
Przestrzenie metryczne

Analizę, czyli badanie lokalnych właściwości zbiorów (albo tych właściwości określanie
- bo jak się okaże są one do pewnego stopnia zależne od przyjętych do ich badania in-
strumentów) i funkcji na nich określonych, można uprawiać wtedy, gdy sens ma pojęcie
wzajemnej odległości dwu elementów zbioru. Z tego powodu ważną rolę w matema-
tyce odgrywa klasa przestrzeni zwanych przestrzeniami metrycznymi (przypomnijmy, że
dla matematyka przestrzeń to taki zbiór, który jest na potrzeby chwili całym światem -
trochę jak Wszechświat dla fizyka: pytanie co jest na zewnątrz Wszechświata albo ma-
tematycznej przestrzeni jest naogół, mówiąc językiem filozofii, nieprawomocne - a różne
przestrzenie łączą ze sobą tylko odwzorowania, czyli abstrakcyjne przyporządkowania).

Przypomnienie: Przestrzeń metryczna jest to para: (X , d), w której X jest zbiorem,
a d funkcją, zwaną metryką określoną na X × X o wartościach w R+, (czyli po ludzku:
maszynką z dwiema dziurami, do których wrzuca się dwa elementy zbioru X i dostaje
w zamian rzeczywistą liczbę nieujemną, którą właśnie nazywamy odległością wzajemną
tych dwu elementów) o następujących właściwościach (x, y, z są tu elementami X ):

i) d(x, y) ≥ 0, przy czym d(x, y) = 0 tylko, gdy x = y,
ii) d(x, y) = d(y, x),
iii) d(x, y) ≤ d(x, z) + d(z, y) (“nierówność trójkąta”).

Nas najbardziej jako przestrzeń będzie interesować Rn (której elementami są uporządko-
wane n-ki liczb (x1, . . . , xn) , które będziemy też pisać jako żywe wektory x) i standardowa
metryka zwana euklidesową, dana wzorem

d(x, y) =
√

(x1 − y1)2 + . . .+ (xn − yn)2 ,

ale siła matematyki polega na tym, że przestrzenie mogą być bardzo rozmaite, a ogólne re-
guły pozostają takie same i wszystko co z nich można wywnioskować jest prawdą niezależ-
nie od tego, “czym” są przestrzenie, do których te reguły stosujemy. W samej przestrzeni
Rn można też wprowadzić inne metryki, ale zanim do nich przejdziemy, rozpatrzmy (tak,
aby się przestać bać matematyki - jak mówiłem kiedyś na wykładzie, trudną rzeczą jest
twórcze uprawianie matematyki; zrozumieć to, co matematycy wymyślili, to już każdy
może) jako przykład przestrzeń X , którą jest1 jednostkowy okrąg w R

2, czyli zbiór punk-
tów R2 spełniających warunek x21 + x22 = 1. Na tym zbiorze można określić jako metrykę
funkcję d1 poprzez przeniesienie nań metryki euklidesowej z R2 danej wzorem powyżej,
albo funkcję d2, która jest odległością od siebie dwu punktów liczoną “po łuku”. Inny,
bardziej “zaawansowany” przykład2 to przestrzeń C[0, 1] wszystkich rzeczywistych funkcji
ciągłych3 określonych na odcinku [0, 1] (przykład ten łatwo uogólnić na funkcje ciągłe

1A tu jakby można wyjść poza przestrzeń X , w R2, w której X jest zanurzona. To dlatego, że tę
prestrzeń konstruujemy przez “zanurzenie” w większej przestrzeni.

2Różne rzeczy dotyczące tego przykładu biorę z tetralogii Reeda i Simona, którą przy okazji bardzo
wszystkim polecam, bo jej autorzy w wielu miejscach tłumaczą co i dlaczego robią; poza tym jest to dzieło
zorientowane na fizykę i pozwalające zrozumieć różne matematyczne aspekty mechaniki kwantowej.

3Dlaczego ciągłych? Po to żeby nie trzeba było pytać w jakim sensie ta całka, która jest w definicji
metryki d2 i żeby funkcja nie robiła się nigdzie na odcinku [0, 1] nieskończona, co by pozbawiało sensu
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Rysunek 1: Ciąg fn rzeczywistych ciągłych funkcji na odcinku [0, 1].

określone na odcinku [a, b]). Na tej przestrzeni można określić (m.in.) metryki (f i g to
funkcje będące elementami, czyli punktami przestrzeni C[0, 1])

d1(f, g) = maxx∈[0,1] |f(x)− g(x)| , d2(f, g) =

∫ 1

0

dx |f(x)− g(x)| .

Dopiero gdy na przestrzeni X jest zadana jakaś metryka, można dyskutować zagad-
nienie zbieżności ciągów xn, n = 1, 2, . . . elementów przestrzeni X : mówimy, że ciąg taki
zbiega do elementu x ∈ X , czyli że limn→∞ xn = x, gdy d(xn, x) → 0.

To, czy dany ciąg zbiega do czegoś w X , czy nie, zależy jednak od przyjętej metryki d.
W przykładzie pierwszym (w którym przestrzeń X była jednostkowym okręgiem w R2)
zachodzą dość oczywiste nierówności (p i p′ to są punkty na rozpatrywanym okręgu)

d1(p, p
′) ≤ d2(p, p

′) ≤ (π/2) d1(p, p
′) ,

co powoduje, że metryki te są równoważne: jeśli ciąg punktów pn okręgu zbiega do punktu
p w jednej tych metryk, to zbiega i w drugiej. Nie jest tak jednak w drugim przykładzie.
Tu bowiem można tylko napisać nierówność

d2(f, g) ≤ d1(f, g) ,

i te dwie metryki nie są równoważne. Rozpatrzmy bowiem ciąg fn rzeczywistych funkcji
ciągłych na odcinku [0, 1] zdefiniowanych na rysunku 1 (łatwiej spojrzeć na rysunek, niż
czytać hieroglificzne wzorki). Ciąg ten w metryce d2 jest zbieżny do funkcji f(x) ≡ 0. Nie
jest on jednak zbieżny w metryce d1, bo d1(fn, 0) = 1, niezależnie od n. Metryka d1 (w
której zbieżność ciągu funkcji jest zbieżnością jednostajną, podczas gdy w metryce d2 jest
ona tylko zbieżnością punktową) jest “silniejsza”: każdy ciąg funkcji, który jest zbieżny
w metryce d1, jest też zbieżny w metryce d2 (bo d2 ≤ d1), ale, jak widać z powyższego
przykładu, nie na odwrót.

definicję metryki d1. Poza tym, gdyby dopuścić funkcje nieciągłe, to z d2(f, g) = 0 nie wynikałoby, ze
f = g, tak jak tego wymaga definicja metryki: nieciągłe funkcje f i g mogłyby się bowiem różnić na
zbiorach miary zero, czyli, mówiąc nieprecyzyjnie, w pojedyńczych punktach.
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Pewnym zabawnym przykładem metryki, którą można wprowadzić w zasadzie na do-
wolnym zbiorze X jest tzw. metryka dyskretna:

ddiscr(x, y) =

{

0 , gdy x = y
1 , gdy x 6= y

.

W tej metryce zagadnienie zbieżności ciągów wygląda dość karykaturalnie (zbieżne są
tylko ciągi stałe xn = x), niemniej funkcja ddiscr(x, y) jest możliwą metryką, bo spełnia
wszystkie podane w definicji metryki warunki.4

Mając metrykę na X można też zdefiniować ciągi Cauchyego, czyli takie, że dowolne
dwa ich wyrazy, poczynając od pewnego N leżą dowolnie blisko siebie, tj. d(xn, xn′) < ε
dla dowolnie małego ε > 0, jeśli tylko n′, n > N(ε). Ciągi takie stanowią podstawowe
narzędzie (śrubokręt i klapcążki) analizy matematycznej. Każdy ciąg zbieżny jest, jak
łatwo zobaczyć, ciągiem Cauchy’ego, ale nie każdy ciąg Cauchy’ego jest zbieżny. Dlatego
o takiej “dobrej” przestrzeni X , w której każdy ciąg Cauchy’ego elementów X jest zbieżny
(tzn., ma granicę, która jest też elementem X ) mówimy, że jest zupełna. Bo choć intuicyj-
nie wydaje nam się, że jak elementy xn ciągu Cauchy’ego są coraz bliżej jedne drugich, to
powinny do czegoś zbiegać, to wcale tak być nie musi. np. jeśli X = W (przestrzeń liczb
wymiernych) z metryką d(x, y) = |x− y|, a jako ciąg xn weźmiemy

xn =

(

1 +
1

n

)n

,

to taki ciąg, którego wszystkie wyrazy są liczbami wymiernymi, nie zbiega, choć jest
ciągiem Cauchy’ego, bo jak wiemy, jego granicą, jest niewymierna liczba e, ale ona nie
należy do W. I należy się tu postawić w pozycji Poldzia Kroneckera: dobry Pan Bóg
dał nam zbiór liczb naturalnych; my chytrze skonstruowaliśmy z nich liczby wymierne,
czyli przestrzeń W, ale poza nią nic nie istnieje! To jest to, co wyżej było: przestrzeń W

jest na razie całym światem - niema nic poza nim! I liczby niewymierne, czyli przestrzeń
R, trzeba dopiero stworzyć. Jak? Poprzez tzw. popołnienije Koszi przestrzeni W, czyli
przez podzielenie ciągów Cauchy’ego elementów tej przestrzeni na klasy równoważności
(dwa ciągi Cauchy’ego, co wydają się zbiegać do tego samego, uznajemy za to samo),
stworzeniu nowej przestrzeni X̃ = R, której elementami są te klasy równoważności ciągów
Cauchy’ego, które to klasy utożsamiamy z liczbami rzeczywistymi.

Oczywiście to, czy dana przestrzeń X jest zupełna, czy nie jest, zależy od tego, kakoj
mietrikoj ana nadieliena: można np. pokazać (choć to już wyższa szkoła jazdy), że
przestrzeń C[0, 1] jest zupełna, gdy rozpatrujemy ją jako przestrzeń metryczną z metryką
d1, a niezupełna, gdy z metryką d2.

Pojęcie wzajemnej odległości dwóch elementów zbioru, któremu sens nadaje metryka,
jest potrzebne, by zdefiniować ciągłość odwzorowań. Odwzorowanie jednej przestrzeni
metrycznej w drugą: f : (X , dX ) −→ (Y , dY) nazywamy ciągłym w punkcie x ∈ X ,
gdy dla każdego ciągu xn ∈ X (o xn 6= x) zbieżnego (w metryce dX ) do x ciąg f(xn)

4Ale po co nam taka metryka? Nie wiem. Matematycy, choć genialni, są trochę jak dzieci: znajdują
sobie zabawki i się nimi radośnie bawią, choć nikt poza nimi nie rozumie, z czego tak się cieszą...
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jest zbieżny (w metryce dY) do f(x) ∈ Y . Powinno już być jasne, że ciągłość danego
odwzorowania zależy od tego, jakie są metryki. Np. odwzorowanie F : (C[0, 1], d2) −→
(C[0, 1], d1), które funkcji f przypisuje tę samą funkcję (czyli odwzorowanie tożsamo-
ściowe) nie jest ciągłe (rozpatrzyć przykład ciągu funkcji z rysunku 1), a odwzorowanie
“odwrotne” F−1 : (C[0, 1], d1) −→ (C[0, 1], d2), okazuje się, jest.

Dobrze jest też uogólnić kilka pojęć znanych z analizy uprawianej w przestrzeni R na
dowolne przestrzenie metryczne. I tak

• Kulą otwartą K(x0, r) o promieniu r i środku w x0 nazywa się zbiór wszystkich
takich x ∈ X , których odległość od x0 jest mniejsza niż r. Hieroglifami: K(x0, r) =
{x ∈ X | d(x, x0) < r}.

• Zbiór A ⊂ X jest nazywany otwartym (w X , przy zadanej metryce d), jeśli każdy
element x ∈ A jest środkiem jakiejś kuli otwartej K(x, r) całkowicie zawartej w A
(tzn. można tak dobrać r, żeby wszystkie punkty kuli należały do A). Otwartość
zbioru zależy od przyjętej metryki. Np. w metryce dyskretnej każdy zbiór A ⊂ X
jest otwarty, bo K(x, 1) = {x} ⊂ A.

• Zbiór O zwie się otoczeniem punktu x0 ∈ O, jeśli istnieje kula otwarta K(x0, r) ⊂ O.
Można też ograniczyć się do otoczeń będących kulami.

• Punkt x ∈ A jest punktem wewnętrznym zbioru A ⊂ X jeśli A jest otoczeniem
punktu x. Czasem formułuje się to mówiąc, że istnieje kula K(x, r) ⊂ A; zbiór
wszystkich punktów wewnętrznych zbioru A nazywa się jego wnętrzem (intA).

• Punkt x ∈ A jest punktem izolowanym zbioru A ⊂ X jeśli istnieje taka kula K(x, r),
że A ∩ (K(x, r) − {x}) = ∅, czyli kula o środku w x, która poza samym x innych
punktów zbioru A nie zawiera.

• Punkt x nazywa się punktem skupienia zbioru A ⊂ X , gdy każda kula o środku
w x (i dowolnym promieniu r) zawiera punkty należące do A. Sam punkt x może
przy tym nie należeć do zbioru A. Skończony (czyli też dyskretny) zbiór punktów
przestrzeni metrycznej nie posiada punktów skupienia.

• Zbiór A zwie się zbiorem domkniętym, gdy należą doń wszystkie jego punkty skupie-
nia. Zbiór punktów skupienia dowolnego podzbioru A przestrzeni metrycznej jest
więc zawsze domknięty. Domknięcie Ā zbioru A ⊂ X to sam zbiór A i wszystkie
jego punkty skupienia. Domknięcie Ā zbioru A jest więc zbiorem domknietym.

• Brzeg ∂A zbioru A ⊂ X to ∂A = Ā− A .

• Zbiór A jest ograniczony, gdy istnieje jakaś kula (o skończonym promieniu r), w
której A się zawiera cały. Ograniczoność też może zależeć od przyjętej metryki: np.
w metryce dyskretnej, każdy zbiór jest ograniczony.5

5Dlaczego? Zob. Zadanie 2 i pomyśl.
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Rysunek 2: Dziwne metryki na R2: a) rzeczna (linia falista to rzeka) i b) kolejowa (gruba
kropka to kolejowy wezeł centalny).

Po tych odstuplenijach powróćmy na grunt dobrze nam znanej przestrzeni Rn. Jak
już było powiedziane można w niej wprowadzić wiele metryk. Oprócz metryki dyskret-
nej, która jest nie jest specjalnie subtelna, możliwymi metrykami (oczywiście nie są to
wszystkie możliwe!) są (x ≡ (x1, . . . , xn))

• metryka maximum d∞(x,y) =maxi=1,...,n|xi − yi|,

• metryka nie wiedzieć czemu zwana metryką taxi dtaxi(x,y) =
∑n

i=1 |xi − yi| (zwana
jest ona także6 metryką “miejską”),

• wspomniana już metryka euklidesowa dEucl(x,y) = [
∑n

i=1(xi − yi)
2]1/2.

Dla zabawy można też np. w R2 wprowadzić tzw. metrykę “rzeczną” pokazaną na rysunku
2a, w której

driv(x1,x2) = dEucl(x1,x2) , driv(x2,x3) = dEucl(x1, x̃2) + dEucl(x̃2, x̃3) + dEucl(x̃3,x3) ,

albo pokazaną na rysunku 2b metrykę “kolejową” w której

dkol(x1,x2) = dEucl(x1,x2) , dkol(x2,x3) = dEucl(x2, o) + dEucl(o,x3) .

Można się zabawić sprawdzaniem, że to też są dobre metryki.

Przykłady kuli otwartej w przestrzeni metrycznej (R2, dEucl) i zbioru A, który nie jest
ani otwarty ani domknięty pokazuje rysunek 3. Zbiór A jest zdefiniowany jako A =
{(x1, x2) ∈ R

2| x21 + x22 < 1, x1 ≥ 0, x2 ≥ 0}. Oba zbiory pokazane na tym rysunku są
ograniczone (kula choćby dlatego, że jest zawarta sama w sobie). Inne jeszcze przykłady
(już bez rysunków):

• zbiór A = {(x1, x2) ∈ R2| a < x1 < b, c < x2 < d} jest otwarty i ograniczony,
bo jest np. zawarty w kuli K((x

(0)
1 , x

(0)
2 ), r), gdzie x(0)1 = 1

2
(a + b), x(0)2 = 1

2
(c + d),

r = 1
2

√

(b− a)2 + (d− c)2,

6No, to można już zrozumieć: niektórzy po mieście się obwożą taksówką (zamiast na rowerze...),
choć akurat krakusy taksówkami nazywają prywatne samochody, a naszą warszawską taksówkę nazywają
“taryfą”.
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Rysunek 3: Przykłady zbiorów w przestrzeni R2: a) Kula K(x0, r); punkt x jest punktem
skupienia tej kuli, punkt x′ też, ale x należy do K, a x′ nie należy; b) Zbiór A, który nie
jest ani otwarty ani domknięty; punkty linii zaznaczonych falkami należą do A; punkty
leżące na ćwierćłuku do A nie należą; i jedne i drugie są punktami skupienia zbioru A.

• zbiór B = {(x1, x2) ∈ R
2| |x1| ≤ |a|, |x2| ≤ |b|} jest i ograniczony i domknięty,

• zbiór C = {(x1, x2) ∈ R2| 0 < sin x1 < 1
2
} jest otwarty i nieograniczony (x1 ∈

(0, 1
6
π) ∪ (2π, 13

6
π) ∪ . . . ∪ (5

6
π, π) ∪ (17

6
π, 3π) ∪ . . .)

• zbiór D = {(x1, x2) ∈ R2| x1, x2 ∈ W, 0 < x1, x2 < 1} (liczby x1 i x2 są wymierne z
otwartego przedziału (0,1)) nie jest domknięty bo np. jego punkt skupienia ( 1√

2
, 1
2
)

doń nie należy ale w każdym otoczeniu tego punktu (albo w każdej, o dowolnie ma-
łym promieniu r kuli o środku w tym punkcie) są inne punkty należące doD (dlatego
jest to punkt skupienia zbioru D), np. punkty (x

(n)
1 , 1

2
), gdzie x(n)1 to n-te dziesiętne

przybliżenie liczby 1√
2
; ale nie jest też i otwarty, bo w dowolnie małym otoczeniu (do-

wolnie małej kuli ześrodkowanej na nim) każdego punktu (x1, x2) o wymiernych x1,
x2, znajdują się także punkty o niewymiernych x1, x2 (pomiędzy każdymi dwiema
różnymi liczbami wymiernymi znajdzie się jakaś liczba niewymierna).

Z ostatniego przykładu widać, że zbiór nieotwarty nie musi być domknięty, a niedomknięty
nie musi być otwarty. Samo zaś R2 jako podzbiór R2 jest przykładem zbioru, który jest
jednocześnie i otwarty i domknięty. Prawdą jest natomiast, że (i jest to stwierdzenie
ogólne, dotyczące dowolnych przestrzeni metrycznych) jeśli zbiór A ∈ X jest otwarty, to
zbiór X −A jest domknięty i na odwrót: jeśli zbiór A ∈ X jest domknięty, to zbiór X −A
jest otwarty. Inne stwierdzenia ogólne to:

• Kula K(x0, r) zdefiniowana wyżej i trochę na wyrost nazwana “otwartą”, jest rze-
czywiście zbiorem otwartym niezależnie od metryki (Zadanie 7).

• Kula K̄(x0, r) = {x ∈ X | d(x0, x) ≤ r} jest zbiorem domkniętym niezależnie od
metryki.

• Jeśli x0 jest punktem skupienia zbioru A ⊂ X , to każda kula K(x0, r) zawiera
nieskończenie wiele punktów zbioru A.
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• Jeśli zbiory Oi, i = 1, . . . , n < ∞ są w (X , d) zbiorami otwartymi, to O1 ∪ . . . ∪ On

oraz O1 ∩ . . .∩On też są w (X , d) zbiorami otwartymi. Jeśli chodzi o sumę zbiorów
to prawdziwe jest mocniejsze stwierdzenie: mianowicie, dowolna suma (nawet nie-
skończonej rodziny) zbiorów otwartych jest zbiorem otwartym; ale tylko przecięcie
skończonej liczby zbiorów otwartych musi być zbiorem otwartym.

• Jeśli zbiory Di, i = 1, . . . , n <∞ są w (X , d) zbiorami domkniętymi, to D1∪. . .∪Dn

oraz D1 ∩ . . . ∩ Dn też są w (X , d) zbiorami domkniętymi. I tu na odwrót: to
przecięcie dowolnej (nawet nieskończenie licznej) rodziny zbiorów domkniętych musi
być zbiorem domkniętym, podczas gdy domknięta musi być suma tylko skończonej
liczby zbiorów domkniętych.

Bardzo ważnym pojęciem ogólnym jest zwartość zbioru: zbiór A ∈ X jest zbiorem
zwartym, jeśli z każdego ciągu punktów xn ∈ A można wyjąć podciąg zbieżny do x ∈
A. Inny sposób zdefiniowania zwartości jest jeszcze bardziej abstrakcyjny (jako, że jest
on par excellence topologiczny). Pokryciem otwartym zbioru A zawartego w przestrzeni
metrycznej (X , d) nazywa się rodzinę {Os}s∈S zbiorów otwartych (S jest pewnym zbiorem
indeksów, niekoniecznie skończonym i niekoniecznie nawet przeliczalnym) takich, że

A ⊂
⋃

s∈S

Os .

Zbiór A jest zwarty, jeśli z każdego jego pokrycia otwartego można wybrać podpokrycie
skończone (tzn. zostawić tylko skończoną liczbę zbiorów Os tak, że one nadal pokrywają
A w tym sensie, że zbiór A jest zawarty w ich sumie).

Pojęcie zwartości jest jednak zbędne, gdy uprawiamy analizę w przestrzeniach Rn,
bo w takich przestrzeniach zwartość zbioru jest (na mocy twierdzenia Borela-Lebesgue’a)
równoważna jego domkniętości i ograniczoności (równoważność taka nie zachodzi jednak w
dowolnych przestrzeniach metrycznych, a w szczególności w przestrzeniach funkcji, takich
jak C[0, 1] i innych, i dlatego zwartość odgrywa ważną rolę w analizie funkcjonalnej, która
jest właśnie analizą uprawianą w abstrakcyjnych przestrzeniach metrycznych).

Jeśli danych jest kilka przestrzeni metrycznych (Xi, di), i = 1, . . . , k, to iloczyn karte-
zjański X1 × . . .×Xk można wyposażyć w naturalna metrykę iloczynową (się mówi “pro-
duktową”, ale to jakoś nie po naszemu), w której odległością punktów x ≡ (x(1), . . . , x(k))
i y ≡ (y(1), . . . , y(k)), gdzie x(i), y(i) ∈ Xi, jest

d(x,y) =

[

k
∑

i=1

(di(x(i), y(i)))
2

]1/2

.

Ważną klasą przestrzeni, które w sposób naturalny (matematycy używają tu swojego
ulubionego słówka “kanoniczny” - to im daje poczucie legitymizacji ich działań) można
przekształcić w przestrzenie metryczne są wektorowe (mówi się też liniowe) przestrzenie
unormowane. Ogólnie przestrzeń liniowa unormowana, to taka para (V, || · ||), w której
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V jest przestrzenią wektorową (dla nas nad R lub C), a || · || odwzorowaniem V w R+ o
właściwościach:

i) ||v|| ≥ 0, przy czym ||v|| = 0 tylko gdy v = 0,
ii) ||αv|| = |α| ||v||, gdzie α jest liczbą z ciała,
iii) ||v + u|| ≤ ||v||+ ||u|| (“nierówność trójkąta”).

Jeśli w przestrzeni wektorowej jest zadany iloczyn skalarny (·|·)S - może będzie na wy-
kładzie później w części algebraicznej, a na pewno o iloczynie skalarnym jest w moim
skrypcie - to automatycznie jest też i norma ||v|| ≡ (v|v)S. Dzięki liniowości norma
zadaje też naturalną metrykę wzorem

d(v2,v2) ≡ ||v1 − v2|| .
Każda więc przestrzeń wektorowa z jakimś iloczynem skalarnym (a w każdej skończenie
wymiarowej przestrzeni wektorowej, czyli takiej, jakimi się zajmowaliśmy w części alge-
braicznej, można jakiś iloczyn skalarny bardzo łatwo wprowadzić) jest w naturalny sposób
przestrzenią metryczną.

Analiza w R
n

Ciąg w Rn (tu będziemy mieć zawsze na myśli metrykę euklidesową) to po prostu zespół n
ciągów z R:

xk ≡ (x1k, . . . , x
n
k) .

Ciąg (xk, yk) w R2 (żeby mniej pisać) jest zbieżny do (a, b), gdy xk → a i jednocześnie
yk → b w sensie zwykłych ciągów z R (z metryką zadaną przezmoduł różnicy). Np. z
trzech ciągów w R2

(
1

k
, (−1)k) , (1− 1

k
,
1

k
sin k) , (2, cos

1

k
) ,

pierwszy jest niezbieżny (bo (−1)k nie zbiega), drugi zbieżny do (1, 0) ∈ R2, a trzeci
zbieżny do (2, 1) ∈ R2.

Będziemy mieć do czynienia z różnymi odwzorowaniami:

• R → R (to było ćwiczone w pierwszym semestrze),

• R
n → R, np. f(x, y) = x2 + y2 jako przykład R

2 → R,

• R → Rn - mechanika newtonowska pojedyńczej cząstki jest naogół badaniem tra-
jektorii cząstki r(t), czyli badaniem odwzorowania R → R

3

• mogą wreszcie być odwzorowania Rm → Rn takie jak np. statyczne pole elektryczne
punktowego ładunku Q, które jest odwzorowaniem R

3 → R
3 danym wzorami7

Ex(x, y, z) =
Q (x− x0)

[(x− x0)2 + (y − y0)2 + (z − z0)2]3/2
,

7Piszemy je tu w naturalnych jednostkach Gaussa - SI to jest układ dla idiotów - système des idiots,
jak sama jego nazwa wskazuje.
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Ey(x, y, z) =
Q (x− x0)

[(x− x0)2 + (y − y0)2 + (z − z0)2]3/2
,

Ez(x, y, z) =
Q (x− x0)

[(x− x0)2 + (y − y0)2 + (z − z0)2]3/2
,

Jak widać odwzorowanie Rm → Rn to jest po prostu n odwzorowań Rm → R. Innym
przykładem odwzorowania Rm → Rn jest znane nam z algebry odwzorowanie liniowe
m wymiarowej przestrzeni wektorowej w n-wymiarową przestrzeń wektorową, które
przy ustalonych bazach obu tych przestrzeni ma postać (aij są tu stałymi)









y1(x1, . . . , xm)
y2(x1, . . . , xm)

. . .
yn(x1, . . . , xm)









=









a11 a12 . . . a1m
a21 a22 . . . a2m
. . . . . . . . . . . .
an1 an2 . . . anm

















x1

x2

·
xm









.

Ostatni przykład jest bardzo ważny: okaże się bowiem, że pochodna (ale jak jest ona
zdefiniowana, to dopiero trzeba będzie sobie powiedzieć) każdego odwzorowania Rm → Rn

jest właśnie (w danym punkcie Rm) takim odwzorowaniem liniowym.

Trzeba teraz zająć się zagadnieniem ciągłości odwzorowania. Jedna definicja ciągłości
już była sformułowana ale ją tu jeszcze raz podamy w nieco innej formie, najpierw definiu-
jąc granicę funkcji w punkcie: f0 jest granicą funkcji f(x) w punkcie x0, gdy8 dla każdego
ε > 0 można dobrać δ > 0, że |f(x)−f0| < ε, gdy |x−x0| < δ (tzw. definicja Cauchy’ego
granicy funkcji). Inna definicja, tzw. Heinego (albo ciągowa, równoważna tej Cauchy’ego)
jest taka: f0 jest granicą funkcji f(x) w punkcie x0, gdy f0 jest granicą każdego ciągu
punktów f(xk) otrzymanego jako obraz dowolnego ciągu xk, byle takiego, że (i to jest
tu bardzo istotny warunek!) xk 6= x0, zbieżnego do x0. Odwzorowanie f jest w punkcie
x0 ciągłe, gdy jego granica w tym punkcie istnieje i jest równa wartości funkcji w tym
punkcie (bo zawsze można sobie arbitralnie zdefiniować, że danym punkcie funkcja ma
jakąś wartość). Definicja Heinego jest bardzo wygodna, gdy chcemy pokazać, że funkcja
f nie może być ciągła w danym punkcie (bo nie ma tam granicy): wystarczy wymyślić
jakiekolwiek dwa ciągi xk i x′

k oba zbieżne do x0 i pokazać że lim f(xk) 6= lim f(x′
k).

Trudniej jest wykazać z jej pomocą, że funkcja może być w danym punkcie ciągła, bo
trzeba pokazać że granica f(xk) jest ta sama dla wszystkich możliwych ciągów zbieżnych
do x0. Niemniej czasem się to w miarę prosto daje zrobić.

Rozpatrzmy np. funkcję R2 → R (głównie takich odwzorowaniach będziemy badać
granice i ciągłość, bo jak już zauważyliśmy, odwzorowanie Rn → Rm to jest m odwzorowań
Rn → R i każde z nich z osobna można badać w x0 pod tym kątem).

f(x, y) =

{

1
x
sin(xy), x 6= 0
0, x = 0

,

8Ponieważ będziemy mieć zawsze na myśli metrykę euklidesową, zamiast pisać d(x,y) będzemy odtąd
pisać |x− y|.
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(wzdłuż całej osi y funkcja jest zadana odrębnym wzorem) i zbadajmy jej ciągłość w
punktach postaci (0, y). Rozpatrzymy osobno punkt (0, 0) i osobno puntkty postaci (0, y)
z y 6= 0. Weźmy najpierw jakieś ciągi xn → 0 i yn → 0 (ale pamiętamy, że jednocześnie,
tzn. dla tego samego n nie może być xn = 0 i yn = 0) i niech cn = f(xn, yn). Jeśli
yn ≡ 0, a xn 6= 0 (zbiegamy do punktu (0, 0) wzdłuż osi x), to stale cn = 0, więc
jeśliby granica funkcji w (0, 0) miała istnieć, to musiałaby być równa zeru. Ogólniej, jeśli
xnyn → 0, co zachodzi zawsze gdy (xn, yn) → (0, 0), to sin(xnyn) → xnyn i cn → yn.
Więc ponieważ rozpatrujemy takie ciągi, że yn → 0, granicą funkcji w (0, 0) jest zero i
arbitralnie przypisana funkcji (w podanym wzorze ją definiującym) wartość 0 w punkcie
(0, 0) “pasuje”: funkcja tak zdefiniowana jest w (0, 0) ciągła. Jednak w punktach postaci
(0, y) z y 6= 0 jest gorzej: Jeśli rozpatrujemy np. ciągi (xn, yn) → (0, 1), to sin(xnyn) →
xnyn i cn → yn → y = 1. Tymczasem podany wzór przypisuje funkcji w punkcie (0, 1)
(i wszystkim punktom na osi y) wartść zero! Zatem funkcja tak zdefiniowana jest ciągła
w punkcie (0, 0) ale nie w punktach postaci (0, y) z y 6= 0 (oczywiście poza osią y jest
ona bezdyskusyjnie ciągła). Aby była ona ciągła (ale nie byłaby to ona, tylko już inna
funkcja) trzebaby ją określić wzorem

f(x, y) =

{

1
x
sin(xy), x 6= 0
y, x = 0

.

Drugi (typowy) przykład, to funkcja R2 → R poza punktem (0, 0) zadana wzorem

f(x, y) =
x y

x2 + y2
.

Zobaczmy, czy ma ona jakąś granicę w (0, 0) (gdyby miała, można by ją odpowiedno
zdefiniować, tak by była tam ciagła). W tym celu wystarczy rozpatrzyć klasę ciągów
(xn, yn), w których xn = a/n, yn = b/n (różne wartości a i b dają różne ciągi). Wtedy

f(xn, yn) =
xn yn
x2n + y2n

=
a b

a2 + b2
,

niezależnie od n, a to oznacza, że

lim
n→∞

f(xn, yn) =
a b

a2 + b2
,

czyli że granica zależy od ciągu. Gdy zbiegamy do punktu (0, 0) wzdłuż osi x (ciągi o
b = 0), lub wzdłuż osi y (ciągi o a = 0), to dostajemy w granicy zero. Ale jeśli zbiegamy
wzdłuż diagonali (a = b) lub antydiagonali (a = −b), to granicą jest 1/2 lub −1/2. Zatem
badana funkcja nie ma granicy w punkcie (0, 0). Do tej samej konkluzji można dojść
rozpatrując ciągi postaci (rn cosϕn, rn sinϕn), co odpowiada zapisaniu tej samej funkcji
w zmiennych biegunowych (fizyk powinien mieć w głowie, że zawsze można wprowadzić na
płaszczyźnie, czy dowolnej przestrzeni Rn jakieś inne, być może dogodniejsze dla analizy
danego konkretnego problemu, zmienne). Aby taki ciąg (xn, yn) zbiegał do punktu (0, 0)
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wystarczy, by rn → 0; ciąg ϕn może się przy tym zachowywać dowolnie (np. jeśli ϕn

rośnie monotonicznie, odpowiada to zbieganiu do punktu (0, 0) po jakiejś spirali). Mamy
wtedy

f(rn cosϕn, rn sinϕn) =
1

2
sin 2ϕn ,

i od razu widać, że granica nie istnieje, bo sin 2ϕn może zbiegać do dowolnej wartości (z
przedziału [−1, 1]) albo w ogóle do niczego nie zbiegać.

Trzeci przykład to funkcja R2 → R poza punktem (0, 0) zadana wzorem

f(x, y) =
x2 y

x2 + y2
.

Znów zobaczmy, czy ma ona jakąś granicę w (0, 0). Weźmy najpierw tę samą klasę ciągów,
którą wykorzystaliśmy w przykładzie drugim. Tym razem

f(xn, yn) =
x2n yn
x2n + y2n

=
a2 b

n (a2 + b2)
→ 0 ,

i granica ta nie zależy od a i b. Jest więc lepiej, ale to jeszcze niczego nie dowodzi,
bo to tylko jedna klasa ciągów, która nie wyczerpuje wszystkich możliwości (do punktu
(0, 0) można zbiegać np. po paraboli, albo po jakiejś spirali, albo jeszcze jakoś inaczej).
Spróbujmy więc rozumować bardziej ogólnie: załóżmy, że (xn, yn) → (0, 0) czyli, że xn →
0, yn → 0, co oznacza też, że i x2n+y

2
n → 0. Niech cn ≡ max(|xn|, |yn|). Wtedy |x2nyn| ≤ c3n,

a z kolei x2n + y2n ≥ c2n. Można więc napisać oszacowanie:

0 ≤ |f(xn, yn)| ≤
c3n
c2n

= cn → 0 ,

które pokazuje, że na każdym ciągu zbieżnym do punktu (0, 0) ciąg fn = f(xn, yn) zbiega
do zera. Granicą funkcji w tym punkcie jest więc zero i taką trzeba nadać wartość funkcji
w tym punkcie, jeśli chcemy, by była ona w nim ciągła.

W tym przykładzie sztuczka z przejściem do ciągów zapisanych w zmiennych bieguno-
wych (w R3 można użyć zmiennych cylindrycznych, albo sferycznych, albo jakichś jeszcze
innych) daje wynik natychmiast bo

f(rn cosϕn, rn sinϕn) =rn sinϕn cos
2 ϕn → 0 ,

a dowolny ciąg (xn, yn) punktów R2 można zapisać jako ciąg (rn cosϕn, rn sinϕn) i jedy-
nym warunkiem jego zbiegania do (0, 0) jest rn → 0.

Rozpatrzmy jeszcze funkcję R2 → R poza punktem (0, 0) zadaną wzorem

f(x, y) =
x2 y

x4 + y2
,
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i znów zobaczmy, czy ma ona jakąś granicę w (0, 0). Nie ma: jeśli weźmiemy np. xn → 0 i
yn = axn → 0 (co obejmuje zbieganie do punktu (0, 0) wzdłuż każdej prostej z wyjątkiem
osi y) to

f(xn, yn) = f(xn, axn) =
ax3n

x2n(x
2
n + a2)

=
axn

(x2n + a2)
→ 0 .

Jeśli jednak weźmiemy xn → 0 i yn = x2n → 0, co odpowiada zbieganiu do punktu (0, 0)
po paraboli (punkty takiego ciagu leżą w płaszczyźnie R2 na paraboli y = x2) to wtedy

f(xn, yn) = f(xn, x
2
n) =

x4n
x4n + x4n

→ 1

2
.

Na tym ciągu wartość funkcji ma inną granicę! Oznacza to, (ponieważ kryterium Heinego
nie jest spełnione), że badana funkcja nie ma granicy w punkcie (0, 0). Zauważmy też,
iż przykład ten jest bardzo podobny do przykładu drugiego: gdyby podstawić z = x2

to funkcja f̃(z, y) = f(
√
z, y) by była (przynajmniej na R × R+) tą samą funkcją, co

rozpatrywana w tamtym przykładzie.

Weźmy jeszcze funkcję zdefiniowaną wzorami

f(x, y) =
x y

x− y
gdy x 6= y ,

i f(x, x) = 0 i zapytajmy, czy funkcja ta może być ciągła w punkcie (0, 0) oraz w innych
punktach postaci (x0, x0). Gdy weźmiemy ciąg (xn, yn) zbieżny do punktu (0, 0), np. z
xn = 1/n i yn = −1/n, to

f(xn, yn) = −1/2n→ 0 .

Ale jeśli wziąć

xn =
1

n
+

1

n3
, yn =

1

n
,

to

f(xn, yn) = n3

(

1

n
+

1

n3

)

1

n
= n +

1

n
→ ∞ .

Zatem niema szansy, by funkcja ta mogła być ciagła w (0, 0), bo nie ma ona w tym
pukcie granicy. W pozostałych punktach typu (x0, x0) jest podobnie: wystarczy wziąć
np. xn = x0 + 1/n, yn = x0 − 1/n, by zobaczyć, że

f(xn, yn) =
n

2

(

x20 −
1

n2

)

=
n

2
x20 −

1

2n
→ ∞ .
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Inny jeszcze (czasem spotykany) sposób spojrzenia na granice funkcji np. w (0, 0) to
tzw. granice iterowane: porównujemy wynik granic branych w odwrotnej kolejności:

lim
x→0

(

lim
y→0

f(x, y)

)

, i lim
y→0

(

lim
x→0

f(x, y)
)

.

Zastosujmy go tu do zbadania granicy w (0, 0) funkcji

f(x, y) =
x− y + x2 + y2

x+ y
,

Mamy wtedy

lim
x→0

(

lim
y→0

f(x, y)

)

= lim
x→0

(

x+ x2

x

)

= lim
x→0

(1 + x) = 1 ,

lim
y→0

(

lim
x→0

f(x, y)
)

= lim
y→0

(−y + y2

y

)

= lim
y→0

(−1 + y) = −1 .

Ponieważ otrzymuje się w ten sposób dwa różne wyniki, wystarcza to do stwierdzenia, ża
badana funkcja w (0, 0) granicy mieć nie może. Sposób ten jest jest jednak mało ogólny,
bo odpowiada tylko (w przypadku limx→0(limy→0 f)) zejściu na oś x (w dowolnym punkcie
x 6= 0) a następnie zbiegnięciu wzdłuż osi x do zera. Jest więc to to samo, co badanie
f(x, y) na ciągach (xn, 0) z xn → 0. I nawet gdyby się okazało, że obie granice iterowane są
takie same, to nie dowodziłoby to jeszcze, że granica funkcji w badanym punkcie istnieje.

I jeszcze ostatni przykład: zbadajmy istnienie granicy funkcji

f(x, y) =
1

x+ y

(

y + x sin
1

x

)

,

w punktach (x0,−x0). Znów wyobraźmy sobie ciąg (xn, yn) = (x0 + an, −x0 + bn), taki,
że an → 0 i bn → 0 (ale (an, bn) 6= (0, 0)). Wtedy

f(xn, yn) =
1

an + bn

{

−x0 + bn + (x0 + an) sin
1

x0 + an

}

=
1

an + bn

{

−x0 + bn + (x0 + an) sin

[

1

x0
− an
x20

+ . . .

]}

.

W drugim kroku rozwinęliśmy argument sinusa wokół x = x0 (ten krok nie przejdzie, gdy
x0 = 0, więc ten przypadek trzeba będzie zbadać osobno). Widać teraz, że naogół skoń-
czona granica nie istnieje (dostaje się ∞) bo licznik pozostaje niezerowy, podczas gdy
mianownik dąży do zera. Ale w punktach postaci 1/x0 = π/2 + 2πk sytuacja wygląda
inaczej: wtedy

sin

[

1

x0
− an
x20

+ . . .

]

= cos

[

−an
x20

+ . . .

]

→ 1 ,
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i licznik, gdy n → ∞ zachowuje się jak −x0 + bn + (x0 + an)[1 + O(a2n)] → an + bn i
całe wyrażenie dąży do 1. Zatem w punktach x0 = (π/2 + 2πk)−1. które zagęszczają się
koło x = 0 (pozostając jednak zawsze punktami izolowanymi) funkcja ma granice równe
1. Pozostaje zbadać punkt (0, 0). Napiszmy xn = rn cosϕn, yn = rn sinϕn, gdzie rn → 0,
ale ϕn jest zupełnie dowolnym ciągiem (który nie musi zbiegać do niczego, gdy n→ ∞).
Wtedy

f(xn, yn) =
1

cosϕn + sinϕn

{

sinϕn + cosϕn sin

(

1

rn cosϕn

)}

,

i ponieważ argument ostatniego sinusa dąży do nieskończoności (bo rn → 0, a | cosϕn| ≤
1), sam sinus szaleje i całe wyrażenie do niczego konkretnego nie zbiega: np. jeśli ϕn = 2πn
(może być taki ciąg) to f(xn, yn) = sin(1/rn), co nie zbiega do niczego.

Na koniec zauważmy, że jakkolwiek nie jest w ogólności prawdą, że przy odwzorowa-
niu ciągłym obrazem zbioru otwartego jest zbiór otwarty (kontrprzykład to np. funkcja
f(x) = sin x określona na otwartym zbiorze (−3π/4, 3π/4) - obrazem jest zbiór [−1, 1],
który jest domknięty), to prawdą jest, że przy ciągłym odwzorowaniu przeciwobrazem
zbioru otwartego jest zbiór otwarty.
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Różne pochodne funkcji wielu zmiennych na Rn

Niech punktami Rn będą (x1, . . . , xn). Pochodną cząstkową funkcji f : Rn → R w punkcie
(x

(0)
1 , . . . , x

(0)
n ) nazywa się granicę (jeśli granica ta istnieje) ilorazu różnicowego

∂f

∂xk

∣

∣

∣

∣

(x
(0)
1 ,...,x

(0)
n )

= lim
h→0

f(x
(0)
1 , . . . , x

(0)
k +h, . . . , x

(0)
n )− f(x

(0)
1 , . . . , x

(0)
k , . . . , x

(0)
n )

h
.

Z powyższego wzoru widać, że pochodną cząstkową w punkcie (x
(0)
1 , . . . , x

(0)
n ) można obli-

czyć, tylko jeśli funkcja jest w tym punkcie określona (choćby nawet w taki sposób, że nie
jest tam ciągła w sensie badanym przez nas poprzednio). Z praktycznego punktu widze-
nia obliczanie pochodnej cząstkowej ∂f/∂xk , czasem oznaczanej też fxk

, sprowadza się do
potraktowania wszystkich zmiennych oprócz xk jak stałych i obliczenia pochodnej po xk
zgodnie ze zwykłymi regułami obliczania pochodnych znanymi z operowania funkcjami
jednej zmiennej. Pochodna taka zdaje sprawę z tego, jak funkcja zmienia się wzdłuż jednej
konkretnej prostej (wzdłuż osi xk) przechodzącej przez punkt (x

(0)
1 , . . . , x

(0)
n ) i prosta ta

jest związana z wyborem zmiennych x1, . . . , xn. Ponieważ dla fizyka oczywiste jest, że za-
wsze można np. obrócić osie układu współrzędnych pokrywającego przestrzeń Rn, jest też
jasne, że musi istnieć naturalne uogólnienie pochodnych cząstkowych. Są nimi pochodne
kierunkowe, które od razu tu zdefiniujemy (no bo skoro to naturalne uogólnienie...), które
zdają sprawę ze zmienności funkcji wzdłuż dowolnego kierunku, niekoniecznie równole-
głego do którejś z osi układu x1, . . . , xn. Aby pochodną kierunkową zdefiniować trzeba
wprowadzić w R

n jednostkowy wektor

n = (n1, n2, . . . , nn) , n2
1 + n2

2 + . . .+ n2
n = 1 .

Pochodna kierunkowa, oznaczana ∇nf , jest wtedy dana wzorem

(∇nf)(x(0)
1 ,...,x

(0)
n )

= lim
h→0

f(x
(0)
1 + hn1, . . . , x

(0)
n + hnn)− f(x

(0)
1 , . . . , x

(0)
k , . . . , x

(0)
n )

h
.

Zdaje ona sprawę ze zmienności funkcji wzdłuż prostej mającej kierunek wektora n i prze-
chodzącej przez punkt (x(0)1 , . . . , x

(0)
n ). Widać, że gdy tylko jedna składowa nk = 1, a pozo-

stałe zero, jest to to samo, co zdefiniowana wyżej pochodna cząstkowa (∂f/∂xk)(x(0)
1 ,...,x

(0)
n )

.
Ważne jest by rozumieć, że pochodna cząstkowa nie jest tym samym, co prawdziwa

pochodna (nastajaszczaja proizwodnaja) funkcji w danym punkcie. Tę prawdziwą po-
chodną zdefiniujemy dalej. W przypadku funkcji R → R, którymi zajmowaliśmy się w
poprzednim semestrze,9 istnienie pochodnej w danym punkcie x0 automatycznie ozna-
czało, że funkcja jest w tym punkcie ciągła. W przypadku pochodnych cząstkowych (lub
kierunkowych) funkcji Rn → R (n > 1) już tak nie jest: Weźmy np. funkcję zdefiniowaną
wzorem

f(x, y) =

{

xy/(x2 + y2) gdy (x, y) 6= (0, 0)
0 gdy (x, y) = (0, 0)

.

9Taka figura retoryczna - ja się nie zajmowałem, bo materiał pierwszego semestru nie jest dla mnie
tak zabawny, jak drugiego.
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Funkcja ta nie ma granicy w punkcie (0, 0), co łatwo sprawdzić (to już przećwiczyliśmy),
ale żeby można było pytać o jej pochodne cząstkowe w tym punkcie ma ona w nim
przypisaną wartość równą 0. Pochodne cząstkowe tej funkcji w punkcie (0, 0) istnieją:
obliczamy bowiem z definicji

∂f

∂x

∣

∣

∣

∣

(0,0)

= lim
h→0

f(0 + h, 0)− f(0, 0)

h
= lim

h→0

0− 0

h
= 0 .

Dokładnie tak samo (bo funkcja jest symetryczna wzgledem zamiany x ↔ y) oblicza się
pochodną (∂f/∂y)(0,0). Czyli obie pochodne cząstkowe tej funkcji w punkcie (0, 0) istnieją,
choć funkcja nie jest w tym punkcie, jako funkcja dwu zmiennych, ciągła. Żeby zrozumieć
dlaczego tak jest (to jest to, czego matematycy na ogół nie dopowiadają, zostawiając
publikę z rozdziawionymi gębami) wystarczy zobaczyć, że obie granice tej funkcji brane
“po osiach” istnieją i są właśnie równe zeru: gdy sprawdzamy granicę funkcji “po osi
x”, to badamy zachowanie f(xn, yn) na ciągach postaci (xn, 0) gdzie xn → 0 (ale zawsze
xn 6= 0), a ponieważ f(xn, 0) ≡ 0 granica ta jest równa zeru, czyli wzdłuż osi x (i tak samo
wzdłuż osi y) funkcja jest ciągła (jest ciągła jako funkcja jednej zmiennej). To dlatego
jej pochodne cząstkowe (∂f/∂x)(0,0) i (∂f/∂y)(0,0) istnieją. Ale łatwo też zobaczyć, że
skoro przypisaliśmy funkcji wartość 0 w punkcie (0, 0), nie jest ona ciągła, gdy zbiegamy
do (0, 0) z innego kierunku niż po którejś z dwu osi. Np. gdybyśmy chcieli obliczyć
pochodną kierunkową w (0, 0) “po diagonali” (wzdłuż kierunku x = y), tzn. pochodną
kierunkową odpowiadającą wzięciu n1 = n2 = 1/

√
2, to ta pochodna nie będzie istnieć:

∇nf |(0,0) = lim
h→0

f(0 + n1h, 0 + n2h)− f(0, 0)

h

= lim
h→0

{

1

h

[

(h/
√
2)(h/

√
2)

1
2
h2 + 1

2
h2

− 0

]}

= lim
h→0

1

h

[

1

2
− 0

]

= ∞ .

Pochodna w tym kierunku istniałaby, gdybyśmy nadali funkcji w punkcie (0, 0) wartość
1/2 (taką, jaka wynika z granicy branej w tym kierunku). Ale wtedy oczywiście w (0, 0) nie
istniałyby pochodne ∂f/∂x i ∂f/∂y. Mimo, że teraz pewnie zaczynamy lepiej rozumieć,
jak to działa, to dobrze jest wiedzieć też, że nawet istnienie pochodnych kierunkowych
w danym punkcie (x

(0)
1 , . . . , x

(0)
n ) we wszystkich możliwych kierunkach nie jest jeszcze

wystarczające, by funkcja miała w tym punkcie prawdziwą (tj, w silnym sensie) pochodną.
Wynika to z tego, że w danym punkcie funkcja może być ciągła gdy do tego punktu
zbiegamy po dowolnej prostej, ale nie jest ciągła, gdy do (x

(0)
1 , . . . , x

(0)
n ) zbiegamy np. po

paraboli, czy jakiejś spirali. Rozpatrzmy przykład funkcji (już taka była)

f(x, y) =

{

x2y/(x4 + y2) gdy (x, y) 6= (0, 0)
0 gdy (x, y) = (0, 0)

.

Wiemy, że taka funkcja w punkcie (0, 0) jest nieciągła (choć jest ciągła wzdłuż dowolnej
prostej przechodzącej przez punkt (0, 0) - to też już ustaliliśmy). Spróbujmy jednak
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obliczyć jej pochodne kierunkowe w tym punkcie. Żeby od razu obliczać pochodne w
dowolnym kierunku, weźmy wektor n o składowych n1 = cos θ ≡ c i n2 = sin θ ≡ s.

∇nf |(0,0) = lim
h→0

f(0 + hc, 0 + hs)− f(0, 0)

h

= lim
h→0

{

1

h

[

c2sh3

c4h4 + s2h2
− 0

]}

= lim
h→0

c2s

c4h2 + s2
=
c2

s
.

Pochodna jak widać istnieje zawsze, pozornie z wyjątkiem sytuacji, gdy s = 0, czyli gdy
jest to pochodna wzdłuż osi x. Ale to tylko pozór, bo pochodną kierunkową w kierunku osi
x, czyli po prostu pochodną cząstkową ∂f/∂x w punkcie (0, 0) możemy osobno obliczyć
bezpośrednio z definicji

∂f

∂x

∣

∣

∣

∣

(0,0)

= lim
h→0

f(0 + h, 0)− f(0, 0)

h
= lim

h→0

0− 0

h
= 0 .

Pochodna ta jak najbardziej istnieje, a to, że musieliśmy ją obliczyć osobno pokazuje
tylko, że pochodna kierunkowa w tym punkcie jest, jako funkcja kierunku, nieciągła (ktoś
powiedział, że musi być?). Można też sprawdzić, co polecam jako zadanie domowe (samo
obliczenie podanych tu pochodnych też należe potraktować jak ćwiczenie!), że pochodne
cząstkowe potraktowane jak funkcje na R2

fx(x, y) =
2xy3 − 2x5y

(x4 + y2)2
, fy(x, y) =

x6 − x2y2

(x4 + y2)2
,

nie mają w punkcie (0, 0) granic, czyli nie są one, jako funkcje na R2, w tym punkcie
ciągłe.

Jeśli jednak wszystko idzie gładko, tzn. pochodne cząstkowe w punkcie (x
(0)
1 , . . . , x

(0)
n )

istnieją i wszystkie fxi
(x1, . . . , xn) traktowane jak funkcje na R

n są w tym punkcie ciągłe,
to pochodna kierunkowa ∇nf |(x(0)

1 ,...,x
(0)
n )

obliczona z definicji jest równa kombinacji

∇nf |(x(0)
1 ,...,x

(0)
n )

= n1
∂f

∂x1

∣

∣

∣

∣

(x
(0)
1 ,...,x

(0)
n )

+ . . .+ nn
∂f

∂xn

∣

∣

∣

∣

(x
(0)
1 ,...,x

(0)
n )

,

pochodnych cząstkowych funkcji f w punkcie (x
(0)
1 , . . . , x

(0)
n ).

Pochodne cząstkowe funkcji Rn → R wyższych rzędów

Jeśli pochodne cząstkowe pierwszego rzędu ∂f/∂xk funkcji Rn → R w jakimś otoczeniu
(tzn. zbiorze otwartym) punktu (x

(0)
1 , . . . , x

(0)
n ) istnieją, to każda z nich jest w tym otocze-

niu pewną nową funkcją Rn → R i można obliczać pochodne cząstkowe tej nowej funkcji,
które będą pochodnymi cząstkowymi drugiego rzędu wyjściowej funkcji f . Potem przy
tych samych warunkach można obliczać pochodne cząstkowe pochodnych cząstkowych
drugiego rzędu tworząc pochodne cząstkowe rzędu trzeciego itd. Pochodne te oznaczamy

∂

∂y

(

∂f

∂x

)

(x, y) ≡ ∂2f

∂y ∂x
≡ fxy(x, y) ,

∂

∂x

(

∂f

∂x

)

(x, y) ≡ ∂2f

∂x2
≡ fxx(x, y) ,
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etc. Zachodzi pytanie, czy pochodne

fxy ≡
∂2f

∂y ∂x
, i fyx ≡ ∂2f

∂x ∂y
,

obliczone w punkcie (x
(0)
1 , . . . , x

(0)
n ) są sobie równe? Odpowiedź jest taka: jeśli fxy i fyx

jako funkcje x i y (przenosi się to oczywiście na więcej zmiennych) istnieją i są ciągłe w
(x

(0)
1 , . . . , x

(0)
n ), to fxy(x

(0), y(0)) = fyx(x
(0), y(0)). Matematycy, z natury trochę prestidi-

gitatorzy, lubią możliwą nierówność tych pochodnych demonstrować na (kanonicznym w
ich języku) przykładzie funkcji R2 → R zadanej wzorem

f(x, y) =

{

xy(x2 − y2)/(x2 + y2) gdy (x, y) 6= (0, 0)
0 gdy (x, y) = (0, 0)

.

