni zadane wzorem F°[f(z)] — f(z + «) jest odwzorowaniem liniowym?
Jesli jest, to czy mozna podaé jego macierz F(Oji)(f) w bazie wektorow f;(x),i=1,27
Rozwigzanie: Odwzorowanie F'* jest liniowe, bo

F¥\gsinz 4+ A\ cosz] = Agsin(z + ) + A, cos(z + «)
= A\ [sinx] + A\ F*[cos z] .

Macierz F e W bazie wektorow f;(x), i = 1,2 mozna podaé tylko pod warunkiem, ze
F odwzorowuje podprzestrzenn V' w nia sama (nie wyprowadza wektoréw poza te pod-
przestrzen). Aby sprawdzi¢, czy tak jest, znajdujemy dziatanie F** na wektory bazowe i
patrzymy, czy wynik (obraz wektora f;(z)) da sie znéow roztozy¢ na te wektory. Okazuje
sie, ze sie da:

Fo(fy) = F[sinz] = sin(z + o) = cosasinz + sinacos
F(f;) = F%[cosz] = cos(x + o) = cosacosz — sinasina.

Zatem, stawiajac wspoOtczynniki “na sztorc” (i pamietajac, ze baza jest uporzadkowana,
najpierw sinx potem cos ),

po_ (cosa —sin«
NN~ \sinae  cosa /|-

Zadanie 25’
Odwzorowanie F' : V — V trojwymiarowej przestrzeni V', ktorej baze stanowia wektory
er, € 1 e3, W te sama przestrzen V jest zadane wzorem

F(v) =aS(vla),

w ktorym a = e; —2e3, a S(-|-) jest iloczynem skalarnym (o ktérym ogolniej bedzie dalej),
tj. funkcja “potykajaca’ dwa wektory i dajaca w zamian liczbe z ciata, ktérym jest tu R.;

24Przynajmniej dopoki jesteémy w algebraicznym “przedszkolu”.
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funkcja ta, jako ze jest biliniowa, tzn. liniowa w kazdym ze swoich argumentéw jest na
uzytek tego zadania zdefiniowana “szkolnym” wzorem

S(eilej) = dy; -
(Symbol §;;, czyli delta Kroneckera, juz w tym skrypcie byl). Napisa¢ macierz Fie()

odwzorowania F' w bazie e;.

Rozwigzanie: Zgodnie z przepisem z Zadania 25 znajdujemy dziatanie F' na wektory

bazy e;:
F(el) = (91 — 283) S(el|el — 263) =€
F(eg) = (91 - 283) 5(82|81 - 263) = 0,
F(eg) = (el — 263) S(e3|el — 263) = —261 —|—463 .

—283,

Dalej zgodnie z tymze przepisem, wspotczynniki rozktadu w bazie e; otrzymanych wek-
toréw (obrazow wektorow bazowych) stawiamy na “sztorc”:

1 0 —2
Fee=10 0 2
—2 0

Zadanie 25"

Napisa¢ macierz odwzorowania liniowego F: Myyo — Myyo (tj. odwzorowujacego prze-
strzenn wektorowg My, o macierzy M wymiaru 2 X 2 o rzeczywistych elementach w nig
sama) zadanego wzorem F (M) = X - M, w ktorym

a b
X = .
c d
w “kanonicznej” bazie?® tworzonej przez cztery zero-jedynkowe macierze

[t _fo ool oo
1_007 2_007 3_107 4_017

Rozwigzanie: Postepujemy standardowo:

o[22 [3 8] [2 2] o s
F(my) = CCL Z 8 (1] = 8 CCL =amy+cmy,
o= [£ 2] [2 2] [& 5 -om o
o= [2 2][8 ][22 -omesame

25Piszemy macierze w kwadratowych nawiasach, gdyz sg one tu “zywymi” wektorami z przestrzeni
Mo yo.
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Stawiajac na “sztorc” wspotczynniki rozktadu obrazéw wektoréow bazowych m; na wektory
bazowe znajdujemy

Flomym) =

o0 o9
o O e O
O QO o
QL OO

Zadanie 25"

Niech V,, bedzie przestrzenia wektorowa wielomianéw stopnia < n i niech odwzorowanie
F bedzie operacja wziecia pochodnej wielomianu: F[W (x)] = W'(z). Traktujac tu F jak
odwzorowanie V;, w V;, poda¢ jego macierz Fi.).) w bazie kanonicznej e, = x* uporzadko-
wanej nastepujaco: (e, €,_1, ..., €1, €y) oraz macierz F( s tego samego odwzorowania
w (uporzadkowanej) bazie

1
fp=1, fi=x-1, f2:2—(g;—1)2 oo £y = =(z—-1)".

Rozwigzanie: Jak tatwo sprawdzic,

0 0 0 0 0
n 0 0 0 0
0 n—1 0 0 0
Feye) =
0 0 0 10
Istotnie: w rozpatrywanej bazie ogdlny wielomian W (zx) = a,z™+...a;x+ao ma sktadowe
(Gpy Qp-1, ... a1, ag), a F[W] ma sktadowe (0, na,, (n—1)an_1,...,a1), ktore oczywiscie
dostaje sie dzialajac podana tu macierza na sktadowe (a,, a,—1, ... ,a1, ag). A gdyby
wektory bazy uszeregowac¢ odwrotnie, tj. (eg, €1, ...,e,_1, €,), to macierz Fi.)) miataby
postac
0 1 0 0 0
0 0 2 0 0
Fleye) = S
000 ... 0 n
0 0 0 0 0

Dzialajac odwzorowaniem F' na wektory bazy f; znajdujemy, ze F(fy) = f;_1 (przy
czym F(fy) = 0, czyli tak jakby f 1 = 0). Stad macierz F' w bazie (f, fi, ..., f,_1, £,),
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ma postac

010 0 0
00 1 0 0
Fipyp = S
000 ... 01
000 ... 00

Zauwazmy na koniec ze de facto F' odwzorowuje V,, w V,_; w zwiazku z czym, jesli
potraktowac¢ F w ten sposob, to macierz F| ) bedzie wymiaru (n—1)xn, tj. bedzie miata
o jeden (ostatni, zerowy) wiersz mniej (macierz Fi.).) splaszczytaby si¢ zas o pierwszy
ZEerowy wiersz).

Zadanie 26
Mamy przestrzen wektorowa wielomianéw stopnia < 3. Definiujemy odwzorowanie F' z
tej przestrzeni w przestrzen wektorowa wielomianéw stopnia < 2 wzorem

FIW (x)] = W(x) + 2°W(0) + 122 /1dtW(t) :

Sprawdzi¢, czy odwzorowanie F' jest liniowe. Jedli tak, to znaleZé jego macierz w bazach
kanonicznych (eg, €1, €3, €3) przestrzeni wiclomianéw stopnia < 3 i (eg, €1, e2) przestrzeni
wielomianéw stopnia < 2, gdzie e, = x".

Rozwiagzanie: F jest liniowe bo jesli W (z) = a; WM (x) + a, W3 () to

FIW (x)] = %[alw(l) (2) + WP (2)] + 22 [ WD (0) + a,WP(0)]

1
+12x / dt [oa WWD(t) + aaW (1))
0

d 1
= %W(l)(x) + a2 WH(0) + ay 122 / dt WW(t)
0

d 1
+an %W(z) () + az® WP (0) + oy 1217/ dt W2 (1)
0

= FIWW(2)] + aa FW P (2)].

Teraz mozemy znalezé macierz odwzorowania F' w bazach kanonicznych. Dowolny wielo-
mian stopnia < 3 jest postaci:

_ 0 1 2 3 — 0 1 2,2 3 ,.3
W = e +eiWi) + el + esWig = Wiy + Wiz + Wiga™ + Wga™.

gdzie W(ie) € R sa sktadowymi wielomianu W w bazie e;. Co F robi z wektoréw bazowych?

Fle)) = F[1] = 2°+12z=  12e; + ey,
Flei]=Flz] = 146z =ey+6eq,

Fley,) = Fl2%] = 6x = Ger,

Fles) = F[2’] = 32°+3z = 3e;+3e;.
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Z liniowosci F' mamy wiec (w konwencji sumacyjnej: powtarzajace sie wskazniki sg wy-
sumowane):

FIW| = Fle:| Wi,y = ex [Floy0)); W(e)

gdzie ey[Fe)))F; = Flei]. Korzystajac ze znalezionego wyzej dzialania F' na wektory bazy
e; latwo znajdujemy macierz [F{.))]¥; (k numeruje jej wiersze, a i kolumny) odwzorowania
E

0100
[Floeli=(12 6 6 3
1 00 3

Sprawdzmy jak to dziata. Niech W (z) = 223 — 322 + 7. Dzialanie F' na W mozemy latwo
znalez¢ bezposrednio ze wzoru:

1
F[W] = 622 —6:E+:):2-7+129:/ dt (2t* — 3t> +7) = 722 + 132> = 72e;, + 13 e,.
0

Sktadowymi W(ie) wielomianu-wektora W w bazie (e, €1, €2, €3) sa

7

-3
2

Dzialajac na te skladowe macierza [Fie()]¥; dostajemy

0 1 .00 g 0
12 6 6 3 3| = 21,
1 0 0 3 9 13

czyli istotnie sktadowe X (’fe) wielomianu X = F[W] w bazie (eg, e1, €s).

Przypomnienie.

Obrazem® (imF) odwzorowania liniowego F : V — W nazywa sie¢ zbior wszystkich
wektorow w € W, dla ktorych istnieje taki wektor v € V| ze w = F(v). Jadro (kerF)
odwzorowania liniowego F' tworza wszystkie te wektory v € V', na ktorych F' daje zero
(tzn. przeprowadza je na wektor zerowy przestrzeni W).2” Zaréwno obraz, jak i jadro F

26Nie myli¢ symbolu “im” z czecia urojona (oznaczang “Im”) liczby zespolone;!

27 Jeden z naszych kolegow - nomina sunt odiosa, jak moéwili w takich przypadkach starozytni Rzymianie
- z ktoérym miewaltem przyjemnosé¢ wyktadaé studentom ten “Poczatek algebraicznego mocarstwa” (patrz
rozdzial XVII niezwykle zajmujacych Wyktadow z historii matematyki M. Kordosa) zastynal usilnym
wtlaczaniem w studenckie gtowy pojecia kojgdra. Poniewaz mimo uprawiania przez ponad 30 lat fizyki
teoretycznej spotkalem sie tylko z jadrami kobaltu %°Co (bylyzby to owe kojadra?!), ktore pani C.S. Wu
postuzyly do przeprowadzenia przelomowego doswiadczenia dowodzacego naruszenia przez oddzialywa-
nia stabe parzystosci, wysunatem konstruktywna propozycje wystania tego kolegi w ramach reedukacji
fizycznej natychmiast w kosmos i to z napedem kojadrowym!
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sg podprzestrzeniami wektorowymi odpowiednio przestrzeni W i przestrzeni V. Zachodzi
tez zwiazek

dimV = dim(ker /") + dim(imF') .

Zadanie 27

Znalez¢ jadro (ker) i obraz (im) odwzorowania F' trojwymiarowej przestrzeni wektorowej
V w inng (a moze te sama - nie jest to istotne) przestrzen wektorowa W majaca rowniez
wymiar 3; w bazach v; € V i w; € W macierz F' ma postac

1 2 3
Fuywy =14 56
78 9

Rozwigzanie: Znajdzmy najpierw jadro. Szukamy zatem wszystkich takich wektorow
u=v; u’('v), ze F'(u) = 0. Jest to rownowazne zadaniu, by

12 3\ /U 0
45 6| |uy =101,
78 9) \u}, 0

czyli, by
U%U) + 2 U?U) + 3U?U) =0 y
1 2 3
4'&@) +5U(U) +6U(U) = O,
Tugy + 8uly +9ufy = 0

Odejmujac od trzeciego trzy razy pierwsze, a od drugiego dwa razy pierwsze dowiadujemy
sie, ze 2 u%v) + u%v) = 0, a stad, po wstawieniu tego do pierwszego, ze u?v) = u%v). Zatem

wszystkie wektory jadra sa postaci
A(vi—2vy+v3) = Aj € kerF,
z dowolnym czynnikiem A. Zatem dim(kerF') = 1, co oznacza, ze dim(imF') = 2.
Szukamy nastepnie obrazu (imF’), czyli pytamy, jakie wektory t = w; t’('w) daje sie

otrzymacé z jakiegos u € V. Inaczej méwiac, dla jakich t’('w) istnieja jakies u%v), z ktorymi
spelniony jest zwiazek

1 1
1 2 3 Ug,) tgw)
4 5 6 ui())v) — tgw) 5
7 8 9 U, t(w)

lub, co réwnowazne, spetniony jest uktad rownan
1 2 3 _
U(v) + 2 U(v) + 3 U(v) = t(w) s
1 2 3 _
4U(v) + 5 U(v) + 6 U(v) = t(w) s
1 2 3 _ 43
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Znéw odejmujac od trzeciego trzy razy pierwsze, a od drugiego dwa razy pierwsze dosta-
jemy rOwnania:

1 2 42 1
2uipy T Uy = ) — 2t
1 2 43 1

Wida¢ z nich, ze aby istnialo jakie$ rozwiazanie, sktadowe wektora t (w bazie w;) musza
spelnia¢ zwiazek 2 t%w) — 4t%w) = t‘z’w) — Bt%w), czyli t%w) — Qt%w) + t‘z’w) = 0. Jesli jest on
speliony, to mozemy rozwiazywaé¢ dwa pierwsze rownania (drugie przerobione jak wyzej)

1 2 3 41
U(U) + 2 U(v) + 3 U(v) = t(w) s

1 2 42 1
2ugy) + U = tw) = 2t -
2
(w

Widag¢, ze dla dowolnego u?v) (i dowolnych t%w) it )) mozna tak dobraé u%v) i u%v), by te

rownania byty spelnione. Zatem jesli sktadowe t%w) (w bazie wektorow w;) wektora t € W
spetniajg zwiazek
tlw) — 2ty + ) = 0,

to t jest obrazem jakiego$ wektora z V. Co wiecej, wektor, ktorego t jest obrazem, nie
jest wyznaczony jednoznacznie; wynika to jasno choéby z tego, ze mozna sobie wybraé
dowolne u:()’v) i znalez¢ rozwiazania na u%v) 1 u%v). Jest to oczywidcie zwiazane z tym, ze
jadro odwzorowania, kerF', jest nietrywialne (nietrywialne tzn. zawierajace wiecej niz
tylko wektor zerowy!). Poniewaz sktadowe wektora t, ktéry moze by¢ obrazem jakiegos u
wiaze tylko jeden warunek, imF' jest podprzestrzenia 3 — 1 = 2 wymiarowa; jako jej baze
mozna wybra¢ np. liniowo niezalezne wektory

h) =w; —w3, hy=wy+2ws,

ktorych sktadowe (w bazie w;) spelniaja powyzszy warunek.

Alternatywnym spojrzeniem na problem wyznaczenia obrazu F' jest zauwazenie ze
skoro F(v;) = W, [Flu)w)’;, to kazdy wektor nalezacy do obrazu odwzorowania F ma
zawsze postaé jakiej§ kombinacji liniowej wektorow

n = wj [F(w)(v)]jl = wi+4wy + 7Twg,

np = w; [F(w)(v)]j2 = 2W1 + 5wy + 8W3 ,

nz = w; [F(w)(v)]jg = 3W1 + 6W2 + 9W3,

i problem wyznaczenia wymiaru obrazu odwzorowania F' sprowadza si¢ do wybrania li-
niowo niezaleznych wektorow n; (wiemy przy tym, ze trzy wektory w; sa liniowo nie-
zalezne, bo tworza baze). To za$ jest rownowazne sprawdzeniu, czy kolumny macierzy
Fluw)@w) potraktowane jak wektory z R? sa liniowo zalezne, czy nie, a jesli tak, to ile z nich
jest liniowo niezaleznych (wtedy te liniowo niezalezne kolumny przemnozone odpowiednio
przez wektory w; stanowia dobra baze podprzestrzeni imF'). Z wykonanych juz w tym
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zadaniu rachunkow tatwo zobaczyé, ze tylko dwa z wektoréw n; sa liniowo niezalezne bo
np. n3 = —n; +2n,. Zatem jako baze imF' mozna przyjac n; i ny. Latwo tez zobaczyé, ze
n; = hy +4hy i ny = 2h; 4+5h,, czyli n; i ny rzeczywiscie rozpinaja te sama podprzestrzen
imF'.

Zadanie 27’

Znalez¢ jadro (ker) i obraz (im) odwzorowania F' z czterowymiarowej przestrzeni V w nia
samg zadanego jej bazie e; macierza

Feye) =

O = ==
— N O
O~ = =

O N

—1

Rozwigzanie: Nietrudno zobaczy¢ (golym okiem!), ze macierz Fi).) daje zera, gdy
dziala na kolumienki

1 0
0 1
-1 |’ -2
0 1

Zatem jadro ker F' rozpinaja dwa liniowo niezalezne (wida¢, ze one takie sa!) wektory

Ji=e —e3, Jo=e—2e3+ey.

Stad dim kerF = 2, a wiec dim imF = dimV — dim kerF" = 4 — 2 = 2. Aby znalezé
wektory (juz wiemy, ze musza by¢ dwa) rozpinajace obraz imF (jesli wezmiemy dwa
takie, to beda one baza imF') wystarczy zauwazy¢, ze kolumienki sktadowych wektorow
bedacych obrazami F' sa kombinacjami liniowymi kolumienek C; (zaréwno kolumienki
sktadowych wektorow jak i kolumienki macierzy mozemy przez chwile potraktowac¢ jak
wektory z R*) macierzy Fe )

= Cﬂ)(le) + CQU(26) + Cg’(]?e) + C4U?e) y

gdzie vfe) sa sktadowymi wektora v, na ktory dziala F. Z kolei z tego, ze jadro roz-
pinaja podane wyzej wektory j; i jo wynika, ze jako wektory cztery kolumienki C; sa
liniowo zalezne; liniowo niezalezne sa tylko dwie z nich: np. C, i C3. Zatem wszystkie
kolumienki-wektory sktadowych wektoréw bedacych obrazami F' mozna dostac¢ takze jako
kombinacje liniowe tylko kolumienek C, i C3 macierzy Fle).). Stad juz wynika, ze za
wektory rozpinajace imF' mozna np. przyjac¢ wektory

0 =€ +e+e;s, 0y =€ +2e3+ ey,

65



tj. kombinacje liniowe wektoréow bazy, wspotczynnikami ktorych to kombinacji sa elementy
kolumienek C; i C, macierzy Fle))-

Jest pouczajace sprawdzenie, ze rzeczywiscie wektory o; i 0g rozpinaja caly obraz F'.
W tym celu dzialamy na sktadowe dowolnego wektora ae; +bey +ces+de, z V macierza
Fleye) 1 pytamy, czy otrzymany w wyniku tego odwzorowania wektor (a + b+ c+ d)e; +
(a+c+ 2d)es + (a4 2b+ c)es + (b — d)ey jest, przy dowolnych a, b, ¢ i d, kombinacja
liniowa 07 1 09, czyli, czy mozna zawsze tak dobra¢ wspotczynniki o i 3, by zachodzita
réwnosc

(a+b+c+deg+(a+c+2d)es+ (a+2b+c)es+ (b—d)es = a0, + S0,
Ea(el+e2—|—eg)—l—ﬁ(el—|—2e3+e4).

Po przyréwnaniu wspotezynnikéw przy tych samych wektorach bazy sprowadza sie¢ to do
pytania, czy przy dowolnych a, b, ¢ i d istniejg takie o i 3, ze spelnione sg réwnosci

a+p =a+b+c+d,

a=a+c+2d,
a+20 = a+2b+c,
b =b—d.

I rzeczywiscie tak jest: rownania drugie i trzecie wyznaczaja « i [, ktore spetniaja tez
réwnania pierwsze i trzecie.

Zadanie 28

Znalez¢ jadro (ker) i obraz (im) odwzorowania F' z Zadania 26.

Rozwigzanie: Jadro jest to w tym przypadku podprzestrzenn liniowa przestrzeni wie-
lomianéw stopnia < 3 tworzona przez takie wielomiany W (x), ze F[W (z)] = 0 (zero 0
oczywiscie rozumiane jako wektor-wielomian zerowy). Niech W (z) = azz3+ayx®+ayz+ag.
Zobaczymy, jakie musza by¢ wspotczynniki ag, as, a1, ag, zeby W (x) nalezat do jadra F.
Zazadajmy by

1 1 1
FIW] = 3asx? + 2asx + a1 + apr® + 12z <Za3 + gag + §a1 + ao) =0.

Wymaga to, by a; = 0, 3as + ap = 0 oraz 3az + 6as + 6a; + 12a9 = 0, czyli by cztery
wspotczynniki a; spelniaty trzy rownania. Przyjmijmy ag za niezalezng wielkosé. Wtedy
ag = —%ao iay = —%ao. Zatem jadro odwzorowania F' jest w przestrzeni wielomiandw
stopnia < 3 podprzestrzenia jednowymiarowa rozpieta przez wektor o sktadowych

1
0
1

—

[SN e



w bazie e, = z", takiej jak w Zadaniu 26. Mozemy teraz skorzystac¢ ze znalezionej tam
macierzy [Fe))]’; odwzorowania F' by sprawdzi¢, ze istotnie

0100 3 0

126 6 3| _u,|[=1(0].

1 00 3 6 0
—iX

11 1 11 1
)\(eo — = 2

Jesli zas chodzi o to, jak obraz odwzorowania F' ma si¢ do przestrzeni wielomianéw, to
odpowiedz zalezy od troche akademickiego problemu, co uznamy za przestrzen wektorows,
w ktora wielomiany stopnia < 3 odwzorowuje F. Jesli uméwimy sie, ze jest to przestrzen
wielomianéw stopnia < 2, to musimy zbada¢, czy kazdy wielomian postaci by + by x + byx?
jest F-obrazem jakiego$ wielomianu stopnia < 3. W tym celu musimy zbada¢, czy uktad
réwnan

ay = bo

1
4@0 + 2@1 + 2@2 +a3 = gbl
ap + 30'3 = 62 )

ma rozwigzanie wzgledem a;, dla zupelnie dowolnych b;. Z pierwszego a; musi by¢ rowne
by, to nastepnie do drugiego i przenosimy na druga strone. Mamy wtedy

1
4@0 + 2@2 +a3 = —2b0 + gbl

4&0 + 12&3 = 462,

i stad 2a9 — 1lag = —2by + %bl — 4by. Wybrawszy dowolnie np. a3 mamy stad, dla
dowolnych by, by i by, wyznaczone potrzebne as, a z pozostalych rownan a; i ag. Jak
wiec wida¢ rozwigzanie zawsze istnieje, czyli obrazem F', tj. imF', jest cala przestrzen
wielomianow stopnia < 2. To, ze rozwiazanie jest niejednoznaczne (tylko 2a; — 1lag jest
wyznaczone), tzn. ten sam wielomian stopnia < 2 mozna dosta¢ jako obraz F' z r6znych
wielomianéw stopnia < 3 jest oczywistym wnioskiem w tego, ze kerF' jest nietrywialne,
tzn. nie sktada si¢ wylacznie z wektora (wielomianu) zerowego.

Oczywiscie jesli dla jakiegos kaprysu zechcemy uznaé, ze F' odwzorowuje wielomiany
stopnia < 3 w przestrzenn wektorowa wielomianéw stopnia < n o n > 3, to oczywiscie
imF juz nie bedzie caly ta przestrzenia, bo np. wielomianu W = 52° nie da sie¢ nijak za
pomoca F' z wielomianu stopnia < 3 otrzymac.
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Zadanie 29

Niech wektory fo = 1+, f|; = 2 + 22, £, = 2% + 23, f3 = 22 beda inng baza przestrzeni
wektorowej wielomianéw stopnia < 3 (mozna sprawdzi¢, ze istotnie sa one baza). Znalezé
tej bazie macierz odwzorowania F' z Zadania 26. Wyznaczy¢ takze posta¢ wektorow-
wielomianéw nalezacych do jadra odwzorowania F'.

Uwaga: w przestrzeni wielomianéw stopnia < 2 trzymamy stara, “kanoniczng’ baze
e, = 2", tj. chcemy by nowa macierz odwzorowania F' dzialajac na sktadowe wielo-
mianu stopnia < 3 w bazie f;, dawata sktadowe odpowiedniego wielomianu stopnia < 2 w
bazie e,,.

Rozwigzanie: To zadanie mozemy wykonaé postugujac sie bezposrednio procedura wy-
znaczania macierzy w danych bazach obu przestrzeni: po prostu dzialamy po kolei odwzo-
rowaniem F' na nowe bazowe wektory-wielomiany f; i wynik takiego dziatania rozpisujemy
w bazie kanonicznej ey:

Ff)= F(l+x) = 1—|—x2+12xg:e0+18e1+e2
F(f))= F(z+2°) = 1+2x+12x%:e0—|—12e1
F(f)) = F(a* +2°) = 2x+3x2+12x%:9el+3e2
Ff5)= F@*) = 3x2+12xi:3e1+362.

Stad od razu, stawiajac odpowiednie wspotczynniki na sztorce, dostajemy

1 1 0 0
Fopn=|18 12 9 3
1 0 3 3

W celach pedagogicznych otrzymamy teraz Fi.)s) innym sposobem. Bedziemy po-
trzebowa¢ macierzy przejscia R.. ¢ z bazy f; do bazy e, odwrotnej do macierzy Ry, .
przejscia z bazy e, do bazy f;. Te¢ pierwsza, tu wiasnie potrzebna, R.. f, znajdziemy
tatwo bo mamy

fo = e +ey,

fi = e + e,

f, = € +e3,
f3 = e3.

Stad

(f07f1,f27f3) = (90791782783)

O O ==
O~ = O
_ = O O
_— o O O
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czyli, w zapisie na wskazniczkach, f, = e; [Re. f]j - Jesli mamy teraz dany wektor (wie-
lomian) v w postaci v = f;v(;y (gdzie v(;, sa skladowymi v w bazie f;), t0*®

k ok j
VvV = fk 'U(f) - ej [Re%f]]k U(f) = ej U'(?e) 5
gdzie v{e) = [Rec ), vff). Niech teraz u = F|v]. Macierz odwzorowania F' zapisana “z
obu stron” w bazach kanonicznych e,,, zaréwno w przestrzeni wielomianéw stopnia < 3
jak 1 wielomianéw stopnia < 2, dziata tak, ze jesli u = e; u%e), to
€; u%e) = F[V] = F[ek] U/(ke) = €; [F(e)(e)]ik Uéfe) .
Wyrazajac tu v’(ke) przez vgf) Za pPoImoca macierzy [Re<_f]kj dostajemy
€ “ée) =€ [F(e)(e)]ik [Ra—f]kj U?f) :

Tak wiec sktadowe w bazie e; wielomianu u (otrzymywanego jako obraz wielomianu v
przy odwzorowania liniowym F') ze sktadowych v w bazie f; daje nam macierz

[Fon)'; = [Fleye) k [Reesl; -

Jawnie macierzowo:

1000
0100\ ([, oo 1 1 00
Fop=12 6 6 3|, | | =18 1293
toos)\y . 1 0 3 3

Oczywiscie jest to ta sama macierz, ktora juz otrzymalidémy na poczatku.

Sprawdzmy teraz to wszystko na wielomianie W = 223 — 322 + 7, ktéry juz nam stuzyt
za przyklad w zadaniu 26. Zapiszmy go najpierw w bazie f;. W tym celu wyrazamy
najpierw wektory e; przez f;. Idac “od dotu” mamy: e; = f35, ey = f, —e3 = £, — f3, etc.
Latwo wiec znajdujemy, ze

eg = fo—f +1£, -1,

e = fi —f5+ 15,
€ = f, — 15,
€3 — fg.

ZnalezliSmy zatem macierz Ry .

1 0 0 0

-1 1 0 0
Rpee=1 1 1 1 0|

-1 1 -1 1

287daje sie, ze si¢ powtarzam. Ale to nic: “powtarienija - mat’ uczenija”, jak moéwia tam, gdzie nas
beda wywozi¢ (a wtedy znajomosé tego picknego jezyka sie przyda...).
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odwrotng do R..s. Istotnie,

1 00 0 1 0 0 0 10 0 0
1 1 0 0 -1 1 0O O} _[O0O 1 0O
01 1 0 1 -1 1 0o |00 10
0 0 1 1 -1 1 -1 1 0 0 0 1

Mozemy teraz roztozyc¢ wektor W w bazie f;:

W:2€3—362+760:2f3—3(f2—f3)+7(f0—f1+f2—fg)
=Tf — 71 +4f, - 213,

W bazie f; wielomian W ma wiec sktadowe

Jesli na te sktadowe podzialamy macierza Fi.)s) to dostaniemy

1 100 _77 0
1812 9 3| l=[72],
1o 33/ 13

czyli to samo, co poprzednio (bo to co wychodzi to maja by¢ sktadowe F[W]| w tej samej
bazie, co poprzednio, czyli w bazie e;).

Wektory nalezace do jadra odwzorowania F' musza mie¢ takie sktadowe V(Zf) = a;, na
ktorych zeruje si¢ macierz Fiey(s):

Qo

L1 00\ ([, 0

18 12 9 3 alzo

1 0 3 3 2 0
as

Nietrudno ustali¢, przyjmujac np. sktadowa ag = A jako dowolna, ze sa to wektory o

sktadowych a; = —\, as = —%)\, az = %)\, czyli wektory-wielomiany postaci
Afy — £ — gfmt%fg) =Al+z—(z+2%) - 2(m2+x3)+%x3]
E)\[1—1—61:)32—%x3],
takiej samej, jak ustalilismy to w Zadaniu 28. Oczywiscie te same skladowe V((}) = ),
V(}) = -\, Vé) =—2) V(i}) = 1 )\, mozna bylo tez otrzymac¢ dzialajac macierza Ry. . na

0 _ 1 _ 2
sktadowe V(e) =\, V(e) =0, V(e)

—% A V(?;) = —% A znalezione w Zadaniu 28.
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Zadanie 30
Zapisa¢ macierz odwzorowania F' z zadan 26 i 29 w bazie e, = ", n = 0, 1, 2, 3 przestrzeni
wektorowej wielomianéw stopnia < 3 oraz w bazie g;, j = 0, 1,2 danej wzorami

gy = e€ey+2e +3ey,

g = e +4ey,

g2 = 2 (SHI
(tj. w bazie tworzonej przez wielomiany gy = 1 + 2z + 32%, g, = 3z + 42? i gy = 22?)
bedacej baza przestrzeni wielomianéw stopnia < 2.

Rozwigzanie: Znéw musimy znalez¢ macierz przejscia z bazy e, do bazy g;. Z trzeciego
zwiazku mamy e, = %gg. Z drugiego wtedy 3e; = g1 — 2g,. W koiicu

2( 22) 3 2 1
ey = —_ = — — — = — = —_ = .
0= 8o 3 g1 g2 ng £o 3g1 6g2
Ostatecznie wiec mamy
1 0 0
(80,81,82) = (€0, e1,e2) | 2 3 0
3 4 2
czyli g; = e; [Re<_g]ij oraz
1 0 0
(e, €1, e2) = (80,81, 82) _§ %2 (1] )
6 3 2

czyli e, = g; [Rm_e]jk. Musi oczywiscie by¢ e = g; [Ryeel’ ), = €; [Ra_g]ij [Rgee]jk, czyli
[Recy]’j [Rgee)’y = 6. Mozna to jawnie sprawdzic:

1 0 0
Re<_g . Rg<—e - 2 3 O -
3 4 2

10 0\ /1 00 100
Ryce Recy=|-2 L1 of[2 3 0]=[0 10
AT 00 1

Mozemy teraz zapisywaé sobie zwiazek u = F[v] w dowolnych bazach:
et =ei[Foel vy, i = [Foel’ v,
lub, wyrazajac e; przez g;,
J

g [Ryeel: [Fleyo)' s vy = 8 [Floy) 5 v » cyli g = [Flgol'j v »
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gdzie [Fig)))'; = [Rgeel’ s, [Fle)e))¥;. Jawnie (macierz Fie.) jest podana w zadaniach 26
i 28):

1 0 0 0 100 0o 1 0 0
Floye) = —% 5 0 12 6 6 3= 4 5§ 2 1
2 1 1 2 1

5 T3 2 1003 -5 % 4 -3

Mozna tez mie¢ macierz odwzorowania I w bazie fj, przestrzeni wielomianéw stopnia < 3
i bazie g; przestrzeni wielomianéw stopnia < 2. W tym celu trzeba vge) zapisaé¢ jako

vfe) = [Re(_f]jkvé“f), co da [F(g)(f)]jk = [Flg)e)); [Reeysl's, czyli jawnie (biorac macierz
R..¢]'. z poprzedniego zadania
fl'k 2 PODP g

1 0 0 O
! 1o, 1|0 110 I I TR R |
2 6 2 00 1 1 3 6 2 T2

Te sama macierz Fi, sy mozna takze otrzymac z macierzy Fi.) sy znalezionej w poprzednim
zadaniu: [Fig) )y = [Ryeel’; [Floyp]'y czyli

1 0 0\ /1 1 00 1 1 0 0
Fopn=|-2% 3 0 18 12 9 3= % & 3 1
5 G N B P TR TR

6 3 2 3 6 2 2

SprawdZmy to wszystko na naszym wielomianie W = 22% — 322 + 7, ktory w bazie e;
mial sktadowe (7,0, —3,2). Dzialajac na te sktadowe macierza F{) dostajemy

0 1 0 0 g 0
45 201 = | 24 |,
1o oy 1) |3 3
2 6 2 9 2

to jest sktadowe F[W] w bazie g;. Zatem
83 . 83 ,
F[W]:0-g0—|—24-g1—?-g2:24-(3z+4x)—?-(21'):7293%—13:17 ,
tak, jak by¢ powinno (F[W] jest wektorem i nie moze zaleze¢ od wyboru baz, ktore sa

czyms$ pomocniczym jedynie). Podobnie, dziatajac macierza Fig ) na znalezione w po-
przednim zadaniu sktadowe (7, —7,4, —2) naszego wielomianu W w bazie f; otrzymujemy

1 1 0 0 7 0
16 10 -
6100 3 — | 24 |,
A w9 1 4 8
2 6 2 T2 _9 2
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czyli te same skladowe F[W] w bazie g;.

Zadanie 31

Pewne odwzorowanie liniowe G' z R? w R3 jest takie, ze
1 3 1 —1 —1 —1
1 2 -1 4 0 -3

Zmalez¢ macierz G'(e) tego odwzorowania w bazie kanoniczne;

1 0 0
er= (0], e=|1], es = |0
0 0 1
Zmalez¢ takze wynik dziatania
2
G 0
—1

Rozwigzanie: Dla porzadku trzeba najpierw sprawdzi¢, czy wektory

1 1 -1
f1 = 1 ) f2 = 2 ) f3 = 1 ;
1 -1 0

na ktorych zadane jest dzialanie GG, sa liniowo niezalezne. Jesli sa, to rozpinaja cala
przestrzen R3 i moga by¢ jej bazg. W takim przypadku zadanie odwzorowania G na
tych trzech wektorach wyznacza juz dziatanie G na kazdy wektor z przestrzeni bedacej
dziedzina G, bo kazdy wektor z tej dziedziny mozna zapisa¢ jako kombinacje liniows trzech
wektorow, na ktorych dzialanie G jest znane. Gdyby sie okazalo (ale sie nie okaze), ze
trzy wektory f;, na ktorych dziatanie G jest zadane, sa liniowo zalezne, to trzeba by
sprawdzi¢, czy takie zdefiniowanie G jest niesprzeczne, tzn. czy spetniona jest liniowosé;
nie datoby si¢ jednak wtedy znalezé calej macierzy odwzorowania G w zadnej bazie.
Niemniej, nawet jesli trzy wektory f; nie rozpinalyby calej dziedziny G, nie przekreslatoby
to z gory mozliwosci znalezienia wartosci G na podanym w zadaniu wektorze: mogloby
sie bowiem okaza¢, ze akurat ten wektor jest liniowa kombinacja tych, na ktérych G jest
zadane. Dopiero, gdyby ten wektor nie byt liniowo zalezny od tych, na ktorych dziatanie
G jest zadane, druga czes¢ zadania nie mogtaby by¢ rozwiazana.

Zatem do dziela! Rownanie \if; + \ofy + A3f3 = 0 daje uklad rownan

MA20+ ) = 0,
A= Ao ~ 0.
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7 trzeciego Ay = \; do pierwszego i drugiego, co da uktad dwu réwnan 2\; — A3 = 0 oraz
3A1 + A3 =0, czyli b\ = 0 ete. Widaé, ze jedynym rozwiazaniem jest Ay = Ay = A3 = 0,
czyli wektory f; sa liniowo niezalezne. To samo mozemy sprawdzi¢ gdy chodzi o wektory

3 —1 -1
gi=12|, g=|1], g=]1
2 4 -3

Roéwnanie €81 + &80 + €383 = 0 daje uklad réwnan

36— &— & = 0,
260+ &L+ & = 0,
26 +46—-35 = 0,

ktory tez ma tylko rozwiazanie & = & = &3 = 0, czyli - jak sie tego kiedy$ dowiemy
- odwzorowanie G jest nieosobliwe bo przeprowadza R® w cate R3 (ma wigc trywialne
jadro do ktorego nalezy tylko wektor zerowy). Zatem w bazach: f; przestrzeni wektorow
odwzorowywanych i g; przestrzeni wektorow bedacych wynikiem odwzorowania, macierz
G ma posta¢ trywialna

0
Gy = 0
1

O O =
O = O

Oznacza to, ze jesli G[v] = wiv = f véf), aw =g, wgg), to macierz G g)(s) robi
skladowe'wég) ze sktadowych vé 5 Wwedlug przepisu: wgg) = [Gpls vff), czyli tu po
prostu wgg) = v? -

Jesli teraz f; = ey, [Ree f]"; to vf,) = [Ree g]"; v i odwrotnig, Uiy = [Rf(_e]ik' Uiy
W podobny sposob, jesli g; = ey [Rec ]k, to wfe) = [Reey)®; Wi, i odwrotnie, Wiy =

[Ryee) s wé“e). Jesli wiec znajdziemy macierze [Re,] 1 [Rf—e|, to bedziemy mogli napisac¢

w?@) = [R6<—g]ki wég) = [R6<—g]ki [G(g)(f)]ijvgf)

= [Recg'i [Gion]'s [Breel 1 v10) = [Glero] 1 ey
Zatem [G(¢))]") = [Reeql®; [Gio)p)] [Rye.)’,. Aby wige znalezé macierz Gy odwzoro-

wania G w bazie kanonicznej trzeba znalez¢ macierze [R. 4| oraz [Ry._.|. Plerwsza jest
banalna, bo mamy dane wektorki g; = F[f;]: np. g1 = 3e; + 2ey + 2e3, etc. Stad

3 -1 -1
Re=12 1 1
2 4 =3
Podobnie banalnie jest dana macierz [R.. ¢]:
11 -1
Re=(1 2 1|,
1 -1 0
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ale my potrzebujemy [Rs..]. Musimy wigc rozwiaza¢ uktad réownan wektorowych

f1 = e+ ey +e;s,
f, = e1+2ey—e3,
f3 = —e; + ey.
Od drugiego odjaé pierwsze: es—2e3 = foy—f;. Do drugiego dodaé trzecie: 3e;—e3 = fo+15.
Dalej juz tatwo:
382—663 = 3f2—3f1, 62—263 = f2— fl,
382— ey — f2—|— fg, 682—263 = 2f2+2f3

Stadd 563 = 3f1 - 2f2 +f3 oraz 582 = f1 +f2 +2f3 i teraz e = é(5f1 - f1 - f2 - 2f3 -
3f; + 2f, — f3). Ostatecznie mamy

1
e = g(fl—l—fg—Bfg),

1
€y = g(fl+f2+2f3)>
1
ey — g (3f1 — 2f2 + fg) y
czyli macierz Ry, . ma postac
1 1 1 3
[Rfce] = R 1 1 -2
-3 2 1

Aby sprawdzié¢, czy sie nie pomyliliSmy w rachunkach i przeé¢wiczy¢ mnozenie macierzy
sprawdzamy

11 -1 1 1 1 3 1 0 0
[Reefl - [Rpeel =1 2 1 T 1 1 =2|=(01 0
1 -1 0 -3 2 1 0 0 1
W druga strone tez mozna sprawdzic:
1 1 1 3 1 1 -1 1 0 0
[Rfce] [Rees| = R 1 1 =211 2 1 |]=1010
-3 2 1 1 -1 0 0 0 1

No to $wietnie. Zatem mozemy juz znalez¢ macierz Gy odwzorowania GG w bazie kano-
nicznej e;: [Geye))" = [Ree g ilG o)) j[Bpeel s = [Rewg]"i[Rpeel’y poniewaz [Gg) )] ; =
¢*;. Czyli macierzowo

3 -1 -1\ (/1 1 3 10 2
Gow=|2 1 1 |-z 1 1 —2)=f01 1
2 4 -3 -3 2 1 3 0 —1



Wspomniana wyzej nieosobliwosé odwzorowania GG odbija sie w tym, ze wyznacznik

1 0 2 1 0 2
det(G(e)(e)) = det 0 1 1 =0 1 1 = -7 y
3 0 —1 3 0 -1

czyli jest 16zny od zera. Ten sam wniosek wynikal juz z postaci Gy s (det(Gg) ) =1
po prostu), bo - jak kiedys si¢ dowiemy - det(G(e)e)) = det(Rey - Ggyp) - Rfce) =
det(Recy) - det(Gg)(s)) - det(Ry), a macierze zmiany bazy sa zawsze nieosobliwe, tj.
det(Rey) # 01det(Ry.) # 0. Jesli wiec macierz odwzorowania liniowego (w dowolnych
bazach) jest macierza kwadratowa o niezerowym wyznaczniku, to jadro odwzorowania jest
trywialne (mozna wiec w celu sprawdzenia tego obliczaé - jak sie juz umie - wyznacznik
macierzy odwzorowania). Jesli jednak macierz odwzorowania nie jest kwadratowa, to wy-
znacznik calej tej macierzy nie jest zdefiniowany i w celu sprawdzenie jadra trzeba badaé
liniowa, (nie)zalezno$é¢ kolumn macierzy odwzorowania (co - jak sie tego dowiemy dalej -
tez mozna robi¢ wyznacznikami, ale nie catej macierzy, tylko pewnych jej podmacierzy
kwadratowych).

Gdy mamy juz [G )] w bazie kanonicznej ey, i = 1,2,3, to mozemy latwo znalez¢
dziatanie G na wektor

W bazie kanonicznej ma on oczywiste sktadowe (2,0, —1) a zatem sktadowe wektora G(w)
w bazie kanonicznej sa dane przez

1 0 2 2 0
0 1 1 0 =\ -1
3 0 -1 -1 7

Innym (szybszym) sposobem znalezienia G(w) jest roztozenie w w bazie wektorow f;,

t = 1,2,3, na ktorych dziatanie G zostalo zadane, tzn. znalezienie wspotczynnikéw y;,
1 =1,2,3 we wzorze
1 1 -1 2
|l 4y | 2 | +ys| 1 | =10
1 -1 0 -1
Latwy rachunek daje y, = —%, Yo = %, Ys = —%. Zatem korzystajac z liniowosci odwzo-
rowania G mozemy napisac:
2 1 1 [—1
1 4 7
-1 1 -1 | 0
3] -1 -1 0]
1 4
2 ] 4 -3 7]




tak jak poprzednio.

To co zrobilismy w ostatnim punkcie podpowiada pewien szybki sposob znajdowa-
nia macierzy odwzorowania G/ (podobny do podanego na koncu Zadania 17 sposobu
znajdowania macierzy przejscia z bazy do bazy). Rozlézmy ogdlny wektor z R? na trzy
liniowo niezalezne wektory f;, na ktoérych dzialanie odwzorowania G jest znane. Dosé
tatwo znajdujemy, ze

a 1 1 1 1 1 -1
bl ==(a+b+3c)|1| +=(a+b—2¢)| 2 | +=(-3a+2b+c) | 1
c| ? 1| ° B 0

Drzialajac zatem na ten ogélny wektor odwzorowaniem G mozemy, tak jak wyzej,
napisac:

a 1 3 1 -1 1 -1
Gl|b| ]| ==(a+b+3c) 2| +=(a+b—-2¢) | 1 | +=(=3a+2b+c)| 1
5 9 5 A 5 _3
Zbierajac to do kupy mamy
a 1 5a + 0b+ 10c
G| |b =— | Oa+5b+ 5¢
c 15a + 0b — 5¢

Ekstrahujac zuriick ogélny wektor mozemy prawsg strone przedstawi¢ w postaci

a 1 5 0 10 a
G b = R 0 5 5 b
c 15 0 =5 c

Weiagajac 1/5 widzimy, ze otrzymaliSmy macierz G ). Jest tu jednak pewna pojeciowa
trudnos¢ polegajaca na tym, ze (zgodnie z przyjetym przez nas sposobem zapisu) liczby w
kwadratowych nawiasach oznaczaja “zywe” wektory z R™ (a nie ich sktadowe), a macierz
odwzorowania powinna byé¢ macierza w jakiejs bazie. Tu oczywiscie, poniewaz “Zywy”
wektor z R™ wyglada doktadnie tak, jak jego skladowe w kanonicznej zero-jedynkowe;j
bazie, nalezaloby najpierw zapisa¢ przedostatnig réwno$¢ w postaci

a 5a + 0b + 10c¢
G b =—| 0Oa-+5b+ 5¢c
c 15a + 0b — 5¢

i czytaé¢ ja: “dzialajac na wektor, ktorego sktadowymi w kanonicznej zero-jedynkowe;j
bazie R? sq (a, b, ¢) odwzorowanie G daje taki wektor z R3, ktorego sktadowymi sa réwne
(5a + 0b 4 10¢, 0a + 5b 4 5¢, 15a + 0b — 5¢).” Po czym zrobi¢ to co zrobilismy wyzej i
uzyska¢ macierz, ktora wobec tego jest macierzg G/ey) odwzorowania G w kanonicznych
zero-jedynkowych bazach (z “obu stron”).
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Zadanie 32
O odwzorowaniu liniowym H z R® w R?® wiadomo, ze

1 2 0 ~1 1 ~1
o3 ]=10], Hl |-1]||=|1], gl |o|l]|=13
0 1 1 -3 3 -8

Zmalez¢ wynik dziatania odwzorowania H na wektor

-1
)
2

Czy da sie znalez¢ macierz H.) tego odwzorowania np. w bazie kanonicznej (zero-
jedynkowej)?

Rozwigzanie: Zadanie to ma zilustrowa¢ uwagi poczynione na poczatku rozwigzania
poprzedniego zadania. Nietrudno sprawdzié, ze trzeci z wektoréw, na ktérych znane jest
dzialanie odwzorowania H, jest liniowo zalezny od dwu pierwszych:

Trzeba wiec najpierw sprawdzié, czy rzeczywiscie jest to odwzorowanie liniowe. Na szcze-
Scie jest:

1 1 0 2 -1 -1
H{]0 =H| |3 +3H -1 =|0(+3] 1 |=]3
3 0 1 1 -3 -8

Poniewaz znamy dzialanie H tylko na dwa liniowo niezalezne wektory, a przestrzen jest
trojwymiarowa, wiec zadanie mogloby nie da¢ sie rozwigza¢. Ale sie daje, bo akurat

-1 1] 0
v=|-5]=—|3|+2] -1
2 0] 1
Zatem
-1 1 0 ] 2 -1 —4
H| | -5 =—H| |3 +2H| | -1 =—|0|+2| 1 |=1] 2
2 0 1 1 -3 -7

Oczywiscie wektor v moznaby roztozy¢ inaczej na trzy wektory, na ktorych dziatanie H
jest zadane. Najogolniej:

-1 1 0 1
v=|-5|=(a-1)|3|+Ba+2)|-1|—-a|0],
2 0 1 3
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(dodalismy tu do v wektor zerowy zapisany jako «(f; + 3f; — f3) = 0). Mozna sprawdzi¢,
ze niezaleznie od wartosci «, ktora jest tu dowolna, otrzyma sie to samo G(v), co wyzej.

Jako ze nie znamy dziatania H na wystarczajacej liczbie liniowo niezaleznych wekto-
row, powinno by¢ jasne, ze nie uda sie podaé calej macierzy tego odwzorowania (w zadnej
bazie). Jesli do dwu pierwszych (liniowo niezaleznych) wektorow fj i fy, na ktérych zadane
jest dzialanie H dokooptowaé jakis trzeci f5 - dowolny, byle od f; i f; liniowo niezalezny,
a do dwu wektorow g; i go bedacych H-obrazami f; i f; tez dokooptowaé jakis trzeci g3
liniowo niezalezny od g; i g», to mozna powiedzie¢ tyle, ze w tak utworzonych bazach
(fy, £5, f3) oraz (g, g2, g3) macierz odwzorowania H ma postac:

1 0 ?
Hgp=10 17
00 ?

O jej elementach oznaczonych znakami zapytania nic nie mozemy powiedzie¢ (sa one
wspolezynnikami w rozktadzie H(f3) na gi, go i g3). Jesli przejs¢ do innych baz, np.
do kanonicznych, to po pomnozeniu H ) z lewej i z prawej strony przez odpowiednie
macierze przejscia, nieznane elementy H,yy) “rozpropaguja’ si¢ po calej macierzy i naogot
nie bedziemy zna¢ zadnego z jej elementow.

Zadanie 33
Odwzorowanie liniowe F' : R® — R? dzialajac na trzy wektory

1 2] 1
fl = 2 5 f2 — 0 y f3 — 4 ,
1 3_ 1
daje
-1 2 7] -3
Ft)=11|=g, F(f;)=|-3| =g, Ffs)=1| 3 | =g3.
0 1 0

Zmalez¢, jesli to mozliwe postac¢ macierzy Fie)() tego odwzorowania w bazach kanonicznych
(zero-jedynkowych).

Rozwigzanie: Po pierwsze sprawdzamy, czy trzy wektory fi, f5 i f3 sa liniowo niezalezne.
Sa. Moga wiec stanowié¢ baze przestrzeni R3. Nastepnie sprawdzamy, czy trzy wektory
g1, g oraz gz sa liniowo niezalezne. Oczywiscie nie sa: gz = 3g;. Czy tak moze by¢? tzn.
czy odwzorowanie F' jest naprawde liniowe? 7 liniowo$ci wynika, ze gdyby trzy wektory
fi, f5 i f5 byly liniowo zalezne, to ich obrazy, tj. trzy wektory g, g oraz gz tez musiatyby
by¢ liniowo zalezne (zob. uwagi w rozwiazaniu zadania 31). Na szczescie w druga strone
stwierdzenie nie zachodzi: z liniowej zaleznosci wektorow g, g2, g3 nie wynika liniowa
zaleznosé¢ wektorow fi, fo i f3. Jedli jadro kerF' odwzorowania F' jest nietrywialne (tj.
nie sktada sie wylacznie z wektora zerowego), to istnieja jakie§ wektory j # 0, takie ze
F(j) = 0. Wowczas

F(fi + Aj) = F(f) + AF() = F(f),
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ale same wektory f; i fj + A j sa liniowo niezalezne (musza by¢, bo gdyby byly liniowo
zalezne, to f; by musial naleze¢ do jadra) i tak tez musi by¢ w rozpatrywanym tu przy-
padku.?

Mozemy teraz dokooptowaé jakis wektor gi, ktory jest liniowo niezalezny od g1 i g
i razem z tymi dwoma bedzie tworzy¢ drugg baze przestrzeni R3. Moze to by¢ dowolny
wektor

pod warunkiem, ze a + b+ ¢ # 0 (jest to warunek liniowej niezaleznosci g od g; i g9
znaleziony najprostsza metoda tj. wyznacznikowa - bedzie dalej). W bazach (g, g2, g5) 1
(f1, £5, f3) macierz odwzorowania F' ma postac¢

o = O
S O W

1
Fon =10
0

Z kolei macierz F{)) otrzymamy obliczajac iloczyn macierzy:
Fleye) = Reeg " Fl)(s) * Rree-

Musimy wigc znalez¢ macierze przejscia Re. 4 oraz Ry .. T¢ pierwszg mamy “za darmo”,
bo

(81,82,85) = (er,es,e3) [ 1 =3 b

Wystepujaca tu macierz jest wlasnie macierza R..,. Aby zas znalez¢ macierz Ry .
musimy odwrocié oczywiste zwigzki

f1 = e+ 2 €y 1+ e3
f2 =2 (S3] +3 €3
f3 = e1—|—4e2+e3.
Odejmujac od trzeciego pierwsze mamy natychmiast e;. Wstawiajac tak wyznaczone e,

do pierwszego i drugiego otrzymujemy rvwnania na e; i es, ktore juz tatwo rozwigza¢. W
ten spos6b znajdujemy, ze

e = 6f1—f2—3f3
1 1

€9 :—§f1 —|—§f3

ey — —4f1—|—f2—|—2f3.

29Zauwazmy, ze jest to typowa sytuacja, gdy F odwzorowuje wektory z p.w. V w wektory z p.w. W o
wymiarze mniejszym niz wymiar V (tj., gdy dimW <dimV).
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Mamy wiec juze wszystkie potrzebne elementy:

-1 2 a\ (1 0 3 6 -1 —4
Foye) = Reeyg - Figyp) - Bpee = 1 =3 0 0 1 0 -1 0 1
0 1 ¢/ \0O OO0/ \-3 35 2

-1 2 =3 6 —1 —4

=1 -3 3 -1 0 1

0 1 0 -3 3 2

Jak widac i jak sie nalezalo spodziewac, dowolne elementy wektora g nie wejda do kon-
cowej postaci macierzy Fe).). Wykonujgc ostatnie mnozenie macierzy, znajdujemy, ze

Majac Fleye) nietrudno znalez¢ sktadowe jée) wektora z nalezacego do jadra (in fatti,
rozpinajacego w tym przypadku cale ker '), a tym samym jego jawna postaé j = e; jfe):

1
j= 11| € kerF'.
1

Oczywiscie f3 = 3f; — 2j.

Macierz Fie)() mozna tez znalez¢ prosciej, bez konstruowania dodatkowego wektora g5,
stosujac te sama sztuczke, co juz w kilku poprzednich zadaniach. Rozkladamy mianowicie
dowolny wektor [a, 3, ] na wektory fi, f5 i fs:

@ 1
g :(604—55—47)
Y

F(—at7) 0] +(-3a+36+2)

Y

— N =
w O N
— =

co po skorzystaniu z liniowosci oraz z tego, ze w zerojedynkowej bazie kanonicznej prze-
strzeni R? wektory maja sktadowe réwne odpowiednim swoim pieterkom (jako zywe wek-
tory) pozwala napisac, ze

° 1 —1 2 . -3
Fow | B | =0a=358=4y)| 1 |+(-at+7)| =3 |+(Ba+56+27)| 3
g 0 1 0
a—p
= 5_7 )
e

skad juz tatwo odczyta¢ macierz Fi.).), ktora ma oczywiscie posta¢ znaleziong wyzej.
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Zadanie 34
Odwzorowanie liniowe F' : V — W odwzorowuje wektory o sktadowych

(1) 6)

w bazie e;, ¢ = 1,2 przestrzeni V odpowiednio w wektory o sktadowych

4 -3
5 Y 0 )
~1 5

w bazie g;, i = 1,2, 3 przestrzeni W. Poda¢ macierz tego odwzorowania. Wyznaczy¢ jego
jadro i obraz.

Rozwiazanie: Sprawa jest banalna. Niech [Fg)¢)]'; = ai; (zeby mniej pisac). Mamy
ap; a2 4 apy  app -3
3 7
Q21 A22 1 = 5 > a21  A22 9 = 0
asy a3 —1 asy a3 5

Mamy wiec trzy niezalezne uktady réwnan, kazdy na dwa elementy odpowiedniego wiersza
macierzy Fig ). Np. na elementy a;; i a;2 mamy

Jan + ap = 4,
7&11+2(L12 = —3,

itp. Rozwiazujac je znajdujemy, ze

~11 37
Foep = | —10 35
7 —22

Poniewaz na dwu liniowo niezaleznych wektorach z V, vi =3e;+ey i vy =Te; +2e;
odwzorowanie daje niezerowe wektory (z W), a dimV = 2, wiec jadro F jest trywialne
(sktada sie tylko z wektora zerowego). Jesli za$ chodzi o obraz, to oczywiste jest, ze
skoro przestrzen W jest trojwymiarowa, a odwzorowywane sa tylko dwa liniowo niezalezne
wektory, to dim(imF') = 2 (to samo bardziej formalnie: dim(imF') =dimV —dim(kerF’) =
2 -0 = 2). Tymi dwoma liniowo niezaleznymi wektorami rozpinajacymi obraz sa np.
wektory o =4g1 + 582 — g3 10y = —3g; + 583 bedace po prostu obrazami wektoréow,
na ktorych (sktadowych) jest zadane odwzorowanie (tj. jego macierz). Moglyby to tez
by¢ wektory o] = —11g; — 10gy + 7 g3, 05, = 37g; + 35 g2 — 22 g3 czyli kombinacje
liniowe wektoréw bazy g; ze wspotczynnikami bedacymi elementami kolumn macierzy
Flg)e) (zobacz zadania 27 i 27"). Oczywiscie 0, = 30} + 0}, a 0y = 7o) + 205,.
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Zadanie 35

Zmalez¢ w zero-jedynkowych kanonicznych bazach przestrzeni R? i R? macierz odwzoro-
wania liniowego F' zadanego poprzez jego dzialanie na trzy wektory z R3:

1 1
F(RN -1 (D1 (B -1
3 1 0

Rozwigzanie: Najprostszym sposobem rozwiazania jest oczywiscie roztozenie ogélnego
wektora z R? na wektory, na ktorych dziatanie F jest zadane:

a 1 1 1
bl =(—a+b) 2| +Ba—=3b+c)|1|+(—a+2b—0c)|1],
c 3 1 0

(poniewaz sie to daje zrobi¢, wektory te sa liniowo niezalezne) i skorzystanie z liniowosci
E

a

F i — (—a+0b) [;} + (30— 3b+c) l(l)} +(—a+2b—¢) l” = l_gaﬁ%_c].

Utozsamiajac nastepnie wektory z ich sktadowymi w bazach kanonicznych mozemy stad
natychmiast (tak, jak w zadaniu 17 i na koricu zadania 31) odczyta¢ szukana macierz

1 0 0
F<e><e>=<_3 A _1)-

Innym (wyjatkowo czesto praktykowanym przez studentéw na kolokwium) sposobem
jest po prostu rozwiagzanie (po mniej lub bardziej swiadomym utozsamieniu “Zywych”
wektorow w R"™ z ich sktadowymi - litoSciwie nie nalezy wnika¢ w stopieni tej Swiadmosci...)

ukladéw réwnan:
(fll Ji2 f13)
fa fa fa
(fll Ji2 f13)
for fao fo3

(fll f12 f13)
f21 f22 f23

Troche to zmudne, ale wychodzi.

e e N
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Rozpatrzmy jeszcze metode wykorzystywana w zadaniu 31, tj. przyjmijmy trzy liniowo
niezalezne wektory v;, na ktorych dzialanie F' jest zadane, za baze przestrzeni R3. Mamy
wtedy

1 1 1
(Vi,va,v3) = (e, ez,e3) | 2 1 1
3 1 0

Macierz ta jest macierza R.. , zmiany bazy. Trzeba ja odwrocié, by znalezé macierz R, ..
Postepujac standardowo, tj. rozwigzujac uktad rownan na v; znajdujemy, ze

-1 1 0
(91762783) = (V17V27V3) 3 -3 1
-1 2 -1

Stojaca tu macierz to wlasnie R, ..

Poniewaz F' odwzorowuje w przestrzen o wymiarze réwnym 2, przeto jest oczywiste
(powinno by¢!), ze trzy wektory bedace obrazami wektorow v; nie moga by¢ razem baza.
Musimy sobie wybra¢ dowolne dwa z nich (bo dowolne dwa juz sa liniowo niezalezne).
Wezmy zatem za baze

1 1 1 1
g1:|i0:|7 g2:|i1:|7 Re%g:(o 1)7

1

i wtedy

W zwiazku z tym, ze F(vi) = —g1 + 282, F(v2) = g1, a F(v3) = go, mamy macierz
odwzorowania I’ w bazach v; i g;

—1 1 0
F(g)(v>=<2 0 1)-

Macierz Fiey) otrzymamy obkladajac powyzszg macierzami zmiany baz:

-1 1 0

1 1\/-1 1 0
Feye) = Reeyg - Flg)w) - Boee = 3 -3 1
0 1 2 0 1 AT

(0D (5 )= (L0

Oczywiscie za baze R? moznaby przyjaé¢ inne dwa z trzech wektoréw bedacych obrazami
v;. Wtedy inng postac¢ by mialy macierze Fl ) oraz R.., ale konicowa macierz Fi.).)
wysztaby taka sama.

84



Zadanie 36
Dane sa dwie macierze

F=(123), i @&

I
b

Znalez¢ iloczyny F -G i G - F.

Rozwigzanie: Macierz F' jest (moze by¢ traktowana jak) macierza jakiegos odwzorowa-
nia F' p.w. V o wymiarze 3 w jakas p.w. W o wymiarze 1, macierz za§ G - macierza
odwzorowania G : W — V'; obie one sa dane w jakich§ bazach. Aby mnozenia miaty sens
trzeba przyjaé, ze odpowiednie bazy sa zgodne. W notacji wprowadzonej w poprzednich
zadaniach powinno by¢ tak

1
F-G=Fgyg-Gpe=(1 2 3)| 2] =(14),
3
1 1 2 3
G-F=Gpyg -Gagpn=|2](1 2 3)=1|2 46
3 3 6 9

Macierz F' - G jest macierza odwzorowania z przestrzeni wektorowej W w przestrzen
wektorowa W i wtedy mozemy przyjac¢, ze bazami tej przestrzeni (“po prawej i po lewej
stronie”) sa jakie§ bazy g;, gdzie i = 11 g} z i = 1; moga one (ale nie musza) by¢ tozsame;
a baza f; z i = 1,2,3 przestrzeni V' w ktorej dana jest macierz Gy musi by¢ (zeby
mnozenie macierzy mialo sens) ta sama baza w przestrzeni V, w ktorej jest dana macierz
Fgh)-

Z kolei macierz G - F' jest macierza odwzorowania z V' w V' i zeby mnozenie miato sens
nie musimy zakladac, ze bazy f; z i =1,2,31f z i = 1,2, 3 sa ta sama baza, ale musimy
zatozy¢, ze baza w przestrzeni W w ktorej dane sa macierze F' i G jest ta sama.

Oczywiscie macierze jako takie mozna sobie mnozy¢ (jako sztuka dla sztuki) bez przej-
mowania si¢ bazami.

Zadanie 37
Jesli jest to mozliwe, znalez¢ iloczyny A - B oraz B - A macierzy:

o a=(i) =5 1)

. 1 5 3
i1) A—<2 5 1), B=[-1 4 -2],

Rozwigzanie: i) Poniewaz obie macierze sg kwadratowe oba mnozenia sa wykonalne

1 n+m)

A-B:B~A:<0 1
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Tu akurat A- B = B - A, cho¢ naog6t tak nie jest.
Odp. i) Mozna tylko obliczy¢ A - B:

2 -3 5
1 5 3 6 14 -2
A-Bz( ) -1 4 -2 :( )
2 =3 1)\ 5 10 —19 17

Zadanie 37’
Niech F' bedzie odwzorowaniem przestrzeni wektorowej Msyo macierzy wymiaru 2 x 2
(macierze sa tu zywymi wektorami) o rzeczywistych elementach w nia samg zadanym

(i )- 2

a GG niech bedzie odwzorowaniem tejze przestrzeni wektorowej Moy o W przestrzenn wekto-
rowg Wy wielomianéw stopnia niewyzszego niz drugi wedtug przepisu

G({Cé ZD — (e—b)P 4 (a— )+ (b—d).

Napisa¢ macierze tych odwzorowan, tj. macierze Fl)m) oraz G,)m) W bazach kano-
nicznych przestrzeni My o i W, oraz napisa¢ (w tych samych bazach) macierz (G F) w)(m)
zlozenia tych dwu odwzorowan i sprawdzi¢ jak ma si¢ ona do macierzy Fim)m) i G w)m)-
Rozwigzanie: Macierz F(,,)») tworzymy wedlug standardowego przepisu odwzorowujac
po kolei wektory my, my, ms, my, bazy kanonicznej, rozktadajac to co wyjdzie na te same
wektory bazowe:

F(ml):F< =0m; +0my + 0ms3 + my,
:0m1+0m2+m3+0m4,

F(m,) = F(

:0m1+m2—|—0m3—|—0m4,

T 1T 1T 1
_ o O o O =

N——
Il
T 1T 1T 1
oo = O OO
O = OO = O

F(my) = F(

oo

i stawiajac wspotezynniki tych rozktadow “na sztorc”

—_o OO0 O OO
L ]l L ] L 1

:|):|ig_) 8]:m1+0m2+0m3+0m4

0 0 0 1
0 0 1 0
Fonyom) = 010 0
1 0 0 O
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Postepujac analogicznie znajdujemy macierz G'(u)m):

1
G(ml):G< 0 8 ):x:OW0+W1+Ow2,
:0 1: 2
G(m2):G 0 0 = —X —|—1:W0+0W1—W2,
[0 0] )
G(m3) =G 1 ol)=7 — 2 =0Wy— Wi + Wy,
0 0]
Gmy) =G 01 =—1=—-wy+0w; +0ws.
1 stad
0 1 0 -1
Gwwm=|1 0 -1 0
0 -1 1 0

Jak tatwo sie zorientowaé, zlozenie odwzorowan F' i G dziata na macierze 2 x 2 wedltug
przepisu

(GF)([Z ZD — (b= )+ (d=b)z+ (c—a).

i powtarzajac te same operacje, co wyzej, tj. odwzorowujac w ten sposob w wielomiany
po kolei wektory bazowe mi, my, ms, my, otrzymamy macierz

-1 0 1 0
0 1 -1 0

Latwo tez sprawdzi¢, ze zgdnie z tym, czego by nalezalo oczekiwaé, (GF')(w)m) = G (w)(m) -
LICOICOE

_ o O O
_ o O

(e}

(W odwrotnej kolejnosci sie tych dwoch macierzy, z uwagi na ich wymiary, nie da pomno-
zy¢).

Przypomnienie.
Odwzorowanie liniowe F': V — K, gdzie K jest jakims ciatem liczbowym, naogét R lub C,
zwie sie kowektorem albo (jedno)-formgq liniowq.?® Przy ustalonej przestrzeni wektorowej

30Qczywiscie, skoro istnieja jedno-formy, to nalezy domniemywaé, ze sa tez i dwu- i wiecej-formy;
istotnie sa (troszke o nich bedzie dalej), i to prowadzi do teorii form rézniczkowych, twierdzenia Stokesa,
kohomologii i innych cudéw matematyki z nimi zwiazanych i niezwykle uzytecznych w fizyce...
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V mozna rozpatrywaé przestrzen wszystkich odwzorowan liniowych V' w K. Ma ona takze
strukture przestrzeni wektorowej. Jest ona zwana przestrzenig dualng do V' i oznaczana
V*. Tak jak w kazdej przestrzeni wektorowej, mozna w niej wprowadzac¢ rézne bazy, np.
f'i, gdziei = 1,2,...,dimV*. (W przypadku skonczeniewymiarowej przestrzeni V' - a tylko
takie tu bedziemy rozpatrywaé - dimV* =dimV’). W tym skrypcie elementy przestrzeni
dualnej oznaczamy ttustymi literami z daszkiem. Kazda forme w € V* mozna zapisaé
jako kombinacje liniowa form bazowych

w :wl-(f)f'i.

wi(f ) sq sktadowymi kowektora (formy) w bazie fi o czym przypomina symbolik (f) w na-
wiasiku u gory. Zwroémy uwage na to, ze numery form bazowych i indeksy ich sktadowych
sg w poréwnaniu z podobnymi indeksami wektoréw umiejscowione “na odwyrtke”!

Oczywiscie trzeba znaé¢ dzialanie form bazowych f' na jakis zupely (tak sie to na-
zywa w mechanice kwantowej), tj. rozpinajacy cala przestrzenn V, zbior wektorow. Z
nieskoniczenie wielu mozliwych baz w przestrzeni V* wyréznia sie baza dualna do ustalo-
nej (choé¢ tez przeciez dowolnie wybranej) bazy przestrzeni V. Jesli wektory e; sa baza
V, to wektory €* bazy dualnej sa takie, ze

Jesli mamy wektor v = ey, € V oraz forme @ = w¥é' € V*, rozpisana w bazie dualnej,

to wynik jej dziatania na v jest dany prostym wzorem:

w(v) = w(e;) v, = w\9ek (e;) Vo) = W' " Vo) = wi(e)vfe) :

Zapis ten moze si¢ wydawaé¢ podobny do iloczynu skalarnego, ale na razie nic tu o iloczynie
skalarnym nie mowimy!

Zadanie 38
Niech dimV = 3 i niech baza V beda trzy wektory e;. Dana jest tez forma (kowektor) w,
o ktorej wiadomo, ze na wektory e; dziala nastepujaco:

(.:J(el) = 3, (;)(62) = 2, (;)(63) =1.

Znalez¢ dziatanie w na wektor v =4e; + 5es + 6 e3 (czyli wartosé formy w na wektorze
v) oraz podaé sktadowe kowektora @ w bazie dualnej do bazy e;.
Rozwigzanie: Dziatanie w na wektor v wynika z liniowosci formy:

W(v) = wler) vy + wlex) v}y + wles) vl =3-4+2-5+1-6=28.

Sktadowe formy & w bazie dualnej sa do§é¢ oczywiste: w® = (3,2,1). Jesli ktog nie
widzi od razu, to wypisujemy:

w(el) = wg‘j) él (el) + wée) é2(el) —+ wée) ég(el) — W%e) — 3 )
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W drugim kroku wykorzystaliémy dualnosé baz &' oraz e,. W taki sam sposob z dziatania
na e, i e; dowiadujemy sie, ze w =2 i w!? = 1.

Zadanie 39
Niech trzy kowektory:
f! =[1,1,0], f=[1,0,1], £ =0,1,1],
stanowia baze przestrzeni V* dualnej do przestrzeni wektorowej V = R3. Dzialanie “zy-
wego” kowektora & = [a, b, ¢] € V* na (tez “zywy”) wektor

x
v=|y| €R?,
z

jest zdefiniowane naturalnym wzorem
a(v) =axr+by+cz.

Poda¢ wynik dziatania formy w = 3f! 4+ 2£2 + £3 na wektor v o z = 2, y=1 2= —1.
Zmnalez¢ ponadto sktadowe formy @ w bazie & dualnej do kanonicznej (zero-jedynkowe;)
bazy e;, a takze postaé bazy f; przestrzeni R® dualnej do bazy fi przestrzeni kowektorow.
Rozwigzanie: Na podany wektor v forma w dziala nastepujaco:

2 2 2
wv)=3f']] 1 +2f2 | 1 +£3 | 1
—1 —1 —1
=3-2+1)+2-2-1)+1-(1—-1)=11.
Poniewaz tu mamy dostep do “zywych” form i “zywych” wektoréw, tj. umiemy jawnie
wykonywaé operacje na samych formach i wektorach (a nie tylko na ich sktadowych), to

sktadowe formy @ w bazie &*, ktora jako dualna do kanonicznej zero-jedynkowej bazy e;
przestrzeni R, musi mie¢ postac¢

e' =[1,0,0], & =10,1,0, & =[0,0,1],
tez tatwo ustali¢:
w = 3[1,1,0] +2[1,0, 1] + [0, 1, 1] = 5[1, 0, 0] 4 4]0, 1, 0] + 3[0, 0, 1] .
Zatem
w=>5e"+4¢& +3&°.
Poniewaz mamy tu dostep do zywych wektoréw i zywych kowektoréw znalezé baze f;

przestrzeni R? dualng do bazy £* przestrzeni form mozna bezposrednio rozwigzujac trzy
niezalezne uktady rownan. Np. aby znalezé posta¢ wektora f; piszemy

fl = Y1 )



dzialamy nain formami i wedlug podanego przepisu i zadamy by
T +y =1, T +2 =0, Y1+ 21 =0,

etc. Pouczajace i bardziej perspektywiczne jest jednak przeprowadzenie w tym celu bar-
dziej ogblnych rozwazania.
Wprowadzajac odpowiednig notacje zapiszmy zmiany bazy w przestrzeni form w po-
staciach
e=sf\J P Aj foe\F Al _ 2k
(P*)Z.f—e], (P%)le—f.
Macierze P¢~7 i P/7¢ sy oczywiscie wzajemnie odwrotne, tj. P¢=/. Pf=e = pl=e. pe=f —
I (I oznacza macierz jednostkowsa, tu wymiaru 3 x 3). Stosujac wprowadzona notacje
mamy
& = wi(f)f'i _ wi(f) (Pf—>e>i )él’

~l (e
le :wl

tj. wl(e) = wi(f) (Pf_“):. (Wida¢, ze notacja dla form jest podobna do notacji dla wektorow

z tym, ze wskazniki sg umieszczone na innych poziomach; ponadto teraz sktadowe formy
piszemy z lewej strony form bazowych). Znajdzmy macierz P/~¢: z postaci form f* mamy
od razu

fl = el4e?
2 = el &’
f3 — é2 4 ~3

110 e! fl
1 0 1 e’ | = fz
0 1 1 e’ f3

Widniejaca tu macierz jest wlasnie macierza P/=¢. Shuzy ona do przerabiania sktadowych
formy danych w bazie f’ na jej skladowe w bazie &', tak jak wskazuje zwrot strzatki. Np.

sktadowymi formy w w bazie fi byty wl-(f ) = (3,2,1), jej sktadowymi w bazie &' sg wiec

1 10
3,2,1){1 0 1] =(54,3),
0 1 1

tak jak to juz wyzej napisaliémy “spod duzego palucha”.
Mozemy tez wyrazi¢ bazowe formy &' przez bazowe formy f? odwracajac wypisane
wyzej rownania: np. odejmujac od pierwszego z nich drugie dostajemy réwnanie, ktore w
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polaczeniu z trzecim pozwala wyznaczy¢ €% i &3 (a potem &' juz jest latwo wyznaczy¢).
Znajdujemy w ten sposob:

S

12— f3>
£l 2 +f3>

(—f-’l 2 f‘3> .

D>
(]
Il
NN NN NN
N

Daje to macierz P¢~/:

P‘Hf:% 1 -1 1

ktora jest oczywiscie odwrotna do macierzy Pf7¢, co tatwo sprawdzic.
Powr6émy teraz do naszego zadania. Szukamy takiej bazy f; przestrzeni R?, zeby

£*(f,) = 0", .
Wykorzystujac odpowiednie macierze zmian baz oraz liniowo$é¢ form mozemy napisac:
ko

o = £5(£,) = (P72)" &l(£,) = (P7)",&(e;) (Recys)’,

— (Pf—m)kl 5lj (Ra—f)ji _ (Pf—m)k_

J

(Re<—f )]i :
W przedostatnim kroku wykorzystana zostala wzajemna dualno$é baz é* i e;. Dowia-
dujemy si¢ stad, ze macierz R.. s, pozwalajaca wyrazi¢ poszukiwane wektory f; przez

wektory bazy kanonicznej e;, jest macierza odwrotna do macierzy P/~
Res= (PPe) " = P

Poniewaz macierze P/~ oraz P¢~/ juz znalezliémy, wiec mozemy napisac

1 1 1 -1
(fl,fz,f3)2(61,82>e3)§ r -1 1/,
-1 1 1
czyli
S
1 i
f1 = 5814—562—5835 51
L~ 2
m 1 -
1 1 1 2
£, = e — - le.= | 1
2 SRR A 2
L 2
_1
1 12
f3 = —§e1+§e2+§e3z E
2
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To, ze f! = [1,1,0] dziatajac na f; daje 1, a na £, i f5 daje zero, wida¢ gotym okiem.

Uwaga: Kowektory nalezace do przestrzeni dualnej V* do przestrzeni wektorowej V' po-
zwalaja zadawaé¢ w V' podprzestrzenie liniowe (wektorowe) przez podanie zbioru (nieko-
niecznie liniowo niezaleznych) kowektorow zerujacych sie na wszystkich wektorach naleza-
cych do podprzestrzeni. Latwo zobaczy¢, ze tak wyznaczony zbior wektoréw rzeczywiscie
jest podprzestrzenia liniowa.

Zadanie 40
Sprawdzi¢, ze kazde odwzorowanie liniowe F' : V' — W (gdzie dimV = ny, a dimW = ny,)
mozna zapisa¢ w postaci

F = [Fuywl’;w; ® V'

(domyslnie suma po i od 1 do ny, a po j od 1 do ny), jesli przyjac, ze dziatanie tego
dziwnego zwierzecia na dowolny wektor u € V' jest okreslone wzorem (w kérym v* tworza
baze kowektorow nad V' dualng do bazy v; przestrzeni V')

F(u) = [F(w)(v)]ji W \A/Z(u) .

(Zauwazmy ze po prawej ten bulwersujacy symbol “®” juz nie wystepuje: v(u) jest liczba
- jak widaé¢ musi by¢ to liczba z ciala K, nad ktérym jest rozpieta przestrzen wektorowa
W, iz ktérego sg elementy macierzy Fiu)), ale takie drobiazgi fizyka nie zaprzataja).
Rozwigzanie: Wtasciwie to niema co sprawdzac: jesli u = vy, u'(fv), to zgodnie z podana
definicjg i liniowoscig dzialania kowektoréw v¢ mamy

F(u) = [F(w)(v)]ji W; \A/Z (Vk u](gv)) =W, [F(w)(v)]ji \A/Z (Vk) ’u](i))
= [Floyw))s Wi 8" g ulyy = W[ Fluyw) sty

a to nie jest nic innego, jak wtasnie wektor z W bedacy wynikiem dziatania F' nau eV
(zobacz np. Zadanie 29). W szczegolnosci, jesli W = V i obie bazy sa jedna i ta sama
baza v;, to odwzorowanie Id = I (ktore z wektorem z V' nie robi nic) mozna zapisa¢ w
wymy$lnej formie

Id=v;,®Vv".

7 tego wszystkiego wynika, ze ogélnie rzecz ujmujac, odwzorowanie liniowe F' : V —
W jest elementem przestrzeni (tez wektorowej, bo iloczyn tensorowy dwu przestrzeni
wektorowych jest p. wektorowa) W @ V*.

Uwaga: W mechanice kwantowej mamy do czynienia z przestrzenig wektorowa nad cia-
tem C, zwana przestrzenia Hilberta H (taka nazwa przystuguje przestrzeniom wektoro-
wym z norma i zupelnym w sensie zbieznosci w nich w tej normie wszystkich ciagow
Cauchy’ego). Jej wektory za P.A.M. Dirakiem przyjelo sie oznaczac [1), |x) etc. Taki
wektor zwie sie “ket”-em. Oczywiscie zwykle wybiera sie jakas baze [1;) lub |y;) (naogot
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ma ona nieskoriczenie wiele elementéw). Formy z przestrzeni H* dualnej do przestrzeni
Hilberta zapisuje sie w postaci “bra” (¢|, (x|. Dziatanie takich form na wektory z H
przyjmuje w tej notacji posta¢ (x|¢) € C. Oczywiscie do kazdej bazy |1;) przestrzeni H
istnieje w H* baza dualna (1], taka ze (¢;]1);) = &;;. Podany wyzej wzor Id= v; @ v' w
tej notacji przybiera posta¢ (suma po ¢ jest domyslna; ponadto w mechanice kwantowej
kazde odwzorowanie liniowe H w H nazywa si¢ operatorem i oznacza literka z czapeczka
- francuzi zwa to “chapeau de Napoleon” - wiec zamiast pisa¢ Id w mechanice kwantowej
pisze sie 1 - operator jednostkowy)

d= |¢z><wz| .

Feynman nazywa to®! “Wielkim prawem mechaniki kwantowej”.

Zadanie 41%*

Niech V' bedzie przestrzenia wektorowa wielomianéw (rzeczywistych) stopnia nie WYZSZeg0
niz 2. Pokaza¢, 7e trzy kowektory (czyli odwzorowania liniowe V w R): fl = F(-),
2 = Fy(), £ = F,(-), ktorych dziatanie na wektor-wielomian W = W (z) nalezacy do
p.-w. V jest zadane wzorem

A

Frey (W) = W(xo) ,

stanowia, jesli trzy liczby «, (17 sa rézne, baze przestrzeni kowektorow. Znalezc baze f;
przestrzeni wielomianéw dualng do bazy fi. Znalez¢é w bazie £ sktadowe I; () kowektora 1
(odwzorowania linowego z V' w R) dzialajacego na wektor-wielomian W wedtug przepisu:

i(W) = /0 W),

Poda¢ jawna posta¢ wielomianéw bazowych oraz sktadowe [Z-(f )

B=0,v=+1.

Rozwigzanie: Wykonamy polecenia w odwrotnej kolejnosci (dalej stanie sie jasne, dla-
czego) 1 najpierw znajdziemy baze dualna. Albo, zeby nie denerwowaé matematykow
stowem “baza dualna”, skoro jeszcze nie udowodniliSmy, ze trzy kowektory fi IZeCzywi-
Scie sa baza, poszukamy (a nuz sie uda?) trzech wielomianow f; takich, ze fi(f;) = o' ?
Poniewaz najogélniejszy wielomian z V' ma posta¢ W (z) = apx?® + a1x + ag, sprowadza,
sie to do rozwiazania trzech uktadéw trzech réownan liniowych. Np. szukajac wielomianu
f, = ay2® + a1 + ap takiego, ze f1(f)) = 1, £2(f,) = 0, £3(f;) = 0, rozwiazujemy uklad

kowektora 1, gdy a = —1,

f1(f) = Fy(a2? + a1z + ag) = ae0® + aja+ag = 1,
f2(f1) = Fﬁ(a2x2 +a1xr + ao) = a2ﬁ2 -+ alﬁ + ag = 0,
3(f)) = F,(a2® + a1z + ag) = axy? + a1y +ap = 0,

31R.P. Feynman, R. Leighton, M. Sands Feynmana Wyktady z fizyki, t. 111, wzor (8.9).

32Zadanie to w wersji ogdlnej wykorzystuje rzeczy, ktére sa w tym skrypcie wprowadzone dopiero dalej.
W wersji z konkretnymi liczbami «, 8 i 7 jest ono jednak wykonalne dostepnymi juz $rodkami, a jego
miejsce jest ewidentnie tutaj.
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lub, rownowaznie, uktad

ol a1 as 1
52 ﬁ 1 aq e O
¥ oy 1 ag 0

wzgledem niewiadomych as, ay, ag. Mozemy tu zastosowaé¢ Kramersieta: wyznacznik
macierzy A uktadu jest po prostu wyznacznikiem Vandermonda (Zadanie 46) tyle, ze ze
zmienionym znakiem (bo tu potegi rosna z prawa na lewo, a macierz ma wymiar 3 x 3):
det(A) = (o — B)(a — 7)(B — 7). Wida¢, ze jednoznaczne rozwiazanie istnieje, jesli trzy
liczby «, 51 v sa rézne. Poniewaz wektor po prawej stronie ma jedynke i dwa zera, wiec
obliczenie trzech pozostalych wyznacznikow jest (dzieki Laplace’owi) proste i znajdujemy

Nk " = (B=7(B+) " By(B —)

" detA’ e det A ’ 07 detA

a2

czyli

1 =By B
(@=Bla-7" " @=fla-" U @-Ala-)

Nietrudno zobaczy¢ (symetria rownan jest fizykowi zawsze pomocnal), ze wspotezynniki
drugiego wielomianu f, = byx? + byz + by bazy dualnej mozna otrzymaé z powyzszych
wzorOw na as, ay i ag przez cykliczne zamiany: o — 3, f — 7, v — «, a wspolczynnki
trzeciego wielomianu f; = 22 + 17 + ¢ tej bazy przez zamiany o — v, 8 — a, v — f3:

a9 =

by — 1 b= —tae) by = N
B=(B—a)’ B=7(B—a)’ B=10B—-a)
o — 1 o — —(B8+a) Ba

=B —a) G=B80-a) T G=-B0-a)

Zauwazmy, ze przy okazji znalezliémy macierz A~! odwrotng do macierzy A wystepu-
jacej we wszystkich trzech rozwiazywanych (w celu znalezienia wielomianéw bazowych)
uktadach réwnan:

1 B—n V-« a—f
_1=m —-B=7B+7) -(r—a)lv+a) —(a—=p)(a+p)
(8 —7)8v (v — o) (a—pB)ap

Mozemy teraz bez ktopotu wykazaé¢ formalnie, ze kowektory fi sa liniowo niezalezne (a
ze sg ich trzy, wiec stanowia baze, bo dimV* =dimV = 3). Musimy pokaza¢, ze rownos¢

ME+ Aof? + Nsf? =0,

moze by¢ speliona tylko dla Ay = Xy = A3 = 0. Symbol 0 oznacza tu zerowy kowektor,
czyli taki, ktory na kazdym wielomianie daje zero. W szczegolnosci musi tez dawaé zero
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na znalezionych wyzej wielomianach-wektorach fi, f5 i f3. Ale na pierwszym daje on A{, na
drugim X, a na trzecim \As. Stad juz wynika, ze powyzszy kowektor jest rowny 0 tylko dla
A1 = A2 = A3 = 0, co oznacza, ze trzy fi sg liniowo niezalezne, czyli sa baza. Oczywiscie
mozna byto ten dowdd przeprowadzi¢ najpierw, ale albo trzeba by byto zgadnaé te trzy
szczegoOlne wielomiany (matematycy tak czesto robiq' gdzies na boku wyznaczaja takie
wielomiany, a potem przed publika wyjmuja je “z kapelusza” 1 dowod idzie gladko.. )
albo obliczy¢ A f! + Aof2 + A\3f? na trzech losowo wybranych (byle liniowo niezaleznych)
wielomianach i pokaza¢ (np. sprawdzajac, ze wyznacznik macierzy problemu nie znika),
ze uktad trzech jednorodnych réwnan na \; otrzymanych z przyréwnania do zera wynikow
dzialania A f! + A\of? + A3f3 na te trzy wielomiany nie ma nietrywialnych rozwigzan.

Jesli wprowadzimy kanoniczna baze przestrzeni V' wielomianow:
62:23'2, e =, 60:1,
to, jak mozna sie tatwo zorientowac,
A'=R
— Lle—f,

gdyz w kolumnach macierzy A~! stoja wtasnie sktadowe wielomianow f; w bazie e, e; i
€p.

Dziatajac na wielomian

W(zx) = w?e)x2 + w(le):z + w?e) = egw(ze) + elw(le) + eow?e) :

kowektor I daje %w(ze) + %w(le) + w?e). Zatem w bazie & kowektoréw dualnych do e; (tj.
takich, ze &'(e;) = ¢*;) jego skladowymi musza byc

11
9= (= 2,1).
(3 (3’ 27 )

(f)

Aby znalez¢ jego sktadowe ;7" w bazie fi piszemy:

2
w
11 © © i _ % ), i ) P
(32 D | W | = 17w = HW) = 17wy = L7 Rye] Ve -
w
©)

Wynika stad natychmiast, ze (zobacz Zadanie 39)

19 = [O[peI) = [O[R, ], = 19[4

J i Jo

1.1) z lewej

czyli ze sktadowe [ ](f ) kowektora I w bazie fi otrzymujemy przyktadajac (%, 5

strony do macierzy P/ = R, ; = A~' i wykonujac dzialanie.

Wypiszemy to wszystko teraz i sprawdzimy na konkretnym przyktadzie. Przyjmujac
a=-1,8=0,v=+1 otrzymamy (@ — )(a —7) =2, =(8+7) = -1, fy =0dla
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pierwszego wielomianu, (5 —v)(f —a) = —1, —(y + a) = 0, ya = —1 dla drugiego oraz
(v=PB)(y—a) =2, —(f+a) =1, fa = 0 dla trzeciego. Trzy wielomiany bazowe maja
wtedy postacie
Lo s 2 L,
f1=§(1' —1z), fr=—2"+1, f3:§(:)5 + ).
Sa to akurat tzw. wielomiany interpolacyjne Lagrange’a (ale nie jest to tu istotne).
Macierz A ma dla a = —1, =0, v = 1 prosta postac

1 -1 1
A=10 0 1
1 1 1

Macierza do niej odwrotna, bedaca jednoczesnie potrzebna nam macierza przejscia (zmiany
bazy) jest macierz33

1 21
Al =R, ;= 3 -1 0 1
0 2 0

Sktadowe wielomianu W(z) = wi, 2* + w v + w(,, W bazie f; mozna dosta¢ dzialajac

na nie macierza A = Ry .. Sa wigc one rowne w(y = wi,y — w/, +wi,, wiy = wi, i

w?f) = w?e) + w(le) + w?e). Latwo to sprawdzié:

1
- z)(w?e) - w%e) + w?e)) + (1 - zz)w?e) + 5(1'2 + z)(w?e) + w(le) + w(oe))

tak jak by¢ powinno. Zgodnie z wyprowadzonym wyzej wzorem, sktadowe kowektora Iw

bazie f! sg rowne
(111)1 SR _(125)
32)2 7, 5 23 12

1
Sprawdzamy:
2 1 0
T (), L 25 w(e)_wge)+w(e) L, L 0
I(W) = I} wiy) = (_E’ 3 E) e BERGRERCRC)

33Poniewaz A ma w tym przypadku tak prosta postaé, macierz A~! mozna znalezé bezpogrednio przez
tzw. “inspekcje”, tj. przykladajac jej kolumny do macierzy A i zgadujac, co w nich powinno by¢, by
AAL =1
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tak jak mialto by¢.

Zadanie 423
Zmnalez¢ rzut nalezacego do V = R® wektora

-2
0

“wzdluz” podprzestrzeni rozpinanej przez wektory vs, v4 i vs na dwuwymiarowa podprze-
strzen rozpieta przez wektory vy i vo, gdzie wektory

1 0 0 —1 0
1 0 0 1 0
V3 = 1 , Vg = 3 y V5 = 1 y V] = 2 y Vo = 1 y
1 2 0 3 2
[ 1] [ 1] | 1] | 4 | 3]

stanowia baze przestrzeni V. Znalezé¢ takze macierz odwzorowania tego rzutu (zwana
macierza operatora rzutu) w kanonicznej zero-jedynkowej bazie e;, i = 1, ..., 5 przestrzeni
RS,

Rozwiazanie: Rzut w — II(w) wektora w na wektory v; i vo wzdluz wektorow vs, vy i
v; polega na zapisaniu w w postaci kombinacji liniowej wektorow vy, vy, v3, v, oraz vs:

W = A1v1 + Aava + A3vy + Agvy + Asvs,
a nastepnie wyzerowaniu wspotczynnikéow tego rozktadu mnozacych vs, v4 oraz vs:
W — H(W) = )\1V1 + )\2V2 .

Konieczne jest oczywiscie, by wektory vy, vo, v3, v4 oraz vy byly liniowo niezalezne; nie
jest konieczne by rozpinaly one cala przestrzen V' (tu akurat rozpinaja, bo jest ich piec)
ale rzutowany wektor w musi sie da¢ na nie roztozyé. Ogolnie jednak, aby dowolny wektor
z danej przestrzeni V' dalo si¢ zrzutowaé na podprzestrzen W wzdtuz podprzestrzeni U,
V musi by¢ sumag prosta W iU: V =W @ U, bo tylko wtedy rozktad dowolnego wektora
z V na wektor z W i wektor z U jest jednoznaczny.

Rozktadamy zatem w. Trzeba w tym celu rozwigzaé¢ uktad réwnan:

-2 =-)\ + A3

0 = N + A3

2 = 204+ M+ A+3N+ A5
2 = 3\ +2X 0+ A3 +2)\

0 = 4\ +3 N+ A3+ A+ A5

34Jednym z celéw tego zadania jest wybicie studiujacym z glowy blednej mysli, jakoby rzut musiat
mie¢ co$ wspolnego z iloczynem skalarnym (o ktorym tu nie bedzie ani stowa).
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To sie daje tatwo zrobi¢: z pierwszych dwu rownan znajdujemy natychmiast, ze \; = 1,
A3 = —1. Po wstawieniu tych warto$ci do pozostatych réwnan przybieraja one postaé

Ao +3A + A5
0 = 2)\2 —|— 2)\4
=3 = 3+ M+ As.

Teraz pierwsze minus trzecie wraz z drugim

4 = =2 42\
0 = 2X\+ 2\,
daja Ay =1, Ay = —1, a zatem A5 = —1. Majac te wspodlczynniki mamy szukany rzut w:
o=
1
Mw)=vi—vo=1| 1 |.
1
b 1 -

W bazie przestrzeni R® tworzonej przez wektory v,

Vg, V3, V4 Oraz vs macierz tego

rzutu, ktory jest odwzorowaniem liniowym, ma oczywistg postaé®

100 0 0
01000
Hpw =0 0 0 0 0
00000
00000

Szukana macierz Il jest wobec tego dana wzorem

H(e)(e) = Reey H(v)(v) “Ryce.

Poniewaz
vi = —e +e+2e3+3e,+4e;
vy = e;+2e4+ 3e;
V3 = €1 +e +e3+ e + ej
v, = 3es +2e4 +e;
Vs = e; +e5.

35Gdyby zadanie polegato tylko na znalezieniu rzutu wektora w na wektory v, i vo “wzdtuz” wektorow
v3, v4 1 v5 (na ktore w sie daje rozlozyé) ale sama przestrzen V miala wymiaréw wiecej niz pieé,
to macierzy rzutu nie daloby sie wyznaczyé: nie wiadomo bowiem by bylo, czy rzutowaé nalezy na

dodatkowe wektory dopetniajace do pelnej bazy wektory v;, i = 1,

..., b, czy wzdtuz nich. Oczywiscie nie

wplywaloby to na rzut samego wektora w, ale nie pozwalaloby rzutowaé¢ wektoréw liniowo niezaleznych

od pieciu wektoréw v;.

98



wiec macierz R.. , otrzymujemy natychmiast, stawiajac ‘na sztorc” wspotczynniki powyz-
szych pieciu kombinacji liniowych. Aby za$ znalezé R, . trzeba wyrazi¢ wektory e, przez
wektory v;. Nie jest to przyjemne, ale daje sie¢ zrobi¢. Najpierw od wszystkich rownan
odejmujemy wielokrotnosé ostatniego eliminujac z nich es:

vi—4vs = —e;+e;—2e3+3ey
Vo —3Vvy = —2e3+2ey
V3 — Vy = €] + ey + ey
V4 — Vs = 2e; +2ey.

Nastepnie dodajac do pierwszego i drugiego czwarte eliminujemy es:

Vi+Vvy—5Vvy = —e;+ey+5ey
Vot+vy—4vy = +4ey
V3 — Vs = €] +ey+ ey4.

Dalej juz tatwo. Wstawiamy ze srodkowego

6421(V2—|—V4—4V5),

do pierwszego i trzeciego i przenosimy na druga strone:

b}
—e| +ey = V1+V4—5V5—Z(V2—|—V4—4V5)
1
e t+e = V3—V5—Z(V2+V4—4V5).
Stad
1
e, = Z(—2V1—|—2V2+2V3)
1
€y = Z(2V1—3V2—|—2V3—V4).

Majac e4, z czwartego réwnania dostajemy

1
€3 = Z(—V2+V4+2V5).

Wreszcie, z ostatniego réwnania, vy = e3 + e; mamy

6521(V2—V4+2V5).

Zatem
-1 0 1 0 O 1 0 0 0 O -2 2 0 0 0
1 0 1 0 0 01 0 0 0 1 2 -3 -1 1 1
Hie)e) = 2 1 1 3 1 00 0 0 O 1 2 2 0 0 0
3 2 1 2 0 00 0 0 O 0o -1 1 1 -1
4 3 1 1 1 0 0 0 0 O 0 0 2 -4 2
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-1 0 0 0 O -2 2 0 0 0
1 0 0 0 O 1 2 -3 -1 1 1
=12 100O0]-=-12 2 0 0 O
35 2000[%0o -1 1 1 -1
4 3 0 0 0 0o 0 2 -4 2
Ostatecznie wiec
2 =2 0 00
1 -2 2 0 00
Hogw=7|-2 1 -1 11
-2 0 -2 2 2
-2 -1 -3 3 3

Drzialajac ta macierza na sktadowe wée) wektora w otrzymujemy oczywiscie uzyskany juz
wczedniej wynik.

Istnieje tez bardziej wyrafinowany sposob znalezienia tej macierzy wykorzystujacy to,
ze odwzorowanie liniowe bedgce rzutem jest jednoznacznie wyznaczone przez swoje jadro
(czyli podprzestrzent wzdtuz ktorej sie rzutuje) i obraz (czyli podprzestrzen na ktora sie
rzutuje) oraz charakterystyczna wlasciwosé takiego odwzorowania polegajaca na tym, ze
12 = TI (wlasciwosé te musi tez wykazywaé oczywiscie takze kazda macierz reprezentujaca,
rzut - prosz¢ sprawdzi¢, ze wykazuje ja znaleziona wyzej macierz ILy.)!). Podprzestrzen
bedaca obrazem rzutu jest w naszym przypadku rozpinana przez wektory vy i vo. Jadro
za$ (rozpinane przez wektory vs vy i v5) mozemy scharakteryzowaé podajac wszystkie
liniowo niezalezne kowektory v zerujace sie na wszystkich wektorach nalezacych do jadra.36
Z istnienia bazy przestrzeni kowektorow (odwzorowujacych V' w ciato R) dualnej do bazy
v; przestrzeni V wynika, ze sa dwa takie kowektory. W bazie é* dualnej do kanoniczne;
zero-jedynkowej bazy e; przestrzeni R® majg one postaé v = v,(f)ék, gdzie sktadowe vlie
muszg spelhia¢ trzy réwnania:

vge) + 1)26) + vée) + vff) + vée) = 0,
3 vge) +2 vie) + vée) = 0,
vl +ol? =

Odejmujac ostatnie od dwu pierwszych tatwo si¢ zorientowaé, ze najogoélniejszym rozwia-
zaniem tych warunkow s skladowe v\ = a, o) = —(a + b), —vée) = = Uée) =0,
w ktorych state a i b sa dowolne. Zatem dwa takie liniowo niezalezne kowektory maja
postac

Vi=aé' — (a1 +b)é&* — b, & +b &' +b &,
a

{/2: 2é1—(a,2—|—b2)é2—b2é3+bgé4+bgé5.

36Qczywiscie teraz musimy przyjaé, ze dimV = 5.
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Stale a; 2 1 by 2 mozna by bylo dobra¢ np. tak, by

Vi(v) =06 dla k,j=1,2.
ale dla naszego celu nie jest to konieczne. Wystarczy zalozy¢, ze sg one takie, ze kowektory
v! i v? sa linowo niezalezne (odpowiedni warunek na a; o i by » wyjdzie nam “w praniu”).
Jasne jest jednak teraz w jakim sensie dwa kowektory charakteryzuja jadro: rzut wyzna-
czany przez wektory vy, vo €imll i vs, vy, v; € kerll potraktowane jako baza p.w. V
mozna zada¢ podajac baze vy, v, obrazu oraz dualne do vy, v, kowektory v, v2 zerujace
sie na wektorach vs, v, i vy rozpinajacych podprzestrzeni, wzdtuz ktoérej rzutujemy:.
Skonstruujemy teraz macierz rzutu w bazie kanonicznej w postaci

<Oé ﬁ) (al —(a1+bl) —bl bl bl)
Y ) as —(CLQ—I-bg) —bg bg bg '

Macierz po lewej jest utworzona z ustawionych “na sztorc” sktadowych (w kanonicznej
zero-jedynkowej bazie) wektoréw v; i vo. Jest to uzasadnione tym, ze - co powinno by¢
jasne z podanego powyzej sposobu znajdowania macierzy rzutu - dziatajac ta macierza
na sktadowe jakiego$ wektora nienalezacego catkowicie do jadra, musimy otrzymaé jakas
kombinacje liniowa wektoréow v; i vo. Macierz po prawej jest utworzona ze sktadowych
kowektoréow zadajacych jadro. Zapewnia ona zerowanie si¢ Il(.y.) W dzialaniu na kano-
niczne sktadowe wektorow nalezacych do jadra. (Kiedy$ tam - jak zajmiemy sie rzedami
macierzy - stanie si¢ tez jasne, ze zbudowanie macierzy Il z "przejsciem” przez $rod-
kowg macierz wymiaru 2 x 2 powoduje, ze rzad macierzy Il.).) jest rowny dwa, tak jak
powinien). Macierz srodkowa trzeba dobrac tak, by I(¢)) - e)e) = (e)e). Przystawiajac
do siebie dwie macierze II(.y.) widzimy, ze musi zachodzi¢ réwnos¢

(Oé ﬁ) _ (al —(Cll —l-bl) —bl bl bl)
Y 0 [05)) —(CLQ + b2) —bg bg bg
Wymnazamy wiec i odwracamy:

« ﬁ o 4b1 — 2@1 4b1 - . 1 2b2 —2b1

Y ) o 4b2 — 2(1,2 462 a 4(b1a2 — b2a'1) —262 + ao 261 — a '
Jak wida¢ czynnik byas — byay musi by¢ rézny od zera - to jest wlasnie warunek liniowej
niezaleznosci dwu kowektorow zadajacych jadro.

W N = OO

—1 -1

=~ 0 N
W~ OO
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Aby otrzymac Il trzeba juz tylko pracowicie powymnaza¢ macierze:

-1 0 —2by 2b;
1 0 2bs —2b;
2 1 (_%%i 2b—2_b1 ) =| 2bbtas —2b1—ar |,
3 2 2Ta2 T 2y + 2a5 —2b, — 2a
4 3 262 + 3&2 —261 — 3&1
1 wreszcie
—2by 2b;
2b —2b
9%, 4—2a2 9, _1 a <a1 —(a1 +0b1) —b1 b1 b )
[05)) —(CL2 + bg) —bg bg bg

2b2 + 2(1,2 —2b1 — 2(1,1
2by + 3ay  —2b; — 3ay

2 =2 0 00
-2 2 0 00
= (b1a2 — bQCLl) —2 1 -1 1 1
-2 0 =2 2 2
-2 -1 -3 3 3

(Kazdy element powstajacej macierzy wychodzi proporcjonalny do czynnika (byas — beay ),
ktory wydzieliliémy tu przed macierz). Po podzieleniu przez czynnik 4(bjas — beay) do-
stajemy te samg macierz I, ktorg juz otrzymaliémy innym sposobem.

Uwaga: Powinno by¢ jasne, ze rzut jest wyznaczony nie przez same wektory vy, ..., vs,
lecz przez rozpinane przez dwa zbiory wektoréow: vy i vy oraz vz, v4 1 v dwie podprze-
strzenie, na ktére rozlozona zostaje wyjsciowa przestrzeri R® (ktora musi by¢ suma prosta
tych dwu podprzestrzeni).

Uwaga: Gdybysmy chcieli rzutowaé wektory na podprzestrzen rozpieta przez vs, vy i v
“wzdluz” podprzestrzeni rozpietej przez vy, vo, czyli doktadnie odwrotnie niz zrobilismy
to w powyzszym Zadaniu, to odpowiednia macierza takiego rzutu w bazie e; bylaby
macierz H/(e)(e) = I — IL(¢y() (I oznacza tu macierz jednostkows). Ze H’(U)(U) = 1 — Iy
jest oczywiste; oblozenie tego zwigzku wzajemnie odwrotnymi macierzami zmiany bazy
Re. ., 7z lewej i R, . z prawej prowadzi natychmiast do H’(e)(e) = I — Il(¢)). Nietrudno
/ —
(

tez zobaczy¢, ze H’(U)(U) . H’(U)(U) = H’(v)(v) oraz ze (niezaleznie od bazy) II o e =

w)(w) - H{y ) = 0 (macierz zerowa).

Zadanie 43
W bazie e;, i = 1, 2,3 pewnej trowymiarowej przestrzeni wektorowej wektory vy, v, v3
oraz u maja odpowiednio sktadowe

1 1 1 1
vi=|1], voi=|1], v3i=|2], u:= 0
1 2 3 —1



Zmalez¢ rzut wektora u na wektor vy “wzdtuz” podprzestrzeni rozpinanej przez wektory
vy 1 v3. Podaé¢ macierz rzutu w bazie e;.

Rozwigzanie: Po poprzednim zadaniu sprawa juz jest prosta: musimy zapisa¢ u w
postaci kombinacji liniowej v;. Mozemy to zrobi¢ postugujac sie sktadowymi:

1 1 1 1
O | =M 1| +X|1]+A]2
—1 1 2 3

Rozwigzujac ze wzgledu na \; otrzymujemy A\ = 2, Ay = 0, A3 = —1. Stad
I(u) =2v;y.

Aby znalez¢ macierz rzutu w bazie e; musimy mie¢ macierze zmiany bazy R.. , oraz R,. ..
Te pierwszg mamy od reki. Aby znalez¢ druga odwracamy uktad

Vi = e+ ey + es3,
Vo = el—l— 62+2€3,

Vg = e1—|—2e2+363.

To jest proste: od drugiego odejmujemy pierwsze i mamy e3 = —v; +Vy; to do pierwszego
i trzeciego daje

e+ e = 2v;— Vv,
81—|—282 = 3V1—3V2+V3.
Znéw od drugiego pierwsze da od razu es = vy — 2vy 4 v3 i teraz wyznaczone ey i e

do pierwotnego pierwszego i e, = v, + vo — v3. W odruchu samokontroli*” sprawdzamy
mnozenie macierzy przejscia:

11 1 1 1 -1 1 00
Reew - Ryee=1(1 1 2 1 -2 1 ]=10 10
1 2 3 -1 1 0 0 0 1
Dobrze. Teraz mozemy juz napisa¢ macierz rzutu:
11 1 0 0 1 1 -1
eye) = Recv  iyw) - Ree = | 11 0 0 O 1 -2 1
1 2 0 0 O -1 1

1

2

3
1 1 -1
=111 -1
1 1 -1

37Qdruch ten nalezy sobie wyrabiaé przy kazdej nadarzajacej sie okazji!
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Oczywiscie spetnia ona podstwowy wymoég: Iy - Heye) = ILe)(e)- Dla kontroli (kontroli
nigdy dos¢!) podziatajmy jeszcze macierzg Il ) na skltadowe w bazie e; wektora u:

11 -1 1 2
1 1 -1 0 =12
1 1 -1 -1 2

Wryszty oczywiscie podwojone sktadowe wektora vy.

Przy okazji mozna sie przekonaé, ze rzut wektora u na podprzestrzen rozpicta przez
wektor v; w istotny sposob zalezy od tego “wzdluz” jakiej podprzestrzeni rzutujemy:
Gdybys$my rzutowali, tak jak powyzej na podprzestrzen rozpieta przez vy, ale “wzdtuz”
podprzestrzeni rozpietej przez np. vs i v = vs + vy, to wynik rzutowania bytby inny:
jesli napisalibyémy u jako kombinacje liniowa

u =N vy+Ayvo + Ajvy = (N] + Ap) vy + A\yve + A\,

to (co oczywiste z juz wykonanych rachunkow) otrzymalibysmy X, = 0, \; = —1 oraz
A+ Ny =2, ezyli A] = 31 rzut u bytby rowny 3v; (a nie 2vy, jak poprzednio).

Szczegoblnie prosto znajduje si¢ macierz 1)) drugim ze sposobéw pokazanych w Za-
daniu 42 (metoda ta jest tym prostsza im mniej wymiar6w ma podprzestrzen na ktora
rzutujemy, bo liczba tych wymiaréw jest réwna liczbie niezaleznych kowektorow zeruja-
cych sie na wektorach podprzestrzeni “wzdtuz” ktorej rzutujemy). Obraz rzutu rozpina tu
jeden wektor i jeden tez tylko kowektor zeruje sie na wszystkich wektorach bedacych kom-
binacjami liniowymi v, i v3. Kowektor ten, ktéry mozna reprezentowaé jego sktadowymi
(a,b,c) w bazie & (dualnej do bazy e;) wyznaczaja réwnania

a+ b+2c=0,
a+2b+3c=0.

Najogolniejszy taki kowektor ma postaé (—c¢, —c, ¢). Zatem

H(e)(e): 1 -p-(—C —C C).
1

p jest tu macierzag wymiaru 1 x 1, czyli po prostu liczba. Poniewaz

—c —c ¢ —c —c ¢ 2 2 -
O My =p* | —¢ —¢ c¢| - | —¢ —c ¢ =p"|& & =],
—c —c ¢ —c —c ¢ A 2 =
widaé, ze rownos¢ Ili)e) - Hieye) = Ile)e) wymaga, by pc = —1. Otrzymujemy wiec

ponownie t¢ samg macierz I, co powyzej.

Zadanie to warto rozwiazac jeszcze jednym, prostszym sposobem. Rozlézmy najpierw
calkiem ogolny wektor w = ae; + be, + ces na wektory vy, vo i v3. Sprowadza si¢ to do
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rozwiazania ukladu rownan (zobacz Zadania 17 i 31):

1 1 1 a
all ] +p8[1]+~v[2] =10
1 2 3 c
Rozwiazujemy i znajdujemy: o« = a+b—¢, B = a—2b+c¢, v = —a + b. Zatem

po wyrzutowaniu na wektor v; wzdhuz vy i vz wektor w przejdzie w wektor avy, co w
dziataniu na sktadowe oznacza, ze

a 1 a+b—rc 1 1 -1 a
H(e)(e)- bl=all]l=la+b—c|=|1 1 -1 b
c 1 a+b—c 1 1 -1 c

Sztuczka (ta sama, co w Zadaniu 31 - w koricu rzut to tez odwzorowanie liniowe, a wektory
v; definiujace rzut sg wlasnie tymi wektorami, na ktoérych dziatanie tego odwzorowania-
rzutu znamy!) polega na tym, by sktadowe wektora otrzymanego w wyniku rzutu przed-
stawi¢ w postaci macierzy dziatajacej na sktadowe tegoz wektora. Poniewaz sam wektor w
byt najogolniejszy z mozliwych, otrzymaliSmy macierz rzutu Il (te sama oczywiscie,
co uprzednio).