Funkcja ta jest uczciwie ciągła w (0, 0). Następnie obliczają oni pochodne cząstkowe tak:

∂f

∂x

∣

∣

∣

∣

(0,y)

= lim
h→0

f(0 + h, y)− f(0, y)

h
= lim

h→0
y
h2 − y2

h2 + y2
= −y ,

∂f

∂y

∣

∣

∣

∣

(x,0)

= lim
h→0

f(x, 0 + h)− f(x, 0)

h
= lim

h→0
x
x2 − h2

x2 + h2
= x ,

Po czym radośnie pokazują, że w punkcie (0, 0)

∂

∂y

(

∂f

∂x

)

= −1 , a
∂

∂x

(

∂f

∂y

)

= 1 .

Po takim numerze dalej nie do końca jednak wiadomo, jakie fiku-miku doprowadziło do
tego szokującego rezultatu. Otóż, aby to zrozumieć, najlepiej obliczyć obie drugie mie-
szane pochodne w dowolnym punkcie. Po dłuższych przekształceniach (zalecam wprawie-
nie się na tym przykładzie!) otrzymuje się

∂

∂y

(

∂f

∂x

)

=
x6 + 9x4y2 − 9x2y4 − y6

(x2 + y2)3
=

∂

∂x

(

∂f

∂y

)

.

“Na wzorkach” zatem funkcje fxy(x, y) i fyx(x, y) to jest zawsze ta sama funkcja! (Czyli
jak komuś wyjdą te dwie pochodne różne to nie może mówić, że tak może być!) No i teraz
już wszystko jest jasne: druga mieszana pochodna jest funkcją jednorodną stopnia zero
typu wielomian k-tego (tu szóstego) stopnia przez inny wielomian tego samego stopnia.
Po zrobieniu paru przykładów (i Zadania 9) powinno być jasne, że takie funkcje są w
punkcie (0, 0) zawsze nieciągłe (wyjściowa funkcja f była!) bo mają, gdy się do (0, 0)
zbiega z różnych kierunków, różne tam granice. I ta pochodna, co wyżej dała −1, odpo-
wiada braniu wartości fxy(x, y) przy zbieganiu do (0, 0) po osi y (bo najpierw obliczamy
pochodną po x ale otrzymaną funkcję rozpatrujemy już jako funkcję y tylko, kładąc x = 0,
czyli na osi y), a ta druga, równa +1, odpowiada fxy(x, y) przy zbieganiu do (0, 0) po osi
x. I cała tajemnica pryska!
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Różniczka df funkcji f i pochodna prawdziwa

I tak dochodzimy wreszcie do prawdziwej pochodnej funkcji f : Rn → R. Niech punkty
(x

(0)
1 , . . . , x

(0)
n ) i (x(0)1 + dx1 . . . , x

(0)
n + dxn) należą do dziedziny funkcji f . Niech

∆f ≡ f(x
(0)
1 + dx1 . . . , x

(0)
n + dxn)− f(x

(0)
1 , . . . , x(0)n ) ,

będzie przyrostem wartości funkcji f , gdy przesuwamy się od punktu (x
(0)
1 , . . . , x

(0)
n ) do

punktu (x
(0)
1 + dx1 . . . , x

(0)
n + dxn). Fizyk pyta, jak ten przyrost ∆f można przybli-

żyć (niezależnie od kierunku, w którym się przesunęliśmy w bok, byle infinitezymalnie).
Odpowiedź matematyka jest taka, że jeśli pierwsze pochodne cząstkowe funkcji f są w
otoczeniu (x

(0)
1 , . . . , x

(0)
n ) ciągłymi funkcjami, to wtedy

∆f ≈ df(x
(0)
1 , . . . , x(0)n ) ≡ fx1(x

(0)
1 , . . . , x(0)n ) dx1 + . . .+ fxn

(x
(0)
1 , . . . , x(0)n ) dxn ,

tzn. to df funkcji, zdefiniowane wyrażeniem po prawej stronie, dobrze przybliża wartość
∆f w tym sensie, że różnica ∆f − df zbiega do zera szybciej niż

√

(dx1)2 + . . .+ (dxn)2.
Technicznie rzecz ujmując

∆f − df
√

(dx1)2 + . . .+ (dxn)2
→ 0 , gdy

√

(dx1)2 + . . .+ (dxn)2 → 0 ,

niezależnie od tego jak każde dxi z osobna zbiega do zera. df , czyli właśnie różniczka10

funkcji f w punkcie (x(0)1 , . . . , x
(0)
n ), to jest wartość pochodnej prawdziwej funkcji f w tymże

punkcie na wektorze przyrostu (dx1, . . . , dxn). Różniczka jest zawsze (wbijmy więc sobie
do głowy to hasło!) główną liniową częścią przyrostu, tu przyrostu ∆f , wartości funkcji f .
Czymże zatem jest ta pochodna prawdziwa? Jest to, najogólniej rzecz ujmując, kowektor,
czyli odwzorowanie liniowe, które odwzorowuje wektor przyrostu w przestrzeń wartości
odwzorowania; w przypadku funkcji f : Rn → R kowektor odwzorowujący (dx1, . . . , dxn)
w R. (I w tym miejscu widzimy, że analiza łączy się nam z algebrą i lepiej jest wrócić do
odpowiednich stron mojego skryptu z algebry i to i owo sobie przyswoić). Kowektor ten,
jak każde odwzorowanie liniowe przestrzeni wektorowej,11 jest reprezentowany macierzą

10Czyli takie małe, co sie rusza - tak kiedyś, gdy byłem studentem, odpowiedział na pytanie “a co to
jest różniczka?” zadane przez wykładowcę fizyki mój kolega; istotnie, sposób operowania przez fizyków
takimi wielkościami jak dx, df , musiał prowadzić do takiej właśnie odpowiedzi...

11I tu robimy taki mały myk, że nagle to Rn, a właściwie to różnice punktów tego Rn, zaczynamy
traktować jak przestrzeń wektorową. Naprawdę jest to trochę inaczej, ale bardziej logiczne przedsta-
wienie tego wymaga przejścia do obrazka, w którym funkcja f jest w istocie zdefiniowana na pewnej
rozmaitości różniczkowalnej M , czyli takim tworze, który jakoś można “obmacać”, a obmacanie to polega
na wprowadzeniu układu współrzędnych (x1, . . . , xn) na rozmaitości całej lub przynajmniej jakimś jej ka-
wałku; w każdym punkcie p takiej rozmaitości identyfikowanym we wprowadzonym układzie wartościami
(x

(0)
1 , . . . , x

(0)
n ) współrzędnych jest “przyczepiona” pewna przestrzeń wektorowa oznaczana TpM (w każ-

dym punkcie jest ona trochę inna, choć wszystkie są jakoś tam do siebie podobne, czyli izomorficzne) i to
właśnie w tej przestrzeni stycznej istnieją te wektorki infinitezymalnych przemieszczeń z jednego punktu
rozmaitości do drugiego; z każdym układem współrzędnych (bo współrzędne można na tej samej rozma-
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(tu w kanonicznej zero-jedynkowej bazie przestrzeni Rn traktowanej jak wektorowa) daną
wzorem

(

∂f

∂x1

∣

∣

∣

∣

(x
(0)
1 ,..., x

(0)
n )

, . . . ,
∂f

∂xn

∣

∣

∣

∣

(x
(0)
1 ,..., x

(0)
n )

)

,

działającą na składowe (dx1, . . . , dxn) (w tej samej bazie) wektora przesunięcia.

Zadanie
Zbadać istnienie w punkcie (0, 0) pochodnej odwzorowań R2 → R

a) g(x, y) =
√

x4 + y4 , b) f(x, y) =
√

x2 + y2 .

W przypadku b) sprawdzić także z definicji istnienie pochodnej w punkcie (x0, y0) 6= (0, 0).
Rozwiązanie: a) Obie pochodne cząstkowe funkcji g(x, y) istnieją

gx(x, y) =
2x3

√

x4 + y4
, gy(x, y) =

2y3
√

x4 + y4
,

i mają w punkcie (0, 0) granice równe 0, co łatwo sprawdzić już poznanymi sposobami.
Zatem df = 0 w tym punkcie. Prawdziwa pochodna funkcji g(x, y) w punkcie (0, 0)
istnieje (bo pochodne cząstkowe istnieją i są tam ciągłe, jeśli nadać im wartości 0) i jej
wartość na przyrostach, czyli różniczka dg, jest równa 0. Mimo to warunek “dobrego”
przybliżania w tym punkcie przyrostu ∆g funkcji przez jej różniczkę jest spełniony. No
bo:

lim
∆g − dg

√

(dx)2 + (dy)2
= lim

√

(dx)4 + (dy)4 − 0 · dx− 0 · dy
√

(dx)2 + (dy)2
= lim

√

(dx)4 + (dy)4

(dx)2 + (dy)2
= 0 ,

gdzie “lim” oznacza (dx, dy) → 0. Wyrażenie to zbiega do zera, co najłatwiej zobaczyć
pisząc dx = dr cosϕ, dy = dr sinϕ z dr → 0 (kąt ϕ może się zmieniać dowolnie w miarę,
jak dr dąży do zera).

itości wprowadzać różne) jest w sposób naturalny stowarzyszona pewna baza ik, k = 1, . . . , n przestrzeni
stycznej, wektorek δ przesunięcia z punktu p o współrzędnych (x

(0)
1 , . . . , x

(0)
n ) do sąsiedniego p′ o współ-

rzędnych (x
(0)
1 + δx1, . . . , x

(0)
n + δxn) ma postać δ = i1δx1 + . . .+ inδxn, a żywy kowektor (jedno-forma)

d̂f , będący pochodną prawdziwą funkcji f : M → R, jest dany przez

d̂f =

(

∂f

∂x1

)

(x
(0)
1 ,...,x

(0)
n )

dx1 + . . .+

(

∂f

∂xn

)

(x
(0)
1 ,...,x

(0)
n )

dxn ,

jako kowektor zapisany w bazie dxk jedno-form dualnej do bazy tworzonej przez wektory ik (dualnej,
tj. takiej, że dxk(ij) = δkj). I tak robi się z tego geometria różniczkowa, która jest bardzo naturalna i
opanowanie jej prostych podstaw bardzo ułatwia życie fizyka. No ale w Rn wszystko się trywializuje i
nic z tego piękna nie widać... Trochę tu odleciałem w kosmos, więc jak kogoś to przeraża, to niech tego
przypisu nie czyta.
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W przypadku funkcji f(x, y), pochodne cząstkowe

fx(x, y) =
x

√

x2 + y2
, fy(x, y) =

x
√

x2 + y2
,

nie są ciągłe w punkcie (0, 0), co też powinno już być oczywiste. Jeśli obliczamy je w
punkcie (0, 0) bezpośrednio z definicji, np.

fx(0, 0) = lim
h→0

f(h, 0)− f(0, 0)

h
= lim

h→0

|h|
h
,

to też nie możemy im nadać wartości, bo granica h→ 0+ jest równa 1, a granica h→ 0−

jest równa −1. Nie można więc nawet napisać prawdziwej różniczki df w tym punkcie.
Gdyby się umówić, że gdy dx i dy są dodatnie, to bierzemy fx(0, 0) = 1 = fy(0, 0), to i
tak taka “różniczka” nie przybliży dobrze przyrostu ∆f : wyrażenie

lim
∆f − df

√

(dx)2 + (dy)2
= lim

√

(dx)2 + (dy)2 − fxdx− fydy
√

(dx)2 + (dy)2
= lim

(

1− dx+ dy
√

(dx)2 + (dy)2

)

,

nie dąży w sposób bezwarunkowy do zera, co znów widać pisząc dx = dr cosϕ, dy =
dr sinϕ z dr → 0: ponieważ kąt ϕ może się zmieniać dowolnie w miarę, jak dr dąży do
zera, drugi człon w nawiasie jest równy cosϕ+ sinϕ, co nie musi być jedynką.

W punkcie (x0, y0) 6= (0, 0) obie pochodne cząstkowe fx i fy są ciągłe, więc twierdzenie
zapewnia istnienie w takim punkcie także prawdziwej pochodnej i tym samym i różniczki
df . Warto jednak zobaczyć, że różniczka ta “dobrze” przybliża przyrost funkcji. Zbadajmy
więc wyrażenie (∆f − df)/

√

(dx)2 + (dy)2. Jest ono równe

1
√

(dx)2 + (dy)2

[

√

(x0 + dx)2 + (y0 + dy)2 −
√

x20 + y20 −
x0dx+ y0dy
√

x20 + y20

]

.

Korzystając ze starej sztuczki
√
a−

√
b = (a− b)/(

√
a +

√
b ) przepisujemy to wyrażenie

w postaci

1
√

(dx)2 + (dy)2

[

(dx)2 + (dy)2 + 2(x0dx+ y0dy)
√

(x0 + dx)2 + (y0 + dy)2 +
√

x20 + y20
− x0dx+ y0dy

√

x20 + y20

]

.

Człon (dx)2 + (dy)2 na pierwszej kresce ułamkowej w nawiasie kwadratowym nawet po
podzieleniu przez

√

(dx)2 + (dy)2 znika, gdy
√

(dx)2 + (dy)2 → 0, więc możemy go już
pominąć; poza tym z mianowników w tymże nawiasie wyciągamy

√

x20 + y20 i, jako że jest
to pewna stała, nie będziemy już tego pisać. W mianowiku pierwszego ułamka w nawiasie
kwadratowym mamy wtedy

1 +
√
1 + ε = 2

(

1 +
1

4
ε+ . . .

)

= 2

(

1− 1

4
ε+ . . .

)−1

,

ε =
2(x0dx+ y0dy) + (dx)2 + (dy)2

x20 + y20
.
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Wielokropek oznacza wyższe potęgi ε. Pozostaje zobaczyć, że

x0dx+ y0dy
√

(dx)2 + (dy)2

[

−1

4
ε+ . . .

]

,

zbiega do zera, gdy
√

(dx)2 + (dy)2 → 0. Znów jednak człon (dx)2 + (dy)2 w ε (i w
wyższych potęgach ε) znika w tej granicy, nawet po podzieleniu przez

√

(dx)2 + (dy)2, a

(x0dx+ y0dy)
2

√

(dx)2 + (dy)2
,

też dąży do zera (to samo będzie się działo i w wyższych potęgach ε), gdy
√

(dx)2 + (dy)2 →
0, co znów najłatwiej zobaczyć pisząc dx = dr cosϕ, dy = dr sinϕ z dr → 0. Zatem w
punktach (x0, y0) 6= (0, 0) różniczka df należycie przybliża przyrost ∆f funkcji.

Na koniec zajmijmy się jeszcze pochodnymi odwzorowań F przestrzeni Rn w przestrzeń
Rm. Każde takie odwzorowanie, to po prostu m funkcji Rn → R, które sobie oznaczymy
F1(x1, . . . , xn), . . . , Fm(x1, . . . , xn). Innymi słowy, obrazem punktu (x1, . . . , xn) ∈ Rn jest
m-wymiarowy wektor (F1, . . . , Fm) ∈ Rm. Przyrost ∆F takiej funkcji, który też jest m-
wymiarowym wektorem, przy przejściu od punktu (x

(0)
1 , . . . , x

(0)
n ) do (x

(0)
1 +dx1, . . . , x

(0)
n +

dxn) jest równy

∆F =









F1(x
(0)
1 + dx1, . . . , x

(0)
n + dxn)− F1(x

(0)
1 , . . . , x

(0)
n )

F2(x
(0)
1 + dx1, . . . , x

(0)
n + dxn)− F2(x

(0)
1 , . . . , x

(0)
n )

. . . . . . . . .
Fm(x

(0)
1 + dx1, . . . , x

(0)
n + dxn)− Fm(x

(0)
1 , . . . , x

(0)
n )









,

i jest, gdy wszystkie pochodne cząstkowe wszystkich m funkcji, są w punkcie (x(0)1 , . . . , x
(0)
n )

ciągłe, dobrze przybliżany przez różniczkę

dF =









∂x1F1 dx1 + . . .+ ∂xn
F1 dxn

∂x1F2 dx1 + . . .+ ∂xn
F2 dxn

. . . . . . . . .
∂x1Fm dx1 + . . .+ ∂xn

Fm dxn









=









∂x1F1 ∂x2F1 . . . ∂xn
F1

∂x1F2 ∂x2F2 . . . ∂xn
F2

. . . . . . . . . . . .
∂x1Fm ∂x2Fm . . . ∂xn

Fm

















dx1
dx2
. . .
dxn









.

gdzie wprowadziliśmy (też często używaną) notację

∂xi
F ≡ ∂F

∂xi
,

i gdzie wszystkie pochodne cząstkowe są obliczone w punkcie (x
(0)
1 , . . . , x

(0)
n ). Widać tu

jak na dłoni, że pochodna funkcji F w tym punkcie jest odwzorowaniem liniowym odwzo-
rowującym n-wymiarowy wektor przyrostów w R

m. W kanonicznej bazie zero-jedynkowej
jest ona dana powyższą macierzą.
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Składanie odwzorowań

Rozpatrzymy teraz problem pochodnej funkcji złożonej. Ogólna sytuacja którą mamy na
myśli mówiąc o składaniu odwzorowań wygląda następująco: dane są trzy przestrzenie
metryczne, którymi dla nas są zawsze Rn-y i dwa odwzorowania, które oznaczymy sobie
H i G:

H G

R
n −→ R

k −→ R
m .

Niech punktami tych przestrzeni będą

R
n (x1, x2, . . . , xn) ,

R
k (y1, y2, . . . , yk) ,

R
m (z1, z2, . . . , zm) .

Przy kolejnych odwzorowaniach

y1 = H1(x1, x2, . . . , xn) , z1 = G1(y1, y2, . . . , yk) ,

y2 = H2(x1, x2, . . . , xn) , z2 = G2(y1, y2, . . . , yk) ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

yk = Hk(x1, x2, . . . , xn) , zm = Gm(y1, y2, . . . , yk) .

Zgodnie z tym, co już wiemy o pochodnych odwzorowań, pochodna H ′ (zakładamy, że
istnieje; czasem oznacza się ją DH , ale to się myli z różniczką, która - zgodnie z tym,
czego nauczałem wyżej - jest wartością pochodnej obliczonej na wektorze przesunięcia)
odwzorowania H jest macierzą k × n (k wierszy, n kolumn), tak by działając na n-
wymiarowy wektor dawała wektor k-wymiarowy. Z kolei pochodna odwzorowania G (też
zakładamy, że istnieje) jest macierzą m × k (m wierszy k kolumn), która działając na
k-wymiarowy wektor daje wektor m-wymiarowy.

Ich złożenie F = H ◦ G jest odwzorowaniem z Rn bezpośrednio w Rm i wyraża się
wzorami:

z1 = F1(x1, x2, . . . , xn) = G1(H1(x1, x2, . . . , xn), . . . , Hk(x1, x2, . . . , xn)) ,

z2 = F2(x1, x2, . . . , xn) = G2(H1(x1, x2, . . . , xn), . . . , Hk(x1, x2, . . . , xn)) ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

zm = Fm(x1, x2, . . . , xn) = Gm(H1(x1, x2, . . . , xn), . . . , Hk(x1, x2, . . . , xn)) .

Obliczmy teraz korzystając z powyższych wzorów pochodną po x1 funkcji F1. Tak jak przy
obliczaniu zwykłych pochodnych stosuje się tu metoda “pochodna funkcji zewnętrznej po
jej argumencie razy pochodna funkcji wewnętrznej”. Zatem

∂F1

∂x1
≡ ∂x1F1 = ∂y1G1 ∂x1H1 + . . .+ ∂ykG1 ∂x1Hk .
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Funkcja F1 od x1 zależy poprzez funkcję G1, która zależy od k funkcji H1, . . ., Hk i dopiero
każda tych zależy od x1. Uogólnijmy ten wzorek na pochodną po xj funkcji Fi:

∂xj
Fi =

k
∑

l=1

∂ylGi ∂xj
Hl .

Jeśli teraz dobrze się przyjrzymy temu wzorkowi, to dostrzeżemy w nim wzór na mnożenie
macierzy: pochodna F ′, zgodnie z tym, co ma ona robić powinna być macierzą m ×
n (m wierszy, n-kolumn; ma ona działać na n-wymiarowy wektor i dawać wektor m-
wymiarowy), a powyższy wzór daje ją jako iloczyn macierzy: wzór

[F ′]i j =
k
∑

l=1

[G′]i l [H
′]l j ,

w którym

[G′]i l ≡ ∂ylGi ≡
∂Gi

∂yl
, [H ′]l j ≡ ∂xj

Hl ≡
∂Hl

∂xj
,

jest właśnie (opanowanym na algebrze) wzorem na element [F ′]i j (tj. element stojący w
i-tym wierszu i j-tej kolumnie macierzy F ′. Pozostaje tylko ustalić, w jakich punktach
pochodne te (czyli macierze) mają być obliczone. Jeśli pochodna F ′ ma być obliczona
w punkcie (x1, . . . , xn), to w tym punkcie musi też być wzięta pochodna H ′. Natomiast
pochodna G′, którą obliczamy mając dane funkcje G1(y1, . . . , yk), . . ., Gm(y1, . . . , yk) i
różniczkując je po y1, . . ., yk, musi być na końcu wyrażona przez y1 = H1(x1, . . . , xn), . . .,
yk = Hk(x1, . . . , xn). Tak wiec

(G ◦H)′(x1,...,xn)
= G′

(H1(x1,...,xn),...,Hk(x1,...,xn)) ·H ′
(x1,...,xn) ,

gdzie kropka oznacza mnożenie macierzy. Ot i wszystko.
Sformułowane wyżej reguły obliczania pochodnych odwzorowań będących złożeniami

innych odwzorowań sprowadzają się do znanej z teorii funkcji jednej zmiennej reguły “po-
chodna po jakiejś wybranej zmiennej fukcji będącej złożeniem równa się pochodnej po
argumencie funkcji zewnętrznej razy pochodna po wybranej zmiennej funkcji wewnętrz-
nej”. Tyle, że teraz trzeba posumować po argumentach funkcji zewnętrznej.

Przykład
Dane są dwa odwzorowania: T : R2 −→ R3 oraz S : R −→ R2 zadane wzorami

T

([

x
y

])

=





sin x
exp(x+ y)

1



 , S(t) =

[

t
ln(1 + t4)

]

.

Ich złożeniem (złożyć je można tylko w jeden sposób, mam nadzieję, że to oczywiste)
F = T ◦S jest odwzorowanie F : R −→ R3, którego wzór dostajemy wstawiając do wzoru
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na T , zmienne x i y wyrażone przez t, tak jak dyktuje odwzorowanie S:

F (t) =





sin t
exp{t + ln(1 + t4)}

1



 =





sin t
(1 + t4) et

1



 .

Pochodna F ′ odwzorowania F jest macierzą o trzech wierszach i jednej kolumnie, czyli
wektorem (bo całe F jest, jak w mechanice pojedyńczej cząstki trajektorią tej cząstki w
przestrzeni, a pochodna F to “po fizycznemu” po prostu prędkość tej cząstki; wartość tej
pochodnej na “wektorze” przesunięcia, czyli δt, daje zmianę położenia po czasie δt):

F ′(t) =





cos t
(1 + 4t3 + t4) et

0



 .

Sprawdźmy, jak to się ma do iloczynu macierzy będących pochodnymi odwzorowań T i
S. Pochodna T ′ odwzorowania T jest macierzą 3 × 2 (trzy wiersze, dwie kolumny), a
pochodna S ′ odwzorowania S jest macierzą 2× 1 (czyli dwuwymiarowym wektorem):

T ′(x, y) =





cosx 0
ex+y ex+y

0 0



 , S ′(t) =

(

1
4t3/(1 + t4)

)

.

Iloczyn (macierzowy) tych pochodnych, to

T ′ · S ′ =





cos x 0
ex+y ex+y

0 0





(

1
4t3/(1 + t4)

)

=





cosx
[1 + 4t3/(1 + t4)] exp(x+ y)

0



 .

Teraz jednak przypominamy sobie, że trzeba wyrazić x oi y przez t, tak jak dyktuje
odwzorowanie S: x = t, y = ln(1 + t4). Po zrobieniu tego znajdujemy, że T ′ · S ′ jest tym
samym co F ′.

Zadanie
Pokazać, że funkcję f(t, x) spełniającą dwuwymiarowe równanie falowe

1

c2
∂2f

∂t2
− ∂2f

∂x2
= 0

można przedstawić w postaci sumy f(t, x) = hL(x − ct) + hR(x + ct) dwóch funkcji
z których jedna, hL, reprezentuje falę przemieszczającą się z prędkością c bez zmiany
kształtu w kierunku dodatnim osi x, a druga, hR, falę przemieszającą się bez zmiany
swojego kształtu i zupełnie niezależnie od tamtej w kierunku ujemnym osi x.
Rozwiązanie: Wyobrażamy sobie, że12

f(t, x) = f̃(v(t, x), u(t, x)) ,

12Matematyk pisze f̃ , bo jako maszynka z dwiema dziurami funkcja ta jest inną maszynką niż funkcja
f ; fizyk używa tej samej litery f na oznaczenie obu funkcji, bo dla niego jest to ta sama wielkość fizyczna.

25



gdzie , v = x+ ct a u = x− ct. W związku z tym piszemy zodnie z regułą łańcuszkową:

∂f

∂x
=
∂f̃

∂v

∂v

∂x
+
∂f̃

∂u

∂u

∂x
=
∂f̃

∂v
+
∂f̃

∂u
,

∂f

∂t
=
∂f̃

∂v

∂v

∂t
+
∂f̃

∂u

∂u

∂t
= c

∂f̃

∂v
− c

∂f̃

∂u
.

Drugie pochodne obliczamy podobnie (tu jest to proste, bo pochodne (∂u/∂x), (∂u/∂t)
etc. są stałymi):

∂2f

∂x2
=

∂

∂x

(

∂f̃

∂v
+
∂f̃

∂u

)

=
∂2f̃

∂v2
∂v

∂x
+

∂2f̃

∂v∂u

∂u

∂x
+

∂2f̃

∂u∂v

∂v

∂x
+
∂2f̃

∂u2
∂u

∂x

=
∂2f̃

∂v2
+ 2

∂2f̃

∂v∂u
+
∂2f̃

∂u2
.

Analogicznie

∂2f

∂x2
=

∂

∂t

(

∂f̃

∂v
− ∂f̃

∂u

)

c =

(

∂2f̃

∂v2
∂v

∂t
+

∂2f̃

∂v∂u

∂u

∂t
− ∂2f̃

∂u∂v

∂v

∂t
− ∂2f̃

∂u2
∂u

∂t

)

c

= c2
∂2f̃

∂v2
− 2 c2

∂2f̃

∂v∂u
+ c2

∂2f̃

∂u2
.

Zatem w nowych zmiennych równanie falowe przybiera postać

1

c2
∂2f

∂t2
− ∂2f

∂x2
= 4

∂2f̃

∂v∂u
= 4

∂

∂v

(

∂f̃

∂u

)

= 4
∂

∂u

(

∂f̃

∂v

)

= 0 ,

z której natychmiast wynika, że (∂f̃/∂u) nie zależy od zmiennej v, a (∂f̃/∂v) nie zależy
od zmiennej u. Zatem ze scałkowania (∂f̃/∂u) po u (lub ze scałkowania (∂f̃/∂v) po v)
otrzymujemy f̃ = hL(u) + hR(v), co jest właśnie tym, co trzeba było wykazać.

Zadanie
Przepisać równanie różniczkowe

(

∂f

∂x

)2

+

(

∂f

∂y

)2

− f 2 = 0 ,

w zmiennych u i v zadanych związkami

x =
u

u2 + v2
≡ u

R2
, y =

v

u2 + v2
≡ v

R2
.

Rozwiązanie: Chodzi jak zawsze o wyobrażenie sobie, że f(x, y) = f̃(u(x, y), v(x, y)).
Tak jak w porzednim zadaniu (uwaga: tu zmienną u traktuję jak piewszą, a v jak drugą
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- odwrotnie, niż w poprzednim)

∂f

∂x
=
∂f̃

∂u

∂u

∂x
+
∂f̃

∂v

∂v

∂x
,

∂f

∂y
=
∂f̃

∂u

∂u

∂y
+
∂f̃

∂v

∂v

∂y
.

Tu mamy jednak pewną techniczną trudność, bo aby np. zróżniczkować u po x, musimy
“odkręcić” podane wzory (wyrażają one x i y przez u i v, a potrzebujemy na odwrót)
a następnie, kiedy już znajdziemy pochodne (∂u/∂x) etc., to trzeba będzie je zurück
wyrazić przez zmienne u i v (żeby równanie na f̃ było wyrażone w tych tylko zmiennych).
Wszystko to się oczywiście daje zrobić, szczególnie w tym zadaniu, bo wzory wiążące
x i y z u i v są tu proste. Niemniej przydatna może być następująca sztuczka. Niech
F : (u, v) −→ (x, y) (czyli F to jest to odwzorowanie R2 w R2, które wyraża x i y przez
u i v), a G : (x, y) −→ (u, v) (czyli G to jest F−1, czyli odwzorowanie odwrotne do F
wyrażające u i v przez x i y). Ponieważ G◦F = id - złożenie odwzorowania i odwzorowanie
odwrotnego jest odwzorowaniem identycznościowym, więc pochodna (G ◦ F )′ jest, no
właśnie: czym jest? Oczywiście macierzą jednostkową I, tu 2 × 2 (nie zerem, jak by
ktoś mógł mniemać! W przypadku jednowymiarowym u = G(x), a x = F (u), więc
(F ◦ G)(x) = x i pochodna jest równa 1; teraz uogólnijmy to sobie...). Czyli, ponieważ
(G ◦F )′ = G′ ·F ′ = I, więc G′ = (F ′)−1 - macierz G′ jest macierzą odwrotną do macierzy
F ′ (po to m.in. się uczyliśmy odwracać macierze). Ponieważ

F ′ =

(

∂x/∂u ∂x/∂v
∂y/∂u ∂y/∂v

)

=

(

(v2 − u2)/R4 −2uv/R4

−2uv/R4 (u2 − v2)/R4

)

,

więc (pamiętamy: odwracanie macierzy 2× 2 sprowadza się do zamienienia miejscami jej
elementow diagonalnych, zmienienia znaków jej elementów pozadiagonalnych i podzielenia
całości przez wyznacznik odwracanej macierzy)

G′ =

(

∂u/∂x ∂u/∂y
∂v/∂x ∂v/∂y

)

= (F ′)−1 =
1

detF ′

(

∂y/∂v −(∂x/∂v)
−(∂y/∂u) ∂x/∂u

)

.

Zauważmy, że w ten sposób dostajemy od razu pochodne ∂u/∂x, etc. wyrażone przez
zmienne u i v, dokładnie tak, jak tego potrzebujemy!. No to teraz tylko powypisywać
wzory w naszym przypadku:

detF ′ =
1

R8

(

−(u2 − v2)2 − 4u2v2
)

= −(u2 + v2)2

R8
= − 1

R4
,

i

G′ =

(

∂u/∂x ∂u/∂y
∂v/∂x ∂v/∂y

)

= −R4

(

(u2 − v)2/R4 2uv/R4

2uv/R4 (v2 − u2)/R4

)

.

Zatem, jawnie już,

∂u

∂x
= v2 − u2 ,

∂u

∂y
= −2uv ,

∂v

∂x
= −2uv ,

∂v

∂y
= u2 − v2 .
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No i teraz możemy przepisać równanie różniczkowe w zmiennych u i v:

∂f

∂x
= (v2 − u2)

∂f̃

∂u
− 2uv

∂f̃

∂v
,

∂f

∂y
= −2uv

∂f̃

∂u
+ (u2 − v2)

∂f̃

∂v
.

Po podniesieniu do kwadratu i zebraniu do kupy (wyrazy (∂f̃/∂u)(∂f̃/∂v) sie skasują)
dostajemy równanie

R4(u, v)





(

∂f̃

∂u

)2

+

(

∂f̃

∂v

)2


− f 2 = 0 .

Nic prostszego nie wyszło, ale nie o to tu chodziło.
Oczywiście wszystko można zrobić bezpośrednio też.

x2 + y2 =
u2 + v2

R4
=

1

R2
,

więc

u = R2x =
x

x2 + y2
≡ x

κ2
, v = R2y =

y

x2 + y2
≡ y

κ2
,

i

∂u

∂x
=
y2 − x2

κ4
,

∂u

∂y
= −2xy

κ4
,

∂v

∂x
= −2xy

κ4
,

∂v

∂y
=
x2 − y2

κ4
.

Teraz trzeba by te wzory zurück wyrazić przez u i v, ale na nawet nie musimy tego jawnie
robić, bo jak podniesiemy do kwadratu pochodne

∂f

∂x
=
y2 − x2

κ4
∂f̃

∂u
− 2xy

κ4
∂f̃

∂v
,

∂f

∂y
= −2xy

κ4
∂f̃

∂u
+
x2 − y2

κ4
∂f̃

∂v
,

i dodamy do siebie te kwadraty, to dostaniemy

1

κ4





(

∂f̃

∂u

)2

+

(

∂f̃

∂v

)2


− f 2 = 0 ,

ale κ−4 = R4, więc rzeczywiście wyszło to samo.
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Warto poznać jeszcze jeden sposób znajdywania pochodnych (∂u/∂x) etc. wyrażonych
od razu przez zmienne u i v. Jest to w mojej terminologii sposób13 “termodynamiczny”.
Zamiast jawnie “odkręcać” wzory na x i y, zapisujemy je tak

x =
u(x, y)

R2(u(x, y), v(x, y))
, y =

v(x, y)

R2(u(x, y), v(x, y))
,

tj. wyobrażamy sobie (ale tylko wyobrażamy, nie musimy wypisywać jawnych wzorów!),
że u i v są funkcjami x i y, więc wypisane wzorki są jakby tożsamościami. Możemy je
teraz zróżniczkować stronami po x (traktując x i y jak zmienne niezależne, a u i v jak ich
funkcje, tak jak to wynika z zapisu), co da

1 =
ux
R2

− u

R4
(2uux + 2vvx) =

v2 − u2

R4
ux −

2uv

R4
vx,

0 =
vx
R2

− v

R4
(2uux + 2vvx) =

u2 − v2

R4
vx −

2uv

R4
ux,

Jak widać są to dwa równania liniowe na dwie niewiadome ux i vx A równania liniowe też
już nauczyliśmy się rozwiązywać (widzą Państwo, jak potrzebna jest algebra!). Tu akurat
jest to bardzo proste, bo z drugiego mamy vx = 2uvux/(u

2 − v2) i jak to wstawimy do
pierwszego, to dostaniemy

1 =

[

v2 − u2

R4
− 4u2v2

R4(u2 − v2)

]

ux ,

skąd już łatwo znajdujemy, że ux = v2−u2, a potem, że vx = −2uv. Analogicznie, różnicz-
kując stronami po y wypisane wyżej tożsamości dostajemy dwa liniowe równania na uy i vy
i rozwiązawszy je znajdujemy vy = u2 − v2 i uy = −2uv, tak jak poprzednio. Oczywiście,
cała ta metoda jest tym samym, co metoda polegająca na odwracaniu macierzy F ′, tylko
jest ona nieco inaczej sformułowana. W istocie, rozwiązywanie układów równań liniowych
na pochodne ux, vy, etc. jest równoważne operacji odwracania macierzy (pamiętamy z
algebry, że najprostszym - w moim odczuciu - sposobem znajdywania macierzy odwrotnej
do danej jest potraktowanie tejże jak macierzy zmiany bazy i rozwiązanie odpowiedniego
układu równań liniowych właśnie).

Zadanie
Gradient funkcji f : R3 −→ R rozumiany14 “po fizycznemu” jest to wektor o składowych

∇f = ex fx + ey fy + ez fz ,

13Naprawdę sposób ten opiera się na umiejętności operowania funkcjami zadanymi w sposób uwikłany
(a na tym stoi połowa matematycznej - bo nie fizycznej! - części termodynamiki; przekona się o tym ten,
kto będzie miał szczęście przyjść na mój wykład z termodynamiki i fizyki statystycznej). Tego będziemy
się uczyć dopiero za dwa tygodnie pewnie, ale fizyk się takimi drobnostkami nie przejmuje, tylko działa!

14Naprawdę, to gradient nie jest wektorem, tylko kowektorem i wszystko, co tu zrobimy idzie łatwiej,
gdy się to przyjmie do wiadomości. W XXI wieku dobrze by już było unowocześnić to nauczanie i
wprowadzić trochę elementarnej wiedzy z zakresu geometrii różniczkowej i form różniczkowych, bo czyni to
wszystko bardziej zrozumiałym, a nie jest trudniejsze od zwykłego operowania wektorami. Au contraire,
wiele rzeczy się wręcz upraszcza.
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gdzie ex, ey i ez są jednostkowymi wektorami (wersorami - ale trzeba pamiętać, że choć
brzmi to z angielska, takiego słowa w angielskim się nie używa, podobnie jak słowa “termo-
stat”, które też nam z angielska brzmi) tworzącymi układ ortonormalny. Wyrazić gradient
we współrzędnych sferycznych zdefiniowanych związkami15

x = r sin θ sinϕ ,

y = r sin θ cosϕ ,

z = r cos θ ,

rozpisując go na wersory er, eθ i eϕ.

Rozwiązanie: Jak zawsze trzeba sobie wyobrazić, że

f(x, y, z) = f̃(r(x, y, z), θ(x, y, z), ϕ(x, y, z)) .

Wyrażamy wobec tego najpierw składowe wektora-gradientu w bazie ex, ey i ez, a potem
zmieniamy bazę na er, eθ i eϕ. Najpierw więc pierwszy punkt programu. Zaczynamy od
fx:

fx = rx f̃r + θx f̃θ + ϕx f̃ϕ ,

i musimy wobec tego wyznaczyć pochodne rx, θx i ϕx. Można to zrobić “odkręcając”
wzory definiujące układ sferyczny czyli wypisując wzorki

r =
√

x2 + y2 + z2 ,

θ = arccos
z

√

x2 + y2 + z2
= arctg

√

x2 + y2

z
,

ϕ = arctg
y

x
,

różniczkując po x (a potem, przy wypisywaniu fy po y, a przy wypisywaniu fz po z) i na
koniec wyrażając otrzymane pochodne na powrót przez r, θ i ϕ. Tu jednak zastosujemy
mój ulubiony trick “termodynamiczny”, czyli podane wzory definiujące układ sferyczny
zróżniczkujemy stronami po x (a potem po y i po z) traktując r, θ i ϕ jak funkcje
niezależnych zmiennych x, y i z. Tak czyniąc otrzymujemy układ trzech równań liniowych
na rx, θx i ϕx (używamy tu oznaczeń sθ ≡ sin θ, cϕ ≡ cosϕ, etc.)

1 = rx sθ cϕ + θx r cθ cϕ − ϕx r sθ sϕ ,

0 = rx sθ sϕ + θx r cθ sϕ + ϕx r sθ cϕ ,

0 = rx cθ − θx r sθ .

Z ostatniego θx = (rx/r)(cθ/sθ) i to do dwu pierwszych. To da

1 = rx

(

sθ +
c2θ
sθ

)

cϕ − ϕx r sθ sϕ ,

0 = rx

(

sθ +
c2θ
sθ

)

sϕ + ϕx r sθ cϕ ,

15Trzeba sobie te wzorki zapamiętać i nie zamieniać sinusów z kosinusami (co czasem studenci robią),
bo wprowadza to zamęt, a jest wiele ciekawszych rzeczy, na których trzeba się skupiać.
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i teraz dodajemy pierwsze razy cϕ do drugiego razy sϕ i dostajemy rx = sθcϕ (więc mamy
też i θx), a z kolei pierwsze razy sϕ minus drugie razy cϕ da ϕx. Zatem

rx = sθ cϕ , θx =
cθ cϕ
r

, ϕx = − sϕ
r sθ

.

Po zróżniczkowaniu stronami po y dostajemy układ

0 = ry sθ cϕ + θy r cθ cϕ − ϕy r sθ sϕ ,

1 = ry sθ sϕ + θy r cθ sϕ + ϕy r sθ cϕ ,

0 = ry cθ − θy r sθ .

który można rozwikłać tak samo, jak poprzedni: θy = (ry/r)(cθ/sθ) i

0 = ry

(

sθ +
c2θ
sθ

)

cϕ − ϕy r sθ sϕ ,

1 = ry

(

sθ +
c2θ
sθ

)

sϕ + ϕy r sθ cϕ .

Stąd

rx = sθ sϕ , θx =
cθ sϕ
r

, ϕx =
cϕ
r sθ

.

Wreszcie, zróżniczkowanie stronami po z da

0 = rz sθ cϕ + θz r cθ cϕ − ϕz r sθ sϕ ,

0 = rz sθ sϕ + θz r cθ sϕ + ϕz r sθ cϕ ,

1 = rz cθ − θz r sθ .

Teraz mnożymy pierwsze przez cϕ, dodajemy do drugiego pomnożonego przez sϕ i otrzy-
mujemy układ

(

sθ r cθ
cθ −r sθ

)(

rz
θz

)

=

(

0
1

)

,

z którego łatwo dostajemy rz = cθ i θz = −sθ/r. Podstawiajac te pochodne do 0 =
rzsθcϕ + θzrcθcϕ − ϕzrsθsϕ znajdujemy, że ϕz = 0. Mamy więc

∇f = ex

(

sθ cϕ fr +
cθ cϕ
r

fθ −
sϕ
r sθ

fϕ

)

+ ey

(

sθ sϕ fr +
cθ sϕ
r

fθ +
cϕ
r sθ

fϕ

)

+ ez

(

cθ fr −
sθ
r
fθ

)

.

Można teraz obliczyć kwadrat gradientu jako sumę kwadratów współczynników przy ex,
ey i ez. Wyjdzie

(∇f)2 = (fr)
2 +

(

fθ
r

)2

+

(

fϕ
r sθ

)2

,

31



co podpowiada, że

∇f = er fr + eθ
fθ
r
+ eϕ

fϕ
r sθ

,

i tak w istocie jest, ale aby to ściśle pokazać, trzeba wektory ex, ey i ez wyrazić przez
wektory er, eθ i eϕ i wstawić do wzoru na ∇f . Wzory w odwrotną stronę dość łatwo
napisać:16 wektor jednostkowy er biegnie wzdłuż promienia, więc jego rzut na oś z idzie z
kosinusem θ, a rzut na płaszczyznę xy idzie z sinusem; rzut ten należy jeszcze zrzutować
na oś x i y. Z kolei wektor eϕ jest zawsze równoległy do płaszczyzny xy i jest taki sam,
jak w układzie biegunowym. Wreszcie wektor eθ ma rzut na oś z równy −sθ, a jego rzut
równy cθ na płaszczyznę xy trzeba jeszcze dodatkowo zrzutować na osie x i y. Zatem

er = ex sθ cϕ + ey sθ sϕ + ez cθ ,

eθ = ex cθ cϕ + ey cθ sϕ − ez sθ ,

eϕ = −ex sϕ + ey cϕ .

Żeby te wzory odwikłać najlepiej przepisać je tak jak na algebrze

(er, eθ, eϕ) = (ex, ey, ez)





sθ cϕ cθ cϕ −sϕ
sθ sϕ cθ sϕ cϕ
cθ −sθ 0





Stojąca tu macierz zmiany bazy łączy dwa układy wektorów ortonormalnych, jest więc
macierzą ortogonalną o wyznaczniku 1 (to, że 1, a nie −1 wynika z tego, że dwa te układy
są zgodnie zorientowane, cokolwiek by to miało znaczyć...) i macierz do niej odwrotna
jest po prostu dana przez jej transpozycję. Zatem

(ex, ey, ez) = (er, eθ, eϕ)





sθ cϕ sθ sϕ cθ
cθ cϕ cθ sϕ −sθ
−sϕ cϕ 0



 .

albo

ex = er sθ cϕ + eθ cθ cϕ − eϕ sϕ,

ey = er sθ sϕ + eθ cθ sϕ + eϕ cϕ ,

ez = er cθ − eθ sθ .

Oczywiście można było układ równań rozwiązać konwencjonalnie: dodając pierwsze po-
mnożone przez sθ do drugiego pomnożonego przez cθ wygaussowuje się ez a potem to już
jest układ dwu równań na dwie niewiadome (ex i ey). Z kolei ez dostaje się odejmując
od pierwszego pomnożonego przez cθ drugie pomnożone przez sθ. No i jak się te wzory
na ex, ey i ez wstawi do tego długiego wzoru na gradient, to wyjdzie to, co już zostało
napisane wcześniej.

16O właśnie: elementarna wiedza z geometrii różniczkowej pozwala wzory na jednostkowe wektory zwią-
zane z dowolnym krzywoliniowym układem współrzędnych wypisywać “mechanicznie”, bez wyobrażania
sobie, jak to naprawdę w przestrzeni wygląda...
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Rozwinięcie w szereg Taylora funkcji wielu zmiennych

Jak wszyscy dobrze wiedzą (lub wiedzieć powinni), w przypadku funkcji jednej zmiennej,
czyli odwzorowania z R w R, mającej n + 1 ciągłych pochodnych w całym przedziale
domkniętym [x0, x0 + h], słuszny jest wzór Taylora (nie szereg, tylko wzór!)

φ(x0 + h) = φ(x0) + φ′(x0)h+
1

2!
φ′′(x0)h

2 + . . .+
1

n!
φ(n)(x0)h

n +Rn+1 .

Wyraz Rn+1, zwany resztą Taylora (a może doczesnymi resztkami Taylora), jest dany
wzorem (tzw. postać Lagrange’a resztek Taylora - są też inne jej postacie)

Rn+1 =
hn+1

(n+ 1)!
φ(n+1)(x0 + θh) , gdzie 0 < θ < 1 .

Chodzi oczywiście o to, że w przedziale (x0, x0 + h) jest gdzieś (ale gdzie dokładnie, to
tego właśnie wzór nie mówi) taki punkt,17 że obliczona w nim (n+1)-sza pochodna funkcji
φ(x) dopełnia wzór Taylora do uczciwej równości. Sztandarowym przykładem, jak działa
wzór Taylora jest zastosowanie go z x0 = 0 do funkcji

φ(x) = exp

(

− 1

x2

)

.

Funkcja ta ma w x0 = 0 pochodne dowolnego rzędu, ale wszystkie one, jak jeden mąż (choć
to dziewczyny!), są równe zeru: φ(n)(0) = 0, n = 0, 1, . . . Wobec tego wszystkie wyrazy we
wzorze Taylora są równe zeru oprócz - właśnie! - tej reszty, która daje dokładnie wartość
φ(h).

Dowodzi się (np. u Lejka - to naprawdę bardzo przyjazna człowiekowi książeczka!), że
równoważnie resztę Taylora można też zapisać w postaci

Rn+1 =
hn+1

n!
(1− θ̃)nφ(n+1)(x0 + θ̃h) , gdzie 0 < θ̃ < 1 .

Czasem bywa to użyteczne.
Dopiero, gdy w przedziale domkniętym [x0, x0+h] istnieją pochodne dowolnego rzędu

funkcji φ(x) i gdy można pokazać, iż przy n → ∞ reszta Rn+1 dąży do zera,18 wzór
Taylora staje się nieskończonym szeregiem potęgowym. Oczywiście promień zbieżności
takiego szeregu jest wtedy równy conajmniej h (no bo jak pokazaliśmy, że przy danym h
reszta zbiega do zera, to tak musi być; odwracając kota do góry ogonem, jeśli napiszemy
nieskończony potęgowy szereg Taylora i zobaczymy, że ma on skończony promień zbież-
ności r, to to znaczy, że przy |h| > r, lub |h| ≥ r - zależnie od zachowania szeregu na
krańcach przedziału zbieżności - reszta Taylora do zera nie zbiega).

17Utarła jakaś taka tradycja matematyczna, żeby wielkość parametryzującą niepewność, gdzie obliczać
tę pochodną w reszcie Taylora oznaczać θ. Nie wiem skąd to poszło, ale nie będziemy tej tradycji tu
łamać.

18Jest jasne, że w przypadku funkcji φ(x) = exp(−1/x2) tego właśnie nie można pokazać!
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Wzór Taylora obowiązujący w przypadku funkcj wielu zmiennych, czyli odwzorowań19

f : Rn −→ R, można otrzymać z przypomnianego wyżej wzoru Taylora dla funkcji jednej
zmiennej. W tym celu stosujemy ten wzór do funkcji

φ(t) = φ(0 + t) = f(x+ th) ,

potraktowanej jak funkcja jednej zmiennej t. Przyrost h = (h1, . . . , hn) jest tu ustalonym
wektorem. Zakładając, że funkcja φ(t) ma w przedziale [0, 1] pochodne do rzędu (n+ 1)-
szego włącznie,20 mamy

φ(t) = f(x) + t

n
∑

j=1

∂f

∂xj

∣

∣

∣

∣

x

hj +
t2

2!

n
∑

j1=1

n
∑

j2=1

∂2f

∂xj1∂xj2

∣

∣

∣

∣

x

hj1hj2 + . . .

+
tr

r!

n
∑

j1=1

. . .
n
∑

jr=1

∂rf

∂xj1 . . . ∂xjr

∣

∣

∣

∣

x

hj1 . . . hjr +Rr+1 .

Wykorzystana tu została regułka obliczania pochodnych złożenia funkcji: np.

dφ(t)

dt

∣

∣

∣

∣

t=0

=

[

d

dt
f(x1 + th1, . . . , xn + thn)

]

t=0

=
∂f(x1, . . . , xn)

∂x1

∣

∣

∣

∣

x

h1 + . . .+
∂f(x1, . . . , xn)

∂xn

∣

∣

∣

∣

x

hn ,

etc. Można teraz położyć t = 1 i w ten sposób otrzymuje się wzór Taylora dla funkcji
wielu zmiennych.

W występujących w k-tym wyrazie (1 ≤ k ≤ r) sumach pochodnych k-tego rzędu
wiele wyrazów się powtarza, bo mieszane pochodne są sobie równe. Np. w wyrazie o
k = 2 mamy

∂2f

∂x1∂x2

∣

∣

∣

∣

x

h1h2 =
∂2f

∂x2∂x1

∣

∣

∣

∣

x

h2h1 .

Zawsze można taki k-ty wyraz zapisać tak, by już nie było powtarzania się takich samych
pochodnych:

n
∑

j1=1

. . .

n
∑

jk=1

∂kf

∂xj1 . . . ∂xjk

∣

∣

∣

∣

x

hj1 . . . hjk =

k
∑

p1=0

. . .

k
∑

pn=0

C(k)
p1...pn

∂kf

∂xp11 . . . xpnn

∣

∣

∣

∣

x

hp11 . . . hpnn .

C
(k)
p1...pn jest tu pewnym czynnikiem kombinatorycznym, który jest równy zeru, jeśli p1 +

. . . + pn 6= k. Jeśli wydaje się to zawiłe, to najlepiej wziąć przypadek funkcji dwóch

19Odwzorowania F : Rn −→ Rm to po prostu m osobnych funkcji Fi : Rn −→ R, i = 1, . . . ,m; wzór
Taylora stosujemy do każdej z nich osobna.

20To czy ma, zależy oczywiście też od wektora przyrostu h. Zawsze można ten wektor “skrócić” tak,
żeby funkcja φ(t) te pochodne do rzędu (n+1)-szego w przedziale [0, 1] miała. No chyba, że funkcja f(x)
jest jakaś wredna, ale takimi się nie zajmujemy.
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zmiennych (n = 2):

2
∑

j1=1

. . .

2
∑

jk=1

∂kf

∂xj1 . . . ∂xjk

∣

∣

∣

∣

x

hj1 . . . hjr =

k
∑

p=0

(

k
p

)

∂kf

∂xp1 ∂x
k−p
2

∣

∣

∣

∣

x

hp1 h
k−p
2 .

Czynnik C(k)
p1...pn jest tu po prostu symbolem Newtona. k-ty wyraz wzoru Taylora można

też napisać nieco symbolicznie w postaci

n
∑

j1=1

. . .
n
∑

jk=1

∂kf

∂xj1 . . . ∂xjk

∣

∣

∣

∣

x

hj1 . . . hjr =

(

h1
∂

∂x1
+ . . .+ hn

∂

∂xn

)k

f(x1, . . . , xn) ≡ dkf
∣

∣

x
,

rozumiejąc, że należy tu k-krotnie zadziałać na funkcję f operatorem różniczkowym
(

h1
∂

∂x1
+ . . .+ hn

∂

∂xn

)

.

Symbol dkf |x można rozumieć jako różniczkę k-tego rzędu funkcji f .
Resztę Rr+1 otrzymuje się przy tej konstrukcji z reszty

Rr+1 =
tr+1

(r + 1)!
φ(r+1)(θt) gdzie 0 < θ < 1 ,

wzoru Taylora dla funkcji φ(t), kładąc t = 1:

Rr+1 =
1

(r + 1)!

(

h1
∂

∂x1
+ . . .+ hn

∂

∂xn

)r+1

f

∣

∣

∣

∣

∣

x+θh

.

Napiszmy jeszcze w pełnej krasie wzór Taylora dla funkcji f(x, y) dwóch zmiennych:

f(x+ hx, x+ hy) = f(x, y) +
∂f

∂x

∣

∣

∣

∣

x,y

hx +
∂f

∂y

∣

∣

∣

∣

x,y

hy

+
1

2

(

∂2f

∂x2

∣

∣

∣

∣

x,y

h2x + 2
∂2f

∂x ∂y

∣

∣

∣

∣

x,y

hxhy +
∂2f

∂y2

∣

∣

∣

∣

x,y

h2y

)

+ . . .+
1

r!

r
∑

p=0

(

r
p

)

∂rf

∂xp∂yr−p

∣

∣

∣

∣

x,y

hpxh
r−p
y

+
1

(r + 1)!

r+1
∑

p=0

(

r + 1
p

)

∂r=1f

∂xp∂yr+1−p

∣

∣

∣

∣

x+θhx,y+θhy

hpxh
r+1−p
y .