Zadanie 44
Znalez¢ wszystkie macierze X wymiaru 2 x 2 (nad cialem C) takie, ze X? = K, gdzie

K:</€ 0), k€ C.
0

Rozwigzanie: Oczywistymi macierzami X spelniajacymi podany warunek sa cztery ma-

cierze postaci
¥ — +vk 0
N 0 +Vk )’

gdzie znaki pierwiastkow na diagonali sg ze soba nieskorelowane. Jednak nie sg to wszyst-
kie takie macierze. Np. nietrudno sprawdzi¢, ze podniesiona do kwadratu macierz

(4

daje macierz K z k = 3 i nie jest ona zadng z podanych powyzej czterech macierzy. Widaé
wiec, ze rozwiazan moze by¢ “duzo”, wiecej niz naiwnie by mozna oczekiwac.

Aby znalezé wszystkie macierze X takie, ze X? = K, zastosujemy prosty chwyt
(stuszny w dowolnej liczbie wymiaréw).?® Po pierwsze sprowadzamy problem do szu-
kania pierwiastkow macierzy jednostkowej, tj. szukamy wszystkich macierzy Y takich,
ze

Y2=1.

38Chwyt ten podal mi dr hab. Maciej Nieszporski w odpowiedzi na moje pytanie dotyczace pierwiast-
kowania macierzy.
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W oczywisty sposob X = /k Y. Nastepnie podstawiamy Y = I — 2P. Spelnienie
warunku Y? = [ jest wtedy réwnowazne spetnianiu przez P réwnania:

P*=P.

Macierz P jest wiec rzutem (patrz Zadania 42 i 43). Dwa trywialne rzuty: P =11 P =0
(macierz zerowa) daja dwa oczywiste “pierwiastki” z macierzy jednostkowej, a mianowicie
—1 i1, ale innych rzutéw w przestrzeni n-wymiarowej jest rzeczywiscie “duzo” (w istocie,
jak zaraz zobaczymy, nieprzeliczalnie wiele3?).

W przypadku przestrzeni dwuwymiarowej mozna te wszystkie rzuty latwo napisaé.
Przypomnijmy, ze aby w takiej przestrzeni zadac rzut, trzeba wybraé jakies dwa wektory
Wi 1 Wy rozpinajace cala przestrzen i w bazie tworzonej przez te dwa wektory macierz
Plw)w) TZutu moze mie¢ jedng z czterech postaci:

o) o) @) o)

Dwie skrajne macierze dadza oczywiscie P = 01 P = I (w kazdej bazie). Jesli w pierwot-
nej bazie ey i ey przestrzeni V' wektory wi i wo sa postaci

leael—l—beg, W22061+d62,

to wowczas macierzami zmiany bazy sa

a c¢ 1 d —c
Re(—w_<b d)’ Rw(—e_ad_bc(_b a)-

Warunek ad — be # 0 jest oczywiscie warunkiem liniowej niezaleznosci wektorow wy i wy.
Macierz Pe)e) = Recw Plw)w)  Ruwee otrzymana z drugiej macierzy P (tej z jedynka
w lewym gornym rogu) ma postac

P 1 ad —ac
)~ 4d —be \bd —bc )

(Nietrudno sprawdzi¢ bezposrednim rachunkiem, ze P)e)-Peye) = Ple)e)). Wobec dowol-
nosci statych a, b, ¢ i d, druga nietrywialna macierz Py (otrzymana z trzeciej macierzy
Pluw)(w), t€j z jedynka w prawym dolnym rogu) majaca postac

P 1 —bc  ac
@™ ad—be \ =bd ad |-
nie daje juz nic nowego (tj. zmieniajac a, b, ¢ i d W Pey) Wyczerpujemy zbior wszyst-
kich rzutow na podprzestrzenie jednowymiarowe). Zatem w przestrzeni dwuwymiarowej

39Czyli jest ich tyle, ilu Wielowcow (skad to?)
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wszystkie pozostale (poza tymi czterema oczywistymi) pierwiastki z macierzy diag(k, k)
sa postaci

B 10 2 ad —ac\\| vk [—ad—bc  2ac
X_w%<01>_M—m<w-wJ}_M—m< —~2bd amMJ‘
W przestrzeni n wymiarowej rzutéow jest odpowiednio wiecej (rzutowaé¢ mozna na

podprzestrzeii n, n—1, n—2, ..., 0 wymiarowa) i nie daje sie tatwo napisa¢ potrzebnych
macierzy przejscia, ale poza tym wszystko inne pozostaje bez zmian.

Zadanie 45
Funkcje exp(A), ktorej argumentem jest macierz A definiujemy przez rozwiniecie w szereg
Taylora:

_ Lo 1o 1y
(I, jest tu macierza majaca na diagonali jedynki, i zera wszedzie poza diagonalg; kiedys

sie dowiemy, ze szereg ten jest zawsze zbiezny). Obliczy¢ eksponensy macierzy tA, tB
oraz tC (gdzie t € R)

0100 1 1 1 1
0 1 -1
00 20 1 1 -1 -1
A_ooog’ B=11 1 1 21| C_—11_01(1)
0000 1 -1 -1 1

Rozwigzanie: Obliczmy najpierw A-A-A=A- A% = A3

01 0 O 0 1 0 O 01 0 O
23— 0 0 2 0 0 0 2 0 00 2 0
{0 0 0 3 0 0 0 3 00 0 3
0 0 0 O 0 0 0 O 0 0 0 O
01 0O 0 0 2 0 0 0 0 6
10 0 2 0 0006 |0O0O0O0
{0 0 0 3 00 0O0] |0O0O0O0
0 0 0 O 0 0 0 O 0 0 0 O
Nietrudno spostrzec, ze A* = 0. Zatem w tym przypadku
1t 2
2, 0 1 2t 3t
00 0 1
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Podobnie obliczmy B - B = B2

1 1 1 1 1 1 1

-1 1 1 -1 -1
-1 1 -1 1 -1 1 -1
-1 -1 1 1 -1 -1 1

el

—_

|

—_
O O D =
O O = O
O = O O
_ O O O

Widzimy, ze B? = 22I. Wnioskujemy stad, ze B> = 22B, B* = 2%, etc. Ogolnie
B = 2] Bl = B . B = 2B = 22"t 1 B Mozemy wigc napisac

- - 1 2n - 1 2n+1
exp(tB) = ZO @ (tB)*" + ZO ErE] (tB)
ij 2t) + BZ S — Ich(2t) + ! Bsh(2t)
n=0 0 277, 2 .

Obliczmy znowu C? = C - C oraz C3 = C? - C:

C? = —1 0 1 -1 0 1 -1 0 1
— 0 1 -1 0 1 -1 0
1 1 0 1 -1 0 -3 3
-2 1 -1 0 1 = 3 0 -3
1 =2 1 -1 0 -3 3 0
Widzimy wiec, ze C3 = C. Ogolnie zatem C?" = (=3)"~1C? a C*"! = (=3)"C

C? = (—1)"(VBH)™ O o~ (=) (V31)2 !
exp(tC) =1 - 32( )(2(n)!) +EZ( (>27(L+1)>!

n=1

%2 (—1 + cos(\/gt)> + % sin(\/gt) )

n=0

— 71—

Uwaga: W tym zadaniu udalo nam sie znalez¢ jawnie funkcje (eksponens) od macie-
rzy, bo same macierze mialy pewne szczegélne wlasciwosci.?® Aby moéc znajdowaé takie
funkcje od dowolnych macierzy bedziemy musieli jeszcze troche rozbudowaé teorie.

40Np. macierz C jest w istocie rzeczy suma trzech generatoréw grupy obrotéw SO(3) w reprezentacji o
spinie 1, tj. w reprezentacji wektorowej; macierz exp(tC') jest wiec macierzg obrotu woko?! osi wyznaczanej
przez wektor n = %(ex +e,+e.)okat o =3t
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Przypomnienie.
Permutacjg ™ nazywa sie bijekcje (czyli odwzorowanie jeden-do-jednego) na siebie n-
elementowego zbioru, np. podzbioru S liczb naturalnych N. Permutowaé¢ mozna wszyst-
kie zbiory skoriczone: np. zbiér stoni bojowych*' w szyku albo zbiér wektoréw bazy
uporzadkowanej jakiej$ przestrzeni wektorowej (z permutacji wektoréw bazy bedziemy tu
korzystaé, bo juz sie z bazami oswoili$my, a ze stoniami jeszcze nie).

Permutacje n liczb naturalnych bedziemy zapisywaé nastepujaco (tzw. “zapis pietru-
sowy” - od pietruséw-autobusow, albo wagonow-pietrusow):

( 1 2 3 4 5 6 7 )
©(1) w(2) w(3) w(4) =(5) w(6) (7))

Oczywiscie zapis

< 2 1 3 7 6 5 4 )
m(2) w(1) #(3) =w(7) w(6) =(5) w(4))’

oznacza te sama permutacje, tylko inaczej zapisana. Dla przejrzystosci, zeby lepiej kon-
trolowa¢ operacje permutowania staramy si¢ zawsze permutowane elementy zbioru jako$
uporzadkowaé przyczepiajac im numerki. Podzbiory liczb naturalnych sa oczywiscie same
z siebie takimi numerkami. Ogoélnie wiec permutacje zbioru n-elementowego zbioru upo-
rzadkowanego (ay, as, ..., a,) mozna zapisywac jako

( a1 ) as aq as a6 ar )
Ar(1) Gr2) Ag@3) ar4) Gz(B) Az6) Ar(7) '

Tu juz te a; 1 ar) sa elementami permutowanego zbioru uporzadkowanego (czyli na
przyktad tymi stoniami bojowymi z numerami przyczepionymi na ogonach). Wszystkich
mozliwych permutacji zbioru o n elementach jest n!

Permutacje 7™ m-elementowego zbioru (aq,as, ..., a,) nazywa sie cyklem o dtugosci
k (k < n), jesli zamyka sie ona “w kotko” po k elementach. Jakos trudno to zapisac¢
przejrzyscie, wiec bedzie przyktad. Kazda permutacja zbioru n-elementowego sktada sie
z jednego m-elementowego cyklu lub kilku roztacznych cykli o dtugosciach ki, ko, ...,
takich, ze k; + ks 4+ ... = n. Permutacje mozna wiec roztozy¢ na cykle. Cykl o dtugosci
k = 2 nazywa sie transpozycjg (cykl o dtugosci k = 1 jest oczywiscie trywialny). Kazda
permutacje mozna oczywiscie ztozy¢ z kilku transpozycji. Minimalna liczba transpozycji,
z ktorych mozna ztozyé cykl o dtugoscei k wynosi £ — 1. Nieminimalna liczba transpozycji
z jakiej mozna ztozy¢ dany cykl (mozna przeciez troche “bladzi¢” sktadajac cykl!) rozni
sie od minimalnej zawsze o liczbe parzysta.

4ITych, co to je Hannibal przez Alpy ciagnal by, po wielu zwyciestwach nad Rzymianami, m.in. nad
jeziorem Trazymenskim, czy pod Kannami w sierpniu roku 216 p. Chr., w koncu, dzieki przebiegtej
taktyce Fabiusza Kunktatora (a mowia, ze kunktatorow w d... bijal), ugrzezna¢ w potudniowej Italii i
ewakuowaé sie w koncu zuriick do Afryki, czyli do Kartaginy...
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Wazny w réznych zastosowaniach jest znak permutacji sgnm. Jesli 7 jest permutacja
rozkladajaca sie na p rozlacznych cykli o dtugosciach ki, ko, ..., ky, to*?

sgnm = (=1t (=) (=D)L

Zmak transpozycji jest z definicji ujemny, znak cyklu jest iloczynem znakéw transpozycji,
z ktorych sie on sklada, a znak permutacji jest iloczynem znakéw cykli, na ktore ta
permutacja sie rozktada. Zatem dwie permutacje rézniace sie o jedng transpozycje maja
przeciwne znaki. Ponadto sgnm =sgnz 1.

Wszystkie permutacje zbioru n-elementowego tworza grupe (tzw. grupe skoriczona, bo
sa jeszcze grupy ciagte, ktore maja nieprzeliczalnie wiele elementow) S,,.: zlozenie dwoch
permutacji jest permutacja, kazdej permutacji odpowiada permutacja odwrotna, istnieje
permutacja trywialna (“jedynka grupowa”) taka, ze jej zlozenie z dowolna permutacja 7
daje te sama permutacje w. Grupa ta jest (gdy n > 3) nieprzemienna: my - 71 # 71 + To.

Zadanie 45.1
Napisa¢ permutacje odwrotng do permutacji

1 2 3 4 5 6 7

21 4 3 6 7 5/
Rozwiazanie: Patent jest prosty: nalezy zamieni¢ “pieterka” miejscami (odwrocié pie-
trusa do gory kotami) i wlasciwie juz jest. Ale ze umowilismy sie pisa¢ permutowane

zbiory w sposob uporzadkowany, to, jako drugi krok, porzadkujemy goérne pietro wraz z
tym, co na dole:

(2143675)_}(1234567)

1 2 3 4 5 6 7 21 4 3 75 6/

Inny sposob polega na potraktowaniu permutacji jak liniowego odwzorowania m n-wymia-
rowej przestrzeni wektorowej V' w nig sama, takiego, ze obrazami wektoréow e;, i =1,...,n
pewnej jej bazy sa tez wektory tej samej bazy tylko w innej kolejnosci. Byloby najwy-
godniej odwzorowanie to zdefiniowaé¢ tak, by m(e;) = ey, ..., m(e;) = e5. Z przyczyny,
ktora nizej sie wyjasni, przyjmujemy jednak inna definicje: mianowicie definiujemy od-
wzorowanie m tak, iz m(e;) = eq, m(ex) = e, m(es) = e4, w(ey) = ez, w(e;) = ey,
m(eg) = es, m(e7) = eg. Odpowiada to przyporzadkowaniu wektorowi e; o numerze i wek-

tora e; o numerze j znajdujacym si¢ w pietrusie nad numerkiem i. Naste¢pnie, zgodnie ze
standardowymi regutami tworzymy macierz Sy = 7(c)() odwzorowania 7:

1

42Matematycy z niewiadomych powodéw pisza (—1)*1 71 itd. (i tak jest tez to pisane w zadaniach), co
oczywiscie daje ten sam znak permutacji, ale ukrywa fakt, ze chodzi o minimalng liczbe transpozycji.

110



(Kropki oznaczaja zera - czyni to zapis latwiej czytelnym.) Znalezienie permutacji od-
wrotnej do danej sprowadza si¢ teraz do napisania macierzy S-! odwrotnej do S, ktora
to macierz S_!, podobnie jak S, w kazdym wierszu i w kazdej kolumnie moze mieé tylko

jedng jedynke a poza tym same kropki (zera); dzieki temu nietrudno te macierz napisa¢:43

1

™

Spa=S"t=1. .1

Po przetlumaczeniu na zapis dwupietrowy macierz S-! da to, co juz wiemy.

Przedstawienie permutacji za pomoca macierzy pozwala zatem tatwo je sktadaé: zto-
zeniu dwoch permutacji my -7 odpowiada oczywiscie iloczyn macierzy Sy, -Sy,. To wlasdnie
to skladanie permutacji “od prawej do lewej” (tzn. najpierw wykonujemy permutacje m;
zbioru, a potem wykonujemy permutacje m) zmusza nas do przyjecia takiej definicji od-
wzorowania 7 przestrzeni wektorowej V' w nia sama (przyjecie bardziej naturalnej definicji
prowadzitoby do przyjecia odwrotnej kolejnosci mnozenia macierzy w stosunku sktadania
permutacji). Inny prosty sposob skladania permutacji bezposrednio na pietrusach jest
pokazany w zadaniu o grupie permutacji S3. Przyporzadkowanie kazdej permutacji 7
macierzy S, w taki sposob, ze Sy,.r, = Sr, - Sr, Nazywa sie reprezentacjq grupy przez od-
wzorowania liniowe pewnej przestrzeni wektorowej V' w nig sama. Tu widzimy, ze tatwo
jest napisa¢ wierng (tzn. taka, ze jesli my # my, to Sy, # Sy, ) n-wymiarowa reprezentacje
grupy Sp.

Zadanie 45.2
Rozlozy¢ na roztaczne cykle permutacje

1 2 3 4 5 6 7 8
214 3 6 75 8/
Ustali¢ jej znak.

Rozwigzanie: Tu sposob polega na “wycigganiu nitki z kiebka”. Zaczynamy od 1. 1
przechodzi na 2, a 2 na 1. Jest wiec to cykl. Nastepnie zaczynamy od pierwszego elementu
nie uwiktanego w poprzedni cykl: 3 przechodzi na 4, a 4 na 3; jest wiec drugi cykl.
Nastepnie 5 przechodzi na 6, 6 na 7, a 7 na 5 i jest to trzeci cykl. Ostatni cykl jest
trywialny: 8 przechodzi na 8. W notacji pietrusowej wyglada to nastepujaco

12 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
12 3 4 6 7 5 8 1 2 4 3 5 6 7 8 21 3 4 5 6 7 8
43Mozna tez zauwazyé, ze macierze reprezentujace permutacje zbioru n-elementowego sa podzbiorem

macierzy ortogonalnych, czyli tworzacych grupe klasyczna O(n), i wobec tego macierz odwrotna jest po
prostu macierza transponowana.
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(ostatniego, trywialnego cyklu juz nie piszemy, bo i po co?) albo znacznie prosciej:
(5,6,7)(3,4)(1,2),

co nalezy czyta¢ tak, jak to, co napisane jest wyzej. Mozna to wreszcie przedstawié
macierzowo

1

1/ \. - . . . . 1)\ . . . . .
Tu kolejnosé, w jakiej stoja te trzy macierze (czwartemu cyklowi odpowiada macierz
jednostkowa, ktorej juz nie napisalismy) jest dowolna, bo cykle sa roztaczne (wszyst-
kie trzy wypisane macierze sa kazda z kazda przemienne). Odpowiada to temu, ze
(5,6,7)(3,4)(1,2) = (5,6,7)(1,2)(3,4) = (1,2)(3,4)(5,6,7), etc.

Poniewaz badana permutacja rozktada sie na cztery cykle o dtugosciach (2,2, 3, 1), jej
znak to (—1)1(=1)1(=1)%(=1)° = +1.

Zadanie 45.3
Znalez¢ w4, czyli permutacje bedaca zlozeniem 24-ech identycznych permutacji 7 danych

wzorem

1 2 10 11

5 8 11 6 /°
Rozwigzanie: Wyglada to na trudne zadanie, ale jest bardzo proste. Najpierw metoda
“wyciggania nitki z ktebka” rozktadamy 7 na roztaczne cykle:

6

3 4 5 7 8 9
9 1 3 10 4 2 7

(6,10,11)(2,8)(1,5,3,9,7,4).

Sktada sie wiec ona z trzech roztacznych cykli o dtugosciach 6, 2 oraz 3. Jest jednak mniej
wiecej oczywiste, ze p-krotne ztozenie cyklu o dtugosci p daje permutacje trywialna, czyli
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tozsamosé. Poniewaz 24 jest wielokrotnoscia dtugosci kazdego z roztacznych cykli, na
ktore rozklada sie permutacja 7 (i poniewaz kolejnosé sktadania roztacznych cykli jest
bez znaczenia), 2% =id, tj. zloZenie 24-ech permutacji 7 jest permutacja trywialng
(tozsamosciowa).

Zadanie 45.4
Rozlozy¢ na roztaczne cykle dwie permutacje bedace kazda z osobna zlozeniem trzech
nieroztacznych cykli:

(1,2,3,4)(1,2,3)(1,2)  oraz  (1,2)(1,2,3)(1,2,3,4).

Rozwigzanie: Zapis wskazuje, ze kazda z podanych permutacji jest ztozeniem trzech
innych permutacji (bo cykl to tez jest pewna permutacja) zbioru 4-elementowego. Dwa
przypadki réznia si¢ porzadkiem, w jakim skladane sa te trzy permutacje: pierwsza to
3T 71, & druga to m -mo-m3. Wyreprezentujemy te trzy permutacje sktadowe macierzami
4 x 4:

Sy =

Nastepnie mnozymy te trzy macierze w dwu réznych kolejnosciach:

1 .1
. . . Sﬂ-l ) S7r2 ) S7r3 - .
1 - . . 1

Srs* Sny - Spy =

Teraz mozna otrzymane permutacje zapisa¢ pietrusowo:

1 2 3 4 1 2 3 4
5”3'5”2'5”1_<4 3 2 1)’ 5”1'5”2'5”3_(3 2 4 1)‘

Pierwsza z nich sktada sie z dwoch roztacznych cykli o dtugosci 2: (1,4)(2,3), a druga
z cyklu trzyelementowego (1,3,4) i cyklu trywialnego. Otrzymany wynik pokazuje, ze
permutacje tworza grupe nieprzemienng (inaczej: nieabelowa).

Zadanie 45.5
Dana jest permutacja

1 2 3 4 5 6 7
15 13 11 12 7 10 4

§ 9 10 11 12 13 14 15
5 6 1 14 8 9 3 2

Napisa¢ permutacje odwrotna, czyli 7. Rozlozy¢ 7 na cykle. Wyznaczy¢ znak permu-

tacji m. Poda¢ permutacje bedaca 27-krotnym zlozeniem permutacji m z nia sama, tj.
27
=’
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Rozwigzanie: Permutacja odwrotna: odwracamy pietrusa do goéry kotami i porzadku-
jemy:

9 10 11 12 13 14 15

3
8
7 8 9 10 11 12 13 14 15
5 12 13 6 3 4 2 11 1

1 2 3 4 5 6

15 13 11 12 7 10 4
7

1 2 3 4 5 6
9

Z

61148932)

10 15 14 7 8

Teraz rozktad na rozltaczne cycle. Z permutacji

(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T=\15 13 11 12 7 10 456 1 14 8 9 3 2)°

wyciagamy nitke z kiebka:
m=(1,15,2,13,9,6,10)(3,11,14)(4,12,8,5,7).

7 sktada sie wiec z trzech roztacznych cykli o dtugosciach 7, 3 1 5 (razem 15, wiec sie
zgadza). Zatem jej znak to

sgn(m) = (=1)771 - (1) (1) = +1.

Jest to permutacja parzysta. Przy 27-krotnym zlozeniu 7 z nig sama srodkowy cykl
dtugosci 3 przejdzie w identycznosé (permutacje trywialna, czyli zadna), bo 27 jest pelna
wielokrotnoscig trzech. Cykl dtugosci 5 po 25-krotnym ztozeniu da tez identycznosé, wiec
efektywnie zostaja tylko dwa zlozenia (inaczej: 27-krotne ztozenie tego cyklu jest tym
samym, co jego ztozenie dwukrotne). Przy ztozeniu (4,12,8,5,7)(4,12,8,5,7)

4—-12—8, 12—-8—=5, 8—=5—=>7 bH—=>T7—4 T7T—4—12,

czyli dostajemy cykl (4,8,7,12,5). Wreszcie, 28-krotne ztozenie cyklu o dtugosci 7 datoby
identycznosé, wiec jego ztozenie 27-krotne jest tym samym co cykl bedacy permutacja
odwrotna. Zapiszmy wiec ten cykl w postaci pietrusa (na razie jako pelna permutacje
pietnastu liczb):
1 2 3 45 6 7 8 9 10 11 12 13 14 15
(1513345 786111129142)’

0 78 6 1 11 12 9 14 2
6 7 8 9 10 11 12 13 14 15

_)123456789101112131415
345 97 8 13 6 11 12 2 14 1)’

czyli jest to cykl (znow nitke z klebka) postaci (1,10,6,9,13,2,15). Widaé, ze gdybysmy
pisali odwracany cykl (1,15,2,13,9,6,10) w postaci (1,15,2,13,9,6,10,1), czyli z ta 1,
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ktorej z oszczednosci nie piszemy, to odwroécié cykl by bylo banalnie tatwo: po prostu
przepisalibysmy go w odwrotnej kolejnosci: (1,10,6,9,13,2,15,1). No i teraz usuwamy
te ostatnig 1, ktorej zgodnie z umows nie piszemy i juz mamy!

Zatem permutacja 7 ztozona sama ze sobg 27-krotnie sktada si¢ z dwoch nietrywialnych
roztacznych cykli

2" =(1,10,6,9,13,2,15)(4,8,7,12,5) .

Teraz mozemy (jesli nam to do czego$ potrzebne) przerobi¢ to na pietrusa

o7 (1 2 3 45 6 7 8 9 10 11 12 13 14 15
- \10 15 3 8 4 9 12 7 13 6 11 5 2 14 1)’

Zadanie 45.6
Poda¢ tabelke sktadania permutacji zbioru trojelementowego.
Rozwigzanie: Najpierw trzeba jako$ te permutacje ponazywac. Niech

(1 2 3 (1 2 3 (1 2 3
=11 2 3) ™=\3 1 2) ™T\2 3 1)
(1 2 3 (1 2 3 (1 2 3
™M=\9g 1 3) ™T\1 3 9) T=\3 2 1)

Musimy posktadaé¢ wszystkie mozliwe pary permutacji, tj. cierpliwie wykonaé 3! - 3! = 36
operacji typu m; - m;. Oczywiscie m - m; = 7 - m = 7;, wigc operacji jest o 11 mniej, czyli
tylko 25. No to do dzieta.

(1t 2 3\ (1 2 3\ (1 2 3\_
=13 1 9)\3 1 2)7\2 3 1)7™

Po prostu patrzymy (idac od prawej strony): przy prawym ms 1 przechodzi na 3, a 3
przy lewym o na 2, wiec w pietrusie bedacym ztozeniem 75 - o pod 1 piszemy 2. I tak
dalej. Na pietrusach sktadanie permutacji jest dos¢ proste. Mozna tez mnozy¢ macierze
3 X 3 podane w nastepnym zadaniu. No to jeszcze 24 takie operacje i mamy tabelke 1.
Tabelka pokazuje, ze grupa Ss jest nieprzemienna: 7, -m; # m;-m;. Poza tym mozna w niej
wyroznié cztery bloki 3 X 3: w lewym gérnym i prawym dolnym sa permutacje parzyste
(bo parzysta z parzysta i nieparzysta z nieparzysta daja parzysta), a w lewym dolnym i
prawym goérnym - nieparzyste (bo parzysta z nieparzysta daje nieparzysta,).

Zadanie.

Jesli w przestrzeni wektorowej, w ktorej grupa jest reprezentowana, mozna tak wybraé
baze, ze wszystkie macierze odpowiadajace elementom grupy beda miaty strukture klat-
kowa (wszystkie taka sama) i na mniejsze klatki tych macierzy (wszystkich jednoczesnie)
roztozy¢ dalsza zmiana bazy juz nie daje, to méwimy, ze udato nam sie roztozyé¢ re-
prezentacje na reprezentacje nieprzywiedlne (dane przez te klatki). Rozlozyé naturalng
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| m [ m|m|m|ms|ms ]

T || T | T2 | T3 | T4 | T5 | Te

Ty || T2 | T3 | 11 | 5 | T | T4

T3 || T3 | M1 | T2 | Tg | T4 | s

Ty || T4 | T | T5 | 01 | T3 | T2

T5 || 5 | T4 | Tg | T2 | 71 | T3

T || T | TT5 | T4 | T3 | T2 | 11

Tablica 1: Tabelka dziatanl grupy permutacji S5. W rubryczkach sa zlozenia miewe - Teora-

reprezentacje trojwymiarowa grupy S3 (permutacji zbioru trojelementowego) na reprezen-
tacje nieprzywiedlne.
Rozwigzanie: Trojwymiarowa naturalng reprezentacje grupy Ss tworzy 6 macierzy

1 . . .1 1.
gi=|. 1 .|, se=|1 . .|, se=|. .1

gi=|(1 . ), Se=|. . 1], Se=|.1
| 1. 1 -

Traktujemy je jak macierze szesciu réoznych odwzorowan przestrzeni wektorowej V w V
w pewnej bazie (e, ey, e3) wiec, zgodnie z wprowadzona w tym skrypcie notacja, S™ =
Szrej)(e). Jest jasne, ze jesli zmienimy baze przestrzeni V' tak, by jednym z wektoréw bazy
byl wektor f; o< e; + e; + e3, to jego obrazem przy kazdym z tych sze$ciu odwzorowan
bedzie on sam, czyli f;. Podprzestrzen rozpicta na wektorze V jest wiec podprzestrzenia
niezmienniczg wzgledem tych sze$ciu odwzorowan. Kazde z nich ma jeszcze te dodatkowsa
wlasciwosé, ze zachowuje dlugosci wektorow e; (przy naturalnym iloczynie skalarnym
e;-e; = 0;;, w ktorym baza (eq, €9, e3) jest baza ortonormalna). Mozemy wiec unormowac
wektor f; i dokombinowaé¢ dwa inne tak, by stworzy¢ baze ortonormalna (f;, fs, f3). Np.
moze to by¢ baza dana wzorami

S8k

(f17f2,f3) = (61762763)

Sl-sl-3l-
S-SILE-

-1
V2

Macierz tu stojgca, to macierz zmiany bazy R.. ;. Poniewaz laczy ona dwie bazy orto-
normalne (wzgledem zwyklego iloczynu skalarnego), macierz odwrotna jest dana przez
transpozycje: Rpeo = [Reey]”

Reszta jest sprawa tepego mnozenia macierzy:

™ = S}y = [Reesl” - STy [Beees].
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Otrzymujemy:

1 1 . . 1 .
~ ' ~ .1 _. /3 - | 3
Sm=1. 1 , ST = 2 2 |, S™ = 2 \/g ,
1 3 1 3 1
2 T3 V2 T2
1 . 1 .
~ S 3 ~ 3 ~ L
S™ = 2 2 ST — 2 , 976 — -1

.1 '
2 .
3 1 . 3 1 R |
2 2 2 2

Szes¢ klatek 2 x 2 w prawych dolnych rogach tych macierzy tworzy dwuwymiarowa nie-
przywiedlna reprezentacje grupy permutacji zbioru tréjelementowego, tzn. ich sktadanie
podlega tym samym regutom sktadania elementéow grupy Ss zebranym w tabelce 1.

Otrzymane klatki 2 x 2 muszg by¢ jakimi$ macierzami z grupy O(2) (bo klatki te sa,
jak tatwo dostrzec, macierzami ortogonalnymi). Grupe O(2) tworza wszystkie ortogonalne
macierze O(«)

—sina  cos«

O(a):< cos Sina)’

z 0 < a < 27 o wyznaczniku rownym +1, tworzace przemienna grupe SO(2) obrotow
dwuwymiarowych, i ortogonalna macierz

(b %)

“parzystosci” o wyznaczniku rownym —1. To wtasnie dolgczenie tej macierzy powoduje,
ze grupa O(2) jest nieprzemienna (i dlatego niema tu sprzecznosci z nieprzemiennoscia

grupy Ss):

cosa  sino 1 0 £ 1 0 cosa  sino
—sina  cos« 0 -1 0 -1 —sina cosa )

Pozostaje sprawdzi¢ jakim elementom O(2) odpowiadaja otrzymane klatki 2x2 - oznaczmy
je S3i, - macierzy reprezentacji grupy Ss. Nalezy tu najpierw zauwazy¢, ze wyznacznik
rowny +1 lub —1 macierzy S3:, odpowiada parzystosci permutacji. Zatem macierze S3.,,

329, S92, reprezentujace permutacje 7y, T2 1 3 musza by¢ macierzami z SO(2), a wiec
tworza podgrupe przemienng (istotnie: lewy gorny blok 3 x 3 tabelki 1 z poprzedniego
Zadania jest symetryczny i wystepuja w nim tylko permutacje my, mo i 73 - skladajac
tylko te ze sobg nigdy nie dostajemy permutacji w4, 75 1 7g; zatem parzyste permutacje

tworza podgrupe w S3). m odpowiada oczywiicie o = 0, mp - a = 27, a T3 - o = 7.

Z kolei kazda z macierzy Sgy,, Sguq, S9uy Ieprezentujacych permutaCJ;Q nieparzysta m?{lsi
by¢ iloczynem jakiejs macierzy z SO(2) i macierzy P (bo wtedy wyznacznik jest rowny
—1). Zeby zobaczy¢, czemu odpowiadaja dwuwymiarowe macierze reprezentujace permu-
tacje my, m5 1 mg uméWMYy sie, ze przypasujemy je do macierzy P - O(a). Wtedy mozna
zobaczyé, ze 7, odpowiada o = %7?, 5 - = %7?, a g odpowiada a = 0.
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Jest mniej wiecej oczywiste, ze otrzymana tu nieprzywiedlna i wierna dwuwymiarowa
reprezentacja grupy Ss nie jest jednoznaczna: gdyby inaczej skierowaé¢ wektory bazy e,
i e3 otrzymaliby$my inne macierze réwniez stanowiace dwuwymiarows reprezentacje Ss,
Nietrudno zrozumieé¢, ze kazdy zbiér macierzy otrzymanych z SJi, przez oblozenie ich
macierzami: z lewej przez O (3), a z prawej przez O(f3) z dowolnym 3 (ale takim samym
dla wszystkich SJ%,) da rowniez dwuwymiarowa reprezentacje grupy Ss (tzn. da macierze
2 x 2 spelniajace reguty sktadania zebrane w tabelce 1).

Przypomnienie.
Wyznacznikiem macierzy kwadratowej (wyznacznika macierzy niekwadratowej nie mozna
zdefiniowa¢ w sposob, ktory by byl sensowny, tj. uzyteczny!)

a1 a19 oo Qup
a a ..o a

A= 21 22 2n ’
An1  Ap2 oo Qpn

nazywamy liczbe (z ciala K, z ktorego sa elementy a;; macierzy A) dana wzorem

a1 a19 P Q1
__ @21 Q22 ... d2p Z
detA = = sgn(ﬂ) A17(1)A27(2) - « - Anm(n) -
™
Ap1  Ap2 oo Qpn

Jest to suma n! sktadnikéw, z ktorych kazdy jest iloczynem n czynnikéw bedacych ele-
mentami macierzy A. sgn(m) jest znakiem permutacji m czyli (—1)*, gdzie k jest rowne
liczbie pierestanowok potrzebnych do ustawienia ciagu liczb 7 (1), 7(2), 7(3),...,7(n) w
porzadku 1,2,3,...,n.

Nalezy zauwazy¢, iz w kazdym sktadniku aix(1)@2r(1) - - - Gnr(1) sumy definiujacej wyznacz-
nik wystepuje doktadnie po jednym elemencie z kazdej kolumny i po jednym elemencie z
kazdego wiersza macierzy A, tzn. w kazdym iloczynie bedacym skladnikiem sumy kazda
kolumna ma doktadnie jednego “reprezentanta” i kazdy wiersz ma tez dokladnie jednego
“reprezentanta” (jest to tzw. reguta reprezentantow). Z powyzszej definicji natychmiast

otrzymujemy wzory
a11 Qa2
det
Q21 a22
aix aiz 13

Q91 Qg2 (23| = (11022033 + Q12023031 + A21G13032 — G31A13022 — G12021033 — A11032023 ,
az1 asz ass

a11 Qa2
Q21  Qa22

= (11022 — Q12G21 ,

jako majace nalezne liczby sktadnikow (n!) i spelniajace regule “reprezentantow”. Ten
ostatni wynik wygodnie zapamictuje sie jako regute “mnozenia po skosach”.

Uwaga: Studenci niekiedy maja nadzieje, ze podobna metode “mnozenia po skosach”
mozna zastosowaé np. do obliczania wyznacznikow macierzy 4 x 4. Niestety, to nie
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dziala, co widaé¢ choéby z tego, ze nie dostaje si¢ wtedy koniecznej liczby sktadnikéow
sumy (4! = 24).

Wygodnie jest tez traktowaé wyznacznik macierzy A jak funkcje jej kolumn C;, ¢ =
1,...,n

a1 a19 ... QAp
921 a929 ... Qop

A= =(C; C, ...Cy),
ap1  QAp2 ... Qpp

a kolumny C;, i = 1,...,n traktowaé z kolei jak wektory z R"™ lub C" (ogolniej z K")

11 Q12 Q1n

21 22 Q2n,
C, = : Cy = , ... C,=

an1 an2 Ann

Wtasciwosci wyznacznika

e jesli cho¢ jeden wiersz lub choé¢ jednak kolumna macierzy A sktada sie z samych zer
to detA = 0 (“reguta reprezentantow™)

e zamiana miejscami dwu kolumn lub dwu wierszy macierzy A zmienia znak wy-
znacznika (wyznacznik jest calkowicie antysymetryczng funkcja kolumn i wierszy
macierzy A)

det(C1 Ck Cl Cn):—det(Cl Cl Ck Cn),
dla dowolnych 1 < k,I <n

e jesli wszystkie elementy jednej z kolumn A lub wszystkie elementy jednego z wierszy
A pomnozymy przez A to wyznacznik tez ulegnie pomnozeniu przez A

det (C; ... ACy ...C,) =Adet (Cy ...Cy, ...C,),
e wyznacznik jest liniowa funkcja kazdej z kolumn (kazdego z wierszy):
det (cl B We RS Weie Cn) = A det (cl ...cW cn>

Fadet (C; ... CY ..y

e wyznacznik nie zmienia sie jesli jedna z jego kolumn (lub wiersz) zastapimy suma
tejze kolumy (wiersza) i dowolnej innej kolumny (wiersza) pomnozonej przez do-
wolng liczbe

olet(c1 e Cn) —det (Cy ...Cy ...Cy),
gdzie ék = Ck+2j;ék )\jCj.
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e detA =detA”, gdzie macierz transponowana A” tworzy sic z A przez odbicie ele-

mentéw A symetrycznie wzgledem diagonali wyznaczonej przez elementy agg:

a1 21 ... Apy

T | Q2 G2 ... 0(p2
A - 9

A1y A2 ... Qpp

7 tego wynika réwniez, ze wyznacznik mozna traktowac jak funkcje wierszy Ry, ..
R, macierzy A, ktore to wiersze tez mozna uwaza¢ za wektory z R™ lub C”

°9

Z przedostatniej wlasciwosci wynika natychmiast, ze wyznacznik znika (tj. rowna sie zeru)
zawsze, gdy wektory C;, i = 1,n tworzace kolumny (lub wiersze) macierzy A sa liniowo
zalezne (mozna bowiem wtedy takimi operacjami wyzerowaé jakas cala kolumne lub caty

wiersz).

Przyktady Zadanie 45.7 Pokaza¢, ze

a1q 0 C 0
O 929

= 111022 - . . App
0 0 ... aun

wynika to z tego, ze w sktadnikach sumy wystepuje tylko po jednym elemencie z kazdej
kolumny i po jednym elemencie z kazdego wiersza macierzy A. Stad wyznacznik macierzy

jednostkowej wymiaru n X n (o dowolnym n) jest rowny zawsze 1.

1 0 0 O
00 0 1 1
0 0 1 0o ’
01 0 0
bo trzeba zamieni¢ miejscami kolumny drugg i czwarta.
3 1 1 2
1 7 1 2
a 1 1 2| 0,
1 1 1 2

bo odejmujac od czwartej kolumy dwa razy trzecig dostajemy zerowa czwarta kolumne.

1 1 1 1 1 000 1 000 1 000
002 1 1/ |02 1 1] _,/0 1 1 1/_,/0 100
00 3 1/ o0 3 1] “lo o 3 1/ “lo 0 3 1
00 0 4 00 0 4 00 0 4 0 0 0 4

1 0 0 0 1 0 0 0

01 0 0 01 0 0

=230 01 1/ %0 01 0%
0 0 0 4 0 0 0 4
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gdzie w pierwszym kroku od kolumn drugiej, trzeciej i czwartej odjeliSmy pierwsza, po-
tem wyprowadziliSmy czynnik 2 przed wyznacznik, potem od kolumn trzeciej i czwartej
odjelismy kolumne druga, potem wyprowadziliSmy czynnik 3 przed wyznacznik etc.

— =N
o O = O
O NN OO
w o OO

1
1
1
1

T

1 1
1 1
1 3
1 1
Najpierw od kolumn drugiej, trzeciej i czwartej odjeliémy pierwsza, a potem zauwazylismy,
ze wynik wynika (a coz innego wynik mogtby robi¢, jak nie wynika¢?) juz z tego, iz
w sktadnikach sumy dajacej wyznacznik wystepuje tylko po jednym elemencie z kazdej
kolumny i po jednym elemencie z kazdego wiersza. (Mozna tez od wierszy drugiego,
trzeciego 1 czwartego odjac pierwszy i wyjdzie macierz diagonalna).

7 przyktadow tych wynika wniosek: wyznacznik macierzy “gérno-trojkatne;j” lub “dolno
trojkatnej”, tj. macierzy

a;; a2 a4z ... Qip a1 0 0 e 0
0 99 A23 ... QA9pn 21 A2 0 e 0
0 0 ass ... d3zp y lub 31 dgzz asz ... 0 y
0 0 0 ... aun Al Ap2  Ap3 .. Qpp

jest rowny iloczynowi jej elementow diagonalnych, bo przez dozwolone operacje na kolum-
nach lub wierszach (tj. operacje nie zmieniajace wartosci wyznacznika), ktére tu mozna
przeprowadzi¢ nie zmieniajac elementéw diagonalnych, mozna ja zawsze sprowadzi¢ do
macierzy diagonalnej.

Inny przyktad. Zadanie 45.8. Obliczmy wyznacznik macierzy n x n

1 n n n
n 2 n n
n n 3 n
n o n o n n

Odejmujemy od n— 1 pierwszych kolumn ostatnig (tj. C; —» C;—C, dlai=1,...,n—1),
co da

1—n 0 0 0 n
0 2—n 0 0 n
0 0 3—n 0 n
0 0 0 -1 n
0 0 0 0 n



Jest to juz macierz gornotrojkatna i jej wyznacznik jest rowny (—1)"tn(n—1)...1 =
(=) tnl

Na koniec przyktadéw obliczmy jeszcze dla naprzyktadu®* wyznacznik macierzy 3 x 3

8 7 6
5 4 3|=8:4-0+7-3-2+5-1-6—-2:-4-6—-8-1-3—-5-7-0=0.

2 1 0

Zerowanie sie wyznacznika zawsze sygnalizuje liniowa zaleznos¢ jego kolumn. I istotnie:
w powyzszej macierzy Cz = —Cy + 2C,.

Przypomnienia

Minorem stopnia r macierzy A o wymiarach n xm (wazne: minory mozna takze wybiera¢
w macierzach niekwadratowych o m # n) nazywamy wyznacznik podmacierzy r X r
utworzonej z macierzy A przez skreslenie n — r jej wierszy i m — r jej kolumn.

Dopetnieniem algebraicznym Ajj, elementu a;;, macierzy kwadratowej A o wymiarach nxn
(uwaga: tu znéw mowa o macierzach kwadratowych!) nazywamy liczbe

Ajk = (—1)j+ijk,

gdzie M, jest minorem macierzy A utworzonym przez skreslenie jej j-tego wiersza i k-tej
kolumny. Np. w przypadku macierzy

1 0o 2 3
3 -2 4 3
5 8 -1 2|’
-2 3 0 1

Rozwiniectem Laplace’a wyznacznika macierzy A wymiaru n x n wzgledem j-tego wiersza
nazywamy wzor

detA = Cl,lejl + angjg + angjg + ...+ ajnAjn s
(niema tu sumowania po j !). Wyznacznik mozna takze rozwinaé¢ wzgledem k-tej kolumny:

detA = ay Avg + agr Aok + agr Ao + ...+ appApy .

4433k by powiedzial Jacek Fedorowicz

122



Wiersz j lub kolumna k& moga by¢ wybrane dowolnie. Wobec tego, przy praktycznym
stosowaniu tego rozwiniecia do obliczania wyznacznikéw najlepiej jest rozwijaé¢ wzgledem
kolumny (wiersza), w ktorej jest najwiecej zer; dobrze jest tez operacjami nie zmieniaja-
cymi wyznacznika troche zer powytwarza¢ przed przystapieniem do rozwijania.

Przyktad tzn. Zadanie 45.9
Zastosujmy Laplace’a do macierzy gornotrojkatnej (wiemy co powinno wyjsé). Rozwijamy
jej wyznacznik wzgledem ostatniego wiersza

a1; G2 apz ... Qin ay; a2 apz .- Ain—1
0 99 A3 ... QA9pn 0 99 A23 ... Aon—1
— _ n+n
0 0 ass ... QAzgp | = a,mAm = ann(—l) 0 0 ass ... aA3p—1
0 0 0 N O ) 0 0 0 e Ap—1n-—1

Poniewaz w ostatnim wierszu tylko element a,, jest niezerowy, suma (rozwiniecie wy-
znacznika wzgledem ostatniego wiersza) a,1 A, + anoAng + anzAns + . . . + ann Ay sklada
sie tylko z ostatniego wyrazu. Nastepnie rozwijamy ponownie pozostaly wyznacznik,
wzgledem ostatniego, (n — 1)-ego, wiersza itd. Wida¢, ze w rezultacie dostaje sie znany
wynik, ze wyznacznik macierzy géorno-trojkatnej jest iloczynem jej elementéow diagonal-
nych. Mozna bylo uzyskaé¢ to samo rozwijajac wyznacznik wzgledem pierwszej kolumny
(tylko zeby to przyzwoicie zapisywac, trzeba by byto w kazdym kolejnym kroku przenu-
merowywac elementy macierzy...)

Przyktad tzn. Zadanie 45.10
Ma on ilustrowaé¢ pozytki z wytwarzania zer.

3 2 -1 -5 4 3 2 -1 =5 4
7T 6 -3 -7 12 -2 0 0 8 0
detA=|-9 -6 4 3 -2|=|-1 0 0 -1 0}.
4 3 -2 =2 1 4 3 -2 =21
5 -2 6 -3 4 5 -2 6 -3 4

Przechodzac od jednej postaci macierzy do drugiej dokonalismy operacji Wy — Wy —
3Wi, W3 — W3 + 2W,. Druga posta¢ juz jest lepsza do potraktowania jej Laplacem:
rozwijamy wzgledem trzeciego wiersza:

9 -1 -5 4 3 2 -1 4
0 0 8 0 2 0 0 0
detA=(-1)} 5 o 5 1|=CD] 4, 3 5 4
2 6 -3 4 5 —2 6 4

Teraz z kolei oba wyznaczniki najlatwiej zlaplaceowaé¢ wzgledem ich drugich wierszy, co
sprowadzi obliczenie kazdego z nich do obliczenia jednego wyznacznika 3 x 3. Co wiecej,
oba wyznaczniki 3 x 3 sg takie same! Ostatecznie wigc

2 -1 4
detA=(8+2)| 3 —2 1|=10-(=16+2+72—16—12+412) = 10 - 42 = 420.
—2 6 4
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Zadanie 46 (uswiecony tradycja wyznacznik Vandermonde’a®®)

Obliczy¢ wyznacznik

2 3 n—2 n—1
1 = x% x%’ N , i 1
n— n—
— 2 3 n— n—
Vo=1|1 x3 a5 x5 ... aj T3
2 3 n—2 n—1
1z, z; x Ty Ty

Wyznacznik taki pojawit sie juz w Zadaniu 41.
Rozwiazanie: Sprawdzmy najpierw przypadki zn =21in = 3:

1 =z
n=2: ‘1 .TL’; =T — I71.
1 oz 23
n=3: 1 ) LE‘% :(Ig—l’l)(Ig—IQ)(SL’Q—SL’l).
1 23 xg

Stawiamy wiec hipoteze, ze

Vn = H(l’k — ZL’[) .

k>1

Dowdd przeprowadzamy postugujac si¢ indukcja matematyczng. Zakladamy, ze teza jest
prawdziwa dla V,,_;. Na V], dokonujemy nastepujacych operacji (nie zmieniajacych wy-
znacznika): Cn — Cn — xnCn_l, Cn—l — Cn—l — l’ncn_g,. .. Cg — Cg — Incl. Daje
to

1 o -2, 2z —m,) 22(x1— 1) ... 273wy —m,) 202 — )
1wy —x, xo(xo — 1) 22(x9 — ) ... 23 3z —m,) 2h *(zy — )

Vi=|1 a3—z, a3(z3—1m,) 22(x3—1,) ... 28 %(w3—m,) 25 %(r3—1,)
1 0 0 0 e 0 0

Teraz dokonujemy rozwiniecia Laplace’a V,, wzgledem ostatniego wiersza, ktory ma tylko
jeden niezerowy element:

T1 — Ty, r1(T1 — 1) 23 (z) — ) o2 — )

To — Ty, xo(xy — ) 23(wy — ) A (R

Vv, = (—1)"+1 T3 — T x3(rs — x,) r3(z3 — ) . x§_2(:c3 — )
Tpog — T Tp1(Tn1 — Tn) 22 (Tpey — ) ... 2T @py — 1)

45Nie myli¢ z Valdemortem czyli SamWieszZKim
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Wyciggamy nastepnie z wiersza pierwszego wspolny czynnik (1 —z,), z drugiego czynnik
(xg — ), ... 12 ostatniego wiersza czynnik (x,_; — z,,) 1 znajdujemy, ze

Vo= (=1)""z1 —2,) (29 — 20) .. (X1 — 2p) - Vioos
= (xp —21)(y —22) .. (Ty — Tp1) - Vi1 -

To zas koniczy dowdd, bo na mocy zalozenia indukcyjnego V,,_; jest juz dany przez odpo-
wiedni iloczyn.

Zadanie 46’4

Niech w wektorowej przestrzeni R” zadana bedzie forma objetosci, tj. calkowicie an-
tysymetryczna forma 7-liniowa Vol = e A ... A &7, gdzie jedno-formy &' sa dualne do
kanonicznej zero-jedynkowej bazy e’ przestrzeni V. Obliczy¢ objetoéé rownoleglodcianu
rozpietego na siedmiu wektorach

7 6 5 4 3 2 1
1 7 1 1 1 1 1
1 1 6 1 1 1 1
/1 IO I T R I I IO 3 A I R N R S |
1 1 1 1 4 1 1
1 1 1 1 1 3 1
1] 1] 1] 1] 1] 1] 2]

A jak zmieni sie objetosé jesli przedostatnia sktadowa drugiego wektora zmieni sie w 2 7
Rozwigzanie: Objetosé jest z deficji wartoécig formy Vol = é! A ... A &” na podanych
(zywych) wektorach. Obliczenie tej wartosci sprowadza sie do obliczenia wyznacznika
macierzy

e e =2
e S S Y

Il
— e e e e =
== = O = Ot
— = = O = = S
— = N = = =
— W = = = = DN

W tym celu odejmujemy pierwsza kolumne od pozostatych szesciu, co daje macierz

7 -1 -2 -3 -4 -5 —6

16 0 0 0 0 O
10 5 0 0 0 O
1 0 0 4 0 0 O
r o o0 0 3 0 O
r o o0 0 0 2 0
10 o0 0 0 0 1

46Tres¢ tego zadanie dotyczy form antysymetrycznych wieloliniowych; niemniej jest ono po prostu
¢wiczeniem w obliczaniu wyznacznikow i dlatego znalazto sie tutaj.
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Dalej juz prosto: jesli do pierwszego wiersza dodamy ostatni pomnozony przez %, to w
ostatniej kolumnie pozostanie tylko jedynka na siodmym miejscu i poza tym element 11
przejdzie w 7+%; mozna teraz zlaplasowaé¢ macierz wzgledem ostatniej kolumny. Nastepnie
w powstalej macierzy 6 x 6 dodajemy ostatni wiersz pomnozony przez g do pierwszego,
co znoéw zostawi tylko jeden niezerowy element w ostatniej kolumnie i zmieni element 11
na 7+ % + g Widag¢, ze procedure te mozna kontynuowaé. W rezultacie wyznacznik jest
réowny

6 5 4 3 2 1
detA—1~2-3'4'5'6'<7+I+§+§+1+5+6)

=(74+6)-720+6-5>-4-3+6-5-4°-2+6-5-32.24+6-4-3-2°45-4-3-2
= 9360 + 30 - (60 + 32 4 18 +4) + 24 - 12 = 9360 + 3420 + 288 = 13068.

Jesli przedostatnia sktadowa drugiego wektora zmieni sie w 2, to wyznacznik mozna
oblicza¢ tak jak wyzej, z tym, ze w drugim kroku, gdy dodajemy szosty (w tym momencie
jest to juz ostatni) wiersz pomnozony przez g do pierwszego, zmieni si¢ tez element 12
macierzy: przejdzie on wy = —1—1—%. Dalej wszystko idzie jak poprzednio, az do momentu,
gdy wskutek sukcesywnego laplasowania zostanie juz tylko macierz 2 X 2; w tym momencie
(oznaczajac na chwile x element 11) mamy

—1.9.3.4.5. oy
detA—12345det<1 6)

4 2
=t-23a5 (1454 Ta g+ T4 2) 01 (143

6 5 4 3 2 1 5!
—-1-2.3.-4.5-6- I R e (S [ R
3.4.5-6 k+1+2+3+4+5 6( ¥ ﬂ

= 13068 — 1-3-4-5% = 13068 — 300 = 12768 .

Zadanie 47
Udowodni¢, ze detC'=detA-detB jesli

C = (Apxzn [O]zle) )
0lixp,  Bixi
A i B sa tu macierzami wymiaréw odpowiednio p X p il x 1, a [0],x; 1 [0];xp sa macierzami
zerowymi wymiaréw p X [ il X p.
Rozwigzanie: Mozna postuzyé sie indukcja matematyczna wzgledem (. Gdy [ = 1, tzn.
gdy macierz B sktada sie tylko z jednego elementu, wzor jest prawdziwy na mocy rozwinie-
cia Laplace’a (zastosowanego do ostatniej kolumny badz ostatniego wiersza). Zakladamy
wiec, ze wzor jest prawdziwy dla macierzy B wymiaru (I—1) x (I—1) i badamy przypadek
macierzy B wymiaru [ x [. Rozwijamy wyznacznik calej macierzy C' wzgledem ostatniego
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wiersza, w ktorym niezerowe sg elementy c,4; p+1 = bi1, Cpti pr2 = bi2y .. Cpti pr1 = bu

A 0],
[Oiip [B]lp:l = Cp4ip+1 (_1)p+l+p+1MpC:1-l i1 + Cotl pi2 (_1)p+l+p+2M;z€|-l o + .
p
I4+p+l 3 sC
_I_Cp-i-l P+ (_1)p+ +p+ Mp_H i
l+p+1p3sC l+p+2 7 sC
= by (_1)p+ +p+ Mp+l ol + by (_1)p+ +p+ Mp-H o 4.
lp+i 4 sC
by (—1)PHiEet M,
Kazdy z minorow MY, ., (k= 1,...,1) macierzy C jest teraz wyznacznikiem podma-

cierzy o wymiarach (p+1— 1) x (p + 1 — 1) skladajacej sie z dwu niezerowych blokow:
bloku wymiaréw p x p w lewym gérnym rogu i bloku o wymiarach (I —1) x (I — 1) w
prawym dolnym rogu; do takiego wyznacznika stosuje sie zatem zalozenie indukcyjne.

Na mocy tego zatozenia odpowiednie minory Mﬁrk o1t (B =1,...1) macierzy C' sa réwne
odpowiednim minorom macierzy B razy wyznacznik macierzy A:

M,y oy = detA - M7, k=1,...1.
Zatem

detC = (detA) . (_l)p—l—p . {bll (—1)l+1M£ + blg (—1)H—2]\4£g + ...+ bll (—1)l+lMlle}
= (detA) - (detB),

bo wyrazenie w nawiasie jest niczym innym, jak rozwinieciem Laplace’a wyznacznika
macierzy B wzgledem jej ostatniego wiersza.

Uwaga: Warto tez pamictaé, choé¢ nie dowodzimy tu tego, ze
det(A - B) = (detA)(detB)
i, co za tym idzie (bo wyznacznik macierzy jednostkowej jest rowny 1),

1

det(A™) = Totd

Zadanie 47’

Obliczy¢ wyznacznik macierzy wymiaru n x n trojpasmowej tj. majacej na diagonali
potrojny pas (“pas stucki, pas lity” - z czego to Mlodziezy kochana?) jedynek (kropki
oznaczaja zera):

— =
— =

— = =

—_ = .

_ = .
—_ = = .
—_ =
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Rozwiazanie: Oznaczmy D,, wyznacznik macierzy A wymiaru n xn. Oczywiscie D; = 1
i Dy = 0. Rozwijajac wyznacznik D, o macierzy wymiaru (n + 2) X (n + 2) wzgledem
ostatniego wiersza dostrzegamy natychmiast prosty zwiazek rekurencyjny

Dn+2 = Dn+1 - Dn .
Poniewaz znamy D; i Dy, mozemy obliczy¢ na piechote

Dy, Dy Ds Dy Ds D¢ D; Dsg Dy
1 0o -1 -1 0 1 1 0 -1

Wida¢, ze powtarzaé¢ sie beda ciagi szescioliczbowe (bo D; = Dy i Dg = D,, a dwie
kolejne liczby catkowicie determinuja liczby nastepne). Jest wiec to w zasadzie kompletne
rozwiazanie, bo np.

D237 = D39~6+3 = D3 = _17

etc. Sprobujemy jednak znalezé jakas zwarta postaé¢ rozwigzania.
Zmnaleziony zwiazek rekurencyjny mozna zapisa¢ w formie macierzowej

Dn+2 — I -1 Dn+1
Dn+1 1 0 D" .

Oznaczmy wystepujaca tu macierz F'. Iterujac moglibySmy wiec napisaé, ze

Dua) _ (1 —1\" (D
Duyr) ~\1 0 ) \D )
1 w zasadzie, biorac pod uwage, ze Dy = 0, a D; = 1 mielibySmy rozwiazanie:
Do = (F")12.

Trzeba by tylko umieé¢ podnie$é macierz F' do dowolnej potegi, a tego jeszcze nie umiemy
(ale jak sie nauczymy, to bedziemy takie rzeczy tak rozwiazywac - zob. Zadanie 72).
Musimy wiec uciec si¢ do innej metody. Sprobujmy poszukaé rozwiazania zwiazku reku-
rencyjnego podstawiajac don

D, =A\N".
Daje to rownanie kwadratowe
M —-A+1=0,
ktorego pierwiastkami sag
At :%(uz@) = i3
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Poniewaz pierwiastki te sa zespolone, a wyznacznik D,, musi by¢ liczba rzeczywista, mo-
zemy od razu napisaé

D, = Ae's" + A" e '3" .

Zespolona stala A wyznaczamy z warunkow

1 1
5(1+z'\/§)A+ 5(1—2'\/5)14*:191:1,

1 1
Z(1+i\/§)2A+i(1—i\/§)2A* =Dy =0.

Daje to A = 2—\1/3(\/3 — ). Zatem

D, = % [(\/§ — i) €5 + (V3 + 1) e_i%”} = cos(%n) - % sin(%n) :

Mozna sprawdzi¢, ze wzor ten odtwarza wyliczone wyzej liczby (wyznaczniki) Dy, D, .. .,
Dy. Widac¢ tez, ze Dy, 6 = D,.

Zadanie 47"

Napisa¢ odwzorowanie f : R* x R* x R* — R%, tj. moéwigc po ludzku, funkcje robiaca
z trzech wektoréow a, b i ¢ przestrzeni R* jaki§ wektor d € R*: d = f(a, b, ¢), takie, ze
wektor d jest prostopadty do wektoréw a, b i ¢ (w sensie kanonicznego iloczynu skalarnego
w przestrzeni wektorowej R*)47 i zarazem takie, ze f(e;, s, €3) = €4, gdzie e; sa czterema
wektorami kanonicznej zero-jedynkowej bazy R?.

Rozwigzanie: Napiszmy sobie macierz

1 bl
2 b2
3 bS
4 b4

A=

Q@ 2 « &
O . Q0.0
W N

i rozwinmy jej wyznacznik wzgledem jej ostatniej kolumny:
detA = 21 Ay + 22 Aoy + 23 Asy + 4 Ay,

Wyglada to jak iloczyn skalarny (taki szkolny, czyli wlasnie kanoniczny) wektora x o
sktadowych 2! z wektorem (tu Zywym, bo to w R*)

A14

4"Poniewaz o iloczynach skalarnych nic jeszcze nie bylo, to powiedzmy, ze chodzi po prostu o to, zeby
d'a' + d%a® + d®a® + d*a* = 0, gdzie d’ i a’ sy odpowiednio sktadowymi wektoréw d i a w kanonicznej
zero-jedynkowej bazie e; przestrzeni R* i by analogiczne zwiazki zachodzity z a* — b’ oraz a’ — ¢'.
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utworzonym z dopehien algebraicznych macierzy A. Z wtasciwosci wyznacznika (liniowa
zalezno$é kolumn) wynika, ze jesli za x° wezmiemy skladowe (w bazie kanonicznej, czyli
po prostu jego elementy, bo to R?*) wektora a, lub b, lub c, to ten iloczyn skalarny
zniknie. Zatem definiujac odwzorowanie f tak, ze kolejnymi pieterkami wektora d (czyli
jego sktadowymi w kanonicznej zero-jedynkowej bazie R?) sa dopelnienia algebraiczne
Aqg, Agy, Aszy 1 Ay (bedace funkcjami elementéw wektorow a, b i ¢), spelnimy warunek
ortogonalnosci d i wektorow a, b i c. Nietrudno zobaczy¢, iz spelniony jest wtedy takze
i drugi warunek: jesli za a, lub b, lub ¢ w macierzy A wstawimy zero-jedynkowe wektory
e1, ey i e3, to niezerowe bedzie tylko dopelnienie algebraiczne Ayy, czyli jako wektor d
otrzymamy ey.

Przypomnienie
Uogolnieniem rozwiniecia Laplace’a sa wzory

allAjl + CL[QA]'Q + a,lgAjg + ...+ a'lnAjn = 6lj . detA,

a1 Av + ak Aoy + oAy + .o+ anpAn = gy - detA
w ktorych 6;; =1, gdy [ =j1i6;; =0, gdy [ # j.

Wrzory te pozwalaja napisa¢ macierz odwrotna do danej. Mianowicie: jesli

a1 a12 oo Qp
921 929 oo Qo
A= n
Ap1 Ap2 ... Qpp
to
All Agl C Anl
-1 _ 1 A12 A22 C Ang
detA | ... ... ... ... |’
Ay, Asn ... A

(wazne: w A™! na miejscu kj stoi Ajx, nie za$ Ay;!). Istotnie: gdy mnozymy A i A~ to
element c;; macierzy C' = A+ A~ jest rowny

1
Gk = 9 A (ajnAp + ajohpe + ...+ ajnApn)

a to wlasnie na mocy pierwszego ze wzoréw bedacych uogdlnionymi rozwinieciami La-
place’a da ¢, = ;1. Nietrudno zobaczy¢, ze drugi z tych wzoréw zapewnia, iz (A7 A)j;, =
k-

Mamy stad natychmiast wzor na macierz A~ odwrotng do macierzy A wymiaru 2 x 2:

11 Q12 - 1 22 —Q12
A= , A7l = )
a1 G2 a11022 — Q1291 \ —A21 (11
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Zadanie 48
Korzystajac z powyzszej metody*® odwrocié macierz

A:

=
— W o
O E—

Rozwiazanie. Obliczamy dopelnienia algebraiczne wszystkich alementéw macierzy:

3 1 2 1 2 3

2 1 11 1 2
A21__‘1 2‘__37 AQQ_‘O 2‘_27 A23__‘0 1‘__17
2 1 11 1 2
A31_‘3 1‘__17 A32__‘2 1‘_17 A33_‘2 3‘__1

Wyznacznik macierzy A jest np. dany przez a3 Ay + a1 Aog +ag1As; =1-5+2-(=3) +
0-(=1) =—1. Stad A~!

L (5 -3 -1 -5 3 1
,4—1:_1 —4 2 1 |=(4 -2 -1
B 2 -1 -1 -2 1 1

Nietrudno sprawdzié, ze istotnie jest to macierz odwrotna. Oczywiscie, jesli detA = 0, to
macierz odwrotna A~! nie istnieje.

Przypomnienie
Uktadem Cramera nazywa si¢ liniowy ukltad n réwnan na n niewiadomych

a1 + 122 4+ ...+ ainTy, = bl y
a91T1 + 9979 4+ ...+ oLy = b2 s
Ap1T1 + ApoTos + ... + appx, = by,

ktory rownowaznie mozna zapisa¢ w postaci

aiy a12 e A1p I bl
a921 929 o Qop T2 . bg
- )
Gp1 Gpa .. Opp Tp by,
lub po prostu
A-x=Db.

48Inna, naogd! znacznie szybsza metoda odwracania macierzy byta podana w zadaniu 19. Tamze byla
podana takze jeszcze inna metoda.
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Wrzory na macierz odwrotng prowadza natychmiast do wzoréw Cramera bedacych
rozwigzaniem uktadu Cramera: x = A~! - b, lub jawnie:

I A Ay L0 Ay by
) _ 1 A12 Agg c. Ang b2

det A e e .
L, Aln A2n e Arm bn

Widac sladd, ze
k ] A - LEYL ] A 1411k 2412k s n{ink) -

Uwazniejsze spojrzenie na ten wzor ujawnia, ze suma po jego prawej stronie jest po
prostu rozwinieciem Laplace’a wzgledem k-tej kolumny wyznacznika macierzy utworzonej
z wyjsciowej macierzy (macierzy uktadu) A przez zastapienie jej k-tej kolumny wektorem

b (tj. dokonaniu podstawien aj; — b;, 7 =1,...,n):
a1 e bl e Q1
1 . .
T = 21 by Q2n,
detA
api ... bn ... apn

1 k—ta kolumna

Tak wiec dzigki wzorom Cramera rozwigzanie uktadu n liniowych réwnan na n niewiado-
mych sprowadza sie do obliczenia n+ 1 wyznacznikéw macierzy n xn. Wzory Cramera nie
sg szczegdlnie wygodnym sposobem rozwiazywania takiego uktadu réwnan ale jako jawne
maja wazne znaczenie teoretyczne. Co wiecej jesli ze wszystkich z-6w potrzebny jest np.
tylko x to wzory Cramera pozwalaja wyznaczyé¢ od razu t¢ niewiadoma bez wyznaczania
pozostalych (sprowadza sie to do obliczenia dwu wyznacznikow tylko).

Ze wzoréow Cramera mozna ponadto wysnué¢ dwa wnioski: po pierwsze, jesli b £ 0, a
detA = 0, to by¢ moze uktad ma rozwigzanie ale nie mozna go znalez¢ ta metoda (zobacz
dalej) i po drugie, jesli b = 0 (jednorodny uktad réownan), to nietrywialne rozwiazanie
x # 0 istnieje tylko wtedy, gdy detA = 0 (bo jesli detA # 0, to wzory Cramera daja
xz; = 0). Ten wniosek jest w fizyce niezwykle czesto wykorzystywany; tu bedzie nam
potrzebny m.in. przy rozwiazywaniu tzw. zagadnienia wlasnego operatora liniowego.

Zadanie 49

7 uktadu réwnan:
200 + 19 —x3+2x4 = B,
T1+ 29 +ax3—284 = —1,
T —2xs+x3+24 = 2,
T+ T3

132



wyznaczyC Ty.
Rozwigzanie: Macierz tego uktadu ma postaé

2 1 -1 1
1 1 1 =2
A= 1 -2 1 1
1 0 1 0

L1 0 -2 Lo
iteraz detA=1-(-D*"" 1 0 -2/=9
1 -2 0 1 5 o0 1
1 0 0 O
Zgodnie z podanymi wzorami mamy wiec
oo b1 1 -1 1 5 1 1
1l-1 1 1 =2 1
T, =~ =-{-3-]1 1 =2|—-1-|-1 1 =2
912 —2 1 1 2 11 2 —2 1
30 1 0

Stad z; = (1/9)[-3-3 —1-(—18)] = 1. W podobny sposéb mozna znalez¢ (jesli by byty
potrzebne) xo = 2, x3 = 21 x4 = 3. (Poniewaz rozwiazanie takiego uktadu réownan jest,
gdy detA # 0, jednoznaczne wiec zgadniecie lub Sciagniecie od kolegi/kolezanki xo, 23 1 x4
i sprawdzenie, ze wraz z x; spelniaja one uktad zatatwia sprawe sprawdzenia poprawnosci
wyliczonego wlasnorecznie ).

Przypomnienie

Rzqd r(A) macierzy A wymiaru m x n (niekoniecznie kwadratowej), ktéra ma n kolumn
Cy, ..., C,: tworzacych n wektorow o dtugosci m (i elementach z ciala K = R lub C) jest
to maksymalna liczba liniowo niezaleznych wektoréw-kolumn C;. Rzad macierzy jest wiec
to wymiar podprzestrzeni liniowej K" rozpinanej przez kolumny Cy, ..., C, macierzy A.

Przyklad. Rzad macierzy A (nad ciatem C)

1 2 3
A=10 1 1 ,
2 1 2414

jest réwny 2, bo C3 = C; + Cs.

Wiasciwodci rzedu macierzy. Rzad macierzy A i rzad macierzy transponowanej AT sa
sobie rowne:

r(A) = T’(AT) )
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(Inaczej: rzad “kolumnowy” macierzy i jej rzad “wierszowy” sa takie same). Wynika stad
natychmiast, ze

T (Amxn) < min(m,n).
Rzad macierzy nie zmieni si¢ jesli
e ktoras z kolumn (lub wierszy) pomnozymy przez jakas liczbe A # 0 (z ciata K)
e przestawimy kolumny (wiersze)

e do jednej z kolumn (wiersza) dodamy kombinacje liniowa pozostatych kolumn (wier-
szy)

Wykorzystujac powyzsze wlasciwosei, rzad macierzy mozna ustali¢ stosujac systematycz-
nie eliminatke Gaussa, tj. systematycznie zerujac wszystkie procz jednego (wykorzysty-
wanego do tego celu) elementy w kolejnych wierszach (lub kolumnach).

Przyktad

Zmajdziemy rzad macierzy

0 1 1 1

1 01 1

1 1 0 1}’

1 1 1 0
w Co,

stosujac eliminatke Gaussa. Najpier

0 0 0 1 00 0 1
1 -1 0 1 10 0 0
1 0 —1 1| |11 =1 o0
1 1 1 0 12 1 -1

Strzatka oznacza operacje: Cy — C3+Cy1 Cy — C4 — Cy. Nastepnie C; 2 = Cy 2+ Cs:

0 0 O 1 00 0 1
10 0 0 R 10 0 0
00 -1 0 00 -1 0
2 3 1 -1 03 0 0

W ostatnim ruchu kolumna C, zostata uzyta do wyzerowania dolnego picterka pozostatych
kolumn. Wida¢ teraz, ze cztery kolumny sa wszystkie liniowo niezalezne, czyli r(A) = 4,

Zadanie 50
Ustalié¢ jaki jest rzad macierzy

1 2 3 6
A=13 -1 2 4
4 1 5 10



Rozwigzanie: Oczywiscie, rzad nie moze by¢ wiekszy niz 3. Dokonajmy operacji: C; —

Cg — (Cl + CQ), C4 — C4 — 2(01 + Cg) Daje to
1 2 00
3 =1 0 0],
4 1 0 0

i natychmiast?® wida¢, ze r(A) = 2.

Zadanie 51
Jeszcze raz ustali¢ jaki jest rzad macierzy

_ == O
[ i =
O = =

1
1
0
1

troche inng metoda® niz w podanym wyzej przykladzie Rozwigzanie: Dokonajmy ope-
racji: C4 — C4 — Cl, Cg — Cg — Cl, CQ — CQ — Cl. Daje to

0 1 1 1
1 -1 0 0
1 0 -1 0
10 0 -1

A dalej mozna po prostu rozwiazywaé problem liniowej (nie)zaleznosci kolumn: A\ C; +
)\202 + )\303 + )\404 = 0, czyli

Ao+ A3+ Ny 0
A1 — Ao =0
A1 — A3 =0
A1 N = 0.

Wyrazajac z ostatnich trzech rownan Ao, A3 i Ay przez A\; i wstawiajac do pierwszego
znajdujemy sofort, ze \; = 0, a stad, z pozostalych réwnani Ay = A\3 = Ay = 0. Stad
kolumny C;, C,, C3 i C; sg liniowo niezalezne, a co za tym idzie rzad wyjsciowej macierzy
jest réwny 4, co mozna sprawdzi¢ obliczajac wyznacznik A (detA = —3 # 0).

Przypomnienie

Rzad r(A) macierzy A jest réwny najwyzszemu ze stopni ny niezerowych minoréw M
jakie mozna z niej “wyja¢” (tj. utworzy¢ skreslajac w A pewna liczbe kolumn i wierszy,
tak by otrzymaé¢ podmacierz wymiaru ng X ny). Ze stwierdzenia tego wynika natychmiast

49 Jeszcze szybciej by poszto, gdyby na macierzy A dokonaé operacji Rz — R3 — (R1 + Ray).
%0No, naprawde to jest ta sama metoda tylko troche inaczej zapisana.
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to, ze “rzad kolumnowy” macierzy jest taki sam, jak jej “rzad wierszowy”. Stwierdzenie to
daje nam jeszcze jedng metode badania rzedu macierzy.

Zadanie 52

Ustalié¢ jaki jest rzad macierzy
21 3 4 5
31 2 5 4
5 2 5 9 10
10 -1 2 -1

Rozwigzanie: Niewatpliwie r(A) < 4, bo macierz ma tylko cztery wiersze. Zanim
zaczniemy oblicza¢ wyznaczniki lepiej wykonaé pare operacji. Np.: C; — C; — 2C,,
Cg — Cg — 202, C4 — C4 — 402, C5 — C5 — 402 Dadzq one

01 1 0 1
11 0 1 0
12 1 1 2
10 -1 2 -1

1 (1] (1) (1] 1 0 1 11 1
M4 = 5 1 1 9 =1-(=1)*"| 1 1 2 |+1-(-=1)*?2 1 2
0 1 9 _1 -1 2 -1 0 -1 -1

To juz tatwo obliczyé: M4 = —1-(=2) —1-(1) = 1 # 0. Znalezlismy wiec w macierzy
otrzymanej z A niezerowy minor stopnia 4, a to oznacza, ze macierz, ktérej minor ten jest
wyznacznikiem, a zatem i sama macierz A jest rzedu 4 (gdyby wybrany minor okazal sie
zerowy, to wciaz nie moglibysmy wykluczyé, ze r(A) = 4; trzeba by wtedy sprawdzi¢
kolejny z wszystkich pieciu minoréow czwartego stopnia, jakie mozna wybra¢ w A).

Bez odwolywania sie do kryterium minorowego rzad badanej macierzy mogliby$my
ustali¢ robigc na niej najpierw operacje C; — C;—2C,, C3 — C3—-3C,, Cy — C4,—4C,,
Cs; — C5 — 5C,, co daloby

01 0 0 O 01 0 0O
11 -1 1 -1 N 110 00
12 -1 1 0 1 2 0 0 1
10 -1 2 -1 100 1 0

Strzatka oznacza operacje C3 — C3 + C;. C4; — C4, — Cq, C; — C5 + C;. Teraz juz
wystarczy wykorzystujac czwarta kolumne wyzerowaé ostatni element pierwszej, wykorzy-
stujac piata wyzerowaé przedostatnie elementy pierwszej i drugiej kolumny i, na koniec,
wykorzystujac otrzymana w wyniku tego pierwsza kolumne wyzerowac¢ drugi element dru-
giej kolumny, by otrzymac jedna catkowicie zerowa kolumne (trzecia) i pozostale kazda z
jedna jedynka na innym pieterku, czyli cztery liniowo niezalezne kolumny.
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Przypomnienie
Ogolny uktad m réwnan liniowych z n niewiadomymi postaci

a1 + 199 + ... + A1y — bl s
a91T1 + A922T9 T Aondy, = bg s
Am1T1 + Qra®a + oo+ QT = b,
lub, réwnowaznie,
a1 a19 e A1n T bl
921 a922 e A9y, ) . b2
- 9
Am1  Qm2 - Qmn T bm,

lub, jeszcze inaczej, ale wciaz rownowaznie,

a1 a12 A1n by
21 22 a2 by

T + 5 + ..+, "= :
am1 Am2 Amn bm

ai; a2 ai, b
a1 Q22 asz, by

)
am1 Am?2 Amn bm

ajp a2 A1p
921 929 Ce Qon,

Y
Am1  Am2 oo Amn

Jest to oczywiste jesli zapisa¢ ostatnig z podanych postaci uktadu rownan jako réwnosé
x101+x202+...—|—zncn = CB,

ktora oznacza, ze wektor-kolumna Cpg musi sie daé¢ przedstawié¢ jako kombinacja liniowa
wektorow-kolumn C;, i = 1,...,n macierzy A. Oznacza to bowiem, ze kolumna Cpg musi
by¢ liniowo zalezna od kolumn C;, czyli jej dostawienie do macierzy A w celu stworzenia
macierzy rozszerzonej Af nie moze podwyzszy¢ rzedu macierzy.

Ogolna postac rozwiazania. Jesli r(A%) = r(A) = r, gdzie z koniecznosci r <min(n, m),
tj. jesli uktad jest niesprzeczny, to w macierzy A musi sie da¢ wybraé¢ niezerowy minor
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stopnia 7, tj. musi w niej istnie¢ podmacierz A,.q wymiaru r X r o niezerowym wyznacz-
niku (trzeba ja znalez¢). Zalozmy, ze podmacierz ta sklada sie z r pierwszych kolumn i
r pierwszych wierszy macierzy A (zawsze mozna tak przenumerowaé¢ réwnania i niewia-
dome z;, zeby tak bylo). Mozemy wtedy odrzuci¢ réwnania, ktérych wspotezynniki ajy
nie wchodza do znalezionej podmacierzy r X r o niezerowym wyznaczniku (czyli przy po-
wyzszym zalozeniu, m —r ostatnich rownan), a zmienne, x;, ktérych wspotezynniki ay; nie
wchodza do owej podmacierzy (czyli tu zmienne x,,1, ..., x,) nalezy uzna¢ za dowolne
(zeby to podkreslié nadajemy im nowe nazwy z,.1 = 1, ..., T, = Q,_,) 1 przenies¢ na
druga strone rownan. Nastepnie rozwigzujemy uktad zredukowany

a;1ry + apxrs + ...+ apx, = b1 — Q1p4+101 + . .= Oy
2171 + 22%2 + ...+ anT, = by — agp100 + ... — A2p0y_y
Ar1T1 + Q2o + ...+ ATy = br — Qpp4101 + o0 = Qrp Qi

Ten uklad réwnan ma juz, zgodnie z twierdzeniem Cramera, jednoznaczne rozwigzanie
(przy ustalonych wartosciach ay, ..., a,_,), bo odpowiadajaca mu macierz problemu
Areq ma rzad rowny r. Co wiecej, zagwarantowane jest, ze odrzucone rownania s rowniez
spetnione, bo kolumna Cg jest liniowo zalezna od kolumn Cy, ..., C,.

Wynika z tego wszystkiego, ze uktad m réwnan na n niewiadomych ma jedno (jed-
noznaczne) rozwiazanie tylko gdy r(A) = n (bo wtedy po prawej stronie powyzszego
uktadu niema zadnych dowolnych «;. (To samo inaczej: wszystkie wektory-kolumny Cy,

.., C,, sa wtedy liniowo niezalezne i roztozenie na nie wektora-kolumny Cpg jest jedno-
znaczne). Jedli 7(A) = r(Af) = r < n, to rozwiazanie jest niejednoznaczne bo zalezy
od n — r dowolnych stalych a4, ..., a,_, (skadinad jest tak zawsze, gdy n > m; czyli w
takim przypadku jesli rozwiazanie istnieje, to nie moze by¢ jednoznaczne). W ogélnym
przypadku (gdy uktad jest niesprzeczny), po skorzystaniu z macierzy Ar_eé odwrotnej do
macierzy A..q wypisanego wyzej uktadu zredukowanego (r réwnarn na r zmiennych) roz-
wiazanie tegoz zredukowanego uktadu ma - poniewaz dziatanie Ar_e(lj1 na wektor stojacy po
prawej stronie jest liniowe - ma strukture

€ by a1 r+1 a1n

T2 _ 1-1 by -1 a2 r4+1 -1 a2.n
- Ared ’ . - Ared ’ . t.o oy Ared ’

Ty br Ar r41 Qr n

W pelnej krasie rozwiazanie catego uktadu mozna wiec zapisa¢ w postaci

2N -0
To x;s) i’;l) j;n—r)
Ty - .f(fq(«s) + o i’y(«l) + ...+ opr i}(ﬂn—r) 5
xr—l—l 0 1 0
Tn 0 0 1

138



w ktorej pierwsza kolumna (r pierwszych jej elementéow jest danych dziataniem A;C}i na
pierwsze r elementéw wektora-kolumny Cpg) jest szczegblnym rozwigzaniem wyjsciowego
uktadu niejednorodnego

Ty
S
),
ai; Q12 QA1n 1
a1 Q22 Q2n ) | — by
Ly - ’
. - 0
am1  Am2 Qmn, bm
0
a kolejne kolumny sa n — r liniowo niezaleznymi rozwigzaniami rownania jednorodnego
~(k
9
~ (k)
Lo
an G2 Ay (k) 0
921 929 e A9y, . o
0 = , k=1,....n—r
Am1 Am2 ... (Omn 1 0
0

(w wektorze po lewej jedynka jest na r+ k-tym miejscu; wyrazamy tu minus k-ta kolumne
przez r pierwszych kolumn, ktore przy przyjetych zalozeniach sa liniowo niezalezne). Dla-
tego mowimy, ze przestrzen rozwiazan wyjsciowego uktadu rownan jest n —r wymiarowa.

Przyklad
Szukamy rozwigzan uktadu réwnar:
T1— Ty +2x3 — x4 = 1,
2:151—3:1}2 — T3 + 24 :—1,
Ty + Tes —4dzy = 4.

Macierza tego uktadu jest
1 -1 2 -1
A=12 -3 -1 1
1 0 7 -4

Oczywiscie r(A) < 3. Aby wyznaczy¢ r(A) dokonujemy operacji: C; — C4 + Cq, C3 —
C; — 2C;, Cy — Cy + Cy, co sprowadza A do

10 0 O
2 -1 -5 3
1 1 5 -3
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Widag¢ teraz, ze C;, = —3C,, a C3 = 5C,. Poniewaz kolumny C; i Cs sa liniowo niezalezne
wige r(A) = 2. Jest tez oczywiste, ze macierz rozszerzona uktadu

1 -1 2 -1 1
AR=12 -3 -1 1 -1
1 0 7 -4 4

ma ten sam rzad, bo jej ostatnia kolumna jest po prostu réwna minus przedostatniej,
tj. Cp = —Cy4. 7Z tego powodu przyktad ten jest trywialny: gotym okiem widaé¢, ze
x1 = 29 = w3 = 0, x4 = —1 jest rozwiazaniem; nie jest to jednak rozwigzanie jedyne.
Zastosujmy ogoélna teorie: niezerowym minorem stopnia 2 w A moze by¢ np. minor
utworzony z dwu pierwszych wierszy kolumn C; i Cy. Postepujac teraz wedtug podanego
przepisu odrzucamy trzecie rOwnanie, a wyrazy z x3 i x4 po nadaniu im nowych nazw:
T3 = «, x4 = (3, przenosimy na prawa strone:

T —Ty = 1—2a+ 8,
21’1—31'2 :—1+a—5.

Rozwiazujemy ten uktad (np. metoda macierzy odwrotnej):
1 -3 1 1-2a+p\ (4—-Ta+4p5
o) —3+2\-2 1)\ -1+a-8) \3-5a+33)"
Czyli 2y = 4—Ta+405, o = 3—ba+3. Sprawdzamy, ze ostatnie (odrzucone) réwnanie tez
jest spelnione (musi by¢; jest wiec to sprawdzenie, czy sie nie pomyliliémy w rachunkach):
4—Ta+48+Ta -4 =14.

Poniewaz x3 = «, a r4 = [ mozna ostatecznie rozwigzanie zapisa¢ w postaci

T 4 -7 4
| |3 -5 3
A e I e IR I I
T4 0 0 1

Zapis ten czyni jawng ogblng strukture rozwiazania: jest ono suma jakiegos jednego
szczegoOlnego rozwiazania (pierwszy wektor po prawej stronie) pelnego niejednorodnego
uktadu réwnan oraz najogoélniejszego rozwigzania uktadu jednorodnego reprezentowanego
po prawej stronie przez dowolna (z dowolnymi wspotczynnikami « i ) kombinacje liniowa
wszystkich wektoréw, na ktérych macierz A daje zero:

1 -1 2 -1 :g 0 1 -1 2 -1 ;,l 0
2 -3 -1 1 =10 2 -3 -1 1 ol =10
1o 7 —4 0 0 Lo 7 -4/} 0
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Wspomniane wyzej, widoczne na pierwszy rzut oka rozwiazgnie x; = xy = x3 = 0,
xry = —1, jest szczegbdlnym przypadkiem wypisanego wyzej najogoélniejszego rozwiazania i
odpowiada przyjeciu a =01 = —1.

Zadanie 53
Rozwiazaé¢ (jesli to mozliwe) uktad:
SL’1+2$2—SL’3—LL’4 = 1,
[L’1—|—ZL'2—|-{L’3+3[L’4 = 2,
3LL’1—|—5LL’2—$3+LL’4 =3.
Rozwigzanie: Badamy najpierw rzad macierzy uktadu
1 2 -1 -1
A=|1 1 1 3
3 5 -1 1

Po operacjach: Cy — Cy — Cq, C3 — C3+ C; 1 C4 — C4 + C; przyjmuje ona postaé

11 0 0 11 00 01 0 0
102 4)—=110 2 0—=1(1202 0],
3 2 2 4 3 2 2 0 1 2 2 0

gdzie w przedostatnim kroku zrobiono operacje C, — C, — 2C3, a w ostatnim C; —
C,—C,. Poniewaz teraz kolumny pierwsza i trzecia sa wzajemnie do siebie proporcjonalne
(a czwarta jest zerowa), wiec rzad macierzy ukltadu jest rowny 2. Nastepnie sprawdzamy
rzad macierzy rozszerzonej

1 2 -1 -1 1
ABR=11 1 1 3 2
35 -1 1 3

Po wykonaniu tych samych operacji, co poprzednio na macierzy A dostajemy

01 0 01
1 0 2 0 2
1 2 2 0 3

Wida¢, ze minor stopnia 3
0 1 1
1 0 2/=242-3=1+#0,
1 2 3

z czego wniosek, ze macierz rozszerzona ma rzad réwny 3. Zatem uklad réwnan jest
sprzeczny, mimo iz zmiennych jest wiecej (cztery) niz réwnan do spenienia (trzy).
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Zadanie 54
Zmalez¢ najogolniejsze rozwigzanie uktadu rownan liniowych

20 — y+ 3z =7,
3r+2y— 5z = 4,
dr+5y—13z = 1.

Rozwigzanie: Macierz A tego problemu i macierz rozszerzona Af maja postacie

2 -1 3 2 -1 3 7
A=[3 2 -5 |, AR=13 2 -5 4
4 5 —13 4 5 —-13 1

Po dokonaniu operacji (tych samych na obu macierzach) C3 — C3 + 3Cy, a nastepnie
C, — C; — 3C3, Cy — Cy — 2C5 otrzymujemy z A i A" odpowiednio macierze

i 2 -1 0 i 2 -1 07
A= 0 0 1], AR=1 0 0 1 4
—2 1 2 —2 1 21

Widag¢, ze pierwsza kolumna obu macierzy jest proporcjonalna do drugiej, wiec rzad ma-
cierzy A jest réowny 2. Obliczajac zas wyznacznik podmacierzy tworzonej przez ostatnie
trzy kolumny macierzy A% znajdujemy —1 — 7+ 8 = 0, skad plynie wniosek, ze rzad
macierzy rozszerzonej tez jest rowny 2. (Istotnie: C, = —7C;y 4 4Cj3). Zatem uklad
jest niesprzeczny. Aby wypisa¢ najogolniejsze jego rozwigzanie znajdziemy najpierw naj-
ogolniejsze rozwiagzanie rownania jednorodnego (uzyjmy Ai, A2, A3 w miejsce 1, Ta, T3;
czemu? a tak sobie!)

20 — A+ 3X3 = 0,

3A\ +2X— B3 = 0,

4)\1 + 5)\2 - 13)\3 == O

7 pierwszego Ao = 2\; + 3A3. To do drugiego i trzeciego:

7)\1—|- )\3 = O,
14N +2X3 = 0.

Widaé, ze A3 = —TA{, Ay = —19)\; spelnia te réwnania niezaleznie od wartosci A;.
Nastepnie szukamy jakiegos szczegblnego rozwiazania réwnania niejednorodnego. Mo-
zemy w tym celu®® potozy¢ z = 0. Mamy wtedy

2c—y = T,

51Gdybys$my nie znalezli wezesniej rozwigzania réwnania jednorodnego, to tak postepujac ryzykowali-
by$my troche, bo zakladaliby$Smy tym samym, ze kolumna Cs macierzy A jest liniowo zalezna od Cj i
C, - mogtoby sie akurat okazac¢, ze nie jest. Ale skoro juz mamy rozwiagzanie rownania jednorodnego,
to wiemy z niego, ze dowolng z trzech kolumn mozna wyrazié¢ jako kombinacje liniowa dwu pozostatych
i zanego ryzyka tu nie podejmujemy. W przyjetej tu metodzie chodzi o pokazanie, jak mozna prébowaé
rozwiazaé uklad nie pamietajac metody “regulaminowe;j”,
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3r+2y = 4,
dr+5y = 1.

skad, dodajac dwa razy pierwsze do drugiego, znajdujemy 7z = 18, a potem z pierwszego
y =2r—7= —1—73. Trzecie rownanie jest wtedy tez spelnione (co jest zagwaranto-
wane tym, ze uktad jest niesprzeczny, ale dobrze to sprawdzi¢ jawnie, bo mozna wtedy
wykry¢ wlasne bledy rachunkowe). Najogolniejsze rozwiazanie wyjsciowego uktadu jest
suma szczegbdlnego rozwigzania uktadu niejednorodnego i ogdlnego rozwiazania uktadu
jednorodnego:

T 1 18 1
y | = - =13 | +X | —19
z 0 -7

Ten sam wynik uzyskuje sie oczywiscie metoda ogolna: Minor uworzony z elementow
dwu pierwszych kolumn i dwu pierwszych wierszy macierzy wyjsciowego uktadu jest nieze-
rowy, wiec skreslamy ostatnie rownanie, a “wystajace” poza minor wyrazy z niewiadoma z
przenosimy na druga strone podstawiajac z = . Rozwigzujemy wiec uktad zredukowany

2r—y = 7T—-3«
3r+2y = 4+ 5,

z\_1(2 1 7T—3a) _1 18—«
y) 7\ =3 2)\44+5a) 7\ -13+19a )’

Latwo sprawdzi¢, ze skreslone trzecie rownanie jest tez spetnione (z z = «a):

skad mamy

1 1
4 (18- a) +5- =(~13+19a) ~ 13a = 1.

Wida¢ ze otrzymuje sie ta droga to samo rozwiazanie, co poprzednio (tamto odpowiada
temu tu z o = —7)\).

Zadanie 55

Zbada¢ istnienie rozwiazan (i znalezé najogolniejsze, jesli istnieje) uktadu rownan
1 1 a T 2
1 a 1 zo | =1 -1],
a 1 1 T3 -1

w zaleznosci od wartosci parametru a.

Rozwigzanie: Zobaczmy najpierw kiedy kolumny macierzy po lewej stronie sg liniowo
niezalezne i ile ich jest liniowo niezaleznych (czyli jaki jest rzad tej macierzy). W tym
celu obliczamy wyznacznik tej macierzy:

detA=3a—a*~2=—(a—1)(a>+a—2)=—(a—1)*(a+2).
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Wyznacznik zeruje sie wiec, gdy a = 1 lub gdy a = —2. a = 1 jest pierwiastkiem
podwojnym réwnania detA = 0 i, jak od razu widaé¢, wszystkie trzy kolumny macierzy
sa takie same czyli rzad macierzy jest rowny 1 (tj. pierwiastek podwojny obniza rzad
macierzy o 2). Widaé tez, ze uktad jest wtedy sprzeczny. Gdy a = —2 rzad macierzy
wynosi 2 (np. po wstawieniu a = —2 zobaczy¢, ze nie znika lewy gérny minor stopnia 2).
Rozwiazanie wtedy istnieje, bo ostatnia kolumna macierzy jest wtedy po prostu réwna
minus wektorowi po prawej stronie (inaczej: gdy a = —2, rzad macierzy rozszerzonej nie
przewyzsza rzedu macierzy wyjsciowej). Jesli a # 11 a # —2, wyznacznik nie znika, czyli
trzy kolumny sa liniowo niezalezne i uktad ma zawsze rozwiazanie, ktére mozna znalezé
np. ze wzoré6w Cramera.

1 YW a?+a-2
xr] = 1 a 1|l=—-—-"=(1-0a)",
detA 1011 detA
1 2 a
1 a’+a—2
= I -1 1|=——"=(1-0a)"
727 detA dota 1T a
a —1 1
1 1 1 21 20t —dadd o
xr3 = a —1|= =2(a — .
> detA detA
a 1 -1
Wida¢, ze gdy a = 1 rozwiazanie staje si¢ osobliwe, ale zera mianownikéow w a = —2
skrocity sie z zerami licznikéw. Pozornie wiec nic tu nie wyréznia przypadku a = —2.
Jednak dzieki zbadaniu rzedu macierzy problemu w funkcji parametru a wiemy, ze gdy
a = —2 tylko dwie kolumny tej macierzy sa liniowo niezalezne i wobec tego przestrzen

rozwiazan jest jednowymiarowa: do rozwiazania dawanego (w granicy a — —2) przez
Kramersieta mozemy dodaé jeszcze z dowolnym wspotezynnikiem wektor

1
Ly,
1
na ktorym, gdy a = —2, macierz A problemu zeruje sie.
Zadanie 56
Zbada¢ istnienie rozwiazan (i jesli istnieja, podac je) uktadu réwnan
3a—1 2¢  3a+1 1 1
2a 20 3a—+1 ro | =1\ a |,
a+1 a+1 2a+2 T3 a?

w zaleznosci od wartosci parametru a.
Rozwigzanie: Zbadajmy najpierw rzad macierzy uktadu. Najpierw Ry, — Ry — Ry:

3a—1 2 3a+1
—a+1 0 o |,
a+1 a+1 2a+2
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a nastepnie C; — C; — C3 daje

-2 20  3a-+1 -2 20  3a+1
—a—+1 0 0 — | —a+1 0 0 ,
—a—1 a+1 2a+2 -2 a+1 2a+2

gdzie w kolejnym kroku zrobiliSmy R3 — Rj3 — Ry. Nastepnie C3 — C3 — 2Cs:

-2 2a —a+1 0 a—1 —a+1
—a—+1 0 0 — | —a+1 0 0 ,
-2 a—+1 0 —2 a+1 0

gdzie w kolejnym kroku zrobilismy R; — R; — R3. Wreszcie, po Cy — C, + C3 macierz
przybiera w miare przejrzysta postac:

0 0 1—a
l1—a 0 0
-2 a+1 0

Jej wyznacznik jest réwny®? detA = (1 — a)?(1 + a). Widaé¢ wiec, ze szczegdlnymi warto-
Sciami sg a = 1 oraz a = —1. Jedli a # 11 a # —1 to rzad macierzy uktadu jest réowny 3
i rozwigzanie zawsze istnieje 1 jest jednoznaczne. Jesli a = —1 (jednokrotny pierwiastek
rownania detA = 0) rzad macierzy jest rowny 2, ale rzad macierzy rozszerzonej

4 -2 -2 1
—2 -2 -2 -1/,
0o 0 0 1

jest rowny 3 i uktad jest sprzeczny (rieszenije otsutstwujet). Wreszcie, gdy a = 1 rzad
macierzy jest rowny 1, a macierz rozszerzona ma postac

2 2 4 1
2 2 4 1],
2 2 4 1

(trzy pierwsze kolumny sa oczywiscie macierza uktadu dla a = 1 - widaé, ze jej rzad
wynosi 1, co wynika takze z tego, iz a = 1 jest podwdjnym pierwiastkiem réwnania
detA = 0). Poniewaz jednak (co jest oczywiste) rzad macierzy rozszerzonej tez jest rowny
1, rozwiazanie istnieje, ale jest oczywiscie niejednoznaczne - przestrzen rozwigzan jest
dwuwymiarowa: zgodnie z ogdlng metoda mozemy w tym przypadku napisaé

T : ~1 -2
| =10l +al 1 +481 0
XT3 0 0 1

52Mozna bylo tez obliczyé od razu wyznacznik wyjsciowej macierzy uktadu, albo jeszcze prosciej -
zlaplasowaé¢ wzgledem drugiego wiersza wyznacznik macierzy otrzymanej po operacji Re — Ro — Ry;
wynik by byl oczywiscie taki sam.
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Zadanie 57
Traktujac p jak parametr rozwigzaé¢ uktad réwnan liniowych

0 3 -2 -6 1 -3
10 3 =2 2 | | 2p
1 1 0 3 vy | 1
11 1 0 T4 P

Rozwiazanie: Najpierw znajdujemy rzad macierzy A uktadu. W tym celu robimy naj-
pierw R3 — R3 — Ry i obliczamy wyznacznik powstalej macierzy:

? g'f :g 0 3 —6 0 3 -2
=—1-(=1*P|1 0 —2[+3-(-1)*"*|1 0 3 |=12-12=0.

00 -1 3 11 0 11 1

11 1 o0

Poniewaz wyznacznik macierzy A znika, jej rzad jest mniejszy niz 4. Latwo sprawdzi¢, ze
ma ona podmacierz 3 X 3 o niezerowym wyznaczniku w prawym goérnym rogu:

3 -2 —6
0 3 —2|=2T+4+18+#£0.
1 0 3

Zatem rzad A wynosi 3. Niezerowy wyznacznik wskazanej podmacierzy oznacza takze, iz
kolumny C,, C3 i C; macierzy A sa liniowo niezalezne. Kolumne C; mozna za$ przed-
stawi¢ w postaci

ClzaC2+bC3+cC4,

gdyz jest ona od C,, C3 i C, liniowo zalezna.

Zadajac teraz by rzad macierzy rozszerzonej nie byt wiekszy niz 3 moglibysmy znalezé
wartos¢ parametru p, dla ktoérej uktad jest niesprzeczny. W tym celu trzeba by badaé
rzad macierzy zbudowanej z kolumn (Cy, Cy, C3,Cy, Cp) ale poniewaz C; jest liniowo
zalezna od Cy, C3 1 Cy4, to wystarczyloby badaé¢ rzad macierzy sktadajacej sie z kolumn
(Csq, C3,Cy, Cp); zadanie, by jej rzad byl mniejszy niz 4 sprowadza sie do zazadania, by
jej wyznacznik

3 -2 -6 -3

0 3 -2 2p
1 0 3 1’
1 1 0 »p

byt rowny zeru. Stad otrzymaliby$my wartosé parametru p, dla ktorej uktad réwnan jest
niesprzeczny. Wstawiajac te warto$¢ p moglibysSmy nastepnie odrzuci¢ czwarte réwnanie
(jako ze jego wspOtezynniki nie wechodza w te podmacierz wymiaru 3 x 3 macierzy A, ktorej
niezerowy wyznacznik pokazal nam, ze r(A) = 3) i przenies¢ x1 = « na prawa strone,
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tak jak to opisane jest w Przypomnieniu ogélnej metody. Zamiast jednak oblicza¢ ten
wyznacznik, po prostu zaczniemy rozwiazywaé¢ uktad réwnan i wyjdzie nam “w praniu”
dla jakiego p sie to da zrobi¢. Poniewaz kolumna C; jest liniowo zalezna od kolumn Cs,
C; i C4 to jej dotaczenie nie moze pomoc w wyrazaniu Cp przez kolumny macierzy A.
Dlatego mozemy na razie potozy¢ x; = 0 (albo nada¢ niewiadomej z; jakakolwiek inng

.. (0) - . . .
wartos¢ x§ )) 1 szuka¢ rozwiazania uktadu

29C9 + 23C5 + 24C4 = Cp,
(lub ukladu 2,C; + 23C3 + 2,C4 = Cp — 21" Cy), cayli
3xy —2x3 — b6y = —3,
3rs —2x4y = 2p,
To +3xy = 1,
To + X3 = p.
Rozwigzmy najpierw uktad trzech ostatnich réwnan. Po prostych fiku-miku znajdujemy
1 1 1
$2=—§(2—3p)7 x3:?(2+4p), $4=§(3—P)-
Wstawiamy to teraz do pierwszego (na razie nie uwzglednionego) réwnania i mamy mie¢

2 3 2 4 3 1
3(—?4'?]9)—2(?4'?]3)—6(?—?]9)——3,

co zachodzi tylko dla p = 1.
Dla p = 1 mamy zatem jedno szczegdlne rozwigzanie wyjsciowego uktadu rownan

:I:l 0
S| yT

z$) 6/7

2y 2/7

Nie jest to jednak jeszcze najogodlniejsze rozwiazanie bo niewiadomych bylo n = 4, a
rzad macierzy A byt réwny 3. Musimy do powyzszego rozwiagzania szczegdlnego uktadu
niejednorodnego doda¢ z dowolnym wspotezynnikiem jedno (bo n —r = 1) rozwiazanie
uktadu jednorodnego

0 3 -2 -6 T1 0
1 0 3 =2 2| |0
1 1 0 3 23 |0
1 1 1 0 Ty 0
Musi takowe istnie¢ bo detA = 0. Latwo je znajdujemy

T1 1

T | | —4/7

s | | =3/7

Ta —1/7
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Najogolniejszym zatem rozwiagzaniem wyjsciowego uktadu rownan (oczywiscie tylko dla
p=1) jest

T 0 1
5 6/7 | T =37 |
Ty 2/7 —1/7
gdzie A jest dowolng stala.
Zadanie 58
Rozwiaza¢ uklad réwnani
-2 1 1 1 T 1
1 -3 1 1 | | a
1 1 -3 1 P I I
1 1 1 =5 T4 1

dla takich wartosci parametrow a i b, dla ktorych jest on niesprzeczny.

Rozwigzanie: Badamy najpierw rzad macierzy uktadu i macierzy rozszerzonej. Przy
odrobinie czujnosci (sprowadzajacej sie do tego, by do pierwszych czterech kolumn nie
dodawaé¢ nigdy ostatniej z réznym od zera wspotczynnikiem; do ostatniej zas kolumny
kombinacje liniowe pierwszych czterech dodawaé¢ mozna) mozna to robi¢ symultanicznie:

-2 1 1 111
1 -3 1 1 ]a
R _
AJAT = 1 1 =3 1]0b0|’
1 1 1 —-5|1

(pierwsze cztery kolumny tworza oczywiscie macierz A uktadu). Dokonujemy operacji:
Cl — Cl — C4, CQ — Cg — C4, Cg — Cg — C4, CcO daje

-3 0 0 111

0O —4 O 11]a

0 0 —4 11|b|’

6 6 6 5|1
Taraz R4 — R4 + 2R1

-3 0 0 111

0O —4 0 11]a

0 0O —4 11|b |’

0 6 6 —3|3
i wreszcie C; — Cy + %Cl, Cs — Cs + %Clz

-3 0 0 010

0 —4 0 1 |a

0 0 —4 11]0b

0 6 6 —-3|3



Widag¢ teraz, ze kolumna C; jest liniowo niezalezna od pozostatych. Z kolei minor utwo-
rzony z trzech dolnych sktadowych C,, C3 i C4 znika:

-4 0 1
0 -4 1 |=-3-164244+24=0,
6 6 -3

co oznacza, ze kolumny Cs, C3 i C4 sa liniowo zalezne (w istocie: —4C,; = Cy + Cg).
Rzad macierzy uktadu jest wiec rowny 3. Rzad macierzy rozszerzonej nie moze zatem by¢
wickszy. Po wykonanych juz pracach przygotowawczych jest zupeltnie jasne, ze sprowadza
sie to do zadania by w ostatniej macierzy wymiaru 4 x 5 kolumna Cs byta liniowo zalezna
od C,, C3. Aby tak bylo musi znika¢ minor (utworzony z trzech dolnych sktadowych
zainteresowanych kolumn)

-4 0 a

0 —4 b|=48+24(a+VD).

6 6 3
Zatem wyjsciowy uktad réwnan jest niesprzeczny gdy a + b = —2. Bedziemy wiec go
rozwigzywaé polozywszy b = —2 — a. Poniewaz rzad macierzy rozpatrywanego uktadu

rownan z n = 4 niewiadomymi jest rowny 3, przestrzen rozwiazan jest jednowymiarowa i
rozwigzanie bedzie zalezato od jednego dowolnego parametru. Nie jest to jednak parametr
a! Dla roéznych warto$ci @ mamy rdzne uktady réwnan i dla kazdego konkretnego a
rozwigzanie uktadu odpowiadajacego temu a bedzie zalezalo od jednego parametru A,
ktory wprowadzimy nizej.

Odstapimy tu od kanonicznej metody przedstawionej pare stron wcze$niej na rzecz
bardziej “fizycznego” podejscia (tj. takiego, jakiego by uzyl kazdy zdrowy na umysle
fizyk). Znajdzmy najpierw rozwigzanie réwnania jednorodnego. Zaczynamy jeszcze raz
od macierzy A ukladu. Latwo zobaczy¢, ze np. minor stopnia 3 utworzony z pierwszych
trzech sktadowych trzech pierwszych jej kolumn jest niezerowy:

1 -3 1|=-8+#0,

wiec te trzy kolumny sg liniowo niezalezne i mozna wyrazié¢ przez nie czwartg, tj. znalezé

lambdy w kombinacji £&Cq + £Cq + 3C3 = Cy:
=26+ S+ & = 1,
§1 -3+ & = 1,
S+ &—3G = 1,
S+ &+ & = —5.

Rozwiazujac trzy pierwsze réwnania stosujac zwykla “eliminatke” znajdujemy tatwo & =
—2, & =& = —%. Sprawdzamy, ze czwarte rownanie jest spelnione (musi by¢ - to tylko
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element samokontroli). Stad rozwigzanie réwnania jednorodnego ma postac

T 2
T3 3/2
T4 1

(X jest wlasnie parametrem, o ktorym byta mowa wyzej).

Szukamy teraz jakiego$ jednego, szczegblnego rozwiazania wyjsciowego rownania nie-
jednorodnego (z b = —2 —a). Poniewaz juz wiemy, ze kolumna C4 macierzy A uktadu jest
liniowo zalezna od trzech pozostalych, mozna ja usunaé, tj. szuka¢ rozwiazania z z, = 0.
Poniewaz juz wiemy, ze minor stopnia 3 z lewego gérnego rogu macierzy A jest niezerowy
(wynosi on —8 - patrz wyzej), mozna rozwiazac tylko trzy gorne rownania

2 1 1 7 1
1 -3 1 zo | = a ,
1 1 -3/ \a; —2-a

Wykorzystujac Kramersieta (tj. wzory Cramera) mamy

1 1 1

1 1
T =—= a -3 1 :—§(9—2—a+a—6—3a—1—|—3a):0,
—2—a 1 =3
—2 1 1 1 1
xo=—=1|1 a 1 |=—6a+1—-2—a—a+3—4—2a)=—=(—2+2a),
8 8 8
1 -2—-a -3
1 -2 1 1 1 1
rg=—=|1 =3 a =——(-12—6a+a+1+3+2a+2+a)=—=(—6—2a).
8 8 8
1 1 —-2-a
Ostatecznie wiec, gdy b = —2 — a najogélniejszym rozwigzaniem wyjéciowego uktadu
rownan jest
T 0 2
v | 1] 1-a 3/2
v | Tl 34+a | T 32
Ty O 1

Na koniec sprawdzamy, ze odrzucone rownanie 1 + xo + x3 — bxy = 1 jest spelnione (musi
by¢, bo to nam gwarantuje wybor b = —a—2): 2A+1(1—a)+3A+31(3+a)+3A -5\ = 1.

Zadanie 59
Niech
3 7 -1 0
-2 —4 2 1
A 2 0 -10 -7

1 D 5 4
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bedzie macierza odwzorowania liniowego A p.w. V' w te sama p.w. V. (Jesli baza p.w. V
sa V;, to jest to A, w) W naszej starej notacji, ale mozemy tu pomina¢ te detale). Niech
Vo =kerA oraz V; =imA bedg odpowiednio jadrem i obrazem tego odwzorowania. Zbadac
czy wektor o sktadowych

—_ = = =

(w tej samej bazie p.w. V| w ktorej dana jest macierz A) nalezy do Vo + V; 7
Rozwigzanie: Pytanie jest nietrywialne tylko w przypadku, gdy kerANimA # {0} bo w
przeciwnym razie z rownosci dim(kerA)+dim(imA) =dimV wynikato by, ze imA+kerA =
Vi wtedy kazdy wektor musiatby naleze¢ do imA-+kerA. Najpierw ustalmy wiec rzad
macierzy A. Kazda proba obliczenia jakiegos jej minora stopnia 3 koinczy sie wynikiem
zero! Zatem zapewne jej rzad wynosi 2. Aby to potwierdzi¢ dokonujemy standardowych
operacji: % C; — C; +2Cy, Cy — Cy +4C,, C3 — C3 — 2C,, ktoére przeprowadzaja A
W macierz

3 7 -1 0 1 1 1 0
0 0 0 1 _ 0 0 O 1
-12 =28 4 -7 -4 -4 -4 -7
9 21 -3 4 3 3 3 4

(w drugim kroku pierwsza, druga i trzecia kolumne podzielilismy odpowiednio przez 3, 7
i —1), ktorej juz rzad A jest oczywisty. Latwo tez ustali¢, ze kolumny C; i Cy, macierzy A
wyrazaja sie przez C3 i Cy: C; = —3C3+4C,, Cy = —7C3+10C,. W ogodlnosci obrazem
odwzorowania A (imA) sa wszystkie kombinacje liniowe C;, Cy, C3 i Cy, ale skoro C;
i C, sa liniowo zalezne, to obrazem A w tym przypadku sa wektory bedgce dowolnymi
kombinacjami liniowymi C3 i Cy:

imA ={w: w=aC;+ Cy; gdzie a, 8 € R}.