Tak jak w przypadku funkcji jednej zmiennej, jeśli można pokazać, że Rn+1 dąży do
zera, gdy n → ∞, otrzymuje się nieskończony szereg Taylora. Ponieważ szereg Taylora
jest jednoznaczny, naogół zamiast tępo obliczać pochodne cząstkowe, wygodniej jest przy
rozwijaniu funkcji wielu zmiennych w taki szereg skorzystać ze znanych rozwinięć kilku
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funkcji elementarnych. Poniżej zobaczymy to na przykładach. Rozwinięcie w szereg
Taylora daje też uzasadnienie metody szukania ekstremów funkcji wielu zmiennych, czym
zajmiemy się w przyszłym tygodniu.

Przykłady
Rozwinąć w szereg Taylora wokół punktu (0, 0) do trzeciego rzędu włącznie funkcję
f(x, y) = ex sin y. Korzystamy ze znanych21 rozwinięć funkcji exponens i funkcji sinus:

f(x, y) =

(

1 + x+
1

2
x2 +

1

6
x3 + . . .

)(

y − 1

6
y3 + . . .

)

= y + xy +
1

2
x2y − 1

6
y3 + . . .

Sprawdzamy, że to samo wychodzi z pochodnych: f(0, 0) = 0,

fx(x, y) = ex sin y , fx(0, 0) = 0 ,

fy(x, y) = ex cos y , fy(0, 0) = 1 ,

fxx(x, y) = ex sin y , fxx(0, 0) = 0 ,

fyy(x, y) = −ex sin y , fyy(0, 0) = 0 ,

fxy(x, y) = ex cos y , fxy(0, 0) = 1 ,

fxxx(x, y) = ex sin y , fxxx(0, 0) = 0 ,

fxxy(x, y) = ex cos y , fxxy(0, 0) = 1 ,

fxyy(x, y) = −ex sin y , fxyy(0, 0) = 0 ,

fyyy(x, y) = −ex cos y , fyyy(0, 0) = −1 .

I teraz składamy to w całość (pierwsze liczby w środkowych wyrazach w nawiasach są
czynnikami kombinatorycznymi biorącymi się z symbolu newtona):

f(x, y) = 0 + 0 · x+ 1 · y + 1

2!

(

0 · x2 + 2 · 1 · xy + 0 · y2
)

+
1

3!

(

0 · x3 + 3 · 1 · x2y + 3 · 0 · xy2 + (−1) · y3
)

,

co jest tym samym rozwinięciem, co uzyskane wyżej.

To samo z funkcją f(x, y) = ln(1+x+y2): rozwijamu do trzeciego rzędu wokół punktu
(0, 0). Najpierw sprytem: pamiętamy, że22 ln(1 + ε) = ε − 1

2
ε2 + 1

3
ε3 + . . ., więc, biorąc

ε = x+ y2,

ln(1 + x+ y2) = x+ y2 − 1

2
(x+ y2)2 +

1

3
(x+ y2)3 + . . .

= x+ y2 − 1

2
x2 − xy2 − 1

2
y4 +

1

3
x3 + x2y2 + xy4 +

1

3
y6 + . . .

21To są rzeczy, które trzeba pamiętać aż po grób.
22Znów: to trzeba przez sen recytować!
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Ograniczając rozwinięcie do wyrazów trzeciego rzędu mamy więc

ln(1 + x+ y2) = x− 1

2
x2 + y2 +

1

3
x3 − xy2 + . . .

Teraz to samo zw wzoru z pochodnymi: f(0, 0) = 0 i (dobre ćwiczenie w obliczaniu
pochodnych!)

fx(x, y) =
1

1 + x+ y2
, fx(0, 0) = 1 ,

fy(x, y) =
2y

1 + x+ y2
, fy(0, 0) = 0 ,

fxx(x, y) = − 1

(1 + x+ y2)2
, fxx(0, 0) = −1 ,

fyy(x, y) =
2 + 2x− 2y2

(1 + x+ y2)2
, fyy(0, 0) = 2 ,

fxy(x, y) = − 2y

(1 + x+ y2)2
, fxy(0, 0) = 0 ,

fxxx(x, y) =
2

(1 + x+ y2)3
, fxxx(0, 0) = 2 ,

fxxy(x, y) =
4y

(1 + x+ y2)3
, fxxy(0, 0) = 0 ,

fxyy(x, y) = − 2 + 2x− 6y2

(1 + x+ y2)3
, fxyy(0, 0) = −2 ,

fyyy(x, y) = −12y + 12xy − 4y3

(1 + x+ y2)3
, fyyy(0, 0) = 0 .

No i znów składamy to w całość

f(x, y) = 0 + 1 · x+ 0 · y + 1

2!

(

(−1) · x2 + 2 · 0 · xy + 2 · y2
)

+
1

3!

(

2 · x3 + 3 · 0 · x2y + 3 · (−2) · xy2 + 0 · y3
)

,

I znów jest to to samo, co poprzednio.

Rozwińmy jeszcze funkcję f(x, y) = −x2 + 2xy + 3y2 − 6x− 2y + 4 w szereg Taylora
wokół punktu, dla odmiany, (−2, 1): f(−2, 1) = −4− 4 + 3 + 12− 2 + 4 = 9 i

fx(x, y) =−2x+ 2y − 6 , fx(0, 0) = 0 ,

fy(x, y) = 3x+ 6y − 2 , fy(0, 0) = 0 ,

fxx(x, y) =−2 ,

fyy(x, y) = 6 ,

fxy(x, y) = 2 .
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Wszystkie dalsze pochodne są po prostu równe zeru - wzór Taylora ma w tym przypadku
skończoną liczbę wyrazów. Składamy w całość: hx ≡ x+ 2, hy ≡ y − 1:

f(−2 + hx, 1 + hy) = 9 + 0 · hx + 0 · hy +
1

2

(

−2 · h2x + 2 · 2 · hxhy + 6 · y2
)

,

czyli, wstawiajac hx = x+ 2 i h2 = y − 1,

f(x, y) = 9− (x+ 2)2 + 2 (x+ 2)(y − 1) + 3 (y − 1)2 .

Jest to oczywiście ten sam wielomian, co funkcja f(x, y), tylko inaczej pogrupowany.
Każdy wielomian wielu zmiennych skończonego stopnia n można rozwinąć w szereg Tay-
lora wokół dowolnego punktu i zawsze wyjdzie ten sam wielomian, tylko inaczej zorgani-
zowany.

Napiszmy jeszcze wzór Taylora rzędu trzeciego uwzględniający resztę stosując go do
funkcji f(x, y) = sin2(x+y) i punktu (π, π). Oczywiście f(π, π) = 0. Obliczamy pochodne:

fx(x, y) = fy(x, y) = sin(2x+ 2y) ,

fxx(x, y) = fyy(x, y) = fxy(x, y) = 2 cos(2x+ 2y) ,

fxxx(x, y) = fxxy(x, y) = fxyy(x, y) = fyyy(x, y) = −4 sin(2x+ 2y) .

Zatem fx(π, π) = fx(π, π) = 0 fxx(π, π) = fyy(π, π) = fxy(π, π) = 2 i fxxx(π, π) =
fxxy(π, π) = fxyy(π, π) = fyyy(π, π) = 0. Kładziemy hx = x− π, hy = y − π:

f(π + hx, π + hy) = 0 + 0 · hx + 0 · hy +
1

2!

(

2 · h2x + 2 · 2 · hxhy + 2 · h2y
)

+ 0 +R4 .

Zero przed R4 to są wyrazy rzędu trzeciego, które są wszystkie zerami. Reszta R4 zgodnie
z przytoczonymi wcześniej wzorami jest dana przez

R4 =
1

4!

4
∑

p=0

(

4
p

)

∂4f

∂xp ∂y4−p

∣

∣

∣

∣

(π+θhx,π+θhy)

hpxh
4−p
y ,

gdzie 0 < θ < 1. Oczywiście cały wic w tym, że (bez szczegółowej analizy konkretnej
funkcji) nie wiadomo ile ta θ ma być, ale tu możemy prosto oszacować |R4| od góry, czyli
oszacować błąd popełniany przez urwanie wzoru Taylora na wyrazach trzeciego rzędu (i
nieuwzględnianiu reszty). Daje się to zrobić, bo wszystkie pochodne czwartego rzędu tej
badanej tu funkcji są takie same

∂4f

∂xp ∂y4−p
= −8 cos(2x+ 2y) , p = 0, 1, 2, 3, 4 .

Obliczamy je w jakimś punkcie (π + θhx, π + θhy), ale że | cos(2x+ 2y)| ≤ 1, to możemy
napisać

|R4| =
∣

∣

∣

∣

∣

− 1

4!

4
∑

p=0

(

4
p

)

hpxh
4−p
y 8 cos (2(π + θhx) + 2(π + θhy))

∣

∣

∣

∣

∣

≤ 8

4!

∣

∣

∣

∣

∣

4
∑

p=0

(

4
p

)

hpxh
4−p
y

∣

∣

∣

∣

∣

=
1

3
|hx + hy|4 .
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Ekstrema funkcji wielu zmiennych

Ze wzoru Taylora wynikają warunki istnienia lokalnych ekstremów funkcji wielu zmien-
nych. Niech bowiem f(x1, . . . , xn) będzie funkcją ciągłą i (przynajmniej) dwakroć róż-
niczkowalną w pewnym (otwartym) otoczeniu punktu x∗ ≡ (x∗1, . . . , x

∗
n) ∈ Rn o ciągłych

w otoczeniu tego punktu drugich23 pochodnych. Zastosowany do funkcji f w otoczeniu
punktu x∗ wzór Taylora drugiego rzędu (który, przypomnijmy, jest ścisłą równością) ma
postać

f(x∗1 + h1, . . . , x
∗
n + hn) = f(x∗1, . . . , x

∗
n) + (fx1, . . . , fxn

)|
x∗









h1
·
·
hn









+
1

2
(h1, . . . , hn)









fx1x1 . . . fx1xn

· . . . ·
· . . . ·

fxnx1 . . . fxnxn









x∗+θh









h1
·
·
hn









.

Pochodne drugiego rzędu są tu obliczone gdzieś na linii pomiędzy punktem x∗ i punktem
x∗ +h (0 ≤ θ ≤ 1, jak to we wzorze Taylora). Jeśli wszystkie pochodne cząstkowe pierw-
szego rzędu obliczone w punkcie x∗ są równe zeru (znika cały człon liniowy w wektorze
h w pierwszej linii powyższego wzoru Taylora), a forma kwadratowa drugich pochodnych
funkcji f obliczonych w punkcie x∗ (a nie w punkcie x∗ + θh !)

Qx∗(h) = Qij(x
∗)hihj ≡

∂2f

∂xi ∂xj

∣

∣

∣

∣

x∗

hihj ≡ (h1, . . . , hn)









fx1x1 . . . fx1xn

· . . . ·
· . . . ·

fxnx1 . . . fxnxn









x∗









h1
·
·
hn









,

jest dodatnio (ujemnie) określona, tzn. wyrażenie to jest zawsze dodatnie (ujemne) dla
każdego wektora przemieszczenia h, to funkcja ma w punkcie x∗ lokalne minimum (maksi-
mum). Istotnie: ponieważ założyliśmy, że drugie pochodne funkcji f są ciągłe w otoczeniu
punktu x∗, to zawsze można wybrać tak małe otoczenie (czyli także dostatecznie “krótki”
wektor h), żeby w całym tym otoczeniu, więc także i w nieznanym a priori punkcie x∗+θh,
forma kwadratowa drugich pochodnych była też dodatnio (ujemnie) określona (przez ana-
logię: jeśli f(0) > 0, a funkcja f jednej zmiennej jest ciągła w otoczeniu punktu 0, to
zawsze można dobrać taki |ε|, że f(ε) > 0 również; kluczowa jest tu ciągłość). Zatem
przy dostatecznie krótkich wektorach h dodatnio (ujemnie) określona jest też forma kwa-
dratowa (w której drugie pochodne są obliczone w punkcie x∗ + θh) w wypisanym wyżej
wzorze Taylora drugiego rzędu i tym samym jest jasne że dla dowolnego punktu x∗ + h

należącego do tego otoczenia f(x∗ + h) > f(x∗), czyli w x∗ funkcja ma lokalne minimum
(f(x∗ + h) < f(x∗) i funkcja ma w x∗ lokalne maksimum).

23Że pierwsze są ciągłe wynika z istnienia drugich pochodnych.
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Punkty x∗, w których znikają wszystkie pierwsze pochodne cząstkowe funkcji f nazywa
się jej punktami krytycznymi lub punktami stacjonarnymi (ta druga nazwa, to dlatego,
że przy odchyleniu się od takiego punktu wartość funkcji z dokładnością do pierwszego
rzędu nie zmienia się, czyli pozostaje stacjonarna). Jeśli spełnione są założenia o ciągłości
drugich pochodnych w otoczeniu takiego punktu, a forma kwadratowa drugich pochod-
nych ma w punkcie x∗ sygnaturę mieszaną (zob. skrypt do algebry), tj. ileś plusów i ileś
minusów (i, być może jakieś zera), to punkt taki nazywa się punktem siodłowym funkcji
f , co wynika z tego, że przy pewnych wyborach kierunku wektora h zachodzi ostra nie-
równość f(x∗ + h) > f(x∗), a przy innych wyborach kierunku zachodzi ostra nierówność
f(x∗ + h) < f(x∗): w szczególnym przypadku funkcji f : R2 −→ R ma ona, na trójwy-
miarowym wykresie, w otoczeniu punktu x∗ kształt mniej lub bardziej przypominający
siodło.

Może też się zdarzyć, że w punkcie krytycznym x∗ forma kwadratowa drugich pochod-
nych ma sygnaturę z zerami. Jeśli jest to sygnatura typu kilka plusów, kilka minusów i zero
(lub zera), to w punkcie takim funkcja nie ma ekstremum, bo i tak (znów przy założonej
ciągłości drugich pochodnych!) są kierunki (te “plusowe”), w których f(x∗ + h) > f(x∗) i
są inne kierunki (te “minusowe”), w których f(x∗+h) < f(x∗). Mniej jasna jest sytuacja,
gdy sygnaturą formy kwadratowej drugich pochodnych w punkcie krytycznym jest kilka
plusów i zera (kilka minusów i zera) lub też same zera (forma Q zerowa, tzn. dająca
zero na każdym wektorze). W tym przypadku nie można się odwołać do ciągłości (zero
w sygnaturze formy w punkcie x∗ naogół przestaje być zerem już w sąsiednim punkcie) i
bez dokładniejszej analizy nie wiadomo, jaka jest sygatura formy w (nieznanym a priori)
punkcie x∗ + θh (w którym bierze się formę kwadratową drugich pochodnych we wzorze
Taylora drugiego rzędu). Czasem można jednak orzec, czy w takim punkcie krytycznym
jest ekstremum. Np. jeśli w punkcie krytycznym x∗ forma kwadratowa drugich pochod-
nych jest całkowicie zerowa (znikają w tym punkcie wszystkie drugie pochodne cząstkowe),
a można wypisać wzór Taylora trzeciego rzędu bo trzecie pochodne funkcji f istnieją i są
one ciągłe w jakimś otwartym otoczeniu punktu x∗ i nie są wszystkie tożsamościowo (w
tym otoczeniu) zerowe, to funkcja f nie ma w punkcie x∗ ekstremum, bo forma trójliniowa

∂3f

∂xi∂xj∂xk

∣

∣

∣

∣

x∗+θh

hihjhk ,

nie znika (znów dzięki założonej ciągłości trzecich pochodnych) na przynajmniej niektó-
rych wektorach, a jej wartość zmienia znak przy zmianie zwrotu wektora h, tak iż jeśli
f(x∗ + h) < f(x∗), to f(x∗ − h) > f(x∗). W takim przypadku (zerowej formy kwadra-
towej drugich pochodnych) dopiero znikanie w x∗ także wszystkich trzecich pochodnych
cząstkowych stwarza szansę na istnienie w takim punkcie minimum lub maksimum. Czy
funkcja ma rzeczywiście w takim punkcie ekstremum, to zależy od charakteru formy te-
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traliniowej24

T (h) = Tijklhihjkkhl , Tijkl ≡
∂4f

∂xi ∂xj ∂xk ∂xl

∣

∣

∣

∣

x∗

,

ale charakteru takich form nie nauczyliśmy się badać, więc takimi przypadkami się nie
będziemy tu zajmować. Jeszcze bardziej skomplikowane są sytuacje, gdy sygnaturą formy
kwadratowej drugich pochodnych w punkcie krytycznym x∗ są same plusy i zera lub same
minusy i zera. Ekstremum może wtedy w takim punkcie istnieć, ale żeby to stwierdzić,
trzeba zbadać zachowanie formy trójliniowej trzecich i tetraliniowej czwartych pochodnych
na takich wektorach h, na których forma kwadratowej drugich pochodnych w punkcie
krytycznym x∗ się zeruje (znów forma trójliniowa trzecich pochodnych musi na takich
wektorach znikać, aby była szansa na istnienie ekstremum).

W całej procedurze szukania ekstremów funkcji wielu zmiennych najtrudniejszym kro-
kiem jest znalezienie punktów krytycznych, gdyż trzeba znaleźć (wszystkie) rozwiązania
układu n równań, które naogół nie są liniowe. Wymaga to zwykle trochę “sprytu boisko-
wego”. Pozostałe kroki są już bezproblemowe. Charakter form kwadratowych nauczyliśmy
się już badać w części algebraicznej. Można to robić albo diagonalizując ją metodą La-
grange’a, albo (najczęściej) stosując kryterium “minorowe”.

Wreszcie, trzeba mieć świadomość, że funkcja f może mieć ekstrema, których istnienia
nie da się zbadać stosując wzór Taylora, bo np. mogą one się znajdować w punktach, w
których np. funkcja nie jest różniczkowalna, albo nie ma pochodnych wyższych rzędów.
Jakieś przykłady tego typu będą niżej.

Zadanie EX.Z1
Znaleźć punkty krytyczne funkcji określonej na R2 o wartościach rzeczywistych

f(x, y) =
x+ y

(1 + x2)(1 + y2)
.

i zbadać, czy są one minimami, maksimami, czy punktami siodłowymi.
Rozwiązanie: Znajdujemy najpierw pierwsze pochodne cząstkowe. Ponieważ funkcja ma
symetrię x ↔ y, wystarczy znaleźć jedną, np. fx, a fy można będzie otrzymać zamieniając
w fx miejscami x z y-kiem. W ten sposób dostajemy

fx(x, y) =
1− x2 − 2xy

(1 + x2)2(1 + y2)
,

fy(x, y) =
1− y2 − 2xy

(1 + x2)(1 + y2)2
.

24T jak tetradrachma (jak w wierszu Kawafisa “Orofernes”: Ten, który na tetradrachmie ma twarz jak

gdyby rozjaśnioną uśmiechem...) - taka moneta z greckiej, a właściwie hellenistycznej, starożytności, albo
jak tetrarchia - system rządów wymyślony przez Dioklecjana, czy tetralogia - już była wspomniana w
tym skrypcie tetralogia Reeda i Simona.
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Rysunek 4: Kształt funkcji z Zadania EXZ1. Oś x biegnie od lewej ukosem nieco w dół,
a oś y ukosem w prawo do góry.

W punktach krytycznych, czyli tam, gdzie funkcja może mieć ekstrema, fx = 0 i fy = 0.
Ponieważ mianowniki fx i fy są zawsze dodatnie, rozwiązujemy układ dwóch równań:

1− x2 − 2xy = 0 ,

1− y2 − 2xy = 0 .

Odejmujemy jedno od drugiego stronami i znajdujemy, że w punktach krytycznych x2 =
y2, czyli albo x = y, albo x = −y. Jeśli x = −y, to wyżej wypisane równania 1 + x2 = 0
nie mają rozwiązań. Zatem punkty krytyczne są tylko w x = y = ±1/

√
3.

Trzeba teraz obliczyć drugie pochodne cząstkowe. Ponieważ funkcja jest trochę skom-
plikowana, jest to dobre ćwiczenie w różniczkowaniu (znów fxx i fyy różnią się zamianą
x↔ y). Znajdujemy:

fxx =
2(−3x− y + x3 + 3x2y)

(1 + x2)3(1 + y2)

∣

∣

∣

∣

x=y

=
8x(x2 − 1)

(1 + x2)4
,

fyy =
2(−x− 3y + 3xy2 + y3)

(1 + x2)(1 + y2)3

∣

∣

∣

∣

x=y

=
8x(x2 − 1)

(1 + x2)4
,

fxy =
2(−x− y + x2y + xy2)

(1 + x2)2(1 + y2)2

∣

∣

∣

∣

x=y

=
4x(x2 − 1)

(1 + x2)4
.

Obliczamy teraz w każdym z dwu punktów krytycznych, x1 = y1 = 1/
√
3 oraz x2 =

y2 = −1/
√
3, macierz drugich pochodnych. Widać, że macierze te różnią się znakami
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Rysunek 5: Kształt funkcji z Zadania EXZ2 w pobliżu punktu (a, b) = (1/2, 1/2). Mak-
simum w tym punkcie jest słabo widoczne i pewnie bez analizy pochodnych trudno by
było być pewnym, że ono tam rzeczywiście jest.

tylko (tzn. wszystkie elementy macierzy drugich pochodnych w punkcie x1 = y1 = 1/
√
3

różnią się tylko o znak od odpowiadających im elementów macierzy drugich pochodnych
w punkcie x2 = y2 = −1/

√
3). Jak łatwo obliczyć, w x1 = y1 = 1/

√
3

Q(x1, y1) = − 4√
3

2

3

(

3

4

)4(
2 1
1 2

)

.

Macierz ta jest ujemnie określona, zatem w punkcie x1 = y1 = 1/
√
3 funkcja ma maksi-

mum lokalne. Zatem w x2 = y2 = −1/
√
3 macierz Q(x2, y2) jest dodatnio określona i tam

funkcja ma lokalne minimum. Że tak jest rzeczywiście pokazuje wykres 4.

Zadanie EX.Z2
Znaleźć punkty krytyczne funkcji określonej na R2 o wartościach rzeczywistych

f(x, y) = (x2 − 2ax)(y2 − 2by) = xy(x− 2a)(y − 2b) ,

i zbadać, czy są one minimami, maksimami, czy punktami siodłowymi.
Rozwiązanie: Tu możnaby myśleć, że skoro badana funkcja jest iloczynem funkcji g(x) =
x(x−2a), która ma minimum w punkcie x = a (bo to zwykła funkcja kwadratowa) i funkcji
h(y), która ma minimum w punkcie y = b, to f(x, y) też musi mieć minimum w punkcie
(a, b). Nie jest to jednak takie proste. Pochodne cząstkowe

fx(x, y) = 2y (x− a)(y − 2b) ,
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fy(x, y) = 2x (x− 2a)(y − b) ,

zerują się bowiem w kilku punktach, z których (a, b), jest tylko jednym z możliwych:

i) ii) iii) iv) v)

(a, b) , (0, 0) , (2a, 2b) , (2a, 0) , (0, 2b) .

Drugie pochodne

fxx(x, y) = 2y (y − 2b) ,

fyy(x, y) = 2x (x− 2a) ,

fxy(x, y) = 4(x− a)(y − b) ,

Dają w tych punktach odpowiednio formy kwadratowe

Qi) =

(

−2b2 0
0 −2a2

)

, Qii),iii) =

(

0 4ab
4ab 0

)

, Qiv),v) =

(

0 −4ab
−4ab 0

)

.

Pierwsza forma kwadratowa jest zawsze (z wyjatkiem sytuacji, gdy a = b = 0) ujemnie
określona z czego wynika, że odwrotnie niż możnaby myśleć, w punkcie (a, b) funkcja ma
lokalne maksimum. W pozostałych czterech punktach formy kwadratowe drugich pochod-
nych są nieokreślone. Aby się o tym przekonać (jeśli nie ufamy kryterium “minorowemu”)
wystarczy zbadać je na dwóch prostych wektorach przesunięć h = (h, h) i h = (h,−h);
weźmy np. Qii),iii):

(h, h)

(

0 4ab
4ab 0

)(

h
h

)

= 8ab h2 , (h,−h)
(

0 4ab
4ab 0

)(

h
−h

)

= −8ab h2 .

Teraz kilka mniej typowych zadań.

Zadanie EX.Z3
Znaleźć ekstrema funkcji określonej na R2 o wartościach rzeczywistych

f(x, y) = 2−
√

3x2 + 4y2 .

Rozwiązanie: Pochodne cząstkowe tej funkcji

fx(x, y) = − 3x
√

3x2 + 4y2
, fy(x, y) = − 4y

√

3x2 + 4y2
,

są różne od zera wszędzie, poza punktem (0, 0). W tym punkcie są one nieciągłe: funkcja
ma w punkcie (0, 0) pochodne kierunkowe w każdym kierunku, ale nie jest w tym punkcie
różniczkowalna w sensie mocnym. Wobec tego, nie można tu odwołać się do reguły, że eks-
trema funkcji znajdują się w punktach, w których znikają wszystkie pochodne cząstkowe.
Niemniej jest oczywiste, że f(x, y) < f(0, 0) = 2 we wszystkich punktach (x, y) 6= (0, 0).
Zatem funkcja ma w punkcie (0, 0) ma maksimum i jest to nawet maksimum globalne.
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Rysunek 6: Kształt funkcji z Zadania EXZ3 w pobliżu punktu (0, 0). Widać. że w tym
punkcie funkcja ma “dziubek”, więc nie jest tam różniczkowalna.

Kształt funkcji jest pokazany na rysunku 6. Widać, że nieróżniczkowalność funkcji w
mocnym sensie w punkcie (0, 0) wynika z tego, że ma ona tam “dziubek”.

Zadanie EX.Z4
Znaleźć ekstrema funkcji określonej na R2 o wartościach rzeczywistych wzorem

f(x, y) = x8 − y4 .

Rozwiązanie: Pochodne cząstkowe tej funkcji

fx(x, y) = 8x7 , fy(x, y) = −4y3 ,

istnieją na całym R2 i są ciągłe, podobnie jak drugie pochodne cząstkowe

fxx(x, y) = 56x6 , fyy(x, y) = −12y2 , fxy(x, y) = 0 .

Obie pierwsze pochodne cząstkowe zerują się tylko w punkcie (0, 0) - jest więc to jedyny
punkt krytyczny badanej funkcji - ale forma kwadratowa drugich pochodnych jest w tym
punkcie całkowicie zerowa. Zatem nie można na jej podstawie określić charakteru tego
punktu krytycznego. Można jednak to zrobić posługując się zdrowym rozsądkiem. Wy-
starczy zauważyć, że f(0, 0) = 0, oraz, że we wszystkich punktach postaci (ε, 0), które
mogą, gdy ε → 0 leżeć w dowolnie małym otwartym otoczeniu punktu krytycznego, war-
tość funkcji jest większa od zera, a we wszystkich punktach postaci (0, ε), też mogących
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Rysunek 7: Kształt funkcji z Zadania EXZ5.

leżeć w w dowolnie małym otwartym otoczeniu punktu krytycznego, wartość funkcji jest
mniejsza od zera. Zatem punkt krytyczny jest tylko punktem siodłowym.

Zadanie EX.Z5
Znaleźć punkty krytyczne funkcji określonej na R2 o wartościach rzeczywistych wzorem

f(x, y) = 3x2y − x3 − y4 ,

i zbadać ich charakter.
Rozwiązanie: Pochodne cząstkowe tej funkcji

fx(x, y) = 6xy − 3x2 , fy(x, y) = 3x2 − 4y3 ,

zerują się jednocześnie w punkcie (0, 0) i w punkcie (6, 3). Widać to w zasadzie od ręki:
jeśli fx = 0 bo x = 0, to wtedy zerowanie się fy wymaga by i y = 0; jeśli zaś (x, y) 6= (0, 0),
to fx = 0 daje x = 2y, co wstawione do fy = 0 daje y = 3. Są więc dwa punkty krytyczne.
Drugie pochodne

fxx(x, y) = 6y − 6x , fyy(x, y) = −12y2 , fxy(x, y) = 6x ,

Dają one w punkcie (0, 0) całkowicie zerową macierz formy kwadratowej. Ponieważ jednak
funkcja jest wielomianem, czyli wokół każdego punktu może być dokładnie reprezento-
wana skończonym wielomianem, można spojrzeć na pochodne cząstkowe trzeciego rzędu.
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Ponieważ kilka z nich, np. fxxx, fxxy, jest w punkcie (0, 0) niezerowych, funkcja nie może
mieć w tym punkcie ekstremum.25

W punkcie (6, 3) macierz formy kwadratowej drugich pochodnych ma postać
(

−18 36
36 −108

)

= −18

(

1 −2
−2 6

)

.

Macierz ta jest ujemnie określona (−macierz jest dodatnio określona), zatem w tym punk-
cie funkcja ma maksimum lokalne. Kształt tej funkcji pokazuje rysunek 7.

Zadanie EX.Z6
Znaleźć ekstrema funkcji określonej na R2 o wartościach rzeczywistych wzorem

f(x, y) = sin x sin y sin(x+ y) .

Rozwiązanie: Pierwsze pochodne

fx(x, y) = cosx sin y sin(x+ y) + sin x sin y cos(x+ y) = sin y sin(2x+ y) ,

fy(x, y) = sin x cos y sin(x+ y) + sin x sin y cos(x+ y) = sin x sin(x+ 2y) ,

zerują się albo tam, gdzie sin x = sin y = 0, czyli w punktach postaci (x, y) = (kπ, lπ),
gdzie k i l są dowolnymi liczbami całkowitymi, lub tam, gdzie 2x+ y = pπ i x+ 2y = rπ
(p i r też są dowolnymi liczbami całkowitymi). Odejmując stronami te dwa równanka
znajdujemy, że y = x − π(p − r), czyli x może się różnić od y o całkowitą wielokrotność
π i wstawiając ten związek do któregokolwiek z tych dwu równanek dostajemy, że x =
π
3
(2p − r), a y = π

3
(2r − p). W zasadzie trzeba jeszcze rozpatrzyć rozwiązania takie,

w których x = kπ i 2x + y = nπ (lub na odwrót), ale to jest to samo, co x = kπ i
y = nπ − 2kπ ≡ lπ, wiec one nie dają nic nowego. Zatem część z tych punktów, np.
punkt o p = r = 0, pokrywa się z uprzednio już znalezionymi, ale są też i nowe. Ponieważ
badana funkcja jest, jak łatwo się zorientować, biperiodyczna, tzn. f(x + lπ, y + kπ) =
f(x, y), przy dowolnych całkowitych k i l, wystarczy zbadać tylko charakter punktów
krytycznych leżących w “komórce fundamentalnej” tj. w obszarze [0, π)× [0, π). Wynika
z tego natychmiast, że rozpatrywać trzeba tylko punkty o p = r (bo inaczej albo x albo y
jest ujemne). W sumie więc w na płaszczyźnie R2 punkty krytyczne tworzą całą sieć, ale
w [0, π)× [0, π) są tylko trzy

(0, 0), (
π

3
,
π

3
), (

2π

3
,
2π

3
).

Drugie pochodne po prostych przekształceniach można zapisać w prostej formie

fxx(x, y) = 2 sin y cos(2x+ y) ,

fyy(x, y) = 2 sin x cos(x+ 2y) ,

fxy(x, y) = sin(2x+ 2y) .

25W przypadku zerowania się w punkcie krytycznym formy kwadratowej drugich pochodnych warun-
kiem koniecznym, choć nie dostatecznym!, istnienia w tym punkcie ekstremum jest - w przypadku funkcji,
które w otoczeniu tego punktu mogą być reprezentowane wzorem Taylora czwartego rzędu - znikanie
wszystkich trzecich pochodnych cząstkowych.
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Rysunek 8: Funkcja z Zadania EX.Z6 w kształcie “korobki dla jajic” w dźwięcznym języku
rosyjskim.

Widać więc, że we wszystkich punktach typu (kπ, lπ), w szczególności w punkcie (0, 0),
macierz formy kwadratowej drugich pochodnych jest zerowa i trzeba charakter takich
punktów zbadać jakoś inaczej. Jest jednak oczywiste, jeśli x = y = ε i |ε| ≪ 1, to f(ε, ε) ≈
2ε3 i jeśli ε > 0 to funkcja jest dodatnia, a jeśli ε < 0, to ujemna. To wystarcza, by
stwierdzić, że w dowolnie małym otwartym otoczeniu punktu (0, 0) (a zatem i wszystkich
punktów (kπ, lπ) z uwagi na biperiodyczność) leżą punkty, w których wartość funkcji jest
większa i mniejsza od f(0, 0). Zatem funkcja nie ma w tym punkcie ekstremum.

Pozostaje zbadać charakter punktów krytycznych typu

(
π

3
,
π

3
), (

2π

3
,
2π

3
).

Macierze formy kwadratowej drugich pochodnych mają w tych punktach postacie

−
√
3

2

(

2 1
1 2

)

,

√
3

2

(

2 1
1 2

)

.

Jest więc jasne, że “komórce fundamentalnej” [0, π)×[0, π) funkcja ma maksimum w punk-
cie (π

3
, π
3
) i minimum w punkcie (2π

3
, 2π

3
) oraz, że w punkcie (0, 0) jest siodło. Struktura

ta powtarza się biperiodycznie na całej płaszczyźnie R2, jak to widać z rysunku 8.
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Zadanie EX.Z7
Znaleźć punkty krytyczne funkcji o wartościach rzeczywistych określonej wzorem

f(x, y, z) = x2 +
y

x
+
z2

y
+

1

z
,

na R3 z wyłączeniem płaszczyzn x = 0, y = 0 i z = 0 i zbadać ich charakter.
Rozwiązanie: Trzy równania wyznaczające punkty krytyczne

fx(x, y, z) = 2x− y

x2
= 0 ,

fy(x, y, z) =
1

x
− z2

y2
= 0 ,

fz(x, y, z) =
2z

y
− 1

z2
= 0 ,

sprowadzają się, po pomnożeniu odpowiednio przez x2, xy2 i yz2 (co wolno zrobić, bo
x 6= 0, y 6= 0 i z 6= 0) do 2x3 = y, y2 = xz2 i 2z3 = y. Z połączenia pierwszego z
trzecim dostaje się x3 = z3, czyli x = z i teraz pierwsze, 2x3 = y, w połączeniu z drugim
zamienionym na 2y2 = 2x3 daje y = 0, co jest wykluczone, lub y = 1

2
. Zatem x3 = 1

4
,

czyli x = z = 1/41/3. Jest więc tylko jeden punkt krytyczny.
Drugie pochodne

fxx = 2 +
2y

x3
, fyy =

2z2

y3
, fzz =

2

y
+

2

z3
,

fxy = − 1

x2
, fxz = 0 , fyz = −2z

y2
,

dają w punkcie krytycznym macierz




6 −24/3 0
−24/3 28/3 −27/3

0 −27/3 12



 .

Wszystkie trzy minory tej macierzy M11, M22 i M33 są dodatnie, więc funkcja ma w
punkcie krytycznym minimum lokalne.

Zadanie
Pokazać, że funkcja

f(x, y) = (1 + ex) cos y + x ex ,

ma nieskończenie wiele lokalnych minimów, ale żadnego maksimum.
Rozwiązanie: Warunki wyznaczające punkty krytyczne

fx(x, y) = ex (1 + x+ cos y) = 0 ,

fy(x, y) = − (1 + ex) sin y = 0 ,
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Rysunek 9: Funkcja mająca same minima i żadnych maksimów (oś x pokazana w pobliżu
x = 0).

mają jako swoje rozwiązania punkty y = nπ (fy = 0) i, wobec tego (bo cos(nπ) = (−1)n,
co wszyscy powinni wiedzieć), x = −1 − (−1)n. Punktów krytycznych jest więc (prze-
liczalnie) nieskończenie wiele. Sprawdzamy drugie pochodne (druga równość zachodzi w
punktach krytycznych):

fxx(x, y) = ex (1 + x+ cos y) + ex = ex ,

fyy = − (1 + ex) cos y = (−)n+1 (1 + ex) ,

fxy = −ex sin y = 0 .

Zatem pierwszy minor M11 macierzy formy drugich pochodnych jest w każdym punkcie
krytycznym dodatni, ale drugi minorM22 jest dodatni tylko w punktach o nieparzystych n.
W tych punktach są więc minima lokalne, a w punktach o parzystych n punkty siodłowe.
Zatem rzeczywiście funkcja ma nieskończenie wiele minimów i żadnych maksimów. Jak to
jest możliwe? Ano tak, jak pokazuje rysunek 9 - po prostu garby funkcji są nieco pochylone
w kierunku x-owym i dlatego są tylko siodłami. W minimach natomiast w kierunku x-
owym są dołki, bo są to funkcje f(x, π) = −1− ex(1− x) ≈ −1 − (1 + x+ . . .)(1− x) ≈
−2 + x2.

Jeszcze inny typ zagadnień ilustruje
Zadanie (Ekstrema na zbiorze zwartym)
Znaleźć największą i najmniejszą wartość funkcji f(x, y) = x2 − 2y2 na zbiorze punktów
(x, y) ograniczonych warunkiem x2 + y2 ≤ 36.
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Rozwiązanie: Punktem krytycznym funkcji jest punkt (0, 0). W punkcie tym forma
kwadratowa drugich pochodnych ma postać

(

2 0
0 −4

)

,

funkcja nie ma więc tam ekstremum. Jakieś maksimum i jakieś minimum funkcja jednak
mieć musi, bo jak pisał wielki poeta (który Młodzieży kochana?!):
“Zbiorze szlachetny, cny zwarty zbiorze,
na Tobie człek funkcję określić sobie może,
co jeśli ciągła, zachowa Twą zwartość,
i przyjmie po drodze swą największą wartość!”
Skoro jednak wewnątrz zbioru (tzn. na zbiorze otwartym, x2+y2 < 36) ekstremów funkcja
nie ma, muszą one być na brzegu zbioru. Jeśli wstawimy y2 = 36−x2, otrzymamy funkcję
f(x) = 3x2 − 72, która ma minimum równe −72 w x = 0, czyli minimalną swą wartość
funkcja f(x, y) przyjmuje w punktach (0,±6). Powinna ona jednak mieć gdzieś i wartość
największą. Oczywiście podstawiając y2 = 36 − x2 zgubiliśmy26 punkty (±6, 0). W nich
to właśnie funkcja przyjmuje swe wartości największe, równe 36.

26Bo jak się zaraz dowiemy zajmując się tzw. funkcjami zadanymi w sposób uwikłany, w tych punktach
warunek F (x, y) = x2 − y2 − 36 = 0 nie wyznacza funkcji y = f(x), za to wyznacza funkcję x = x(y).
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Odwzorowania zadane w sposób uwikłany

Sytuacja którą się tu zajmiemy jest następująca: w przestrzeni Rn jest wyróżniony przez
jakieś m warunków (m < n) mających postać równości (zawsze można je tak zapisać)

F1(x1, . . . , xn) = 0 , . . . , Fm(x1, . . . , xn) = 0 ,

pewien zbiór E. Warunki te, przyjmujemy, są wszystkie niezależne, tzn. spełnienie tylko
kilku z nich nie powoduje, że któryś z pozostałych jest już automatycznie spełniony.27

Ogólniej jeszcze, dane jest odwzorowanie F zbioru D ⊂ Rn w Rm (m < n), czyli właśnie
m funkcji Fi, o których zakładamy to co wyżej. Zakładamy też, że odwzorowanie F jest
na zbiorze D ciągłe. Zbiór E ⊂ D jest zadany jako przeciwobraz punktu 0 ∈ Rm, tzn.
F |E ≡ 0 ∈ Rm (po ludzku: odwzorowanie F ograniczone do zbioru E jest tożsamościowo
zerowe, albo: F odzwzorowuje cały zbiór E w jeden punkt przestrzeni Rm, mianowicie w
jej zero). Interesuje nas wtedy pytanie, kiedy zbiór E definiuje (w sposób uwikłany - stąd
właśnie nazwa “odwzorowania uwikłane”) uczciwe odwzorowanie f : Rn−m → Rm. A jeśli
definiuje, to jak obliczać pochodne cząstkowe tego odwzorowania? Pochodne cząstkowe
mogą być potrzebne, bo jak mamy zadane w ten sposób np. odwzorowanie f : R3 → R1

(tzn. sytuację odpowiadającą n = 4, m = 1 w naszych ogólnych rozważaniach), to
możemy chcieć znać jego ekstrema, a do tego, jak już wiemy z poprzednego rozdzialiku,
trzeba umieć badać pochodne cząstkowe tego odwzorowania. Żeby dać jakiś przykład:
weźmy znane nam z algebry równanie liniowe





a11 . . . a1n
· . . . ·
am1 . . . amn













x1
·
·
xn









−





b1
·
bm



 =





0
·
0



 ,

w którym m < n, zapisane w trochę nietypowy sposób. W tej postaci lewa strona jest
pewnym odwzorowaniem F : Rn → Rm, a punkty (x1, . . . , xn) ∈ Rn spełniające to
równanie (z wektorem zerowym po prawej) tworzą właśnie w R

n zbiór E. Załóżmy, że
rząd macierzy po lewej stronie jest równy dokładnie m. Jest to właśnie żądanie (liniowej)
niezależności układu m równań. W takiej sytuacji jest (na podstawie tego, co wiemy z
algebry - algebra to potęga!) jasne, że F−1(0), czyli właśnie zbiór E, zadaje odwzorowanie
f : Rn−m −→ Rm. Pamiętamy przecież: możemy w macierzy wybrać niezerowy minor
rzędu m - załóżmy (jak zwykle dla prostoty zapisu), że tworzy go pierwsze m kolumn

27W szczególności oznacza to, że nie są one liniowo zależne, tzn. żądanie, by

λ1F1(x1, . . . , xn) + . . .+ λmFm(x1, . . . , xn) ≡ 0 ,

(znak ≡ oznacza tu że kombinacja po lewej stronie ma być funkcją tożsamościowo, a więc na całym
Rn, a nie tylko na E, równą zeru) pociąga za sobą równość λ1 = . . . = λm = 0; jednak sformułowane
żądanie jest ogólniejsze, bo wyklucza też sytuacje takie, że np. F2(x1, . . . , xn) = (F1(x1, . . . , xn))

2,
czy F4(x1, . . . , xn) = [2F1(x1, . . . , xn) − 3F 2

2 (x1, . . . , xn)]
1/3, czy coś w tym guście. Warunki te można

pominąć, wtedy należy to trochę bardziej zawile sformułować - nie będziemy się tu w to wdawać.

52



macierzy; n−m zmiennych xm+1, . . . , xn wraz z wektorem b przenosimy na prawą stronę
równania i np. kramersiętami rozwiązujemy układ liniowych równań na niewiadome x1,
. . ., xm. Rozwiązanie istnieje dla dowolnych wartości zmiennych xm+1, . . . , xn (i dowolnego
wektora b - dlaczego? sprawdźcie Państwo swoje rozumienie algebry!). W rezultacie
otrzymujemy jako rozwiązanie związki

x1 = f1(b, xm+1, . . . , xn) ,

. . . . . . . . . . . . . . . . . . . . . . . .

xm = fm(b, xm+1, . . . , xn) ,

czyli właśnie jawną funkcję f : R
n−m −→ R

m (wektor b jest tu nieistotny dla nas; inny
wektor b, to po prostu inne odwzorowanie F i inne zatem f). Przykład ten, jakkolwiek
szczególny - bo daje się tu odwzorowanie f napisać jawnie - pokazuje też, że nie zawsze
da się np. dostać funkcję

xn−m+1 = f̃1(b, x1, . . . , xn−m) ,

. . . . . . . . . . . . . . . . . . . . . . . .

xn = f̃m(b, x1, . . . , xn−m) ,

bo może sie zdarzyć, że minor stopnia m utworzony z m ostatnich kolumn macierzy
problemu jest akurat zerowy.

Widać też, że można by tu było założyć, iż rząd macierzy problemu jest równy r < m.
Przy założeniu, że macierz rozszerzona (z dostawioną kolumną wektora b) też jest rzędu
r było by wtedy po prostu r < m niezależnych równań na n niewiadomych i, zakładając,
że r pierwszych kolumn i r pierwszych wierszy macierzy tworzy niezerowy minor stopnia
r, (zgodnie z procedurą opisaną w skrypcie do algebry) odrzucilibyśmy m − r ostatnich
równań otrzymując, po wykorzystaniu kramersiąt, jawne odwzorowanie f : Rn−r −→ Rr

x1 = f1(b, xr+1, . . . , xn) ,

. . . . . . . . . . . . . . . . . . . . . . . .

xr = fr(b, xr+1, . . . , xn) .

W przykładzie powyższym zawsze się daje otrzymać jawnie m (albo r) jakichś funkcji
n − m (albo n − r) zmiennych. Wobec tego pochodne można już potem sobie obliczać
normalnie. W ogólnym przypadku jednak, kiedy odwzorowanie F : Rn −→ Rm (m < n)
nie jest liniowe, naogół odpowiednich związków nie daje się jawnie rozwikłać, ale daje się
powiedzieć, że w otoczeniu jakiegoś punktu x ∈ D odwzorowanie F zadaje jakąś uczciwą
funkcję f n−m (lub n−r) którychś x-ów w m (lub r; ale sytuacje, w których nie wszystkie
równania są niezależne wykluczyliśmy z założenia, więc już dalej nie będziemy mącić tym
ogólniejszym przypadkiem) pozostałych x-ów, czyli właśnie funkcję f : Rn−m −→ Rm, i
daje się obliczać pochodne takiej funkcji i to dowolnego rzędu bez operowania jawnymi
wzorami na funkcję f . Chodzi więc o to, by umieć powiedzieć, w otoczeniu których
punktów należących do “poziomicy zerowej” F−1(0) ⊂ D, czyli do przeciwobrazu zera
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przestrzeni Rm, definiowanej przez dane odwzorowanie F : Rn −→ Rm odwzorowanie
to po pierwsze definiuje funkcję f : Rn−m −→ Rm i po drugie, by umieć obliczać po-
chodne takich funkcji. Po co to fizykowi? A no np. dlatego, że cała termodynamika
fenomenologiczna - przepiękna i fascynująca teoria, którą mam okazję dręczyć studentów
na wykładzie na czwartym roku - wykorzystuje odwzorowania uwikłane. Np. zadana jest
entropia S jako funkcja S = f(U, V, n), a my chcemy mieć raczej funkcję U = g(S, V, n)
i ją różniczkować. Wtedy pytaniem jest, czy wszędzie F (S, U, V, n) ≡ f(U, V, n) − S -
funkcja z R4 w R1 - zadaje, poprzez warunek F (S, U, V, n) = 0, funkcję U = g(S, V, n),
czyli właśnie funkcję z R

3 w R i jak obliczać pochodne U , nie umiejąc jawnie napisać
na U wzoru. W termodynamice naogół milcząco zakłada się, że wszędzie tak się daje i
to w dowolną stronę, np. że daje się też napisać V = h(S, U, n). Ale matematyk musi
wszystko mieć udowodnione... Jeszcze przykładzik z termodynamiki. Wszyscy znają rów-
nanie stanu gazu doskonałego p V = nRT . Poniewa jest ono proste,28 można z niego
jawnie wyznaczyć p jako funkcję V , T i n, albo wyznaczyć V jako funkcję p, T i n i
sobie te wielkości różniczkować np. żeby obliczyć mierzalne współczynniki izotermicznej
ściśliwości i termicznej rozszerzalności objętościowej

kT ≡ − 1

V

(

∂V

∂p

)

T,n

, αp ≡
1

V

(

∂V

∂T

)

p,n

.

Ale są bardziej skomplikowane równania stanu. Np. równanie VdW (Van der Waalsa)

(

p+
an2

V 2

)

(V − nb) = nRT ,

I przy takim równaniu obliczenie powyższych współczynnkików, to już nie jest takie oczy-
wiste...

W każdym razie ważne jest żeby sobie uświadomić: a) to jest użyteczne, b) to nie
jest trudne! Zdrowy fizyczny rozum wystarcza, żeby sobie z tym dawać radę. Żeby nie
komplikować zbytnio, będziemy się niżej zajmować prawie wyłącznie przypadkiem, m = 1,
tj. kiedy odwzorowanie F zbioru D (którym może być całe R

n lub jakiś duży otwarty
podzbiór Rn) jest dane jedną funkcją F (x1, . . . , xn). Na początek będziemy się zajmować
przypadkiem n = 2, czyli będziemy badać, kiedy F (x, y) = 0 zadaje funkcję y = y(x),
albo funkcję x = x(y). Zbiór E ⊂ D ⊂ R2 można wtedy hieroglifami zapisać tak

E = {(x, y) ∈ R
2 : F (x, y) = 0} .

Np. jeśli F (x, y) = x2 + y2+1, to E jest zbiorem pustym i sprawa jest bezprzedmiotowa;
jeśli zaś F (x, y) = x2 + y2/4 − 1, to zbiór E jest elipsą. Pytamy w tym przypadku,
kiedy przez punkt (x0, y0) ∈ E przechodzi krzywa, dająca się zapisać jako ciągła funkcja
y = y(x), której wszystkie punkty należą do zbioru E. Czy jest jedna taka krzywa, czy

28Na drugim roku jest jakiś wykład niby z termodynamiki i po tym wykładzie studenci myślą, że
wszystko jest gazem doskonałym i wszyscy chodzą jak (doskonale) zagazowani... A termodynamika to
jest teoria obejmująca wszystkie układy fizyczne, nie tylko gazy!
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może kilka? To samo pytanie można postawić zastępując y = y(x) funkcją x = x(y). Na
tym drugim przykładzie widać wszystko jasno: możemy napisać

y =
√
4− 4x2 , lub y = −

√
4− 4x2 ,

i wiemy, że przez dany punkt (x0, y0) leżący na rzeczonej elipsie przechodzi albo jedna z
tych krzywych albo druga. Wyjątki stanowią punkty (1, 0) i (−1, 0) bo tam wykres elipsy
na płaszczyźnie xy jest pionowy i nie jest wykresem żadnej funkcji y = y(x) (inaczej:
dwie funkcje zdefiniowane powyższymi wzorami się w tych punktach łączą). Za to przez
te dwa punkty spokojnie przechodzą wykresy funkcji x = x(y): funkcji x =

√

1− y2/4

przez pierwszy i funkcji x = −
√

1− y2/4 przez drugi, które to funkcje są uczciwymi
ciągłymi funkcjami wszędzie oprócz punktów (0,−2) i (0, 2) elipsy.

Ogólnie sprawę załatwia takie twierdzenie (dowód był na wykładzie, ale skupmy się i
przeczytajmy z uwagą): jeśli odwzorowanie F (x, y) ma w otoczeniu punktu (x0, y0) ∈ E,
tj. takiego, że F (x0, y0) = 0, ciągłe pochodne cząstkowe Fx i Fy i ta druga pochodna nie
znika w tym punkcie, tj. Fy(x0, y0) 6= 0, to w D istnieje (choćby nie wiem jak malutkie)
takie otoczenie otwarte punktu (x0, y0), w którym odwzorowanie F wyznacza jedną i tylko
jedną funkcję y = y(x), która jest ciągła i jej pochodna y′ jest w tym otoczeniu dana (na
pierwszy rzut oka dziwnym, ale jak zaraz zobaczymy zupełnie oczywistym) wzorem

y′(x) = − Fx(x, y)

Fy(x, y)

∣

∣

∣

∣

y=y(x)

.

Dziwny dopisek y=y(x) oznacza, że prawą stronę należy obliczyć nie w dowolnym punkcie
(x, y) tego otoczenia, tylko w punkcie należącym do zbioru E (czyli do przecięcia E z
tym otoczeniem). Z tego wzoru widać, że warunek Fy(x0, y0) 6= 0 jest tu jakoś kluczowy
(z ciągłości funkcji F i jej pochodnych wynika, że jak Fy(x0, y0) 6= 0 to Fy 6= 0 także
w pewnym otwartym otoczeniu punktu (x0, y0) więc powyższy wzór jest dobry w tym
otoczeniu). Oczywiście wszystko można odwrócić i jeżeli Fx(x0, y0) 6= 0, to w pewnym
otoczeniu punktu (x0, y0) istnieje analogiczna jednoznaczna funkcja x = x(y) i x′(y) =
−Fy(x, y)/Fx(x, y)|x=x(y).

Przykłady
1) Niech F (x, y) = −10 + exp(2x − 3y). To jest przykład, w którym można rozwiązać
warunek F (x, y) = 0 i dostać jawnie funkcję y = y(x):

y(x) =
2

3
x− 1

3
ln 10 ,

więc y′(x) = 2
3
. Ale zobaczmy, jak działa podany wzór na pochodną funkcji zadanej w

sposób uwikłany. Pochodne cząstkowe funkcji F (x, y)

Fx(x, y) = 2 e2x−3y , Fy(x, y) = −3 e2x−3y ,

nie zerują się nigdzie (na całym R2) więc zgodnie z twierdzeniem przez każdy punkt zbioru
E = F−1(0) przechodzi dokładnie jedna krzywa y = y(x) (i oczywiście dokładnie jedna
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krzywa x = x(y)). Pochodna funkcji y = y(x) zadanej równością F (x, y) = 0, którą daje
podany wcześniej wzór jest równa

y′(x) = −Fx(x, y)

Fy(x, y)
=

2

3
,

i jest oczywiście tą samą pochodną, co obliczona bezpośrednio.
2) Bardziej skomplikowany przykład. Niech

F (x, y) = x 2y − x2y2 + (1− x2) sin y .

Pytamy, czy przez punkt (0, 0) przechodzi jakaś krzywa będąca wykresem funkcji y = y(x)
zadanej warunkem F (x, y) = 0? A jak tak, to jaka jest pochodna tej funkcji? Najpierw
sprawdzamy, czy punkt (0, 0) w ogóle należy do zbioru E (czyli, czy pytanie ma sens,
albo, w języku filozofów, czy jest prawomocne). Należy, bo F (0, 0) = 0. To teraz trzeba
sprawdzić pochodną cząstkową Fy:

Fy(x, y) = x 2y ln 2− 2x2y + (1− x2) cos y ,

i Fy(0, 0) = 1. Ponieważ w punkcie (0, 0) pochodna Fy nie znika i punkt ten należy
do F−1(0), przechodzi przezeń dokładnie jedna krzywa będąca w jakimś otoczeniu tego
punktu wykresem uczciwej funkcji y = y(x), choć jawnie nie jesteśmy w stanie napisać
wzoru na tę funkcję. Poza tym, y(0) = 0. No i, ponieważ Fx(x, y) = 2y − 2xy2 − 2x sin y,
więc w tym otoczeniu punktu (0, 0)

y′(x) = − 2y − 2xy2 − 2x sin y

x 2y ln 2− 2x2y + (1− x2) cos y
.