Trzeba jeszcze znalezé najogolniejsza postaé wektora nalezacego do kerA. Latwo ja
napisa¢ korzystajac z tego (co juz ustalilismy), ze C;+3C3—4C4 = 0, C2+7C3—10C, =

53 Jeszcze prodciej jest wykorzystaé pierwsza kolumne do wyzerowania dolnych pieterek pozostatych,
czyli Co 3 — Cg 3 — 5Cq, Cy — C4 —4Cy, co da macierz

3 -8 -—16 -—12
-2 6 12 9

2 —-10 —-20 -15]°
1 0 0 0

ktorej trzy ostatnie kolumny sg do siebie wzajemnie proporcjonalne.
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0. Wynika stad, ze wektory, na ktorych A daje zero sa postaci

1 0
0 1
Sl g |t +
4 10

Zatem pytanie bedace trescig zadania brzmi: czy mozna tak dobra¢ n, &, a i 3, by
spetni¢ rownosé

1 0 1 0 1
0 1 9 1 1

Sl |t 7 [T s [ TPl 7| = |1 |
4 ~10 5 4 1

w ktorej dwa pierwsze wektory rozpinaja kerA, a dwa drugie imA? Aby ustali¢ jaki jest
wymiar kerA+imA tworzymy z wektoréow rozpinajacych te sume macierz

1 0 -1 0 1 0 0 0

o 1 2 1 o 1 2 1| _

H=1 35 7 30 7|73 7 -7 —7|=%
4 —10 5 4 4 —10 1 4

Strzatka oznacza tu dokonanie operacji polegajacej na dodaniu pierwszej kolumny ma-
cierzy H do trzeciej. Rozwiniecie Laplace’a wzgledem pierwszego wiersza pozwala tatwo
zobaczy¢, ze wyznacznik macierzy H' znika. Zatem rzad macierzy H’, a zatem i macie-
rzy H jest mniejszy niz 4. 7 kolei lewy goérny minor stopnia 3 macierzy H' nie znika, a
zatem macierz H jest rzedu 3 i taki tez jest wymiar kerA+imA. Oznacza to oczywiscie,
bo dim(kerA) = 2 i dim(imA) = 2, ze przeciecie kerA z imA jest r6zne od {0}, a zatem
imA-+kerA C V, ale suma ta nie jest calg przestrzenia V. Moze wiec sie zdarzy¢, ze wek-
tor z samych jedynek do ker A+imA nie nalezy. Ze tak jest w istocie pokazuje nastepujace
rozumowanie: zrobmy Hj — 3 (H;+HY)), H) — 1(H)+HY), (chodzi o kolumny macierzy
H’) co da

1 0 0 O
- 0 1 1 1
H= 3 7 0 0
-4 -10 -3 -3

Z wektorow rozpinajacych kerA-+imA, ktorymi moga byé¢ kolumy powyzszej macierzy
wystarczaja tylko trzy pierwsze by stworzy¢ baze. Jesli zasg jakas ich kombinacja &H, +
52}11 + 53}13 miata by dawa¢ wektor majacy same jedynki, to jest oczywiste, ze & = 1.
Odejmujac wiec od tego wektora Hy musialy by byé spelnione zwigzki

1 1 1
S| 7T | +&10 )] =] -2
-10 3 5



(wypisalismy tu tylko trzy dolne sktadowe kazdego z wektorow). Zatem & = —% i& =
% zeby sie zgodzity dwie pierwsze sktadowe, ale wtedy w trzeciej linii po lewej mamy
% + 2—77 = 5, co dowodzi, ze wektor z samych jedynek do kerA+imA nie nalezy.

Zadanie 60
Znalez¢ najogodlniejsze rozwigzanie uktadu réwnan liniowych®?

T +z5 = a,
2LL’1—|—$(72+2$(73—$C4+LL’5: b,
—I —I5 =—a,

LL’1—5L’2—2SL’3—|—SL’4+LL’5: C.

Rozwigzanie: Macierz tego problemu i macierz rozszerzona maja postacie

1 0 0 0 1 1 0 0 0 1 a
2 o1 2 -1 R |2 1 2 -1 1 b
A=1Z1 0 0 0 -1 A=1210 0 0 0 -1 —a
1 -1 -2 1 1 1 -1 -2 1 1 ¢

Widaé¢, ze w obu macierzach trzeci wiersz jest tym samym co pierwszy pomnozony przez
—1. Zatem rzad obu macierzy nie moze by¢ wiekszy niz 3. Na macierzy A wykonajmy
nastepujace operacje: Ry — Ry — Ry, R3 — R3 + Ry, Ry — Ry — Ry, co daje

1 0 0 0 1
1 1 2 =1 0
0 0 0 0 01’
0o -1 -2 1 0
a nastepnie Ry — Ry + Ry:
1 0 0 0 1
1 0 0 0 0
0 0 0O 0 0}’
0O -1 -2 1 0

Pokazuje to, ze rzad macierzy A jest rowny 3. Zatem macierz ta ma taki sam rzad
jak macierz rozszerzona, bo ta (po wyzerowaniu trzeciego wiersza przez dodanie don
pierwszego) ma rzad nie wickszy niz trzy (a poniewaz A jest czescia AF, 1zad A jest
po prostu rowny 3). Zatem uktad ma rozwiazania. Zgodnie z ogolna metoda musimy
teraz w macierzy A znalezé¢ niezerowy minor stopnia 3. Jest nim np. minor bedacy

54 Przyklad jest wziety z “kultowego” podrecznika Jacka Komorowskiego Od liczb zespolonych do tenso-
réw, spinoréw, algebr Liego i kwadryk bez pytania Autora o zgode. Ufam, ze wbrew dosé powszechnemu
mniemaniu o prawie do “wtasnosci intelektualnej” - bycie nieistniejacym i catkowicie sprzecznym z du-
chem nauki! - potraktuje On to jak czesciowe rozwiazanie “problemu dlugu, ktory naturalng rzeczy koleja
(...) splacany by¢ powinien w wiekszosci nastepnym pokoleniom.”
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wyznacznikiem podmacierzy utworzonej z elementéw kolumn: pierwszej, drugiej i piatej
i wierszy pierwszego, drugiego i ostatniego. Trzecie rownanie, ktorego wspotezynniki do
tej podmacierzy nie wchodza, skreslamy. Wyrazy z x3 i x4 z rownan pierwszego, drugiego
i ostatniego “wystaja’ poza te podmacierz, zatem zgodnie z ogélna metoda podstawiamy
w nich z3 = o, x4 = [, gdzie a i § sa dowolnymi stalymi i przenosimy je na druga strone
otrzymujac w ten sposob zredukowany uktad réwnan:

T +x5 = a,
201+ 19+ x5 = b—2a+ 0,
T —To+ax5 = c+2a—70.

Uktad ten mozna tatwo rozwiaza¢, np. stosujac Kramersicta: Wyznacznik macierzy
uktadu jest rowny 1 —2 —1+4+1 = —1, wiec

1 a 0 1 a 0 1
rT1=—|b—-20+8 1 1|=—=|b—-2a+p 1 2|=-2a+b+c,
T le+2a0-8 -1 1 c+2a—-p5 -1 0
1 1 a 1 0 a 1
T == 2 b—2a+pB 1|=—|1 b—2a+8 1l|l=a—c—2a+0,
1l c+2a-8 1 0 c+2a—-p8 1
1 1 0 a 1 0 a
5= —7 2 1 b—2a+p|=—-|3 1 b—2a+p|=3a—-b-—rc.
1 -1 c+2a-p 0 -1 c+2a-p3

Kompletne rozwigzanie mozna zapisa¢ wiec w postaci

1 —2a+b+c 0 0
Ty a—-c —2 1
3 | = 0 +al 1 | +81]10
Ty 0 0 1
Ts 3a—b—c 0 0

Ma ono oczywistg strukture: pierwszy wektor po prawej stronie jest szczegélnym rozwia-
zaniem réwnania niejednorodnego, a dwa nastepne wektory po prawej sa dwoma liniowo
niezaleznymi rozwigzaniami réwnania jednorodnego.
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Przypomnienie
Forma biliniowa (dwuliniowa) jest to takie odwzorowanie V' x V' w cialo K (u nas bedzie
to naogot ciato R, rzadziej C), ze

B()\lvl + )\2V2, W) = )\1 B(Vl, W) + )\2 B(Vg, W) s

B(v, mwi +1maw2) = m B(v, wi) + 12 B(v, wa).
Analogicznie mozna zdefiniowa¢ forme p-liniowa, czyli odwzorowanie V xV xV x ... xV
(p-razy) w K, jako odwzorowanie P(vy,Va,...,V,), ktore jest liniowe wzgledem kazdego
ze swych p argumentéw. Mozna tez badaé¢ odwzorowania p-liniowe V' x V xV x ... x V
(p-razy) w przestrzeni wektorowa W. (Odwzorowanie w cialo K jest wiec przypadkiem

szczegdlnym - ciato jest tez przestrzenia wektorowa, bo jest struktura bogatsza - i wtedy
nazywa sie to forma). Na razie bedziemy sie zajmowaé¢ odwzorowaniami V' x V w K.

Formy biliniowe moga by¢ symetryczne:
B(v, w) = B(w, v),
lub antysymetryczne
B(v,w)=—B(w, V).

Moga tez nie wykazywac zadnej symetrii, ale kazda forme B(v, w) zawsze mozna przed-
stawi¢ w postaci sumy formy symetrycznej By(v, w) i antysymetrycznej B,(v, w), ktore
sg zdefiniowane wzorami

By(v, w) = 5 [B(v, w) + B(w, v)],

B,(v,w) == [B(v,w) — B(w, v)].

| = N

W ustalonej bazie e; przestrzeni V' formie biliniowej B(+, -) odpowiada jej macierz BZ-(;).
Jesli wektory v i w maja w tej bazie sktadowe vée) oraz wfe), to
i o,

B(V, W) = B(ei> ej) Uée)wge) = BZ-(;)'U(E)U](G) !

lub jawnie macierzowo:

e e 1

Bil) s Bin) w(e)

B(v,w) = (v(e), . 0(y) | : -
sy sl ) \at,

Ze wzorow tych natychmiast wynika przepis, wedtug ktoérego macierz formy biliniowej
przeksztalca si¢ przy zmianie bazy e; na baze f;:

Bi(]f) = Bi(;) [Reef]kz‘ [Ra—f]l IR
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lub macierzowo:®®

BY = [Reej]T - B®  R..;.

Jesli forma biliniowa jest forma symetryczna (odpowiednio: antysymetryczna) okre-
slona na n-wymiarowej przestrzeni wektorowej (nad R), to jej macierz jest symetryczna
BZ-(;) = BJ(-? (antysymetryczna BZ-(;) = —B](-f)) i ma wobec tego n+3n(n—1) = 3n(n+1)
(odpowiednio: 1 n(n — 1)) niezaleznych elementow.

Forme biliniowa mozna przedstawi¢ wykorzystujac wprowadzone wezesniej jedno-formy
&' tworzace baze dualng do bazy e; przestrzeni V. Tworzymy w tym celu iloczyny tenso-
rowe &' @&’ jedno-form bazowych. Jesli dimV = n, to n? takich dwu-formzi,j=1,...,n
tworzy baze przestrzeni wektorowej V* @ V*, ktorej elementami sa wtasnie formy dwuli-
niowe nad V', czyli inaczej méwiac, tensory kowariantne drugiego rzedu. Kazdy taki tensor
(forma) B nalezacy(a) do V* ® V* daje si¢ przedstawi¢ w postaci

B=BYéwe&,

a jego (jej) dziatanie na pare dowolnych wektoréw v i w jest dane wzorem

Bv,w) = (B & 0@ (v, w) = By €(v) & (w) = B,

Wykorzystalismy tu fakt, ze formy &' bedac dualnymi do wektoréw bazy e;, daja €'(v) =
&'(exvf,)) = &' (ex) vf) = v, Zauwazmy tez, ze podobnie jak wektor v = ejvf, jest
“zywym” wektorem, niezaleznym od wyboru bazy, tak tez i tensor B = BZ(; Vel @ & jest
“zywym” tensorem i od wyboru bazy nie zalezy. Istotnie: niech wektory f; bedg inng bazg
p.w. V, a f*¥ dualna do bazy f; baza V*. Wtedy

B - BZ(;) él ® éj - B](j) [Rf(—e]ki[Rf(—e]lj él ® éj
= B[Pl el @ [Pe) ol = B i o f

WykorzystaliSmy tu znaleziony juz (Zadanie 39) zwiazek macierzy zmiany bazy w p. V i

7

55Dla uzmystowienia sobie réznicy w stosunku do przepisu na przeksztalcanie sie przy zmianie bazy
macierzy odwzorowania liniowego, przypomnijmy, ze jesli odwzorowanie liniowe F' z p.w. V w te sama
p.w. V jest zapisane “z obu stron” w tej samej bazie, to przy zmianie (jednoczesnie “z obu stron”) bazy
z e; na baze f;

Fipy) = [Ree sl ™ Fley(e) - Res s »

gdzie oczywiscie [Rec ]! = Ryee.
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Przyktad
Obliczymy wartosé¢ formy B = &' @ & + é* ® é? + &3 ® &% na uporzadkowanej parze
wektoréow v = 3e; + 2e; + e3 oraz w = 3e; + 4ey + es:

Bv,w)=¢é'®e*(v,w)+ &’ & (v,w) +e&*®eél(v,w)
=&!(v)-&’(w) +&'(v)-&’(w) + &*(v)-&*(w),

a poniewaz jedno-forma é* “wycina” z wektora, na ktory dziata, jego wspolczynnik przy
er, wiec

Bv,w)=3-44+2-4+1-1=21.

To samo mozna otrzyma¢ macierzowo:

0 1 0
Biv,iw)=(3,21)0 1 0] 4] =21.
00 1

Wszystko to daje sie tatwo uogdlni¢é na formy wieloliniowe: jesli dana jest forma p-
liniowa (W od “wieloliniowa”) W (vy, va,...,V,), czyli odwzorowanie W : V x ... x V —
R, to w ustalonej bazie e; przestrzeni V' jest ona reprezentowana przez swoje sktadowe
VVZ(B)ZZP w bazie "' ® €2 ®...®eé" przestrzeni wektorowej V*®...®@V* (p-krotny iloczyn

tensorowy). “Zywa” zas forma p-liniowa, czyli tensor kowariantny p-tego rzedu, ma postac

W=w"® &igeéelg. . e,

1112...9p

Idac “za ciosem” wprowadzmy tez “zywe” tensory kontrawariantne, p-tego rzedu tj.
elementy przestrzeni V ® ... ® V (p-razy):
T = eil ®ei2 X ... ®eipT(el)2---p .
Poniewaz (V*)* = V', mozna takie tensory uwazac za p-liniowe formy na przestrzeni jedno-
form, tzn. odwzorowania V* x ... x V* w cialo R. Jesli formy f1 fr maja w bazie
jedno-form &' dualnej do bazy e] przestrzenl wektorowej V' skladowe fik(e), to
P31 P 3192...1 1(e) p(e)
T(f 7---’fp> T(e) P Zl .« .. Zp .
Wreszcie istnieja tensory mieszane kontra-i-kowariantne rzedu (p, ¢), bedace elementami
przestrzeni V@ ... @ Ve V*®...® V* (p-krotnie i g-krotnie):
— e Yy a0 i1
T—e“®...®e2p®el®...®eqT(e) ”jl___jq.
Przypomnijmy tu, ze z tensorem F' = €; @& [F(¢)()]’; typu (1, 1) utozsamialismy (Zadanie
40) zwykle odwzorowanie liniowe przestrzeni V' w nia sama. Ogolnie, tensor rzedu (p, q)
mozemy utozsamic z wieloliniowym odwzorowaniem V x ... xV x V* x...x V* (k-krotnie
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V il-krotnie V* przy czym k < qil<p)wV®..VV*®...® V* (p — [-krotnie
V oraz q — k-krotnie V*).

Wirod form wieloliniowych szczegdlng role odgrywaja formy wieloliniowe catkowicie
antysymetryczne, gdyz na nich opiera sie, nalezaca juz do analizy, teoria form rézniczko-
wych. Dlatego tez wprowadzona zostata dla nich specjalna notacja. Np. antysymetryczng
forme biliniowa B zapisuje si¢ nastepujaco:

1

B=BYéwe =-B(0e-&¢né)=

L) i n a ) i A&
5 —ij)el/\eJ—ZB( :

2

1<j

“Dziubek” A nazywa sie iloczynem zewnetrznym dwu form (tu: jedno-form). Oczywiscie
dziatanie takich “zdziubkowanych” dwu jedno-form na dwa wektory jest dane reguta

(@ N&) (v, w) =& (v)e&l(w) — & (v)e'(w).

[loczyny po prawej stronie tego wzoru sa iloczynami zwyktych liczb. Ogolnie, baze wszyst-
kich antysymetrycznych form p-liniowych stanowig p-formy

gy = Z sgn(m) &) © &™) @ . &)

é' A ANEP D 0 <<y,

w ktorych suma przebiega p! permutacji m wskaznikow 41, ..., 4,, z ktorych kazdy moze
przyjmowac n wartosci (dimV = n). Na sztuki, liniowo niezaleznych, catkowicie antysy-
metrycznych form p-liniowych nad n wymiarowa przestrzenia wektorowa V' jest wiec

()

Jest oczywiste, ze (nad p.w. V' o dimV = n) nie moga istnie¢ catkowicie antysymetryczne
p-formy o p > n. n-forma jest, z doktadnoscia do liczby z ciata, tylko jedna.

Zadanko R
Ustali¢, jak przy zmianie [P*7/]' f7 = & bazy &' jedno-form n-wymiarowej przestrzeni

V* na baze £ przeksztalca sie n-forma
dj(n) :a-él/\.../\én,

w ktorej a jest pewna stala.
Rozwigzanie: Wykorzystujac macierz [P¢~¢/]! ; zmiany bazy mozemy napisa¢

@(n) —a Z [Pe—>f]1j1 [Pe—>f] [Pe—>f] le A f]n A f-jn‘
J1ye-sdm
Z powodu antysymetrii 71 A fj" A fj" z sumowania Wypadaj@ wyrazy, w kt(’)rych

......
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ta sama n-forma fL Af2A .. AT, tylko z r6znym uporzadkowaniem wskaznikow 1,...,n;

doprowadzenie ich do porzadku 1,...,n daje znak permutacji wskaznikow ji,...,J, W
stosunku do porzadku 1,...,n. Zatem
. a1 . p A 1 ...
Oy = a-f' AN AE Y sgn<j1 ]”) [P [P [P
J1seenrdn "

~

= a-det(P)FEAFEA L AT

SkorzystaliSmy tu z tego, ze suma po ji,. .., J, jest po prostu definicja wyznacznika ma-
cierzy P~/ Jesli macierz ta jest macierza ortogonalna, [P°7/]7-[P¢7/] = I, to, poniewaz
wtedy (detP)? =det(P? - P) = 1, n-forma @, ma formalnie (z doktadnoscia do znaku)
te samg posta¢ w obu bazach.

Przypomnienie:

W przestrzeni wektorowej V' wymiaru n mozna zadaé objetosé (ze znakiem), jesli wérod
wszystkich n-form wyr6znié (arbitralnie) jedng (oznaczang Vol,)). Istnieje wtedy upo-
rzadkowana baza fi przestrzeni V* jedno-form, w ktérej forma ta ma posta¢ Vol =
fLA ... Af" Liczba

~

Vol(vl,...,vn):f'l/\.../\f”(vl,...,vn),

jest wtedy (z definicji) objetoscia (ze znakiem) rownolegtoscianu rozpietego na wektorach
Vi, ..., V,. Tak zdefiniowana objetosé nie ma nic wspoélnego z dtugosciami rozpinajacych
rownolegtoscian wektorow, ani z katami pomiedzy nimi (dlatego mozna by ja nazwaé
objetoscia “topologiczna’). Te charakterystyki ukltadu wektorow wymagaja wprowadzenia
w przestrzeni wektorowej V' iloczynu skalarnego (ktorego tu jeszcze nie byto).

Zadanie.

Obliczy¢ objetosé rownolegloscianu rozplqtego na wektorach vi,...,v,, ktére w bazie f;
dualnej do bazy jedno-form fk w ktorej Vol(,) = =fIA...A f” maja skladowe v (mdeks
[ numeruje tu wektory vy, ..., v,).

Rozwigzanie: Wykorzystujemy liniowos¢:
Vol(vi, .., va) = > v v B A AT ()

= Z Z sgn(m) vé})l . .Ué})nf”(l) @ ... f" (... f)

i1yenln T

= > sen(m) vy v, T (E) - ETO(E)

i1yenin T

) in (1 (n
— Z Z Sgﬂ(ﬂ') /U(}-)l .. 'U(f)n5Z1( ) St 5'ln( )

T U1yeenyln

(1 m(n
= ngn(w) U(f()l) . .U(f()rz.



Wykorzystalismy tu to, ze skoriczone sumy mozna przestawia¢ (3, . >2 =3 > )
oraz whasciwosé delty Kroneckera (pozwalajaca tatwo wykonaé¢ sumy po iy, ...,4,). Wy-
nik jest oczywiscie wyznacznikiem macierzy, ktorej kolumnami sa postawione na sztorc
sktadowe kolejnych wektorow (w bazie f; dualnej do bazy £* E

1 1
Vol(vy,...,vy) =det | ‘1 Pz o Yipn
U Ui Ul

Zadanie.
Obliczy¢ wartos¢ formy we) = €' A €2 A € na uporzadkowanej trojce wektorow a =
3e; + 2e; + e3, b = 3e; + 4e, + e3, ¢ = e;. Pokazaé bezposrednim rachunkiem, ze

Qe (v, ) =e'(v) & Ne’(,)+e*(v)- & ne'(,)+e&(v) e A&’(, ).

Rozwigzanie. Poniewaz znamy sktadowe wektorow a, b i ¢ w bazie dualnej do tej, w
ktorej zadana jest forma ws), wige

wey(a, b, c) = det

_— N W
o W

1
0] =-2.
0

Drugi punkt sprawdza sie tatwo: dla dowolnych dwu wektoréw ai b

Rozpisujac podobnie
W@ (v,a,b) =&'(v) (€° A &%) (a,b) +&*(v) - (e’ Aé')(a,b) +&*(v) - (' A&)(a,b),
stwierdzamy, ze jest to to samo.

Przypomnienie

Jesli ciatem jest C to zwykle - zwlaszcza z punktu widzenia fizyka - interesujace sa formy
pdttoraliniowe, czyli odwzorowanie V x V w ciato C liczb zespolonych, majace wlasciwosé

D(Avy + Aave, W) = A D(vy, W) + A\ D(va, W),
D(v, mwi + m2W2) =1 D(v, W) + 12D (v, wa).

56Logicznie byloby formy takie oznaczaé litera P, od slowa “poéltora”. Poniewaz jednak P w tym
skrypcie juz oznacza macierz zmiany bazy w przestrzeni jedno-form, formy poéltoraliniowe bedziemy
oznaczaé litera D (od francuskiego demi-linéaire).
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Forma poéttoraliniowa nie moze oczywiscie by¢ symetryczna, ale moze by¢ hermitowska:
D(v,w) = [D(w, v)|*,

lub antyhermitowska
D(v,w)=—[D(w, v)|".

Oczywiscie forme pottoraliniows, ktora nie jest ani taka ani siaka zawsze mozna przed-
stawi¢ jako sume formy hermitowskiej i antyhermitowskiej.
W ustalonej bazie e; przestrzeni V' nad ciatem C formie biliniowej D(-, ) odpowiada

jej macierz DE;). Jesli wektory v i w maja w tej bazie sktadowe vfe) oraz wfe), to
D(v,w) = Dle; e)) (vfo)) wly = D (vfy)) ",

lub jawnie macierzowo:

DY . DY (vl
D(v,w) = ((v)", -+, (ve)) | ] _
pY) - D) \up,

Ze wzorow tych natychmiast wynika przepis, wedlug ktorego przeksztatca si¢ macierz
formy pottoraliniowej przy zmianie bazy:

DY = DY ([Rec ") [Recs]! ;.
lub macierzowo (T oznacza macierz zespolona sprzezong i transponowana):
DY) — [Ra—f]T . D . Re(—f-

Macierz formy hermitowskiej (antyhermitowskiej) okreslonej na przestrzeni wektorowej
: : : : (&) _ 1o« : (e) _ (€)1«
nad ciatem C jest macierza hermitowska D;;" = [D};’]* (antyhermitowska D;;” = —[D;’]*)
iman+in(n—1)-2=n? (odpowiednio: n+2n(n—1) -2 =n? - bo diagonalne elementy
musza by¢ czysto urojone) rzeczywistych parametrow.

Przypomnienie
Forma kwadratowa jest to takie odwzorowanie przestrzeni wektorowej V' w R lub C (t;j.
w cialo), ze po pierwsze

Q(wv) =N Q(v),
i po drugie odwzorowanie V' x V' zadane wzorem

Blv, w) = 1 [Q(v +w) = Q(v) ~ Q(w)].
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jest uczciwa forma biliniowa. Drugi warunek jest konieczny, by wykluczy¢ odwzorowania
takie, jak odwzorowanie z R? w R zadane wzorem:

ol 17]) = ?y?/(@® +y?), gdy 2 +y> #0
Y N 0 gdy =y =0

Y

ktore spelnia pierwszy warunek (jednorodno$é stopnia drugiego), ale nie jest dobra forma
kwadratows.

W gruncie rzeczy prawdziwg forme kwadratowa na p. wektorowej nad R mozna uwa-
za¢ za pewna forme biliniowa B(-,-) ktoérej obydwoma argumentami jest ten sam wektor:
Q(v) = B(v, V). Oczywiscie forme kwadratows produkuje tylko czesé¢ symetryczna B+, -)
danej formy - jej czeS¢ antysymetryczna B,(+, ) znika po wstawieniu do niej dwu takich
samych wektorow. I odwrotnie, majac forme kwadratowa () mozna odtworzy¢ czesé sy-
metryczng formy biliniowej, z ktorej owa forma kwadratowa wziela swoj poczatek:

By(v, w) = S [Q(v+w) = Q(v) - Q(w)].

|~

Oczywiscie w ustalonej bazie e; przestrzeni V' formie kwadratowej odpowiada macierz
symetryczna:

QW) = Qviyvl,y,  sdde Q) =Q.

Jak zwykle opatrzyliSmy macierz QZ(;) superskryptem (e), aby pamietac, ze jest to ma-
cierz formy ) w bazie e;. Przez odpowiednig zmiane bazy macierz formy () mozna zawsze
sprowadzi¢ do postaci diagonalnej. Postaé¢ diagonalna macierzy formy () nie jest jedno-
znaczna juz choéby dlatego, ze nic (dopoki w przestrzeni wektorowej V' nie wprowadzi
sie iloczynu skalarnego) nie ustala “dlugosci” wektorow bazy (nie jest to jednak jedyna
dowolnos¢). Jednakze kazda postaé¢ diagonalna danej formy @) (okreslonej na przestrzeni
wektorowej nad cialem R) ma te sama liczbe dodatnich, ujemnych i zerowych elementow
diagonalnych, tj. ma zawsze te sama sygnature (twierdzenie Sylvestra).

Przypomnienie

Tloczyn skalarny S(-,-) = (+|-)s wektoréw z przestrzeni wektorowej V' nad ciatem R (nad
cialem C) jest zadawany przez ustalong symetryczng (hermitowska) forme biliniowa (p61-
toraliniowa) taka, ze S(v, v) > 01 réownos¢ zachodzi tu tylko, gdy v = 0 (tj. dla wektora
ZETOWegO).

lloczyn skalarny w przestrzeni wektorowej jest ta struktura, ktéra pozwala zdefiniowac
“dtugos¢” wektora, czyli jego norme:

vl = VSV, v) = V(v[v)s.

(czyniac tym samym z p. wektorowej p. unormowana, co jest warunkiem dostatecznym,
by mozna w niej bylo uprawiaé¢ analize, bo w przestrzeni wektorowej norma indukuje
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metryke) oraz zdefiniowa¢ pojecie wzajemnej prostopadlosci dwoch wektorow: v i w sa
do siebie nawzajem prostopadte, gdy S(v,w) = 0.

Korzystajac z iloczynu skalarnego mozna tez, w przestrzeniach wektorowych nad cia-
tem R, zdefiniowaé kat o(v, w) pomiedzy dwoma wektorami v i w:

S(v, w)

cos oV, W) =TT Tw]

Oczywiscie taka dlugos¢ wektora i taki kat pomiedzy dwoma wektorami, w przypadku
zywych wektorow, ktorymi moga by¢ na przyktad wielomiany (zobacz Zadanie X, w kto-
rym wprowadzony jest pewien iloczyn skalarny w przestrzeni wektorowej wielomianow)
moga by¢ dos¢ abstrakcyjne. Niemniej w przestrzeni wektorowej R™ (najlepiej o n = 3) z

kanonicznym iloczynem skalarnym zdefiniowanym wzorem,’” (v i w sa tu zywymi wekto-
rami),
vt w!
2 2
S(v, w) =v'w' +o*w + .. o, gdy v= U ., W= w ,
v" w™

jesli wektory kanonicznej bazy zero-jedynkowej utozsamimy ze “szkolnymi” wektorami-
strzatkami (z wersorami osi kartezjanskiego uktadu wspolrzednych), tak zdefiniowane
dlugosé 1 kat sa tymi, ktorymi postuguje sie zwyklta (a najpewniej analityczna) geometria.

Kanoniczny iloczyn skalarny w p. wektorowej C" jest zadany wzorem

vl wt

2 2
S(v, w) = () wh + (@) w0+ @), gdy ov= |0 w= |,

V" w"

(zywe wektory).

Przypomnienie

Ortonormalizacja Gramma-Schmidta. Jesli w przestrzeni wektorowej V' o dimV = n nad
ciatem® R zadany jest iloczyn skalarny, to z dowolnego zbioru n liniowo niezaleznych wek-
torow w;, i = 1,...,n mozna zbudowaé¢ baze W/ ortonormalng (wzgledem tego iloczynu
skalarnego), tj. taka, ze

S(wi, wi) = (Wiw))s = 0,

(wszystkie wektory bazy w, maja dtugosé¢ jednostkows i wektory rézne sa wzajemnie do
siebie prostopadle w sensie tego iloczynu skalarnego). Konstrukcja ta zwana ortonorma-
lizacja Gramma-Schmidta jest prosta. Wybieramy ze zbioru wektoréw w; jeden wektor,

STW tym przypadku dodatnia okreslono$é formy Q(v) = S(v, v) jest oczywista: Q(v) = (v!)?+ (v?)? +
..+ (v™)2. Taki iloczyn skarny wektoréw v i w z R™ bedziemy oznaczaé “po szkolnemu”, tj. v - w.
58 Analogiczna konstrukcje mozna oczywiscie przeprowadzié takze z baza p. wektorowej nad cialem C,
z pottoraliniowym iloczynem skalarnym.
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powiedzmy w; (kolejno$é wybierania wektoréw jest dowolna, ale inna kolejnosé da inny
zbior wektorow ortonormalnych) i tworzymy wektor w} wedtug przepisu:

W1 W1

I
Wl_ 3

[wil — /(wilwi)s

tak, iz (w}|w))s = 1. Nastepnie wybieramy drugi wektor, powiedzmy ws i tworzymy
wektor:

Wo — (W/1|W2)s W/1 )

“wycinajac” z wy jego rzut®® na wektor w). Tak utworzony wektor jest juz ortogonalny

(w sensie iloczynu skalarnego (-|-)g) do wi:

(Wilwa — (Wilwa)s Wi)g = (Wi wa)g — (Wi[wa)s (Wi|w)g

= (W/1|W2)s - (W/l‘WQ)S =0.

Skorzystalismy tu z tego, ze (wj|w}) = 1. Drugim wektorem bazy ortonormalnej jest
wiec wektor wi:

Wy — (W|wa)s Wi

!/
W, =
P fwe = (Whlwa)s wi

ktory, jak tatwo sprawdzi¢, spelnia warunki (wi|wj)g = 0, (wh|wj)s = 1. Dalsze kroki
ortonormalizacji Gramma-Schmidta powinny juz by¢ oczywiste: wektorem w} jest wektor

w3 — (W} |W3)s W) — (Wh|w3)g Wi

/
W,y =
T ws — (wilws)s wh — (whlws)s wh|
ktory, jak znowu nietrudno sprawdzi¢ speilnia warunki (wi|wj)s = 0, (whlwh)s = 0,
(whiwh)s =1, itd.

W tej samej przestrzeni wektorowej mozna zdefiniowa¢ nieskonczenie wiele réznych
iloczynéw skalarnych bo moze byé nieskonczenie wiele dodatnio okreslonych form dwu-
liniowych (pottoraliniowych). Aby jednak moéc powiedzieé, czy dana forma biliniowa
(ograniczmy sie teraz do p. wektorowych nad R) moze by¢ przyjeta za iloczyn skalarny,
trzeba moc powiedzieé, czy jest ona (jako forma kwadratowa) dodatnio okreslona. Tym
zajmiemy sie wiec w kolejnych zadaniach.

®Nalezy tu zwroci¢ uwage na to, ze sens terminu “rzut” jest tu inny niz w Zadaniach 42 i 43: tam “rzut”
byt wyznaczony przez wektory rozpinajace podprzestrzen, na ktoéra bylo przeprowadzane rzutowanie i inne
wektory, “wzdtuz” ktorych nastepowalo rzutowanie (tj. wektory rozpinajace dopetniajaca podprzestrzen);
tu rzut definiuje iloczyn skalarny, jest wiec to rzut na podprzestrzen prostopadla w sensie iloczynu
skalarnego (-|-)s do podprzestrzeni rozpinanej przez wektor w (ogodlniej: prostopadla do podprzestrzeni
rozpinanej przez wszystkie juz zortonormalizowane - w poprzednich krokach konstrukeji - wektory bazy).
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Przyktad
Wektory e;, i = 1,2,3 tworza baze przestrzeni wektorowej V' nad R (dimV = 3). Syme-
tryczna forma biliniowa B(v,w) = B(w, v) jest zadana na wektorach tej bazy:
B(eluel)zlu B(e27e2):27 B(e37e3):37
B(el,eg>:1, B(el,eg)zl, B(62783):2.

Sprawdzi¢, ze forma B(-,-) moze by¢ iloczynem skalarnym w V. Obliczy¢ dtugosei, jakie
w tym iloczynie skalarnym maja wektory

V =eg + es3, W:—4el+82+383,

i obliczy¢ kosinus kata a(v, w) pomiedzy tymi wektorami. Z bazy e; zbudowa¢ takze me-
toda Gramma-Schmidta baze ortonormalng w iloczynie skalarnym zadanym przez forme
B.

Rozwigzanie: Forma B(-,-) jest symetryczna, wiec wystarczy pokazaé, ze jest ona, jako
forma kwadratowa, dodatnio okreslona. Jej macierz w bazie e; ma postac

111
BY =B(ej,e))=|1 2 2
1 2 3

Dowolny wektor p. V' ma posta¢ v = e;x+esy+esz, gdzie (x,y, 2) sa jego sktadowymi w
tej bazie. Wartos¢ na takim wektorze formy kwadratowej utworzonej z B(-, -) jest réwna

1 1 1 T
B(v,v)=(z,y,2) | 1 2 2 y | =% +2y% + 322 + 22y + 222 + 4dyz.
1 2 3 z

Ze jest ona zawsze dodatnia, chyba, ze wektor v jest wektorem zerowym, mozna sie
przekonaé stosujac metode Lagrange’a, czyli zwijajac powyzsze wyrazenie do pelnych
kwadratow:

B(v,v)=(z+y+2)°+y°+222+2uz=(x+y+2)+ (y+2)° +2°.

Forma ta jest zatem dodatnio okreslona i moze by¢ iloczynem skalarnym. Oznaczymy
go (+|")p. Zauwazmy tylko, ze wektory bazy e;, es, €3 nie sa w tym ilocznie skalarnym
ortonormalne.

Dtugosci wektoréow v i w oraz ich iloczyn skalarny sa wiec rowne

11 2
2 2 1 =(0,1,1) 4 =9,
2 3/ \1

1

2

3

1 1\ /-4 0
2 2 1 |=011)|4]=
2 3 3 7

[v[*=(0,1,1)

1
Iwl* = (-4,1,3) | 1
1

N DN

AHHH

(viw)g = (0,1,1)

—_



Zatem |v]| =3, |[w| =51

B (vlw)p B 11
cos oV, W) = 1 0lTw] ~ 15

Konstrukcja bazy ortonormalnej f;, : = 1,2, 3 jest tu prosta:

bo (ei|le;)p = B(e;,e;) = 1. Nastepnie

fé = €9 _fl (f1|62)B = €9 _fl (e1|e2)B =€y — €.

Zatem
€ — € € — € € — €

f2 = = = = —e; +ey.
lex — e \/(ez —eiles —e)p \/(91|91)B + (ez]e2)p — 2(eqlez) B

Wreszcie

fg/, = €3 — fl(f1|e3)B - f2(f2|e3)B = €3 — el<e1‘e3)B - (92 - 91) (ez - el‘es)B

:eg—el—(eg—el)@—l) = —ey + e3.
Poniewaz | — ey + e3| = 1, baza ortonormalna ma postac
1 -1 0
(fi, f2,f5) = (e1,e2,€3) | O 1 -1
0 0 1

Stojaca tu macierz to macierz zmiany bazy R.. ;. Majac ja mozna sprawdzi¢, ze macierz
formy B(-, ) zapisana w bazie f; jest macierza jednostkowa:® Bl(jf ) = BS) [Recs]"i[Recy]' 5,
czyli macierzowo

1 0 O 1 11 1 -1 0 1 00
=|-1 1 0 1 2 2 0 1 —-1]={10120
0 -1 1 1 2 3 0 1 0 0 1
Oczywiscie (f;|f;)p = B(£,£;) = d;;.

Zadanie

Z wielomianow wo(z) = 1, wy(x) = z, we(x) = 2° i ws(z) = x° rozpinajacych przestrzen
wektorowa wielomiandéw stopnia nie wyzszego niz trzeci skonstruowaé¢ metoda Gramma-
Schmidta baze ortonormalng w iloczynie skalarnym

2 3

wmwmzlmewm

60Musi tak byé, bo wektory f; sa ortonormalne w iloczynie skalarnym zadawanym przez te forme.
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zaczynajac raz od jednego korica podanej listy wielomianéw, a drugi raz od drugiego.
Rozwigzanie: Najpierw skonstruujemy baze wielomianéw e;, ©+ = 0, 1,2, 3 zaczynajac od
wo(x). Wielomian wg(x) jest od razu prawidtowo unormowany, wiec po prostu eg = wp.
Nastepnie tworzymy wektor-wielomian

1 1
x—l-/ dtl-t=x— =,
0 2

i obliczamy calke z (¢t — ;) zeby znalez¢ normalizacje. Catka jest rowna 12, wiec
e = V12 (x — %) :
Potem tworzymy wektor-wielomian
x2—1~/01dt1-t2—\/ﬁ(x—§)/ dtf(t——) —xz—x+%.
Poniewaz catka z (t* — t 4 £)* wynosi =,
=180 (2% — z + é)
Wreszcie tworzymy wektor-wielomian
x3—1~/1dt1-t3—\/ﬁ(:c——)/ dtf(t——)
0
—V180 (2? — x + 1)/1dx\/@(:v2—x+ 1)x3:x3—§x2+§x—i.
6" Jo 6 2 5 20
Calka z (13 — 312 + 2t — £)? jest réwna o wice
e; = V1800 (z* — gx + g):)s— 2—10)

Weszystkie rachunki, cho¢ proste, sa zmudne i najlepiej podeprzeé¢ sie Mathematicq. Przy
zaczeciu konstrukeji od drugiego koinca otrzymuje si¢ baze

f3=V72°
f, = V180 (z° — gx?’)

21
f; = /300 (z — 32% + ﬁx?’)
15 35
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Uwaga: Zastosowanie ortonormalizacji Gramma-Schmidta do utworzenia bazy prze-
strzeni wektorowej wielomianéw dowolnego stopnia®' o wspolczynnikach rzeczywistych
okreslonych na catej osi R z iloczynem skalarnym

o0

(wa()|wn(2))s = / dz e wy(z)wy(z)

—00

daje, jesli procedure ortonormalizacji zastosowaé¢ do wielomianéw uporzadkowanych ka-
nonicznie: wo(x) = 1, wy(z) = z, we(x) = 22, itd., wielomiany Hermite’a:

HQ(ZL’):CQ'l, Hl(l'):Cl'QZL', HQ(ZL’):CQ'4I’2, Hg(I):Cg(8l’3—12£L’),

gdzie C,, = 1/4/2"n!y/m. Graja one wazna role w kwantowej teorii oscylatora harmo-
nicznego. Innymi uktadami wielomianéw ortonormalnych (przy innej definicji iloczynu
skalarnego i/lub innej ich dziedzinie) sa wielomiany Legendre’s, Laguerra, Gegenbauera,
Czebyszewa...

Zadanie 61
Dana jest forma kwadratowa

Q= 2%+ 2y* + 32* + 4oy + Syz + 61z

Stosujac metode Lagrange’a sprowadzi¢ ja do postaci diagonalnej. Jesli to mozliwe, podaé
przyktady trojek liczb x, y, z takich, ze ) > 0, takich, ze () < 0 i takich, ze ) = 0.
Rozwigzanie: Interpretujac zmienne x, y i z jako sktadowe vfe) wektora v w pewnej

bazie e, ey, €3, tj. piszac x = v(le), Y= ’U(26), z = vf’e), mozemy znaleZé macierz formy Q:

1 2 3 T o
Q(V) = (ZL’, Y, Z) 2 2 5/2 Yy = QZ(;)UEG)’UZE) .
3 52 3 2

Zwroémy tu uwage na to, ze elementy pozadiagonalne sg potéwkami odpowiednich wyra-
zow mieszanych w Q! Metoda Lagrange’a (szumna nazwa!) sprowadza sie do sukcesyw-
nego “zwijania do pelnego kwadratu™

Q = 2* 4 2y* + 32° + 4wy + Syz + 622
= (x4 2y +32)* — 2% — 62° — Tyz

1
= (v +2y+32)° —2(y + 22)2 + gzz.

61 Przestrzen ta jest wiec nieskornczenie wymiarowa, ale jeszcze “do ogarniecia”, bo jest oérodkowa, tzn.
majaca przeliczalng baze; cuda - czyli kwantowa teoria pola - zaczynaja sie, gdy przestrzenn Hilberta -

juz byto, ale zeby sie utrwalito: wektorowa przestrzeri nad C z iloczynem skalarnym, zupelna w normie
zadawanej przez ten iloczyn - ma baze nieprzeliczalng...
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Z postaci tej odczytujemy, ze w odpowiedniej bazie f;, ktora znajdziemy ponizej, macierz
formy bedzie postaci

" 1 0 0
Qi =10 -2 0
0 0 4

Przypomnijmy, ze zmian¢ bazy reprezentujemy wzajemnie odwrotnymi macierzami Ry, .
i Ree ¢ takimi, ze

e; = fi[ R ), sz) = [Rfee]ljvge) )
fi = ej[Recs)’; Vi) = [Ra—f]ljvgf) :
W naszym przypadku, poniewaz wartos¢ formy kwadratowej () na wektorze v nie moze
zaleze¢ od wyboru bazy, powinno by¢ jasne, ze jesli znajdziemy taka baze f;, w ktorej
sktadowe wektora v sa postaci

o = Ve + 200 T30
vy = Vo) +£”?e>’
Uy = e -
to bedziemy mieé¢ () = [v(lf)]2 - Q[U(zf)]2 + %[vf’f)]z, tj. w bazie f; macierz formy bedzie

diagonalna. Z powyzszego wzoru mamy natychmiast macierz Ry, .:

1 2 3
0 0 1
Macierz odwrotng tez latwo znalezé wyrazajac vfe) pI7ez vj ;) vf’e) = vf’f), v(ze) = v(zf) —%vg’f),
1 _ 1 > _ 7,3 3 :
Viey = V) ~ 205 — 3Y(p)) — 3Y(y), co daje
1 -2 1
Re(_f == 0 1 _7/4 5
0 O 1
czyli, zgodnie ze wzorem przypomnianym wyzej, f; = ey, f5 = —2e; +e5 i f3 = %el —

Zeg + e3. Ale w gruncie rzeczy nie jest to nam tu do niczego potrzebne. To co wazne, to
to, ze

— 0@ i ) i ok ol )k
Q(V) = Qi V(o) V) = Qi [Ree s e[ Bec sl 10(p 015y = Qi vy vy »
czyli Q,(j;) = QE;) [Rec ¢ 1[Recs), (regula ta jest taka sama, jak podana w Przypomnieniu

reguta przeksztalcania sie przy zmianie bazy macierzy formy biliniowej). Sens tego wzoru
jest jasny: macierze R, przerabiaja sktadowe wektora v dane w bazie f; na jego sktadowe
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w bazie e;, a na te z kolei dziala juz macierz Q®). Macierzowo powyzszy wzor wyglada
tak:

QY = RZ(—f'Q(e) +Ree g

(symbol T oznacza transpozycje macierzy). Latwo sprawdzié, ze istotnie:

1 0 0 1 2 3 1 -2 1 1 0 0
-2 1 o2 2 5/2|(0o 1 -7/4]={0 -2 0
5 —7/4 1) \3 5/2 3 0 0 1 0 0 3

Oczywiscie mozna przej$é¢ np. do bazy g; ktorej wektory sa proporcjonalne do wektorow

bazy fi: g = if; (niema tu sumowania po ). Wtedy oczywiscie vj,, = (1/ri)v(y i
macierz formy kwadratowej () w bazie g; ma postaé
K2 0 0
QW =10 -2x3 0
0 0  §A3

Wida¢ ze liczby na diagonali sie zmienia ale nie ich znaki (pod warunkiem, ze czynniki x;
nie moga by¢ zespolone - dlatego twierdzenie Sylvestra dotyczy tylko form kwadratowych
na p.w. nad ciatem R).

Niezmienniczo$¢ sygnatury formy wzgledem przeskalowania wektorow bazy jest dosé
oczywista. Aby zobaczy¢, ze i bardziej skomplikowane transformacje sygnatury tej nie
zmieniaja zdagonalizujmy jeszcze raz nasza forme () metoda Lagrange’a, ale zaczynajac
“od innego konca™

5 1
Q:x2+2y2+3z2+4xy+5yz+6xz:3(z+x+6y)2—2:c2— ng—xy
5 1 1
— 3 SN2 9 ~.)\2 T2 )
(z+x+6y) (:):+4y) +54Y
Wida¢, ze jak poprzednio sygnatura jest (+, —, +) (kolejno$¢ pluséow i minuséw jest oczy-
wiscie bez znaczenia - liczy sie tylko liczba plusow i minuséw!). Tak jak poprzednio mo-

zemy z powyzszej postaci formy odczytaé zmiane bazy przestrzeni wektorowej i macierz
przejscia prowadzace do diagonalnej postaci formy:

5
1 _ 1 2 3
Uy = Ve T Ve T Ve
5
2 _ 1 1 2 R _ 1 (13 L
Vi = Vet 3V hee = I
01 0
3 _ 2
Yy = Ye)
(zmiana bazy z e; na h;). Zatem
0 0 1 1 2 3 0 1 -3
QW =Rl ,. QY Rop=|1 0 -1 2 2 5/2|(0o o 1
7
-+ 1 -5/ \3 5/2 3 1 -1 -5



0 0 1 3 -2 0 3.0 0
=l 1 0 -1 g—%i:0—2(1)
-1 1 -5/ \3 0 0 0 0 5

Jak wida¢ liczby na diagonali si¢ zmienily, ale sygnatura - nie.

Na koniec znajdZzmy takie wektory v,, v_ oraz vq, ze Q(vy) > 0, Q(v_) < 0 i
Q(vo) = 0. Ich posta¢ w bazie f; jest oczywista®® (wynika z diagonalnej postaci macierzy
formy w tej bazie):

1 1
viey=df,+bf3, v_=cdf, VozaflztwiaQ—l-Ebeg—l-bfg.

a', b, d oraza, bicsatu dowolnymi liczbami; postacie wektorow v i v_ nie sg oczywiscie
jedynymi mozliwymi - np. druga sktadowa v nie musi by¢ zupelnie zerowa, zeby wartosc¢
formy na tym wektorze byta dodatnia. Dzialajac na kolumienki utworzone ze sktadowych
tych wektoréw macierza Ry mozna podac posta¢ tych wektorow w wyjsciowej bazie
e;:

1 7
Vi = (CI,/—I— 56,)61 — Zb,eg—l—b,eg,

v_=-2de + ey,
1 1 1 7 1 1
_ : Lo, o ! o, o
Vo <a—|—2b:F2 8a —|—16b>el—|—<4b:|: 2@ —|—16b>e2—|—be3.

Mozna sprawdzi¢ bezposrednim rachunkiem, ze wypisana w tresci zadania forma Q(z, y, z)
= 2% + 2y* + 32 + day + byz + 6xz jest réwna a? + $0?, gdy v = d’ + 3V, y = -1V,
z =V, rowna —2c% gdy x = -2, y = ¢, z = 0 i zerowa, gdy z, y, 2z sa réwne
sktadowym w bazie e; wektora vy. Powinno by¢ tez jasne, ze to, ze mozna znalezé takie
wektory, na ktorych wartosé formy @) jest dodatnia, ujemna i zerowa wynika z tego, ze
ma ona sygnature mieszana; gdyby jej sygnatura byta np. (+,+,+), ujemnych wartosci
nie datoby sie uzyskaé, a zerowa tylko na wektorze zerowym.

Zadanie 62
Sprowadzi¢ do formy diagonalnej forme kwadratowa

Q = v179 + T173 + ToT3 .

Jesli to mozliwe, podaé¢ przyktady trojek liczb zq, xo, x3 takich, ze Q > 0, takich, ze
@ < 01 takich, ze ) = 0.

Rozwiazanie: Akurat tu nie da sie zastosowa¢ metody Lagrange’a od razu bo - jak
moéwia komentatorzy meczow siatkarskich - “niema z czego uderzy¢”. Trzeba wiec naj-
pierw ‘“ruszy¢ z posad bryle” formy kwadratowej (a nie, jak kiedy$ chcieli niektorzy -
“the commies” pod przewodem Ziutka Stoneczko, jak o nich méwil swoim niezréwnanie

62W bazie h; tez, ale podajmy je w bazie f;.
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bezposrednim jezykiem Marek Hlasko - bryte swiata). Podstawmy zatem x; = y; — v,
To = Y1 + Y2, T3 = y3. Forma przyjmie wtedy postaé
Q=yi —ys+2uys = (5 +3)° — v — v3.

1 teraz juz mozna przejs¢ do zmiennych z; = y; + ys, 22 = Y2, 23 = Y3, czyli y1 = 21 — 23,
Ya = 2o, Y3 = 23. Ostatecznie wiec zamiana zmiennych diagonalizujaca forme kwadratowa
ma postac

T1 = 21— 22— 23,
Ty = 21+ 22— 23,
xr3 = 23,

i w nowych zmiennych z; forma ma postac
22 2

Ma ona zatem sygnature (4, —, —). Postepujemy dalej jak w poprzednim zadaniu. Po-
wyzsza transformacja wyrazajaca stare zmienne (sktadowe w starej bazie) przez nowe (a
nie jak w poprzednim zadaniu nowe przez stare!) daje nam od razu potrzebna macierz
zmiany bazy Re. ;:

1 -1 -1
Rees=|1 1 =1
0

Macierz ta rzeczywiscie diagonalizuje macierz Q) formy Q:

1 1 0 0o % 1 1 -1 -1 1 0 0
R, Q9 Roy=[-1 1 0 10 2 1 1 -1|=({0 -1 0
-1 -1 1 5 5 0 0 0 1 0 0 -1

—

Jesli uznac, ze 21 = v, T2 = 0(26), Ty = Uf’e), sg skladowymi wektora v w bazie e;, to
21 = vy, 22 = V() 23 = v(py, sa skltadowymi tego samego wektora w bazie tworzonej
przez wektory f; = ex(Res)k;:

—~

1 -1 -1
(fi,f2,f5) = (er,ez,e3) | 1 1 —1
0 0 1

Macierz odwrotng, Ry, ., tez mozna znaleZ¢: wystarczy wyrazi¢ zmienne z; przez x;.

Wtedy e; = fi[Ry.";, czyli
5§ !
(61762793)=(f1,f2,f3) -3 3 0
0 0 1
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Znoéw, poniewaz sygnatura formy jest mieszana, mozna podaé¢ takie wektory vy, v_

oraz vo ze Q(vy) >0, Q(v_) <01 Q(vy) =0:
viy=adf, v_=VUf+f, vo=EV2+2E +0f+cf;.

a', b, d oraz a, bicsatudowolnymi liczbami; takze i tu postacie wektoréw v, i v_ nie sg
jedynymi mozliwymi. Dziatajac na kolumienki utworzone ze sktadowych tych wektorow
macierza .. ) mozna poda¢ postac tych wektoréw w wyjéciowe]j bazie e;:

Vi =ae; t+aeqy,

vo=—(b+c)es+(b—c)es+ces,

vy = (ivb2+02—b—c> e+ (i\/b2+cz+b—c> e, +ce;s.
Mozna sprawdzi¢ bezposrednim rachunkiem, ze przyjmujac w formie Q(x1, x9, x3) za x1,

x9 1 x3 sktadowe w bazie e; wypisanych powyzej wektorow dostaje sie @ > 0, @ < 0 i

Q=0.

Przypomnienie
Forma kwadratowa Q(z1,...,x,) jest dodatnio (ujemnie) okreslona, jesli jej warto$¢ na
dowolnym wektorze (x1,...,x,) jest dodatnia (ujemna). Ustalenie tego jest w wielu za-

gadnieniach, np. przy szukaniu ekstreméw funkeji wielu zmiennych, istotne. Oczywiscie
jesli sygnatura formy sa same plusy (same minusy), to jest ona dodatnio (ujemnie) okre-
Slona. Innym uzytecznym narzedziem pozwalajacym badaé¢ okreslono$¢ macierzy bez
jawnego jej diagonalizowania jest “kryterium minorowe”:

Jesli dodatnie sq wszystkie jej minory My, Mas ... My, (minor My jest wyznacznikiem
macierzy k X k wyjetej z lewego gdrnego rogu macierzy formy @Q ), to forma Q) jest dodatnio
okreslona.

(Alternatywnie zamiast zada¢ dodatniosci kolejnych minoréw wyjmowanych z lewego gor-
nego rogu, mozna zada¢ dodatniosci kolejnych minoréw wyjmowanych z prawego dolnego
rogu). Forma jest ujemnie okreslona, gdy dodatnio okreslona jest forma —(@), ktérej ma-
cierz ma wszystkie elementy ze zmienionym znakiem; inaczej, () jest ujemnie okreslona

Przyklad
W przypadku formy kwadratowej

Q(z,y) = az® +by* + 2dxy = (z,y) (; Z) <§>

dwu zmiennych regute te mozna natychmiast sprawdzi¢: warunki My; = a > 0, My =
ab — d? > zapewniaja, Ze forma ta

ab — d? /2

d
Q(x,y) = ax® + by* + 2dry = a(v + ay)2 +

ma sygnature (4, +), co jest rownowazne jej dodatniej okreslonosci.
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Zadanie 63
Dla jakich rzeczywistych warto$ci parametru A forma

5 2 -1 T

Qz,y,2) =522 + > + X% +day — 222 — 2z = (z,9,2) | 2 1 —1
-1 -1 A z

<

jest dodatnio okreslona?
Rozwigzanie: Kryterium “minorowe” daje warunki

M11:5>O, M22:1>O, Mggz)\—2>0,

czyli forma jest dodatnio okreslona gdy A > 2. To samo mozna zobaczy¢ stosujac metode
Lagrange’a:

2 1 2 1
Qs 2) =dla+ 5y = 52)° =55y = )"+ + A" = 2z
2 1 1 6 1
:5 — - — 2 _ 2__ >\__ 2
(tgy—57) Tgv —guat(A—g)
2 1., 1
=5(z+zy— 22 + 2y =327 + (A= 2),

co pokazuje, ze gdy A > 2, forma ma sygature (+,+, +), czyli jest dodatnio okreslona.5?