Po lewej stronie y′ jest napisane jako funkcja x tylko, a po prawej występuje i x i y.
Należałoby oczywiście po prawej stronie wstawić y = y(x), ale nie potrafimy tego prak-
tycznie zrobić, bo jak już mówiliśmy nie jesteśmy w stanie rozwikłać wzory F (x, y) = 0
względem y. No coż, takie jest życie z funkcjami uwikłanymi... Ale jedno zawsze można:
można warunek F (x, y) = 0 wykorzystać żeby jakoś sobie prawą stronę inaczej zapisać.
Np. możemy zawsze napisać x2y = x2y2− (1−x2) sin y i przekształcić powyższy wzór na
pochodną w

y′(x) = − 2y − 2xy2 − 2x sin y

(x2y2 − (1− x2) sin y) ln 2− 2x2y + (1− x2) cos y
.

Jest to równie dobra i całkowicie równoważna postać tej pochodnej w tym sensie, że jeśli
prawe strony tych dwu wzorów obliczymy w jakimś punkcie (x0, y0) należącym do E, czyli
takim, że F (x0, y0) = 0, to oba wzory dadzą tę samą liczbę (pochodną), czyli to samo
nachylenie krzywej y = y(x) w punkcie x0, w którym y(x0) = y0. Oczywiście, ponieważ w
(0, 0) nie znika też pochodna Fx(x, y), można krzywą wyznaczaną przez warunek F (x, y) =
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Rysunek 10: Liść Kartezjusza (feuille de Descartes), czyli krzywa będąca zbiorem E
punktów spełniających równość x3 + y3 − 3xy = 0.

0 traktować w otoczeniu tego punktu jak funkcję x = x(y) i wtedy pochodna tej funkcji
jest równa

x′(y) = −Fy(x, y)

Fx(x, y)
= −x 2

y ln 2− 2x2y + (1− x2) cos y

2y − 2xy2 − 2x sin y

= −(x2y2 − (1− x2) sin y) ln 2− 2x2y + (1− x2) cos y

2y − 2xy2 − 2x sin y
.

3) Przykład sztandarowy, bardzo pouczający, wzięty z Lejka. Niech

F (x, y) = x3 + y3 − 3xy .

Zbiór punktów (x, y) ∈ R2 spełniających równość F (x, y) = 0 jest tzw. liściem Kartezju-
sza. Jest jasne, że gdy |x| ≫ 1, warunek F (x, y) = 0 ma jedno rozwiązanie rzeczywiste
y ≈ −x (pozostałe dwa rozwiązania - bo to w końcu jest równanie trzeciego stopnia na
y - są przy takich x-ach zespolone). Mniej oczywiste, ale można też do tego dojść ro-
zumem, jest to, że tak jest zawsze, gdy x < 0. Zato gdy x > 0, ale x nie jest za duże,
istnieją trzy rzeczywiste rozwiązania: wygląda to tak jak na rysunku 10: krzywa idąca
od góry od ujemnych x-ów przechodzi przez (0, 0), robi w pierwszej ćwiartce płaszczyzny
xy zawijasa, ponownie wraca do punktu (0, 0) i dalej już biegnie, gdy x rośnie od zera,
w dół czwartej ćwiartki. Jest więc przynajmniej od razu jasne, że punkt (0, 0) jest jakoś
trefny, bo wychodzą z niego cztery linie będące obrazem zbioru E, a nie dwie, i te jakby
dwie krzywe przechodzące przez punkt (0, 0) są w każdym, nawet najmniejszym otwartym
otoczeniu tego punktu. To zobaczmy, jak to wygląda z punktu widzenia twierdzenia o
funkcji uwikłanej? Pochodna cząstkowa po y funkcji F (x, y)

Fy(x, y) = 3 (y2 − x) ,

zeruje się na całej paraboli x = y2, ale z punktu widzenia istnienia funkcji uwikłanej nas
interesują tylko te zera pochodnej Fy, które są punktami zbioru E, czyli są rozwiązaniami
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układu dwóch równań

Fy(x, y) = 3 (y2 − x) = 0 ,

F (x, y) = x3 + y3 − 3xy = 0 .

Podstawiając z pierwszego x = y2 do drugiego dostajemy równanie y3(y3 − 2) = 0.
Zatem istotnymi z punkt widzenia twierdzenia o funkcji uwikłanej punktami są (0, 0) i
(22/3, 21/3), będące rozwiązaniami tego układu dwóch równań. W należącym do E punkcie
(22/3, 21/3) zeruje się Fy więc przez ten punkt nie przechodzi uczciwa funkcja y = y(x):
istotnie: to jest na tym zawijasie, który wykres zbioru E robi w pierwszej ćwiartce,
punkt położony najbardziej na prawo - krzywa reprezentująca zbiór E “staje tam dęba”,
czyli w samym punkcie (22/3, 21/3) biegnie dokładnie pionowo. To nie może być więc w
tym punkcie funkcja y = y(x)! Ale oczywiście taka krzywa może jak najbardziej być
wykresem uczciwej funkcji x = x(y). I rzeczywiście: w punkcie (22/3, 21/3) nie znika
pochodna Fx, Fx(2

2/3, 21/3) 6= 0 i twierdzenie o istnieniu funkcji uwikłanej nie zabrania
przechodzenia przez ten punkt funkcji x = x(y) - przeciwnie, mówi ono, że przez ten
punkt i w jego otoczeniu biegnie jedna i tylko jedna funkcja x = x(y). Analogiczny jest
punkt (21/3, 22/3), również należący do E (jest to punkt położony najwyżej na krzywej
z rysunku 10 w pierwszej ćwiartce), w którym zeruje się na odmianę Fx, a Fy 6= 0: w
tym punkcie (i jego otoczeniu) istnieje funkcja y = y(x), ale nie istnieje funkcja x = x(y).
Natomiast charakter punktu (0, 0) jest inny. Łatwo zobaczyć, że w tym punkcie zeruje się
również Fx. Skoro więc w punkcie (0, 0) należącym do zbioru E zerują się obie pochodne,
Fx i Fy, to z twierdzenia wynika, że nie może przez ten punkt przechodzić ani funkcja
y = y(x), ani funkcja x = x(y). Tak właśnie odzwierciedla się zauważona wyżej “trefność”
punktu (0, 0). bardziej matematycznie rzecz ujmując, jest to punkt osobliwy (ale dlaczego
“osobliwy” ma być lepiej niż “trefny”?).

Zajmijmy się teraz zrozumieniem, skąd się bierze ten dziwny wzór na pochodną y′

funkcji y = y(x) zadanej w sposób uwikłany. Chodzi oczywiście o to, że jak się ten wzór
rozumie, to nie trzeba nic pamiętać - można go zawsze natychmiast sobie odtworzyć (i
życie staje się lżejsze). Można ten wzór zrozumieć na przynajmniej dwa sposoby. Po
pierwsze, jeśli funkcja y = y(x) jest zadana przez równość F (x, y) = 0 (w otoczeniu
jakiegoś przyzwoitego punktu) to znaczy, że F (x, y(x)) ≡ 0 - wyrażenie po lewej jest, jako
funkcja x-a, tożamościowo zerowe. Liczymy pochodną tej tożsamościowo zerowej funkcji
x-a (czyli pochodna też jest zero tożsamościowo) stosując regułki, które już znamy:

0 =
d

dx
F (x, y(x)) =

∂F (x, y)

∂x

∣

∣

∣

∣

y=y(x)

+
∂F (x, y)

∂y

∣

∣

∣

∣

y=y(x)

dy

dx

≡ Fx(x, y(x)) + Fy(x, y(x))
dy

dx
.

Wyliczamy stąd y′ = dy/dx i mamy ten “dziwny” wzór.
Drugi sposób widzenia skąd się bierze wzór na pochodną y′(x) jest bardziej zabawny,

ale wielce kształcący. Będzie on nam bardzo pomocny przy rozumieniu równań różnicz-
kowych, a poza tym różne tożsamości termodynamiczne (że znów wskoczę na ulubionego
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konika), które studentów straszą po nocach, dają się w ten sposób zrozumieć i całko-
wicie oswoić. Mamy sobie funkcję dwóch zmiennych F (x, y) i jesteśmy na płaszczyźnie
xy w jakimś punkcie (x0, y0) ∈ E czyli takim, że F (x0, y0) = 0. Piszemy teraz zwykłą
dwuwymiarową różniczkę funkcji F w tym punkcie

dF = Fx(x0, y0) dx+ Fy(x0, y0) dy .

Różniczka dF mówi nam, o ile mniej więcej - pamiętamy, to jest główna liniowa część
prawdziwej zmiany ∆F - wartość funkcji F zmieni się, gdy z (x0, y0) (gdzie F = 0)
przesuniemy się do jakiegoś innego punktu (x0 + dx, y0 + dy). Na ogół jakoś się zmieni.
Ale możemy zapytać, jak kroczek dy w kierunku y musi być skorelowany z kroczkiem dx
w kierunku x, by wartość funkcji F pozostała ta sama, co w (x0, y0) (czyli równa zeru)?
Tzn. jak muszą te składowe wektora przesunięcia być ze sobą skorelowane, by przesunąć
się z (x0, y0) do sąsiedniego punktu zbioru E? No, po prostu tak, żeby dF = 0, czyli

dy

dx

∣

∣

∣

∣

x0,y0

= −Fx(x0, y0)

Fy(x0, y0)
.

A ten stosunek dy do dx to jest właśnie to, co zwiemy pochodną y′ funkcji y = y(x).
I tak musi być w każdym punkcie zbioru E, w otoczeniu którego istnieje i przez który
przechodzi funkcja y = y(x). Widać też, co się dzieje w punktach trefnych: jeśli Fy = 0,
to, musi być dx = 0 czyli trzeba z (x0, y0) się przesunąć pionowo, żeby wartość F się nie
zmieniła i dlatego nie istnieje tam funkcja y = y(x), zato istnieje funkcja x = x(y) (i ma w
tym punkcie zerową pochodną). Jeśli zaś i Fx = 0 i Fy = 0, to niema żadnej korelacji dx-a
z dy-kiem i można się przesunąć w dowolnym kierunku więc w sumie nie wiadomo, gdzie i
dlatego taki punkt jest trefny. Zobaczymy też, że taka sama jest przyczyna zbiegania się w
niektórych punktach krzywych całkowych równań różniczkowych pierwszego rzędu (jak się
na te równania patrzy w sposób fizyczny, czyli tak jak tu, a nie poprzez te matematyczne
hieroglify).

Zauważmy jeszcze, że ostatni wzór w termodynamice zapisalibyśmy jako
(

∂y

∂x

)

F

= −Fx

Fy
≡ −(∂F/∂x)y

(∂F/∂y)x
.

Te subskrypciki (fuj, jaki anglicyzm!) F , x, y w termodynamice się dopisuje, żeby pamię-
tać, która zmienna jest trzymana stała. Powstaje z tego taki “szokujący” wzorek

(

∂x

∂y

)

F

(

∂F

∂x

)

y

(

∂y

∂F

)

x

= −1 .

W moich wykładach z termodynamiki - zgodnie z moją manierą nadawania wszystkiemu
oswajających nazw - zwie się to “the shocking relation” - relacją szokującą. No ale teraz
już niema w niej nic szokującego.

Idąc za ciosem wyprowadźmy jeszcze wzorek na drugą pochodną funkcji y = y(x) w
punkcie, w którym ta funkcja istnieje. y = y(x) ma w otoczeniu takiego punktu i drugą
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pochodną, jeśli drugie pochodne cząstkowe Fxx, Fxy i Fyy w otoczeniu tego punktu istnieją
i są ciągłe. Co to jest druga pochodna? No, jest to pochodna pierwszej pochodnej. Zatem

d

dx
y′(x) =

d

dx

[

−Fx(x, y(x))

Fy(x, y(x))

]

= − 1

Fy

(

d

dx
Fx(x, y(x))

)

+
Fx

F 2
y

(

d

dx
Fy(x, y(x))

)

,

i dalej łańcuszkowo:

d

dx
y′(x) = − 1

Fy

(

Fxx + Fxy
dy

dx

)

+
Fx

F 2
y

(

Fyx + Fyy
dy

dx

)

,

teraz przypominamy sobie, że dy/dx = y′ = −Fx/Fy, wstawiamy i po małym uporzadko-
waniu mamy

d

dx
y′(x) ≡ y′′(x) = −

Fxx F
2
y − 2Fxy Fx Fy + Fyy F

2
x

F 3
y

∣

∣

∣

∣

(x,y=y(x))

.

Prawda, że śliczny wzorek? Nawet da się go zapamietać, ale po co? Przecież można go
zawsze w minutkę wyprowadzić...

Możemy ten wzorek sprawdzić. Weźmy pierwszy przerabiany przykład, czyli odwzo-
rowanie F (x, y) = −10 + exp(2x− 3y). Warunek F (x, y) = 0 definiuje funkcję:

y(x) =
2

3
x− 1

3
ln 10 ,

więc y′′(x) ≡ 0. A co da wyprowadzony wyżej wzór? Pamiętamy, że

Fx(x, y) = 2 e2x−3y , Fy(x, y) = −3 e2x−3y ,

i wobec tego

Fxx(x, y) = 4 e2x−3y , Fyy(x, y) = 9 e2x−3y , Fxy(x, y) = −6 e2x−3y .

Czyli:

Fxx F
2
y − 2Fxy Fx Fy + Fyy F

2
x =

[

4 · (−3)2 − 2 · (−6) · (2) · (−3) + 9 · (2)2
] (

e2x−3y
)3

= 0 .

Zgadza się.

Inny przykład. Znajdźmy pierwszą i drugą pochodną funkcji y = y(x) zadanej w
sposób uwikłany warunkiem F (x, y) = x ey − y + 1 = 0 i wyraźmy te pochodne przez
zmienną y tylko. (Po co? A tak, dla wprawy). Obliczamy:

Fx(x, y) = ey , Fy(x, y) = x ey − 1 ,

więc

y′(x) = −Fx

Fy

=
ey

1− x ey
=

ey

2− y
.
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Rysunek 11: Rysunek zbioru E ⊂ R
2 zadanego równością y− ε sin y−x = 0, gdy ε = 0.7.

W ostatnim kroku w mianowniku wykorzystaliśmy (już wiemy, że wolno) to, że na krzywej
x ey − y + 1 = 0, czyli x ey = −1 + y. Teraz drugie pochodne:

Fxx(x, y) = 0 , Fyy = x ey , Fxy(x, y) = ey .

To do tego ślicznego wzoru:

y′′(x) = − 1

F 3
y

{

x ey (ey)2 − 2 ey ey (x ey − 1)
}

= −e
2y

F 3
y

(2− x ey) = −e
2y

F 3
y

(3− y) ,

no i jeszcze w mianowniku Fy = x ey − 1 = y − 2. Ostatecznie

y′′(x) =
3− y

(2− y)3
e2y .

Zadanie Uwik.1
Jaka może być wartość parametru ε, żeby wzórek y−ε sin y = x definiował globalnie, czyli
na całym R określoną funkcję y = y(x) ?
Rozwiązanie: Niewątpliwie jeśli ε = 0, jest to przyzwoita funkcja y(x) = x. Ale jak |ε|
rośnie, to na tę prostą y = x nakładają się falki (zob. rysunek 11) i przy zbyt dużym |ε| te
falki powodują, że jednemu x-owi już nie odpowiada jeden tylko y-ek. Pytanie, jak duży
może być jeszcze |ε|, żeby tak nie było? Napiszmy F (x, y) = y − ε sin y − x i zastosujmy
to, co już umiemy, czyli twierdzenie o funkcji uwikłanej. Warunkiem, by F (x, y) = 0
wyznaczało wszędzie (dla wszystkich x ∈ R) przyzwoitą funkcję y = y(x) jest, by nigdzie
na zbiorze E nie zerowała się pochodna Fy. Ale

Fy(x, y) = 1− ε cos y ,

i widać, że nie może się ona zerować, jeśli |ε| < 1 (bo cosinus nie bywa większy niż 1). Ot
i wszystko.
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Rysunek 12: Rysunek zbioru E ⊂ R
2 zadanego równością ln

√

x2 + y2 − arctg(y/x) = 0.

Zadanie Uwik.2
W których punktach płaszczyzny xy odwzorowanie

F (x, y) = ln
√

x2 + y2 − arctg
y

x
,

nie zadaje, poprzez warunek F (x, y) = 0 funkcji y = y(x) ?
Rozwiązanie: Znów obliczamy pochodne F :

Fx(x, y) =
x

x2 + y2
−
(

− y

x2 + y2

)

=
x+ y

x2 + y2
,

Fy(x, y) =
y

x2 + y2
−
(

x

x2 + y2

)

=
−x+ y

x2 + y2
.

Widać, że Fy zeruje się na linii y = x, ale oczywiście interesują nas tylko te punkty,
w których linia ta przecina się ze zbiorem E wyznaczanym przez warunek F (x, y) = 0.
Szukamy zatem rozwiązań równania F (x, x) = 0, czyli

ln
√
2x2 =

π

4
.

Zatem punkty w których F (x, y) = 0 nie definiuje funkcji y = y(x), to

x = y = ± 1√
2
eπ/4 .

A jak w ogóle wygląda zbiór E? Jeśli przejdziemy do zmiennych biegunowych, to naiwnie
można by sądzić, że F (x, y) = 0 daje po prostu ln r = ϕ, czyli spiralę r(ϕ) = exp(ϕ).
Ale to nie jest do końca tak, bo jak się tak napisze, to się wydaje, że zmienna ϕ może
się zmieniać od −∞ do +∞. Tymczasem, żeby funkcja F (x, y) była dobrze określoną
funkcją trzeba się zdecydować na jakąś gałąź funkcji arctg. Konwencjonalnie przyjmuje
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się, że arctg(0) = 0 (inne gałęzie tej funkcji odpowiadają przyjęciu arctg(0) = kπ z
jakimś całkowitym k 6= 0) i tak sobie przyjmijmy. Wtedy arctg zmienia się od −π/2
do +π/2. Zatem we wzorze r = exp(ϕ) w zmiennych biegunowych −π/2 ≤ ϕ ≤ π/2,
ale to dotyczy wtedy tylko półpłaszczyzny x > 0; drugiej półpłaszczyzny w taki sposób
nie obejmiemy, a F (x, y) = 0 ma i tam rozwiązanie. Teraz zobaczmy, jaki się dostaje
y z warunku F (x, y) = 0, gdy x → 0+. Są dwie możliwości: jest rozwiązanie z y > 0
- wtedy arctg(y/x) przy skończonym y dąży do π/2 i widać, że rozwiązaniem warunku
ln
√

y2 = arctg(y/x) → π/2 jest y = exp(π/2). Jest też i drugie rozwiązanie z y < 0:
wtedy arctg(y/x) przy skończonym y dąży do −π/2 i widać, że rozwiązaniem warunku
ln
√

y2 = arctg(y/x) → −π/2 jest y = − exp(−π/2). Jest też jasne, że dwa te punkty:
(0,−e−π/2) i (0, eπ/2) muszą być końcami krzywej r = exp(ϕ) i że pierwszy odpowiada
r = e−π/2, ϕ = −π/2, a drugi r = eπ/2, ϕ = π/2. Analogicznie, gdy x → 0−, jest
rozwiązanie ujemne y = − exp(π/2) i dodatnie y = exp(−π/2). Warunek F (x, y) = 0
wyznacza więc na płaszczyźnie xy dwie rozłączne krzywe: jedną położoną w obszarze
x ≥ 0 i drugą w obszarze x ≤ 0. Całość wygląda tak, jak na rysunku 12. Znalezione
wyżej punkty, w których F (x, y) = 0 nie definuje funkcji y = y(x) są to: punkt najbardziej
położony na prawo na prawej gałęzi rysunku 12 i punkt położony najbardziej na lewo na
lewej gałęzi tego rysunku. W obu tych punktach krzywe “stają dęba”. Z kolei F (x, y) = 0
nie definiuje funkcji x = x(y) w punktach

x = −y = ± 1√
2
e−π/4 .

położonych na przecięciu krzywych z rysunku 12 z prostą y = −x. W punktach tych
zeruje się pochodna Fx, a krzywe z rysunku 12 mają zerowe nachylenie w stosunku do osi
x.

Zadanie Uwik.3
Znaleźć punkty krytyczne funkcji (liczba pojedyńcza lub mnoga - zaraz zostanie wyja-
śnione dlaczego) y = y(x) zadanej w sposób uwikłany warunkiem

F (x, y) = 8x2 − 8xy + y4 − 4y = 0 ,

i zbadać, czy są one jej ekstremami.
Rozwiązanie: W zasadzie wszystko sprowadza się do tego, co w szkole: trzeba znaleźć
te x-y, w których zeruje się pochodna y′(x), a potem zobaczyć, jaki jest znak drugiej
pochodnej y′′(x) w takich punktach (lub, co tu mniej wygodne, sprawdzić czy pochodna
y′(x) zmienia znak i z jakiego na jaki przy przejściu przez taki punkt). Jedyna różnica z
tym, co było w szkole (a może już tego w szkole niema? może to za trudne dla ministrów?)
jest taka, że teraz mamy pewien szczególny sposób znajdywania pochodnych y′(x) i y′′(x).
No i jest jeszcze jedna sprawa: jeśli się znajdzie ze dwa punkty krytyczne funkcji (punkty,
w których y′ = 0), to naogół nie jest jasne, czy są to dwa punkty krytyczne tej samej
funkcji y = y(x), czy dwu różnych funkcji y = y1(x) i y = y2(x) zadawanych tym samym
warunkiem. Czasem jest to łatwo ustalić. A czasem nie. Życie z funkcjami uwikłanymi
ma swoje uroki...
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Ponieważ y′(x) = −Fx/Fy, a funkcja y = y(x) jest funkcją tylko tam, gdzie Fy 6= 0,
przeto szukanie zer pochodnej y′ sprowadza się do rozwiązania układu równań

Fx(x, y) = 16x− 8y = 0 ,

F (x, y) = 8x2 − 8xy + y4 − 4y = 0 .

Z pierwszego y = 2x, to do drugiego i dostajemy równanie

2x4 − x2 − x = 0 .

Nie zrażamy się tym, że jest ono czwartego stopnia, tylko czujnie rzucamy na nie okiem
i widzimy, że jednym z pierwiastków jest x = 1, a drugim oczywiście x = 0. Więc (nie
zaczyna się zdania od “więc”!) piszemy

2x4 − x2 − x = x (x− 1) (2x2 + ax+ 1) = 0 ,

i łatwo ustalamy, że a = 2. Ponieważ ∆ dwumianu kwadratowego w nawiasie jest ujemna,
innych rzeczywistych rozwiązań niż x = 0 i x = 1 niema. Zatem punkty, w których zeruje
się (na zbiorze E) pochodna Fx to (0, 0) i (1, 2), czyli y′(0) = 0 w miejscu, gdzie y(0) = 0
i y′(1) = 0 w miejscu, gdzie y(1) = 2. No i właśnie: mamy dwa punkty krytyczne, ale
bez dalszego wnikania w sprawę nie wiemy, czy to punkty krytyczne tej samej funkcji, czy
dwóch różnych. Zato od razu mamy wartości funkcji w tych punktach. No to teraz drugie
pochodne. W ogólności są one dany tym ślicznym (dla niektórych może strasznym?)
wzorem y′′ = −(FxxF

2
y − 2FxyFxFy + FyyF

2
x )/F

3
y . Ale tu przyjemna niespodzianka: w

punktach krytycznych funkcji y = y(x), w których chcemy znać pochodną y′′, zeruje się
Fx! Więc ten śliczno-straszny wzór sprowadza się do y′′|y′=0 = −Fxx/Fy ! A nas interesuje
i tak tylko znak tego wyrażenia. Wszystko jest więc już banalnie proste: Fxx(x, y) = 16,
Fy(x, y) = 4y3 − 8x − 4 i w punkcie (0, 0) −Fxx/Fy = 4 - funkcja y = y(x) ma tu
minimum lokalne równe 0; z kolei w punkcie (1, 2) −Fxx/Fy = −4/5 i w tym punkcie
krytycznym funkcja y = y(x) ma lokalne maksimum równe 2. Jeśli sobie narysujemy
zbiór E wyznaczony warunkiem F (x, y) = 0, to wyglada on tak, jak na rysunku 13.
Widać z rysunku, że są to ekstrema dwóch różnych funkcji (albo jak kto woli, dwóch
różnych gałęzi tej samej funkcji), bo to, że jest to ciągła jedna zamknięta krzywa nic nie
znaczy: są jak widać dwa punkty (x1, y1) i (x2, y2), gdzie ta krzywa staje dęba - w tych
punktach F (x, y) = 0 nie wyznacza funcji y = y(x) i trzeba to właśnie interpretować tak,
że w tych punktach x1 i x2, które nie należą do dziedziny żadnej z funkcji y = y1(x) i
y = y2(x) te dwie różne funkcje (lub dwie gałęzie jednej funkcji) tylko się zbiegają.

Teraz uogólnimy te metody na więcej zmiennych, tj. na przypadek funkcji f : Rn −→
R zadanych w sposób uwikłany jako zerowa poziomica odwzorowania F : Rn+1 −→ R.
Niech

F (x, y, z) = ez − xyz − 1 .

Pytamy, kiedy warunek F (x, y, z) = 0 wyznacza np. funkcję z = z(x, y) ? (Można też
pytać o fukcję y = y(x, z) lub x = x(y, z)). Odpowiedź jest oczywiście taka, że tam, gdzie
Fz 6= 0, tzn. w tych punktach zbioru E = F−1(0) ⊂ R3, w których Fz(x, y, z) 6= 0.
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Rysunek 13: Rysunek zbioru E ⊂ R
2 zadanego równością 8x2 − 8xy + y4 − 4y = 0.

Obliczmy pochodne cząstkowe ∂z/∂x i ∂z/∂y funkcji z = z(x, y) zdefiniowanej warun-
kiem F (x, y, z) = 0 w punkcie (x0, y0, z0) = (2, 1, 0). Punkt ten, jak łatwo zobaczyć, należy
do zbioru E i w punkcie tym pochodna Fz(x, y, z) = ez − xy jest równa 1− 2 = −1 6= 0,
więc postawiony problem ma sens: w tym punkcie i w jego jakimś otwartym otoczeniu
funkcja z = z(x, y) istnieje. W celu obliczenia pochodnych ∂z/∂x i ∂z/∂y posłużymy się
zdrowym fizycznym rozsądkiem. Napiszemy w tym punkcie różniczkę funkcji F :

dF = Fx(x0, y0, z0) dx+ Fy(x0, y0, z0) dy + Fz(x0, y0, z0) dz ,

i zapytajmy znów, jak trzeba skorelować składowe dx, dy i dz wektora przemieszczenia,
by nie “spaść” z poziomicy zerowej funkcji F , tj. by przemieścić się do sąsiedniego punktu
zbioru E. Tzn. jak skorelować dx, dy i dz, by dostać dF = 0. Oczywiście to jest teraz
jeden warunek na trzy składowe. Jeśli jednak “przytrzymamy” y, tzn., położymy dy = 0,
to aby dostać dF = 0, musimy mieć

dz

dx
= −Fx(x0, y0, z0)

Fz(x0, y0, z0)
.

Ale ten stosunek po lewej jest dokładnie tym, czym jest pochodna cząstkowa funkcji z(x, y)
po x: stosunkiem zmiany dz wielkości z, gdy maciupko, o dx (myślmy o granicy dx→ 0),
zmienimy x trzymając y ustalone. Analogiczne rozumowanie dotyczy stosunku dz/dy,
gdy nie zmienia się x (czyli gdy dx = 0). W przypadku rozpatrywanej funkcji Fx = −yz,
Fy = −xz ale, że rozpatrujemy punkt (2, 1, 0), to Fx(x0, y0, z0) = 0, Fy(x0, y0, z0) = 0,
czyli

zx(x0, y0) = 0 , zy(x0, y0) = 0 .

Przypadkiem, jak się wydaje, trafiliśmy na punkt krytyczny funkcji z = z(x, y). Zaraz się
nim zajmiemy.
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To samo rozumowanie musi oczywiście być słuszne w każdym punkcie (x, y, z) zbioru
E, w którym nie znika Fz i dzięki temu funkcja z = z(x, y) istnieje. Zatem mamy ogólne
wzory
(

∂z

∂x

)

y

(x, y) = − Fx(x, y, z)

Fz(x, y, z)

∣

∣

∣

∣

z=z(x,y)

,

(

∂z

∂y

)

x

(x, y) = − Fy(x, y, z)

Fz(x, y, z)

∣

∣

∣

∣

z=z(x,y)

.

(Dla szpanu - używa się jeszcze tego ślicznego słowa? - napisaliśmy te pochodne zgodnie
z manierą termodynamiczną zaznaczając która zmienna jest trzymana ustalona). Oczy-
wiście te same wzorki możemy wyprowadzić zauważając, że z = z(x, y) jest taką funkcją,
że F (x, y, z(x, y)) ≡ 0 tzn. jest to funkcja x i y tożsamościowo równa zeru. Możemy
obliczać pochodne cząstkowe tej tożsamościowo zerowej funkcji stosując już opanowane
(mam nadzieję!) reguły słuszne dla pochodnych funkcji złożonych:

0 =
∂

∂x
F (x, y, z(x, y)) = Fx(x, y, z)|z=z(x,y) + Fz(x, y, z)|z=z(x,y)

∂z

∂x
,

i stąd wywikłujemy tę samą pochodną ∂z/∂x, co dana wzorem wypisanym wyżej.
No to “idąc za ciosem” (powtarzam się, ale to też element przemyślanej taktyki - ma na

celu uświadomienie Państwu, że wszystko idzie tak samo jak poprzednio) wyprowadźmy
wzory na drugie pochodne cząstkowe funkcji z = z(x, y).

∂2z

∂x2
=

∂

∂x

[

−Fx(x, y, z(x, y))

Fz(x, y, z(x, y))

]

= − 1

Fz

∂Fx

∂x
+
Fx

F 2
z

∂Fz

∂x

= − 1

Fz

(

Fxx + Fxz
∂z

∂x

)

+
Fx

F 2
z

(

Fzx + Fzz
∂z

∂x

)

.

Teraz wstawiamy tu ∂z/∂x = −Fx/Fz i po małym fiku-miku mamy

∂2z

∂x2
= − Fxx F

2
z − 2Fxz Fx Fz + Fzz F

2
x

F 3
z

∣

∣

∣

∣

z=z(x,y)

,

∂2z

∂y2
= − Fyy F

2
z − 2Fyz Fy Fz + Fzz F

2
y

F 3
z

∣

∣

∣

∣

z=z(x,y)

,

∂2z

∂x ∂y
= − Fxy F

2
z − Fxz Fy Fz − Fyz Fx Fz + Fzz Fx Fy

F 3
z

∣

∣

∣

∣

z=z(x,y)

.

Drugi wzór został otrzymany przez zamianę w pierwszym x na y. Trzeci zostawiam Pań-
stwu do samodzielnego wyprowadzenia.

Jak już mamy i wzory na drugie pochodne funkcji z = z(x, y) zadanej w sposób
uwikłany, to możemy szaleć: w szczególności możemy badać punkty krytyczne takich
funkcji i sprawdzać, czy są w nich ich ekstrema. W tym przypadku znów znajdujemy
przyjemne uproszczenie: w punktach krytycznych Fx = 0 i Fy = 0 i te straszne ogólne
wzory wypisane wyżej redukują się do

∂2z

∂x2

∣

∣

∣

∣

zx=zy=0

= − Fxx

Fz

∣

∣

∣

∣

z=z(x,y)

,
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Rysunek 14: Rysunek zbioru E ⊂ R
3 zadanego równością ez − xyz − 1 = 0.

∂2z

∂y2

∣

∣

∣

∣

zx=zy=0

= − Fyy

Fz

∣

∣

∣

∣

z=z(x,y)

,

∂2z

∂x2

∣

∣

∣

∣

zx=zy=0

= − Fxy

Fz

∣

∣

∣

∣

z=z(x,y)

.

Prawda, że to bardzo przyjemne?
No to teraz możemy wrócić do funkcji z = z(x, y) zadanej w sposób uwikłany wa-

runkiem F (x, y, z) = ez − xyz − 1 = 0 i zbadać charakter przypadkiem znalezionego jej
punktu krytycznego (2, 1, 0). Znajdujemy jednak, że Fxx(x, y, z) = 0, Fyy(x, y, z) = 0 i
Fxy(x, y, z) = z, więc w badanym punkcie krytycznym forma kwadratowa drugich pochod-
nych funkcji z = z(x, y) jest całkowicie zerowa. Zatem nic nie można powiedzieć. Ale jeśli
przypatrzymy się uważniej warunkowi F (x, y, z) = ez−xyz−1 = 0, to zobaczymy, że jest
on spełniony przez wszystkie punkty leżące w R3 na płaszczyźnie z = 0. Punkt, który
badaliśmy jest właśnie jednym z nich i w sposób oczywisty funkcja z = z(x, y) jest po
prostu funkcją tożsamościowo równą zeru. Ale zawód nas spotkał!!! Ale nie narzekajmy.
Przy okazji czegoś się nauczyliśmy! Wyprowadziliśmy ogólne wzory na pochodne i drugie
pochodne takich funkcji, a to już coś! Poza tym, warunek F (x, y, z) = ez − xyz − 1 = 0
nie jest taki trywialny: jeśli zapuścimy Mathematicę każąc jej wymalować powierzchnie
z = z(x, y) będące rozwiązaniem tego warunku, to zobaczymy rysunek 14. Widać, że
warunek ez − xyz − 1 = 0 definiuje też i inne funkcje z = z(x, y). Ich powierzchnie
przecinają się z powierzchnią funkcji z(x, y) ≡ 0. Tak może być. Oczywiście w takich
punktach przecinania się powierzchni zerują się wszystkie pochodne Fx, Fy i Fz i warunek
F (x, y, z) = 0 nie wyznacza w otoczeniu takich punktów żadnej funkcji: ani z = z(x, y),
anie x = x(y, z), ani y = y(x, z). Tak samo jak miało to miejsce w punkcie samoprzeci-
nania się liścia Kartezjusza.
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Zadanie Uwik.4 (“cieciurzynka” - tzn. wzięte z zadań dr G. Cieciury)
Zbadać punkty krytyczne funkcji z = z(x, y) w obszarze x, y 6= 0 zadanej warunkiem

F (x, y, z) = (x+ z)(y + z)

(

1 +
z

xy

)

− 8 = 0 .

Rozwiązanie: Punkty krytyczne wyznaczają równości

Fx(x, y, z) = (y + z)

[(

1 +
z

xy

)

− z

x2y
(x+ z)

]

= (y + z)

(

1− z2

x2y

)

= 0 ,

Fy(x, y, z) = (x+ z)

[(

1 +
z

xy

)

− z

y2x
(y + z)

]

= (x+ z)

(

1− z2

y2x

)

= 0 ,

F (x, y, z) = (x+ z)(y + z)

(

1 +
z

xy

)

− 8 = 0 .

Jak zwykle w takich zadaniach, nawet z funkcjami zadanymi jawnie!, a co dopiero, gdy są
zadane w sposób uwikłany, trudnym etapem jest rozwiązanie tych równań. Reszta to już
rutynowe czynności. Jeśli w pierwszym lub drugim równaniu wybralibyśmy rozwiązanie
y = −z i/lub x = −z, to nie będzie spełnione trzecie. Zatem y 6= −z i x 6= −z. Musi
zatem być z2 = x2y i z2 = y2x, co razem oznacza, że29 x = y, czyli z2 = x3 = y3. Żeby nie
operować pierwiastkami przejdziemy do niezależnej zmiennej t zdefiniowanej przez z = t3

i x = y = t2. Podstawiamy to do ostatniego z równań sprowadzając je tym samym do
postaci

(

t3 + t2
)2
(

1 +
1

t

)

= 8 .

czyli po prostu do (t2 + t)3 = 8, albo,

t2 + t− 2 = (t− 1)(t+ 2) = 0 .

Zatem punkty krytyczne, to

(1, 1, 1) oraz (4, 4,−8) .

W punktach tych pochodna

Fz(x, y, z) = (y + z)

(

1 +
z

xy

)

+ (x+ z)

(

1 +
z

xy

)

+ (x+ z)(y + z)
1

xy
,

w której można położyć z = t3, x = y = t2, co sprowadza ją do

Fz(t
2, t2, t3) = 2(t2 + t3)

(

1 +
1

t

)

+
1

t4
(

t2 + t3
)2

= (2t+ 1)(1 + t)2 ,

29To, że takie punkty należy sprawdzić, wynika z symetrii funkcji F (x, y, z) = F (y, x, z); jednak przy
symetrii punkty krytyczne mogłyby też występować parami: (a, b, c) i (b, a, c); teraz już wiemy, że takich
tu niema.
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jest równa 12 (w punkcie (1, 1, 1), t = 1) i −3 (w punkcie (4, 4,−8), t = −2). Nie jest wiec
równa zeru (trzeba to zawsze sprawdzić! nie zapominać o tym!!!), czyli w tych punktach
rzeczywiście warunek F (x, y, z) = 0 definiuje fukcje z = z(x, y) (a czy to jest ta sama
funkcja w obu punktach, czy dwie różne, tego już nie wiemy...). Reszta, jako się rzekło,
to już rutyna.

Fxx(x, y, z) = 2(y + z)
z2

x3y
,

Fyy(x, y, z) = 2(x+ z)
z2

y3x
,

Fxy(x, y, z) =

(

1− z2

x2y

)

+ (y + z)
z2

x2y2
= 1 +

z3

x2y2
.

Więc, gdy x = y = t2, z = t3, Fxx = Fyy = 2(1 + t), Fxy = 1 + t. Pamiętając, że w
punktach krytycznych zxx = −Fxx/Fz, zyy = −Fyy/Fz, zxy = −Fxy/Fz, dostajemy w tych
punktach następujące macierze form kwadratowych

− 1

12

(

4 2
2 4

)

,
1

3

(

−2 −1
−1 −2

)

.

Pierwsza z nich, odpowiadająca punktowi (1, 1, 1), jest ujemnie określona i tam funkcja
z = z(x, y) ma lokalne maksimum. Druga, odpowiadająca punktowi (4, 4,−8), jest też
ujemnie określona i tam funkcja z = z(x, y) ma też lokalne maksimum. Żeby nie żyć w
niepewności, czy to są ekstrema tej samej funkcji, czy dwóch różnych, zaprzęgamy znów
Mathematicę i otrzymujemy rysunek 15. Warunek F (x, y, z) = 0 definiuje w pokazanym
obszarze aż cztery różne funkcje z = zi(x, y), i = 1, 2, 3, 4 (czwarta nie jest tu widoczna, ale
można ją zobaczyć obracając wykres w Mathematice, lub po prostu wnosić o jej istnieniu
odwołując sie do symetrii F (x, y, z) w zmiennych x i y), z czego tylko dwie (ten “dach”
na rysunku 15 i ten placek na dole) mają (to ustaliliśmy analitycznie) punkty krytyczne,
które są ich maksimami.

Na koniec, żebyśmy mieli poczucie, że umiemy sobie radzić w każdej uwikłanej (byle nie
w sprzeczności) sytuacji rozpatrzmy jeszcze przypadek dwóch warunków na trzy zmienne,
czyli odwzorowanie F : R3 −→ R2, które przez F−1(0) = E ⊂ R3 zadaje funkcję
f : R −→ R2, czyli po prostu krzywą w R2 sparametryzowaną jedną zmienną. Niech

F1(x, y, z) = xz + ln y + y ln z ,

F2(x, y, z) = x− y + z .

Znajdźmy w punkcie (0, 1, 1) pochodne dy/dx i dz/dx funkcji x → (y(x), z(x)) zadanej
warunkami F1(x, y, z) = 0, F2(x, y, z) = 0. Każdy z tych warunków z osobna definiuje
(najpewniej) jakąś powierzchnię w R3 (no, czasem kilka rozłącznych, albo przecinających
się - to już wiemy z poprzednich przykładów), a punkty spełniające oba te warunki leżą na
przecięciu takich powierzchni, które to przecięcie najbardziej typowo jest właśnie krzywą,
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Rysunek 15: Rysunek zbioru E ⊂ R
3 zadanego równością (x+z)(y+z)(1+z/xy)−8 = 0.

którą można sparametryzować np. x-em i o to tu chodzi. Podany punkt (0, 1, 1) należy
jak widać do zbioru E bo spełnia oba warunki: F1(0, 1, 1) = 0, F2(0, 1, 1) = 0. Aby
obliczyć pochodne dy/dx i dz/dx w punkcie (0, 1, 1) piszemy w tym punkcie różniczki obu
tych funkcji (numer funkcji F teraz będziemy pisać u góry żeby na dole mieć miejsce na
symbol pochodnej cząstkowej)

dF 1 = F 1
x dx+ F 1

y dy + F 1
z dz ,

dF 2 = F 2
x dx+ F 2

y dy + F 2
z dz ,

obliczając pochodne cząstkowe F 1
x , etc. w punkcie (0, 1, 1). Znów pytamy jak skorelować

składowe dx, dy, dz wektora przemieszczenia, żeby nadal F 1 = 0 i F 2 = 0, czyli, żeby
dF 1 = 0 i dF 2 = 0. Jawnie

dF 1 = z dx+

(

1

y
+ ln z

)

dy +
(y

z
+ x
)

dz ,

dF 2 = dx− dy + dz .

W punkcie (0, 1, 1) warunki dF 1 = 0 i dF 2 = 0 dają związki

dx+ dy + dz = 0 ,

dx− dy + dz = 0 .

Ich rozwiązaniem jest oczywiście dz = −dx, dy = 0 · dx. Zatem w punkcie (0, 1, 1), w
którym y(0) = 1, z(0) = 1

dy

dx
= 0 ,

dz

dx
= −1 .

W dowolnym punkcie, aby dostać te pochodne, rozwiązywalibyśmy wypisany wyżej
ogólny układ równań, który można przekształcić do postaci

(

F 1
y /F

1
x F 1

z /F
1
x

F 2
y /F

2
x F 2

z /F
2
x

)(

dy
dz

)

=

(

−dx
−dx

)

,
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skąd
(

dy
dz

)

=
F 1
xF

2
x

F 1
yF

2
z − F 1

z F
2
y

(

F 2
z /F

2
x −F 1

z /F
1
x

−F 2
y /F

2
x F 1

y /F
1
x

)(

−dx
−dx

)

,

Dostalibyśmy więc np.

dy

dx
=

F 1
xF

2
x

F 1
yF

2
z − F 1

z F
2
y

(

F 1
z

F 1
x

− F 2
z

F 2
x

)

.

Przy okazji widać, w jakich punktach przestrzeni R3 warunki F 1(x, y, z) = 0 i F 2(x, y, z) =
0 wyznaczają funkcję R −→ R2: w takich, w których nie znika F 1

y F
2
z − F 1

z F
2
y . Te same

pochodne dy/dx i dz/dx można też dostać i naszą drugą metodą, tj. pisząc dwie tożsa-
mościowo równe zeru funkcje F 1(x, y(x), z(x)) ≡ 0, F 2(x, y(x), z(x)) ≡ 0, różniczkując
te tożsamości po x, co da

0 = F 1
x + F 1

y y
′ + F 1

z z
′ ,

0 = F 2
x + F 2

y y
′ + F 2

z z
′ ,

i rozwiązując ten układ liniowych równań względem y′ = dy/dx i z′ = dz/dx. Ale jest
to ten sam układ, co poprzednio napisany. Różniczkując wypisane wyżej obie równości
jeszcze raz stronami po x i wstawiając potem już wyliczone y′ i z′, dostaniemy zaś układ
dwu równań na drugie pochodne y′′ i z′′. Naprawdę już wszystko możemy!

Ogólnie, jeśli poziomica zerowa F−1(0) ⊂ Rn, 0 ∈ Rm odwzorowania F : Rn −→ Rm,
gdzie m < n, ma lokalnie, w otoczeniu jakiegoś punktu (x

(0)
1 , . . . , x

(0)
n ) spełniającego

równości

F 1(x
(0)
1 , . . . , x(0)n ) = 0 , . . . , Fm(x

(0)
1 , . . . , x(0)n ) = 0 ,

wyznaczać “przyzwoitą” funkcję f : Rn−m −→ Rm, np.

x1 = x1(xm+1, . . . , xn) ,

. . . . . . . . . . . . . . . . . . . . .

xm = xm(xm+1, . . . , xn) ,

to w punkcie (x
(0)
1 , . . . , x

(0)
n ) to wyznacznik macierzy





∂F 1/∂x1 . . . ∂F 1/∂xm
· . . . ·

∂Fm/∂x1 . . . ∂Fm/∂xm



 ≡ ∂(F 1, . . . , Fm)

∂(x1, . . . , xm)
,

powinien nie być zerowy. Widać, że jest to uogólnienie tego, co mieliśmy, gdy warunek
F (x, y) = 0 miał wyznaczać funkcję y = y(x) lub gdy warunek F (x, y, z) = 0 miał wyzna-
czać z = z(x, y). W przypadku “rozwikływania” odwzorowania F : Rn −→ Rm o m < n
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można to skonfrontować z przykładem odwzorowania liniowego, od którego rozpoczęli-
śmy ten rozdział: nieznikanie powyższego wyznacznika jest tam właśnie warunkiem, by
odpowiedni minor stopnia m macierzy A problemu nie znikał. Przy okazji wspomniany
był tam problem niezależności warunków F 1(x1, . . . , xn) = 0, . . ., Fm(x1, . . . , xn) = 0.
Tym z kolei rządzi macierz pochodnej F ′ funkcji F :





∂F 1/∂x1 . . . ∂F 1/∂xn
· . . . ·

∂Fm/∂x1 . . . ∂Fm/∂xn



 .

Warunki F 1(x1, . . . , xn) = 0, . . ., Fm(x1, . . . , xn) = 0 są w otoczeniu punktu (x
(0)
1 , . . . , x

(0)
n )

niezależne, gdy rząd tej macierzy jest maksymalny, tj. równy m (znów można to skon-
frontować z przykładem odwzorowania liniowego i uwagami poczynionymi na jego temat).
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Ekstrema warunkowe czyli związane.
Zagadnieniem wiążącym się naturalnie z odwzorowaniami uwikłanymi jest szukanie lo-
kalnych ekstremów funkcji F (x1, . . . , xn) określonej na jakimś podzbiorze (ograniczonym
lub nieograniczonym) E ⊂ R

n, który to podzbiór jest zadany jako poziomica zerowa
G−1(0) ⊂ Rn pewnego odwzorowania G : Rn → Rm (m < n). Mówiąc bardziej przy-
ziemnym językiem, szukamy ekstremum funkcji F (x1, . . . , xn) przy ubocznych warunkach
G1(x1, . . . , xn) = 0 , . . . , Gm(x1, . . . , xn) = 0 zwanych także więzami. Gdyby w oto-
czeniu jakiegoś punktu (x∗1, . . . , x

∗
n) ∈ E dało się jawnie wywikłać m którychś zmien-

nych x w funkcji pozostałych n − m zmiennych x, czego warunkiem koniecznym jest
by macierz G′ pochodnej odwzorowania G w tym punkcie była rzędu m (co będziemy
tu zawsze zakładać), np. gdyby dało się otrzymać funkcje x1 = x1(xm+1, . . . , xn), . . . ,
xm = xm(xm+1, . . . , xn), czego warunkiem koniecznym jest (patrz koniec poprzedniego
rozdziału), by nie znikał wyznacznik macierzy m×m utworzonej z pierwszych m kolumn
macierzy G′ pochodnej odwzorowania G w tym punkcie, to można by było po prostu
badać funkcję n−m zmiennych

f(xm+1, . . . , xn) = F (x1(xm+1, . . . , xn), . . . , xm(xm+1, . . . , xn), xm+1, . . . , xn) ,

stosując znane już nam standardowe metody. Gdyby nie dało się wywikłać x1, . . . , xm, to,
przy przyjętym założeniu, że rząd macierzy G′ jest równy m, dałoby się wywikłać jawnie
m którychś innych zmiennych, np. xn−m+1, . . . , xn w funkcji x1, . . . , xn−m. Naogół się
jednak nie daje tego zrobić jawnie. Co więcej, widzieliśmy na przykładach, że czasem
w otoczeniu jednego punktu zbioru E da się wywikłać m jednych x-ów, a w otoczeniu
innego punktu zbioru E daje się wywikłać tylko m innych zmiennych, a my byśmy chcieli
problem szukania lokalnych ekstremów funkcji f na zbiorze E rozwiązać jakoś globalnie,
w tym sensie, żeby nie musieć dzielić zbioru E na kawałki i w jednym wywikływać jaw-
nie, lub tylko niejawnie, jednych zmiennych, a w innym innych. Do tego służy metoda
wykorzystująca mnożniki Lagrange’a. (Mnożniki te znajdują zastosowanie w wielu pro-
blemach, np. w mechanice, gdy rozpatruje się siły reakcji, a także - jakże by inaczej! - w
mojej ulubionej termodynamice. Kto do mnie trafi na wykład ten zobaczy).

Najpierw jak wyznaczamy na zbiorze E punkty krytyczne? Załóżmy, że tak jak wyżej
wywikłaliśmy m pierwszych zmiennych x w funkcji pozostałych n − m. Chodzi jednak
o to, że tylko zakładamy; nie będziemy musieli tego robić jawnie i, co więcej, końcowe
wzory nie będą wyróżniać żadnej z n zmiennych x, więc będą słuszne globalnie na całym
zbiorze E, pod warunkiem, że w każdym jego punkcie, któreś m zmiennych x się daje
wywikłać (a to, jak już było wyżej, jest żądaniem, by w każdym punkcie E macierz G′

była rzędu m, a nie mniejszego). Punkty krytyczne są więc wyznaczone przez zerowanie
się pochodnych funkcji f po niezależych x-ach, czyli przez układ n−m równań

∂

∂xm+1

F (x1(xm+1, . . . , xn), . . . , xm(xm+1, . . . , xn), xm+1, . . . , xn) = 0 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
∂

∂xn
F (x1(xm+1, . . . , xn), . . . , xm(xm+1, . . . , xn), xm+1, . . . , xn) = 0 .
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Obliczając np. pochodną po xm+1 musimy wiec różniczkować F po x1 i x1 po xm+1, F
po x2 i x2 po xm+1 itd. To mam nadzieję jest jasne. Ale, i teraz nam się przydaje wiedza
o odwzorowaniach uwikłanych, skoro x1 = x1(xm+1, . . . , xn), . . . , xm = xm(xm+1, . . . , xn)
biorą się z rozwikłania warunków G1(x1, . . . , xn) = 0, . . . , Gm(x1, . . . , xn) = 0, to

G1(x1(xm+1, . . . , xn), . . . , xm(xm+1, . . . , xn), xm+1, . . . , xn) ≡ 0 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Gm(x1(xm+1, . . . , xn), . . . , xm(xm+1, . . . , xn), xm+1, . . . , xn) ≡ 0 ,

są tożsamościami względem niezależnych zmiennych xm+1, . . . , xn i różniczkując je po tych
zmiennych dostajemy zera. Możemy powyższe m tożsamości zróżniczkować po xm+1 i to
da m liniowych równań na m pochodnych ∂x1/∂xm+1, . . ., ∂xm/∂xm+1. Jeśli wypisane
wyżej tożsamości kropniemy po xm+2, to dostaniemy m liniowych równań na m pochod-
nych ∂x1/∂xm+2, . . ., ∂xm/∂xm+2, itd. Razem różniczkując te tożsamości po xm+1, . . . , xn
dostaniemy n−m liniowych układów po m równań na m pochodnych każdy i w ten sposób
możemy wyliczyć wszystkie potrzebne nam pochodne od ∂x1/∂xm+1, po ∂xm/∂xn. Łatwo
dostrzec w tym po prostu zastosowanie tego, co było na końcu poprzedniego rozdziału.

Jednak robi się to wszystko zawiłe, nie tyle z powodu komplikacji samej materii,
co z powodu nadmiaru literek i wskaźników, a wiadomo: nec Hercules contra plures,
czyli i Herkules dupa,30 gdy wskaźników kupa - nawet Einstein by teorii względności
nie wymyślił, gdyby nie wpadł na pomysł konwencji sumacyjnej (już jej używaliśmy na
algebrze to i tu użyjemy). Pora więc dokonać skoku technologicznego i zapisać to wszystko
w zwarty sposób. Mamy więc m warunków Ga = 0, a = 1, . . . , m, a zmienne (x1, . . . , xn)
zapiszemy jako (y1, . . . , ym, xm+1, . . . , xn), albo jeszcze krócej, jako31 (ya, xi), a = 1, . . . , m
oraz i = m + 1, . . . , n. Będziemy też pisać32 F ′

i = ∂F/∂xi oraz F ′
b = ∂F/∂yb. Wszyscy

dorośli tak piszą, to my też. No to teraz warunki wyznaczające ekstrema funkcji f(xi)
zapiszą się w jedej linijce (przypominam, że po wskaźniku występującym dwa razy, raz na
górze, raz na dole, sumujemy; jeśli ten sam wskaźnik - ta sama literka robiąca za wskaźnik
- pojawi się więcej niż dwa razy, to znaczy, że coś schrzaniliśmy po drodze - tak naucza
wujek Albercik)

f ′
i ≡ F ′

i + F ′
a

∂ya

∂xi
= 0 , i = m+ 1, . . . , n ,

a owe n−m układów po m równań liniowych na m niewiadomych pochodnych każdy też
się zapiszą w jednej linii:

[G′]bi + [G′]ba
∂ya

∂xi
= 0 , i = m+ 1, . . . , n .

30Przepraszam za wulgaryzm, ale inaczej się nie rymuje; zresztą, jak mówił T. Konwicki - pisarz zdaje
się dziś zupełnie zapoznany, a dla mojego pokolenia “kultowy” - “Czasem brzydkie słowo jest jak łyk
świeżego powietrza.” Sytuacja ogólna jest taka, że aż chce się mu przytaknąć.

31Umieszczamy tu wskaźnik i u góry, bo xi i ya mają sens składowych (w bazie kanonicznej) wektora
z Rn i w ten sposób będziemy mieli “algebraiczny” porządek w interesie.