Zadanie 64
Dla jakich rzeczywistych warto$ci parametru A forma

W = >
— W Ot

1
Q=2 +4y° + 22 + 2 xy + 1022 + 6yz = (2,9,2) | A
5

N ey

jest dodatnio okreslona?
Rozwigzanie: Kryterium “minorowe” daje warunki

My =1>0, Myy =4 — X\ >0, M3 = =105+ 30\ — \? > 0,

Z ostatniego z nich, rozwiazujac réwnanie kwadratowe Ms3(A) = 0 mamy pierwiastki
A\ = 15—2v/30 oraz Ay = 15+2+/30; pomiedzy A, a Ay minor M3z > 0. Poniewaz jednak
A1 > 3, warunek Ms3 > 0 jest sprzeczny z warunkiem My, > 0, ktory jest spetniony tylko
gdy |A| < 2. Zatem forma ta nigdy nie jest dodatnio okreslona.

To samo mozna zobaczy¢ stosujac diagonalizacje Lagrange’a (zaczynajac od korca)

Q = (z+ 57 + 3y)? — 242% — 5y° — (30 — 2\)xy
1 1
= (z+52+3y)> = 5[y + (3 — EA)xF + 5(15 — \)?2? — 2422,

63Uwaznie patrzac mozna dostrzec, ze wspotczynniki pojawiajace sie w metodzie Lagrange’a (stosowa-
nej sukcesywnie do x, y i z) przed kolejnymi pelnymi kwadratami maja co$ wspolnego z minorami My,
Mas, ... Na tym w istocie rzeczy polega dowdd kryterium “minorowego”.
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Stad juz widaé, ze sygnatura formy jest mieszana, niezaleznie od wartosci A.

Zadanie 65
Zbadac okreslonosé i podaé sygnature formy kwadratowej

Q =227 +y? + 322 + 2\xy + 222,

w zaleznosci od wartosci parametru A.
Rozwigzanie: Aby ustali¢ dla jakich wartosci A forma jest dodatnio okreslona, mozna
postuzy¢ si¢ metoda wyznacznikowa, tj. zazadaé¢ by dodatnie byly minory

2| >0,

2 A
Al

2
'>O, A
1

S = >

1
0] >0.
3

Dostaje si¢ stad warunki A < 21 A? < 2, z ktorych drugi jest oczywiscie silniejszy. Metoda
ta mozna jeszcze ustali¢, dla jakich wartosci A forma jest ujemnie okreslona (oczywiscie
nigdy, bo minor M, jest dodatni, a nie ujemny), ale nie mozna ustali¢ jej sygnatury, gdy
nie jest ona ani dodatnio ani ujemnie okreslona. W tym celu trzeba ja zdiagonalizowaé,
np. metoda Lagrange’a. Zaczynajac od z-a:

A1) A2\ 5,
Q—2<x+§y+§z) —i—(l—?)y —Ayz+§z

N ? e A2 AT Mk A2 )

= — —z - — - - — .
SIS 2 )|V 2=n7 T2 a—ane

Jesli tylko A? # 2, mamy stad dodatni znak pierwszego wyrazu, dodatni (jesli \? < 2)

badz ujemny (jesli A2 > 2) drugiego i znak wspolczynnika trzeciego wyraz wyznaczony
przez

5 A2 :5—3)\2
2 4-2X2 2-—-)2

Zatem gdy (sygnatura tej formy zalezy tylko od A%, a nie od \) \? < g forma ma sygnature
(+,+.,4), gdy A* = 2 sygnature (+,+,0), gdy 2 < A? < 2 sygnature (+,+, —) i wreszcie,
gdy A2 > 2 znéw (kolejnogé pluséw i minuséw nie gra tu roli!) sygnature (+,+,—)
(bo wprawdzie ujemny robi sie wspotczynnik drugiego wyrazu, ale z kolei dodatni staje
sie wspotezynnik trzeciego). Przez ciaglosé (cokolwiek by to pojecie tu miato znaczyc!)
wynika, ze gdy A\? = 2, sygnatura formy powinno by¢ (+, —, +). Mozna to ustali¢ wracajac
do przeksztalceni: jesli A = +v/2, to

A1 5
Q:2<z+—y+—z) FV2yz 4 =2*

2 2 2
A 1)\? 5 1 S|
=2 Zy+ = - “V2y ) — 2P
<x+2y+2z) +2(ZZF5\/_y) 5y
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zgodnie z oczekiwaniami.
Nakomplikowalismy sobie, podczas gdy stosujac metode Lagrange’a w innej kolejnosci
otrzymalibysmy:

1 5
Q=22 +9* + 322 + 2 ay + 202 = 3(2 + gx)z + gzvz + 2\zy + 2,

1 5
=3(z+ §I)2 + (y + Ax)* + (§ — \a?,

co od razu (tak jak metoda minorowa) pokazuje, ze forma jest dodatnio okreslona, gdy
A< —, itd. Moral z tego jest taki, ze przed zastosowaniem metody Lagrange’a dobrze
jest czujnie popatrzy¢, jak ja zastosowac...

Zadanie 66
Zdiagonalizowaé jednocze$nie dwie formy kwadratowe

Q1(z,y) = 22° + 6zy + 5y°, Q2(z,y) = 32° + 8xy + 6y°.

Rozwigzanie: Przyjmujac, ze macierzami tych form w pewnej bazie e; sa macierze

@ (2 3 @ (3 4
L =\3 5)° 27 \4 6)°

nalezy przejs¢ do takiej bazy f;, w ktorej obie macierze ng )i ng ) beds diagonalne.
Nietrudno sprawdzi¢, ze obie podane macierze (formy) sa dodatnio okreslone. Mozemy
zatem dowolna z nich, np. @); sprowadzi¢ do postaci

W _ (10
- (3 0)

Stosujac metode Lagrange’a czyli, moéwiac mniej gérnolotnie, zwijajac do pelnych kwa-

dratow, otrzymujemy
3 2 v\
() ()
a=(Var+g50) + (%5

Odczytujemy wiec, ze v(lf) = \/é'y(l) + % v( i U(f — 7 (2

() (8 )

) czyli ze

Sprawdzamy:
r e me = (00 ) (G D (TR -(0 %)
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Oczywiscie po tej zmianie bazy druga forma nadal pozostaje niediagonalna:
_ T ©. g, = 1/v2 0 3 4\ [(1/vV2 —3/V2
et “ITTA-3/V2 V2 )\4 6 0 V2

[ 3/2 -—1)2

S\-1/2 3/2 )
Powstaje teraz pytanie, jakich dalszych zmian bazy mozemy jeszcze dokonaé, tak by nie
popsu¢ diagonalnosci formy ;7 Odpowiedz (oczywista dla fizyka) jest taka, ze wciaz
dopuszczalne sa przeksztatcenia ortogonalne bazy, tj. takie, ktérych macierze O (to sa
normalne macierze zmiany bazy f; na jakas baze f!, ktore dotad oznaczaliSmy Ry ., ale
teraz, aby podkresli¢ ich specjalna forme oznaczymy O, albo bardziej precyzyjnie O )

sq takie, ze O-OT = OT-O = I. Z oczywistych powodoéw takie przeksztalcenia nie zepsuja
diagonalnosci Qy:

ng) f<—f/ Q1 Ofeyp = O?(—f’ A Oy = O?‘—f’ Opep =1

Pytanie jednak, czy przeksztalcenia ortogonalne wystarczaja do zdiagonalizowania dowol-
nej formy kwadratowej? Na szczescie tak! Dowodzi sie® ze tak wlasnie jest. Wszystkie
dwuwymiarowe macierze ortogonalne mozna ujaé¢ jednym wzorem: zaleza one od jed-
nego kata a € [0, 27) (kat ten odpowiada katowi o jaki obracamy w przestrzeni zlaczone
sztywno razem dwa wektory bazy f; - oczywiscie jesli wektory te sa “strzatkami”, a nie np.
wielomianami, bo jak tu interpretowaé¢ kat o jaki obracamy razem dwa wielomiany?...).
Piszemy zatem (c, = cos, s, = sin a):

(5 269 )
B < Cor sa) (aca +ds, —as,+ dca)
—S4  Co dcy, +bs, —ds, + beg,
B ( ac? + bs? + 2dcy s, (@ — b)case — d(c? — s2) )
— \(a —b)case — d(c2 — 52) as? 4+ bc — 2dcy s, '

W przypadku formy Qg oczywiscie a = b =2id= —5. Wida¢, ze dla dowolnych ele-
mentow a, b, d symetrycznej macierzy Q2 mozna uzyskac macierz diagonalng wybierajac
kat o taki, ze
2d

a—1>b’
przy czym, gdy a = b kat powinien by¢ réwny 7 +n 3.

Widad, ze aby podany tu chwyt zadziatal, przynajmniej jedna z form musi by¢ dodat-
nio (lub ujemnie - wtedy Q) = —TI i metoda dalej dziala) okreglona. W n wymiarowej

tg(2a) =

64Nie wiem gdzie i kiedy, bo to jest jak pytanie o to, gdzie dowiedziono, ze 1 +1 = 2. (A to, akurat
wiem: w Principia Mathematicae A.Whiteheade’a i B.Russela; dowod zajmuje maczkiem, specjalnie
wprowadzonymi symbolami ze dwie lub trzy strony - czyste szaleristwo!)
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przestrzeni macierz ortogonalna O zalezy od %n(n — 1) katow.% W trzech wymiarach
moga to by¢ np. trzy katy Eulera, z ktorymi zapewne studenci spotkaja si¢ przy okazji
zgltebiania zawilo$ci ruchu tak przez nich ulubionej bryty sztywne;j.

Przypomnienie

Wektorem wlasnym (po angloniemiecku eigenvector) odwzorowania liniowego (ktore fizyk
zwykl, zwlaszcza w konteks$cie mechaniki kwantowej, nazywaé operatorem) F : 'V — V
przestrzeni wektorowej V' o dimV = n w nig sama, nazywa sie taki wektor w € V', ze

F(w) = \w.

Oczywiscie wskutek liniowosci F' wektor taki jest wyznaczony tylko z doktadnoscia do po-
mnozenia go przez dowolna liczbe. Liczba A (tez nalezaca do ciata K, nad ktorym rozpieta
jest przestrzen wektorowa V') nazywa sie wartoscia wlasna (po angloniem. eigenvalue)
operatora (odwzorowania) F' na wektorze w. Jesli [Fiey¢)]*; jest macierza odwzorowania
F w bazie®® e;, 1 =1,2,3..., a wée) sa sktadowymi w w tej samej bazie, to wtedy

[Floxe jwiey = Awie.
czyli, zapisujac to samo inaczej,’”
[Floye) = M| wlyy = ([Floye)'y — A6 ;) wiyy =0,

(zero po prawej stronie nalezy rozumieé¢ jako wektor o zerowych sktadowych, czyli wektor
zerowy). Powyzszy wzor jest po prostu linowym, jednorodnym ukladem n réownan na n
wspotezynnikow w{e). Taki uktad réwnari ma niezerowe rozwiazania w{e) tylko wtedy, gdy
zeruje si¢ wyznacznik jego macierzy, tj. gdy

Wer(A) = det(F(e)(e) — )\I) =0.

Wyrazenie po lewej stronie jest wielomianem, ktory nazywa sie wielomianem charaktery-
stycznym macierzy (odwzorowania) F', a wypisane wyzej rownanie - rdwnaniem charak-
terystycznym. Niezerowe wektory wtasne (moze by¢ ich wiecej niz jeden; maksymalnie
n), tj. rozwiazania na ich wspoétezynniki w{e) w bazie e;, istniejg tylko dla tych wartosci
A, dla ktorych wielomian charakterystyczny zeruje sie. Wartosci wtasne A\ odwzorowa-
nia liniowego F' sa wiec pierwiastkami wielomianu charakterystycznego Wr(\) macierzy

657bior wszystkich macierzy O wymiaru n x n spetniajacych warunki O - O = 1, det O = 1 tworzy
grupe (specjalng ortogonalng) SO(n).

66Poniewaz F odwzorowuje V w V, w tekécie bedziemy zawsze przyjmowaé, iz obraz F(v) wektora
v € V jest rozpisany w tej samej bazie co sam wektor v. Jak juz bylo wcze$niej wspomniane, w
zasadzie nic nie zabrania, by obraz F(v) byl rozpisywany w bazie innej niz e;, lecz prowadziloby to do
niepotrzebnych komplikacji rachunkowych.

67Macierz I jest tu macierza odwzorowania identycznosciowego Id. Jedli - tak jak zawsze przyjmujemy
w tego typu zagadnieniach - macierz odwzorowania F' jest zapisana “z obu stron” w tej samej bazie, to
tak samo zapisana macierz I odwzorowania Id jest niezalezna od bazy Id(.y) = Idsy(y) =1 i Iij = 6ij.
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tego odwzorowania. Pierwiastki wielomianu charakterystycznego nie zaleza od wyboru
bazy,®® od ktorej zalezy posta¢ macierzy F'; charakteryzuja one odwzorowanie F jako
takie. Wektory wtasne macierzy odpowiadajace roznym warto$ciom wlasnym sa liniowo
niezalezne. Istotnie, niech bowiem np. F(vi) = A\jvy, F(vy) = Aava 1 F(v3) = A\3vg i
niech v; i vy beda liniowo niezalezne; gdyby v3 byt liniowo zalezny od vy i v, czyli gdyby
vy = &1V + &Va to z liniowosci F' mieliby$Smy z jednej strony

F(vs) = A3vs = A3(&ivi + &ava)
a z drugiej
F(v3) = F(&vi + &va) = AV + A9

Przyroéwnujac te dwa wyrazenia na F'(v3) do siebie i przenoszac wszystko na jedna strone
otrzymalibysmy

(A3 — AM)&vi+ (Ag — Ag)&avo =0,

i z zalozonej liniowej niezaleznosci wektorow vy i vo (ktéra pociaga za soba liniowa nie-
zaleznos¢ wektorow &1vy 1 €ova) otrzymalibySmy Az = A; = Ao.

Jesli przestrzenn wektorowa V' o dimV' = n jest nad cialem R liczb rzeczywistych, to
mozliwe sa trzy rézne sytuacje:

o Wg(A) moze mie¢ n réznych pierwiastkow rzeczywistych \,, a = 1,...,n. Kazdemu
z nich odpowiada wtedy wektor wtasny w, (tj. jedno rozwiazanie na sktadowe
wfl(e)) i zbior tych n wektorow jest liniowo niezalezny. Macierz F' jest wtedy diago-
nalizowalna (tzn. przyjmuje posta¢ diagonalng z wartosciami wlasnymi Ay, ...\,
na diagonali) w bazie tworzonej przez wektory wlasne w,, a = 1,...,n. Jest teze
oczywiste, ze det(F(e)(e)) = det(F(w)(w)) = HZ:l Aa-

e Wr(\) moze mie¢ n roznych pierwiastkow ale tylko r rzeczywistych, a pozostale
n — r pierwiastkow sa parami zespolone sprzezone. Ciato R, nad ktéorym rozpieta
jest przestrzen V mozna wtedy formalnie rozszerzy¢ do ciata liczb zespolonych C.
Istnieje wtedy n liniowo niezaleznych wektoréw wtasnych macierzy F' z tym, ze maja
one zespolone sktadowe (sa kombinacjami liniowymi wektorow bazy e;, ale z zespolo-
nymi wspotczynnikami wée)). W rozszerzonej przestrzeni wektorowej macierz F' jest
diagonalizowalna. (I oczywiscie det(F{e))) jest iloczynem wartosci whasnych - jesli
macierz F.).) byla rzeczywista, musza one by¢ parami sprzezone wigc wyznacznik
jest liczba rzeczywista).

68Dowod sprowadza sie do zauwazenia, ze det (F(e)(e) — /\I) = det [Re<_f . (F(f)(f) —AI)- Rf<_e] =
det(Rer) - det (F(f)(f) —/\I) . det(RfHe) = det (F(f)(f) —)\I), bo det(nge) = det(Re_if) e
[det(Rey)]~'. Bardziej ogolnie (ale to juz macenie w glowach studentom!) gdyby bazy “z dwu
stron” byly jednak rézne (bazy tej samej p.w. V - wiec to szaleristwo i nieodpowiedzialnosé!) np.
f;, z prawej “strony” i e; z lewej “strony”’, warunek wyznaczajacy warto$ci wlasne by mial postaé
det (Fey(s) — Mey(s)) = det(Recy) - det (Fpy(s) —AI) = 0 i wobec nieosobliwosci macierzy zmiany
bazy R« (tj. wobec tego, iz det(Res) # 0), bylby rownowazny warunkowi det (F(f)(f) — /\I) =0.
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o Niektore pierwiastki Wg(\) (rzeczywiste, lub zespolone) sa pierwiastkami wielokrot-
nymi: mamy wtedy r pierwiastkow A,, a = 1,... 7 o krotnosciach n, (oczywiscie
ni + ...+ n, =n). Kazdej z wartosci wtasnych moze wtedy odpowiada¢ k,, gdzie
1 < k, < ng, liniowo niezaleznych wektoréow wtasnych. Macierz F' jest diagonali-
zowalna tylko wtedy, gdy kazdej z warto$ci wtasnych A\, odpowiada doktadnie n,
odpowiadajacych jej wektoréow wtasnych. Jesli choéby jednej z wartosci wlasnych
A, odpowiada mniej wektoréw wlasnych niz krotnosé n, tej wartoséci wtasnej, to ma-
cierz F' jest niediagonalizowalna. Mimo to wyznacznik macierzy Fie) jest rowny
iloczynowi jej n wartosci whasnych (gdy n, > 1 liczymy A" jako iloczyn n, czynni-

kow).

Jesli od poczatku przestrzen wektorowa V' jest rozpicta nad ciatem liczb zespolonych, to
oczywiscie mozliwosci sa dwie: macierz jest diagonalizowalna (gdy wszystkie pierwiastki
Wr(A) sa réozne lub gdy, mimo wystepowania pierwiastkow wielokrotnych, istnieje n li-
niowo niezaleznych wektorow wtasnych) lub niediagonalizowalna (gdy Wg(\) ma pier-
wiastki wielokrotne i mniej wektoréw wtasnych niz n).

Waznym i, jak zobaczymy, niezmiernie uzytecznym faktem jest twierdzenie Cayleya-
Hamiltona gtoszace, ze

Wg(F)=0,
tj., ze kazda macierz kwadratowa wymiarow n X n sama spetnia swoje réwnanie charak-

terystyczne. Poniewaz (nad cialem C)

T

Wr(A) = (D" [T =A™ = (0" = 2™ - (=A™,

a=1

(ny +...+n, =n), tw. C-H mozna zapisa¢ w postaci (pomijamy nieistotny czynnik

ﬁ(F D) = (F =M™ - (F=\I)" =0,

a=1

gdzie I jest macierza jednostkowa n x n.
Uzyteczne tez bedzie wiedzieé, ze jesli wartosci wlasnej A\, o krotnosci n, odpowiada
k, liniowo niezaleznych wektorow wtasnych to dodatkowo

WF(F) = (F_>\1[)n1 (F—Aa[)n“_ka"'l(F_)\TI)nr :0

Wielomian Wp()\) bedziemy dalej nazywaé zredukowanym wielomianem charakterystycz-
nym.% Oczywiscie podobne obnizenie potegi odpowiedniego czynnika (o jeden na kazdy
dodatkowy wektor wlasny) stosuje sie do wszystkich czynnikéw wielomianu. Moze sie

69Koledzy matematycy nazywaja zdaje sie taki wielomian zredukowany najnizszego mozliwego stopnia
wielomianem minimalnym.
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jednak zdarzy¢ (zob. Zadanie 70), ze F' spelnia réwnanie z obnizona potega czynnika
(F — M) odpowiadajacego jakiej$s wartosci wlasnej, a mimo to wektorow wtasnych jest
mniej; pokazuje to, ze zwiazek potegi czynnika (F'— A1) z tym, ile jest wektoréw wtasnych
odpowiadajacych tej warto$ci wlasnej jest jednokierunkowy: kazdy dodatkowy wektor
wlasny obniza potege (F' — AI), ale mozliwos¢ obnizenia potegi nie oznacza koniecznie
istnienia dodatkowego wektora wtasnego.

Oczywistym, a waznym i uzytecznym wnioskiem wynikajacym z powyzszych rozwazan
jest to, ze wyznacznik macierzy F' jest iloczynem jej wartosci wtasnych. Wynika to bezpo-
srednio z poréwnania definicji wielomianu charakterystycznego i jego postaci iloczynowe;j:

Wg(A) =det(F — \), wiec Wg(0) =detF.

Zadanie 67
Wyznaczy¢ wartosci wlasne oraz odpowiadajace im wektory wlasne macierzy
2 -1 2
F=15 -3 3
-1 0 =2

Sprawdzi¢, ze det(F) = 12+ 3 — 6 — 10 = —1 jest rowny iloczynowi wartosci wlasnych.
Rozwigzanie: Znajdujemy najpierw pierwiastki wielomianu charakterystycznego

p ) . | 2
Wr(A)=| 5 -3-2X 3 |=-MN-3\-3A-1=—-(A+1)>°.
—1 0 —2 -\

Jest wiec tylko jeden pierwiastek A\; = —1, ale za to trzykrotny (n; = 3). Oczywiscie
detF" = \}. Zgodnie z tym, co powiedziane bylo wyzej, moga istnie¢ trzy, dwa lub jeden
wektor wlasny odpowiadajacy A\; = —1. Aby sprawdzi¢ ile ich jest, rozwiazujemy uktad

3 -1 2 wt
5 -2 3 w? | =0.
-1 0 -1 w?

Ostatni rzadek méwi, ze w! +w? = 0, co wykorzystane sprowadza pierwszy i drugi rzadek
do tego samego réwnania w! —w? = 0. Rozwigzaniem tych dwu niezaleznych réwnan jest
kazdy wektor proporcjonalny do

1
1
—1
Jest wiec tylko jeden wektor wlasny. Sprawdzmy twierdzenie C-H:
3 -1 2\°
We(F)=(F+I1P=[5 -2 3
-1 0 -1

181



3 -1 2 2 -1 1 0 0 O
= 5 -2 3 2 -1 1 |=10 00
-1 0 -1 -2 1 -1 0 0 O

Poniewaz jak wida¢ ani F' + I ani (F + I)? nie s macierzami zerowymi, wiec zgodnie z
tym, co bylo powiedziane wyzej, moze by¢™ tylko jeden liniowo niezalezny wektor wlasny
F odpowiadajacy wartosci wlasnej Ay = —1.

Zadanie 68
Wyznaczy¢ wartosci wlasne oraz odpowiadajace im wektory wtasne macierzy
0 1 0
F=|-4 40
-2 1 2

Rozwigzanie: Znajdujemy najpierw pierwiastki wielomianu charakterystycznego

-2 1 0
Wr(\)=|-4 4-X 0 |=-(\-2).
-2 1 2-2)

Jak w poprzednim zadaniu réwnanie charakterystyczne ma jeden pierwiastek A\; = 2
trzykrotny (n; = 3). Szukamy wektora(ow) wlasnego(ych):

Golym okiem wida¢, ze sa dwa liniowo niezalezne (proporcjonalne do):

0 1
0 oraz 2
1 0
Zobaczmy, jak to sic ma do twierdzenia C-H:
-2 1 0 -2 1 0 0 0 0
(F-2I2=[-4 2 0 -4 2 0|l=10o0 0],
-2 1 0 -2 1 0 0 0 0

tak jak nalezalo oczekiwa¢. Widaé tez, ze detF' = 8 (obliczony “po skosach”) jest rowny
iloczynowi wartosci wlasnych macierzy F: detF = \3.

70Jak juz podkreslalismy, gdyby sie bylo okazalo, ze np. (F + I)? = 0, nie oznaczaloby to, ze musi
by¢ dodatkowy wektor wlasny; jednak gdyby taki dodatkowy wektor byt, to jego istnienie implikowatoby
(F+1)?2=0.
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Zadanie 69
Jak poprzednio tylko

4 =5 2
F=15 -7 3
6 -9 4

Rozwiazanie: Znajdujemy, ze Wr(\) = —A?(\ — 1). Powinien by¢ wiec jeden wektor
wtasny odpowiadajacy A\; = 1 i jeden lub dwa wektory odpowiadajace warto$ci wlasnej
A2 = 0. Sprawdzmy twierdzenie C-H:

2

4 -5 2 3 =5 2
F>.(F-I)=|5 -7 3 5 —8 3
6 —9 4 6 -9 3

4 =5 2 -1 2 -1 0 0 0
=|5 =7 3 -2 4 =2]=({0 00
6 -9 4 -3 6 -3 0 0 0

Poniewaz F- (F — I) # 0, moze by¢ tylko jeden wektor wlasny odpowiadajacy wartosci
wtasnej Ay = 0. Rozwiazujac odpowiednie uktady liniowe znajdujemy, ze

1 1
1 odpowiada A\ =1, a 2 odpowiada Ay = 0.
1 3

Skoro jedna warto$¢ wlasna jest zerem, to wyznacznik znika. I rzeczywiscie: detF = 0.

Zadanie 70
Jak poprzednio tylko
3 -1 0 O
11 0 0
F= 3 0 5 =3
4 -1 3 -1

Rozwigzanie: Obliczamy wyznacznik ' — A stosujac rozwiniecie Laplace’a wzgledem
pierwszego wiersza

3-A -1 0 0
1 1-x 0 0
30 5-A -3
4 -1 3 —1-2
1-A 0 0 10 0
~(3-N| 0 5-A 3 | +|35-12 -3
103 1A |43 1o
5.0 -3 50 -3
“@_Axl_kw 3 —1—A‘+‘ 3 —1—A‘
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Zatem Wr(A) = [3—=N)(1—=X)+1[(5=A)(=1—=X)+9] = (A—2)*. Jest wiec tylko jeden
pierwiastek A; = 2, za to poczworny (n; = 4). Sprawdzamy twierdzenie C-H

1 =10 0\*/1 -1 0 o0\?
Cm opa |1 -1 0 0 1 =1 0 0
We(F) = (F —2I)" = 3 0 3 -3 3 0 3 -3
4 -1 3 -3 4 -1 3 -3
0 0 0 00 0 0
B 0 0 0 00 0 0
- 0 0 0 00 0 0

0 0 0 0 0 0

(e}

0
0
0
0
)

Skoro juz (F — 2I)? = 0, to moga (ale nie musza!) by¢ az trzy wektory wlasne odpowia-
dajace A\; = 2. Rozwiazujac uktad

1 -1 0 0 w! 0
1 10 o |[w] [o
3 0 3 -3 wd | 10|
4 -1 3 -3 w? 0
czyli
w! — w? = 0,
w! +w? —wt = ,
dw' —w? + 3w’ — 3uw' = 0,
czyli dwa niezalezne réwnania (bo wstawienie w? — w* = —w! z drugiego do czwartego

sprowadza to ostatnie do pierwszego): w! — w? = 0 oraz w' + w® — w* = 0 na cztery

sktadowe w’. Mimo wigc iz potege czynnika (F — AI) dalo si¢ obnizy¢ az o dwa, jest tylko
jeden dodatkowy wektor wlasny, a nie dwa. Za dwa liniowo niezalezne wektory wtasne
mozemy wzia¢ np

1 1
1 1
-1 |’ 0
0 1

Oczywiscie detF = 16 = \7.

Zadanie 70’
Obliczy¢ wyznacznik macierzy cyklicznej C' wymiaru N x N postaci
ay a9 as P 0 Y | an
an aq a9 ... aAnN—2 aAN-—1
C = aN-1 ay ap ... aN-3 GaN-2
as Qg as Ce aq (05}
a9 as ay . an aq
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Rozwigzanie: Wyznacznik jest iloczynem warto$ci wtasnych macierzy. Okazuje sie, ze
mozna zgadnaé¢ wszystkie wektory wtasne macierzy cyklicznej i w ten sposéb wyznaczy¢
takze odpowiadajace im wartosci wlasne. Jeden wektor wlasny jest oczywisty - jest nim
wektor sktadajacy sie z samych jedynek, a odpowiadajaca mu wartoscig wtasng jest oczy-
wiscie a; + ...+ ay. Nietrudno jednak zobaczy¢, ze pozostatymi wektorami wlasnymi sa
wektory postaci”™

Wi = )

gdzie e; jest k-tym pierwiastkiem (jak wiemy, £k =0,1,..., N — 1) N-tego stopnia z 1:

2
€k :exp(iﬁﬁk) .

[stotnie: macierz cykliczna C' dziatajac na taki wektor daje

N-1
arex+agei +azei+ ... +ay_1e, " +ayey

N-1
aner+aier +ases +...+an_ge, | +an_1ey

N-1
an-16k+aner+a i+ ... +an_ze, +ay_aep

N-1

azep + aser +ases + ... +aje, | +agen
N-1

agep +azer +ases + ... +ayey, +arey

Wida¢, ze na I-tym “pieterku” a; jest mnozone przez €, z kolei asey, jest tez mnozone
przez et etc. Ogolnie, dzieki wlasciwosci pierwiastkow N-tego stopnia z jednosci:

T o__
€ =¢

kazdy z wierszy tego wektora jest proporcjonalny do odpowiedniego wiersza wektora wyj-
Sciowego, a wspotczynnikiem proporcjonalnosci jest w kazdym wierszu ta sama liczba A

)\k:a1—I—a25k+a35i—l—...+aN_15kN_2—|—aN5kN_1, kZO,...,N—l,

bedaca zatem k-ta wartoscia wlasna (g9 = 1, wiec A\ jest wartoscia wlasna odgadnieta
na poczatku) macierzy cyklicznej C.

Trzeba tylko jeszcze sie upewnié, ze wszystkie wektory wtasne wy, £k =0,1,..., N —
1, s liniowo niezalezne. Tworzylyby one w takiej sytuacji baze catej N-wymiarowe;j

""'Wektory te maja oczywiscie zespolone sktadowe. W przypadku konkretnych macierzy cyklicznych
majacych wartosci wtasne o krotnosciach wiekszych niz 1 moze sie okazaé¢ mozliwe skonstruowanie wek-
toréw wlasnych o rzeczywistych sktadowych - zob. Zadanie 74.

185



przestrzeni i w tworzonej przez nie bazie badana macierz miataby posta¢ diagonalng z
liczbami A\, na diagonali, co by oznaczato, ze jej wyznacznik jest rowny AgAy ... Ay_1. W
celu udowodnienia liniowej niezaleznosci wektoréw wy,, tworzymy z nich macierz N x N
stawiajac je kolejno “na sztorc™

1 €1 2 ... EN—2 EN-1
2 2 2 2

1 5%) 5§ 5§V_2 eév_l
1 3 €5 ... Ey_9 En_.1

N-1 _N-1 N-1 _N-1
1 51N 52N 5%_2 a%_l
1 €1 €5 ... EN_2 EN_1

Poniewaz ey = €2, ..., en_1 = 5{\[ ~1 lub ogolniej, eh = 5’;, nietrudno si¢ zorientowac, ze

jest to wyznacznik Vandermonda obliczony w zadaniu 46, w ktérym to wyznaczniku teraz
r1 = €1, Ty = £, etc. Jest on zatem réwny

N-1

H (‘gk_‘gl)#ov

k>1=0

bo wszystkie pierwiastki ¢; sa rozne. Zatem wszystkie znalezione wektory wlasne macierzy
cyklicznej sa liniowo niezalezne i stad mamy wniosek, ze jej wyznacznik jest réwny

N-1
det C' = H (a1 +azer+asei + ... +ay1ey * +aney ).
k=0

Zadanie 71
Zmalez¢ wartosci wtasne i odpowiadajace im wektory wlasne macierzy

F:(}jJ.

Jesli to mozliwe przejsé do bazy, w ktorej macierz odwzorowania F jest diagonalna. Na-
pisa¢ takze jawnie macierz F™, gdzie n jest dowolng liczba naturalng
Rozwiazanie: Obliczamy wyznacznik macierzy F' — AI:

det(lz)\ _11_A) (= A)(—1=A) —1=N—2= (A= vV2)(A+2).

Pierwiastki wielomianu charakterystycznego sa dwa. Sa one rzeczywiste i rozne. Macierz
jest wiec diagonalizowalna nad ciatem R. Szukamy wektoréw wlasnych odpowiadajacych

M =V2id=—V2

v=ve (L) (0)-(0):
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Poniewaz wyznacznik znika, tylko jedno z dwu wynikajacych stad réwnan jest niezalezne.
Ktadac np. a; = 1, znajdujemy by = —1 4+ /2. Podobnie dla Ay mamy

Ay = —V2: (1+1¢§ —1i¢§) (Zj):@)

i stad, ktadac np. b, = 1 mamy a, = 1 — /2. Sprawdzamy:

b A) ()= (6 5e) =2 (L)

A ()= (28) - ()

Oczywiscie wektory wtasne nie sa wyznaczone jednoznacznie, a tylko z dokladnoscia do
pomnozenia przez liczbe (w przestrzeni wektorowej z iloczynem skalarnym mozna by byto
dodatkowo narzuci¢ na nie warunek unormowania - ale po co wprowadzaé¢ zbedne dla
naszego celu struktury?).

Dana w zadaniu macierz jest oczywiscie macierzg odwzorowania F w jakiej$ bazie
(e1,e2), tj. powinna by¢ oznaczona Fl.y.), a znalezione wektory sg sktadowymi wektorow
wlasnych w tej bazie. Przejdzmy teraz do bazy (wy, ws) tworzonej przez znalezione wek-
tory wlasne w; = e; — (1 — v/2) e, oraz wy = (1 — v/2) e; + e, odwzorowania F' (moga
one by¢ baza bo sa liniowo niezalezne). Mamy wiec w; = e; [R(e(_w)]j ; czyli

(Wi, w2) = (e1,€) (_1Jlr\ﬁ 1_1\/5).

Macierz R (.., tworzg jak zwykle postawione “na sztorc” sktadowe znalezionych wektorow
wlasnych macierzy F'. Odwracamy R ) by dosta¢ macierz R,..)

B 1 —1+42 1
o= (s 1Y) i

Sprawdzamy, ze macierz Fu)w) = Rwee) - Fle)(e) - R(ew) 0dWzorowania F' w nowej bazie
jest macierza diagonalng:

Fom =g (v )0 A) (e )

s ) = (0 )

Macierz F' mozna teraz tatwo podnie$é do n-tej potegi piszac

Fiiye) = Riecw) - (Ruwee) * Floye) - Rieew))” * Rwee) = Riecw) - (Flwyw)) - Ruwee)

B 1 1 1—v2\(v2 0 \" 1 —1++2
s )00 ) (D YY)
_»r <1+ (-)r1-v2)? ()" - 11~ @)

22— v2) (=)' =11 -v2) ()" +(1-v2? )
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Gdy n =1, daje to oczywiScie znowu wyjéciowa macierz Fie))-

Macierz F™ mozna tez znalez¢ sposobem, ktory nie wymaga uzycia macierzy diagonali-
zujacych. W tym celu zapisujemy dowolny wektor w postaci kombinacji liniowej wektorow
wlasnych macierzy F'

()= (i) ()= (e ) (5)

Wspoétezynniki i f nietrudno znalezé:

()mmle )0)

Dziatamy teraz macierza F™ na dowolny wektor

jak (‘b‘) = a2"? (—141rﬂ) + B (=1)"2"? (1 _1ﬁ) .

Wykorzystaliémy tu fakt, ze macierz F' dzialajac na wektor wlasny mnozy go przez od-
powiadajaca mu wartos¢ wlasna; dziatanie F™ daje wtedy n-ta potege warto$ci wlasne;j.
Mamy wiec

Fr () _ ( [a+b(=1+V2)] + (-1)"[(1 = V2)a + (1 = v2) )
b) 22— v2) \(=1+V2)[a+b(~1+V2)] + (=1)"[(1 = v2)a + ]

A ( L+ (-)"(1—=v2)? [(-)"—1)(1 - \/5)) (a)
22— v2) \ (D" =1J(1=v2) ()" +(-1+v2)>)\b /)"

W ostatnim kroku zapisaliémy ponownie wynik w postaci dzialania macierzy na dowolny
wektor; macierz ta jest wlasnie poszukiwana macierza F™.

Zauwazmy, ze obie przedstawione metody podnoszenia macierzy do n-tej potegi stosuja
sie, gdy macierz jest diagonalizowalna, tj. gdy jej wektorow wlasnych jest maksymalna
liczba, dzieki czemu rozpinaja one cata przestrzen V.

Na zakonczenie sprawdzmy twierdzenie Cayleya-Hamiltona méwiace, ze macierz spel-
nia swoje rownanie charakterystyczne, tj., ze Wg(F') = 0 (zero w sensie macierzy zerowej
oczywiscie). Mielismy Wr(\) = A2 — 2 wiec Wr(F) = F? — 21, czyli jawnie:

L S I B ) B () R TR L G

tak, jak by¢ powinno. W zadaniu 73 pokazemy, jak twierdzenie to mozna wykorzystaé
do znalezienia F™ jeszcze innym sposobem, réwniez nie wymagajacym uzycia macierzy
diagonalizujacych.

Zadanie 72 (ciag Fibonacciego)
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Poda¢ wzoér na n-ty wyraz ciggu zadanego warunkami:
Upy2 = Qny1 + 0n ap =0, ar=1.

Rozwigzanie: Wzor rekurencyjny definiujacy ciag mozemy przepisa¢ w postaci macie-

rzowe;j: 2
Ap42 — 1 An1 —F. An1
Ap+1 1 0 (07% N [07% '
Z postaci tej od razu wynika, ze
[07% — Fn—l aq
an—1 ap )’
gdzie F' jest macierza wystepujaca we wzorze powyzej. Jej wielomian charakterystyczny
We(A) =X —A—1,

ma dwa pierwiastki rézne i, co za tym idzie, istnieja dwa wektory wtasne, jako ktore
mozna wybraé

W_( 1 ) A_1+\/5
1 — ) 1 — )
5(—1+/5) 2

1

2

o (5V9) 1o

Aby znalez¢ dziatanie n — 1 potegi macierzy F' na wektor warunku poczatkowego zapi-
sujemy tenze w postaci kombinacji liniowej a wy + 8wy wektoréow wlasnych macierzy F.
Wspétezynniki v i § znajduje sie tatwo i otrzymujemy:

1\ 5+V5 1 1 (ta—- )

0) 10 \3(-1+v5)/) 3 1 '
Dzialajac teraz na lewa strone macierza (fizyk by powiedzial raczej “operatorem”) F"!
dostajemy

n—1
an a1 5+V5 [(1+5 1
= F = 1
(1 0 10 2 =1+ 5)

L (1—;3)”_1(%(1—1@)7

"2 F oczywiscie bo ciagg Fibonacciego; nie myli¢ Fibonacciego z Wojciechem Fibakiem!

N[
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gdyz dzialanie F"~! na wektory wyo daje )\Elwm. Dodajac do siebie dwa wektory
wystepujace po prawej stronie odczytujemy z gornej sktadowej, ze

VBB (14vB\T 1 (1-vEY" 1 [(1+vE)" [(1-VvB\"
T 2 VAU 5 2 T2 '

V5

Oczywiscie a,_; otrzymane z dolnego pieterka zgadza sie z tym, co sie dostanie wstawiajac
n — 1 zamiast n w otrzymanym wyzej a,.

Zadanie to mozna rozwigzaé takze bez uzycia macierzy (zobacz Zadanie 47'): postu-
lujemy po prostu, ze a, = AN" i wstawiamy to do zwigzku rekurencyjnego. Dostajemy
na A rownanie kwadratowe, ktore jest po prostu tym samym réwnaniem, co Wg(A) = 0.
Poniewaz sa dwie rozne lambdy, a wzor rekurencyjny jest liniowy w ag, najogdlniejsze
rozwigzanie ma postac

ay = AN + A N0

Stale A; i Ay mozna wyznaczy¢ z warunkow, ze ag = 01 a; = 1. Daje to oczywiscie ten
sam wzOr na a,, co otrzymany wyzej.

Zadanie 73
Zmalez¢ wartosci wtasne i odpowiadajace im wektory wlasne macierzy

(1)

Jesli to mozliwe przejsé do bazy, w ktérej macierz odwzorowania F' jest diagonalna. Zna-
lezé F™ oraz e'f', dla dowolnej wartosci parametru t € R.
Rozwigzanie: Mamy

I N
det<__1 1_A)_a A2 4+1=X—2)\+2.

Pierwiastkami wielomianu charakterystycznego sa A\ = 1+ ¢ oraz \; = 1 —i. Sa to dwie
liczby zespolone wzajemnie sprzezone (bo wspolezynniki wielomianu charakterystycznego
sa rzeczywiste). Macierz jest wiec diagonalizowalna ale nad ciatem C.

Szukamy jej wektorow wlasnych

(5 2)(6)-(0)

Poniewaz wyznacznik macierzy znika, tylko jedno réwnanie jest niezalezne. Wektory
mozna wybra¢ w postaci

(1) dla A\ =1+, (i) dla Ay =1-—1i.
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Wybierajac jako nowa baze (skompleksyfikowanej) przestrzeni wektorowej wektory wtasne
w1 1 Wy macierzy Fie) ) (jak zwykle przyjmujemy, ze dana w zadaniu macierz jest zapisana
w jakiejs bazie (e, e;)) mamy macierz R...,) zbudowana jak zwykle z postawionych “na
sztorc” sktadowych wektoréw witasnych macierzy F' w bazie (eq, €3):

(W1, w2) = (ey, e) <1 i) :

1701 —i
R(w(—e) - 5 (-’L 1 ) .
Oczywiscie

1L/1 —i\({1 1\/[1 i 1+i 0
F(w)(w>ZR(wH)-F(e)(@-R(%w):g(_Z. 1)<_1 1)(2 1):( 0 1—z’)‘

Postugujac si¢ macierzami R(y«e) i R(ew) tatwo podnies¢ I’ do n-tej potegi:

F" = Rieew) [Ruwee) Fleye) Riecw) " Riwee)

(D W) )
_ 1 < (L4 )"+ (1 —4)" —z(1+¢)"+¢(1_¢)n>'

S22 i) =il =)t (L) + (1 —0)"

Macierz odwrotna ma postac

Oczywiscie gdy n = 1, otrzymuje sie, jak latwo sprawdzié¢, wyjsciowa macierz F. Za-
uwazmy tez, ze wszystkie elementy macierzy F™ sa rzeczywiste, tak jak by¢ powinno,
mimo, ze macierze diagonalizujace R(y«e) 1 R(ecw) mialy elementy zespolone. W po-
dobny sposéb znajdujemy e'f:

t(1+4) 0 e (1 i 0 I —i
P e o 7 e 1
e = R(e<—w) : < 0 et(l—i)) ’ R(w<—e) - 5 (z 1) ( 0 e it —i 1
_ cost  sint
o —sint cost )’

Mozemy tez sprawdzi¢ ze spelnione jest twierdzenie Cayleya-Hamiltona:

) (0 2\ (2 2 2 0\ _(0 0
rearea= (0 - (55)+ (5 5)=(0 1)

Twierdzenie to mozna wykorzysta¢ do znalezienia F™ innym sposobem (bez postugiwania
sie macierzami diagonalizujacymi). W tym celu rozktadamy jednowyrazowy wielomian
(czyli tzw. monomian) A" na iloczyn wielomianu charakterystycznego Wgr(\) i jakiegos
wielomianu Q(\) oraz reszte (), ktora, z uwagi na to, ze Wg(\) jest stopnia 2, musi by¢
wielomianem stopnia nie wyzszego niz pierwszy:

A" = WF()\)Q()\) + &1)\ + ag
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(ogdlnie, gdy macierz odwzorowania F jest macierza wymiaru p X p, a wielomian charak-
terystyczny Wg(\) jest stopnia p, reszta r(A) jest wielomianem stopnia p — 1, majacym
p wspoOtezynnikow a,_q, ..., ap). Wspotezynniki reszty a3 A + ap mozna znalezé obliczajac
wartos¢ lewej i prawej strony dla wartosci wlasnych A; i Ay macierzy F"

?E(1+i)":a1)\1+a0:a1(1+i)+a0,
N =(1—-i)"=a)r+a =a(l—1i)+ao,

gdzie skorzystaliSmy z tego, ze Wgp(A12) = 0. Stad

ap = 3 (144" = (1 =4)"],

5 (=9 +2)" = 1+ =),

ag —
Majac a i b, mozemy teraz wyzyska¢ twierdzenie Cayleya-Hamiltona podstawiajac F' do
bedacego tozsamoscia wielomianowa wzoru A" = Wg(A)Qr(A) + a1 A + ag. Daje to

F":WF(F)-Q(F)—l—a1F+aOI:a1F—|—aOI,

poniewaz Wg(F) = 0. Zatem

pro— (@t ao aq
—ay a1+ ap ’
i nietrudno sprawdzic, ze a; +ag = 3 [(1 + )" + (1 — @)}, czyli otrzymujemy w ten sposob
ten sam wynik co poprzednio. W taki sam sposéb mozna znalezé €', tj. piszac™

el =a F +aol
i znajdujac a; i ag przez podstawienie w miejsce F' wartosci wlasnych F.

Metoda sformutowana w powyzszy sposob dziata oczywiscie tylko wtedy, gdy wielo-
mian charakterystyczny stopnia p ma doktadnie p réznych pierwiastkow; jesli bowiem
mialtby on jakie$ pierwiastki wielokrotne, czyli macierz F' miataby mniej réznych warto-
Sci whasnych niz p, to bylaby niewystarczajaca liczba rownan, by wyznaczy¢ wszystkie p
wspotezynnikow a,_1, ..., ap. Metode daje si¢ na szczescie (dla studentéw to moze na
nieszczescie?) rozciagnaé zaréwno na macierze diagonalizowalne majace mniej réznych
warto$ci wlasnych ale nadal tyle wektorow wlasnych, ile wynosi ich wymiar (zobacz Za-
danie 74 ponizej), jak tez i na macierze niediagonalizowalne, czyli majace mniej wektorow
wlasnych niz ich wymiar (zobacz zadanie 77).

Dygresja.
Metody opartej na wyzyskaniu twierdzenia Cayleya-Hamiltona nie daje si¢ zastosowaé do
obliczania funkcji od macierzy w przypadku, gdy funkcja taka (potraktowana jak funkcja

F

"3Pytanie-test: skoro e*f" nie jest monomianem, to dlaczego mozna to tak zrobi¢?
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x € R) nie ma rozwiniecia w szereg Taylora wokét x = 0. Narzuca sie mysl, by taka funkcje
[ (np. pierwiastek) z macierzy Fie).) odwzorowania liniowego F (zapisanej w jakiejs bazie
e1,...,€,), przynajmniej w tych przypadkach, w ktorych Fi). jest diagonalizowalna,
zdefiniowac wzorem

F(EFeye) = Rieew) * f(Flwyw)) - Rwee) ;

w ktorym wy, ..., w, sg wektorami wlasnymi odwzorowania F', a Fl,)w) jest macierzg
diagonalng Fi,)w) = diag(Aq, ..., ), majaca na diagonali n (a nie r, jak moze sugerowac
zapis, bo niektére lambdy sie powtarzaja) wartosci wlasnych F' (r < n, bo niektore z
nich moga by¢ pierwiastkami wielokrotnymi Wp; zaktadamy jednak, ze mimo to macierz
Fle)(e) jest diagonalizowalnal); w takiej sytuacji moznaby przyjac, ze (kropki w macierzy
oznaczaja zera - zapis jest dzieki temu bardziej przejrzysty)

fM)

F0n)

F(Eeye)) = Riecw) - Riuwee) -

fx)
Jakkolwiek przepis ten definiuje cos, co mozna uznaé¢ za f(Fiee)), to jesli funkcja jest
okreglona tak jak pierwiastek - znalezé taka macierz X, ze X2 = F| (e)(e), czyli X =/ Fey(e)
- moze sie okazaé, ze macierzy X spetniajacych warunek definiujacy jest wiecej niz mozna
otrzymaé¢ z podanego wyzej przepisu.

Np. w przypadku funkcji pierwiastek przekonalismy sie w Zadaniu 44, ze macierzy,
ktore po podniesieniu do kwadratu daja zadana macierz proporcjonalng do macierzy jed-
nostkowej jest “duzo” - tyle ile mozliwych rzutéw w przestrzeni n wymiarowej, gdzie n
jest wymiarem tej zadanej macierzy proporcjonalnej do jednostkowej. Sytuacja przedsta-
wia si¢ w tym przypadku nastepujaco. Jesli macierz diagonalna Fi,).,) wWymiaru n x n
(powstala z jakiej$ macierzy Floy.) przez “postawienie tejze na wektorach wlasnych”) ma
n roznych wartosci whasnych (tj. zadna z jej wartosci wlasnych nie ma krotnosci wiek-
szej niz 1), to réznych macierzy, ktére po podniesieniu do kwadratu dadza Fiu)w) (a
po oblozeniu z dwu stron macierzami R.. ., i Ry« 1 podniesieniu do kwadratu dadza
wyjsciowa macierz Fiey.)) jest dokladnie 2" (wyciggajac pierwiastki z elementow diago-
nalnych Fi,)) mozemy na 2" sposobéw wybra¢ ich znaki). Jesli jednak ktéras wartosé
wlasna \; ma krotnosé¢ r; (ale macierz jest jednak diagonalizowalna), to macierz dajaca
po podniesieniu do kwadratu macierz F{u) ) (a po oblozeniu macierzami Re, o, 1 Ryee 1
podniesieniu do kwadratu macierz Fle(.)) mozna tez otrzymac, wstawiajac w odpowiedni
blok wymiaru r; x r; macierz skonstruowang z jakiegos rzutu (przestrzeni r; wymiarowej)
wedlug przepisu z Zadania 44.

Pozostaje oczywiscie kwestia, jak zdefiniowaé (i kiedy jest to w ogole mozliwe) funkcje
od macierzy, ktora nie jest diagonalizowalna. Np. w przypadku pierwiastka mozna si¢
odwota¢ do twierdzenia (o tzw. rozkladzie Jordana) mowiacego, ze (w p.w. nad ciatem C)
zawsze istnieje baza, w ktorej macierz niediagonalizowalnego odwzorowania F' (tj. takiego,
ktore ma wielokrotne wartosci wlasne i nie wszystkim z nich odpowiada maksymalna
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liczba wektoréw wlasnych) ma postac jordanowska, czyli sktada sie z kawatka diagonalnego
wymiaru kX k, gdzie k jest liczba wektorow whasnych (niektore z nich moga odpowiadac tej
samej warto$ci wlasnej - do tych kwatkéow macierzy przy wyciaganiu pierwiastka stosuje
sie konstrukcja z rzutem z Zadania 44) i rozmieszczonych na pozostatej dtugosci diagonali
“klatek Jordana”, tj. podmacierzy majacych na diagonali jakas wartos¢ wtasng i ponad
nig jedynki:

A1 0 0
0 N 0 0
1 0
0 0 ... N 1
0O 0 ... 0 N\

Jesli tylko \; # 0, to nietrudno sie przekona¢ bezposrednim rachunkiem, ze daje sie
znalez¢ macierz gornotrojkatng (przynajmniej w przypadku klatki jordanowskiej 2 x 2 i
3 x 3 sie daje, ale wydaje sie, ze mozna to stwierdzenie rozciagna¢ na dowolny wymiar
klatki) tego samego wymiaru, ktora po podniesieniu do kwadratu da dang klatke Jordana.
Mozna wiec wtedy nadal zdefiniowa¢ pierwiastek z macierzy. (Pozostaje tylko kwestia,
czy otrzyma sie tak wszystkie mozliwe “pierwiastki” z danej macierzy). Np. w przypadku
klatki Jordana wymiaru 2 x 2 tatwo w ten sposob znalezé wszystkie klatki bedace jej
pierwiastkami. Warunek (tu, to ze macierz po lewej musi by¢ gérnotrojkatna wysztoby i

tak z rachunku)
a b a b\ (X 1
0 dJ\0 d) \0 X

daje a®> = d*> = X oraz (a + d)b = 1. Zatem jesli tylko X # 0, pierwiastkami ze stojacej po
prawej klatki Jordana sa macierze

)\1/2 l)\—1/2 _)\1/2 _l)\—1/2
( 0 2>\1/2 )> ( 0 _2)\1/2 )
(znaki a 1 d musza by¢ takie same, zeby mozna byto spelié¢ drugie réwnanie). Jak sie
wydaje,” mozna to rozciggnaé¢ na klatki Jordana dowolnego wymiaru (byle wartosé wha-
sna, ktorej odpowiada klatka byla niezerowa). Konieczna korelacja znakow pierwiastkow

(z takiego samego, jak w powyzszym przyktadzie powodu) powoduje, Ze jest teraz “mnie;j”
klatek pierwiastkowych niz dwa podniesione do potegi réwnej wymiarowi klatki.

Zadanie 74
Dana jest macierz F' i wektor (wszystko jak zwykle w jakiej$ bazie e;, i = 1,2, 3)

2 1 1 1
F=|12 1], 0
1 1 2 0

T Pewien historyk o krolach Francji napisal: “Niektorzy krolowie mieli kochanki, niektérzy - jak sie
wydaje - ich nie mieli”. Przypuszczam, ze mial na mysli Ludwika XI (raczej nie Ludwika IX, bo tu sprawa
jest jasna: ten byl swiety).
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Znalezé wektory wiasne i wartosci wlasne macierzy F oraz dzialanie e'f', gdzie t € R, na,
podany wektor.
Rozwigzanie: Znajdujemy jak zwykle najpierw wielomian charakterystyczny

2—-\ 1 1
Wr(A)=det| 1 2-X 1 =N +6)7 -9\ +4.
1 1 2-)

Latwo zauwazy¢, ze jednym z pierwiastkow Wg(\) jest A = 1. Mozna wiec wydzieli¢
czynnik (A —1):

Wr(A\) = —(A=1D(A2 =5 +4) = —(A—1))(A—4).
Rownanie charakterystyczne ma zatem dwa pierwiastki: pojedynczy (ny = 1) Ay = 4
i podwojny Ay = 1 (ng = 2). Nie jest wiec jeszcze jasne, czy macierz F' = Fig () jest
diagonalizowalna. Mozemy sprawdzi¢ twierdzenie Cayleya-Hamiltona. Mamy

2 1 1 6 5 5 22 21 21
F=|1 2 1], FP=1|5 6 5|, FP=121 22 21|,
11 2 5 5 6 21 21 22

i w macierzowym wyrazeniu —F3+6F?—9F+4] mamy na diagonali —22+6-6—9-2+4-1 =
0, a poza nig =21 4+6-5—9-1+4-0 = 0. Co wiecej, mozna tez zauwazy¢, ze takze
F? —5F +4I = 0 (na diagonali: 6 —5-24+4-1=0, poza: 5—5-1+4-0=0). Swiadczy
to o tym, ze macierz moze jednak by¢ diagonalizowalna mimo, iz jeden z jej pierwiastkow
jest podwojny.