32Poprzednio pochodne cząstkowe funkcji, np. f = f(x, y, z), pisaliśmy jako fx, fy; teraz jednak
będzie wygodniej pochodną opatrywać też primem, czyli pisać f ′

x itd., bo pochodne funkcji f(x1, x2, x3)
będziemy teraz pisać jako f ′

j ≡ ∂f/∂xj; trzeba trochę się wykazywać inteligencją i rozumieć co jest
pochodną, a co ma wskaźnik bo jest wektorem “od urodzenia”...
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Wskaźnik b się zmienia od 1 do m i numeruje równania w i-tym układzie; po a jest
sumowanie od 1 do m. Wskaźnik i = m + 1, . . . , n numeruje te n −m układów równań.
G′ to jest pochodna33 odwzorowania G; jest ona macierzą m × n (tj. ma m wierszy, n
kolumn - to już wiemy!). Ponieważ założyliśmy, że da się wyznaczyć y-ki (czyli x1, . . . , xm)
- jeszcze raz to sobie przypomnijmy) jako funkcje x-ów (czyli xm+1, . . . , xn), to znaczy, że
wyznacznik macierzy (kwadratowej, m×m) [G′]ba jest niezerowy i można ją odwrócić.34

Zatem

∂ya

∂xi
= −

[

(G′)−1
]a

b
[G′]

b
i , i = m+ 1, . . . , n .

No to teraz to wstawiamy do warunków f ′
i = 0 na punkty krytyczne i dostajemy

F ′
i − F ′

a

[

(G′)−1
]a

b
[G′]

b
i = 0 , i = m+ 1, . . . , n .

Te z kolei równania możemy zapisać w chytry sposób wprowadzając właśnie te zapowie-
dziane mnożniki Lagrange’a:

F ′
i − λb [G

′]
b
i = 0 , i = m+ 1, . . . , n ,

gdzie λb ≡ F ′
a [(G

′)−1]
a
b są właśnie mnożnikami Lagrange’a numerowanymi wskaźnikiem

b = 1, . . . , m. Pamiętamy przy tym - potośmy wałkowali te funkcje uwikłane! - że
rozwiązania tych wszystkich warunków nas interesują nie na całym Rn, tylko na G−1(0) ⊂
Rn, czyli gdy spełnione są warunki Ga = 0, a = 1, . . . , m. No to teraz już możemy
wszystko zapisać elegancko: Aby znaleźć punkty krytyczne funkcji f odwzorowującej
E = G−1(0) ⊂ R

n w liczby rzeczywiste, tworzymy pomocniczą funkcję

F̃ (x1, . . . , xn) ≡ F (x1, . . . , xn)− λb(x
1, . . . , xn)Gb(x1, . . . , xn) ,

i rozwiązujemy układ równań

∂F̃ (x1, . . . , xn)

∂xi
= 0 , i = 1, . . . , n ,

Ga(x1, . . . , xn) = 0 , a = 1, . . . , m ,

który można równoważnie zapisać jako

F ′
i − λb [G

′]
b
i = 0 , i = 1, . . . , n ,

Ga(x1, . . . , xn) = 0 , a = 1, . . . , m .

Mnożniki λb są w zasadzie funkcjami x-ów, ale gdy je różniczkujemy, to ich pochodne
są mnożone przez funkcje Gb, które mają być i tak zero; więc z praktycznego punktu

33Logiczniej by ją było pisać jako (Ga′)b, bo to jest n pochodnych m różnych funkcji, ale wtedy by
trudniej zobaczyć w tym zapisie macierz.

34Założyliśmy, że macierz G′ ma rząd maksymalny, czyli m, więc któreś m x-ów da się wyrazić przez
pozostałe; jak nie te to inne.
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widzenia, można tu traktować mnożniki Lagrange’a jak stałe. Zatem jest to n+m równań
na n + m niewiadomych: n niewiadomych xi oraz m niewiadomych λb. Rozwiązaniem
jest n wartości xi∗ i m wartości λ∗b . Ten nowy układ równań jest tym samym co układ
wypisany wcześniej, bo te definicje mnożników Lagrange’a, λb ≡ Fa [(G

′)−1]
a
b, można

zapisać (zurück odwracając kwadratową macierz pochodnych) jako

F ′
a − λb [G

′]
b
a = 0 , a = 1, . . . , m ,

i te m równań w połączeniu z n − m równaniami F ′
i − λb [G

′]bi = 0, i = m + 1, . . . , m
daje razem takie same równania wypisane wyżej tylko z numerującym je wskaźnikiem i
biegnącym już od 1 do n. Widać teraz, że otrzymany układ równań nie wyróżnia żadnych
m zmiennych x spośród pozostałych i tym samym nie musimy deklarować, które x-y da
się wyrazić przez pozostałe. Uff. Zaszalałem. Taki mam bezkompromisowy charakter.35

Jeśli kogoś te straszne wzory przerażają, to niech o nich natychmiast zapomni i przyswoi z
notatek wykładowcy prosty przypadek jednej funkcji i jednego warunku. No i wystarczy,
by pamiętał ogólny praktyczny przepis.

Wyprowadziliśmy więc praktyczny przepis na znajdywanie na zbiorze E punktów kry-
tycznych funkcji. Teraz jeszcze musimy podać kryterium, kiedy w takich punktach są
rzeczywiście ekstrema lokalne funkcji na zbiorze E. Gdy nie było żadnych warunków,
tzn., gdy pytaliśmy o ekstrema funkcji zadanej na Rn (lub na jakimś otwartym podzbio-
rze Rn), to badaliśmy określoność (sygnaturę) formy kwadratowej drugich pochodnych
funkcji w znalezionym punkcie krytycznym. Opierało się to na wzorze Taylora i fakcie,
że pierwsze pochodne funkcji w punkcie krytycznym znikały. Teraz nie możemy się bez-
pośrednio do tej metody odwołać, bo pierwsze pochodne funkcji w punkcie krytycznym
naogół nie znikają. Znikają owszem, pierwsze, pochodne tej pomocniczej funkcji F̃ , ale
to nie to samo - nas interesują ekstrema f ≡ F |E (funkcji F obciętej do zbioru E), a
nie funkcji F̃ na Rn! Są tu różne podejścia. Jedno najprostsze jest takie: jeśli zbiór
E = G−1(0) jest zwarty (w Rn oznacza to, że E jest domknięty i ograniczony), a intere-
sują nas tylko ekstrema globalne (czyli największa i najmniejsza wartość funkcji na E), to
po prostu można sprawdzić wartość funkcji F w każdym z tych punktów, bo twierdzenie
Weierstrassa (Zbiorze szlachetny,... itd., to właśnie to!) mówi że funkcja ciągła na zbiorze
zwartym osiąga swe kresy, i wybrać wartość największą i najmniejszą.

Drugi sposób propagowany przez Wykładowcę36 (i zapewne uzasadniony na wykładzie)
ale w formie przez niego zaprezentowanej stosowalny tylko do przypadku funkcji na R2 i
jednego warunku ubocznego polega na potraktowaniu funkcji F̃ jak funkcji x-ów (wszyst-
kich n x-ów) i dodatkowo funkcji m mnożników Lagrange’a (pisałem, że z praktycznego
punktu widzenia one są jak stałe, a teraz będziemy je uważać za niezależne zmienne):

F̃ (x1, . . . , xn, λ1, . . . , λm) ≡ F (x1, . . . , xn)− λbG
b(x1, . . . , xn) ,

35Ale też uważam, że czasem zajęcie się ogólnym przypadkiem nie jest jakoś specjalnie trudniejsze, a
rzuca trochę więcej światła na ogólną metodę i dlatego warto trochę zainwestować.

36Pisałem to, gdy wykładał prof. J. Wojtkiewicz. Może to teraz nieaktualne.
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i zbadaniu, gdy n = 2, m = 1, tylko jednej liczby, mianowicie wyznacznika macierzy
drugich pochodnych tej funkcji, jako funkcji n +m = 3 zmiennych (macierz formy kwa-
dratowej drugich pochodnych jest więc w tym podejściu macierzą 3 × 3), wziętych w
punktach krytycznych, tj. x1∗, . . . , x

2
∗, λ

∗. Jeśli ten wyznacznik jest dodatni, to w punkcie
krytycznym funkcja ma maksimum lokalne (a nie minimum, jak by można myśleć!), a jeśli
jest ujemny, to lokalne minimum.

Jeszcze inny sposób, najczęściej wykorzystywany, bo nie jest ograniczony do przypadku
n = 2, m = 1, polega na badaniu macierzy formy kwadratowej drugich pochodnych funk-
cji F̃ (nie F !), ale teraz traktowanej, jak funkcja tylko n zmiennych (x1, . . . , xn) (mnożniki
Lagrange’a traktujemy tu jak zupełnie stałe). W tym podejściu macierz tej formy obli-
czona w punkcie (x1∗, . . . , x

n
∗ ) - mnożnikom Lagrange’a nadajemy w tym podejściu wartości

λ∗1, . . . , λ
∗
m - jest macierzą n× n. Nie badamy jednak jej określoności na wszystkich moż-

liwych wektorach przyrostów (h1, . . . , hn), a tylko na wektorach (h1, . . . , hn) stycznych do
warunku więzów, tzn., tylko na wektorach spełniających m warunków

∂G1

∂x1

∣

∣

∣

∣

x∗

h1 + . . .+
∂G1

∂xn

∣

∣

∣

∣

x∗

hn = 0 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
∂Gm

∂x1

∣

∣

∣

∣

x∗

h1 + . . .+
∂Gm

∂xn

∣

∣

∣

∣

x∗

hn = 0 .

W naszej zwartej notacji warunki te można napisać po prostu jako

[G′
x∗ ]aih

i = 0 , a = 1, . . . , m .

Wektory h ≡ (h1, . . . , hn) spełniające tych m liniowych warunków (albo jeden macie-
rzowy warunek) mają tylko n−m niezależnych składowych, bo m ich składowych można
wyrazić przez m pozostałych (znów trzeba w macierzy G′ wymiaru m×n, o której założy-
liśmy, że jest rzędu m, wybrać podmacierz m×m i to wybór tej podmacierzy wyznacza,
które składowe wektorów h się da wyrazić przez pozostałe). Z praktycznego punktu wi-
dzenia badanie formy kwadratowej Q drugich pochodnych na wektorach h spełniających
powyższe warunki, można przeprowadzić następująco: do wyrażenia

Q(h) = Q11 h
1h1 + 2Q12 h

1h2 + . . .+Qnn h
nhn ,

będącego jawnym rozpisaniem działaniem formy Q na wektor h, podstawiamy wyzna-
czone z tych dodatkowych warunków składowe h1 = h1(hm+1, . . . , hm+1), . . ., hm =
hm(hm+1, . . . , hm+1), . . . (albo inne, jeśli akurat wyznaczyliśmy/dało się wyznaczyć m
innych). Ponieważ związki te są liniowe, całość nadal będzie miała postać formy kwadra-
towej Q̃ działającej już na “krótszy” wektor przyrostów h̃ mający tylko n − m składo-
wych. Można to nazwać redukowaniem formy do formy kwadratowej zadanej wyłącznie
na wektorach stycznych do powierzchni więzów. Formę Q̃ możemy znów zwinąć do po-
staci macierzowej i zastosować do jej badania metodę minorową. To, że drugie pochodne
badamy na wektorach przemieszczeń stycznych do powierzchni więzów jest zrozumiałe:
tylko takie przemieszczenia nie wyprowadzają nas poza zbiór E, a to na zbiorze E tylko
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interesują nas ekstrema funkcji F . Oczywiście, jeśli się zdarzy (a zdarza się to dość czę-
sto), że cała forma kwadratowa Q drugich pochodnych funkcji F̃ jest w danym punkcie
krytycznym (x1∗, . . . , x

n
∗ ), λ

∗
1, . . . , λ

∗
m określona (ma sygnaturę z samymi plusami, albo z

samymi minusami), to na wszystkich wektorach przemieszczeń, więc także i na wektorach
stycznych do powierzchni więzów, daje wartości tylko jednego znaku i nie trzeba już badać
jej specjalnie na wektorach stycznych do więzów.

Nasuwa się naturalne pytanie, dlaczego ta metoda działa? Dlaczego nie wystarczy
np. badanie na wektorach stycznych do więzów formy kwadratowej drugich pochodnych
(wziętych w punkcie krytycznym) samej funkcji F (a nie F̃ ). To akurat jest jasne: bo
pierwsze pochodne funkcji F nie muszą znikać w punkcie krytycznym, więc nie działa
orgument, że o kierunku zmiany wartości funkcji przey przesunięciu się z x∗ o h decyduje
Q(h) nawet jeśli formę Q będziemy badać tylko na wektorach h stycznych do więzów. Ale
dlaczego akurat przepis z funkcją F̃ działa? Też się zastanawiałem i wymyśliłem kiedyś
taki tego dowód. Wyobraźmy sobie, że szukamy na Rn (a nie na E) ekstremów funkcji

F̃ (x) = F (x)− λa(x)G
a(x) ,

w której m funkcji λa(x) jest zupełnie dowolnymi funkcjami na Rn, ograniczonymi tylko
warunkiem by λa(x

∗) = λ∗a, gdzie x∗ i λ∗a to jest badany punkt krytyczny na E i odpo-
wiadające mu wartości mnożników Lagrange’a w naszym wyjściowym problemie. Funkcja
F̃ (x) jest tak skonstruowana, że po pierwsze na zbiorze E przyjmuje dokładnie te same
wartości, co funkcja F rozpatrywana w wyjściowym problemie, a po drugie, na Rn ma te
same punkty krytyczne co F na zbiorze E (być może ma także i inne, poza E, ale to nie
jest tu ważne). No bo warunki na punkty krytyczne

F̃ ′
i ≡ F ′

i − (λ′a)iG
a − λaG

′
i = 0 ,

są spełniane przez punkty x∗ ∈ E dzięki temu, że Ga = 0 na E i że o funkcjach λa(x)
założyliśmy, iż λa(x∗) = λ∗a. Wypiszmy teraz (w zwartej notacji) drugie pochodne tej
funkcji:

F̃ ′′
ij = F ′′

ij − (λ′a)i (G
′)aj − (λ′a)j (G

′)ai − λa (G
′′)aij − (λ′′a)ij G

a .

Teraz wszystko jest standardowo: pierwsze pochodne funkcji F̃ są w punkcie x∗ równe
zeru, więc możemy, szukać ekstremów F̃ odwołując się do wzoru Taylora i stosując go do
wektorów przesunięć h stycznych do więzów (bo one nie wyprowadzają poza zbiór E, a
na E funkcja F̃ przyjmuje takie same wartości jak funkcja F ) badamy w x∗ powyższą
formę kwadratową drugich pochodnych. W punktach krytycznych na E ostatni człon
znika (bo Ga = 0 na E). W szczególności, z punktu widzenia ekstremów na zbiorze
E tylko (przypomnijmy, że na E funkcja F̃ ma te same wartości, co F ) interesuje nas,
jak ta forma działa na wektory przemieszczeń styczne do więzów, tzn., interesuje nas
dodatnia lub ujemna określoność wyrażenia hiF̃ ′′

ij h
j na wektorach stycznych. Ale na

takich wektorach (G′)aih
i = 0 więc dwa wyrazy z pochodnymi funkcji λa wypadają i

wszystko sprowadza się do tego, co zostało podane w praktycznym przepisie.
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Tak jak w przypadku szukania ekstremów zwykłych, najtrudnejszym elementem w
całej tej zabawie jest rozwiązanie układu równań wyznaczających punkty krytyczne na
E. Wymaga to często pewnej dozy sprytu i “orientacji w terenie”. Gdy te punkty już
są znalezione, reszta jest sprawą rutynowych czynności. Teraz możemy już przejść do
praktycznych przykładów.

Zadanie Wex.1
Znaleźć ekstrema funkcji f(x, y) = xy na zbiorze E ⊂ R2 zadanym warunkiem G(x, y) =
x2 + y2 − 2 = 0.
Rozwiązanie: Tworzymy funkcję pomocniczą

f̃(x, y) = xy − λ(x2 + y2 − 2) ,

Obliczamy pochodne cząstkowe tej funkcji: f̃x = y − 2λx, f̃y = x− 2λy i przyrównujemy
je do zera wraz z warunkiem G = 0:

y − 2λx = 0 ,

x− 2λy = 0 ,

x2 + y2 − 2 = 0 .

Szukamy rozwiązań tego układu równań mnożąc pierwsze przez y drugie przez x i odej-
mując pierwsze od drugiego. Daje to x2 = y2, czyli y = ±x. Ostatnie równanie w obu
przypadkach daje 2x2 = 2, czyli x = ±1. Są więc aż cztery punkty i każdemu z nich,
poprzez pierwsze lub drugie równanie, odpowiada pewna wartość mnożnika λ:

(1, 1) , (1,−1) , (−1, 1) , (−1,−1) .

λ =
1

2
, λ = −1

2
, λ = −1

2
, λ =

1

2
.

Zbiór E = G−1(0) jest w tym przypadku zbiorem zwartym (i bez brzegu, bo to okrąg) i
możemy od razu zobaczyć, że w pierwszym i ostatnim punkcie funkcja f przyjmuje wartość
1, a dwóch środkowych punktach przyjmuje wartość −1. W punkcie pierwszym i ostatnim
funkcja f ma więc maksima (globalne na E), a w dwóch środkowych ma minima (też
globalne na E). Zobaczmy jednak, jak działają te dwa różne przepisy sprawdzania, czy w
swoim punkcie krytycznym funkcja f ma na E ekstremum (lokalne). Najpierw ostatnia
(powszechniej stosowana) metoda. Obliczamy macierz drugich pochodnych funkcji f̃ w
zmiennych x i y, traktując mnożnik λ jak stałą: f̃xx = f̃yy = −2λ, f̃xy = 1. Macierz formy
kwadratowej w pierwszym i w ostatnim punkcie ma więc postać

(

−1 1
1 −1

)

.

Ogólnie rzecz biorąc jest to macierz o sygnaturze (−, 0), ale wiemy, że to co jest istotne,
to to, jakie wartości daje ona na wektorach stycznych do więzów. W punktach (1, 1) i
(−1,−1) pochodna G′ = (2x, 2y) to macierz (kowektor)

G′
(1,1) = (2, 2) , G′

(−1,−1) = (−2,−2) .
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Składowe (h1, h2) wektorów przemieszczeń stycznych do więzów w każdym z tych punktów
spełniają taki sam warunek 2h1+2h2 = 0. Określoność formy drugich pochodnych funkcji
f̃ należy zatem w punktach (1, 1) i (−1,−1) badać tylko na wektorach przemieszczeń
postaci (h,−h):

(h,−h)
(

−1 1
1 −1

)(

h
−h

)

= −4h2 .

Jej wartość jest więc na takich wektorach zawsze ujemna, co oznacza, że w punktach (1, 1)
oraz (−1,−1) funkcja ma na zbiorze E lokalne maksimum. Analogicznie w środkowych
dwóch punktach krytycznych, tj. w (1,−1) i (−1, 1), pochodna G′ = (2x, 2y) to macierz
(kowektor)

G′
(1,−1) = (2,−2) , G′

(−1,1) = (−2, 2) ,

i macierz formy kwadratowej drugich pochodnych funkcji F̃ w tych punktach trzeba badać
na wektorach (stycznych do więzów), które są postaci (h, h):

(h, h)

(

1 1
1 1

)(

h
h

)

= 4h2 .

Wartość tej formy na wektorach przemieszczeń stycznych do więzów jest zawsze dodatnia
i wobec tego na E funkcja f ma w tych punktach minima.

Sprawdźmy jeszcze jak działa metoda zalecana na wykładzie. Teraz zajmujemy się
funkcją F̃ (x, y, λ) = xy − λ(x2 + y2 − 2) i znajdujemy jej drugie pochodne w trzech
zmiennych:

F̃xx = −2λ , F̃yy = −2λ , F̃λλ = 0 ,

F̃xy = 1 , F̃xλ = −2x , F̃yλ = −2y .

W punkcie (1, 1) i w punkcie (−1,−1), gdy λ = 1/2, macierz 3 × 3 formy kwadratowej
drugich pochodnych mają postacie





−1 1 −2
1 −1 −2
−2 −2 0



 ,





−1 1 2
1 −1 2
2 2 0



 ,

i w obu przypadkach wyznacznik jest równy 4, czyli dodatni (maksimum). Z kolei w
punktach (1,−1) i (−1, 1), gdy λ = −1/2, macierze te mają postacie





1 1 −2
1 1 2
−2 2 0



 ,





1 1 2
1 2 −1
2 −2 0



 ,

i ich wyznaczniki są równe −4, czyli są ujemne (minima). Widać, że i ta metoda działa!
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W przykładzie tym warunek G(x, y) = 0 daje się oczwiście odwikłać, ale nie globalnie.
Wyznacza on dwie funkcje

g+(x) = +
√
2− x2 , oraz g−(x) = −

√
2− x2 ,

które są dobrymi funkcjami jedna w otoczeniu punktów (1, 1) i (−1, 1), a druga w otocze-
niu punktów (1,−1) i (−1,−1). Punktami, w których G(x, y) = 0 nie wyznacza żadnej
dobrej funkcji y = y(x), są punkty (±

√
2, 0) (warunek G(x, y) = 0 wyznacza tam dobre

funkcje x = x(y)), ale tu na szczęście dwie funkcje g+(x) i g−(x) są dobrze zdefiniowane na
dwóch kawałkach E obejmujących razem wszystkie punkty krytyczne. Na górnej połowie
E+ zbioru E (górnej, tj. tej, gdzie y > 0) funkcja f+ = F |E+ może być zapisana jako
funkcja

f+(x) = x g+(x) = x
√
2− x2 .

Jej pochodna

f ′
+(x) =

√
2− x2 − x2√

2− x2
=

2− 2x2√
2− x2

,

zeruje się w punktach x = 1 i x = −1 (którym odpowiada y = 1), a jej druga pochodna

f ′′
+(x) =

−4x√
2− x2

+
2x (1− x2)

(2− x2)3/2
,

jest w tych punktach odpowiednio ujemna (maksimum lokalne) i dodatnia (minimum
lokalne). Analogicznie na E− mamy funkcję f−(x) = x g−(x), która różni się od f+(x)
znakiem i wobec tego ma w punktach x = 1 i x = −1 (którym odpowiada y = −1)
odpowiednio minimum i maksimum.

Zadanie Wex.2
Jaka jest maksymalna możliwa objętość prostopadłościanu wpisanego w elipsę o półosiach
równych a, b i c?
Rozwiązanie: Jeśli rozsądnie umieścimy środek elipsy w punkcie (0, 0, 0) tak, by jej
osie główne były osiami x, y i z, to funkcją, której ekstremum trzeba znaleźć jest V =
8xyz, ale technicznie wygodniej będzie szukać maksimum funkcji (V/8)2 = x2y2z2, bo w
końcu kwadrat jednej ósmej objętości jest maksymalny wtedy, gdy sama objętość jest też
maksymalna. Warunkiem ubocznym jest tu równanie elipsy

x2

a2
+
y2

b2
+
z2

c2
= 1 .

Można zrobić jeszcze jeden myk polegający na przeskalowaniu zmiennych: zamiast ope-
rować x, y i z, będziemy operować zmiennymi x̃ = x/a, ỹ = y/b, z̃ = z/c (tych tyld nie
będziemy pisać; odpowiada to mierzeniu odległości wzdłuż osi x w jednostkach a, wzdłuż
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osi y w jednostkach b i wzdłuż osi z w jednostkach c - kto nam może tego zabronić?!).
Tworzymy więc pomocniczą funkcję

F̃ (x, y, x) = x2y2z2 − λ (x2 + y2 + z2 − 1) ,

(bo (V/8)2 = a2b2c2x̃2ỹ2z̃2, a czynnik a2b2c2 nie wpływa na położenie maksimum) i po-
stępujemy według regulaminu: przyrównujemy do zera jej pochodne i warunek uboczny

F̃x(x, y, z) = 2x
(

y2z2 − λ
)

= 0 ,

F̃y(x, y, z) = 2y
(

x2z2 − λ
)

= 0 ,

F̃z(x, y, z) = 2z
(

x2y2 − λ
)

= 0 ,

G(x, y, z) = x2 + y2 + z2 − 1 = 0 .

Oczywiście rozwiązania z x = 0 lub y = 0 lub z = 0 odpowiadają zerowej objętości,
czyli minimum (absolutnemu) funkcji F i są nieinteresujące. Można więc trzy pierwszr
równania zastąpić równaniami y2z2 = λ, x2z2 = λ i x2y2 = λ. Jeśli te z kolei poodejmować
parami jedno od drugiego, to dostaniemy x2 = y2 = z2. Znów, ujemnych x, y i z nie
rozpatrujemy - funkcje F i F̃ są funkcjami tylko x2, y2 i z2, więc i tak, nawet gdyby
nie myśleć o x, y i z jak o długościach boków prostopadłościanu, to punkty krytyczne o
ujemnych warościach tych współrzędnych miałyby taki sam chakter, jak te o dodatnich
tylko - więc

x = y = z =
1√
3
, λ =

1

9
.

Drugie pochodne funkcji F̃ są następujące:

F̃xx(x, y, z) = 2(y2z2 − λ), F̃yy(x, y, z) = 2(x2z2 − λ), F̃zz(x, y, z) = 2(x2y2 − λ),

F̃xy(x, y, z) = 4xyz2 , F̃xz(x, y, z) = 4xzy2 , F̃yz(x, y, z) = 4yzx2 ,

i macierz Q formy kwadratowej drugich pochodnych w punkcie krytycznym ma postać

Q =
4

9





0 1 1
1 0 1
1 1 0



 ,

Forma nie jest więc bezwzględnie dodatnio określona, ale na wektorach stycznych musi
taka być, bo zbiór E jest zbiorem zwartym, jakieś maksimum funkcja F na nim mieć
musi, a jedynym kandydatem jest znaleziony punkt krytyczny. Ale zobaczmy na tym
przykładzie, jak działa w praktyce przedstawione w Regulaminie redukowanie formy do
formy określonej na wektorach stycznych tylko. Na dowolnym wektorze przemieszczenia
h = (hx, hy, hz) (pominiemy dla przerzystości te 4/9)

Q(h) = 2hxhy + 2hxhz + 2hyhz .
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Pochodna G′ = (2x, 2y, 2z) warunku G(x, y, z) = x2+y2+z2−1 działając w punkcie kry-
tycznym na wektor h przemieszczenia zgodny z więzami ma dawać zero. Zatem wektory
takie muszą spełniać warunek

2√
3
(1, 1, 1)





hx
hy
hz



 = 0 .

czyli np. hz = −hx − hy. Wstawiamy to do Q(h) i porządkujemy:

Q = 2hxhy + 2(hx + hy)(−hx − hy)

= −2h2x − 2h2y − 2hxhy = (hx, hy)

(

−2 −1
−1 −2

)(

hx
hy

)

.

I teraz metoda “minorowa” mówi, że −Q jest formą dodatnio określoną, więc Q jest formą
ujemnie określoną, a to znaczy, że w punkcie x = y = z = 1/

√
3 funkcja F ma na E

maksimum, tak jak to już ustaliliśmy fizycznym rozumowaniem. Jeśli teraz odskalujemy
spowrotem zmienne, to wynik jest taki, że maksymalną objętość ma wpisany w elipsę
o półosiach a, b i c prostopadłościan o x = a/

√
3, y = b/

√
3, z = c/

√
3. Maksymalna

objętość prostopadłościanu wpisanego w taką elipsę jest równa 8abc/3
√
3.

Można też na tym przykładzie sprawdzić metodę z wykładu ustalania charakteru
punktu krytycznego. Jeśli F̃ potraktujemy jak funkcję x, y, z i λ, to dojdą drugie po-
chodne F̃xλ = −2x, F̃yλ = −2y, F̃zλ = −2z, F̃λλ = 0. W punkcie krytycznym macierz
drugich pochodnych wygląda wtedy tak

Q =
4

9









0 1 1 −α
1 0 1 −α
1 1 0 −α
−α −α −α 0









, α =
3

2

√
3 .

Wyznacznik tej macierzy (no trzeba trochę poLaplasować) jest równy −3α2(4/9)4. Zatem
widać na tym przykładzie, że kryterium podane na wykładzie nie działa w przypadku
funkcji na Rn o n > 2 i/lub większej liczby warunków ubocznych.

Również i to zadanie można rozwiązać zwykłą metodą szukania ekstremum (maksi-
mum) funkcji dwóch zmiennych. Można bowiem z równania elipsy wywikłać z2 i szukać
ekstremów funkcji

V 2 = F (x, y) = 64x2y2z2 = 64c2x2y2
(

1− x2

a2
− y2

b2

)

.

Znów lepiej jest zdefiniować nowe zmienne u = x2/a2, v = y2/b2, i szukać w obszarze
0 ≤ u ≤ 1, 0 ≤ v ≤ 1 ekstremum funkcji

f(u, v) = uv(1− u− v) = uv − uv2 − u2v .
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Szukamy jej puktów krytycznych rozwiązując równania

fu = v − 2uv − v2 = 0 ,

fv = u− 2uv − u2 = 0 .

Odejmując jedno od drugiego dostajemy (u − v) − (u2 − v2) = (u − v)[1 − u − v] = 0.
Zatem albo u = v i wtedy u−3u2 = 0 i u = 0 lub u = 1/3, albo v = 1−u i to podstawione
np. do fv = 0 da u = 1 (i v = 0) lub u = 0 (i v = 1). u = 0 lub v = 0 oznacza zerową
objętość, czyli minimum funkcji, i te możliwości odrzucamy. Zostaje więc u = v = 1/3.
Drugie pochodne fuu = −2v, fvv = −2u i fuv = 1 − 2u − 2v dają w badanym punkcie
krytycznym następującą macierz Q formy kwadratowej drugich pochodnych

Q =

(

−2/3 −1/3
−1/3 −2/3

)

,

która jest ujemnie określona (sygnatura (−,−)), co oczywiście oznacza, że w punkcie kry-
tycznym funkcja ma maksimum (tu jest to maksimum absolutne). Oczywiście dostajemy
w wyjściowych zmiennych te same x = 1/

√
3, y = b/

√
3 i z = c/

√
3.

Zadanie Wex.3 (część zadania 82 ze skryptu do algebry)
Znaleźć odległość w E3 między prostymi l1 i l2 zadanymi następująco:

l1 : {(x1, x2, x3) ∈ E3 : x1 + x2 = 1, x1 + 2x2 + x3 = 2} .

l2 :





x1
x2
x3



 =





0
2
0



 + t





1
1
2



 .

Rozwiązanie: W skrypcie do algebry to zadanie jest też rozwiązane czysto geometrycz-
nie, ale tu rozwiążemy je analitycznie. Wprowadzamy w tym celu funkcję

f(x1, x2, x3, t) = (x1 − t)2 + (x2 − t− 2)2 + (x3 − 2t)2 ,

będącą kwadratem odległości punktu X o współrzędnych (x1, x2, x3) od punktu na prostej
l2 scharakteryzowanego parametrem t. Minimalizujemy zatem funkcję czterech zmien-
nych. Warunkiem dodatkowym jest to, że punkt X musi leżeć na prostej l1, co oznacza,
że współrzędne (x1, x2, x3) muszą spełniać warunki (uprościliśmy tu drugi z warunków
zadających prostą l2 odejmując odeń pierwszy)

g1(x1, x2, x3, t) = x1 + x2 − 1 = 0 ,

g2(x1, x2, x3, t) = x2 + x3 − 1 = 0 ,

(chociaż warunki g1 i g2 dotyczą tylko współrzędnych punktu X, to mimo to, należy je for-
malnie traktować jak funkcje wszystkich zmiennych, ze względu na które minimalizujemy
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funkcję f). Znów tworzymy funkcję pomocniczą zależną od dwu mnożników Lagrange’a
λ1 i λ2:

F (x1, x2, x3, t) = f(x1, x2, x3, t) + 2λ1g1(x1, x2, x3, t) + 2λ2g2(x1, x2, x3, t) ,

(żeby się ładniej liczby komponowały przyjęliśmy za mnożniki Lagrange’a 2λ1 i 2λ2) i
przyrównujemy do zera jej pochodne cząstkowe po x1, x2, x3 i t:

F ′
x1

= 2(x1 − t) + 2λ1 = 0 ,

F ′
x2

= 2(x2 − t− 2) + 2λ1 + 2λ2 = 0 ,

F ′
x3

= 2(x3 − 2t) + 2λ2 = 0 ,

F ′
t = −2(x1 − t)− 2(x2 − t− 2)− 4(x3 − 2t) = 0 .

W połączeniu z warunkami ubocznymi daje to układ sześciu równań

x1 − t+ λ1 = 0 ,

x2 − t+ λ1 + λ2 = 2 ,

x3 − 2t+ λ2 = 0 ,

x1 + x2 + 2x3 − 6t = 2 ,

x1 + x2 = 1 ,

x2 + x3 = 1 .

Aby je systematycznie rozwiązać wyznaczamy z pierwszych trzech x1 = t − λ1, x2 =
t − λ1 − λ2 + 2, x3 = 2t − λ2 i wstawiamy do pozostałych trzech. Pierwsze z nich daje
wtedy

2λ1 + 3λ2 = 0 ,

a pozostałe

2t− 2λ1 − λ2 = −1 ,

3t− λ1 − 2λ2 = −1 .

Po wyeliminowaniu λ1 otrzymujemy dwa równania

2t+ 2λ2 = −1 ,

3t− 1

2
λ2 = −1 ,

których rozwiązaniem są t = − 5
14

, λ2 = − 2
14

; dalej już łatwo: λ1 = 3
14

oraz

x1 = x3 = − 8

14
, x2 =

22

14
.
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Wartość minimalizowanej funkcji f(x1, x2, x3, t) w tym punkcie wynosi 1
14

(tak jak nam to
wyszło w zadaniu 81). Macierz Q drugich pochodnych w zmiennych x1, x2, x3 i t funkcji
F (x1, x2, x3, t, λ1, λ2) ma postać

Q =









2 0 0 −2
0 2 0 −2
0 0 2 −4
−2 −2 −4 12









.

Nie jest ona dodatnio określona bo największy jej minor jest równy zeru (aby to zoba-
czyć wystarczy do ostatniego wiersza dodać dwa pierwsze wiersze i podwojony trzeci, co
da macierz górnotrójkątną mającą na diagonali trzy dodatne wyrazy i jeden zerowy).
Ale macierz tę trzeba badać na wektorach stycznych. Ponieważ gradientami więzów
g1(x1, x2, x3, x4) = 0 i g2(x1, x2, x3, x4) = 0 są tu kowektory

g′1 = (1, 1, 0, 0) , g′2 = (0, 1, 1, 0) ,

najogólniejszy wektor styczny do więzów jest postaci

h =









h
−h
h
k









,

na tym wektorze i forma drugich pochodnych daje

Q(h) = 6h2 − 6hk + 12k2 = 6 (h, k)

(

1 −1
2

−1
2

2

)(

h
k

)

.

Widać więc (metodą minorową np.), że jest to wielkość zawsze dodatnia. Znaleziony
punkt krytyczny jest wiec minimum funkcji f .

Możemy też wykorzystać to, co zrozumieliśmy przy okazji dyskusji warunków dostatecz-
nych istnienia ekstremów warunkowych (konstrukcja wektorów przemieszczenia stycznych
do powierzchni więzów) i rozwiązać takie kształcące zadanie.

Zadanie Wex.4
Znaleźć wektory styczne do zanurzonej w R3 powierzchni (będącej elipsoidą) zadanej
równaniem

x2

a2
+
y2

b2
+
z2

c2
= 1 .

Rozwiązanie: Traktujemy to równanie jak warunek więzów w poprzednich zadaniach

G(x, y, z) =
x2

a2
+
y2

b2
+
z2

c2
− 1 = 0 ,
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i teraz wiemy, że w dowolnym punkcie tej powierzchni tj. punkcie P ≡ (x, y, z) takim,
że G(x, y, z) = 0, wektory styczne tP mają tę właściwość, że zeruje się na nich kowek-
tor (forma liniowa), którym jest (tłumaczyliśmy to sobie jakiś czas temu) pochodna G′

obliczona w punkcie P , czyli

G′
P ≡ G′(x, y, z) = (2x/a2, 2y/b2, 2z/c2) .

Jeśli wektor tP ma (w kanonicznej bazie zero-jedynkowej) składowe txP , tyP i tzP , to muszą
one spełniać warunek

2x txP/a
2 + 2y tyP/b

2 + 2z tzP/c
2 = 0 .

Jest to jeden warunek na trzy składowe, więc w każdym punkcie P = (x, y, z) są (znów
algebra!) dwa liniowo niezależne takie wektory rozpinające razem w R3 dwuwymiarową
podprzestrzeń oznaczaną TPM (M oznacza tu “manifold”, po naszemu ‘rozmaitość”, jaką
jest elipsoida, a T jest od “tangent”). Wektory te można oczywiście wybrać na wiele spo-
sbów. Jednak jeśli wprowadzimy jakąś parametryzację powierzchni (choćby tylko lokalną),
czyli mówiąc językiem geometrii różniczkowej, układ współrzędnych na rozmaitości M w
otoczeniu jej punktu P , to każdy taki układ współrzędnych (parametryzacja) w naturalny
sposób wyróżnia w punkcie P pewną bazę przestrzeni TPM . Zobaczmy to na przykładzie.
Wprowadźmy dwa parametry 0 ≤ θ ≤ π i 0 ≤ ϕ < 2π wzorami

x = a sin θ cosϕ ≡ a sθ cϕ ,

y = b sin θ sinϕ ≡ b sθ sϕ ,

z = c cos θ ≡ c cθ .

Jest jasne, że dla dowolnych wartości θ i ϕ (z podanego ich zakresu) otrzymuje się x, y i z
spełniające warunek G(x, y, z) = 0. To właśnie oznacza sparametryzować rozmaitość M
(zanurzoną w Rn; można to bardziej uabstrakcyjnić, ale są od tego inni specjaliści) zadaną
jakimś warunkiem lub warunkami. Łatwo też sprawdzić, że dwa wektory (zapisane tu w
kolumienkach, zawierających ich składowe w kanonicznej zero-jedynkowej bazie ex, ey, ez
przestrzeni R3, w której wszystko tu się rozgrywa - uabstrakcyjnienie polega m.in. na
tym, że można się obywać bez takiej przestrzeni Rn, ale tego już nie musimy tu zgłębiać)

tθ =





a cθ cϕ
b cθ sϕ
−c sθ



 , tϕ =





−a sθ sϕ
b sθ cϕ

0



 ,

spełniają automatycznie warunki G′
P · tθ = 0, G′

P · tϕ = 0, czyli są wektorami stycznymi
do powierzchni w punkcie P (identyfikowanym teraz wartościami parametrów θ i ϕ).

A jak te wektory zostały otrzymane? A no po prostu pierwszy przez różniczkowanie
związków definiujących układ współrzędnych po θ, a drugi przez ich różniczkowanie po
ϕ. Dlatego też fachowi geometrzy różniczkowi oznaczają te wektory tak:

tθ =
∂

∂θ
, tϕ =

∂

∂ϕ
.
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Nie będziemy tu ich naśladować, żeby nas te “gołe” pochodne nie straszyły po nocach
(mogą nas gonić i chcieć zróżniczkować!). Ale patent na konstruowanie wektorów stycz-
nych do rozmaitości, gdy jest ona sparametryzowana jakimiś współrzędnymi, jest uniwer-
salny. Fizyk może go zresztą łatwo przyswoić bez konsultowania się z fachowymi geome-
trami. Wystarczy wyobrazić sobie, że zmieniamy np. parametr θ trzymając parametr ϕ
ustalony. Wytyczamy w ten sposób w przestrzeni R3 pewną krzywą leżącą oczywiście na
powierzchni elipsoidy (na rozmaitości). No i teraz możemy sobie wyobrazić, że θ to jest
taki parametr jak czas t w mechanice, który też parametryzuje trajektorię. A każdy wie,
że pochodna położenia po czasie to jest wektor prędkości, który jest zawsze styczny do
toru. I tu jest tak samo!

Dodajmy jeszcze, że taki układ współrzędnych, czyli odwzorowanie Rk w Rn, gdzie
k < n, definiuje w Rn powierzchnię (rozmaitość), która jest regularna (tzn. ma wymiar k)
w danym punkcie P , gdy wszystkie k wektorów stycznych uzyskanych z powyższego prze-
pisu tworzy w punkcie P układ wektorów liniowo niezależych, bo jeśli nie są one liniowo
niezależne, to znaczy, że rozpinana przez nie (pod)przestrzeń styczna ma wymiar mniejszy
niż k, a to znaczy, że w tym punkcie powierzchnia (rozmaitość) ma jakąś osobliwość, czyli
robi jakieś siupy...
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ODE, czyli równania różniczkowe zwyczajne.

Równania różniczkowe to jest obszerny dział matematyki, który kiedyś, gdy fizyka spro-
wadzała się do mechaniki klasycznej, elektrodynamiki, elastomechaniki, hydrodynamiki
itd., był podstawowym działem dla każdego fizyka (no, przede wszystkim teoretyka). Dziś
trzeba umieć i algebrę37 i geometrię różniczkową i coś wiedzieć o analizie funkcjonalnej
i o topologii i analizie zespolonej, teorii prawdpodobieństwa, teorii grup... Ale równania
różniczkowe pozostają wciąż jakąś wspólną dla wszystkich podstawą.

Równania różniczkowe mogą być różne. Przede wszystkim można je podzielić na
ODE i PDE. ODE, czyli równania różniczkowe zwyczajne, są równaniami wyznaczają-
cymi nieznaną funkcję jednej zmiennej na podstawie zadanego związku tej funkcji z jej
pochodną lub pochodnymi i podanego warunku lub warunków (zwanych naogół warun-
kami początkowymi). Nazywają się zwyczajnymi, bo w związkach tych wystepują po-
chodne zwyczajne. ODE można jeszcze dalej podzielić na równania wyznaczające funkcje
odwzorowujące R w R i takie, które wyznaczają funkcje odwzorowujące R w Rn o n > 1.
Drugi ich podział, to na równania różniczkowe pierwszego rzędu (są one związkami między
funkcją i jej pierwszą pochodną) i wyższych rzędów (tu wiążą one funkcję z jej wyższymi
pochodnymi aż do pewnego skończonego rzędu r). Jak się przekonamy, równanie róż-
niczkowe rzędu r wiążące funkcję odwzorowującą R w R, można zawsze przekształcić
w równanie różniczkowe pierwszego rzędu na funkcję odwzorowującą R w R

r (ogólniej:
ODE rzędu r na funkcję odwzorowującą R w Rn można zapisać jako ODE pierwszego
rzędu na funkcję odwzorowującą R w Rn·r). Pewną szczególną klasę równań stanowią
równania zwyczajne pierwszego rzędu o zmiennych rozdzielonych, a drugą (klasy te nie są
rozłączne) równania liniowe (mogą być i wyższego rzędu), tzn. takie, w których związek
funkcji i jej pochodnych jest liniowy w samej funkcji; rozszerzeniem tej klasy są równania
liniowe z niejednorodnością, tzn. mające postać równości pewnego operatora (różniczko-
wego) działającego na funkcję i pewnej zadanej (ustalonej z góry) funkcji. Te dwie klasy
równań są szczególnie łatwe i nimi się będziemy tu sporo zajmować.

Osobny dział stanowią PDE - czyli równania różniczkowe wiążące odwzorowania z
Rn w R (można też rozpatrywać takie dotyczące odwzorowania z Rn w Rm - takimi są
np. znane każemu fizykowi równania Maxwella) z ich pochodnymi cząstkowymi pierw-
szego rzędu tylko - wtedy mamy do czynienia z PDE pierwszego rzędu - albo i wyższego
rzędu. Okazuje się, że PDE pierwszego rzędu daje się sprowadzić do równań różnicz-
kowych zwyczajnych. Zwie się to metodą charakterystyk. Działa ona trochę prościej,
gdy rozpatrywane PDE jest liniowe, lub liniowe z niejednorodnością, ale stosuje się ona
także do nieliniowych PDE pierwszego rzędu. Kiedyś tę metodę sobie przyswoiłem (w
wersji stosowalnej do liniowych PDE pierwszego rzędu jest ona potrzebna przy analizie
tzw. grupy renormalizacji w kwantowej teorii pola i fizyce statystycznej) więc jakieś dwa
proste przykłady jej zastosowania będą na deser (tylko nie mówić wykładowcy...). Dalej

37Z jaką rezerwą podchodzili fizycy do algebry, kiedy nagle okazało się, że mechanikę kwantową można
- to zrobił Heisenberg - sformułować w języku takich dziwnych obiektów, jak macierze! Dopiero wtedy w
Getyndze (a gdzieżby indziej to się mogło wydarzyć, jak nie tam, gdzie był patronat Hilberta?) usiedli
Max Born z Pascualem Jordanem i zaczęli się uczyć od tamtejszych znakomitych matematyków tego, co
Państwo dziś już mają w małym palcu...
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rozciąga się po horyzont, i pewnie nawet dalej, świat skomplikowanych równań różnicz-
kowych cząstkowych wyższych rzędów; te drugiego rzędu się jeszcze jakoś klasyfikuje na
równania typu parabolicznego, hiperbolicznego itd., a co z wyższego rzędu, to już tylko
spece wiedzą. To tak, żebyśmy mieli jakąś świadomość, w co się zagłębiamy. “Und somit
fangen wir an”, jak mówi Thomas Mann kończąc wstęp do Der Zauberberg.

Zaczniemy oczywiście od równań różniczkowych zwyczajnych pierwszego rzędu wią-
żących nieznaną funkcję y = y(x) z jej pierwszą pochodną y′(x). Związek taki może być
jawny

y′(x) = f(x, y) ,

zakłada się wtedy, że f(x, y) jest odwzorowaniem ciągłym pewnego (otwartego) zbioru
D ⊂ R2 w R, lub mieć postać uwikłaną

F (x, y, y′) = 0 ,

o której zakłada się, że F (x, y, z) jest odwzorowaniem ciągłym pewnego (otwartego) zbioru
E ⊂ R3 w R. Jak już wiemy, przy założeniu, że Fz 6= 0, równość F = 0 wyznacza
(lokalnie) funkcję z = z(x, y), czyli daje się wtedy postać drugą sprowadzić do pierwszej,
więc zajmiemy się głównie tą pierwszą.

Całką równania takiego jak te wyżej nazywa się każdą różniczkowalną (na pewnym
podzbiorze R) funkcję y = y(x) taką, że jej wykres (takie szkolne pojęcie) leży w zbiorze
D ⊂ R2 i

y′(x)− f(x, y(x)) ≡ 0 , lub F (x, y(x), y′(x)) ≡ 0 .

Wykres y = y(x) jest krzywą całkową równania różniczkowego, ale, jak to sobie zaraz
powiemy, mogą być też krzywe całkowe równania, które nie są wykresem funkcji y =
y(x). Powstaje zaraz oczywiste dla matematyka pytanie, czy równanie różniczkowe ma
rozwiązanie przechodzące przez zadany punkt (x0, y0) płaszczyzny R2, tj. takie, że y(x0) =
x0, a jak ma, to czy jednoznaczne i jak zbiór takich rozwiązań przechodzących przez
różne punkty skatalogować. Fizyk formułuje ten pierwszy problem w postaci pytania o
rozwiązanie spełniające zadany warunek początkowy y(x0) = x0 (mało się zastanawiając
nad jednoznacznością).

Zadanie Ode.1 Zanim przytoczymy stosowne twierdzenia, rozpatrzmy taki przykład (z
nieocenionego Lejka). Niech równanie ma postać (tę drugą)

x y′ + x− 2y = 0 .

Można sprawdzić przez bezpośrednie podstawienie do wypisanego wyżej równania, że
rozwiązaniem jego jest funkcja38

y(x) = C x2 + x ,

38Za niedługo stanie sie jasne, skąd się ona bierze. Rozpatrywane równanie jest bowiem przykładem
równania liniowego z niejednorodnością.
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Rysunek 16: Będące uczciwymi funkcjami krzywe całkowe równania y′ = 2(x/y)− 1.

w której C jest zupełnie dowolną stałą (rzeczywistą). Jest więc to cała rodzina całek
wypisanego równania różniczkowego. Jeśli się spojrzy na rysunek 16, to widać, że gdy
C > 0, jest to rodzina parabol idących “do góry”, a gdy C < 0, rodzina parabol idących
“w dół”, ale każda z tych parabol przechodzi przez punkt (0, 0) ∈ R2; gdy C = 0, jest
to prosta rozdzielająca jakby te dwie rodziny parabol. Jest więc mniej więcej oczywiste,
że przez każdy punkt płaszczyzny R2 z wyjątkiem punktów (0, y) przechodzi tylko jedna
z tych parabol; przez punkt (0, 0) przechodzi ich nieskończenie wiele (każda z całek tego
równania), a przez punkty (0, y) o y 6= 0 nie przechodzi żadna krzywa całkowa. Widać
więc, że punkty (0, y) są jakoś nienormalne: czasem mogą dziać się jakieś takie siupy.
Spróbujemy jednak takie zachowanie rozwiązań zrozumieć po “fizycznemu”.

Stosowne twierdzenie wyjęte z Lejka i odnoszące się do pierwszego, jawnego, sformuło-
wania problemu, brzmi tak: Jeśli odwzorowanie f(x, y) i jego pochodna fy(x, y) są ciągłe
w punkcie (x, y) ∈ R2, to przez punkt ten (i jakieś jego otoczenie) przechodzi dokładnie
jedna krzywa całkowa równania y′ = f(x, y). (Jak to wyrazić w przypadku równania
danego w sprosób uwikłany jako F (x, y, y′) = 0, powinno być jasne, gdy się wie, kiedy
warunek F (x, y, z) = 0 wyznacza regularną funkcję z = z(x, y)).

W świetle tego Lejkowego twierdzenia jest jasne, że punkty (0, y) są, w przypadku
rozpatrywanego wyżej przykładu, trefne: funkcja (uzyskana po przedstawieniu równania
w pierwszej postaci)

f(x, y) =
2y

x
− 1 ,
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jako odwzorowanie f : R2 −→ R, nie jest (to już wiemy! - po to uczyliśmy się analizować
ciągłość takich odwzorowań) ciągła w żadnym z punktów postaci (0, y). Przytoczone
twierdzenie nie rzuca jednak światła na pytanie, dlaczego punkt (0, 0) jest inny niż punkty
(0, y) o y 6= 0. Sprawa wyjaśnia się trochę (ale nie do końca), jeśli popatrzymy na funkcję
f(x, y) jak na mającą zadawać na płaszczyźnie R2 pole kierunków, albo pole nachyleń
krzywej y = y(x) - wiemy bowiem, że pochodna y′(x) jest nachyleniem takiej krzywej
w punkcie x, czyli tangensem kąta nachylenia w stosunku do osi x prostej stycznej do
wykresu tej krzywej w punkcie (x, y). Krzywa całkowa równania różniczkowego ma w
danym punkcie (x, y) mieć nachylenie takie, jak zadaje funkcja f(x, y). No a jaką wartość
ma w punktach (0, y) ∈ R2 funkcja f(x, y) = 2y/x− 1, czyli jakie nachylenie ona w tych
punktach zadaje? No, równe ±∞, gdy y 6= 0, czyli takiej funkcji y = y(x) przechodzącej
przez punkt (0, y) nie może być. A w punkcie (0, 0)? Dowolne! Bo wiemy, że gdy do
punktu (0, 0) zbiegamy na płaszczyźnie R2 z różnych kierunków po prostych, to dostajemy
skończoną wartość funkcji f(x, y) = 2x/y − 1, tyle że zależną od kierunku zbiegania.
Można więc zrozumieć, dlaczego przez punkty (0, y) o y 6= 0 nie przechodzi żadna krzywa
całkowa postaci y = y(x) badanego równania, ale jeszcze nie jest jasne, dlaczego wszystkie
takie krzywe przechodzą przez punkt (0, 0). Na razie rozumiemy tylko, że ma to jakoś
związek z tym, że funkcja f(x, y) daje się w punkcie (0, 0) “uciąglić” w kierunkach “po
prostych”. Jednak samo to jeszcze nie wystarcza, bo, jak się okazuje, działa to tylko
tylko w jedną stronę: jeśli przez dany punkt płaszczyzny R2 przechodzą jakieś krzywe
całkowe, to z tego wynika tylko, że w tym punkcie funkcja daje się w jakichś kierunkach
uciąglić (tu w dowolnym kierunku); w szczególności zdarza się (są takie przykłady w
zadaniach do samodzielnej zabawy), że przez dany punkt przechodzi nieskończenie wiele
rozwiązań y = y(x) równania różnieczkowego y′ = f(x, y) i każde z nich ma w tym
punkcie inne nachylenie (w tym przykładzie tu wszystkie rozwiązania przechodzące przez
(0, 0) mają w tym punkcie to samo nachylenie) - to oznacza, że funkcję f(x, y) można
uciąglić w tym punkcie w dowolnym kierunku (tzn. nie może być ona uczciwie ciągła
w tym punkcie jako funkcja f(x, y) na R2). Jednak badany tu przykład pokazuje, iż z
faktu, że funkcja daje się uciąglić w danym punkcie w dowolnym kierunku nie wynika,
że będzie przez ten punkt przechodzić nieskończenie wiele rozwiązań o różnych w tym
punkcie nachyleniach ani że w ogóle jakieś będą przezeń przechodzić (przykłady są w
Zadaniu 38c, d i f). Warunek ciągłości fy(x, y) też jest istotny. Kluczowe tu jest także to,
żeby, gdy do punktu (0, 0) zbiegamy po prostej y = ax, tzn. mającej w (0, 0) nachylenie
o tangensie równym a, funkcja f(x, y) stawała się w tym kierunku ciągła jeśli nadamy jej
w (0, 0) wartość dokładnie a. Te dwie rzeczy: nachylenie kierunku zbiegania i konieczna
do ciągłości wartość funkcji w tym punkcie nie muszą być ty samym! I tu właśnie mamy
tego ilustrację: gdy zbiegamy do (0, 0) po prostej y = x o nachyleniu 1, to zgadza się
ono z wartością uciąglającą funkcję f(x, y) w tym kierunku; przy zbieganiu zaś po prostej
y = ax z a 6= 1 wartość uciąglająca fukcję f(x, y) w takim kierunku jest równa 2a−1 6= a.
I dlatego wszystkie całki badanego równania przechodzące przez punkt (0, 0) mają w
x = 0 nachylenie równe 1 (widać więc, że mamy jakieś wytłumaczenie tego, dlaczego przez
punkt (0, 0) przechodzą krzywe o nachyleniu 1, ale nie tego, dlaczego jest ich nieskończenie
wiele...).
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Ponadto fakt, że w punktach (0, y) o y 6= 0 nachylenie krzywej całkowej musiałoby być
nieskończone, pozwala spojrzeć na równanie różniczkowe nieco inaczej i rozszerzyć zbiór
jego rozwiązań. Jeśli bowiem przepiszemy równanie w postaci

dy = f(x, y) dx ,

albo postaci

p(x, y) dx+ q(x, y) dy = 0 ,

w której p(x, y) i q(x, y) są jakimiś dwiema funkcjami ograniczonymi tylko warunkiem, by
−p(x, y)/q(x, y) = f(x, y) (tam, gdzie f(x, y) jest dobrze określona i ciągła), i popatrzymy
na nie jak na związek korelujący “kroczki” dy i dx, o jakie wolno nam przesunąć się z
punktu (x, y) w bok (już ten punkt widzenia w tym skrypcie wykorzystywaliśmy - nie
na darmo ja mam nawyki wyrobione na termodynamice i kwantowej teorii pola!), to tym
samym dopuścimy do gry rozwiązania - dalej będziemy je zwać krzywymi całkowymi39

równania różniczkowego - które nie są (przynajmniej nie wszędzie) funkcjami y = y(x),
tylko jakimiś krzywymi na płaszczyźnie xy. Można wtedy jako rozwiązania rozpatrywać
krzywe zapisane w postaci parametrycznej x = x(τ), y = y(τ); spełniają one wtedy
równanie

p(x(τ), y(τ))
dx

dτ
+ q(x(τ), y(τ))

dy

dτ
= 0 .