Szukamy wektoréow wlasnych macierzy F"

-2 1 1 a; 0
)\1 = 4 1 —2 1 bl - 0 y
1 1 =2 c 0
1 1 1 as 0
)\2 == 1 1 1 1 bg - 0
1 11 Co 0

W przypadku A\; wida¢ gotym okiem, ze rozwigzaniem jest a; = b; = c¢;. Dla Ay za$
mamy tylko jedno niezalezne réwnanie na trzy wspolczynniki ag, by, i co. Mozna zatem
znalez¢ dwa liniowo niezalezne wektory wtlasne odpowiadajace podwoéjnemu pierwiastkowi
Xo. Mozemy wiec jako wektory wlasne wybraé™

1 1 0
)\1:42 1 5 )\2:12 —1 5 1
1 0 -1

"> Rozpatrywana tu macierz jest przykladem macierzy cyklicznej z Zadania 70’. Jej wartosci wlasne
mozna wigc bylto od razu otrzymaé ze wzoru A, = 2+¢,-1+€2_1,a = 1,2,3, gdzie e; = %(—1—1—2'\/5), €9 =
%(—1 —iv/3). Przepis podany w Zadaniu 70’ dalby wektory wlasne odpowiadajace dwom takim samym
warto$ciom wlasnym Ay i A3 o zespolonych sktadowych, ktére mozna otrzymaé jako dwie kombinacje

liniowe (o zespolonych wspolczynnikach) rzeczywistych wektoréw wybranych tutaj.
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Jedli macierz F byla macierza Fe) ) odwzorowania F' w bazie (e, ey, e3), to wektory
wlasne (wy, wy, w3) odpowiadajace \; (wy) oraz Ay (W2 i w3) maja nastepujace jawne
postacie

Wi = el+82+83,
Wy = €1 — €,

W3 = € — €3,

Mozemy tez odwroci¢ te zwiazki (pierwsze po dodaniu don trzeciego wraz z drugim da
uktad réwnan na e;, eo, ktory juz latwo rozwiktac):

1

e = g(W1+2W2+W3>,
1

€ = g( 1 — Wy + W3),
1

€3 — g(Wl—W2—2W3).

Mamy zatem potrzebne do diagonalizacji macierze Ro. ., 1 Ryce:

1 1 0 (111
Recy=|1 -1 1 |, Ruce=g(2 -1 1],
1 0 -1 1 1 -2

1 oczywiscie Rye* Recwy = Recwy  Rype = I 010z Flyyw) = Ruyce * Fleye) - Recw:

1 1 1 1 2 1 1 1 1 0 4 0 0
F(w)(w):§ 2 -1 -1 1 2 1 1 -1 1 =101 0
11 =2 11 2 1 0 -1 0 0 1
Zmajdziemy teraz wektor
1
e o
0

(bo takie rzeczy sa czesto potrzebne do rozwiazania réwnan rézniczkowych). Jesli tylko
to wyrazenie jest potrzebne, mozna je znalezé szybkim sposobem, ktoéry daje od razu
wynik, ale nie pozwala znalezé samej macierzy e'¥’. W tym celu rozkladamy podany
wektor na wektory wtasne macierzy F' (tj. zapisujemy go w postaci kombinacji liniowej

tych wektorow):

1 1 1 0
0 :% 1 +§ “1 ]+ 1],
0 1 0 ~1
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(znalezienie wspotczynnikow tej kombinacji liniowej jest sprawa prostego rachunku). Na-
stepnie dziatamy:

1 1 1 0
1 2 1

etF O _ g6tF 1 ‘l’getF _1 +_€tF 1
0 1 0 -1

4t t

Iy ! 2, ! 1, 0 1 e4t+2€t

= 3¢ 1 +§e -1 +§e 1 | =51 e —e

1 0 —1 ett — et

Skorzystaliémy tu z liniowosci e i tego, ze e’ dzialajac na wektor wlasny F' o wartosci
wlasnej A daje ten sam wektor razy e'.

Mozemy tez znalezé sama macierz e’ korzystajac z macierzy diagonalizujacych R,
1 Ryee:

[e.e] [e.e]

t" tr
etF:ZﬁF"ZRa—w‘ Zﬁ(Rwee'F(e)(e)'R%w)" Ruee
n=0 n=0 "
1 1 0 e 0 0 1 1 1 1
=1 -1 1 0 ¢ 0 )gl2 -1 -
1 0 -1 0 0 € 11 =2

Wymnazajac macierze znajdujemy

et + ¢t et _ ot et _ ot
etF — 64t — et 64t + 2¢t e4t — et

et gt oAt ot ot 9ot

Alternatywna metoda jest znalezienie dzialania e’f' na dowolny wektor

a 1 1 1 1 1 0
b|l==(a+b+c)|1 ]| +=z2a—b—c)| -1 |+=(a+b—-2¢)| 1 |,
c) 3 1) 3 o) ? -1

roztozony na wektory wlasne macierzy F' (znalezienie wspolczynnikow tego rozktadu jest
znéw sprawg nietrudnego - gdy ma sie juz wprawe w rozwiazywaniu standardowych pro-
bleméw liniowych - rachunku). Dzialajac na obie strony e otrzmujemy

a 1 1 1 1 1 0
el b | =z(a+b+e)e [ 1| +-R2a—b—c)e' | =1 | +=(a+b—2c)e" | 1
3 )3 N .

(a+b+c)e + (2a—b—c)e
=—| (a+b+c)e? +(—a+2b—c)e
(a+b+c)et + (—a—b+2c) e

Prawa strone mozemy teraz zapisa¢ w postaci macierzy M dziatajacej na wektor o sktado-
wych (a, b, ¢): elementem Mj; musi wtedy by¢ wspotezynnik przy a w pierwszej sktadowej
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wektora stojacego po prawej stronie ostatniego wzoru, elementem M, jest wspotezynnik
przy b, etc.:

a e4t + 26t 64t _ et e4t _ et a
el bl == et —et et 42t et —¢t b
c 64t _ 6t 64t _ et e4t _l_ 2et c

Macierz M jest oczywiscie ta sama macierza €', co znaleziona wyzej.

Na koniec sprobujmy znalezé et metoda oparta na twierdzeniu C-H. Poniewaz wielo-
mian charakterystyczny Wg(\) stopnia 3 ma tu pierwiastek podwojny i, co zatem idzie,
sa tylko dwie rozne wartosci wlasne, nie mozna - jak to juz byto wyjasnione - wykorzystac
samego wielomianu Wg(\), gdyz wtedy reszta r(\) bedac wielomianem stopnia 2 miataby
3 wspolezynniki, na ktore datoby sie wypisaé¢ tylko dwa rownania. Na szczescie, w takim
przypadku dla A = )y zeruje si¢ nie tylko Wr(\) = (A — \) (X — Xo)?, ale takze zredu-
kowany wielomian charakterystyczny nizszego stopnia WF()\) = (A — A\)(A — A2) majacy
tym przypadku posta¢ Wg(\) = A2 — 5\ + 4. Dzicki temu w rozktadzie

A" = We(NQ) + F(N),
reszta 7(A) jest juz wielomianem stopnia 1 postaci 7(\) = a; A + ap majacym tylko dwa
wspotezynniki.” W przypadku rozpatrywanej tu macierzy F' mozemy wiec napisaé

eM = et = a1\ + ag = 4a; + ag,

tA t
e =e" =a1 a+ag= a+ag,

czyli a; = §(e* — e'), ag = —3e* + 3¢, a stad mamy
2a1 + ag aq aq
et = a1 F + apl = ay 2a1 + ag ay ,
ay ay 2a1 + ag

co oczywiscie znéw daje te sama macierz, co poprzednio.

Uzupeknienie
WeZmy “kanoniczny” iloczyn skalarny w trojwymiarowej przestrzeni wektorowej V' rozpa-
trywanej w Zadaniu 74, tj. przyjmijmy, ze na wektorach e; (i = 1,2,3) bazy, w ktorej
dana jest badana tam macierz I' = F.).) daje on

(eile;) = di; .
Oznacza to, ze iloczyn skalarny dwoéch wektorow w = eiwée) iv= eivze) jest dany wzorem

(wlv) = (ez'wfe)|ejvfe)) = (ei|ej)wfe)vfe) = 6ijwée)vge) :

76Qgolnie, gdy suma pomniejszonych o jeden krotnosci wszystkich pierwiastkow wielomianu charakte-
rystycznego W (\) macierzy wymiaru p X p wynosi k, to zredukowany wielomian charakterystyczny jest
stopnia p — k, a reszta 7(\) jest wielomianem stopnia p — k — 1 majacym p — k wspolczynnikow, czyli
akurat tyle, ile mozna wyznaczy¢ wykorzystujac p — k réznych wartosci wlasnych.
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PrzeprowadZzmy ortonormalizacje Gramma-Schmidta trzech wektoréw wtasnych wy, wy i
w3 (sa one liniowo niezalezne) macierzy F' = Fie)(e).

Jesli do utworzenia bazy ortonormalnej jako pierwszy wezmiemy wektor wy, to wy-
starczy podzieli¢ go przez v/3, tj. przyjac, ze w, = %(el +ey+e3), by mie¢ (w)|w)) = 1.

L

ﬁ(el — €3) o jednost-

Podobnie dzielac wektor wy przez v/2 otrzymujemy wektor w) =
kowej dtugosci, ktory jest od razu prostopadly do wi:

(whlws) =1, (whlwi) = 0.

Jednakze wektor %(62 — e3) otrzymany przez podzielenie ws przez /2 nie jest prosto-

padly do w). Aby otrzymac taki wektor trzeba zastosowaé przedstawiona juz wczesniej
procedure Gramma-Schmidta:

1
] ‘1) ( 1 ) 11 1 1 (3
3= N N\ =)= | =1 2 |-
N -1 V2/ V2 0 N —1
(uwzglednilismy juz, ze (w)|ws) = 0), gdzie
1 1
3 3 INCEARN 3
N? = 2 2 == — -1 ==
-1 -1
Tak wiec mamy ostatecznie trzy ortonormalne wektory
1 1 1
1 1 1
wi=—1[1], wi=—1[-1]/, wi=—1[ 1|,

Vil vl VA

ktore s nadal wektorami wlasnymi macierzy F. Kluczowe dla tego stwierdzenia jest to,
ze wh (czyli 1 wa) byl prostopadly do wj i Ze stworzyliSmy wj jako kombinacje liniowa
wy i ws, tj. tylko wektoréw wlasnych Fi.).) odpowiadajacych tej samej wartosci wiasne;
Ay = 1. Gdyby bowiem iloczyny skalarne (wy|wsy) i (wi|ws) nie znikaly, procedura
Gramma-Schmidta spowodowataby pomieszanie wektorow wlasnych i wektor w} nie bytby
juz wektorem wlasnym macierzy Fl.).). Powstaje wigc wazne pytanie, co ma piernik
do wiatraka, tj. dlaczego arbitralnie przyjety przez nas iloczyn skalarny (e;le;) = d;;
okazal si¢ dobry, tj. dlaczego wektory wilasne macierzy Fi.).) odpowiadajace rdznym
warto$ciom wtasnym okazaly si¢ byé w tym iloczynie skalarnym wzajemnie do siebie
ortogonalne?

Enigmatyczna odpowiedZ na to pytanie brzmi: jest tak dlatego, ze odwzorowanie F
polaczone z uzytym iloczynem skalarnym (e;|ej)s = d;;, dzieki symetrycznosci macie-
12y Fley(e), daje uczciwg symetryczng forme bilinows B(w,v) = B(v, w) zadang wzorem
B(w,v) = (W|F(v))s, co oznacza, ze macierz I jako macierz tej formy mozna uznaé za
macierz formy kwadratowej, a kazda forma kwadratowa, co juz wiemy, jest diagonalizo-
walna. Ogolniej, jesli rzeczywista macierz F' (niekoniecznie symetryczna) jest diagonali-
zowalna nad cialem R, to zawsze mozna w przestrzeni wektorowej, w ktorej ona dziata
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wprowadzi¢ taki iloczyn skalarny (-|-)s, ze (W|F'(v))s jest symetryczna forma biliniowa i w
tym iloczynie skalarnym wektory wlasne F' odpowiadajace réznym warto$ciom wiasnym
sa wzajemnie ortogonalne.

Patrzac na to inaczej, jesli dane jest odwzorowanie liniowe F' przestrzeni wektorowej
V nad R w nig sama i na tej przestrzeni zadany jest iloczyn skalarny (-|-)s, to mozna
zdefiniowaé odwzorowanie F'' sprzezone do F wzgledem tego iloczynu skalarnego. Dzia-
lanie FT na wektory przestrzeni V jest zdefiniowane wzorem (majacym zachodzi¢ dla
wszystkich v i wszystkich w):

(WIFT(v))s = (F(W)[Vv)s.

Ogolne stwierdzenie mozna teraz wyrazi¢ nastepujaco: jesli odwzorowanie F' jest diago-
nalizowalne nad R (tj. wartosci i wektory wlasne macierzy tego odwzorowania sa rzeczy-
wiste), to istnieje iloczyn skalarny, w ktorym F' jest odwzorowaniem samosprzezonym (tj.
symetrycznym) w takim sensie, ze F'f = F', czyli

(WIF(V))s = (F(W)]v)s,

a wiec, tak jak bylo powiedziane wyzej, forma biliniowa B(w|v) = (w|F(v))s jest syme-
tryczna:

B(w,v) = (W|F(v))s = (WF'(v))s = (F(w)|v)s = (v[F(w))s = B(v,w).

Wykorzystana tu zostata najpierw samosprzezonosé¢ F' i warunek wyznaczajacy dziatanie
FT na wektory, a potem obowiazkowa symetrycznoéé iloczynu skalarnego.” I odwrotnie:
jesli istnieje iloczyn skalarny (+|-)g, przy ktorym F' jest odwzorowaniem samosprzezonym,
to jest ono diagonalizowalne nad R i jego wektory wtasne odpowiadajace réznym wekto-
rom wlasnym sa nawzajem ortogonalne w (+|-)s. Jesli w jakiejs bazie e; iloczyn skalarny
(-|)s jest kanoniczny, tj. Si(le) = 0; (zawsze mozna taka baze znalezé¢), to w tej bazie
macierz [F (Te

)(e)]li odwzorowania sprzezonego do F' jest transpozycja macierzy [F(e)(e)]li

""To samo w notacji wskaznikowej, tj. rozpisujac wszystko w bazie e;, w ktérej macierza iloczynu
N (e) . . . e ) .
skalarnego (-|')s jest S;;" (nalezy zwroci¢ uwage na polozenie wskaznikéw!). Warunek wyznaczajacy
dziatanie F' to

E o@rpt gL, 1.k qle), i
Wiy Sy [F ey )] i0(e) = [Fley(e)] s w(eySii " vie) -

czyli, po uwolnieniu sie od dowolnych wé“e) i vée), zwigzek S,(j) [F(Te)(e)]li = [F(e)(e)]lkSl(ie). Ponadto, ponie-

waz F' = FT, wiec [F(Te)(e)]li = [Fleye)]li czyli S,(j) [Fleye)l' = [F(e)(e)]lkSl(f). Wykorzystujemy teraz ten
e)

zwiazek w definicji macierzy B,(c-

; formy biliniowej, by wykazaé jej symetrycznos¢:

e) _ qle) l l e e l e)
BY = 81 Fool's = Fo@l'sSi = S5 Flee)s = B -

W drugiej rownosci wykorzystana zostata obowiazkowa symetrycznosé macierzy iloczynu skalarnego, tj.
roéwnosé Sl(f) =S i(le)‘
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tegoz odwzorowania, tzn. [F) (e )(e)] : = [Fle)e))';, a macierz odwzorowania F samosprzezo-
nego wzgledem tego iloczynu skalarnego jest w tej bazie oczywiscie macierza symetryczng
[Foels = [Foel'

Wszystko to mozna przenies¢ na przestrzenie wektorowe nad cialem C. Jesli macierz
H odwzorowania przestrzeni wektorowej V' nad C w te sama przestrzen V jest diagona-
lizowalna, to istnieje pottoraliniowy iloczyn skalarny (-|-)s, przy ktorym H jest odwzo-
rowaniem samosprzezonym, albo inaczej™® hermitowskim tzn. takim, ze H' = H, gdzie
dziatanie H' na wektory przestrzeni V jest zdefiniowane wzorem (majacym zachodzi¢ dla
wszystkich v i wszystkich w):

(W H'(v))s := (H(W)[V)s

Wektory wtasne H odpowiadajgce roznym wartoSciom wlasnym sg ortogonalne w tym
iloczynie skalarnym. Zlozenie (-|-)s z H daje wtedy uczciwa hermitowska forme pottora-
liniowa D(w,v) = (w|H(v))s. Jej hermitowskos¢ wynika z réwnosci:

D(w,v) = (w|H(v))s = (W|H(v))s = (H(W)|v)s = (v|H(W))s = (D(v,W))",

w ktorych wykorzystana zostala rownosé (u|v)s = (v|u)§, jaka musi obowiazkowo spel-
nia¢ iloczyn skalarny zadany na przestrzeni wektorowej nad ciatem C. Ponownie poucza-
jace jest rozpisanie tego samego W dowolnej bazie e; przestrzeni V', w ktorej macierza
iloczynu skalarnego (+|-)s jest Skl , & macierza odwzorowania H samosprzezonego wzgle-
dem tego iloczynu skalarnego jest [H )] = [H, (Te)(e))]li'

v = S Heyo))'s = S H )5 = Heo)'3S = S [Hee)'s = DY

Wykorzystany tu zostal rozpisany w bazie e; zwigzek bedacy definicja odwzorowania
Sprzezonego

S H o) vl = (Hieyo]'swly) Si vl = [Hioewi) S5 v,

w(

czyli, po uwolnieniu sie od sktadowych dowolnych wektoréw w i v, zwiazek S ]il H (Te) (e)]lZ =
[H (e)(e)]lZSl(f). Jesli w bazie e; iloczyn skalarny ma postaé¢ kanoniczng, tj. SZ(; = d;; (tzn.
(W|v)s = wf:)éijv{e)), to w tej bazie macierz [H, (Te)(e)]l » odwzorowania sprzezonego do H
o macierzy [He)|', jest dana przez [H, (T e )] k= [Heye), a macierz samosprzezonego
odwzorowania H jest hermitowska, tj. [He)e)'s = [Heye))"

Dodatkowym wnioskiem, jaki otrzymuje sie w przypadku odwzorowari przestrzeni wek-
torowych nad cialem C jest ten, ze jesli odwzorowanie H jest w jakims iloczynie skalarnym

(+|)s hermitowskie (samosprzezone, symetryczne), to jego wartosci wlasne sa rzeczywiste.
Wynika to natychmiast z réwnosci

(WlH(w))s = (H(W)|w)s -

"8W przestrzeniach skoiiczeniewymiarowych okreslenia te, jak i okreslenie odwzorowanie symetryczne,
sa synonimami. Przestaja one takimi byé w przestrzeniach nieskoniczeniewymiarowych, kiedy to role
zaczynaja odgrywaé dziedziny odwzorowari.
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zastosowanej do wektora wlasnego w odwzorowania H. Z pottoraliniowosci iloczynu ska-
larnego wynikaja wtedy bowiem réwnosci:

(WAW) s = AM(w|w)g,
= (Aw|w)g = N (w|w)g,

ktore oznaczaja, ze \* = .

Po tej dlugiej, ale dla fizyka niezwykle waznej dygresji, wracamy do rozpatrywanego
przyktadu. Majac nowe wektory wlasne w, mozemy powtorzyé¢ diagonalizacje macierzy
F. Mamy nowa macierz R, .

I 4
i~ w4
W, Wy, W3) = (€, e, e3) \{g V2 \/52 )

sV %

Potrzebna do diagonalizacji F' macierz R,. . jest teraz dana “od reki” przez transpozycje
macierzy Re. .

AL L
Ry e= 2 2 0
I
V6 V6 V6

Musi tak by¢, bo obie macierze Re. . i R,.. sa zbudowane ze sktadowych wektorow,
ktore sa wzajemnie ortonormalne (tj. ortogonalne i unormowane w iloczynie skalarnym,
ktory wlasnie w uzywanej tu bazie ma posta¢ kanoniczna, tj. (e;|le;) = d;;). Stad ilo-
czyn Ry e - Rew mozna zapisa¢ w pogladowej postaci (przez tluste w) rozumiemy tu
oczywiscie nie zywe wektory tylko ich sktadowe w bazie e;)

=W = Tt (wilwi)  (wilwy)  (wilws) 100
cw, = || wowy wy | = | (whlwh) o (whlwh)  (whlwy) | = 0 1 0
—wh = bl (walwi)  (wswy)  (wlws) 0 01

W taki sam sposob jest oczywiste, ze macierze Ry i Re v diagonalizujg ' = Fle)(e):

Wi — 1t 1 —wp— T T T
—wy—= | F |l wp w, wy | = «w,— MW AW, AWy
— wh — A — wh — 3 { {
A (Wiwh) o Aa(wilws)  Ao(wh|ws) A 000
= [ M(walwy)  Aa(wolwy) Ao(walws) [ = 0 A 0
A(wilwi)  Aa(wi|wy)  As(wi|ws) 0 0 X
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Oczywiscie wykorzystanie powyzszych macierzy Ry« e i Rec o do znalezienia ef’ daje
ten sam wynik, co poprzednio:

etF:ZtnFn_Ra—w" iﬂ(Rwee F- Re(—w ‘R

n' n' w'<—e
n=0 n=0

S N e 0 0 — W —

=|w, w), wj 0 € 0 — W —
A 0 0 € — wh —
1 1 1 1 1 1
VEova o W\ (€ 0 0\ 5 B

- | L __1 1 0 e 0 4 _ 1 0

— | v3 2 V6 V2 V2
Ty 2 0 0 /) \2 27 _2
V3 V6 V6 V6 V6

1 et 4+ 2et et —
=_| et —¢et 4 2e
et —et et — ¢t 64t + 26

Zadanie 75
Zdiagonalizowaé¢ forme kwadratowa () = 2x125 + 27123 raz metoda Lagrange’a, a raz
metoda szukania wektoréow wlasnych jej macierzy

01 1
Q=1 0 0
1 00

.27

Rozwigzanie: Aby wygenerowaé jakies “x~” przejdzmy najpierw do zmiennych

1 = Y1 — Y2,
To = Y1+ Y2,
r3 = Y3,

w ktorych forma ma posta¢ Q = 2y? — 2y2 + 2(y1 — y2)ys = 2(y1 + %yg)z —2(ys + %y3)2.
Wymnika stad, ze w zmiennych

1
Z1 = y1+§y37
1
Zy = y2+§y3,
zZ3 = Y3,

forma ma postac¢ diagonalna Q = 227 — 225. Wyrazajac zmienne z; przez z;

Ty = 21 — %2,
To = 21+ 22 — 23,

xr3 = 23,
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mamy macierz diagonalizujaca R.. s (Re—s bo daje ona stare zmienne w funkcji nowych -
zakladamy, ze x1, x5 1 x3 sa sktadowymi wektora w bazie e;, a z1, 25 1 23 jego sktadowymi
w bazie f;) - te jedyna potrzebna do diagonalizowania formy kwadratowej. Jak tatwo
sprawdzié¢

1 1 0\ /0 1 1\ /1 -1 0 2 0 0
(Ree )" Q- Reey=| -1 1 0 1 ooffr 1 -1)]=10 -2 0
0 -1 1/\100/\0 0 1 0 0 0

Forma kwadratowa jest wigc diagonalna w bazie tworzonej przez wektory f; zwigzane z
wyjsciowa baza e; wzorem f; = e;[R.. ¢, tj.

f1 = e;t+eq,
f; = —e tey,
f3 = —eg+e3.

Mozemy jednak zdiagonalizowaé¢ () inaczej. Mozemy uznaé¢, ze forma () powstata
z odwzorowania F' polaczonego z iloczynem skalarnym, takim, ze w bazie e;, w ktorej
zadana jest macierz F' ma on postaé (e;|e;) = d;;. Przy takim iloczynie skalarnym ma-
cierz F' w bazie e; (czyli w naszej niekonwencjonalnej, ale za to pozwalajace] izbiezaé¢
niedorozumienija notacji, macierz F.))) jest tozsama z macierza Q (czyli Q®):

Qv) = (v[F(v))

ey (@rle;[Fioyo) vfe))
l 4 i1 A e) 1 7
'U(e)(el|ej)[F(E)(e)]jiv(e) = 0ij [F(E)(e)]Ji'U(e)v(e) = Ql(i)v(e)v(e) .

Poniewaz z macierzowego punktu widzenia d;; jest macierza jednostkowsa, czyli nic nie
zmieniajaca™ mozemy diagonalizowaé () szukajac wektoréw wlasnych I

-2 1 1
det| 1 =X 0 | =-2)\-2),
1 0 =X
i wartosciami wlasnymi F' sg A\ = V2, A\ = —V/2 oraz A3 = 0. Nietrudno znalezé

odpowiadajace im wektory wlasne

1/v2 1/v/2 0
A =V2: 1/2 |, M= —V2: —1/2 |, M =0: 1/v/2
1/2 —1/2 —1/V/2

Wybralismy je od razu tak, by byly ortonormalne (poniewaz istnieja trzy rézne wartosci
wlasne macierzy F, jej wektory wlasne sa ortogonalne bez koniecznosci uciekania si¢ do

™To co si¢ zmienia przez macierz d;; = (e;|e;) to jest interpretacja drugiego wektora, czyli ’Uée): staje
sie on de facto kowektorem (bylo juz o nich wczesniej), ale nie musimy sie tu tym przejmowad.
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procedury Gramma-Schmidta). Macierz F', czyli takze macierz formy kwadratowej @) jest
zatem diagonalna w ortonormalnej bazie wektoréow wtasnych w; macierzy F

W, = Eeljtéegjtieg,
1 1 1

Wy = %61—562—563,
1 1

—ey; — —=e3,
V2 v

ktora jest zupelnie inna, niz baza wektorow f; znaleziona w pierwszej czesci zadania. W
bazie wektorow wtasnych w; mamy

V2 0 0
Q(w) = F(w)(w) = [Re<—w]T . F(e)(e) : Re<—w = 0 _\/5 0
0 0 0

Warto zauwazy¢, ze jakkolwiek w ogdlnosci wzory na diagonalizacje formy kwadratowej i
macierzy odwzorowania sg inne (pierwsze diagonalizuja sie przez macierze [Re<_w]T 1 Rec ),
a drugie przez Ry i Recw), to sa one w tym przypadku zgodne bo [Rec w]? = Ry e

Przyktad ten pokazuje, ze dowolnosé w wyborze bazy, w ktorej forma kwadratowa jest
diagonalna nie sprowadza si¢ jedynie do przeskalowania wektoréw: bazy wektorow f; i
w; sa istotnie rozne; rozne sa tez diagonalne postacie formy @) (ale oczywiscie sygnatura
formy jest zawsze taka sama, tak jak to gwarantuje twierdzenie Sylvestra).

Zadanie 75’
Zmalez¢ wszystkie iloczyny skalarne, w ktorych wektory wtasne macierzy
1 4  4/3
Fpp=(0 -1 =2/3],
0 0 1

odpowiadajace r6znym warto$ciom wtasnym sa ortogonalne.
Rozwigzanie: Podana macierz ma dwie warto$ci wtasne: podwojna Ay = 1 i pojedyncza
Ay = —1 oraz wektory wlasne

1 2 0
W1 = 0 5 Wy = —1 5 W3 (= 1 s
0 0 -3

z ktorych wy 1 wi odpowiadaja A1, a wo odpowiada Ay. Wektory te sa liniowo niezalezne,
wiec mozna przyjac je jako baze przestrzeni wektorowej, w ktorej cata sprawa sie¢ rozgrywa.
Mamy wiec

1 2 0
(W1,W2,W3) = (f1,f27f3) 0 -1 1 )
0O 0 =3
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co daje macierz zmiany bazy Ry, (wektory f; tworza baze w ktorej jest dana wyjsciowa
macierz, ktorej wartosci i wektory wlasne sa przedmiotem tego zadania), oraz

1 2 2/3
(f1,f27f3) = (W1,W2,W3) 0 -1 —1/3
0 0 —1/3

Stojaca tu macierz jest macierzg Ry f.

loczyn skalarny, w ktorym wektory wy i we oraz ws i wy (czyli pary wektorow od-
powiadajacych réznym wartosciom wlasnym) sa parami ortogonalne najlatwiej zadac po-
dajac jego macierz S™ (tj. macierz formy biliniowej) w bazie wektoréw w;. W tej bazie
kazda macierz postaci

A 0 FE
s@w=10 D o],
E 0 B

jesli tylko A > 0, D > 01 AB — E* > 0 (warunek dodatniej okreglonosci) jest dobrym ilo-
czynem skalarnym, speliajacym warunki zadania. Macierz S tego iloczynu skalarnego
w bazie wektorow f; otrzymujemy mnozac S™) przez macierze zmiany bazy:

A 24 (24— FE)/3
SV =RL_,-S™ Ry ;= 24 4A+ D (4A+D —2E)/3
(2A—FE)/3 (4A+D —2E)/3 (4A+2B —6FE)/9

Nietrudno sprawdzié, ze wektory wy i wy oraz w3 i wo sa w tym iloczynie skalarnym pa-
rami ortogonalne. Widac tez, ze taki iloczyn skalarny nie moze by¢ “kanoniczny”, tj. mieé¢
(w tej bazie) macierzy propocjonalnej do macierzy jednostkowej. Co wiecej (patrz Wnioski

ponizej), mnozac macierz F' z lewej przez macierz tego iloczynu skalarnego otrzymujemy

(.

macierz symetryczng, ktora jest zatem macierza formy kwadratowej: Sz(lf ) [Fir) f)]kj = Q'

jawnie

A 2A (24— E)/3 1 4 4/3
2A 4A+ D (4A+D—-2E)/3 | |0 -1 -2/3
(24— E)/3 (4A+D—2E)/3 (4A+2B-6E)/9) \0o 0 1
A 2A (24— E)/3
= 2A 4A—D (4A— D — 2E)/3

(2A—E)/3 (4A—D—2E)/3 (4A+2B—2D —8E)/9

Przyjmujac A =1, D =1, E = —1, B = 9/2, otrzymuje si¢ iloczyn skalarny, ktory
byl uzyty do skonstruowania tego przyktadu: macierz

1 0 0
F(e)(e) — O _1 0 3
0 0 1



dana w bazie e;, w ktorej iloczyn skalarny byt postaci u-v = 52’3’“&)”{6) zostala “przekre-
cona” do bazy f; za pomoca macierzy

1 -2 -1/3 12 1
Rice=|0 1 =1/3|, Rey=[0 1 1/3],
0 0 1 00 1

co dato macierz Fyy sy = Rye  Fleye) - Ry 1 macierz iloczynu skalarnego

12 1
SV =Rl -89 R y=RL; Rey=[2 5 7/3
1 7/3 19/9

‘Whioski.

1. Symetryczna rzeczywista macierz F' jest zawsze diagonalizowalna, bo zawsze mozna
uwazaé, ze jest ona macierza formy kwadratowej powstalej (jak w Zadaniu 75) z po-
taczenia kanoniczego (kanonicznego w bazie, w ktorej dana jest ta macierz) iloczynu
iloczynu skalarnego i macierzy F', a formy kwadratowe sa zawsze diagonalizowalne.

2. Jesli macierz F nie jest symetryczna, ale okazuje sie by¢ diagonalizowalna (nad R),
to tak jak w Zadaniu 76 mozna znalez¢ jakis iloczyn skalarny S, w ktorym wektory
wlasne F' odpowiadajace jej roznym warto$ciom wlasnym sa ortogonalne, a wektory
odpowiadajace tym samym wartosciom wlasnym mozna w takim iloczynie skalar-
nym zortogonalizowa¢. Macierz F' mozna wtedy uwazaé za powstata z potaczenia
pewnej formy kwadratowej Q z odwrotnodcig tego iloczynu skalarnego: F' = S~1-Q.

3. Uwagi te maja zastosowanie w mechanice klasycznej w teorii matych drgan. Lagran-

gian wykonujacego mate drgania uktadu o n stopniach swobody ma ogélna postaé
T . 1 ;
L:§q ijq]_§qvijq]7

przy czym obie (stale) macierze, T;; oraz Vj;, sa symetryczne, a macierz energii
kinetycznej T;; musi by¢ dodatnio okreslona (spetnia wiec ona konieczny warunek,
by by¢ macierza iloczynu skalarnego). Lagrangian taki prowadzi do réwnan ruchu

a2 . .
Tij g ¢ + Viga’ = 0.

Rozwigzania tego ukladu réwnan szuka sie w postaci ¢/ (t) = A’ exp(iwt), co prowa-
dzi do warunku

(V — M2T)Z‘jAJ = 0,
rOwnowaznego warunkowi

(T7HV = 1) A = (F —w?)yA = 0.

207



Jak widaé jest to zagadnienie wlasne: wektory A7 sa wektorami wlasnymi macierzy
F = T~1.V, ktora w ogolnosci nie jest symetryczna. Poniewaz jednak powstala ona z
polaczenia iloczynu skalarnego 7' z forma kwadratowa V', jest ona diagonalizowalna,
a jej wektory wlasne A’ gdzie dolny wskaznik a numeruje rézne wektory wlasne,
mozna wybraé tak, by byly ortonormalne w iloczynie skalarnym 7" AzTijAg =
dap Zamiana zmiennych ¢'(t) = ALQ"(t) pozwala wtedy sprowadzi¢ Lagrangian do
postaci kanonicznej

1. . . 1 , .
L= 5 QAT AR — 5 Q (DA AQ )
1. . 1
— S QR - SR Q" HQR().
(w drugim czlonie wykorzystane zostato to, ze V;jAg = ngijAg, a nastepnie, podob-
nie jak w pierwszym cztonie, ortonormalno$é¢ wektoréw A, w iloczynie skalarnym
T).

Przypomnienie

Twierdzenie o rozkladzie na podprzestrzenie niezmiennicze zwane tez podprzestrzeniams
prerwiastkowymi wzgledem odwzorowania. Kazde odwzorowanie liniowe F' @ V. — V
przestrzeni wektorowej V' nad cialem C (dimV = n) w nig sama zadaje rozklad tej
przestrzeni na podprzestrzenie niezmiennicze X,:

V= @Zlea )

gdzie r jest liczba rdznych pierwiastkow réownania charakterystycznego Wg(A) = 0, przy
czym dimX, = n,, gdzie n, jest krotnoscia a-tego pierwiastka Wr(\), tak ze dimV =
ni + ...+ n,. Przestrzenie X, maja te wlasciwosé, ze dla v € X, zachodzi®

F(v) e X,, oraz (F'—=XI)"-v=0.
Symbol @ oznacza sume prosta podprzestrzeni X, tj. X, N X, = {0}, gdy a # b; kazdy
wektor u € V mozna wtedy jednoznacznie napisa¢ w postaci u = vy + ... + v,., gdzie
v, € X,
Zadanie 76

Zmalez¢ wartosci i wektory wlasne macierzy gérnotrojkatne;j

F=

o O =

1 1
1 1
0 1

80W przypadku odwzorowan liniowych stosuje si¢ zapis F(v) = F-v; drugi ze wzoréw nalezy wiec
rozumieé jako n,-krotne dzialanie (F — A\,I) na v.
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Znalezé¢ takze macierze F™ oraz etf'.

Rozwigzanie: Rownanie charakterystyczne ma postac
We(A)=—-(A—1)*=0.

Ma ono jeden pierwiastek potrojny (tj. o ny = 3) Ay = 1. Mamy

01 1 00 1 00 0
F—-I=(0 0 1], (F-0I*=(0 0 0], (F-01=(0 0 0
00 0 0 0 0 0 0 0

Twierdzenie Cayleya-Hamiltona jest wiec spetnione, ale ani (F — I)? ani F — [ nie jest
macierza zerowa, co ozgnacza, ze macierz [’ nie jest z gatunku diagonalizowalnych bo
nie znajdzie sie trzech liniowo niezaleznych wektoréw wlasnych. Niemniej, F™ lub e’
sa dobrze okreslonymi macierzami i powinien by¢ jaki§ sposob znalezienia ich (inny od
bezposredniego podnoszenia macierzy do dowolnie wysokiej potegi).

Rozwiazujac rownanie (F' — I)-v = 0, tj.

01 1 a 0
0 0 1 bl=10],
0 0 0 c 0

znajduje sie, ze w rzeczy samej jest tylko jeden wektor wtasny

1
0],
0

(czyli po prostu F'-e; = e;) odpowiadajacy A; = 1.

By znalezé¢ F™ lub ¥, mozemy wykorzysta¢ twierdzenie o rozkladzie na podprzestrze-
nie niezmiennicze, ktére w tym przypadku jest do$¢ trywialne, bo (F — I)? jest po prostu
macierza zerowa (jest tak dlatego, ze jest tylko jedna warto$¢ wlasna i cala przestrzen
V' jest jedna wielka podprzestrzenia niezmiennicza; skoro wiec zgodnie z twierdzeniem
(F — I)3 ma dawa¢ zero na kazdym wektorze z calej przestrzeni V, to musi by¢ po prostu
macierza zerowa). Dla kazdego wektora v € V' wykorzystujac rozwiniecie dwumianowe
Newtona mozemy zatem napisa¢ (oczywiscie tu A = 1)

Fr-v=[AN+(F-X)|"-v
1
= [ AT +nA\""HEF — M) + §n(n — DA2(F = A 4. .| V.
Poniewaz (F' — AI)? zeruje si¢ na kazdym wektorze v, wyrazy (zaznaczone kropkami),

w ktorych wystepuja potegi (F — I) wyzsze niz druga sa macierzami zerowymi. Cale
rozwiniecie sprowadza sie wiec do trzech wyrazow:

1 1 n n+in(n—1)
F" = N"T+n\""1(F = \I) + §n(n — DA 2HF-A)?*=10 1 n ,
0 0 1
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(w ostatniej postaci wzoru wstawilisémy juz A = 1). Nietrudno obliczy¢ F?, czy F3
mnozac bezposrednio macierz F' przez siebie i sprawdzi¢, ze to co wychodzi, zgadza sie z
powyzszym ogblnym wzorem.

Aby znalezé et postepujemy podobnie i piszemy:

1
elF = A AL — A I+t(F—AI)+§t2(F—AI)2+...

Znow, poniewaz (F — \I)3 i wyzsze potegi zeruja sie na kazdym wektorze z V, wyrazy
zaznaczone kropkami nic nie wnosza. Otrzymujemy wiec (A = 1)

1t t+ 4t
e=et[0 1 t
0 0 1

Uwaga. Nalezy podkresli¢, ze wykorzystany w tym zadaniu trick (a po polsku “chwyt”)

oA+B _ A B

Y

nie jest (!!!) prawdziwy w przypadku dowolnych dwu macierzy A i B. Jest on jednak
prawdziwy jesli A = A czyli, gdy macierz A (lub macierz B) jest proporconalna do
macierzy jednostkowej, ktora jest przemienna (tj. komutuje - jak to sie mowi w jezyku
mechaniki kwantowej) z dowolna macierza B, tzn. spelnia [A,B]=A-B—-B-A=0.

Zadanie 77
Dana jest macierz F' i wektor u (wszystko jak zwykle w jakiejs bazie e;, i = 1,2, 3):
0 0 2 5
F=110 =51, u=| 1
01 4 —2

Znalezé dziatanie e’ na podany wektor.

Rozwigzanie: Wielomian charakterystyczny ma jeden tatwy do zgadniecia pierwiastek
A=1

Wr(A) = =N 4+4X\ =52 +2=—-A=1)(A\?=31+2)=—-(A—1)*(A—2).
Mamy wiec dwa pierwiastki Wg(A): pojedyniczy Ay = 2 i podwojny Ay = 1. Wektor
wlasny odpowiadajacy Ay = 2 mozna wybra¢ w postaci

1
-2
1

Y

(jest on jednoznaczny z doktadnoscia do mnozenia przez liczbe). Szukajac wektora wta-
snego odpowiadajacego Ay = 1 rozwiazujemy uktad réwnan

-1 0 2 a 0
1 -1 =5 b|=10
0 1 3 c 0



Dwa z tych rownan sa niezalezne (inaczej niz w przyktadzie z diagonalizowalna macie-
rza, ktora tez miala pierwiastek podwojny) i wyznaczaja ten wektor z doktadnoscia do
mnozenia przez liczbe, np.

2
-3
1

Szukamy teraz drugiego wektora pierwiastkowego odpowiadajacego Ay = 1: powinien by¢
on taki, ze dziatanie nait (F — M\ I)? = (F — I)? daje zero, tj.:

1 2 4 a 0
-2 —4 =8 b|=10
1 2 4 c 0

Jak widaé¢, tylko jedno z otrzymywanych z tego warunku réwnan jest niezalezne. Nie wy-
znaczaja wiec one tego wektora jednoznacznie, co jednak nie jest zaskoczeniem: podprze-
strzeni niezmiennicza zwiazana z Ay = 1 jest dwuwymiarowa (bo Ay = 1 jest pierwiastkiem
podwojnym Wg(\)). Jednym z nalezacych do niej wektorow jest juz jednak znaleziony
wyzej wektor wlasny odpowiadajacy Ae = 1 (istotnie, powyzsze rownanie jest spetnione
przez a = 2, b = —3 1 ¢ = 1); trzeba wiec dobra¢ drugi wektor, na ktorym zeruje sie
(F —I)?, tak by byt on liniowo niezalezny od wektora wlasnego. Warunki te spelnia np.

2
-1
0

Y

(oczywiscie zawsze mozna do niego doda¢ wektor wtasny odpowiadajacy A2 = 1 pomno-
zony przez jakakolwiek liczbe). Mamy wiec rozklad przestrzeni V' na dwie podprzestrzenie
niezmiennicze

1 2 2
V= -2 S5 =31, -1
1 1 0

Dowolny wektor mozna jednoznacznie przedstawié¢ jako kombinacje liniowa powyzszych
wektoréw rozpinajacych podprzestrzenie X; i Xo:

a 1 2 2
bl=x| 2|+y| 3] +z| -1
c 1 1 0

Rozwiazanie tego uktadu daje x = a+2b+4c,y = —a—2b—3ciz=a+b+c. Np.
rozktad podanego w zadaniu wektora ma postac

5 1 2 2
1 | =—|-=2|-(-3|+4] 1
—2 1 1 0
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Mozemy teraz podziata¢ e na ten lub, lepiej, dowolny wektor

a 1 2 2
el o] =(@+r20+4e)e™ | =2 | +(—a—20—-3c)e™| =3 | +(a+b+ec)ef| —1
1 1 0
1 2
=(a+2b+4c)e* | =2 | +(—a—2b—3c)e' | =3
1 1
2
+a+b+e)e' [ +t(F—I)+..]| -1
0

Wykorzystalismy tu to, ze dwa pierwsze wektory sa wektorami wlasnymi F' i, co za tym
idzie, dzialanie e!f na nie sprowadza sie do pomnozenia ich przez e z odpowiadajaca
danemu wektorowi wartoscia wtasng \;. W ostatnim wyrazie, jak poprzednio, wydzie-
lilismy czynnik e = e! i rozwinelismy e ~*20) w szereg potegowy. Wprawdzie teraz
macierz (F — X\oI)? i wyzsze potegi (F — X\o1) nie sa macierzami zerowymi, niemniej daja
one zawsze zero w dzialaniu na stojacy za nimi wektor (bo jest on wlasnie tak wybrany).
Mozna zatem, jak poprzednio, je opusci¢. Zapisujemy teraz poszczegolne sktadniki sumy
w postaci macierzy dziatajacych na sktadowe a, b i ¢ naszego dowolnego wektora:

a 1 2 4 a -2 -4 —6

a
o= -2 —4 -8 bl+e| 3 6 9 b
c 1 2 4 c -1 -2 -3
2 2 2 a -2 -2 =2 a
+el -1 -1 -1 b |+t 3 3 3 b,
0O 0 O c -1 -1 -1 c
i taczac na koniec wszystkie wystepujace tu macierze w jedng znajdujemy
e?t — 2tet 22t — 2et — 2te!  4e?t — 4et — el
e = —2e? + 2e! +3te?  —4e? 4 5et + 3te!  —8e? + 8e! + 3tet
e?t — et — tet 2e2t — 2¢et — te! 4e2t — 3et — tet

Jedli z jakich§ powodéw potrzebny jest tylko wynik dziatania e’ na podany w zadaniu

wektor, to mozna go uzyskaé szybko bez znajdowania calej macierzy e'f’. Wykorzystujac
znaleziony jawnie rozklad tego wektora na wektory pierwiastkowe mamy

5 1 2 1—t 0 2 2
Pl 1 == 2| - | =3 +4¢ t 11—t =5t —1
-2 1 1 0 t  1+3t 0

(macierz w ostatnim cztonie po prawej to I + ¢(F — I)). Wykonujac operacje po prawej
stronie znajdujemy

5 —e?t + 6e! — Ste!
el 1 | = 2% —et +12tet |,
-2 —e2t — et — 4tet
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co jest oczywiscie tym, samym wynikiem, ktory dostaniemy dziatajac na podany w zada-
niu wektor znaleziona wyzej cala macierza etf.

Zadanie 78
Zmnalez¢ wartosci i wektory wtasne macierzy
1 -3 4
F=14 -7 8
6 -7 7

Znalezé e'f’ metoda rozkladu na podprzestrzenie pierwiastkowe oraz metods wykorzystu-

jaca twierdzenie C-H.
Rozwigzanie: Rownanie charakterystyczne ma postaé

WrpA) = =X+ X2+ 50 +3=0.

Nietrudno zobaczy¢ (zgadnac), ze jednym z jego pierwiastkow jest —1, a wiedzac juz to,
ze

We(A) = —(A+1)2(A—3).

Zatem wartosci wlasne sa tylko dwie: \; = —1 - dwukrotna oraz Ay = 3 - jednokrotna.
Szukamy nastepnie wektorow wtasnych macierzy F"

2 -3 4 a
M =—1: 4 —6 8 b1 =0.
6 -7 8 c

Poniewaz pierwsze rownanie jest po prostu drugim przemnozonym przez 2, bierzemy dwa
ostatnie 1 kltadac @ = 1 (bo “normalizacja” wektorow wtasnych jest i tak nie wazna)
rozwiazujemy rownania

4—6b+8c =0,
6—-Tb+8c =0,

ktore daja b = 2, ¢ = 1. Podobnie dla

-2 -3 4 a
A =3 4 —10 8 b =0,
6 -7 4

biorgc pierwsze dwa réwnania i ktadac a = 1 znajdujemy, ze b = 2 i ¢ = 2. Mamy zatem
tylko dwa wektory wtlasne:

1 1
)\1:—11 2 y )\2:31 2
1 2
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Macierz F' jest z gatunku niediagonalizowalnych, wiec aby znalezé e’ trzeba uzyé roz-
ktadu na podprzestrzenie pierwiastkowe, lub sposobu. Najpierw sprawdzmy, ze sie nie
pomylilismy: gdyby byly dwa wektory wlasne odpowiadajace A\ = —1, to macierz
(F'— M\ I)-(F — X\oI) bylaby macierza zerowa. Ale nie jest:

2 -3 4\ /(-2 -3 4 8 —4 0
(F+I)-(F=3I)=|4 —6 8 4 -10 8| =[16 -8 0| 0.
6 —7 8 6 -7 4 8 —4 0

Oczywiscie (F — M\I)?-(F — X\oI) = 0, tak jak tego wymaga twierdzenie C-H:

2 -3 4 8 —4 0 0 0
4 -6 8 16 -8 0]=({0 0
6 -7 8 8 —4 0 0 0

o O O

Zgodnie z twierdzeniem o rozkladzie na podprzestrzenie pierwiastkowe istnieje zatem jesz-
cze wektor w = (z, y, z) liniowo niezalezny od wektora wtasnego odpowiadajacego warto-

$ci wlasnej \; = —1, na ktérym to wektorze w zeruje si¢ macierz (F — A\ 1)
16 —16 16 x 0
(F—MI)?-w= |32 —-32 32 y|l=1[0
32 —32 32 z 0
(Oczywiscie wektor wlasny odpowiadajacy wartosci whasnej A\; = —1 spelnia to réwnanie,

ale nie oni tu teraz chodzi!). Jako w mozemy wziaé¢ np.

0
w= 1|1

1

Aby znalezé e'f’ wyobrazamy sobie jakis§ ogélny wektor, na ktéry macierz e'*” moglaby
sobie dziala¢ i rozktadamy go na dwa wektory wtasne i wektor w

a 1 1 0
bl=(@=bt+c)|2]|+0—-0c)2]+(—2a+Db)[ 1
c 2 1 1

i dzialamy narni macierza et":

a 1 1 0
bl =@-b+o)e®| 2| +b—c)e | 2] +(—2a+0b)eteFHD |1
c 2 1 1

W pierwszym i drugim sktadniku kombinacji liniowej wykorzystaliSmy to, ze sg to wektory
wlasne F' i zastapilismy w nich e/f odpowiednio przez e3' i e7*. W ostatnim sktadniku jak
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zwykle wykorzystujemy to, ze (F + I)?, a zatem i wszystkie wyzsze potegi F' + I, zeruja
sie na wektorze w i mamy

0 0 0 1
et 1 | =e [T+ t(F+D] | 1] =et||1]|+t]2
1 1 1 1
Laczac to wszystko znajdujemy, ze
a ea—b+c)+et(b—c)+tet(—2a+0b)
el b | = e¥(2a —2b+2¢) +e7(2b — 2¢) + e (—2a + b) +t e~ (—4a + 2b)

(20 —2b+2¢c) +et(b—c)+e(—2a+b) +te ' (—2a+Db)

Grupujac w kazdym wierszu wyrazy proporcjonalne do a, b i ¢ mozemy to w koéu zapisaé
w jako macierz dzialajaca na wektor (a, b, c):

a et — otet —e3t et 4tet et — et a
b | = 23 -2t —dtet —2e3 43¢t + 2t 203 — 2t b
c 2e3t — 27t —2te™t  —2e3 42t tet 23 — et c

Macierz stojaca po prawej stronie jest wlagnie szukang macierzg e'f.

Na koniec otrzymamy te sama macierz wykorzystujac chytrze twierdzenie C-H. Zgod-
nie z regutami gry, mozemy kazdy monomian A", a zatem takze i e* (bo funkcja exponens
jest co prawda nieskonczona, ale zawsze tylko suma takich monomianéw) napisa¢ w po-
staci

e = Wp(NQ(N) + ax)? + a1\ + ag

w ktorej Q(N) jest jakas funkeja (ktora jest nieskoriczona suma jakichs wielomianow otrzy-
mywanych w tym wzorze wtedy, gdy po lewej jego stronie stoi monomian A"), a “reszta”
r(A) = asA? + a1\ + ap jest wielomianem stopnia mniejszego niz stopieri Wr(\). Gdy
macierz F' ma trzy wartosci wlasne, to podstawiajac je jako A\-y w powyzszym wzo-
rze uzyskujemy trzy niezalezne réwnania pozwalajace wyznaczy¢ wspotezynniki as, ap i
ag. Gdy sa tylko dwie warto$ci wlasne, ale macierz jest mimo to diagonalizowalna, to w
powyzszym wzorze zamiast Wg(\) uzywamy zredukowanego wielomianu charakterystycz-
nego WF()\) i reszta jest wtedy wielomianem nizszego stopnia tak, iz znéw mamy dosé
lambd by wyznaczy¢ wszystkie jego wspolczynniki (patrz zadanie 58). Tu jednak mamy
jeszcze inny przypadek i musimy sie wykazaé sprytem: Skoro

Wr(A) = (A= M)* (A = A2),
to nie tylko Wr (A1) = Wr(Ay) = 0, ale takze
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Mozemy wiec napisa¢ nastepujace réwnania

et)\1,2 — WF()\LQ)Q()\LQ) —+ 7’()\1,2) = 7"(>\1,2) s
tet)\l _ W;r()\l)Q()\l) + WF()\l)Q/()‘l) + 7”()\1) = r’()\l) .

Mamy wiec znéw trzy réwnania pozwalajace wyznaczy¢ trzy wpotczynniki as, a; i ag
reszty r(A)! W naszym przypadku rownania te maja postacé

—t

e = ay—a+ag,
€3t = 9a2+3a1 +a0,
te™t =—2ay +ay,
i daja
1 1
az = 6 (e?’t —e_t) — Zte_t,
1 1
a, = 3 (e?’t—e_t) +§t6_t,
ap = i (€3t+15€_t) +§te_t.
16 4
Poniewaz
1 -3 4 1 -3 4 13 —-10 8
F?=|4 -7 8 4 =7 81 =124 —-19 16 |,
6 —7 7 6 -7 7 20 —18 17

mozna znalez¢ tatwo (no, wzglednie tatwo...) cala macierz et = ay F? +a, F +agl. Mamy
np.

_ 1
(etF)ll = 13- [16 (egt—e t) —Zte t]

albo
1 _ 1
(e, = 21. [1_6 ("~ o)~ Lte t]
+ 4- E (e —e ™) + %te_t} =2¢" — 27" —dte",

etc. Widaé, ze dostajemy w ten sposob te samg macierz, ktéra juz znalezliSmy stosujac
rozktad na podprzestrzenie pierwiastkowe.
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Powstaje pytanie, co by sie stato, gdybysmy w przypadku macierzy F', ktorej wielomian
charakterystyczny ma wielokrotne pierwiastki (tzn. gdy, tak jak tu, niektére wartosci
wlasne maja krotnosci wieksze niez 1) ale diagonalizowalnej lub czesciowo diagonalizo-
walnej (tzn. majacej wiecej niz jeden wektor wtasny odpowiadajacy jakims wielokrotnym
wartosciom wlasnym) “zapomnieli” o tym, ze przy wykorzystywaniu twierdzenia C-H do
znalezienia F™ lub e!f" mozna zamiast Wr(\) postuzyé sie zredukownym wielomianem
charakterystycznym WF()\) 1 zamiast tego skorzystali z chwytu z pochodnymi takiego jak
wyzej? Odpowiedz jest taka, ze dostalibySmy oczywidcie te same macierze F™ lub e!f,
tylko bysmy sie wiecej napracowali. MielibySmy bowiem wtedy reszte r(\) wyzszego stop-
nia niz gdyby$my uzyli wielomianu zredukowanego i tym samym wiecej wspotczynnikow
ag, ai,... do wyznaczenia; co wiecej (w przypadku wyznaczania ef’) wspotezynniki te
zalezalyby od ¢ nie tylko poprzez czynniki e, ale takze wielomianowo. Na koricu jednak,
po ztozeniu reszty agl + a1 F'+ ... “do kupy” okazaloby sie, ze wielomianowa zalezno$é¢ od
t powstata wskutek nieuzycia wielomianu zredukowanego by znikta. Zalecam sprawdzi¢
to samemu znajdujac w taki sposob e!¥” w przypadku macierzy F z Zadania 74.