Jeśli badane tu równanie napiszemy w postaci

xdy = (2y − x) dx ,

to zobaczymy, że krzywą całkową jest też prosta x = 0. Tzn. możemy rozpocząć spacer z
dowolnego punktu na osi y, ale powyższy związek mówi, że kroczek wykonywany z takiego
punktu musi być o dx = 0 - nie wolno iść ani o włos w prawo lub lewo - tylko wzdłuż
osi y! Zatem i przez punkty położone na osi y, punkty (0, y) o y 6= 0 przechodzi krzywa
całkowa, tylko nie jest ona funkcją w szkolnym znaczeniu. Oczywiście z punktu (0, 0)
nadal udaje się ruszyć w dowolnym kierunku, bo w tym punkcie korelacja “kroczków”
ma postać 0 dy = 0 dx, czyli nie narzuca żadnego warunku. Mamy w zasadzie całkowitą
wolność wyboru, w którym kierunku ruszymy.40

Zadanie Ode.2 Inny przykład. Rozpatrzmy równanie różniczkowe:

y′ = y2/3(x) .

Możemy je łatwo scałkować, tzn. znaleźć (jakieś) rozwiązania, dzieląc stronami przez y2/3

i całkując stronami po dx:
∫

dx
y′(x)

y2/3(x)
≡
∫

dx
dy

dx
y−2/3(x) =

∫

dx .

39W samej nazwie “krzywa” całkowa, a nie “funkcja” jest już przecież ta możliwość ukryta!
40Ale po ruszeniu w dowolnym kierunku daje się tu iść dalej tylko wtedy, gdy wybrany kierunek nie

jest niezgodny z kierunkiem zadawanym przez f(x, y) w punkcie ciut obok punktu (0, 0) tak jest tu tylko,
gdy ruszymy z (0, 0) w kierunku o nachyleniu równym 1.
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Rysunek 17: Rodzina krzywych całkowych równania y′ = y2/3.

Po lewej stronie dokonujemy zamiany zmiennej całkowania41 z x na y = y(x); czynnik
dx y′ jest akurat tym, co potrzebne, czyli dy, i mamy po tym po lewej stronie całkę

∫

dy(x) y−2/3(x) = 3 y1/3 + C1 .

Całka po prawej daje x+C2 i scalając stałe C ≡ C1−C2 mamy rodzinę rozwiązań (całek)
równania różniczkowego:

y(x) =

(

x− C

3

)3

.

Jak widać z rysunku 17 każda z tych krzywych całkowych przecina oś x-ów w punkcie
x = C. Łatwo jednak zauważyć, że y(x) ≡ 0 jest też rozwiązaniem badanego równania42 i
to rozwiązaniem, które nie odpowiada żadnej stałej C w znalezionym powyżej rozwiązaniu,
choć jest uczciwą funkcją y = y(x). Znów winę za to, że przez każdy punkt na osi x
przechodzą dwie (a nie jedna) krzywa całkowa, można zrzucić na niespełnienie założeń
Lejkowego twierdzenia: pochodna fy(x, y) = (2/3)y−1/3 nie jest bowiem ciągła (ani nawet
nie może mieć granicy) w punktach typu (x, 0). Można to też widzieć tak, że gdy patrzymy

41Oczywiście zwykle bezrefleksyjnie równanie takie całkuje się “przenosząc dx pochodzące z dy/dx na
prawą stronę”. Tu jednak chciałem pokazać, że można na to spojrzeć bardziej ortodoksyjnie.

42Znów łatwo wpaść na to pisząc równanie w postaci dy = y2/3 dx - widać wtedy, że gdy jesteśmy na
osi x, gdzie y = 0, korelacja kroczków jest taka, że dy = 0, a dx nie jest niczym ograniczone.
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na punkty (x, |ε|) i (x,−|ε|), czyli tuż nad osią x i tuż pod nią, to w obu tych punktach
nachylenie krzywej dąży do zera, gdy ε → 0 i ma ten sam znak: krzywe otrzymane z
całkowania “zlewają” się na moment z krzywą y ≡ 0; w tych punktach to właśnie krzywe
y = ((x− C)/3)3 są w jakiś sposób patologiczne, a regularnym rozwiązaniem jest y ≡ 0.

Rodzinę y = y(x, C) rozwiązań równania różniczkowego (zwyczajnego pierwszego
rzędu) parametryzowaną stałą C nazywa się całką ogólną tego równania. Przykład powy-
żej pokazał, że całka ogólna nie musi obejmować wszystkich rozwiązań (nawet wszystkich,
które są uczciwymi funkcjami y = y(x), a nie tylko krzywymi całkowymi).

Pewną wyróżnioną podklasę zwyczajnych równań różniczkowych pierwszego rzędu sta-
nowią równania o zmiennych rozdzielonych, tj. postaci43

dy

dx
= −p(x)

q(y)
, lub q(y) dy + p(x) dx = 0 ,

Całki ogólne takich równań są od razu dane “w kwadraturach” - ta nieco archaicznie
brzmiąca nazwa (spotykana np. w nieśmiertelnym podręczniku do mechaniki Rubinowicza
i Królikowskiego) oznacza po prostu, że rozwiązania takich równań są “od ręki” dane w
postaci konkretnych całek (a czy całki te się da analitycznie wykonać, to już inna historia).
Naogół jednak otrzymuje się w ten sposób związek G(x, y) = 0, czyli funkcję y = y(x),
albo x = x(y) w postaci uwikłanej; ale jako sposób zadania krzywych całkowych jest
to zupełnie wystarczające. Drugi nasz przykład był właśnie równaniem różniczkowym
takiego rodzaju (a pierwszy - nie).

Zadanie Ode.3
Znaleźć wszystkie krzywe całkowe równania różniczkowego

y′ = (2x− 1) y .

Rozwiązanie: Jest to właśnie równanie o zmiennych rozdzielonych. Możemy je przepisać
w postaci dogodnej do scałkowania

∫

dy

y
=

∫

dx (2x− 1) .

Wykonujemy całki (każdą jako całkę nieoznaczoną, ale dwie stałe całkowania możemy
złączyć w jedną) i dostajemy

ln |y| = x2 − x+ C ,

czyli

y = ± exp
(

C + x2 − x
)

≡ C̃ exp(x2 − x) .

43Minus jest dla porządku w interesie, żeby nazwy funkcji p i q były takie jak poprzednio; jest jasne,
że można by to było zapisać też jako dy/dx = Q(y)P (x) lub Q(y)/P̃ (x), czy jakoś podobnie.
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Rysunek 18: Rodzina krzywych całkowych równania y′ = (2x− 1) y.

Zastąpiliśmy tu multiplikatywny czynnik ±eC przez stałą C̃, dopuszczając oba jej znaki;
oczywiście stała C̃ = 0 odpowiada C = −∞. Trochę więc to podejrzane (bo czy uczciwa
stała całkowania może być nieskończona?), ale możemy zauważyć, że w ten sposób w
całkę ogólną włączyliśmy krzywą całkową y ≡ 0, która też jest rozwiązaniem wyjściowego
równania, ale nie była objęta całką ogólną ze stałą w eksponencie. Rodzina rozwiązań
tego równania jest pokazana na rysunku 18. Możemy też zobaczyć, że przez każdy punkt
płaszczyzny xy przechodzi teraz dokładnie jedna funkcja y = y(x) będąca rozwiązaniem
równania. Istotnie: jeśli chcemy, mieć funkcję przechodzącą przez punkt (x0, y0) dobie-
ramy odpowiednio stałą C̃:

C̃ = y0 exp(x0 − x20) .

Musi tak być, bo w równaniu zapisanym w postaci dy/dx = f(x, y), funkcja f(x, y) jest
super przyzwoitą funkcją: ciągłą i nawet różniczkowalną ma całym R

2 i to nieskończenie
wiele razy.

Zadanie Ode.4 (przykład z Krysickiego-Włodarskiego)
Znaleźć wszystkie rozwiązania (krzywe całkowe) równania

y′ =
2x y2

1 + x2
.

Rozwiązanie: Równanie jest równaniem o zmiennych rozdzielonych i całkujemy je stan-
dardowo

∫

dy

y2
=

∫

dx
2x

1 + x2
, czyli − 1

y
= C + ln(1 + x2) .
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Stąd

y = − 1

C + ln(1 + x2)
.

Znów C = ∞ odpowiada formalnie rozwiązaniu y ≡ 0. Tu x ≡ 0 nie jest rozwiązaniem
równania (1 + x2)dy = 2xy2dy, ale i tak przez każdy punkt (x0, y0) przechodzi dokładnie
jedna krzywa całkowa równania i to zawsze będąca uczciwą funkcją y = y(x), bo funkcja
f(x, y) = 2xy2/(1 + x2) jest na całym R2 regularna i jej pochodna fy(x, y) też taka
jest. Aby rozwiązanie przechodziło przez punkt (x0, y0), stała C musi być wyznaczona z
warunku

y0 = − 1

C + ln(1 + x20)
,

który zawsze ma rozwiązanie C = −1/y0 − ln(1 + x20) (trzeba oczywiście przyjąć, że
y0 = 0 odpowiada C = ∞, ale to jest właśnie to, co dopuściliśmy już). Zatem rozwiązanie
przechodzące przez punkt (x0, y0) ma postać

y =
1

1/y0 + ln(1 + x20)− ln(1 + x2)
.

Charakter tych funkcji zależy jednak od punktu (x0, y0). Trzeba rozpatrzyć różne przy-
padki. Czynnik ln(1 + x2) w mianowniku jest zawsze nieujemny, więc jeśli 1/y0 + ln(1 +
x20) > 0, co zachodzi zawsze, gdy y0 > 0, tj. gdy punkt, przez który rozwiązanie ma
przechodzić leży w górnej półpłaszczyźnie (y0 = 0 już mamy załatwione - odpowiada mu
zawsze, niezależnie od x0, rozwiązanie y ≡ 0), mianownik rozwiązania zawsze zeruje się w
dwóch punktach, co oznacza, że rozwiązanie przechodzące przez dowolny punkt (x0, y0) o
y0 > 0 ma dwie pionowe asymptoty, tj. nigdy nie sięga w x-ach dalej w lewo niż pewne
x− i w prawo niż pewne x+, gdzie

x∓ = ∓
√

e1/y0(1 + x20)− 1 .

Sytuacja, gdy 1/y0+ln(1+x20) > 0 może też zachodzić, gdy y0 = −|y0| < 0, ale to zależy
teraz od wartości ln(1 + x20). Ogólnie, gdy y0 < 0 są możliwe trzy przypadki (myślmy o
ustalonym x0 i analizujmy różne ujemne y0): −1/|y0|+ln(1+x20) > 0, −1/|y0|+ln(1+x20) <
0 i taki przypadek krytyczny, gdy ten caly czynnik jest równy zeru. Krzywa odpowiadająca
temu przypadkowi, dana wzorem

y = − 1

ln(1 + x2)
,

leży (zależnie od tego, czy x0 > 0, czy x0 < 0 - przypadek x0 = 0 nie może dać
−1/|y0| + ln(1 + x20) = 0) w prawej lub lewej dolnej ćwiartce, i biegnie od x = ∞
(od x = −∞), gdzie dąży do zera od dołu, do x = 0±, gdzie dąży do −∞, czyli ma
w x = 0 asymptotę pionową. Krzywa ta rozdziela (pamiętamy: x0 sobie ustaliliśmy)
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Rysunek 19: Rodzina krzywych całkowych równania y′ = 2xy2/(1 + x2). Trzeba tu
uwzględnić to, że Mathematica maluje przy zadanym x0 = 1 i y0 także kawałki krzywych
za asymptotami, co jest mylące. W szczególności pozorne jest widoczne na rysunku
utożsamienie asymptot pionowych krzywych leżących w dolnej i górnej półpłaszczyźnie
(położenie asymptot, czy w ogóle ich istnienie, zależy od wyboru punktu (x0, y0)). Dlatego
trzeba się wczytać w przedstawioną w tekście dyskusję.

krzywe należące do dwóch pozostałych przypadków. Krzywe odpowadające pierwszemu
z nich, zachodzącemu, gdy −1/|y0| + ln(1 + x20) > 0, biegną jeśli x0 > 0 (x0 < 0) od
x = ∞ (x = −∞) przez (x0, y0) do pewnego x+ (x−) - danego wzorem wypisanym wyżej,
w którym mają asymptotę pionową (nie dochodzą więc nigdy do x = 0. Z kolei krzywe
odpowiadające przypadkowi, gdy −1/|y0| + ln(1 + x20) < 0, biegną od x = −∞ przez
(x0, y0) do x = +∞ mając minimum w x = 0. Można się w tym zorientować wnikliwie
wpatrując się w rysunek 19.

Często na pozór beznadziejne równanie różniczkowe udaje się rozwiązać przy pomocy
jakiegoś sprytnego chwytu. Czasem jest to przedefiniowanie szukanej funkcji, czasem
zamiana zmiennych, a czasem jedno i drugie razem. Jeden prosty chwyt daje się zawsze
zastosować, gdy funkcja f(x, y) w równaniu y′ = f(x, y) jest funkcją jednorodną stopnia
zerowego, tj. taką, że f(λx, λy) = f(x, y). Funkcja taka musi być bowiem funkcją ilorazu
y/x, tj. f(x, y) = f̃(y/x). Podstawienie y = xu(x) sprowadza wtedy równanie do postaci

u+ xu′ = f̃(u) , czyli xu′ = −u+ f̃(u) ,

t.j. do równania o zmiennych rodzielonych. Poza tym, przy szukaniu sprytnych pod-
stawień niema jednak (chyba - może matematycy mają jakieś tajne sposoby) żadnych
ogólnych reguł postępowania i wszystko opiera się na sprycie boiskowym i orientacji w
terenie (a w tym matematycy górują nad resztą ludzkości).
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Zadanie Ode.5
Rozwiązać równanie różniczkowe

2 y′ + y2 +
1

x2
= 0 .

Rozwiązanie: W podanej postaci nie jest to ani równanie o zmiennych rozdzielonych,
ani też równanie liniowe (tymi zajmiemy się za niżej), bo występuje w nim y2. Ale zamiast
szukać funkcji y = y(x) poszukajmy funkcji u = u(x) wiążącej się z y = y(x) przez

y =
u(x)

x
.

Podstawiamy to do wyjściowego równania i mamy

2u′

x
− 2u

x2
+
u2

x2
+

1

x2
= 0 .

Po pomnożeniu stronami przez x2 przybiera to postać

2xu′ − 2u+ u2 + 1 ≡ 2xu′ + (u− 1)2 = 0 ,

a to już jest równanie o rozdzielonych zmiennych. Możemy je więc scałkować:

−2

∫

du

(u− 1)2
=

∫

dx

x
,

co daje

2

u− 1
= C + ln |x| ≡ ln |C̃ x| ,

czyli u(x) = 1 + 2/ ln |C̃ x|. Możemy teraz napisać szukaną funkcję y = y(x):

y(x) =
1

x
+

2

x ln |C̃ x|
.

Sprawdźmy (samokontroli nigdy dość!):

2y′ = − 2

x2
− 4

x2 ln2 |C̃ x|
(

1 + ln |C̃ x|
)

,

y2 =
1

x2
+

4

x2 ln |C̃ x|
+

4

x2 ln2 |C̃ x|
.

Jak to dodamy i dodamy jeszcze 1/x2 to rzeczywiście wyjdzie zero. Oczywiście roz-
wiązaniem wyjściowego równania jest też y(x) = 1/x. Odpowiada ono dopuszczeniu w
znalezionej całce ogólnej |C̃| = ∞.
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Przy przejściu do funkcji u trzeba było wykluczyć punkty o x = 0 (w równaniu
y′ = f(x, y) = −(y2 + 1/x2)/2 funkcja f(x, y) jest nieciągła w punktach (0, y) więc
nie mogą przez nie przechodzić funkcje y = y(x), ale może jakaś funkcja x = x(y) może?).
Zobaczmy, co z nimi. Przepiszmy więc wyjściowe równanie w postaci

2x2dy = −(x2y2 + 1) dx .

Teraz widać, że jest ono także spełniane przez prostą x ≡ 0.

Przechodzimy teraz do drugiego typu równań różniczkowych, które daje się rozwiązy-
wać systematycznie. Są to równania (na razie wciąż pierwszego rzędu) liniowe z niejed-
norodnością, które ogólnie dają się zapisać w postaci44

y′ + g(x) y = f(x) .

f(x) i g(x) są tu zadanymi z góry funkcjami. Niejednorodnością jest funkcja f(x). Za-
uważmy, że gdy f(x) ≡ 0, jest to równanie o zmiennych rozdzielonych. Szukana funkcja
y = y(x) występuje tu w pierwszej potędze i na tym polega liniowość tego równania.
Dzięki temu lewą jego stronę można zapisać w ogólnej postaci

D(x) y(x) ,

gdzie D(x) jest operatorem różniczkowym. Powinno nam się to zacząć kojarzyć z algebrą:
fukcję y można traktować jak element przestrzeni wektorowej (i coż, że nieskończenie
wymiarowej?) funkcji, a D(x) można traktować jak odwzorowanie liniowe tej przestrzeni
w nią samą. Ten sposób widzenia jest tu przydatny, bo zaraz zobaczymy, że rozwiązania
takich równań mają taką samą strukturę, jak rozwiązania liniowych równań typu F ·x = b,
którymi zajmowaliśmy się w ramach algebry.

Równania takie rozwiązuje się metodą uzmiennienia stałej całkowania. Zademonstru-
jemy ją tu na prostym przykładzie.45

Zadanie Ode.6
Znaleźć rozwiązanie (całkę ogólną) równania

y′ =
y

x
+ 3x .

Rozwiązanie: Najpierw rozwiązujemy równanie jednorodne, tj.

y′ + g(x) y = 0 .

44Zawsze można równanie tak napisać, żeby najwyższa pochodna szukanej funkcji - tu jest to pierwsze
pochodna - nie była przez nic mnożona.

45Równanie różniczkowe użyte jako przykład na samym początku tego rozdziału też zostało rozwiązane
metodą uzmiennienia stałej. Po przetrawieniu poniższego przykładu mogą Państwo wrócić do początku
i samemu sobie tamto równanie rozwiązać.
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czyli w danym przypadku równanie

y′ =
y

x
.

Ponieważ, jak już zauważyliśmy, jest to równanie o zmiennych rozdzielonych, i to takie
jak w zadaniu 38c, od razu wypisujemy jego rozwiązanie (całkę ogólną)

yhom = C x .

Dodaliśmy dopisek “hom” od homogeneous, czyli jednorodne, żeby pamiętać czego to jest
rozwiązanie. Teraz następuje drugi krok od którego bierze się nazwa metody: zastępu-
jemy stałą C nieznaną funkcją h(x) i funkcję y = x h(x) podstawiamy jako Ansatz46 do
wyjściowego równania:

d

dx
(xh(x)) = h(x) + xh′(x) =

1

x
(xh(x)) + 3x .

Dzieje się wtedy to, co zawsze się dzieje w takich przypadkach (na tym polega cały wic tej
metody!): wyrazy z h(x) po obu stronach równania się nawzajem redukują i zostajemy z

xh′(x) = 3x , czyli h′(x) = 3 .

Dostajemy więc równanie na funkcję h, które ma zawsze postać równania o zmiennych
rozdzielonych i to takiego, w którym pochodna h′ nieznanej funkcji jest po prostu równa
pewnej funkcji x. Równanie takie całkuje się zazwyczaj łatwo, a w każdym razie daje
się rozwiązanie napisać jako kwadraturę. Tu jest to banalne: h(x) = 3x + C ′ (zaraz
zobaczymy, że pisanie stałej dowolnej nie jest tu konieczne: można wziąć jakiekolwiek
rozwiązanie). I teraz następuje ostatni krok: dodajemy do siebie dwie części: yhom i ten
Ansatz, który nazywamy yinhom = xh(x) (od inhomogeneous):

y = yhom + yinhom = C x+ x (3x+ C ′) = 3x2 + C̃x .

Można sprawdzić podstawiając do wyjściowego równania, że jest to rzeczywiście rozwiąza-
nie. Widać też, że rzeczywiście w yinhom można było pominąć stałą C ′ bo i tak połączyła
się ona ze stałą C w yhom (zawsze się tak dzieje). Jest to kompletna całka ogólna wyjścio-
wego równania. Stałą C̃ można dobrać tak, by spełnić warunek początkowy47 y(x0) = y0.

46Tak to się nazywa w ogólnosłowiańskim języku niemieckim.
47Oczywiście stosują się tu wszystkie przewałkowane już reguły dotyczące tego, kiedy przez dany punkt

(x0, y0) przechodzi zawsze dokładnie jedno rozwiązanie; czasem nie przechodzi żadne i wtedy nie można
narzucić takiego warunku, czasem przechodzi więcej niż jedno i wtedy takie warunki początkowe są
nie do przyjęcia, a czasem akurat tego rozwiązania, co przechodzi przez (x0, y0), całka ogólna otrzymana
metoda uzmiennienia stałej może nie obejmować. W szczególności w rozpatrywanym przykładzie warunki
początkowe z x = 0 muszą być trefne bo f(x, y) = y/x + 3x jest nieciągła na osi y. Przepisując jednak
(całe) wyjściowe równanie w postaci

x dy = (y + 3x2) dx ,

widzimy, że jego rozwiązaniem jest jeszcze prosta x = 0 i to jest właśnie krzywa całkowa przechodząca
przez punkty (0, y0).
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Uzyskana metodą uzmiennienia stałej całka ogólna ma dokładnie taką samą strukturę,
jak najogólniejsze rozwiązanie algebraicznego problemu F ·x = b: jest ono sumą najogól-
niejszego (tzn. tu zależnego od stałej dowolnej) rozwiązania równania jednorodnego i
jakiegokolwiek (dlatego stałą C ′ można było od początku pominąć) rozwiązania pełnego
równania niejednorodnego. Przypomnijmy więc, że najogólniejsze rozwiązanie algebraicz-
nego równania F ·x = b miało postać x = C1x1+. . .+Crxr+xinhom ≡ xhom+xinhom, gdzie
xi, i = 1, . . . r były wektorami takimi, że F · xi = 0, a xinhom był jakimkowiek wektorem
spełniajacym równanie F · xinhom = b. Choć powinno to po algebrze być oczywiste, ale
może warto jeszcze raz zobaczyć, dlaczego rozwiązanie równania liniowego z niejednorod-
nością ma taką strukturę. Wyobraźmy sobie, że mamy dwie różne funkcje (każda z nich
może odpowiadać innym warunkom początkowym np.) y = y1(x) i y = y2(x), spełniające
to samo liniowe równanie z niejednorodnością:

y′1 + g(x) y1 = f(x) ,

y′2 + g(x) y2 = f(x) .

Odejmijmy te równania jedno od drugiego stronami:

d

dx
(y′1 − y′2) + g(x) (y′1 − y′2) = 0 .

Różnica y1 − y2 spełnia więc równanie jednorodne. Mówiąc inaczej: każde dwa rozwiąza-
nia równania niejednorodnego różnią się od siebie o jakieś rozwiązanie równania jednorod-
nego. Więc jak mamy jakiekolwiek rozwiązanie równania niejednorodnego (a to właśnie
znajdujemy uzmienniając stałą, ale można by było je zamiast tego znaleźć na śmiet-
niku, czy ściągnąć od kolegi/koleżanki), to wystarczy doń dodać naogólniejsze (w sensie
całki ogólnej) rozwiązanie równania jednorodnego, by dostać w ten sposób najogólniejsze
rozwiązanie równania niejednorodnego, czyli skonstruować jego całkę ogólną. Można też
napisać formalny wzór na całkę ogólną równania niejednorodnego y′ + g(x)y = f(x). Ma
on postać

y = e−G(x)

(

C +

∫ x

dx′ f(x′) eG(x′)

)

,

G(x) =

∫

dx g(x) .

Zamiast go pamiętać (ale warto go sobie wyprowadzić jako sprawdzian, czy się wszystko
zrozumiało!), lepiej jest w każdym konkretnym przypadku postępować według podanego
wyżej schematu.

Powiedzmy też od razu tutaj, żeby potem już nie powracać do tego, że ten sam schemat
pozostaje słuszny w przypadku liniowych równań różniczkowych rzędu r z niejednorod-
nością, tj. postaci

dry

dxr
+ gr−1(x)

dr−1y

dxr−1
+ . . .+ g1(x)

dy

dy
+ g0(x) y = f(x) .
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Tak samo jak w przypadku równań liniowych pierwszego rzędu z niejednorodnością, rów-
nież i tu, każde dwa rozwiązania powyższego równania niejednorodnego różnią się o jakieś
rozwiązanie równania jednorodnego z funkcją f zastąpioną przez zero. I dlatego tak samo
wystarczy znaleźć (kupić na czarnym rynku albo pchlim targu) jakiekolwiek jedno (choćby
już mocno używane) rozwiązanie równania niejednorodnego i dodać do niego najogólniej-
sze rozwiązanie równania jednorodnego (całka ogólna tego rówanania w tym przypadku
zależy od r stałych dowolnych: C1, . . . , Cr), by skonstruować kompletną całkę ogólną
liniowego równania niejednorodnego rzędu r z niejednorodnością, która wobec tego ma
postać

y = yinhom(x) + yhom(x, C1, . . . , Cr) .

Zobaczymy to dalej na przykładzie równania drugiego rzędu, ale takiego prostego, w
którym funkcje g1(x) i g0(x) są stałymi. W innych przypadkach, gdy funkcje g1(x) i g0(x)
są nietrywialnymi funkcjami metoda pozostaje w mocy, ale naogół trudno jest znaleźć
całkę ogólną równania jednorodnego. (Gdy wszystkie funkcje gr−1, . . . , g0 są stałymi są
proste sposoby - też je poznamy właśnie na przykładzie takiego równania o r = 2 -
by ogólną całkę równania jednorodnego skonstruować). Ostatnia uwaga jest taka, że
jeżeli niejednorodność równania linowego ma postać sumy dwóch funkcji, f(x) = f1(x) +

f2(x), to rozwiązanie yinhom(x) równania niejednorodnego też ma postać sumy y(1)inhom(x)+

y
(2)
inhom(x), gdzie y(1)inhom(x) jest rozwiązaniem równania liniowego z niejednorodnością f1(x),

a y(2)inhom(x) jest rozwiązaniem tegoż równania z niejednorodnością f2(x).

Zadanie Ode.7
Znaleźć rozwiązanie równania

y′ cosx+ 2y sin x = 2 sin x ,

przechodzące przez punkt (x0, y0).
Rozwiązanie: Jest to właśnie liniowe równanie pierwszego rzędu z niejednorodnością.
Postępujemy więc standardowo. Najpierw znajdujemy całkę ogólną równania jednorod-
nego

y′ + 2y tgx = 0 .

Rozdzielamy zmienne i całkujemy
∫

dy

y
= −2

∫

dx
sin x

cosx
, czyli ln |y| = 2 ln | cosx|+ C = ln |C̃ cos2 x| .

Stąd (zdejmując moduł upychamy znak ± w stałą C̃)

yhom = C̃ cos2 x .

Teraz szukamy yinhom metodą uzmiennienia stałej, tj. podstawiamy do wyjściowego rów-
nania Ansatz y = h(x) cos2 x. Daje to

(

h′ cos2 x− 2h cosx sin x
)

cos x+ 2h(x) cos2 x sin x = 2 sinx .
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Wyrazy z gołym h się redukują i dostajemy na h równanie

h′ =
2 sin x

cos3 x
,

które daje h = 1/ cos2 x. Zatem yinhom = h(x) cos2 x = 1 po prostu (co można było
zauważyć!) i pełne rozwiązanie wyjściowego równania (jego całka ogólna) ma postać

y = yinhom + yhom = 1 + C̃ cos2 x .

Możemy teraz dobrać C̃ tak, by rozwiązanie spełniało warunek początkowy, tj. by krzywa
przechodziła przez punkt (x0, y0):

y = 1 +
y0 − 1

cos2 x0
cos2 x .

Widać jednak, że jest to możliwe tylko wtedy, gdy x0 6= (π/2) + kπ. Patrząc na całkę
ogólną y = 1 + C̃ cos2 x widzimy też, że wszystkie obejmowane przez nią funkcje (czyli
nieskończenie wiele rozwiązań) przechodzą przez punkty (π

2
+ kπ, 1) i wszystkie one mają

w tych punktach zerowe nachylenie. Można to zrozumieć pisząc wyjściowe, niejednorodne
równanie w kanonicznej postaci48 y′ = 2(1− y)tgx. Widać z niej, że funkcja występująca
po prawej stronie jest, jako funkcja na R

2, nieciągła w punktach x = π
2
+ kπ i y 6= 1, ale

w punktach (π
2
+ kπ, 1) można ją zawsze dookreślić tak, by była ciągła wzdłuż jednego,

dowolnie wybranego kierunku; niemniej tylko gdy uciąglamy ją wzdłuż osi x, to wartość
uciąglająca - czyli zero49 - pasuje do nachylenia “kierunku uciąglania”. I dlatego wszystkie
rozwiązania y = y(x) przechodzące przez punkty (π

2
+kπ, 1) muszą mieć zerowe nachylenie.

Z kolei przez punkty (π
2
+ kπ, y) o y 6= 1 nie przechodzi żadna funkcja y = y(x), ale jeśli

wyjściowe równanie przepisać w formie cos xdy = 2(1− y) sinxdx, to stanie się jasne, że
jego rozwiązaniami są też proste x = π

2
+ kπ, które są przyzwoitymi funkcjami x = x(y).

Zajmiemy się teraz równaniami różniczkowymi rzędu r > 1 mającymi wyznaczać jedną
funkcję (jednej zmiennej) i układami r równań różniczkowych pierwszego rzędu na r funk-
cji. Oczywiście tylko pewnymi szczególnie prostymi klasami problemów należących do
tych dwóch typów. Rozpatrzymy też może jeden układ równań drugiego rzędu na kilka
funkcji (jako rozszerzenie rozważań na przypadek układu p równań r-tego rzędu na p
szukanych funkcji).

Ogólnie równanie różniczkowe rzędu r na jedną funkcję y = y(x) ma jedną z dwu
postaci

y(r) = f(x, y, y′, . . . , y(r−1)) , lub F (x, y, y′, . . . , y(r)) = 0 .

48Oczywiście widać, że jest to równanie o zmiennych rozdzielonych i można je było rozwiązać także bez
używania metody uzmienniania stałej. Oczywiście wynik będzie ten sam - zalecam sprawdzenie!

49W pobliżu punktu x = x0, gdzie x0 = π
2 +kπ, funkcja tangens zachowuje się jak 1/(x−x0), wiec gdy

badamy f(x, y) na ciągach postaci x = x0 + a/n, y = 1 + b/n, czyli zbiegamy do punktu (x0, 1) wzdłuż
prostych o tangensie kąta nachylenia równym b/a, wartość uciąglająca f(x, y) w (x0, 1) jest równa −2b/a.
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Całką takiego równania nazywamy każdą funkcję y = y(x), spełniającą te równania tożsa-
mościowo na jakimś otwartym podzbiorze R. Całką ogólną zaś - rodzinę całek sparametry-
zowaną r dowolnymi stałymi C1, . . . , Cr, czyli funkcję y = y(x, C1, . . . , Cr). Zależność od
r stałych dowolnych pozwala (naogół) narzucić na całkę równania r-tego rzędu r lokalnych
warunków początkowych

y(x0) = y0, y
′(x0) = y′0, . . . y(r−1)(x0) = y

(r−1)
0 .

Przez “lokalne warunki” rozumiemy tu to, że wszystkie one są zadane w jednym i tym sa-
mym punkcie x0. Przy odpowiednich warunkach spełnianych przez fukcję f(x, y1, . . . , yr−1)

w punkcie (x0, y
′
0, . . . , y

(r−1)
0 ) (lub funkcję F (x, y1, . . . , yr) w punkcie (x0, y

′
0, . . . , y

(r)
0 ) przy

sformułowaniu uwikłanym) i w jego jakimś otwartym otoczeniu istnienie spełniającej takie
warunki całki równania jest zagwarantowane przez odpowiednie twierdzenia.50 Najprost-
szym przypadkiem takich równań są równania liniowe z niejednorodnością, o których już
mówiliśmy wcześniej. Tu zajmiemy się takimi równaniami o stałych współczynnikach,
tzn. postaci

dry

dxr
+ ar−1

dr−1y

dxr−1
+ . . .+ a1

dy

dx
+ a0 y = f(x) ,

i drugiego rzędu, tj. o r = 2, bo w fizyce najczęściej występują równania drugiego rzędu.

Równanie różniczkowe rzedu r na jedną funkcję łatwo przekształcić w r równań pierw-
szego rzędu na r funkcji, podstawiając po prostu y = y1, y′ = y2, . . . , y(r−1) = yr.
Otrzymujemy wtedy układ równań pierwszego rzędu

y′1 = y2 ,

y′2 = y3 ,

. . . . . . . . . . . . . . . . . . . . .

y′r = f(x, y1, y2, . . . , yr) ,

który jest szczególnym przypadkiem ogólnego układu r równań pierwszego rzędu

y′1 = f1(x, y1, y2, . . . , yr) ,

y′2 = f2(x, y1, y2, . . . , yr) ,

. . . . . . . . . . . . . . . . . . . . . . . .

y′r = fr(x, y1, y2, . . . , yr) ,

na r funkcji. Układy takie, nawet ten szczególny, wypisany wyżej, są dość skomplikowane
i dlatego zajmiemy się tylko przypadkiem, w którym prawe strony od nieznanych funkcji

50Nie zawsze takie lokalne warunki są naturalne: np. w zagadnieniach wariacyjnych (typu: zna-
leźć kształt zjeżdżalni po której masa m najszybciej zjedzie z wysokości h w polu grawitacyjnym - to
jest klasyczy problem brachistochrony) które prowadzą do równań drugiego rzędy naturalne są warunki
y(x1) = y1, y(x2) = y2, czyli nielokalne. Przy takich warunkach jednak twierdzenia matematyczne o
istnieniu rozwiązania są często bezradne.
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y1, . . . , yr zależą liniowo. Można je wtedy, gdy chodzi o jednorodne równania zapisać
macierzowo

d

dx









y1
y2
·
yr









=









f11(x) f12(x) . . . f1r(x)
f21(x) f22(x) . . . f2r(x)

· · . . . ·
fr1(x) fr2(x) . . . frr(x)

















y1
y2
·
yr









.

Albo krótko w postaci dy/dx = F (x) ·y. Formalne rozwiązanie takiego układu ma postać

y(x) = Px exp

{
∫ x

x0

dx′ F (x)

}

· y0 ,

w której y0 = y(x0) jest wektorem warunków początkowych, a Px oznacza operację upo-
rządkowania iloczynu macierzy F (x1) · . . . · F (xn) występującego w n-tym wyrazie

1

n!

∫ x

x0

dx′1 . . .

∫ x

x0

dx′n F (x1) · . . . · F (xn) ,

rozwinięcia funkcji exponens51 w kolejności (idąc od prawej strony) od najmniejszej war-
tości zmiennej x′i do największej. W ogólności macierzy działającej na wektor y0 nie
daje się jednak jawnie wypisać i dlatego rozwiązanie to nazwaliśmy formalnym. Problem
upraszacza się, gdy macierz F w równaniu dy/dx = F · y nie zależy od zmiennej x.
Rozwiązanie jest wtedy dane prostym wzorem

y = exp{(x− x0)F} · y0 .

Zauważmy też, że uogólniając macierz F działającą na wektory pewnej r-wymiarowej
przestrzeni wektorowej (tu nad ciałem R, ale mogła by być i nad C) do operatora liniowego
Ĥ działającego w pewnej nieskończonej przestrzeni wektorowej nad C (”działającego”, tzn.
odwzorowującego tę przestrzeń w nią samą), z iloczynem skalarnym (·|·)S i zupełnej (tj.
takiej w której wszystkie Cauchy-ciągi mają swoje granice) i zmieniając nazwę zmiennej
niezależnej z x na t, otrzymujemy typowy problem ewolucji czasowej wektora stanu w
mechanice kwantowej. Operator Ĥ jest w takim przypadku operatorem energii, zwanym
Hamiltonianem, a rozwiązywane równanie - równaniem Schrödingera

i~
d

dt
|ψ(t)〉 = Ĥ|ψ(t)〉 ,

Takimi równaniami zajmiemy się teraz (po to na algebrze uczyliśmy się znajdywać ekspo-
nensy macierzy). Naturalnym uogólnieniem są układy liniowe równań z niejednorodnością
postaci

dy

dx
= F · y + b(x) .

51Macierz F (x1), . . . , F (xn) są, gdy x-y w nich są różne, różnymi macierzami i nie są przemienne:
F (x1) · F (x2) nie jest tą samą macierzą, co F (x2) · F (x1); operacja Px definiuje więc, w jakim porządku
mają one być mnożone w różnych podobszarach całego obszaru [x0, x]× . . .× [x0, x] ⊂ Rn całkowania po
dx1 . . . dxn.
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w których w ogólności macierz F mogłaby zależeć od zmiennej x, ale tu będziemy roz-
patrywać tylko takie, w których macierz F jest stała (niezależna od x). Równania takie
można rozwiązywać omówioną już wyżej metodą uzmienienia stałej: uzmiennioną stałą
jest w tym przypadku wektor h(x) zastępujący wektor warunku początkowego y0 w roz-
wiązaniu (całce ogólnej) równania jednorodnego (tzn. spełniającego równanie z wektorem
b ≡ 0). Do takiego równania z macierzą F i wektorze b(x) szczególnych postaci

F =













0 1 0 . . . 0
0 0 1 . . . 0
· · · . . . ·
0 0 0 . . . 1

−a0 −a1 −a2 . . . −ar−1













, b(x) =













0
0
·
0

f(x)













,

sprowadza się wypisane wyżej równanie liniowe rzędu r o stałych współczynnikach:

dry

dxr
+ ar−1

dr−1y

dxr−1
+ . . .+ a1

dy

dx
+ a0 y = f(x) .

Zadanie Ode.8
Znaleźć ogólne rozwiązanie jednorodnego liniowego układu trzech równań różniczkowych
pierwszego rzędu52

d

dt





y1(t)
y2(t)
y3(t)



 =





2 −1 1
0 1 0
1 −1 2









y1(t)
y2(t)
y3(t)



 .

Podać także rozwiązanie spełniające warunki początkowe: y1(t = t0) = a, y2(t = t0) = b,
y3(t = t0) = c.
Rozwiązanie: Oznaczmy przez F występującą w tym równaniu różniczkowym macierz.
Rozwiązaniem takiego równania, tj. równania postaci ẏ(t) = F · y(t), jest zawsze

y(t) = e(t−t0)F ·y(t0) ,
tj. macierz e(t−t0)F działająca na wektor warunków początkowych. Nie musimy zatem
znajdywać całej macierzy exp(tF ); wystarczy znaleźć jej działanie na podany wektor
warunków początkowych. Szukamy zatem najpierw wartości własnych macierzy F :

WF (λ) = det





2− λ −1 1
0 1− λ 0
1 −1 2− λ



 = −(λ− 1)(λ− 2)2 + (λ− 1) = −(λ− 1)2(λ− 3) .

Odpowiadającymi im wektorami własnymi są:

λ = 3 :





1
0
1



 , λ = 1 :





1
1
0



 , oraz





0
1
1



 .

52Jako że w problemach fizycznych zmienną niezależną w tego typu równaniach jest czas, zmienimy tu
x na t.
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Mimo że druga z wartości własnych ma krotność dwa, to istnieją dwa odpowiadające
jej liniowo niezależne wektory własne. Rozwiązanie będzie miało zatem charakter czysto
eksponencjalny. Rozkładamy dowolny wektor warunków początkowych zadanych w t = t0
na znalezione wektory własne:





a
b
c



 =
a− b+ c

2





1
0
1



+
a + b− c

2





1
1
0



+
−a + b+ c

2





0
1
1



 .

Stąd




y1(t)
y2(t)
y3(t)



 = e(t−t0)F





a
b
c



 =
a− b+ c

2
e3(t−t0)





1
0
1





+
a+ b− c

2
e(t−t0)





1
1
0



 +
−a + b+ c

2
e(t−t0)





0
1
1



 ,

bo działanie e(t−t0)F na każdy z wektorów własnych sprowadza się do pomnożenia go przez
czynnik e(t−t0)λ, gdzie λ jest odpowiadającą temu wektorowi wartością własną.

Oczywiście skoro znamy działanie e(t−t0)F na dowolny wektor (a, b, c), możemy bez
większych trudności znaleźć i samą macierz e(t−t0)F . W tym celu przepisujemy (kładąc
t0 = 0 dla uproszczenia)

etF





a
b
c



 =
1

2





(a− b+ c) e3t + (a+ b− c) et

(a+ b− c) et + (−a + b+ c) et

(a− b+ c) e3t + (−a + b+ c) et





=
1

2





e3t + et −e3t + et e3t − et

0 2 et 0
e3t − et −e3t + et e3t + et









a
b
c



 .

Stojąca w ostatniej linii macierz jest właśnie macierzą etF .
Zauważmy też, że y2(t) = et−t0b ≡ et−t0y2(0), bo równanie różniczkowe wyznaczające

y2(t) było w istocie niezależne od y1(t) i y3(t). Można więc było najpierw rozwiązać
niezależne równanie ẏ2 = y2, i otrzymane jego rozwiązanie wstawić jako jawną już funkcję
do układu dwóch równań na y1 i y3, który w ten sposób przybrałby postać

d

dt

(

y1(t)
y3(t)

)

=

(

2 1
1 2

)(

y1(t)
y3(t)

)

−
(

b et−t0

b et−t0

)

,

czyli układu równań liniowych z niejednorodnością, który ogólniej, oznaczając F̃ wystę-
pującą w nim macierz, zapiszmy w postaci

d

dt
y = F̃ · y + b(t) .
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Pozwala nam to zademonstrować na tym przykładzie metodę uzmienniania stałej w wersji
wektorowej. Macierz F̃ , ma tu wartości własne 3 i 1, którym odpowiadają oczywiste
wektory własne. Rozwiązujemy najpierw liniowe równanie jednorodne z jakimś dowolnym
warunkiem początkowym y01, y

0
3:

(

y1(t)
y3(t)

)

hom

= e(t−t0)F̃

(

y01
y03

)

=
y01 + y03

2
e3(t−t0)

(

1
1

)

+
y01 − y03

2
e(t−t0)

(

1
−1

)

.

Teraz jednak już potrzebna będzie jawna postać macierzy exp{(t− t0)F̃}, więc ją szybko
znajdujemy:

e(t−t0)F̃ =
1

2

(

e3(t−t0) + et−t0 e3(t−t0) − et−t0

e3(t−t0) − et−t0 e3(t−t0) + et−t0

)

.

(Jest to ta sama macierz, co znaleziona wyżej, tylko z usuniętą środkową kolumną i
środkowym wierszem.) Następnie, do równania niejednorodnego podstawiamy Ansatz

yinhom(t) = e(t−t0)F̃ · h(t) .

Ponieważ

d

dt

(

e(t−t0)F̃ · h(t)
)

= F̃ · e(t−t0)F̃ · h(t) + e(t−t0)F̃ · d
dt

h(t) ,

człony F · e(t−t0)F̃ · h(t) się redukują i otrzymujemy

e(t−t0)F̃ · d
dt

h(t) = b(t) , czyli h(t) =

∫

dt e−(t−t0)F̃ · b(t) .

Jawnie, w rozpatrywanym tu przypadku,

h(t) = −1

2

∫

dt

(

e−3(t−t0) + e−(t−t0) e−3(t−t0) − e−(t−t0)

e−3(t−t0) − e−(t−t0) e−3(t−t0) + e−(t−t0)

)(

b et−t0

b et−t0

)

= −
∫

dt

(

b e−2(t−t0)

b e−2(t−t0)

)

=
1

2

(

b e−2(t−t0)

b e−2(t−t0)

)

.

(Całka z wektora to po prostu całki z jego “pięterek”). Zatem

yinhom = e(t−t0)F̃ · h(t) = 1

4

(

e3(t−t0) + et−t0 e3(t−t0) − et−t0

e3(t−t0) − et−t0 e−3(t−t0) + et−t0

)(

b e−2(t−t0)

b e−2(t−t0)

)

=
1

2

(

b et−t0

b et−t0

)

.

Składamy teraz pełne rozwiązanie: y = yhom(t, y
0
1, y

0
3) + yinhom(t):

y(t) =
1

2

(

e3(t−t0) + et−t0 e3(t−t0) − et−t0

e3(t−t0) − et−t0 e−3(t−t0) + et−t0

)(

y01
y03

)

+
1

2

(

b et−t0

b et−t0

)

.
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Teraz dopiero, mając całość, możemy dobrać stałe y01 i y03 tak, by spełnić warunki y1(t0) =
a i y3(t0) = c. Po położeniu t = t0 macierz działająca na y01 i y03 staje się macierzą
jednostkową (musi tak być) i odczytujemy, że y01 = a − 1

2
b i y03 = c − 1

2
b. No i teraz

możemy odczytać, że

y1(t) =
1

2

(

e3(t−t0) + et−t0
)

a− 1

2

(

e3(t−t0) − et−t0
)

b+
1

2

(

e3(t−t0) − et−t0
)

c ,

y3(t) =
1

2

(

e3(t−t0) − et−t0
)

a− 1

2

(

e3(t−t0) − et−t0
)

b+
1

2

(

e3(t−t0) + et−t0
)

c .

Jest to oczywiście to samo, co jako y1(t) i y3(t) otrzymaliśmy pierwszym sposobem.

Zadanie Ode.9
Znaleźć rozwiązanie układu równań różniczkowych

ẏ1 = y1 − 3 y2 + 4 y3

ẏ2 = 4 y1 − 7 y2 + 8 y3

ẏ3 = 6 y1 − 7 y2 + 7 y3 .

Rozwiązanie: Podany układ równań można przepisać w postaci macierzowej

ẏ(t) = F ·y(t) ,

z macierzą

F =





1 −3 4
4 −7 8
6 −7 7



 .

Rozwiązanie ma oczywiście postać

y(t) = e(t−t0)F ·y(t0) ,

Trzeba zatem znaleźć macierz etF lub jej działanie na dowolny wektor (a, b, c) warunków
początkowych (y1(t0), y2(t0), y3(t0)) zadanych w t = t0. Macierz F była już przedmiotem
Zadania 78 w notatkach do algebry. Macierz etF została tam znaleziona dwoma sposobami.
Możemy więc napisać “od ręki” (dla uproszczenia kładziemy t0 = 0):




y1(t)
y2(t)
y3(t)



 =





e3t − 2t e−t −e3t + e−t + t e−t e3t − e−t

2e3t − 2e−t − 4t e−t −2e3t + 3e−t + 2t e−t 2e3t − 2e−t

2e3t − 2e−t − 2t e−t −2e3t + 2e−t + t e−t 2e3t − e−t









a
b
c



 .

Przypomnijmy jeszcze, że czynniki liniowe w t (w t − t0 jeśli t0 6= 0) pochodzą z tego,
że macierz F ma jedną dwukrotną wartość własną, której to wartości własnej odpowiada
tylko jeden wektor własny (a nie dwa) i zachodzi konieczność rozkładania wektora warun-
ków początkowych na dwa wektory własne i jeden wektor pierwiastkowy (lub stosowania
sztuczki z różniczkowaniem w twierdzeniu C-H).
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Zadanie Ode.10
Rozwiązać liniowe równanie różniczkowe z niejednorodnością

d

dt





y1
y2
y3



 =





−1 −1 1
1 0 0
−1 −1 1









y1
y2
y3



+





t
2

1 + t



 .

Rozwiązanie: Jest to równanie pierwszego rzędu liniowe (względem szukanego wektora
y(t)) z niejednorodnością. Ma ono postać

ẏ(t) = F ·y(t) + f(t) .

Zgodnie z ogólną metodą rozwiązywania takich równań (już przećwiczoną w zadaniu
Ode.8), szukamy najpierw rozwiązania równania jednorodnego ẏ(t) = F · y(t). Znaj-
dujemy w tym celu pierwiastki wielomianu charakterystycznego

WF (λ) = −λ3 − λ

macierzy F stojącej po prawej stronie. Są nimi λ1 = 0 oraz λ2 = i, λ3 = −i. Odpowiada-
jącymi im wektorami własnymi są





0
1
1



 ,





1
−i
1



 ,





1
i
1



 .

Ogólne rozwiązanie równania jednorodnego ma postać y(t) = exp(tF ) · yconst, gdzie
yconst = (a, b, c) jest jakimś dowolnym wektorem (którego na razie nie należy utożsa-
miać z wektorem warunków początkowych y(t = 0) = y0; to, czy takie utożsamienie
będzie można zrobić, zależy od wyboru szczególnego rozwiązania równania niejednorod-
nego). Ponieważ macierz F jest diagonalizowalna, aby znaleźć etF rozkładamy dowolny
wektor yconst na wektory własne F :




a
b
c



 = (c− a)





0
1
1



+
1

2
[a+ i(a + b− c)]





1
−i
1



+
1

2
[a− i(a + b− c)]





1
i
1



 ,

i działamy nań macierzą etF :

etF ·





a
b
c



 = (c− a)





0
1
1



+
1

2
[a+ i(a + b− c)]eit





1
−i
1



+
1

2
[a− i(a+ b− c)]e−it





1
i
1





=





1
2
a[(1 + i)eit + (1− i)e−it] + i

2
b(eit − e−it)− i

2
c(eit − e−it)

c− a + 1
2
a[(1− i)eit + (1 + i)e−it] + 1

2
b(eit + e−it)− 1

2
c(eit + e−it)

c− a+ 1
2
a[(1 + i)eit + (1− i)e−it] + i

2
b(eit − e−it)− i

2
c(eit − e−it)





=





1
2
[(1 + i)eit + (1− i)e−it] i

2
(eit − e−it) − i

2
(eit − e−it)

1
2
[(1− i)eit + (1 + i)e−it]− 1 1

2
(eit + e−it) −1

2
(eit + e−it) + 1

1
2
[(1 + i)eit + (1− i)e−it]− 1 i

2
(eit − e−it) − i

2
(eit − e−it) + 1









a
b
c




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Stojąca tu macierz jest właśnie macierzą etF . Jest ona jawnie rzeczywista. Można ją też
przepisać w postaci

etF =





cos t− sin t − sin t sin t
−1 + cos t+ sin t cos t 1− cos t
−1 + cos t− sin t − sin t 1 + sin t



 .

Aby znaleźć szczególne rozwiązanie równania niejednorodnego, możemy posłużyć się
metodą uzmienniania stałej. “Stałą” jest w tym przypadku stały wektor yconst = (a, b, c).
Szukamy więc rozwiązania w postaci

yinhom(t) = etF ·v(t) .

Wstawiamy ten Ansatz do równania niejednorodnego ẏ(t) = F ·y(t)+ f(t) i otrzymujemy

etF ·v̇(t) = f(t) .

Jak zwykle zdarzyło się to, co się zawsze w takim przypadku zdarza, tj. część wyrazów
skróciła się. Zatem

v̇(t) =
(

etF
)−1 ·f(t) ,

ale odwrotnością macierzy etF jest oczywiście macierz53 e−tF , więc na szczęście nie musimy
bawić się w odwracanie macierzy 3× 3... Wektorowa funkcja v(t) jest zatem dana przez
całkę

v(t) =

∫ t

dt′ e−t′F ·f(t′) ,

a całe najogólniejsze rozwiązanie wyjściowego równania niejednorodnego ma postać

y(t) = etF ·yconst + etF ·
∫ t

dt′ e−t′F ·f(t′) .

Jawnie:

e−tF ·f(t) =





cos t+ sin t sin t − sin t
−1 + cos t− sin t cos t 1− cos t
−1 + cos t+ sin t sin t 1− sin t









t
2

1 + t



 =





t cos t+ sin t
1 + cos t− t sin t
1 + sin t + t cos t



 ,

53Proszę sprawdzić bezpośrednio, że etF · e−tF , czyli




cos t− sin t − sin t sin t
−1 + cos t+ sin t cos t 1− cos t
−1 + cos t− sin t − sin t 1 + sin t









cos t+ sin t sin t − sin t
−1 + cos t− sin t cos t 1− cos t
−1 + cos t+ sin t sin t 1− sin t



 =





1 0 0
0 1 0
0 0 1





- jest to dobry sprawdzian, czy dobrze wyznaczyliśmy macierz etF ! Drugim takim sprawdzianem jest jest
równość d

dt

(

etF
)

= F · etF .
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więc

v(t) =

∫ t

dt′ e−t′F ·f(t′) =





t sin t
t+ t cos t
t+ t sin t



 ,

i wreszcie

yinhom(t) = etF ·v(t) =





cos t− sin t − sin t sin t
−1 + cos t + sin t cos t 1− cos t
−1 + cos t− sin t − sin t 1 + sin t









t sin t
t+ t cos t
t + t sin t



 =





0
2t
t



 .