Zadanie J (konstrukcja bazy Jordanowskiej)
Dowodzi sie (np. w “kultowym” podreczniku J. Komorowskiego Od liczb zespolonych
do ...), ze przez wybor bazy mozna kazde odwzorowanie F' przestrzeni wektorowej nad
ciatem C w nig sama sprowadzi¢ do kanonicznej postaci Jordanowskiej, tj. takiej, w ktorej
macierz odwzorowania F' sktada sie z r kwadratowych klatek rozmieszczonych wzdtuz
gtownej swojej diagonali; klatki te sa wymiaru n; x n;, gdzie n;,...,n, sa krotno$ciami
(roéznych) pierwiastkow Aj, ..., A, wielomianu charakterystycznego Wg(\), a i-ta klatka
ma na swojej diagonali n;-krotnie powtoérzong wartosé wtasng A;, a nad nia pojedynczy
rzad jedynek. Podaé¢ konstrukcje takiej bazy.
Rozwigzanie: Konstrukcja jest bardzo prosta i opiera si¢ na zadawanym przez odwzro-
wanie F' (przedstawionym tu juz wczesniej) rozktadzie przestrzeni V' na podprzestrzenie
niezmiennicze (pierwiastkowe) X;, ¢ = 1,... 7. Przestrzenie te sa niezmiennicze w tym
sensie, ze jesli v € X, to F'-v € X;. Wobec tego, jest jasne (z samej konstrukcji macierzy
odwzorowania w danej bazie), ze jesli baza przestrzeni V' jest wybrana tak, ze kazdy jej
wektor nalezy catkowicie do ktorejs z podprzestrzeni X; (inaczej méwiac: baze przestrzeni
V' tworza polaczone bazy wszystkich r podprzestrzeni X;), to macierz odwzorowania za-
pisana (z “obu stron”) w takiej bazie ma strukture klatkowa: sktada sie ona z r klatek o
rozmiarach n; X n; rozmieszczonych wzdtuz jej gtownej diagonali. Wystarczy wiec tylko
dobra¢ odpowiednio baze w kazdej z podprzestrzeni X;.

W tym celu przypominamy sobie, ze podprzestrzenie X; sa takie, ze jesli v € X, to

Wiemy tez, ze w kazdej podprzestrzeni X; jest jeden (lub wiecej, ale zaldozmy, ze tylko

jeden) wektor wlasny w;, czyli taki, ze (F' — A\;I) - v = 0. Nietrudno si¢ zorientowac, ze
n; wektoréw bazy podprzestrzeni X; mozna wybraé tak, iz

(F=M\I)-vi=0,
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Wektory ry,,...,r;, , sa wektorami pierwiastkowymi. (F'— A;1)™ dzialajac na kazdy z
nich daje zero. Zostaly tu one jednak wybrane tak, by tworzy¢ “matrioszke™ na v; zeruje
si¢ (F—\I), nary, zeruje sig (F—\1)?% itd. azdor;, _,, na ktorym zeruje si¢ (F —\;1)"™.
Jesli powyzsze zwiazki przepisze sie¢ w postaci

Fvi=\v;,
Fry =Nty + v,
Fri, = A\ry, + 14,

to stanie sie jasne, ze w bazie przestrzeni X; tworzonej przez wektory (v;,ry,...,r; _,)
7
macierz odwzorowania F' ma wtasnie kanoniczng posta¢ Jordana. I juz...
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Geometria analityczna (czyli przestrzenie afiniczne)

Przypomnienie

Przestrzen afiniczna jest to taka przestrzen bez “pepka swiata” jakim w przestrzeni wek-
torowej jest wektor zerowy. Doktadniej, jest to zbiér A punktéw i przestrzen wekto-
rowa, przy czym okreslona jest operacja dodawania wektora v z przestrzeni wektorowej
do punktu p; € A, ktorej wynikiem jest inny punkt p, € A. Inaczej moéwiac, dwa punkty
p1 1 pa przestrzeni A mozna od siebie (tzn. jeden od drugiego) odejmowaé i rezulatem
takiego odejmowania jest wektor: p, — p; = v.

Do uprawiania zwyklej geometrii analitycznej (n-wymiarowej) wystarcza model prze-
strzeni afinicznej, w ktorym punkty A sa reprezentowane przez kolumienki n liczb (za-
pisywane w obltych nawiasach i nazywane dalej wspdtrzednymi punktu), a przestrzenia
wektorowa jest R" czy lepiej, zeby sie nie putato (“putanica” po rosyjsku to nie corka
Putina, co zreszta w zapisie moze sie Francuzom niewlasciwie kojarzy¢ z czyms§ jeszcze
gorszym, tylko wlasnie platanina), VR™, przy czym operacja dodawania (zywego) wektora
do punktu zbioru A jest tu okreslona wzorem:

T U1 T + (%1

i) (%) ) + (%)
+1 | =

Tn Un Tp + Up

Jesli w takiej przestrzeni wprowadzimy kanoniczny iloczyn skalarny
(viw) =v-w = vhw? + ... + o ",

to taka przestrzen afiniczna bedziemy oznacza¢ AE™. Mozna w niej z powodzeniem upra-
wiaé¢ “szkolng” (n-wymiarowa) geometrie analityczna.

Przypomnienie
k-ptaszczyzng w przestrzeni afinicznej A nazywa sie zbior jej punktow

p()\l,...,)\k):p+)\1V1+...—|—)\ka, gdzie N\, €R,

p jest ustalonym punktem A, a vy, ..., v, jest ustalonym zbiorem k liniowo niezalez-
nych wektoréw (mozna to nazwaé zadaniem k-plaszczyzny w sposéb parametrycznym).
k-ptaszczyzne mozna tez zada¢ uktadem n — k rownan liniowych spetianych przez wspot-
rzedne nalezacych do niej punktéw (jest to jej tzw. opis uwiklany). Jednoplaszczyzne
bedziemy (zgodnie ze zdrowym rozsadkiem) nazywaé prosta, a dwu-ptaszczyzne, po pro-
stu plaszczyzna. Reszta to k-ptaszezyzny (o k > 2) lub hiperplaszczyzny.

Dwa twory: k-plaszczyzna i [-plaszczyzna sa do siebie rownolegte jesli (zaktadajac bez
straty ogolnosci, ze k < [) kazdy z k wektorow definiujacych k-plaszczyzna jest pewna
kombinacjg liniowa wektoréw rozpinajacych [-ptaszczyzne.
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Przyktad

Dwie proste (1-plaszczyzny) w czterowymiarowej p. afinicznej zadane wzorami

T 100 1 T 0 2
x| 1 2 zo | | 1 4
w = 2 [ F]5]t te€R w =12 ]*]6|5 *€®
Ty 4 4 Ty 99 8
sa do siebie nawzajem réwnoleglte bo wektory
1 2
2 oraz 4
317 6|’
4 8

sa jeden do drugiego proporcjonalne.
Podobnie pierwsza z podanych wyzej prostych jest rownolegta do ptaszezyzny (2-
plaszczyzny) zadanej wzorem

1 0 -1 1
o | |1 0 1
2 | T 2 + 1 t+ 1 s,
Ty 0 2 1
bo
1 -1 1
2 0 1
3171 | T2
4 2 1
Przyklad

Podajac wektor i jaki§ punkt w AR? zadaé¢ prosta wyznaczona w sposob uwiklany row-
naniami

r+ y+ z = 1,
r+2y+32 = 3.

Rozwigzanie: Nalezy w tym celu znalez¢ najpierw jakis jeden (dowolny) punkt speknia-
jacy te rownania (czyli jedno szczegolne rozwiazanie uktadu rownan niejednorodnych). Tu
np. moze to by¢ punkt o wspotrzednych x = —1, y = 2, z = 0. Nastepnie podstawiamy
to do definiujacych prosta réwnan

8
|
—

S



i zadamy, by byty one spetnione dla dowolnego t (inaczej mowigc szukamy rozwiazania
ukltadu jednorodnych liniowych réwnan (bo cze$é¢ niezalezna od t spelnia te réwnania i
skasuje sie zatem z ich prawa strona):

a+ b+ ¢ = 0,
a+2b+3c = 0.

Rozwigzaniem jest np. a =1, b = —2, ¢ = 1, a zatem prosta definiuje wzor
T —1 1
yl=1 2 |+t]|-2
z 0 1

Zadanie 79

Znalez¢ zbior punktéw bedacych przecieciem w AE* dwu plaszezyzn P i Py zdefiniowa-
nych warunkami

Pr: {(21,20,25,11) € AE' . mi+ao+as+ai=2, zotaz+ag=1},

Py {(ti+ta, t1 —to, 4l + 2ty, 2t +4ty) € AE', 1y, t, € R}

AE, oznacza tu czterowymiarowa przestrzen euklidesowa, tj. afiniczna przestrzen nad
cialem R z (kanonicznym) iloczynem skalarnym.

Rozwiagzanie: Plaszczyzna P; jest tu zadana (w sposob uwiktany) dwoma liniowymi
warunkami (ich liniowos¢ jest tym, co powoduje, ze jest to plaszczyzna, a nie jakas inna
“krzywa” - cokolwiek by to moglo tu znaczy¢ - powierzchnia), a druga zadana jest pa-
rametrycznie. Plaszczyzne zadang parametrycznie tatwo przedstawi¢ w postaci rownan:
wystarczy wyeliminowaé¢ parametry. Np. w przypadku ptaszczyzny P, zadanej wzorami:

ry = 11 +1g,
ro = t; — 12,
r3 = 4t1 4+ 2y,
ry = 2t + 4,

mozna to zrobi¢ nastepujaco: wstawiajac 2t; = x1 + x9, 2o = x1 — 5 z pierwszych dwu
zwiazkéw do pozostatych dwu dostajemy

r3 = 31’1+ZL’2,

Ty = 311 — 19,

i tym samym otrzymujemy dwa rownania zadajace (w sposob uwiklany) ptaszczyzne Ps.
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Rownania definiujace P, mozna uprosci¢ (odejmujac od pierwszego drugie) do z; = 1
oraz Ty + xr3 + x4 = 1. Parametryczne jej przedstawienie mozna (cho¢ nie bedzie nam
potrzebne) dostaé¢ ktadac np. zo =7 1 23 = 7o:

xr, = 1,
To = T,
T3 = T2,
Ty = 1—7'1—7'2.

Przeciecie dwu ptaszczyzn sa to punkty nalezace i do Py i P,. Musza wiec one by¢
postaci takiej jak punkty P, (tzn. musza by¢ otrzymywane dla jakichs wartosci ¢ i t3), a
zarazem spelnia¢ rownania definiujace P;. Zatem musza dla nich zachodzi¢ réwnosci

i+t = 1,
(t1 — ta) + (4t + 2t0) + (261 + 4ty) = 1,

czyli
tl —+ tg == 1 5
Tt + 5ty = 1.
Rownania te tatwo rozwiazaé: t; = —2, to = 3. Wstawiajac te wartosci parametréow do

zwigzkow zadajacych P, dowiadujemy sie, ze przecieciem w AE* plaszczyzn P i P, jest
tylko jeden punkt p o wspotrzednych

p=(1,-5-2,8).

Moze sie wydawaé niezgodnym z intuicja, ze przecieciem dwu ptaszczyzn jest tylko punkt:
w AE3 przecieciem dwu plaszczyzn jest zwykle prosta. Niema tu jednak bledu: w ARE?
plaszczyzne definiujg dwa rownania liniowe, a w AE? tylko jedno. Dlatego w AE? punkty
nalezace do przeciecia dwu ptaszczyzn spetniaja cztery liniowe réwnania na cztery zmienne
(a E3 dwa réwnania na trzy zmienne). Jak wiemy z teorii rownan liniowych moze sie tez
zdarzy¢, ze ukltad taki nie ma weale rozwiazan (plaszczyzny sie wtedy nie przecinaja wcale)
lub, ze wymiar przestrzeni rozwiazan jest wickszy niz zero (wtedy przecieciem plaszczyzn
jest prosta lub nawet plaszczyzna). Ale najbardziej typowym przecieciem dwu plaszczyzn
w AE? jest jeden punkt.

Zadanie 79’
Orzec, czy prosta w przestrzeni euklidesowej AE3 zadana w sposob uwiklany wzorami
x —z =2,y =2 jest prostopadta do plaszczyzny

0 1 2
LI+ 0 |+ |1 |&.
2 —1 —2
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Rozwiagzanie Najpierw trzeba znalezé wektor wyznaczajacy prosta. Juz to robiliSmy (w
Zadaniu przyktadowym). Tu punktem nalezacym do prostej jest np. (1,2, —1). Zatem
podang prosta mozna przedstawi¢ w postaci

T 1 1
y | = 2 | +10]¢
z —1 1

Nastepnie pytamy, jak sie ma znaleziony wektor wyznaczajacy prosta do wektoréw rozpi-
najacych podana ptaszczyzna, tzn. po prostu liczymy iloczyny skalarne:

1 1 1 2
0 0 =0, 0 1 =0.
1 —1 1 —2

Poniewaz oba iloczyny skalarne sa réwne zeru, czyli wektor wyznaczajacy prosta jest
prostopadty do obu wektoréw rozpinajacych ptaszczyzne, prosta jest do tej pltaszczyzny
prostopadta. W AE? musi wiec by¢ punkt, w ktorym prosta przecina plaszczyzne (w AE"
o n > 4 mimo prostopadtosci do ptaszczyzny prosta nie musiataby jej przecinaé¢, podobnie
jak w AE? dwie proste moga by¢ wzajemnie prostopadte bez przecinanie si¢). Wspolrzedne
tego punktu mozna znalezé¢ szukajac parametrow &1 i €2 takich, by odpowiadajacy im
punkt ptaszczyzny

$:€1+2€2a y:€2+17 22_51_262_‘_2’

spetnial réownania definiujace prosta:
Elpo - (— -2 42) =2, E+41=2.

Stad €2 =11 &' = 0. Wspolrzednymi punktu przecigcia sa wiec (2,2, 0).
Zadanie Wel
Znalez¢ kat y(a,b) pomiedzy wektorami a i b jesli wiadomo, ze wektor a + 3b jest
prostopadly (w sensie zadanego iloczynu skalarnego) do wektora 7a— 5b, a wektor a—4b
do wektora 7a — 2b.
Rozwigzanie: Korzystajac z definicji prostopadtosci wektoréw w sensie zadanego ilo-

czynu skalarnego (+|-), ktory tu i dalej bedziemy zapisywaé, tak jak w fizyce, tj. v -w =
(vlw), oraz z biliniowosci (i symetrycznosci) tegoz iloczynu, mozemy napisac

0= (a+3b):(Ta—5b)=T7a-a—15b-b+16a-b,
0= (a—4b)-(Ta—2b)=T7a-a+8b-b—30a-b.

Stad (a-a = a?, etc.)

7, 15,
L2y b=
62 "> Tab=0
7 2 8 2

L2 SR _ab=o0.
30a +3O a 0
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Dodajac te réwnosci do siebie stronami, dowiadujemy sie, iz po prostu a? = b%. Wyko-
rzystujac to w drugim z tych réwnan znajdujemy, ze

czyli

tj. v(a,b) = % lub .

Zadanie We2
Postugujac sie wektorami (a nie metodami wywodzacymi sie z matematyki starozytnych
Grekow) pokazaé, ze trzy wysokosci kazdego trojkata przecinaja sie w jednym punkcie.
Rozwigzanie: Niech wierzchotkami trojkata bedg punkty A, B i C, a punkt O niech
bedzie punktem przeciecia sie wysokosci tego trojkata spuszczonych z jego wierzchotkow
A1 C. Wektor taczacy np. punkt A z B bedziemy tu oznacza¢ AB (przy czym oczywiscie
AB = —BA) etc.

Poniewaz wysokos¢ spuszczona z wierzchotka B jest (to ja wtasnie definiuje!) prostopa-
dta do boku AC', czyli do wektora AC, wystarczy pokazaé, ze wektor ten jest prostopadty
do wektora OB. To za$ jest proste: piszemy oczywiste (zrobi¢ rysunek!) réwnosci

AB = AO + OB,

BC =BO + OC,
i obliczamy iloczyny skalarne obu ich stron odpowiednio w wektorem OO (ktory jest
prostopadly do AB na mocy definicji wysokosci spuszczonej z wierzchotka C') i wektorem

AO (ktory jest prostopadty do BC na mocy definicji wysokosci spuszczonej z wierzchotka
A). Mamy wiec dwie rownosci

czyli

Stad (BO) - (QO) = (BO) - (AO), tj.
(BO) - [AO — C0] = (BO) - [AO + OC] = (BO) - (AC) =0.

To koniczy sprawe.
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Zadanie We3

Pokazaé, ze przekatne rombu przecinaja sie pod katem prostym

Rozwigzanie: Romb jest to rownolegtobok rozpiety na dwoch wektorach a i b o réwnych
dtugosciach: |a| = |b|. Niech wierzchotkami rombu (obiegamy go po obwodzie) beda
punkty A, B, C'i D. a = AD, b = AB w notacji z poprzedniego Zadania. Oczywiscie
wektory AC i DB bedace przekatnymi rombu sa dane przez

AC=a+b,
DB=a—-b.

Zatem
(AC)-(DB) = (a+b)-(a—b) =0.

Koniec dowodu.

Przypomnienie
Polem réwnolegloboku rozpinanego w przestrzeni®® AE"™ przez dwa wektory a i b jest
nieujemna liczba

Area(a,b) = Voly(a, b) = ||a| |b]| | sina(a, b)

Y

gdzie a(a, b) jest katem pomiedzy wektorami aib. Wzor ten mozna zapisaé przez iloczyny
skalarne

Area(a,b) = [a] [b] /1 — cos? a(a,b) = /[a]? [b]? — (a-b)2.

Skorzystalismy tu z definicji cos a(a, b) = (a-b)/|a| |b|. Zatem

a-a a-b
Area(a,b) = Voly(a,b) = \/det<a-b b-b) = y/det(gij) -

g = det(g;;) jest tu wyznacznikiem macierzy g;; (macierz ta jest tez znana jako ma-
cierz Grama) tzw. tensora metrycznego indukowanego na plaszczyZnie rozpinanej przez
wektory a i b przez iloczyn skalarny w AE". Stuszny jest tez ogdlniejszy wzor®?

VOld(ab ar, ..., ad) = \/ det(gw) )

81Wszystko, co tu bedzie o polach powierzchni i objetosciach dotyczy réwniez tworéw rozpietych na
wektorach dowolnej przestrzeni wektorowej z zadanym iloczynem skalarnym. Oczywiscie w przypadku np.
przestrzeni wektorowej wielomianéw pole powierzchni i objeto$é beda pojeciami dosé abstrakcyjnymi...

82Wzor ten ma swoj odpowiednik w geometrii rozniczkowej. Jesli w przestrzeni AE™ (naprawde, prze-
strzeri afiniczna nie jest konieczna, ale, zeby nie komplikowaé...), ktorej baza (tj. baza odpowiedniej
p. wektorowej) sa ortonormalne wektory e; jest zanurzona d-wymiarowa rozmaitosé M (to jest takie
co$, co mozna jakos matematycznie “obmacaé”’; M od ang. manifold, albo niem. Manifaltigkeit, albo
mnogoobrazije po ros.) zadana (przynajmniej lokalnie) wzorami

e (S
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w ktorym
Gij = A;-3a5,

na objetos¢ d-wymiarowego rownolegloscianu zbudowanego w n-wymiarowej przestrzeni
AE" z d wektorow ay, ..., a,.

Przyklad
Obliczymy objetosé rownoleglodcianu zbudowanego na trzech wektorach z VR?
1 1 1
Wi = 1 Wo = 2 W3 = -1
1] 2|7 —1
1 1 1

Latwo znalez¢é macierz iloczynéw skalarnych

4 6 0
g=1|6 10 -2
0 -2 4

Obliczamy wyznacznik (po skosach): det (¢) = 160 — 16 — 4 - 36 = 0. Odpowiedz wydaje
sie sensowna, jesli sie zorientowac, ze 3wy — 2wy = Wy - trzeci wektor jest liniowo zalezny
od dwu pierwszych, wiec ten rownolegtoscian jest zupetnie “ptaski”.

Powstaje tu natychmiast pytanie, jak zdefiniowana w ten sposéb objetosé rownolegto-
Scianu zbudowanego na n wektorach vi,...,v, ma si¢ do objetosci tego samego tworu

gdzie &', ..., €% sa rzeczywistymi parametrami (zmieniajacymi sie w jakim$ zakresie), to w kazdym
punkcie p owe]j rozmaitosci jest przyczepiona do niej wektorowa przestrzeri styczna T, M, ktérej naturalng
baze stanowia (stowarzyszone z uktadem wspotrzednych &) wektory
. ozt oxt ox™
la—eia—ga:ela—ga—f—...—f—ena—ga.
Wzoér
d?Vol, = d%¢ /g,

w ktorym g = det(gqp) = det(i, - 1) daje wtedy objetosé infinitezymalnego kawatka tej rozmaitosci
majacego kszalt rownoleglogcianu zbudowanego z d wektorow ijd¢!, ..., igdé? wychodzacych z punktu
p. Calka z d%¢ /g po calej rozmaitosci (lub jej kawatku) daje jej d-wymiarows objetosé (jej kawalka).
W przypadku d-plaszezyzny (ktora jest najprostszym rodzajem rozmaitosci) rozpietej w AE™ przez d
wektorow a;, ¢ = 1,...,d i przechodzacej przez punkt p wspélrzednymi sa po prostu parametry &°
w definiujacym ja wzorze p(¢l,...,&%) = p + a;£'. Objetoéé obliczana w tekscie odpowiada wtedy
scatkowaniu d?¢ V9 po “kostce” 0 < £ < 1, co daje wlasnie objetosé réwnolegloscianu zbudowanego z
wektorow aq, ... ag.
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zdefiniowanej w sposob “topologiczny”, przez wyrdznienie jednej catkowicie antysyme-
trycznej formy n-liniowej? OdpowiedzZ jest taka, ze objeto$¢ tu zdefiniowana jest warto-
Scia bezwzgledna objetosci “topologicznej”; jesli uzywany tu iloczyn skalarny ma macierz
Sij = 0;; w bazie f; dualnej do bazy, w ktérej forma objetosci “topologicznej” ma postac
Vol = LA AT Rzeczywiscie: jesli wektory rozpinajace rownolegto$cian napisaé¢ w
bazie f;, to (zobacz Zadanie pod definicja objetosci topologiczne;j)

1 1 1
Upr Ypz - Yipn + 4 1
v2 v2 o 02 e
Vol (Vi, ..., vy,) =det| "1 ()2 Ml =det| vi vo ... v,
., A
Unr Ypz o Uipm

7 drugiej strony, skoro w tej bazie v - v; = vé f kvé e to macierz tensora metrycznego g;;
mozna napisa¢ jako iloczyn dwu macierzy:

Vi'Vi Vi:Vo ... ViV, — Vi — T T T
Vo'Vi V9:Vg ... V'V, — Vy —

g = ] ) ] = Vi Vo ... V,
V' Vi VpVo ... V-V, — v, — ol

Zatem g = JT - J. Poniewaz jednak det(J? - J) = (detJ7)(det.J) = (detJ)?, to podane

wyzej stwierdzenie jest uzasadnione.

Wyrazenie pod pierwiastkiem we wzorze Area(a,b) = +/|a]?[b|? — (a-b)2 mozna
takze zapisa¢ inaczej:

[al b = (a-b)* = ) (a'V’ — a'b')*.
i<j
Rzeczywiscie: prawa strona po rozpisaniu daje
> (@) (HV) + ) (alad)(H6) — 2 ) (a'b)(al).
i<j i<j i<j
Dwie pierwsze sumy prawie daja
D (d'a)Y (YY) = (a'a' + .. +ama") (B + .+ 5,
( J
brakuje tam tylko wyrazow > _.(a'a’)(b'0") = a'a'b*b! + ... + a"a"b"b". Zatem
D @V —alb)? =) (a'a') > (V) =Y (aa)(bb) — 2 (a'b)(a’l)
1<j ) i ) 1<J

a to juz jest to, co trzeba, czyli |a|? [b|* — (a-b)?. Otrzymujemy wiec

Area(a, b) Z (a'd — aib?)?

1<J
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Tej ostatniej postaci tatwo w dwoch i trzech wymiarach (tj. w E? i [E?) nada¢ geometryczna,
interpretacje, jesli wprowadzié¢ iloczyn wektorowy (Zadanie nizej).

Zadanie

Znalez¢ bilinowe odwzorowanie f okreslone na VR? x VIR3 o wartosciach w VIR® majace
nastepujace wlasciwosci: i) jesli wektory a i b sa liniowo niezalezne, to wektor ¢ = f(a, b)
jest prostopadly (w sensie kanonicznego iloczynu skalarnego w VIR3) zaréwno do a, jak i
do b; i) f(e;,es) = e3 (wektory e; sa tu ortonormalna baza VIR?). Co daje f(a,b), jesli
a i b sg liniowo zalezne?

Rozwigzanie: Z biliniowosci f wynika, ze jesli a = e; a%e), b = e bée), to f(a,b) =
f(ei,ej) aée)b{e), czyli wystarczy zada¢ f na parach wektoréw bazy. Co wiecej, wektor
f(a,b) mozna zawsze napisa¢ jako kombinacje liniowa wektorow bazy e;:

f(a,b) = exf*(es, ;) ajl,,

wiec zadanie catego odwzorowania wymaga podania “tablicy” 3% = 27 liczb fkij = f*(ei, e;).
Wykorzystajmy teraz informacje, ze a- f(a,b) =0ib- f(a,b) = 0. Skoro e; -e; = d;;,
warunki te daja rownosci:®?

koek ipj _ akpk ipi
a’ff;a'tt =00 f5,a't = 0.

Poniewaz maja zachodzi¢ one: pierwsze dla dowolnego wektora a (byle liniowo nieza-
leznego od ustalonego, ale tez dowolnego, b), czyli dla niemal dowolnych tréjek liczb
(a*,a? a?), a drugie dla (niemal) dowolnych trojek liczb (b, 02, b%), to jest mniej wiecej
jasne® (to “mniej wiecej” to jest réznica miedzy matematyka matematyczng, a matema-
tyka fizyczna...), ze fkij = —fikj oraz fkij = —fjik. Z tego mozna jednak wysnué¢ wniosek,
ze takze fr; = —f*.:

k i j k
fij:_flkj:f]ki:_ ji

Symbol fkij jest wiec catkowicie antysymetryczny wzgledem transpozycji dowolnej pary
wskaznikow. Samo odwzorowanie jest zatem takze antysymetryczne: f(a,b) = —f(b,a).
Wynika stad natychmiast odpowiedz na pytanie, co f(a,b) daje, gdy a i b sa liniowo
zalezne: oczywiscie zero, tj. wektor zerowy 0.

Wystarczy teraz skorzystaé¢ z drugiej informacji o odwzorowaniu f, czyli z tego, ze
f(er,er) = es, by ustali¢, ze f3, = 1, a zatem, ze

+1  gdy ijk =123, 312, 231 (parzyste permutacje)
kij =¢p =14 —1 gdyijk=132, 321, 213 (nieparzyste permutacje)
0  w pozostalych przypadkach

83Pominiemy juz ten dopisek (e) na sktadowych wektorow - powoli wyrastamy juz z przedszkola...

84No, jesli ktos nie widzi, to prosze: Oznaczmy na chwile f;-kbk = ¢;;. Jesli ¢;ja’a’ = 0 dla dowolnych
(at,a?,a?), to biorac a* = 1, a? = a3 = 0 widzimy, ze c¢;; = 0; potem bierzemy a? = 1, a! = a3 =0
widzimy, ze cas = 0 i podobnie ¢33 = 0; potem a! = a® =1, a® = 0 da ¢12 4+ co1 = 0 itd. Czyli Cij = —Cji,

co oznacza, ze [, bF = —f7 bk Ale (b',b2,b%) tez sa dowolne, wigc musi po prostu byc ==
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WprowadziliSmy tu tradycyjny symbol €, zwany tensorem Levi-Civity. WprowadZzmy
takze drugie tradycyjne oznaczenie f(a,b) = a x b. Znalezione odwzorowanie f(a,b)
jest bowiem znanym ze szkoly®® iloczynem wektorowym dwu wektoréw. Definiujaca go
(wraz z warunkiem biliniowosci) warto$¢ na wektorach bazy ortonormalnej mozna wtedy,
korzystajac z tensora Levi-Civity, zapisa¢ w postaci

€, X e = €,Le.
Zadanko
Obliczy¢ v x w, jesli: a) v =2e; + e, —e3, w = e; + ey + 2e3, oraz b) v = e; + 2e; — e3,
w = —2e; + 4ey + 2e3.
Rozwigzanie: Mozna skorzysta¢ z biliniowosci, by napisa¢
VX Ww=(ev") X (eju!) =e; X evu = ¢y e,vw =ee;v'w .

Skorzystaliémy ponadto z tego, Ze €, = €x;;. Stad jawnie

3

v x w = e, (vw’ — viw?) + ey(vPw! — v'w?) + ez(viw?® — v*w') =3e; —5ey +e3.

Mozna tez postuzy¢ sie znanym “patentem’

€1 €9 €3 €e; €9 €3
vxw=|vl 2 ¥|=|2 1 —1|=3e —5ey+es.
w' w? w? 1 1 2

Sprawdzamy wynik obliczajac iloczyny skalarne:

(3e; —bey+e3)v=3-2—5-2+1-(—1)=0,
(361—582—|—eg)'W:3'1—5'1+1'2:O.

W przypadku b) v x w = 8e; + 8es.

Uwaga: Patrzac na wzor na sktadowe wektora ¢ bedacego iloczynem wektorowym a x b
widzimy, ze w przestrzeni VIR3

Area(a, b) = v/(alb? — a2b!)2 + (alb® — a3b1)? + (a2b3 — a®b?)2 = |a x b|.

W VR? oczywicie to nie dziala, ale mozna sobie w myslach powickszyé¢ VR? do VIR?,
czyli wziaé¢ iloczyn kartezjanski VR? x VR, w ktérym wektory a i b lezg w tej pierwszej
podprzestrzeni (czyli majg zerowe sktadowe a3 i b3), i wtedy wzor

Area(a,b) = \/(a'b? — a2b)2 = |a'b* — a*b'| = |ax b]|,

85 A moze w szkolnym programie juz iloczynu wektorowego niema? W koricu to chyba za trudne dla
ministréow...
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pozostaje stuszny, bo wtedy a x b mozna zdefiniowaé.

W przypadku pola powierzchni rozpinanej przez wektory ai b w VR on > 3 z
kanonicznym iloczynem skalarnym, mozna zawsze wybra¢ baze VR™ tak, by wektory a i
b (jesli nie sa do siebie proporcjonalne, ale jesli sa, to Area(a,b) = 0 1 jest to przypadek
nieciekawy) byly jej pierwszymi dwoma wektorami. Po zastosowaniu do takiej bazy upo-
rzadkowanej ortonormalizacji Grama-Schmidta dostajemy baze ortonormalng e;, w ktorej
e; X a, a e jest kombinacja liniowa a i b, czyli b jest kombinacja liniowa tylko e i es.
Mozna wtedy zdefiniowaé¢ wektor®® ”a x b”= ez a'b, i formalnie utrzymacé powyzszy wzor.

W VR? mozna tez zdefiniowaé¢ objetosé Vols(a, b, c) rownolegloscianu rozpietego na

trzech wektorach a, b i c:

axb
Cui
laxb]

_ ‘cl(azb?’ — a30) + AP — a'B®) + A (alb? —azbl)‘ .

Vols(a, b, c) = Area(a,b)-h=|axb|- =lc-(a x b)|

Poniewaz c-(a x b) = €;;za’t/c¥, wzor ten jest w istocie symetryczny wzgledem wszystkich
permutacji wektorow a, b i ¢, tzn. Vols(a, b, c) =Vol;(c, a, b), etc. Mozna bezposrednim
rachunkiem pokazaé, ze jest to to samo, co

a-a a‘b a-c
Vols(a,b,c) = /det(g) = |det | b-a b-b c-c
ca c¢-b c-c

86 Jest to oczywiscie konstrukcja sztuczna, bo do kazdej pary wektoréw a i b trzeba dobiera¢ w opisany
sposob odpowiednia baze; w ustalonej jednej bazie przestrzeni VR"™ nie mozna podaé¢ wzoru sensownie
definiujacego co$ takiego, jak wektor “a x b”. Z powierzchnia rozpieta w VR"™ na wektorach a i b mozna
stowarzyszy¢ tylko tensor a ® b nalezacy do VR™ ® VR”. W VR? jednak kazdemu takiemu tensorowi
odpowiada jednoznacznie wektor, ktory wlasnie nazywa sie iloczynem wektorowym. Odpowiednio$é ta
jest przyktadem ogolniejszej dualnosci tensorow kontrawariantnych rzedu p (p < n) i tensoréw kowariant-
nych rzedu n — p. (Wektor jest tensorem kontrawariantnym rzedu 1, a kowektor tensorem kowariantnym
rzedu 1). Tensorowi TP) = e;, ®...®e;, t!" przyporzadkowany jest jednoznacznie kowariantny tensor
dualny

(n—p) A1 "jnfp . . . . il"'iP
T =e'®...0€e 6]1~~~]nfp711~~~1p t :

Symbol €, ;, jest uogoélnieniem symbolu (tensora) Levi-Civity: €12, =1 (albo —1, zaleznie od gustu,
byle sie na co§ zdecydowac) i dalej przez permutacje parzyste i nieparzyste; jesli dwa indeksy maja te
samg warto$¢, to symbol znika. (Mozna to jeszcze bardzieje abstrakcyjnie i bardziej ogolnie podefiniowag,
ale juz na tym poprzestaniemy).

Zatem w VR tensorowi drugiego rzedu a® b = e; ® e; a’b’ odpowiada jedno-forma, czyli kowektor
f=ek €kij a't’, ale przez izomorfizm Frecheta-Riesza mozna go utozsamié z wektorem ey, €kij a'h! = axb.

Ogolnie, pod szumna nazwa “izomorfizm Frecheta-Riesza’ kryje sie utozsamienie kowektora w z prze-
strzeni dualnej V* z takim wektorem w z V', ze przy dowolnym wektorze v z V zachodzi réwnosé

w(v) = (w|v)s .

Jak stad widaé¢, izomorfizm ten jest zadany przez jaki§ wyrozniony iloczyn skalarny (+]-)s w przestrzeni
V.
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Najprosciej jest w tym celu przyjac¢ baze (zwiazana z wyjsciowa kanoniczna zero-jedynkowa,
baza VIR? macierza ortogonalna, nie zmieniajaca macierzy iloczynu skalarnego), w ktorej
c ma tylko pierwsza sktadowa niezerowa, a ma tylko dwie pierwsze sktadowe niezerowe,
a b wszystkie. W takiej bazie |c-(a x b)|> = (c'a?b?)?, a obliczenie det(g) tez si¢ troche
upraszcza (cho¢ jest dalej nieco zmudne). Tak wiec ta szkolna definicja objetosci pokrywa
sie z ta oparta na wyznaczniku tensora metrycznego (macierzy Grama), a ta z kolei (z
doktadnoscia do znaku) z definicja oparta na troj-formie objetosci ' A €2 A 3. Defi-
nicja oparta na wyznaczniku tensora metrycznego stosuje si¢ jednak w dowolnej liczbie
wymiarow.

Zadanie
Obliczy¢ objetosé rownolegloboku rozpietego w VIR? na wektorach

a= e} +2ey+3e3,
b:2€1—362+463,

c=3e —4ey —bHes,

jesli trzy wektory e; tworza baze ortonormalng.
Rozwiazanie: Najprosciej skorzysta¢ ze wzoru Volz(a,b,c) = |c-(a x b)|. Poniewaz
iloczyn wektorowy a x b jest dany sztuczka z wyznacznikiem

€e; €y e3
axb=|a" a a*]|,
bt v? b

a iloczyn skalarny jest kanoniczny, nietrudno zobaczy¢, ze
ct 2 3 —4 -5
Volz(a,b,c) = |a! a* a®|=|1 2 3 |=78.
vtovr v 2 -3 4

Sprawdzmy to metoda macierzy Grama (macierzy tensora metrycznego). Ma ona postac

14 8 —20
8 29 -2 |,
—20 -2 50

a jej wyznacznik jest rowny 6084 = (78)2, tak jak byé¢ powinno.
Zadanie 80
Zmalez¢ odlegtos¢ w AE* punktu A = (5,6,7,8) od hiperpowierzchni H (3-plaszczyzny)

zdefiniowanej nastepujaco

H = {(1'1,1'2,1’3,1’4) €Ey: 4z + 329+ 2253+ x4 = 30} .
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Rozwiazanie: Odlegtosé punktu A od hiperpowierzchni H jest to najmniejsza odlegtosé
pomiedzy A i punktami Py € H (minimalizujemy odleglosé¢ ze wzgledu na punkty Pp).
Jest ona tym samym co odleglo$¢ od A punktu przeciecia z H prostej [ przechodzacej
przez A i prostopadlej do H (tj. prostopadlej w sensie kanonicznego iloczynu skalarnego
w E4 do wszystkich wektorow stycznych do H w punkcie przeciecia). Do rozwiazania
problemu wystarczy zatem znalezé wektor prostopadly do H oraz prosta przechodzaca
przez A i majaca kierunek tego wektora.

Tu wygodnie jest zapomnie¢ o (nieistniejacym w rzeczywistosci) podziale na analize i
algebre (to, co istnieje rzeczywiscie, to konkretny problem do rozwiazania) i skorzystac z
tego, ze gdy hiperpowierzchnia zadana jest ogélnym warunkiem

f(xlax2>$3>$4) = Oa

(tu f(z1, e, x3, 24) = 421 + 329+ 223+ 4 — 30), to wektor prostopadtly do niej (w punkcie
o wspotrzednych (1, x2, r3,74)) jest gradientem f, tj. ma skltadowe

of of of 9of
81’1’ 81’2’ 81’3’ 81’4 ’

W rozpatrywanym przypadku wektor prostopadly do H ma zatem postac®”
4

3
2
1

Roéwnanie parametryczne prostej [ przechodzacej przez A i majacej kierunek tego wektora
mozemy napisaé¢ “od reki” (¢ € (—oo, +00) jest tu parametrem)

T 5 4
i) . 6 3
|72
T4 8 1

Punkt jej przeciecia z hiperpowierzchnia H wyznacza réwnanie (tj. wyznacza warto$é
parametru t)

4(5+4t) +3(6+ 3t) +2(7T+2t) + (8 +t) = 30,

8"Mozna tez ten wektor znalezé czysto algebraicznie przechodzac najpierw do parametrycznego opisu
hiperpowierzchni H:

T 3 3 1 1
o o 3 1 —4 2 0 3 0
| 73T o [T 2| T o
T4 3 0 0 —4

(Najpierw wybrane zostalo jedno szczegdlne rozwiazanie (x; = o = x3 = 24 = 3) rownania 4x1 + 3x2 +
2z3 + x4 = 30, a nastepnie wybrane trzy liniowo niezalezne wektory, na ktorych zeruje sie macierz 1 x 4
A= (4,3,2,1) problemu). Szukany wektor musi by¢ prostopadty do tych trzech wektorow rozpinajacych
hiperptaszczyzne H i poniewaz maja one po dwa pieterka zerowe kazdy, tatwo go znalez¢.
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tj. 60 4+ 30t = 30. Punkt przeciecia | z H charakteryzuje sie zatem parametrem t =
—1. Tak wiec prosta [ dla t = 0 przechodzi przez punkt A, dla ¢ = —1 za$ przebija
hiperpowierzchnie H. Odlegto$¢ d tych dwu punktéw dana jest zatem przez

d* = [21(0) — 21 (1) + [22(0) — 22(=1)]* + [23(0) — 23(=1)]* + [24(0) — 24(—1)]?
=42 432 4+224+12=230.

Odlegltosé A od H wynosi zatem v/30.

Zadanie 81
Zmalez¢ odleglo$¢ w Eg miedzy prostymi [y i ls zadanymi nastepujaco:
[ : {(5171,113'2,5E3)€E3: T1+ 29 = 1, l’1+2$2+x3:2}.
1 0 1
I | =2 +¢t]1
3 0 2

Rozwiazanie: Odlegtosé dwu prostych jest to dtugosé taczacego je odcinka skonstruowa-
nego tak, ze jest on prostopadty i do jednej i do drugiej prostej. Zapiszmy najpierw prosta
l1 w postaci patrametrycznej (co pozwoli nam zidentyfikowaé¢ wektor do niej styczny). W
tym celu wystarczy znalez¢ jakis punkt do niej nalezacy. Jest nim np. punkt (0,1,0).
Prosta [y moze zatem by¢ zapisana jako

Ty 0 [«
ll i) = 1 +1 ﬁ s
T3 0 y

przy czym state «, i 7 nalezy tak dobra¢ by spelione byly (dla dowolnej wartosci
parametru t) roéwnosci definiujace lq:

ta+(1+18) = 1,
ta+2(1+18) +ty = 2.
Musi wiec by¢ a+ =01 a+ 28+~ = 0. Oczywiscie wektor styczny do prostej l; moze

by¢ dowolnej dtugosci, wiec mozemy sobie wziaé jako rozwigzanie a =1, f = —1, v = 1.
Zatem w postaci parametrycznej

T 0 1
ll i) = 1 +1 —1
T3 0 1

Mozemy teraz znalezé wektor prostopadly zaréwno do [y jak i do 5. W [Ej jest tylko
jeden taki wektor (z doktadnoscia do wyboru jego dlugosci i zwrotu). Aby go znalezé
najwygodniej skorzystaé¢ z iloczynu wektorowego wektorow stycznych do [y i [y iloczyn
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taki daje bowiem zawsze wektor prostopadly do kazdego z przemnozonych przez siebie®®
wektorowo Wektor(’)w.89 Wykorzystujemy tu znana sztuczke z wyznacznikiem: wektor
v = (e, X (ejuj,) jest dany przez

€ €9 (S
1 2 3

V g w}G) wée) w(e)
Uy Uy U
Tu mamy

€ € €3

Zatem wektor o sktadowych

jest prostopadty do prostych l; i ls.
Mozemy teraz przedstawi¢ prosta [3 prostopadiag do [y i [y w ogdlnej postaci

Al a -3
13 : ) = b +T —1 s
T3 c 2

z parametrem 7 € R. Trzeba nastepnie dobra¢ a, b i ¢ tak, by prosta l3 dla pewnej
wartosci parametru 7, np. dla 7 = 0, przecinala prosta Iy w jakim$ punkcie A; € Iy
scharakteryzowanym wartoscia to parametru ¢, a dla jakiejs innej wartosci 7 przecinata
prosta [; w punkcie A; € [ scharakteryzowanym przez ¢ = t;. Daje to uklad szesciu
rownan na sze$¢ niewiadomych (a, b, ¢, T, t1, t3):

a = ta,

b = 241y,

c = 2ty
a—3r = 11,
b—17 = 1—1,
c+21 = t.

88Tj. przemnozonych jeden przez drugi; jak w dowcipie: “Cezar i Pompejusz byli do siebie podobni.
Zwtaszcza Cezar.”

89Trzeba tu zwrocié uwage, ze co$ takiego jak iloczyn wektorowy dwu wektoréw istnieje tylko w Esz; w
E4 np. dwa wektory wyznaczaja plaszczyzne, do ktorej prostopadte sa az dwa wektory; znany z Eg iloczyn
wektorowy staje sie tu tensorem (brr... straszne stowo! - zawsze budzi na widowni szmer poplochu...)
antysymetrycznym drugiego rzedu, o czym juz byto.
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Aby je rozwigzaé¢ sprawnie a systematycznie, eliminujemy najpierw a, b i ¢ (biorac je z
trzech pierwszych rownan):

t2 —3r = tl y
2+ t2 -7 = 1-— tl 5
2t2 + 27 = tl .
Odejmujac od ostatniego pierwsze mamy t, = —57, a drugie i trzecie, po wstawieniu tego

do nich sprowadzaja sie do

2—67r = 1-— tl s
—87 = t1 s
i stad juz gltadko 7 = 1/14, t; = —8/14, to = —5/14. Wracajac do réwnan z a, b i ¢

znajdujemy a = —5/14, b = 23/14 1 ¢ = —10/14. Zatem prosta [3 prostopadta do [; i do
[ ma postaé

T 1 -5 -3
lg : T = ﬁ 23 + 7 -1 s
T3 —10 2

i dla 7 = 0 przecina ls, a dla 7 = 1/14 przecina [;. Zatem odleglos¢ d prostych [; i Iy od
siebie jest dana przez

P = [11(0) = 11 (/10 + [1(0) — 2(1/14)] + [5(0) — 5(~1/14) = -

i wynosi 1/v/14.

Zadanie 82

Rozwiaza¢ poprzednie dwa zadania metodami analizy (aby przeciwdziata¢ powstawaniu
w mtodych umystach podzialu matematyki na analize i algebre...).

Rozwigzanie: Szukania odlegtosci punktu A = (5,6,7,8) € E; od hiperptaszczyzny H
zadanej warunkiem 4z, +3x,+2x3+ x4 = 30 sprowadza sie do problemu zminimalizowania
funkcji

f(LL’l,LL’Q, xs3, 1’4) = (S(Il — 5)2 + (LL’Q — 6)2 + (1’3 — 7)2 + (LL’4 — 8)2,

dajacej kwadrat odlegtosci od punktu A punktu X o wspohrzednych (zq,x9,23,14) 2
warunkiem ubocznym, by punkt X nalezal do hiperptaszczyzny H

g(x1, T2, 3, 24) = 421 + 329 + 223 + 24 — 30 =0.
Zgodnie z ogblna metoda minimalizujemy wiec funkcje
F(x1, 2,23, 24) = f(21, 29, 73, 74) + A g(21, 02, 73, 74) .
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Przyréownujemy do zera cztery pochodne

Fl =2(x; —5)+4\ = 0,
Fl =2(zy—6)+ 3\ = 0,
Flo=2(x3—T)+2\ = 0,
Flo=2(x,—8) + A = 0,

i rozwiazujemy powstale rownania razem z warunkiem g(xy, zo,x3,74) = 0. Po wyzna-
czeniu x; z warunkow F = 0

ry = 5—2)\,
3
To = 6—5)\,
r3 = 7—)\,
1
Ty = 8—5)\,

i wstawieniu do g(z1, xe, z3,x4) = 0 znajdujemy 60 + 15X = 30, czyli A = 2. Stad z; = 1,
o =3, x3 = 51 x4 = 7. Macierz drugich pochodnych funkcji F'(xq, xe, x3,24)

2

O O NN O
o N OO
N O OO

0
0
0

jest niezalezna od punktu, diagonalna i dodatnio okreslona. W znalezionym punkcie
(1,3,5,7), w ktorym zeruja sie pierwsze pochodne mamy zatem minimum. Wartos¢ funkcji
f(x1, 29, x3, 14) W tym punkcie wynosi 30, czyli odlegtosé punktu A od hiperptaszczyzny
H jest rowna V/30.

W drugim zadaniu wprowadzamy funkcje
f(l’l, To, T3, t) = (1’1 — t)2 + (1’2 —1— 2)2 + (1'3 — 2t)2 s

bedaca kwadratem odleglosci punktu X o wspotrzednych (x4, o, 23) od punktu na proste;j
ly scharakteryzowanego parametrem ¢. Minimalizujemy zatem funkcje czterech zmien-
nych. Warunkiem dodatkowym jest to, ze punkt X musi leze¢ na prostej /1, co oznacza,
ze wspoOtrzedne (1, x9,x3) musza spelia¢ warunki (uproscilismy tu drugi z warunkow
zadajacych prosta ly odejmujac oderi pierwszy)

g1(x1, 9, x3,t) =21 + 22— 1 =0,

Go(21, 29, 3,1) =29+ 23 —1=0,

(chociaz warunki g; i g» dotycza tylko wspotrzednych punktu X, to mimo to, nalezy je for-
malnie traktowaé jak funkcje wszystkich zmiennych, ze wzgledu na ktoére minimalizujemy
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funkcje f). Znow tworzymy funkcje pomocniczg zalezng od dwu mnoznikow Lagrange’a

)\1 1 >\22

F(x1, 29, 3, t) = f(x1, 22, T3, 1) + 2M191(21, T2, T3, 1) + 2XA292(21, T2, 23, 1),

(zeby sie tadniej liczby komponowaly przyjeliSmy za mnozniki Lagrange’a 2X\; i 2);) i

przyrownujemy do zera jej pochodne czastkowe po xy, o, 231 t:

F, = 2(x; —t)+2M\ =0,

Fl, = 2wy —t—2)+2\ + 2 =0,

F! = 25— 2) + 22 =0,

F' = 201 —t) — 2wp —t — 2) — 4(ws — 2) = 0.

W potaczeniu z warunkami ubocznymi daje to uktad szesciu rownan

r1—t+ A =0,
To—t+ A+ X =2,
x3—2t+ X =0,

T1+ o+ 2x3 — 6L+ Ny =2,
T+ 20 =1,

To+ax3=1.

Aby je systematycznie rozwigza¢ wyznaczamy z pierwszych trzech x; = t — A\, 25 =
t— A — A+ 2, x3 = 2t — Ay 1 wstawiamy do pozostatych trzech. Pierwsze z nich daje

wtedy
20 + 3N =0,
a pozostalte

2t =2\ — Ay = —1,
3t—A — 2\ =—1.

Po wyeliminowaniu \; otrzymujemy dwa réwnania

2t + 20y = —1,
1
3t — =X =—1
2 2 )
ktorych rozwiazaniem sa t = —%, Ay = —%; dalej juz tatwo: \; =
8 22
nEmET T
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Wartosé minimalizowanej funkcji f(z1,x2,x3,t) w tym punkcie wynosi i (tak jak nam
to wyszto w zadaniu 81). Macierz drugich pochodnych F(xy, z9, x3,t, A1, A2) ma postaé

2 0 0 -2
0 2 0 -2
0 0 2 -4

-2 -2 —4 12

Jest ona dodatnio okreslona bo najwiekszy jej minor jest tez dodatni (aby to zobaczy¢
wystarczy do ostatniego wiersza dodaé¢ wszystkie trzy poprzednie wiersze, co da macierz
gornotrojkatna o dodatnich wyrazach na diagonali), wiec nie trzeba nawet jej bada¢ na
wektorach stycznych do powierzchni g¢i(x1,xo, x3,24) = 01 go(x1, 29, 23,24) = 0. W
znalezionym punkcie jest zatem (tak jak nalezato oczekiwad) minimum.

Zadanie 83

Znalez¢ w przestrzeni Ey (ktorej wspotrzedne oznaczymy x, y, u i v) odleglosé pomiedzy
prosta ¢ zadang wzorem

+1

S e R
—_— 0 = O
=W N =

i ptaszczyzng X wyznaczana przez rOwnania

r+y+ut+v=1,
r—y+u—v=1.

Rozwiazanie: Odlegtos¢ prostej od plaszczyzny jest to najkrotsza odlegtosé pomiedzy
dwoma punktami, z ktérych jeden nalezy do prostej ¢, a drugi do plaszczyzny . Za-
uwazmy, tez ze prosta k laczaca te dwa punkty prostej ¢ i plaszczyzny X, ktore realizuja
minimum odlegtosci, jest prostopadta (w sensie kanonicznego iloczynu skalarnego) za-
rowno do prostej ¢ jak i do ptaszczyzny X.

Tak jak i poprzednie, zadanie to mozna rozwigzaé¢ albo geometrycznie albo analitycz-
nie. Aby rozwiazaé¢ problem geometrycznie, musimy podaé¢ opis plaszczyzny analogiczny
do opisu prostej. Poniewaz réwnania definiujace ptaszczyzne ¥ sa proste, tatwo zobaczyé,
ze jest ona rownowaznie zadana wzorem (£ i 1 sa rzeczywistymi parametrami)

z 1/2 1 0
vyl 0 0 1
w | T2 | T < T o
v 0 0 —1

Bez zadnych rachunkéw mozna natychmiast poda¢ dwa liniowo niezalezne wektory pro-
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stopadte do obu wektoréw rozpinajacych ptaszczyzne 3I; sa to np.:

O = O =
_ o~ O

7 tych dwoch wektoréw robimy teraz kombinacje liniowa prostopadta do wektora rozpi-
najacego prosta £. Jest to kombinacja

Prosta k taczaca prosta ¢ z plaszczyzna 35, na ktorej lezg najblizej siebie potozone punkty
prostej i ptaszczyzny musi zatem mieé postaé

x a 3
y| [0 —2
ul | ¢ ts 3
) d -2

Parametr s mozna wybraé¢ tak, by jego wartos¢ s = 0 odpowiadala punktowi nalezacemu
do prostej ¢. Przy takim wyborze a =t, b =1+ 2t, ¢c =3t id =1+ 4t dla jakiego$ t.
Warunek, by dla prosta k przecinata ptaszczyzne X dla jekiegos s ma wtedy postaé

t 3s 5+¢
142t —2s| n

st | T ss | T i-¢
1+ 4t —2s —n

Sa to cztery rownania na cztery niewiadome, t, s, £ i . Aby sie nie napracowac, mozna
zauwazy¢, ze odlegtosé punktu nalezacego do ¢ od punktu ptaszczyzny >, o ktora chodzi
jest po prostu rowna dlugosci wektora

Rozwiazywa¢ uklad réwnan mozna wiec tak, by wyznaczy¢ tylko s. Latwo znajdujemy,
ze s = 7/26, a stad odlegtosé prostej ¢ od ptaszczyzny ¥ wynosi 7/+/26.

Analityczne rozwigzanie tego zadania polega na napisaniu kwadratu odlegtosci
& = (1 — 22)* + (y1 — 12)° + (1 — w2)* + (v1 — 1),
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miedzy dwoma punktami przestrzeni E4. Pierwszy z nich, o wspotrzednych (x1, y1, u1,v1),
nalezy do prostej ¢, a drugi, o wspohrzednych (xq, s, us, v2), nalezy do plaszczyzny X.
Wobec tego x1 = t, y1 = 142t, u; = 3t, v; = 1+4t (co pozwala sparametryzowaé zmienna
x1 wszystkie pozostate wspolrzedne tego punktu) oraz xo+us = 1, yo+v9 = 0 (co pozwala
uzy¢ ro i yo jako parametrow zadajacych potozenie tego punktu w przestrzeni). Zatem d>
staje sie funkcja trzech niezaleznych i nie ograniczonych zadnymi warunkami zmiennych

T1, T2 1 Yo:
d* = f(x1,29,2) = (11 — 22)* + (1 + 225 — 92)® + 3wy — 1+ 12)? + (day + 1 +312)?,

Aby znalezé minimum tej funkcji przyrownujemy do zera jej pochodne czastkowe

fo, = 2(w1 —22) 41+ 221 —y2) +6(3x1 — 1+ 22) + 8(1 +4x1 +32) =0
f:lvg :_2(I1 _IQ) _'_2(3.:(:1 — 1+,’L‘2) :0
foo = —2(1 4221 — 3o) 4 2(1 4+ 42y + ) = 0.

Dodajac do pierwszego réwnania drugie i dwa razy trzecie upraszczamy ten uktad rownan

do

721’1 + 85(72 + 12y2 =4

2!13'1 + 2:13'2 =1
219 +2y, = 0,
a stad juz tatwo obliczamy, ze
4 17 4
rTH = —— To = — = —.
1 96’ 27 967 Y2 2%

Macierz drugich pochodnych w funkeji f(z1, 2, y2) w tym punkcie ma postaé

60 4 4
4 4 0
4 0 4

i jest dodatnio okreslona (znéw wiec nie trzeba juz jej bada¢ na wektorach stycznych do
powierzchni wiezéw). Funkcja f ma zatem w tym punkcie minimum. Obliczamy wartosé
funkcji f w tym punkcie:

4 17 4 [(—4—17)* 4 (26 —8 — 14)? + (—12 — 26 + 17)? + (26 — 16 + 4)?]

i

~36° 26 26 20)?

— (22)2 [(21)* + (14)*] = (%) - 26.

Odlegtosé¢ d prostej ¢ od plaszczyzny ¥ wynosi zatem 7/4/26, tak jak to poprzednio
obliczyliémy metoda geometryczng.
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