Jeśli chcemy, by stały wektor yconst miał interpretację warunku początkowego w t = 0,
to całkę w powyższych wzorach należy napisać jako oznaczoną:

y(t) = etF ·y(0) + etF ·
∫ t

0

dt′ e−t′F ·f(t′) ,

tak, by yinhom(0) = 0; jak widać znalezione wyżej rozwiązanie yinhom(t) spełnia ten waru-
nek. Całe rozwiązanie z warunkiem y(0) = (a, b, c) ma zatem postać





y1(t)
y2(t)
y3(t)



 =





a cos t− (a + b− c) sin t
c− a + a sin t+ (a+ b− c) cos t
c− a + a cos t− (a+ b− c) sin t



+





0
2t
t



 .

Przedstawiona tu metoda jest zupełnie ogólna i zadziałałaby także w przypadku,
gdyby macierz F nie była diagonalizowalna. Skoro jednak występująca w zadaniu macierz
F jest diagonalizowalna, można podać znacznie prostszy sposób znalezienia najogólniejszej
postaci rozwiązania. Jak poprzednio wypisujemy najpierw ogólne rozwiązanie równania
jednorodnego:

yhom(t) = A





0
1
1



 + Z eit





1
−i
1



+ Z∗ e−it





1
i
1



 .

Jest ono jawnie rzeczywiste, jeśli Z jest zespoloną stałą.

Aby znaleźć jakieś szczególne rozwiązanie równania niejednorodnego, rozkładamy nie-
jednorodność na znalezione wektory własne macierzy F :





t
2

1 + t



 =





0
1
1



 +
1

2
(t + i)





1
−i
1



+
1

2
(t− i)





1
i
1



 .

Szczególnego rozwiązanie równania niejednorodnego szukamy uzmienniając stałe A i Z w
wypisanym wyżej rozwiązaniu równania jednorodnego

yinhom(t) = C(t)





0
1
1



 +D(t) eit





1
−i
1



+D∗(t) e−it





1
i
1



 .
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Po wstawieniu tego do wyjściowego równania niejednorodnego wyrazy bez pochodnych
funkcji C(t) i D(t) redukują się i otrzymujemy (kropki oznaczają pochodne po t)

Ċ(t)





0
1
1



+ Ḋ(t) eit





1
−i
1



+ Ḋ∗(t) e−it





1
i
1



 =





0
1
1



+
t + i

2





1
−i
1



+
t− i

2





1
i
1



 .

Ponieważ wektory własne macierzy F są liniowo niezależne, daje to następujące równania

Ċ(t) = 1 , Ḋ(t) eit =
1

2
(t + i) , Ḋ∗(t) e−it =

1

2
(t− i)

(trzecie równanie jest sprzężeniem zespolonym drugiego). Stąd

C(t) = t , D(t) =
1

2

∫

dt e−it (t + i) =
i

2
t e−it .

Pełne rozwiązanie równania niejednorodego ma zatem postać

y(t) = (A + t)





0
1
1



+

(

Z eit +
i

2
t

)





1
−i
1



+

(

Z∗ e−it − i

2
t

)





1
i
1



 .

Wstawiając tu wyznaczone już wcześniej (przy okazji rozwiązywania tego układu równań
metodą ogólną) współczynniki rozkładu warunku początkowego y(0) = (a, b, c) na wek-
tory własne macierzy F : A = c− a, Z = 1

2
[a+ i(a + b− c)] można się przekonać, że jest

to to samo rozwiązanie, co uzyskane poprzednio.

Uproszczoną metodą zademonstrowaną wyżej można się także posłużyć do rozwiązania
następującego zadania

Zadanie Ode.11
Rozwiązać układ liniowych równań różniczkowych drugiego rzędu

d2

dt2
y1(t) + ω2 ( 2y1 − y2 − y3) = 0

d2

dt2
y2(t) + ω2(−y1 + 2y2 − y3) = 0

d2

dt2
y3(t) + ω2(−y1 − y2 + 2y3) = 0 .

Rozwiązanie: Układ ten można zapisać w postaci macierzowej

d2

dt2





y1
y2
y3



 = ω2





−2 1 1
1 −1 1
1 1 −2









y1
y2
y3



 .
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Wartościami własnymi występującej tu macierzy są λ1 = 0 (pojedyncza) i λ2 = −3
(podwójna), a odpowiadającymi im wektorami własnymi są

λ1 :





1
1
1



 , λ2 :





1
0
−1



 i





0
1
−1



 .

Mimo że jedna wartość własna ma krotność dwa, macierz jest diagonalizowalna. (Oczy-
wiście zamiast podanych dwu wektorów własnych odpowiadających λ2 = −3, można by
wziąć jakieś inne dwie kombinacje liniowe tychże). Rozwiązania możemy więc szukać w
potaci Ansatzu





y1(t)
y2(t)
y3(t)



 = a(t)





1
1
1



+ b(t)





1
0
−1



+ c(t)





0
1
−1



 .

Po wstawieniu do równania otrzymujemy

d2a(t)

dt2





1
1
1



+
d2b(t)

dt2





1
0
−1



+
d2c(t)

dt2





0
1
−1



 = −3ω2





1
0
−1



− 3ω2





0
1
−1



 .

Skorzystaliśmy tu z faktu, że macierz działając na wektor własny mnoży go przez odpo-
wiadającą mu wartość własną. Ponieważ wektory własne są liniowo niezależne, muszą
zachodzić równości

d2a(t)

dt2
= 0 ,

d2b(t)

dt2
= −3ω2b(t) ,

d2c(t)

dt2
= −3ω2c(t) ,

których rozwiązania są oczywiste: a(t) = A1 + A2t, b(t) = B1 cosωt + B2 sinωt i c(t) =
C1 cosωt+ C2 sinωt.

Przy okazji warto się zastanowić, jak należałoby rozwiązać podobne liniowe równanie
drugiego rzędu w przypadku, gdyby macierz nie była diagonalizowalna (tj. byłoby mniej
wektorów własnych niż potrzeba). Równanie

d2

dt2
y(t) = F ·y(t) ,

w którym y(t) jest n-wymiarowym wektorem, a F macierzą n × n można oczywiście
przerobić na równanie pierwszego rzędu:

d

dt

(

y(t)
ẏ(t)

)

=

(

0 I
F 0

)(

y(t)
ẏ(t)

)

,

czyli na standardowe równanie macierzowe postaci v̇(t) = F̃ · v(t), którego rozwiązaniem
jest

v(t) = etF̃ ·vconst , gdzie F̃ =

(

0 I
F 0

)

, a vconst =

(

y0

ẏ0

)

.
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Istnieje też prosty związek między wielomianami charakterystycznymi wyjściowej macie-
rzy F i macierzy F̃ :

WF̃ (λ̃) =WF (λ̃
2) .

Jeśli więc λ1, . . . , λk są wartościami własnymi o krotnościach n1, . . . , nk (n1+ . . .+nk = n)
macierzy F , to wartościami własnymi λ̃ macierzy F̃ są ±

√
λ1, . . . ,±

√
λk o takich samych

krotnościach.54 Można też podać związek między wektorami własnymi macierzy F̃ i ma-
cierzy F : jeśli w(i) jest (n-wymiarowym) wektorem własnym macierzy F odpowiadającym
jej wartości własnej λi, to wektorami własnymi macierzy F̃ odpowiadającymi wartościom
własnym ±

√
λi są (2n-wymiarowe) wektory

w̃(±i) ≡
(

w(i)

±
√
λiw(i)

)

.

Jasne jest więc, że jeśli macierz F jest diagonalizowalna tj. ma n wektorów własnych, to
istnieje55 2n wektorów własnych macierzy F̃ i ogólne rozwiązanie równania v̇(t) = F̃ ·v(t)
można napisać od ręki

v(t) =
∑

±i

A±i e
tλ̃±i w̃(±i) ,

gdzie λ̃±i ≡ ±
√
λi. Suma rozciąga się tu na 2n wektorów własnych w̃(±i) macierzy F̃ .

Kto wprawny, ten od razu widzi, że “górne pięterko” rozwiązania v(t), tzn. n górnych
składowych tego wektora, jest tym samym rozwiązaniem, które uzyskaliśmy wyżej stosując
uproszczoną metodę. Podejście poprzez sprowadzenie wyjściowego równania drugiego
rzędu do równania pierwszego rzędu z macierzą F̃ zadziała jednak także i wtedy, gdy
uproszczone zawiedzie, tj. gdy macierz F okaże się niediagonalizowalna. Oczywiście
musimy wtedy szukać wektorów pierwiastkowych macierzy 2n×2n, tj. wektorów (liniowo
niezależnych od wektorów własnych), na których zeruje się macierz (gdy ni = 2)

(

∓
√
λiI I
F ∓

√
λiI

)(

∓
√
λiI I
F ∓

√
λiI

)

=

(

F + λiI ∓2
√
λiI

∓2
√
λiF F + λiI

)

,

lub stosować sztuczki różniczkowaniem w twierdzeniu Cayleya-Hamiltona. Cała proce-
dura może być uciążliwa, niemniej w “principie” daje się przeprowadzić.

54Wyjątek stanowi wartość własna równa zeru: jeśli macierz F ma taką wartość własną o krotności n0,
to macierz F̃ ma wartość własną λ̃ = 0 o krotności 2n0.

55Znów przypadkiem szczególnym jest występowanie zerowej wartości własnej macierzy F : macierz
F̃ ma wtedy tylko jeden wektor własny odpowiadający λ̃ = 0 i trzeba znaleźć wektor pierwiastkowy.
Nietrudno zobaczyć, że tymi dwoma wektorami są

w̃(0) =

(

w(0)

0

)

(w. wl/asny) oraz w̃(p) =

(

w(0)

w(0)

)

(w. pierwiastkowy, bo F̃ ·w̃(p) = w̃(0)).

Patrząc na rozwiązane właśnie zadanie widzimy dlaczego tak jest: musi wtedy w rozwiązaniu wystąpić
człon potęgowy (w tym zadaniu liniowy) w t, a to właśnie, jak już wiemy, gwarantuje wektor pierwiast-
kowy.
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Zadanie Ode.12
Rozwiązać liniowe równanie różniczkowe drugiego rzędu

d2

dt2

(

y1(t)
y2(t)

)

=

(

2 2
−2 6

)(

y1(t)
y2(t)

)

.

Rozwiązanie: Występująca tu macierz F ma jedną podwójną wartość własną λ = 4 i
tylko jeden wektor własny

w =

(

1
1

)

,

i sztuczka z rozpisaniem y(t) na wektory własneM nie uda się. Trzeba przerobić wyjściowe
równanie drugiego rzędu na równanie pierwszego rzędu

d

dt









y1(t)
y2(t)
ẏ1(t)
ẏ2(t)









=









0 0 1 0
0 0 0 1
2 2 0 0
−2 6 0 0

















y1(t)
y2(t)
ẏ1(t)
ẏ2(t)









.

Wektorami własnym figurującej w tej postaci równania macierzy F̃ są

λ̃(+) = 2 : w̃(+) =









1
1
2
2









oraz λ̃(−) = −2 : w̃(−) =









1
1
−2
−2









,

ale trzeba znaleźć odpowiadające tym wartościom własnym wektory pierwiastkowe. Szu-
kamy zatem rozwiązań równań (macierze (F̃ ∓ 2I)2 możemy obliczyć korzystając z poda-
nego wyżej ogólnego wzoru)









6 2 −4 0
−2 10 0 −4
−8 −8 6 2
8 −24 −2 10

















a(+)

b(+)

c(+)

d(+)









=









0
0
0
0









,

oraz








6 2 4 0
−2 10 0 4
8 8 6 2
−8 24 −2 10

















a(−)

b(−)

c(−)

d(−)









=









0
0
0
0









.

Znajdujemy56 w ten sposób dwa wektory pierwiastkowe ũ(+) i ũ(−) odpowiadające war-
tościom własnym λ̃(+) = 2 i λ̃(−) = −2:

ũ(+) =









2
0
3
−1









, ũ(−) =









2
0
−3
1









.

56Ponieważ do wektora pierwiastkowego można zawsze dodać wielokrotność odpowiadającego tej samej
wartości własnej wektora własnego, można szukać rozwiązań, w których b(±) = 0.
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Przedstawiamy następnie dowolny wektor (warunku początkowego) w postaci kombinacji
liniowej α(+)w̃(+) + β(+)ũ(+) +α(−)w̃(−) + β(−)ũ(−) wektorów własnych i pierwiastkowych:









a
b
c
d









= α(+)









1
1
2
2









+ β(+)









2
0
3
−1









+ α(−)









1
1
−2
−2









+ β(−)









2
0
−3
1









.

Dość łatwo znajdujemy, że

α(±) =
1

2
b± 1

16
(c+ 3d) ,

β(±) =
1

4
(a− b)± 1

8
(c− d) .

Rozwiązaniem równania v̇(t) = F̃ · v(t) jest

v(t) = etF̃ ·(α(+) w̃(+) + β(+) ũ(+) + α(−) w̃(−) + β(−) ũ(−))

= α(+) e
2t w̃(+) + β(+) e

2t et(F̃−2I) ·ũ(+)

+α(−) e
−2t w̃(−) + β(−) e

−2t et(F̃+2I) ·ũ(−)

Jak zwykle działanie etF̃ na wektory pierwiastkowe, po wyfaktoryzowaniu czynnika etλ̃

możemy znaleźć przez rozwinięcie et(F̃−λ̃) w szereg Taylora: ponieważ (F̃ − λ̃)2 zeruje się
na wektorze pierwiastkowym (odpowiadającym λ̃), szereg urywa się i dostajemy

et(F̃−2I) ·ũ(+) = ũ(+) + t(F̃ − 2I)·ũ(+) =









2− t
−t

3− 2t
−1− 2t









,

et(F̃+2I) ·ũ(−) = ũ(−) + t(F̃ + 2I)·ũ(−) =









2 + t
t

−3 − 2t
1− 2t









,

Ogólne rozwiązanie ma zatem postać








y1(t)
y2(t)
ẏ1(t)
ẏ2(t)









= e2t















α(+)









1
1
2
2









+ β(+)









2− t
−t

3− 2t
−1 − 2t























+e−2t















α(−)









1
1
−2
−2









+ β(−)









2 + t
t

−3− 2t
1− 2t























.
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Nietrudno dostrzec, że “dolne pięterka” są, tak jak być powinno, pochodnymi odpowied-
nich “górnych pięterek”. Możemy zatem napisać rozwiązania

y1(t) = α(+) e
2t + β(+) (2− t) e2t + α(−) e

−2t + β(−) (2 + t) e−2t ,

y2(t) = α(+) e
2t − β(+) t e

2t + α(−) e
−2t + β(−) t e

−2t .

Sprawdzenie, że spełniają one układ równań d2y1/dt2 = 2y1 +2y2, d2y1/dt2 = −2y1 +6y2
pozostawiamy jako proste ale obowiązkowe (wyrabianie niezbędnych nawyków!) ćwicze-
nie.

Oczywiście podany układ równań można też rozwiązać prościej: Dodając i odejmując
od siebie wyjściowe równania

d2

dt2
y1 = 2y1 + 2y2

d2

dt2
y2 = −2y1 + 6y2

i wprowadzając nowe zmienne ξ = y1+y2, η = y1−y2 otrzymujemy równoważne równania

d2

dt2
ξ = 4ξ − 4η

d2

dt2
η = 4η .

Drugie z tych równań daje się natychmiast rozwiązać:

η(t) = 2β(+) e
2t + 2β(−) e

−2t .

Dowolne stałe oznaczyliśmy 2β(±), żeby od razu uzyskać tę samą postać rozwiązania
układu, co poprzednio. Pierwsze równanie jest wtedy równaniem liniowym z niejednorod-
nością. Jego rozwiązanie jest więc, jak zwykle, sumą ogólnego rozwiązania ξhom(t) rów-
nania jednorodnego d2ξ/dt2 = 4ξ i jakiegoś szczególnego rozwiązania ξinhom(t) równania
niejednorodnego. Ogólna metoda szukania takiego szczególnego rozwiązania jest podana
w zadaniach Ode.13 i Ode.14. Tu postaramy się je znaleźć stosując prosty Ansatz oparty
na tym, że w takich sytuacjach, gdy macierz problemu liniowego jest niediagonalizowalna,
w rozwiązaniu występują wyrazy proporcjonalne do t eλt. Podstawiamy zatem

ξinhom(t) = (A+ +B+t) e
2t + (A− +B−t) e

−2t .

do równania d2ξ/dt2 = 4ξ − 8β(+)e
2t − 8β(−)e

−2t i mamy

4(A+ +B+ +B+t) e
2t + 4(A− − B− +B−t) e

−2t = 4(A+ +B+t) e
2t + 4(A− +B−t) e

−2t

− 8β(+)e
2t − 8β(−)e

−2t .

Widać, że równanie będzie spełnione, jeśli podstawimy B+ = −2β(+) i B− = 2β(−).
Stałe A± są dowolne, bo to są po prostu stałe w ogólnym rozwiązaniu ξhom(t) równania
jednorodnego. Zapiszemy je jako A± = 2(α(±) + β(±)).
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Mamy więc rozwiązania

ξ(t) = 2 (α(+) + β(+) − β(+)t) e
2t + 2 (α(−) + β(−) + β(−)t) e

−2t

η(t) = 2β(+) e
2t + 2β(−) e

−2t .

Biorąc połowę sumy i połowę różnicy dostajemy

y1(t) = α(+) e
2t + β(+)(2− t) e2t + α(−) e

−2t + β(−)(2 + t) e−2t

y2(t) = α(+) e
2t − β(+) t e

2t + α(−) e
−2t + β(−) t e

−2t ,

czyli te same rozwiązania, co poprzedno.

Rozpatrzymy teraz ogólne równanie drugiego rzędu liniowe i liniowe z niejednorodno-
ścią o stałych współczynnikach na jedną tylko funkcję. Użytą tu metodę nie polegającą
na przekształceniu takiego równania w układ dwóch rówanań pierwszego rzędu można też
rozciągnąć na analogiczne równania wyższego rzędu. Jest to proste w przypadku równań
jednorodnych i trochę trudniejsze w przypadku niejednorodnych.

Zadanie Ode.13
Rozwiązać liniowe równanie różniczkowe (l.r.r.) drugiego rzędu

d2

dt2
y + a

d

dt
y + by = 0 ,

o stałych i rzeczywistych współczynnikach a i b, przyjmując jako warunki początkowe57

y(0) = y0 oraz ẏ(0) = ẏ0 (równanie różniczkowe zwyczajne rzędu n wymaga zadania n
warunków początkowych). Rozpatrzyć wszystkie możliwe przypadki.
Rozwiązanie: Postulujemy rozwiązanie postaci58 y(t) = A exp(λt). Daje to równanie
kwadratowe na λ (także zwane równaniem charakterystycznym l.r.r.):

λ2 + aλ+ b = 0 .

Równanie to może mieć dwa różne pierwiastki rzeczywiste, jeden rzeczywisty pierwiastek
podwójny lub dwa wzajemnie sprzężone pierwiastki zespolone.

• Jeśli pierwiastkami są rzeczywiste i różne λ1 i λ2, to ogólnym rozwiązaniem jest

y(t) = A1 e
λ1t + A2 e

λ2t .

Z podanych warunków początkowych wyznaczamy stałe A1 i A2:

A1 + A2 = y(0) = y0 ,

λ1A1 + λ2A2 = ẏ(0) = ẏ0 ,

57Ogólniejszymi warunkami byłyby y(t0) = y0 oraz ẏ(t0) = ẏ0; czasem w zastosowaniach warunkami
mogą być y(t1) = y1 oraz ẏ(t2) = ẏ2.

58Fizyk wykształcony na Feynmana Wykładach z Fizyki zwykł podstawiać raczej y(t) = A exp(iωt),
ale wynik końcowy oczywiście od tego nie zależy.
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Dostajemy stąd

y(t) =
1

λ2 − λ1

[

(λ2 y0 − ẏ0) e
λ1t − (λ1 y0 − ẏ0) e

λ2t
]

≡ 1

λ2 − λ1

[

y0
(

λ2 e
λ1t − λ1 e

λ2t
)

− ẏ0
(

eλ1t − eλ2t
)]

.

• Jeśli jest jeden pierwiastek podwójny λ = −1
2
a, tj. gdy a2 = 4b (∆ = 0), wówczas

rozwiązaniem jest

y(t) = (A+B t) eλt .

Sprawdźmy to:

d

dt
y(t) = λ (A+B t) eλt +B eλt ,

d2

dt2
y(t) = λ2 (A+B t) eλt + 2λB eλt .

Wstawiamy to do lewej strony równania i mamy

λ2 (A +B t) eλt + 2λB eλt + a
[

λ (A+B t) eλt +B eλt
]

+ b (A+B t) eλt .

Ponieważ A i B są dwiema dowolnymi stałymi, wyrazy je mnożące powinny zerować
się niezależnie. Istotnie: współczynnik przy Aeλt jest równy λ2 + λa + b = 0;
współczynnikiem przy Beλt jest zaś (λ2+λa+ b)t+2λ+a; znika on, gdyż λ = −1

2
a.

Z warunków początkowych mamy w tym przypadku:

A = y0 , B + λA = ẏ0 ,

i stąd

y(t) = [y0 + (ẏ0 − λ y0) t] e
λt .

• Wreszcie, gdy są dwa pierwiastki zespolone λ i λ∗ rozwiązanie ma ogólną postać

y(t) = (A+ iB) eλt + (A− iB) eλ
∗t .

Jest ono, jak łatwo zobaczyć, rzeczywiste (y∗(t) = y(t)). Znów są dwie stałe do-
wolne, które należy wyznaczyć z warunków początkowych:

2A = y0 , (A+ iB)λ+ (A− iB)λ∗ = ẏ0 .

Stąd B = −i[2ẏ0 − (λ + λ∗)y0]/[2(λ − λ∗)] i rozwiązanie uwzględniające warunki
początkowe ma postać:

y(t) =
1

2
y0
(

eλt + eλ
∗t
)

+
2ẏ0 − (λ+ λ∗)y0

2(λ− λ∗)

(

eλt − eλ
∗t
)

.

Na późniejszy użytek przepiszemy je jeszcze tak

y(t) =
y0

λ∗ − λ

(

λ∗eλt − λ eλ
∗t
)

+
ẏ0

λ∗ − λ

(

eλ
∗t − eλt

)

.
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Dobrze jest zobaczyć, że rozwiązanie w przypadku, gdy jest jeden pierwiastek rze-
czywisty podwójny można otrzymać jako granicę λ2 → λ1 ≡ λ pierwszego przypadku i
jako granicę Imλ → 0 przypadku trzeciego. W pierwszym przypadku obliczamy granice
(wykorzystując definicję pochodnej jako ilorazu różnicowego)

lim
λ2→λ1≡λ

eλ2t − eλ1t

λ2 − λ1
=

d

dλ
eλt = t eλt

lim
λ2→λ1≡λ

λ2 e
λ1t − λ1 e

λ2t

λ2 − λ1
= lim

λ2→λ1

1

λ2 − λ1

[

(λ2 − λ1)e
λ1t + λ1e

λ1t − (λ1 − λ2)e
λ2t − λ2e

λ2t
]

= lim
λ2→λ1

{

eλ1t + eλ2t − λ2 e
λ2t − λ1 e

λ1t

λ2 − λ1

}

= 2 eλt − d

dλ

(

λ eλt
)

= 2 eλt − eλt − λ t eλt = (1− λ t) eλt .

Zatem

lim
λ2→λ1

y(t) = lim
λ2→λ1

1

λ2 − λ1

[

y0
(

λ2 e
λ1t − λ1 e

λ2t
)

+ ẏ0
(

eλ2t − eλ1t
)]

= y0 (1− λ t) eλt + ẏ0 t e
λt ,

co jest tym samym wynikiem, który uzyskaliśmy w punkcie drugim. Podobnie w trzecim
przypadku, gdy λ = ξ + iη (i ξ utożsamimy z pojedynczym rzeczywistym pierwiastkiem
równania charakterystycznego) granica Imλ ≡ η → 0 daje

lim
η→0

y(t) = lim
η→0

{

1

2
y0 e

ξt
(

eiηt + e−iηt
)

+
2ẏ0 − 2ξ y0

4iη
eξt
(

eiηt − e−iηt
)

}

= y0 e
ξt + (ẏ0 − ξ y0) e

ξt lim
η→0

eiηt − e−iηt

2iη

= y0 e
ξt + (ẏ0 − ξ y0) e

ξt lim
η→0

sin(ηt)

η
= [y0 + (ẏ0 − ξ y0) t] e

ξt ,

czyli ten sam rezultat, co poprzednio. Pokazuje to, że przy ustalonych warunkach począt-
kowych rozwiązanie jest ciągłą funkcją parametrów a i b równania.

Zadanie Ode.14
Rozwiązać to samo, co w Zadaniu Ode.13 równanie różniczkowe

d2

dt2
y + a

d

dt
y + by = 0 ,

y(0) = y0, ẏ(0) = ẏ0, sprowadzając je do równania pierwszego rzędu.
Rozwiązanie: Wprowadzamy oznaczenia: y1 ≡ y oraz y2 ≡ ẏ = ẏ1. Mamy wtedy

d

dt
y1 = y2 ,

d

dt
y2 =

d2

dt2
y = −a d

dt
y − by ≡ −ay2 − by1 ,
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lub to samo macierzowo

d

dt

(

y1
y2

)

=

(

0 1
−b −a

)(

y1
y2

)

≡ A ·
(

y1
y2

)

.

Rozwiązaniem równania z podanymi warunkami początkowymi y1(0) = y01 ≡ y0, y2(0) =
y02 ≡ ẏ0 jest wtedy59

(

y1(t)
y2(t)

)

= etA ·
(

y0
ẏ0

)

.

Aby znaleźć eksponens macierzy A szukamy jej wektorów własnych, rozwiązując jak
zwykle jej równanie charakterystyczne

det

(

−λ 1
−b −a− λ

)

= λ2 + λa+ b = 0 ,

Wyszło oczywiście to samo równanie charakterystyczne, co w poprzedniej metodzie. Za-
łóżmy najpierw, że ma ono dwa różne pierwiastki λ1 i λ2. Równanie wyznaczające wektory
własne

(

−λ1,2 1
−b −a− λ1,2

)(

α1,2

β1,2

)

=

(

0
0

)

daje

w1 =

(

1
λ1

)

, w2 =

(

1
λ2

)

,

(ponieważ dwa te równania muszą być liniowo zależne rozwiązujemy górne kładąc po
prostu α1,2 = 1). Rozkładamy następnie warunek początkowy na wektory własne w1 i w2

(

y0
ẏ0

)

= ζ1

(

1
λ1

)

+ ζ2

(

1
λ2

)

≡
(

1 1
λ1 λ2

)(

ζ1
ζ2

)

,

i wyznaczywszy współczynniki rozkładu ζ1 i ζ2 działamy na wektor warunków początko-
wych macierzą exp(tA):

(

y1(t)
y2(t)

)

= etA ·
{

λ2 y0 − ẏ0
λ2 − λ1

(

1
λ1

)

− λ1 y0 − ẏ0
λ2 − λ1

(

1
λ2

)}

=
λ2 y0 − ẏ0
λ2 − λ1

etA ·
(

1
λ1

)

− λ1 y0 − ẏ0
λ2 − λ1

etA ·
(

1
λ2

)

.

59Ogólniej, gdy warunki zadane są w t0: y1(t0) = y01 , y2(t0) = y02 , rozwiązanie ma postać
(

y1(t)
y2(t)

)

= e(t−t0)A ·
(

y01
y02

)

.
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Ponieważ exp(tA) działa tu na wektory własne macierzy A otrzymujemy
(

y1(t)
y2(t)

)

=
λ2 y0 − ẏ0
λ2 − λ1

etλ1

(

1
λ1

)

− λ1 y0 − ẏ0
λ2 − λ1

etλ2

(

1
λ2

)

.

Górna składowa wektora stojącego po prawej stronie daje

y1(t) ≡ y(t) =
1

λ2 − λ1

[

(λ2 y0 − ẏ0) e
tλ1 − (λ1 y0 − ẏ0) e

tλ2
]

,

co jest rozwiązaniem znalezionym w pierwszym punkcie poprzedniego zadania. Dolna zaś
składowa wektora stojącego po prawej stronie daje po prostu pochodną tego rozwiązania:

y2(t) ≡ ẏ(t) =
1

λ2 − λ1

[

λ1 (λ2 y0 − ẏ0) e
tλ1 − λ2 (λ1 y0 − ẏ0) e

tλ2
]

.

Zauważmy jeszcze, że rozwiązanie to pozostaje słuszne nawet jeśli równanie charaktery-
styczne ma dwa pierwiastki zespolone: podstawiając tu λ1 = λ i λ2 = λ∗ i przegrupowując
wyrazy otrzymujemy od razu rozwiązanie dla tego przypadku wypisane w poprzednim
zadaniu. Jest tak dlatego, że - jak już kiedyś zauważyliśmy - macierz exp(tA) wychodzi
rzeczywista nawet wtedy, gdy “po drodze” do jej znalezienia trzeba rozszerzyć przestrzeń
wektorową nad ciałem R do przestrzeni nad ciałem C.

Rozpatrzmy jeszcze przypadek, gdy jest jeden podwójny pierwiastek λ = −1
2
a rów-

nania charakterystycznego, tj. gdy b = 1
4
a2. Równanie wyznaczające wektor własny ma

wtedy postać
(

−λ 1
−b −a− λ

)(

α
β

)

≡
(

1
2
a 1

−1
4
a2 −1

2
a

)(

α
β

)

=

(

0
0

)

.

Jest wtedy tylko jeden wektor własny, jako który można wziąć wektor
(

2
−a

)

.

Rozkład przestrzeni wektorowej na podprzestrzenie pierwiastkowe jest w tym przypadku
trywialny, gdyż cała prestrzeń wektorowa jest po prostu jedną podprzestrzenią pierwiast-
kową; w związku z tym

(A− λI)2 =

(

1
2
a 1

−1
4
a2 −1

2
a

)(

1
2
a 1

−1
4
a2 −1

2
a

)

=

(

0 0
0 0

)

i jako drugi wektor rozpinający tę podprzestrzeń pierwiastkową (czyli całą przestrzeń)
możemy wybrać dowolny wektor liniowo niezależny od wektora własnego; np. może być
to wektor

(

0
1

)

.
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Rozkładamy teraz wektor warunków początkowych na te dwa wektory i znajdujemy roz-
wiązanie

(

y1(t)
y2(t)

)

= etA ·
{

1

2
y0

(

2
−a

)

+

[

1

2
ay0 + ẏ0

](

0
1

)}

=
1

2
y0 e

λt

(

2
−a

)

+

(

1

2
ay0 + ẏ0

)

eλt [I + t(A− λI)] ·
(

0
1

)

.

W pierwszym wyrazie macierz exp(tA) działa na wektor własny macierzy A, co sprowadza
się do pomnożenia tego wektora przez eλt. W drugim wyrazie zastosowaliśmy stary chwyt
polegający na napisaniu

etA = etλI+t(A−λI) = etλIet(A−λI) = eλtet(A−λI) = eλt
{

I + t(A− λI) +
t2

2
(A− λI)2 + . . .

}

i zauważeniu, że (A−λI)2 i wszystkie wyższe potęgi są tu po prostu macierzami zerowymi.
Zatem

(

y1(t)
y2(t)

)

=
1

2
y0 e

λt

(

2
−a

)

+

(

1

2
ay0 + ẏ0

)

eλt
[(

0
1

)

+ t

(

1
−a/2

)]

i górna składowa daje uzyskane już w poprzednim zadaniu rozwiązanie, a dolna jego
pochodną.

Zadanie Ode.15
Znaleźć ogólne rozwiązanie liniowego równania różniczkowego drugiego rzędu o stałych
współczynnikach z niejednorodnością

d2

dt2
y + 2γ

d

dt
y + ω2

0y = f(t) ,

w przypadku, gdy ω2
0 > γ2 (zgodnie z tradycją fizyczną stałe a i b z porzednich zadań

oznaczyliśmy tu odpowiednio 2γ i ω2
0).

Rozwiązanie: Rozwiązujemy najpierw równanie jednorodne

d2

dt2
y + 2γ

d

dt
y + ω2

0y = 0 ,

podstawiając doń (tym razem dajmy upust naszym fizykalnym nawykom) y(t) = A exp(iΩt).
Dostajemy na Ω równanie kwadratowe

−Ω2 + 2iγ Ω + ω2
0 = 0 ,

które, gdy ω2
0 > γ2, ma dwa różne pierwiastki

Ω = iγ ±
√

ω2
0 − γ2 ≡ iγ ± ω .
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Ogólnym rozwiązaniem jest więc

yhom(t) =
(

Z eiωt + Z∗ e−iωt
)

e−γt .

w którym Z ∈ C jest zespoloną stałą całkowania (czyli są to dwie rzeczywiste stałe
dowolne) i które wygodnie będzie przepisać w postaci

yhom(t) = C1 y1(t) + C2 y2(t) ,

czyli w postaci kombinacji liniowej z rzeczywistymi współczynnikami C1 i C2 dwóch li-
niowo niezależnych rzeczywistych rozwiązań

y1(t) = e−γt sinωt , y2(t) = e−γt cosωt ,

równania jednorodnego

Szukamy następnie jak zwykle jakiegokolwiek (tzw. rozwiązania szczególnego) roz-
wiązania równania niejednorodnego. Możemy próbować znaleźć je metodą uzmiennienia
stałych całkowania w rozwiązaniu równania jednorodnego. Piszemy więc

yinhom(t) = A1(t) y1(t) + A2(t) y2(t) .

Rozwiązanie równania jednorodnego zależy od dwu stałych, więc uzmienniliśmy tu je obie.
Po wstawieniu tego, jak to się nazywa, Ansatzu do równania otrzymujemy

A′′
1 y1 + 2A′

1 y
′
1 + A1 y

′′
1 + 2γ (A′

1 y1 + A1 y
′
1) + ω2

0A1 y1

+A′′
2 y2 + 2A′

2 y
′
2 + A2 y

′′
2 + 2γ (A′

2 y2 + A2 y
′
2) + ω2

0A2 y2 = f(t) .

Jak zwykle część wyrazów wypada, bo y1(t) i y2(t) spełniają równanie jednorodne i mamy

A′′
1 y1 + 2A′

1 y
′
1 + 2γA′

1 y1

+A′′
2 y2 + 2A′

2 y
′
2 + 2γA′

2 y2 = f(t) .

Nie wygląda to jednak wesoło, bo mamy jedno równanie (i to drugiego rzędu) na dwie
nieznane funkcje A1(t) i A2(t). Można by wprawdzie powiedzieć, że skoro szukamy jakie-
gokolwiek rozwiązania równania niejednorodnego, to możemy np. przyjąć, że A2 ≡ 0, ale
to dałoby nam na A1(t) równanie niejednorodne drugiego rzędu (i to gorsze niż to, któ-
rego rozwiązania właśnie szukamy, bo o współczynnikach będących funkcjami t). Sztuczka
polega na tym, by na szukane funkcje A1(t) i A2(t) narzucić dodatkowy warunek

A′
1 y1 + A′

2 y2 = 0 ,

którego konsekwencją jest też związek

A′′
1 y1 + A′

1 y
′
1 + A′′

2 y2 + A′
2 y

′
2 = 0 .

Równanie niejednorodne przybiera wtedy postać

A′
1 y

′
1 + A′

2 y
′
2 = f(t) .
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Poza tym, narzucony związek pozwala wtedy wyrazić np. A′
2 przez A′

1: A
′
2 = −(y1/y2)A

′
2

lub A′
1 = −(y2/y1)A

′
2. Otrzymujemy wtedy na A1(t) i A2(t) równania

A′
1 = − y2

y1y′2 − y′1y2
f(t) , A′

2 =
y1

y1y′2 − y′1y2
f(t) .

Mianownik W (y1, y2) = y1y
′
2− y′1y2 nazywa się wrońskianem.60 Jest on w tym przypadku

równy

W (y1, y2) = y1y
′
2 − y′1y2 = −ω e−2γt .

Zatem

A′
1 =

1

ω
f(t) eγt cosωt , A′

2 = − 1

ω
f(t) eγt sinωt .

Najogólniejsze rozwiązanie równania niejednorodnego ma zatem postać

y(t) = C1 e
−γt sinωt+ C2 e

−γt cosωt+
1

ω
e−γt sinωt

∫ t

dt′ f(t′) eγt
′

cosωt′

− 1

ω
e−γt cosωt

∫ t

dt′ f(t′) eγt
′

sinωt′ .

Dolne granice całek mogą być dowolne - wpływają one tylko na redefinicje dowolnych
stałych C1 i C2 i razem z nimi są wyznaczane przez warunki początkowe.

Zadanie Ode.16
Otrzymać bez sztuczek z Wrońskianami rozwiązanie niejednorodnego liniowego równania
różniczkowego drugiego rzędu o stałych espółczynnikach przerabiając je na liniowy układ
dwóch równań pierwszego rzędu z niejednorodnością.
Rozwiązanie: Jest ono bardzo podobne do tego, co zostało zrobione w Zadaniu Ode.10.
Równanie

d2

dt2
y + a

d

dt
y + b y = f(t) ,

przepisujemy w formie

d

dt

(

y1
y2

)

=

(

0 1
−b −a

)(

y1
y2

)

+

(

0
f(t)

)

,

wprowadzając oznaczenia y1 = y, y2 = y′1. Równanie jednorodne zostało już rozwiązane w
Zadaniu Ode.14. Tu założymy, że stojąca tu macierz F ma dwie różne wartości własne λ1

60Józef Maria Hoene-Wroński (1776-1853) - polski fizyk, matematyk i filozof. Jeden z przedstawicieli
polskiego mesjanizmu. Pamiętamy: Mickiewicz, Towiański i te sprawy - zob. Görgy Spiro “Mesjasze”.
Choć, jak twierdzi Miłosz (w “Ziemi Ulro”), Hoene-Wroński “wierszoklety i jego mistycznej bandy” nie
znosił...
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i λ2 i, co za tym idzie, dwa wektory własne. Potrzebną macierz exp(tF ) możemy znanym
sposobem odczytać działając nią na wypisany już w zadaniu Ode.14 rozkład

(

a
b

)

=
aλ1 − b

λ2 − λ1

(

1
λ1

)

− aλ2 − b

λ2 − λ1

(

1
λ2

)

,

dowolnego wektora na wektory własne. Otrzymujemy w ten sposób

etF =
1

λ2 − λ1

(

λ2 e
tλ1 − λ1 e

tλ2 etλ2 − etλ1

λ1λ2(e
tλ1 − etλ2) λ2 e

tλ2 − λ1 e
tλ1

)

.

Jak zawsze pełne rozwiązanie jest sumą ogólnego rozwiązania yhom równania jednorodnego
i jakiegoś rozwiązania równania niejednorodnego, które konstruujemy podstawiając do
równania niejednorodnego Ansatz yinhom = exp(tF ) · h(t). Daje to na h równanie:

(

h1
h2

)

=

∫

dt e−tF ·
(

0
f(t)

)

.

Po jawnym zadziałaniu macierzą exp(−tF ) da to

h1(t) =
1

λ2 − λ1

∫

dt
(

e−tλ2 − e−tλ1
)

f(t) ,

h2(t) =
1

λ2 − λ1

∫

dt
(

λ2e
−tλ2 − λ1e

−tλ1
)

f(t) .

Otrzymujemy więc wektor yinhom(t) w postaci

1

(λ2 − λ1)2

(

λ2 e
tλ1 − λ1 e

tλ2 etλ2 − etλ1

λ1λ2(e
tλ1 − etλ2) λ2 e

tλ2 − λ1 e
tλ1

)
∫ t

dt′
(

(e−t′λ2 − e−t′λ1)f(t′)
(λ2e

−t′λ2 − λ1e
−t′λ1)f(t′)

)

.

Wygląda trochę zawile, ale trzeba cierpliwie wypisać jawnie pierwsze pięterko tego wektora
(tylko pierwsze jest naprawdę potrzebne, bo to składowa y1 wektora y = yhom + yinhom

jest szukaną funkcją y(t); składowa y2 powinna dać pochodną szukanej funkcji y(t), czyli
powinien zachodzić związek y2 = y′1, który może być użyty do sprawdzenia poprawności
rachunków)

yinhom1 =
1

(λ2 − λ1)2

{

(

λ2 e
tλ1 − λ1 e

tλ2
)

∫ t

dt′
(

e−t′λ2 − e−t′λ1

)

f(t′)

+
(

etλ2 − etλ1
)

∫ t

dt′
(

λ2 e
−t′λ2 − λ1 e

−t′λ1

)

f(t′)

}

.

Z ośmiu wyrazów cztery się parami redukują i zostaje

yinhom1 =
1

(λ2 − λ1)2

{

−λ2 etλ1

∫ t

dt′ e−t′λ1 f(t′)− λ1 e
tλ2

∫ t

dt′ e−t′λ2 f(t′)

+λ2 e
tλ2

∫ t

dt′ e−t′λ2 f(t′) + λ1 e
tλ1

∫ t

dt′ e−t′λ1 f(t′)

}

,
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a po zebraniu razem takich samych całek

yinhom =
1

λ2 − λ1

{

−etλ1

∫ t

dt′ e−t′λ1 f(t′) + etλ2

∫ t

dt′ e−t′λ2 f(t′)

}

.

To zaś jest tym samym, co już było znalezione jako yinhom w zadaniu Ode.15, tylko trochę
ogólniej zapisane. Istotnie, w tamtym Zadaniu założyliśmy, że równanie charakterystyczne
ma dwa wzajemnie sprzężone pierwiastki zespolone. W notacji tego zadania odpowiadan-
łoby to położeniu λ1 = −γ + iω, i λ2 = −γ − iω (gdzie ω =

√

ω2
0 − γ2). W takim

przypadku otrzymane tu rozwiązanie ma postać

yinhom =
i

2ω

{

−e−γt+iωt

∫ t

dt′ eγt
′−iωt′ f(t′) + e−γt−iωt

∫ t

dt′ eγt
′+iωt′ f(t′)

}

.

Po napisaniu e±iωt = cosωt± i sinωt połowa wyrazów się zredukuje i zostanie dokładnie
to, co jako yinhom zostało otrzymane w Zadaniu Ode.15.

Zadanie Ode.17
Znaleźć jakieś rozwiązanie yinhom(t) równania

y′′ + a y′ + b y = f cos(Ωt+ δ) ,

o rzeczywistych współczynnikach a i b.
Rozwiązanie: W przypadku niejednorodności, która ma postać funkcji sinus lub ko-
sinus, albo ogólnie kombinacji eksponensów (ewentualnie mnożonych przez wielomian)
zamiast wykorzystywać ogólne wzory wyprowadzone w poprzednich zadaniach, prościej
jest zastąpić powyższe równanie równaniem

z′′ + a z′ + b z = f̂ eiΩt ,

w którym z może przyjmować wartości zespolone, a f̂ = f eiδ. Powinno być jasne, że część
rzeczywista Re(zinhom) rozwiązania tego równania będzie spełniać wyjściowe równanie
(z f cos(Ωt + δ) jako niejednorodnością), a część urojona Im(zinhom) rozwiązania będzie
spełniać wyjściowe równanie z f sin(Ωt + δ) jako niejednorodnością.

Aby znaleźć rozwiązanie zinhom wystarczy do równania podstawić jako Ansatz zinhom(t)
= A eiΩt. Czynniki eiΩt wtedy wypadają i zostaje równanie algebraiczne na A, którego
rozwiązaniem jest

A =
f̂

−Ω2 + iaΩ + b
=

f̂

(Ω2 − b)2 + a2Ω2
(b− Ω2 − iaΩ) .

Zatem

zinhom(t) =
f

(Ω2 − b)2 + a2Ω2

{[

(b− Ω2) cos(Ωt + δ) + aΩ sin(Ωt+ δ)
]

+i
[

(b− Ω2) sin(Ωt + δ)− aΩcos(Ωt + δ)
]}

.

I teraz można sobie wziąć część rzeczywistą albo urojoną - co tam komu potrzebne...
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Nietrudno się zorientować, że metoda znajdywania szczególnego rozwiązania liniowego
równania drugiego rzędu z niejednorodnością zaprezentowana w Zadaniu Ode.15 pozo-
staje w mocy nawet wtedy, gdy jest to równanie liniowe o współczynnikach, które nie
są stałe, tj. są funkcjami t. Oczywiście jej zastosowanie wymaga znajomości dwu li-
niowo niezależnych rozwiązań równania jednorodnego i to naogół kładzie sprawę, bo gdy
współczynniki tego równania nie są stałe, równanie takie jest trudno rozwiązać.61 Jednak,
gdy (przypadkiem) znane jest już jedno z dwu liniowo niezależnych rozwiązań równania
jednorodnego (podwędziliśmy je komuś, okazyjnie na pchlim targu kupiliśmy, etc...) to,
okazuje się, prosta sztuczka z Wrońskianem pozwala znaleźć także i drugie liniowo nieza-
leżne rozwiązanie i wtedy metoda z Zadania Ode.15 daje się zastosować i można znaleźć
kompletne (zależne od dwu stałych dowolnych) rozwiązanie równania niejednorodnego.
Ilustruje to

Zadanie Ode.17
Znaleźć jakieś rozwiązanie yinhom(t) równania

t2y′′ + 2y′ +
1− 2t

t2
y =

1

t3
,

jeśli wiadomo, że jednym z dwu liniowo niezależnych rozwiązań równania jednorodnego
jest y1(t) = e1/t.
Rozwiązanie: Równanie jest ogólnej postaci

y′′ + a1(t) y
′ + a0(t) y = f(t) .

Wrońskian równania jednorodnego, W (t) = y1y
′
2 − y′1y2, w którym y1(t) i y2(t) są dwoma

liniowo niezależnymi rozwiązaniami tego równania, spełnia równanie różniczkowe pierw-
szego rzędu, w którym występuje funkcja a1(t):

W ′ = −a1(t)W .

Rzeczywiście:

dW

dt
=

d

dt
(y1y

′
2 − y′1y2) = y1y

′′
2 − y′′1y2 ,

(wyrazy z y′1y
′
2 zredukowały się) i jeśli teraz uwzględni się, że y1 i y2 spełniają równanie

jednorodne, tzn. podstawi się tu y′′i = −a1(t)y′i − a0(t)yi, i = 1, 2, to otrzyma się podane
równanie. Zatem Wrońskian jest dany jego rozwiązaniem

W (t) = exp

(

−
∫

dt a1(t)

)

.

61Przedstawiona wcześniej metoda, polegająca na zredukowaniu problemu rozwiązania liniowego rów-
nania jednorodnego drugiego rzędu do rozwiązania układu równań pierwszego rzędu na dwie funkcje jest
niepraktyczna, bo choć można napisać formalne rozwiązanie to bezpośrednie wyliczenie występującego w
nim operatora Pt exp

(∫

dtF (t)
)

, gdzie F (t) jest macierzą 2× 2, jest naogół niewykonalne.
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W przypadku badanego równania a1(t) = 2/t2 i W (t) = C e2/t. Stała całkowania C
odpowiada temu, że zamiast y1(t) i y2(t) jako liniowo niezależne rozwiązania równania
jednorodnego można by wziąć C1y1(t) i C2y2(t) z dowolnymi (byle nie zerowymi) stałymi
C1 i C2.

Jeśli znane jest jedno rozwiązanie równania jednorodnego y1(t), to znajomość jawnej
postaci Wrońskianu może zostać wykorzystana do znalezienia drugiego jako rozwiązania
liniowego równania różniczkowego pierwszego rzędu z niejednorodnością:

y1 y
′
2 − y′1 y2 =W (t) ,

które wobec tego można rozwiązać znaną już metodą uzmiennienia stałej.
W przypadku rozpatrywanego tu równania ma ono postać

e1/t y′2 +
1

t2
e1/t y2 = C e2/t ,

gdzie C jest dowolną stałą całkowania. Całkujemy najpierw równanie jednorodne:

y′2 +
1

t2
y2 = 0 ,

co da y2hom(t) = D e1/t. Uzmienniamy stałą D, czyli szukamy y2inhom(t) w postaci
y2inhom(t) = h(t) e1/t. Funkcja h(t) spełnia zatem równanie h′ = C, czyli h(t) = Ct
(tu, jakzwykle, stałą całkowania można pominąć) Ogólne rozwiązanie równania z Wroń-
skianem na y2 ma postać

y2(t) = De1/t + C t e1/t ,

ale że potrzebne nam są jakiekolwiek dwa liniowo niezależne rozwiązania wyjściowego
równania jednorodnego, możemy jako to drugie wziąć po prostu y2(t) = te1/t. Sprawdźmy
(dla pewności), że y1(t) i y2(t) spełniają wyjściowe równanie jednorodne

y1 = e1/t , y′1 = − 1

t2
e1/t , y′′1 =

1

t4
e1/t +

2

t3
e1/t ,

y2 = t e1/t , y′2 = e1/t − 1

t
e1/t , y′′2 =

1

t3
e1/t .

Wstawiamy do równania i sprawdzamy:

t2
(

1

t4
e1/t +

2

t3
e1/t
)

+ 2

(

− 1

t2
e1/t
)

+

(

1

t2
− 2

t

)

e1/t = 0 ,

t2
(

1

t3
e1/t
)

+ 2

(

e1/t − 1

t
e1/t
)

+

(

1

t2
− 2

t

)

t e1/t = 0 .

Zgodnie z metodą z Zadania Ode.15 szukamy teraz szczególnego rozwiązania wyjścio-
wego równania niejednorodnego w postaci

yinh = A1(t) y1(t) + A2(t) y2(t) ,
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narzucając warunek A′
1(t) y1(t) + A′

2(t) y2(t) = 0. Kopiując z Zadania Ode.15, piszemy
równania na A1(t) i A2(t):

A′
1(t) = − y2(t)

W (t)
f(t) = −t e

1/t

e2/t
f(t) = −t e−1/t 1

t5
= −e−1/t 1

t4
,

A′
2(t) = − y2(t)

W (t)
f(t) =

e1/t

e2/t
f(t) = e−1/t 1

t5
.

(Tu Wrońskian już jest jednoznaczny - niema w nim dowolnej stałej - bo wybraliśmy
konkretne y1(t) i y2(t).) Proste całkowanie (podstawiamy ξ = 1/t) daje

A1(t) = −
(

2 +
2

t
+

1

t2

)

e−1/t ,

A2(t) =

(

6 +
6

t
+

3

t2
+

1

t3

)

e−1/t ,

i stąd

yinh(t) = 4 + 6t +
1

t
.

Łatwo sprawdzić, że istotnie jest to rozwiązanie wyjściowego równania niejednorodnego.
Najogólniejsze jego rozwiązanie ma więc postać

y(t) = C1y1(t) + C2y2(t) + yinh(t) = (C1 + C2 t) e
1/t + 4 + 6t+

1

t
.
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PDE pierwszego rzędu

Jako zapowiadane zwieńczenie tego krótkiego kursu równań różniczkowych omówimy klasę
równań różniczkowych cząstkowych, które rozwiązuje się sprowadzając problem do roz-
wiązania kilku sprzężonych różniczkowych równań zwyczajnych. Nazywa się to metodą
charakterystyk. Stosuje się ona do równań różniczkowych cząstkowych pierwszego rzędu,
tj. takich, w których występuje szukana funkcja62 F (ξ1, . . . , ξn+1) i tylko jej pierwsze
pochodne. Równania te są ogólnie postaci

G
(

F, ∂iF, ξ
i
)

≡ G
(

F, pi, ξ
i
)

= 0 .

Użyta tu została standardowa skrótowa notacja ∂iF ≡ ∂F/∂ξi. Sama funkcja G(·, ·, ·)
może być nieliniową funkcją swoich argumentów, ale metoda charakterystyk upraszcza się
znacznie, jeśli G zależy od F liniowo (rozumiejąc tu pochodne jako operacje działające
na F liniowo) lub quasi-liniowo, tj. jeśli

G
(

F, ∂iF, ξ
i
)

=

(

V i(ξ)
∂

∂ξi
+ C(ξ)

)

F = 0 ,

lub

G
(

F, ∂iF, ξ
i
)

= V i(ξ)
∂F

∂ξi
+ C(ξ) = 0 .

Przy analizie równań różniczkowych cząstkowych wygodne jest spojrzenie geome-
tryczne. Zmienne (ξ1, . . . , ξn+1) dobrze jest widzieć jako współrzędne na pewnej n + 1
wymiarowej rozmaitości63 Ξ. Szukana funkcja F (ξ1, . . . , ξn+1) jest wtedy funkcją okre-
śloną naprawdę na punktach p tej rozmaitości. Naturalnym zaś zagadnieniem, przez ma-
tematyków zwanym zagadnieniem Cauchy’ego (znów ten Cauchy!), jest znalezienie funkcji
F na Ξ (lub jakimś otwartym podzbiorze Ξ), jeśli jest ona zadana na podrozmaitości Σ
wymiaru n zanurzonej w rozmaitości Ξ (lub w jej otwartym podzbiorze).

Omówimy najpierw metodę rozwiązywania równań (quasi-)liniowych. W tych przy-
padkach procedura jest prosta: z każdego punktu pΣ o współrzędnych (ξ1pΣ, . . . , ξ

n+1
pΣ

)
podrozmaitości Σ prowadzimy charakterystykę ξ̄i(t, ξpΣ), tj. krzywą w Ξ, w każdym

62Zwykle w zastosowaniach jedna ze zmiennych ξi jest jakoś wyróżniona i dlatego przyjmujemy tu, że
zmiennych jest n+ 1 (a nie do n).

63O r ozmaitościach już w tym skrypcie było (przy okazji objętości i pól powierzchni), więc tylko przy-
pomnijmy, że dla fizyka jest to takie coś, co można obmacać i co można sparametryzować współrzędnymi,
tj. każdy punkt rozmaitości identyfikować przez podanie wartości kilku zmiennych. Na danej rozmaitości
można wprowadzać różne układy współrzędnych i tu właśnie kryje się wielka wygoda traktowania wielu
przestrzeni, czy zbiorów jak rozmaitości. Jeśli dla kogoś te uwagi są zbyt abstrakcyjne, to niech ma przed
oczyma sferę zanurzoną w zwykłej przestrzeni R3 określoną równaniem x2 + y2 + z2 − R2 = 0; sfera
taka jest właśnie rozmaitością, a naturalnymi na niej współrzędnymi są kąty ϑ i ϕ, ale lokalnie mogą
współrzędnymi być kartezjańskie x i y lub x i z etc. Każda funkcja określona na rozmaitości jest funkcją
współrzędnych tę rozmaitość (lub jej część) parametryzujących (każda funkcja określona na sferze jest
funkcją kątów ϑ i ϕ).

133



swoim punkcie p ∈ Ξ styczną do wektora V i(ξ) (wielkości V i(ξ) można w geometrycznym
obrazku uważać za składowe pewnego pola wektorów zadanego na Ξ; są one składowymi
pola wektorowego w bazie stowarzyszonej z układem współrzędnych ξi), tj. spełniającą
równania

d

dt
ξ̄i(t, ξpΣ) = V i(ξ̄(t, ξpΣ)) , ξ̄i(0, ξpΣ) = ξipΣ .

Samą podrozmaitość Σ można sparametryzować jakimiś n współrzędnymi (τ 1, . . ., τn).
Tzn. punkty pΣ, które należą do Σ mają jako punkty Ξ współrzędne ξipΣ, i = 1, . . . , n+1,
ale te można sparametryzować n współrzędnymi τ i: ξipΣ = ξi(τ 1, . . . , τn), i = 1, . . . , n = 1.
Zatem lokalnie, w otoczeniu podrozmaitości Σ można na rozmaitości Ξ wprowadzić nowy
układ n+1 współrzędnych (t, τ 1, . . . , τn), równie dobrze, jak ξ1, . . ., ξn+1 identyfikujących
punkty p ∈ Ξ: podajemy współrzędne punktu startowego na Σ oraz “czas” t, jaki z
tego punktu należy podróżować po charakterystyce przezeń przechodzącej, by dotrzeć
do danego p ∈ Ξ. Matematycznie, zamiana współrzędnych (wyrażenie starych przez
nowowprowadzone) wyraża się związkami (zmienne τ 1, . . . , τn zastępują tu ξpΣ)

ξi = ξ̄i(t, τ 1, . . . , τn) .

W nowych współrzędnych operator różniczkowy występujący w równaniu różniczkowym
ma prostą postać64

V i(ξ)
∂

∂ξi
=

∂

∂t
.

Dwa warianty równania przybierają więc odpowiednio postacie
(

∂

∂t
+ C(ξ̄(t))

)

F = 0 ,

oraz

∂F

∂t
+ C(ξ̄(t)) = 0 .

Ich rozwiązania już łatwo teraz napisać. Geometrycznie (niezależnie od układu współ-
rzędnych) są to

F (p̄(t, pΣ)) = F (pΣ) exp

(

−
∫ t

0

dt′C(p̄(t′, pΣ))

)

,

oraz

F (p̄(t, pΣ)) = F (pΣ)−
∫ t

0

dt′C(p̄(t′, pΣ)) .

64Nie dowodzimy tu tego; jest to proste ćwiczenie z zakresu zamiany zmiennych w operatorze różnicz-
kowym i każdy powinien to sam przećwiczyć.
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We współrzędnych zaś odpowiednio

F (ξ̄(t, τ)) = F (τ) exp

(

−
∫ t

0

dt′C(ξ̄(t′, τ))

)

,

oraz

F (ξ̄(t, τ)) = F (τ)−
∫ t

0

dt′C(ξ̄(t′, τ)) .

W takiej formie rozwiązania zadawalają jednak tylko zatwardziałych matematyków,
ponieważ są trochę niejawne: mówią one, jaka jest wartość funkcji F w punktach osią-
galnych po charakterystyce idącej przez pewien punkt pΣ na podrozmaitości Σ. Tymcza-
sem interesujące jest naogół pytanie odwrotne: mamy pewien punkt Ξ o współrzędnych
(ξ1, . . . , ξn+1) i chcemy wiedzieć jaka jest wartość funkcji w tym punkcie (a nie jakimś in-
nym do którego wiedzie charakterystyka z punktu pΣ). Oczywiście można, i tak będziemy
robić w ogólnym przypadku, wybrać na Σ warunki początkowe charakterystyki tak, by
trafiała ona w wybrany punkt Ξ o współrzędnych (ξ1, . . . , ξn+1). W przypadku rozpatry-
wanych tu równań liniowych i quasi-liniowych łatwo jest jednak przeformułować podane
wyżej rozwiązania tak, by przybrały użyteczną formę jawnie. Mianowicie charakterystykę
wypuszczamy z punktu p ∈ Ξ (p /∈ Σ) o współrzędnych (ξ1, . . . , ξn+1) w kierunku Σ, tzn.
bierzemy takie rozwiązanie ξ̄i(t) wypisanych wyżej równań zwyczajnych, że ξ̄i(0) = ξi.
Jeśli podrozmaitość Σ jest zadana równaniem hΣ(ξ

1, . . . , ξn+1) = 0, wyznaczamy “czas”
tp taki, by

hΣ(ξ̄
1(tp), . . . , ξ̄

n+1(tp)) = 0 .

Rozwiązania mają wtedy postać

F (ξ) = F (ξ̄(tp)) exp

(
∫ tp

0

dt′C(ξ̄(t′))

)

,

oraz

F (ξ) = F (ξ̄(tp)) +

∫ tp

0

dt′C(ξ̄(t′)) .

Zmiana znaku przed całkami bierze się stąd, że charakterystyka jest teraz przebiegana w
odwrotnym kierunku niż poprzednio.

Zadanie
Rozwiązać metodą charakterystyk cząstkowe równanie pierwszego rzędu postaci

(

bx
∂

∂y
− by

∂

∂x
− a

)

F (x, y) = 0 ,

w którym a i b są stałymi, a warunkiem brzegowym jest F (x, 0) = f(x), gdzie f(x) jest
dowolną różniczkowalną funkcją.
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Rozwiązanie: Postępujemy zgodnie z naszkicowaną wyżej metodą. Zmiennymi są tu
ξ1 = x, ξ2 = y, a składowymi pola wektorowego są V 1 = −by, V 2 = bx; funkcja C(ξ) jest
stałą, równą −a. Równania charakterystyk

d

dt
x̄(t) = −bȳ(t) , d

dt
ȳ(t) = bx̄(t) ,

łatwo rozwiązać łącząc je w jedno równanie na zmienną z̄(t) = x̄(t) + iȳ(t)

d

dt
z̄(t) = ibz̄(t) .

Rozwiązaniem jest z̄(t) = eibz̄(0), czyli (bo jeśli charakterystyka jest wypuszczona z
punktu p o współrzędnych (x, y), to z̄(0) = x+ iy)

x̄(t) = x cos bt− y sin bt ,

ȳ(t) = x sin bt + y cos bt .

Ponieważ warunek brzegowy jest zadany na linii (hiperpowierzchni Σ) y = 0, “czas” tp
potrzebny do dojścia do niej jest wyznaczony przez warunek ȳ(t) = 0 i równy

tp = −1

b
arctg

y

x
.

Uwzględniającym warunek brzegowy rozwiązaniem równania jest więc

F (x, y) = F (x̄(tp), ȳ(tp)) exp

(

−a
∫ tp

0

dt′
)

= F
(

x cos(arctg
y

x
) + y sin(arctg

y

x
), 0
)

exp
(a

b
arctg

y

x

)

.

Kombinację występującą jako pierwszy argument funkcji F po prawej stronie łatwo prze-
kształcić pamiętając, że cosα = 1/

√
1 + tan2 α, a sinα = tanα/

√
1 + tan2 α; sprowadza

się ona do

x cos(arctg
y

x
) + y sin(arctg

y

x
) =

√

x2 + y2 ,

a ponieważ F (x, 0) = f(x), ostatecznie rozwiązanie ma postać

F (x, y) = f(
√

x2 + y2 ) exp
(a

b
arctg

y

x

)

.

Nietrudno też sprawdzić, że jest to rozwiązanie postawionego problemu: ponieważ65

(

x
∂

∂y
− y

∂

∂x

)

f(
√

x2 + y2 ) = 0 ,

65Kto studiował już mechanikę kwantową, ten wie, że to jest oczywiste, bo operator w nawiasie jest
proporcjonalny do operatora (w reprezentacji położeniowej - jako stary belfer nie mogę się powstrzymać od
uściślania...) z-owej składowej orbitalnego momentu pędu; w zmiennych sferycznych, czy cylindrycznych,
sprowadza się on do ∂/∂ϕ, a funkcja f zależy tylko od r, a nie od ϕ.
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więc
(

bx
∂

∂y
− by

∂

∂x

)

F (x, y) = bf(
√

x2 + y2 )

(

x
∂

∂y
− y

∂

∂x

)

exp
(a

b
arctg

y

x

)

= bf(
√

x2 + y2 ) exp
(a

b
arctg

y

x

) a

b

{(

x
∂

∂y
− y

∂

∂x

)

[

arctg
y

x

]

}

.

Wyrażenie w kręconych nawiasach jest, jak łatwo sprawdzić, równe 1, co kończy spraw-
dzenie.

Zadanie
Rozwiązać metodą charakterystyk cząstkowe równanie pierwszego rzędu postaci

(

x
∂

∂x
+ y

∂

∂y
+ a

)

F (x, y) = 0 ,

w którym a jest stałą. Rozpatrzyć dwa przypadki:
i) warunkiem brzegowym jest F (x, y0) = f(x), przy czym y0 6= 0,
ii) warunkiem brzegowym jest F (x, x+ 1) = f(x).
W obu przypadkach f(x) jest dowolną różniczkowalną funkcją.
Rozwiązanie: Zmiennymi są tu ξ1 = x, ξ2 = y, a składowymi pola wektorowego są
V 1 = x, V 2 = y; funkcja C(ξ) jest stałą równą a. Równania charakterystyk

d

dt
x̄(t) = x̄(t) ,

d

dt
ȳ(t) = ȳ(t) ,

mają oczywiste rozwiązania x̄(t) = etx̄(0), ȳ(t) = etȳ(0).

Przypadek i). Jeśli charakterystyka wybiega z punktu p o współrzędnych (x, y), to x̄(t) =
etx, ȳ(t) = ety, a

tp = ln(y0/y) .

Rozwiązaniem jest więc

F (x, y) = F (x̄(tp), ȳ(tp)) exp

(

a

∫ tp

0

dt′
)

=

(

y0
y

)a

F

(

y0
x

y
, y0

)

=

(

y0
y

)a

f

(

y0
x

y

)

.

Ponieważ znów (x∂x + y∂y)f(y0x/y) = 0, łatwo sprawdzić, że jest to zgodne z warunkiem
brzegowym rozwiązanie wyjściowego równania.

Przypadek ii). Teraz “czas” tp jest wyznaczony przez warunek ȳ(tp) = x̄(tp)+1 i, ponieważ
tak jak poprzednio x̄(t) = etx, ȳ(t) = ety,

tp = − ln(y − x) .

Rozwiązaniem jest więc

F (x, y) = F (x̄(tp), ȳ(tp)) exp

(

a

∫ tp

0

dt′
)

=

(

1

y − x

)a

f

(

x

y − x

)

.
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Znów
(

x
∂

∂x
+ y

∂

∂y

)

f

(

x

y − x

)

= 0 ,

i łatwo zobaczyć, że jest to zgodne z warunkiem brzegowym rozwiązanie wyjściowego
równania.

W ogólnym przypadku metoda charakterystyk jest bardziej złożona. Mając daną
funkcję G(F, pi, ξi) definiujemy najpierw pole wektorowe V i, pole kowektorowe Xi oraz
pole sklarne C:

∂G

∂pi
= V i(F, p, ξ) ,

∂G

∂ξi
= Xi(F, p, ξ) ,

∂G

∂F
= C(F, p, ξ) .

Równaniami charakterystyk są

d

dt
ξ̄i(t) = V i

(

F̄ (t), p̄(t), ξ̄i(t)
)

,

d

dt
p̄i(t) = −Xi

(

F̄ (t), p̄(t), ξ̄i(t)
)

− p̄i(t)C
(

F̄ (t), p̄(t), ξ̄i(t)
)

,

d

dt
F̄ (t) = p̄i(t)V

i
(

F̄ (t), p̄(t), ξ̄i(t)
)

.

Charakterystyki te są teraz krzywymi nie tyle na rozmaitości Ξ (parametryzowanej zmien-
nymi ξ1, . . . , ξn+1), co w rozszerzonej 2(n+1)+1 wymiarowej przestrzeni. Jeśli warunkiem
brzegowym jest dowolna funkcja f zadana na podrozmaitości Σ, to w każdym punkcie
pΣ ∈ Σ zadane są też wartości pochodnych kierunkowych szukanej funkcji F we wszyst-
kich kierunkach stycznych do Σ (bo te można obliczać jako pochodne funkcji f); z kolei
równanie G(F, pi, ξi) = 0 pozwala na Σ wyznaczyć także pochodną kierunkową F w kie-
runku prostopadłym do Σ. Tym samym w każdym punkcie Σ zadane są wartości: funkcji
F , wszystkich jej cząstkowych pochodnych pi i wszystkich zmiennych ξi. Wypisane wyżej
równania są takie, że jeśli z jakiegoś punktu pΣ wypuszczona zostanie charakterystyka,
tzn. zadane zostaną wartości F̄ (0), p̄i(0) i ξ̄i(0) równe F , pi i ξi w punkcie pΣ ∈ Σ, to jak
łatwo sprawdzić

d

dt
G
(

F̄ (t), p̄i(t), ξ̄
i(t)
)

= 0 .

Inaczej mówiąc, funkcja G
(

F̄ (t), p̄i(t), ξ̄
i(t)
)

jest, jako funkcja t stała. W połączeniu z
tym, że G

(

F̄ (0), p̄i(0), ξ̄
i(0)
)

= 0, oznacza to,66 że F̄ (t) jest wartością funkcji F (ξ) w każ-
dym punkcie przez który przechodzi charakterystyka. Rozwiązanie to jest jednak trochę

66Dla kompletności argumentu trzeba jeszcze zauważyć, że w każdym punkcie takiej charakterystyki
spełniony jest warunek

dF̄ (t)

dt
− p̄i(t)

dξ̄i(t)

dt
= 0 ,

138



niejawne: jeśli interesuje nas wartość szukanej funkcji F w punkcie Ξ o współrzędnych
(ξ1, . . . , ξn+1), to musimy przebiec z tego punktu charakterystykę wstecz, dojść do hiper-
powierzchni Σ, tam “pobrać” wartość funkcji F oraz jej pochodnych i wrócić do punktu
startu. Oznacza to, że układ równań na charakterystyki rozwiązywać trzeba z mieszanymi
warunkami początkowymi: wartości ξ̄i są ustalone na jednym końcu charakterystyki (w
punkcie p o współrzędnych ξi), a wartości p̄i oraz F̄ są ustalone na drugim jej końcu (na
Σ). Znacznie utrudnia to praktyczne działania. W ogólności, tylko w przypadku równań
liniowych i quasi-liniowych układ równań na ξ̄i jest niezależny od równań na p̄i i F̄ i daje
się znaleźć wszystkie charakterystyki do końca, czyli podać jawną postać F (ξ1, . . . , ξn+1).

Zadanie
Postępując zgodnie z metodą ogólną rozwiązać jeszcze raz cząstkowe równanie pierwszego
rzędu postaci

(

x
∂

∂x
+ y

∂

∂y
+ a

)

F (x, y) = 0 ,

w którym a jest stałą. Ponownie rozpatrzyć dwa przypadki:
i) warunkiem brzegowym jest F (x, y0) = f(x), przy czym y0 6= 0,
ii) warunkiem brzegowym jest F (x, x+ 1) = f(x).
Rozwiązanie: Funkcja G ma tu postać xpx + ypy + aF . Pola: wektorowe V i oraz
kowektorowe Xi są więc równe V 1 = x, V 2 = y, X1 = px, X2 = py, a pole C jest stałe:
C = a. Charakterystyki są w tym podejściu wyznaczane równaniami

dx̄

dt
= x̄ ,

dp̄x
dt

= −(1 + a)p̄x ,

dȳ

dt
= ȳ ,

dp̄y
dt

= −(1 + a)p̄y ,
dF̄

dt
= x̄p̄x + ȳp̄y .

Widać, że równania na ξ̄i są w przypadku różniczkowego równania liniowego w F nieza-
leżne od równań na p̄i i na F̄ . Pozwala to łatwo zrealizować “podróż” od punktu p /∈ Σ
do hiperpowierzchni Σ i potem powrót do punktu p.

W przypadku i), by z punktu p o współrzędnych (x, y) dojść do linii y = y0 musimy
podróżować przez “czas” tp = ln(y0/y). Następnie w osiągniętym w ten sposób punkcie
na Σ (na linii y = y0) o współrzędnych (y0(x/y), y0) musimy znaleźć wszystkie pochodne
cząstkowe funkcji F . Tu, ponieważ ogólnie F (x, y0) = f(x), co implikuje, że Fx(x, y0) =
f ′(x), od razu mamy na Σ wartość pochodnej cząstkowej px: zatem67 p̄x(0) = f ′(y0(x/y)),

oraz pokazać, że zachodzą także związki

dF̄ (t)

dτ i
− p̄i(t)

dξ̄i(t)

dτ i
= 0 , i = 1, . . . , n .

Razem związki te są (ponieważ (t, τ1, . . . , τn) stanowią lokalny układ współrzędnych na Ξ) równoważne
związkowi różniczkowemu dF − pidξ

i = 0, który zapewnia, że p̄i w danym punkcie charakterystyki są
istotnie równe pochodnym cząstkowym funkcji F , której wartość w danym punkcie jest równa F̄ .

67Tu już liczymy “czas” t zgodnie z podróżą zurück, czyli od Σ do punktu p: t = 0 odpowiada więc
teraz punktowi na Σ, a t = −tp punktowi p.

139



a ze związku

y0
x

y
p̄x(0) + y0 p̄y(0) + aF̄ (0) = 0 ,

w którym F̄ (0) = f(y0(x/y)), znajdujemy, że na Σ

p̄y(0) = −x
y
f ′(y0(x/y))−

a

y0
f(y0(x/y)) .

Mając już wszystkie warunki początkowe (x̄(0), ȳ(0)) = (y0(x/y), y0), (p̄x(0), p̄y(0)) oraz
F̄ (0) = f(y0(x/y)) na Σ wracamy po charakterystyce, czyli zgodnie z rozwiązaniami

x̄(t) = etx̄(0) , p̄x(t) = e−(1+a)tp̄x(0) ,

ȳ(t) = etȳ(0) , p̄y(t) = e−(1+a)tp̄y(0) ,

F̄ (t) = F̄ (0)− 1

a
(x̄(0) p̄x(0) + ȳ(0) p̄y(0))

(

−1 + e−at
)

,

wypisanych wyżej równań charakterystyk, do punktu p, tj. kładziemy w tych rozwiąza-
niach tk = −tp = ln(y/y0) (tak, by x̄(tk) = x i ȳ(tk) = y) Wartość F̄ (tk) jest właśnie
wartością szukanej funkcji F w punkcie o współrzędnych (x, y):

F (x, y) = F̄ (tk) = f

(

y0
x

y

)

−1

a

{

y0
x

y
f ′
(

y0
x

y

)

+ y0

[

− a

y0
f

(

y0
x

y

)

− x

y
f ′
(

y0
x

y

)]}(

−1 +

(

y0
y

)a)

.

Wyrazy z f ′ i część wyrazów z f się redukuje i otrzymujemy

F (x, y) =

(

y0
y

)a

f

(

y0
x

y

)

,

tak jak poprzednią, prostszą (bo dostosowaną do równan liniowych) metodą.

W przypadku ii), gdy warunki brzegowe są zadane na linii (podrozmaitości) y = x+1,
“czas” dojścia z punktu p o współrzędnych (x, y) do Σ jest równy tp = − ln(y − x), a
osiągany w ten sposób punkt Σ ma współrzędne (które będą wartościami początkowymi
x̄(0) i ȳ(0) do podróży zurück)

x̄(0) =
x

y − x
, ȳ(0) =

y

y − x
.

(Widać, że ȳ(0) = x̄(0) + 1). Wartość szukanej funkcji F w tym punkcie jest wyznaczona
przez warunek brzegowy: F̄ (0) = F (x̄(0), ȳ(0)) = f(x̄(0)) = f(x/(y − x)). Za to z po-
chodnymi jest teraz trochę bardziej zawile, bo kierunek styczny do Σ nie pokrywa się z
kierunkiem żadnej z pochodnych cząstkowych funkcji F (w układzie używanych tu współ-
rzędnych (x, y) - znów: przy patrzeniu geometrycznym jest jasne, że pochodne cząstkowe
są po prostu pochodnymi kierunkowymi w kierunkach wyróżnionych przez - arbitralnie w
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końcu - wybrany układ współrzędnych!). Ponieważ Σ jest tu dość prostą powierzchnią,
wektory styczne do niej są proporcjonalne do jednostkowego wektora (1, 1)/

√
2, a prosto-

padłe do niej, do jednostkowego wektora (1,−1)/
√
2. Pochodna funkcji F w kierunku

stycznym do Σ, ta którą można wyrazić przez warunek brzegowy, czyli funkcję f , jest
więc dana przez

1√
2
(Fx + Fy)

∣

∣

∣

∣

Σ

.

Ponieważ w punkcie Σ, do którego dotarliśmy z (x, y) po charakterystyce, Fx = p̄x(0),
Fy = p̄y(0), możemy napisać układ równań wyznaczający p̄x(0) i p̄y(0):

p̄x(0) + p̄y(0) =
√
2 f ′ ,

x

y − x
p̄x(0) +

y

y − x
p̄y(0) = −af .

Pierwsze z tych równań wynika właśnie z tego, co wyżej, a drugie to po prostu związek
G(F̄ (0), p̄x(0), p̄y(0), x̄(0), ȳ(0)) = 0; argumentem f i f ′ (nieuwidocznionym tu) jest x/(y−
x). Rozwiazując ten układ równań znajdujemy

p̄x(0) =
y

y − x

√
2 f ′ + a f ,

p̄y(0) = − x

y − x

√
2 f ′ − a f .

Wstawiając te wartości (oraz x̄(0) = x/(y−x), ȳ(0) = y/(y−x) i F̄ (0) = f(x/(y−x))) do
wypisanych wyżej rozwiązań równań charakterystyk i kładąc tam t = tk = −tp = ln(y−x)
znajdujemy rozwiązanie

F (x, y) = F̄ (tk) = f

(

x

y − x

)

− 1

a

{

x

y − x

(

y

y − x

√
2 f ′ + af

)

+
y

y − x

(

− x

y − x

√
2 f ′ − af

)}

(

−1 + e−a ln(y−x)
)

.

Ponownie wyrazy z f ′ się redukują68 i otrzymujemy

F (x, y) =

(

1

y − x

)a

f

(

x

y − x

)

,

jako zgodne z warunkami brzegowymi rozwiązanie cząstkowego równania różniczkowego.

68To redukowanie się wyrazów z pochodnymi dowolnej funkcji f powinno zachodzić w tym formaliźmie
zawsze, ilekroć rozwiązywane równanie jest liniowe lub quasi-liniowe (bo w podanej wcześniej metodzie
rozwiązywania takich równań pochodne f nie występują). Na razie nie wiem, jak to udowodnić ogólnie.
Niech studenci potraktują to jak ciekawe wyzwanie.
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Zadanie
Rozwiązać metodą charakterystyk jednowymiarowe równanie Hamiltona-Jacobiego

∂S

∂t
+

1

2m

(

∂S

∂x

)2

= 0 ,

odpowiadające ruchowi swobodnej cząstki o masie m. Jako warunek brzegowy przyjąć
S(0, x) = f(x). Dobrać jakąś konkretną funkcję f(x) pozwalającą jawnie wyznaczyć stałe
całkowania w równaniach charakterystyk.
Rozwiązanie: Funkcja Gma tu postać pt+p2x/2m. Pola: wektorowe V i oraz kowektorowe
Xi są więc równe V t = 1, V x = px/m, Xt = 0, Xx = 0, a pole C znika: C = 0.
Charakterystyki są zadane równaniami (ponieważ t jest tu jedną ze zmiennych ξi, “czas”
oznaczamy teraz λ)

dt̄

dλ
= 1 ,

dp̄t
dλ

= 0 ,

dx̄

dλ
=
p̄x
m
,

dp̄x
dt

= 0 ,
dS̄

dλ
= p̄t +

p̄2x
m
.

Równania te łatwo rozwiązać:

t̄(λ) = t̄(0) + λ , p̄t(λ) = p̄t(0) ,

x̄(λ) = x̄(0) +
p̄x(0)

m
λ , p̄x(λ) = p̄x(0) ,

S̄(λ) = S̄(0) +

(

p̄t(0) +
p̄2x(0)

m

)

λ .

Stałe t̄(0), x̄(0), p̄t(0), p̄x(0) trzeba teraz tak dobrać, by charakterystyka biegła od linii
(hiperpowierzchni Σ) t = 0, na której zadana jest funkcja S(0, x) = f(x) do ustalonego
(ale dowolnego) punktu (t, x). Stąd t̄(0) = 0, a λk = t. Ponadto, x̄(0) i p̄x(0) muszą
spełniać warunek

x̄(0) +
p̄x(0)

m
λk = x̄(0) +

p̄x(0)

m
t = x .

Na linii warunku brzegowego p̄x(0) = f ′(x̄(0)), a p̄t(0) jest wyznaczone przez warunek
G = 0, czyli przez

p̄t(0) +
1

2m
p̄2x(0) = p̄t(0) +

1

2m
(f ′(x̄(0)))

2
= 0 .

Oznacza to, że

S̄(λ) = S̄(0) +
p̄2x(0)

2m
λ .

142



Ponieważ x̄(0) jest teraz argumentem pochodnej dowolnej funkcji f ′, nie daje się bez wy-
brania jakiejś konkretnej jej postaci jawnie wyznaczyć stałych x̄(0), p̄x(0) i p̄t(0). Weźmy
więc np.

f(x) =
1

2
ax2 + bx .

Przy takim wyborze p̄x(0) = f ′(x̄(0)) = ax̄(0) + b i otrzymujemy na x̄(0) równanie

x̄(0) +
t

m
(ax̄(0) + b) = x .

Stad x̄(0) = (x− (b/m)t)/(1 + (a/m)t). Wybór funkcji f(x) daje także

S̄(0) = S(t̄(0), x̄(0)) = S(0, x̄(0)) = f(x̄(0)) =
a

2

(

x− (b/m)t

1 + (a/m)t

)2

+ b

(

x− (b/m)t

1 + (a/m)t

)

.

Jako rozwiązanie S(t, x) = S̄(λk) wyjściowego równania otrzymujemy więc

S(t, x) =
a

2

(

x− (b/m)t

1 + (a/m)t

)2

+ b

(

x− (b/m)t

1 + (a/m)t

)

+
1

2m

[

a

(

x− (b/m)t

1 + (a/m)t

)

+ b

]2

t

=
a

2

(x− (b/m)t)2

1 + (a/m)t
+ b

(

x− b

2m
t

)

.

Nietrudno sprawdzić, że otrzymana funkcja S(t, x) rzeczywiście spełnia wyjściowe równa-
nie.69

69Rozwiązywanie równania Hamiltona-Jacobiego metodą charakterystyk jest jednak pewną sztuką dla
sztuki, bo po drodze musimy rozwiązać równania charakterystyk, które (te na ξi i pi) są dokładnie
równaniami kanonicznymi Hamiltona i, z punktu widzenia problemów mechaniki, gdy już te rozwiążemy
to sama funkcja S nie jest naogół potrzebna. Wic z równaniem Hamiltona-Jacobiego w mechanice
polega na tym, że równanie to można rozwiązać inaczej niż metodą charakterystyk (naogól metodą
separacji zmiennych) i rozwiązanie go w ten sposób pozwala znaleźć ruch układu inaczej niż bezpośrednio
rozwiazujac równania kanoniczne Hamiltona.
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Zadania do samodzielnej zabawy

Zadanie 1.
Sprawdzić, że metryka dyskretna jest rzeczywiście metryką (tj. że spełnia ona konieczne
warunki).

Zadanie 2.
Zbadać jak wygląda w metryce dyskretnej kula otwarta K(x0, r) i kula-bar zdefiniowana
ogólnie (na razie bez związku z domknięciem) wzorem K̄(x0, r) = {x ∈ X | d(x0, x) ≤ r},
w zależności od wartości jej promienia r ∈ [0,∞).

Zadanie 3.
Niech X = R1 z metryką Euklidesową, która jest tu tym samym, co metryka taxi d(x, y) =
|x− y|. Niech A = {x = 1/n, n ∈ N} (tu przyjmujemy, że zero nie jest liczbą naturalną).
Znaleźć wszystkie punkty izolowane zbioru A, wszystkie punkty skupienia (i w przypadku
każdego orzec, czy należy on do A, czy nie) i punkty wewnętrzne. Orzec także czy zbiór
A jest otwarty oraz czy jest on domknięty.

Zadanie 4.
Zbadać jak w (R2, d∞) i w (R2, dtaxi) wyglądają kule otwarte K(x0, r).

Zadanie 5.
Jaka jest odległość między należącymi do C[0, π] funkcjami f = sin x i g = cosx w metryce
d1 i w metryce d2?

Zadanie 6.
Niech (X , d) będzie przestrzenią metryczną. Wykazać, że jeśli x′ ∈ K(x, r), gdzie x ∈ X ,
a r > 0, to r′ ≡ r − d(x, x′) > 0 i K(x′, r′) ⊂ K(x, r).

Zadanie 7.
Niech (X , d) będzie przestrzenią metryczną. Udowodnić (od razu strach w oczach! - to
najpierw trzy zdrowaśki odmówić, a potem jeszcze raz spokojnie przeczytać...) korzystając
z poprzedniego zadania że każda kula K(x, r) w X (tak jak ją zdefiniowaliśmy na stronie 4
tych notatek) jest zbiorem otwartym (też w sensie zdefiniowanym tuż pod definicja kuli).

Zadanie 8.
Uzasadnić, że jeśli Os, s ∈ S (S jest pewnym zbiorem indeksów, niekoniecznie nawet
przeliczalnym), jest rodziną zbiorów otwartych, to

O =
⋃

s∈S

Os ,

jest też zbiorem otwartym. Pokazać też, że przecięcie skończonej liczby zbiorów otwar-
tuch jest zbiorem otwartym i podać jakiś prosty przykład przecięcia nieskończonej liczby
zbiorów otwartych, które nie jest zbiorem otwartym

144



Zadanie 9.
Zbadać granice w punkcie (0, 0) funkcji R2 → R zadanych wzorami

a) f(x, y) =
x2 − y2

x2 + y2
,

b) f(x, y) =
x3 + y3

x2 + y2
,

c) f(x, y) =
x2y2

x2 + y2
,

d) f(x, y) =
2x2 + 3y2 + x3 + y3

x2 + y2
,

e) f(x, y) = (x2 + y2) ln(x2 + y2) ,

f) f(x, y) =
1

x2 + y2
,

g) f(x, y) =
x2y2

x2y2 + (x− y)2
,

h) f(x, y) = x sin
1

y
,

(w ostatnim przykładzie chodzi o zbadanie granicy funkcji w punktach (x0, 0).

Zadanie 10.
Niech (V1, || · ||1) i (V2, || · ||2) będą dwiema przestrzeniami wektorowymi i niech F : V1 →
V2 będzie odwzorowaniem liniowym. Pokazać, że jeśli odwzorowanie F jest ciągłe (w
metrykach d1 i d2 zadawanych przez normy || · ||1 i || · ||2) w jednym punkcie-wektorze
przestrzeni V1, to jest ciągłe wszędzie.
Wskazówka: Zastosować rozumowanie ad absurdum.

Zadanie 11.
Obliczyć70 wszystkie pochodne cząstkowe pierwszego rzędu i drugiego (sprawdzając przy
tym, że mieszane pochodne drugiego rzędu są takie same, tzn. że np. ∂2f/∂x∂y =
∂2f/∂y∂x) poniższych funkcji Rn → R (n = 2 lub 3). Jak ktoś chce się bardziej ćwiczyć,
może i pochodne trzeciego rzędu poobliczać.

a) f(x, y) = x2 − y + 3y2 + x3y3 − x sin y ,

b) f(x, y) =
xy

y − 1
,

c) f(x, y) = arctg
(y

x

)

,

d) f(x, y, z) = (3x2y + z)n ,

70Zadanie jest idiotyczne, ale spełniać ma ono tę samą rolę, co codzienne rypanie na pianinie znanego
kawałka “kurki trzy” przez początkujących pianistów (zaawansowani też to rypią na rozgrzewkę) - ręka
musi się ułożyć i rozruszać.
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e) f(x, y) = ln(x2 + y2) ,

f) f(x, y, z) =
√

x2 + y2 + z2 ,

g) f(x, y, z) =
1

√

x2 + y2 + z2
, oblicz fxx + fyy + fzz

h) f(u, v) = ln(u+ ln v) ,

i) f(x, y, z) = ln

(

a−
√

x2 + y2 + z2

a+
√

x2 + y2 + z2

)

,

j) f(x, y) = xy ,

k) f(x, y) = (ln x)sin y ,

l) f(x, y, z) = (x tgz)ln y ,

m) f(x, y, z) = xy
z

,

n) f(x, y) =

∫ xy

a

dt g(t) .

Zadanie 12.
Obliczyć bezpośrednio z definicji (tj. jako granicę odpowiedniego ilorazu różnicowego)
a) pochodne cząstkowe fx i fy w punkcie (3, 4) funkcji

f(x, y) = x+ y −
√

x2 + y2 ,

b) pochodne cząstkowe fx i fy w punkcie (1, 2) funkcji

f(x, y) = ln
(

x+
y

2x

)

,

c) pochodną kierunkową w punkcie (2, 1) w kierunku wektora n = (1, 3)/
√
10 funkcji

f(x, y) = x2 + 2y2,

i sprawdzić, że jest ona równa odpowiedniej kombinacji pochodnych cząstkowych funkcji
f obliczonych w tym samym punkcie,
d) pochodną kierunkową w punkcie (1, 1) w kierunku wektora n = (1, −3)/

√
10 funkcji

f(x, y) = sin
(π

2
(x+ y)

)

,

i sprawdzić, że jest ona równa odpowiedniej kombinacji pochodnych cząstkowych funkcji
f obliczonych w tym samym punkcie.

Zadanie 13.
Pokazać, że funkcje f : R2 → R

a) f(x, y) =

{

x2y/(x2 + y2) gdy (x, y) 6= (0, 0)
0 gdy (x, y) = (0, 0)

,

b) f(x, y) =

{

x3y/(x4 + y2) gdy (x, y) 6= (0, 0)
0 gdy (x, y) = (0, 0)

,

146



choć są w punkcie (0, 0) ciągłe (pokazać to) i mają w tym punkcie pochodne kierunkowe
w każdym kierunku (też pokazać), nie są tam nieróżniczkowalne, tzn. df nie przybliża
należycie przyrostu ∆f tych funkcji.

Zadanie 14.
a) Znaleźć pochodną fukcji f : R2 → R zadanej wzorem

f(x, y) =
x

1 + y2
,

w punkcie (x, y) = (2, 1) i obliczyć jej wartość na wektorze przesunięcia (dx, dy) =
(δλ, 1

2
δλ), oraz na wektorze przesunięcia (dx, dy) = (δλ, δλ),

b) W jakim kierunku w punkcie (1, 1) funkcja f : R2 → R zadana wzorem

f(x, y) = 2x2 + 3y2 ,

rośnie najszybciej?
c) Obliczyć z definicji w dowolnym punkcie (x, y) dziedziny odwzorowania F : R2

+ −→ R3

danego wzorem

F

([

x
y

])

=





x sin(x+ 2y)
y2 cos(2x− y)

y2x



 ,

pochodną kierunkową w kierunku wektora n = (1, 1)/
√
2. Sprawdzić, że pochodna kie-

runkowa obliczona w ten sposób jest taka sama, jak otrzymana z kombinacji liniowej
pochodnych cząstkowych.
d) Znaleźć pochodną fukcji F : R2 → R

2 zadanej wzorem

F

([

x
y

])

=

[

x2 − y2

exp(x− y)

]

,

w punkcie (x, y) = (1,−1) i obliczyć jej wartość na wektorze przesunięcia (dx, dy) =
(−δλ, 2δλ).
e) Znaleźć pochodną fukcji F : R3 → R2 zadanej wzorem

F









x
y
z







 =

[ √
x2 + z2

ln(1 + y2 + z2)

]

,

w punkcie (x, y) = (1, 3, 0) i obliczyć jej wartość na wektorze przesunięcia (dx, dy, dz) =
(0, δλ, δλ).

Zadanie 15. (Coś bardziej praktycznego)
Podać równanie hiperpłaszczyzny w R4 (dokładniej to w AR4 - czterowymiarowej prze-
strzeni afinicznej - zob. mój skrypt do algebry) stycznej w punkcie (1, 2, 3) do “wykresu”
funkcji f : R3 −→ R danej wzorem f(x, y, z) = x2 + y3 + z2.
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Wskazówka: Najpierw pomyśleć jak znajdujemy równanie prostej w R2 stycznej w ja-
kimś konkretnym x0 do wykresu funkcji y = f(x), a potem spróbować to uogólnić na
równanie płaszczyzny w R3 stycznej w jakimś konkretnym (x0, y0) do powierzchni funkcji
z = f(x, y) (kiedy jeszcze możemy sobie to wyobrazić), a na koniec przenieść metodę na
problem w czterech wymiarach.

Zadanie 16.
Pokazać, że funkcja f(x, y) postaci

f(x, y) = φ
(y

x

)

− x2 − y2 ,

spełnia równanie różniczkowe

x
∂f

∂x
+ y

∂f

∂y
= g(x, y) ,

w którym g(x, y) jest pewną funkcją x i y, której postać należy podać.

Zadanie 17.
Przepisać dwuwymiarowy laplasjan

∂2f

∂x2
+
∂2f

∂y2
,

w zmiennych u i v zadanych związkami

x =
u

u2 + v2
≡ u

R2
, y =

v

u2 + v2
≡ v

R2
.

Zadanie 18.
Stosując bezpośrednio regułkę różniczkowania łańcuszkowego, sprawdzić bezpośrednim
rachunkiem, że wyrażone przez nowe zmienne u = u(x, y) i v = v(x, y) pochodne mieszane

∂

∂y

(

∂f

∂x

)

, oraz
∂

∂x

(

∂f

∂y

)

,

są dane tymi samymi wyrażeniami.71 Obliczyć jawnie tę pochodna w przypadku, gdy
dane są wzory x = x(u, v) i y = y(u, v) i są one takie same jak w poprzednim zadaniu.

Zadanie 19.
Pokazać, że funkcja dwóch zmiennych f(x, y) dana wzorem

f(x, y) = y φ(x2 − y2),

71Potraktować to zadanie jak wprawkę w różniczkowaniu łańcuszkowym. Zazwyczaj studenci mają z
tym jakieś klopoty.
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spełnia równanie różniczkowe

1

x

∂f

∂x
+

1

y

∂f

∂y
− g(x, y) f = 0 ,

w którym g(x, y) jest pewną konkretną funkcją, której postać należy podać.

Zadanie 20.
Pokazać, że funkcja trzech zmiennych H(x, y, z) dana wzorem

H(x, y, z) = x2 F
(z

x
,
y

x

)

,

spełnia równanie różniczkowe

x
∂H

∂x
+ y

∂H

∂y
+ z

∂H

∂z
− g(x, y, z)H = 0 ,

w którym g(x, y, z) jest pewną konkretną funkcją, której postać należy podać.

Zadanie 21.
Rozwinąć w szereg Taylora do wyrazów trzeciego rzędu włącznie wokół punktu (x0, y0)
funkcje

a) f(x, y) = sin(x+ y) , (x0, y0) = (0, 0) ,

b) f(x, y) = ex
2

cos y , (x0, y0) = (0, 0) ,

c) f(x, y) = ln(1 + x+ 2y) , (x0, y0) = (0, 0) ,

d) f(x, y) = x+ y +
√

x2 + y2 , (x0, y0) = (1, 0) ,

e) f(x, y) = xy , (x0, y0) = (1, 0) .

Otrzymać rozwinięcie raz wykorzystując znane rozwinięcia funkcji jednej zmiennej i drugi
raz obliczając pochodne cząstkowe.

Zadanie 22.
Znaleźć punkty krytyczne następujących funkcji dwu zmiennych (dziedzina niektórych z
nich jest w oczywisty sposób trochę mniejsza niż R2).

a) f(x, y) = x2 + y2 − λxy ,

b) f(x, y) = 3x3 + 3x2y − y3 − 15x ,

c) f(x, y) = x2 + xy + y2 +
a3

x
+
a3

y
, a > 0 ,

d) f(x, y) = (x+ y)4 + (x− y)6 ,

e) f(x, y) = x− 2y − 3 arctg
x

y
+ ln

√

x2 + y2 ,

f) f(x, y) = sin(x+ y)− sin x− sin y ,

g) f(x, y) = x4 − y4 − 4xy2 − 2x2 ,
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i zbadać ich charakter. Jeśli funkcja zależy od rzeczywistego parametru λ, to zbadać
punkty krytyczne w zależności od jego wartości.

Zadanie 23.
Pokazać, że funkcja

f(x, y) = 3x4 − 4x2y + y2 ,

nie ma w punkcie (0, 0) minimum jako funkcja dwóch zmiennych, ale ma w nim minumum,
jeśli jest ograniczona do dowolnej prostej przechodzącej przez ten punkt.

Zadanie 24.
Znaleźć największą i najmniejszą wartość funkcji

f(x, y) = x2y − 8x− 4y ,

w trójkącie (z brzegami) o wierzchołkach w punktach (0, 0), (4, 0) i (0, 4).

Zadanie 25. (z nieśmiertelnego Krysickiego-Włodarskiego)
Sprawdzić, czy wypisane niżej odwzorowania F : R2 −→ R wyznaczają, przez warunek
F (x, y) = 0, funkcję y = y(x) w otoczeniu podanych punktów:

a) F (x, y) = −1− xy + tg(x+ y) , (0,
π

4
) ,

b) F (x, y) = −1 + y − 3xy + 2 sin x+ sin y , (
π

6
, 0) ,

c) F (x, y) =
x

y
− 4

x
− y + 1 , (2, 1) ,

d) F (x, y) =
x+ 2y

x− 1
+ 3xy − 2 , (2, 0) ,

W każdym z tych przyypadków, jeśli funkcja y = y(x) istnieje, obliczyć jej pochodne y′ i
y′′ w podanym punkcie.

Zadanie 26.
W jakich punktach płaszczyzny xy warunek F (x, y) = 0 nie wyznacza funkcji y = y(x)
i/lub funkcji x = x(y)? W punktach, w których wyznacza funkcję y = y(x) obliczyć jej
pochodne y′ i y′′

a) F (x, y) = x2/3 + y2/3 − a2/3 ,

b) F (x, y) = x2 − y2 + 3xy − 1 .

Spróbować narysować sobie zbiór E = F−1(0) ⊂ R
2.

Zadanie 27.
Znaleźć punkty krytyczne (i zbadać ich charakter, tj. powiedzieć, czy w punktach tych
jest minimum, maksimum, czy punkt przegięcia) funkcji y = y(x) zadanych w sposób
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uwikłany warunkami

a) F (x, y) = x2 − 2x− 2y + y2 + 1 = 0 ,

b) F (x, y) = y3 + 2xy + x2 = 0 ,

Jeśli można, napisać te funkcje jawnie i sprawdzć otrzymane wnioski “szkolnym” sposo-
bem.

Zadanie 28.
Czy odwzorowanie R

3 w R dane wzorem

F (x, y, z) = z3 − xyz − 2 ,

zadaje w otoczeniu punktu (1, 3, 2) funkcję z = z(x, y) ? Jeśli zadaje, to obliczyć wartość
w tym punkcie wszystkich pierwszych i drugich pochodnych cząstkowych tej funkcji.

Zadanie 29. (“cieciurzynka”)
Pokazać, że jeśli φ : R −→ R jest funkcją różniczkowalną w otoczeniu zera i jej pochodna
jest tam ciągła, to warunek F (x, y, z) = 0, w którym odwzorowanie F : R3 −→ R jest
dane wzorem

F (x, y, z) = φ
(

x ez − y e−z
)

− z ,

definiuje w otoczeniu punktu (0, 0) ∈ R2 pewną funkcję z : R2 −→ R, spełniającą
równanie różniczkowe cząstkowe

∂z

∂x
+ g(z)

∂z

∂y
= 0 ,

w którym g(z) jest pewną funkcją z, którą należy podać.

Zadanie 30. (znów “cieciurzynki”)
Znaleźć punkty krytyczne funkcji dwóch zmiennych z = z(x, y) zadanej w sposób uwikłany
warunkiem F (x, y, z) = 0

a) F (x, y, z) = 6z3 − 7(x3 − 3x)z + (2x+ y)2 − 20 ,

b) F (x, y, z) = z3 + z +
14xz

1 + x2
+ (2x− y)2 + 9 ,

c) F (x, y, z) = 3z3 − 7z cos(x+ y) +
20x

1 + x2
,

i zbadać ich charakter (minimum lokalne, maksimum lokalne funkcji, jej punkt siodłowy?).

Zadanie 31
Niech F 1(x, y, z, t) = y2+t2−2xz i F 2(x, y, z, t) = x3+y3+t3−z3 zadają razem w otoczeniu
punktu (1,−1, 1, 1) ∈ R4 odwzorowanie F : R4 −→ R2. Pokazać, że F−1(0) ⊂ R4 zadaje
w sposób uwikłany x = x(y, t) i z = z(y, t), tj. funkcję f : R2 −→ R2 i obliczyć pochodną
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(tj. macierz pochodnej - pamiętamy, że pochodna funkcji Rn −→ Rm jest macierzą m×n
- ma m wierszy i n kolumn) tej funkcji w tym punkcie.

Zadanie 32
Znaleźć ekstrema (warunkowe) funkcji przy podanych warunkach

a) F (x, y) = x2 + y2 , G(x, y) = x3 + y3 − 16 = 0 ,

b) F (x, y) = 2x2y2 , G(x, y) = x4 + y4 − 1 = 0 ,

Zadanie 33
Znaleźć na paraboli o równaniu y2 = 6x punkt ekstremalnie oddalony (w sensie zwykłej
metryki Euklidesowej) od punktu P = (3, 12).

Zadanie 34
Podać jakie musi mieć wymiary prostopadłościenne akwarium o objętości 32m3, by zużyte
na nie szkło miało jak najmniejsze pole powierzchni.

Zadanie 35
Znaleźć ekstrema funkcji F (x, y, z) = xy2z3 na zbiorze E zadanym warunkiem G(x, y, z) =
x + 2y + 3x − 1 = 0. Rozwiązać ten problem zarówno metodą szukania ekstremów
warunkowych, jak i zwyczajnie, eliminując jedną ze zmiennych.

Zadanie 36
Znaleźć przynajmniej jeden punkt krytyczny funkcji F (x, y, z) = xyz na zbiorze E ⊂ R3

zadanym dwoma warunkami: G1(x, y, z) = x+y+z−5 = 0 iG2(x, y, z) = xy+xz+yz−8 =
0 i zbadać jego charakter.

Zadanie 37
Pewna powierzchnia zanurzona w R3 jest zadana parametrycznie wzorami

x = a sinωt cos ξ ,

y = a sinωt sin ξ ,

z = z0 + a cosωt+ a ln[tg(ωt)] .

Zmienne 0 ≤ t < ∞ i −∞ < ξ < ∞ są więc układem współrzędnych na tej powierzchni.
Podać wektory styczne do tej powierzchni i zbadać, w jakich punktach nie jest ona regu-
larna.

Zadanie 38
Znaleźć wszystkie krzywe całkowe zwyczajnych równań różniczkowych pierwszego rzędu o
zmiennych rozdzielonych (jeśli podany jest warunek, to podać także konkretne rozwiązanie
spełniające ten warunek):

a) y′ = (1 + y2)x , y(7) = 1 ,

b) y′ = x y ,

152



c) y′ = y/x ,

d) y′ = −y/x ,
e) y′ = y/x3 , y(1) = 1 ,

f) y′ = y/x2 ,

g) y′ sin x = y cosx ,

Przedyskutować charakter rozwiązania w zależności od warunku początkowego (x0, y0).
Jeśli takowe występują, skomentować przypadki punktów, przez które przechodzi więcej,
lub mniej niż dokładnie jedno rozwiązanie.

Zadanie 39
Rozwiązać (jeśli się da) równania różniczkowe dokonując w nich zaproponowanych pod-
stawień (lub jakimś innym sposobem) następujące równania różniczkowe:

a) y′ = cos(x+ y) , y(x) = −x+ z(x) ,

b) y′ = −y
x
+

cos(xy)

x2
, y(x) =

u(x)

x
,

c) x2y′′ + x y′ + y = 0 , x = et ,

d) (1− x2) y′′ − x y′ + ω2y = 0 , x = cos t ,

e) x4 y′′ + 2x3 y′ + x2y = 0 , x = 1/t ,

f) y′′ + (y′)2 = 2 e−y , y(0) = ln 2 , y′(0) = 1 ,

g) y′′ = 2 y3 , y(0) = 1 , y′(0) = 1 ,

h) y′ + sin y + x cos y + x = 0 , u = tg(y/2) ,

i) y′ = y/x+
√

(y/x)2 − 1 , y(1) = 2 .

O punkcie f) powiem tylko, że trzeba napisać równanie na przedefiniowaną odpowiednio
funkcję (ale tej samej zmiennej x). Proszę spróbować samemu zgadnąć! Co do punktu
g), to każdy fizyk, który wykorzystywał zasadę zachowania energii w problemach mecha-
nicznych, powinien od razu skojarzyć, co trzeba zrobić. W punkcie i) zauważyć, że prawa
strona jest funkcją jednorodną stopnia zerowego. Przedyskutować tu zależność rozwią-
zania of warunku początkowego y(x0) = y0. Znaleźć także rozwiązanie nieobejmowane
przez całkę ogólną.

Zadanie 40
Rozwiązać liniowe równania różniczkowe z niejednorodnością

a) x y′ − y = 2x3 ,

b) y′ +
xy

1 + x2
= − 1

2x(1 + x2)
,

c) x y′′ + y′ = 4x , y(−1) = 0 , y′(−1) = 0 ,

d) y′ sin x+ y cos x = sin 2x , y(0) = 0 ,

e) y′ =
4y

x
+ x

√
y , y(1) = 1 ,
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f) y′ =
y

x
ln
∣

∣

∣

y

x

∣

∣

∣
, y(1) = ln 2 .

W punktach e) i f) równania liniowe z niejednorodnością otrzymuje się po sprytnym
podstawieniu.

Zadanie 41
Wyznaczyć taką krzywą y = y(x), żeby odległość od punktu (0, 0) stycznej do tej krzywej
w każdym jej punkcie (x, y(x)) była równa odciętej72 tego punktu, czyli x.

Zadanie 42
Uzasadnić, że równanie Bernoulliego73

y′ = y a(x) + yn b(x) ,

w którym a(x) i b(x) są zadanymi funkcjami (załóżmy, że regularnymi w jakimś obszarze
R), a n jest liczbą całkowitą, można rozwiązać poznanymi już metodami. Korzystając z
tego rozwiązać równanie

3x y2y′ = 2y3 + x3 .

Zadanie 43
Rozwiązać układy równań różniczkowych pierwszego rzędu z podanymi warunkami po-
czątkowymi

a)
d

dt





y1
y2
y3



 =





2 −1 2
5 −3 −3
−1 0 −2









y1
y2
y2



 ,





y1(0)
y2(0)
y2(0)



 =





1
0
1



 ,

b)
d

dt





y1
y2
y3



 =





−2 1 0
1 −2 1
0 1 −2









y1
y2
y2



 ,

c)
d

dt





y1
y2
y3



 =





1 0 0
1 −1 −1
−2 4 3









y1
y2
y2



 ,





y1(0)
y2(0)
y2(0)



 =





1
1
1



 .

Ostatnie równanie rozwiązać na dwa sposoby tak jak zadanie Ode.8 w tekście.

Zadanie 44
Rozwiązać układy liniowych równań różniczkowych pierwszego rzędu z niejednorodnością
z podanymi warunkami początkowymi

a)
d

dx

(

y1
y2

)

=

(

0 1
1 0

)(

y1
y2

)

+

(

sin x
2 cosx

)

,

(

y1(0)
y2(0)

)

=

(

2
0

)

,

b)
d

dt





y1
y2
y3



 =





3 −1 0
0 3 −1
−2 5 −1









y1
y2
y3



 +





et

0
0



 ,





y1(0)
y2(0)
y3(0)



 =





1
1
3



 .

72Były kiedyś takie śmieszne nazwy ”rzędna” i “odcięta”. Może nawet nadal są?
73Ale którego?! Tylu ich było!
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Układ a) rozwiązać na dwa sposoby: raz jako równanie macierzowe, a drugi raz jako dwa
niezależne równania otrzymane przez wzięcie odpowiednich kombinacji liniowych równań
tworzących powyższy układ.

Zadanie 45
Znaleźć całkę ogólną równania różniczkowego

5 y′′ − 6 y′ + 5 y = sin
4

5
x .

Zadanie 46
Znaleźć całkę ogólną równania różniczkowego

y′′ − 3 y′ + 2 y = sin
(

e−x
)

.

Zadanie 47
Znaleźć całkę ogólną liniowego jednorodnego równania różniczkowego

y(7) − 3 y(6) + 5 y(5) − 7 y(4) + 7 y(3) − 5 y′′ + 3 y′ + y = 0 .

Zadanie 48
Znaleźć całkę ogólną równania różniczkowego

y′′′ + y′′ + y′ + y = x e−x + sin x .

Waskazówka: Spróbować zgadnąć rozwiązanie równania niejednorodnego. Jeśli proste
podstawienie nie zadziała, to rozpatrzyć najpierw równanie y′ + y = x e−x.

Zadanie 49
Znaleźć najogólniejsze rozwiązanie liniowego równania różniczkowego drugiego rzędu

y′′ + a y′ +
1

4
a2 y = f(t) ,

z dowolną niejednorodnością f(t).

Zadanie 50
Znaleźć najogólniejsze rozwiązanie liniowego równania różniczkowego drugiego rzędu o
niestałych współczynnikach:

(2t− t2) y′′ + (t2 − 2) y′ − 2(t− 1) y = t2 .

Waskazówka: Przynajmniej jedno rozwiązanie równania jednorodnego daje się zgadnąć
(można próbować szukać go w postaci y1(t) = tα. Druga przydatna uwaga jest taka, że
na pozór beznadziejna całka daje się jednak jawnie wykonać!

Zadanie 51
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Rozwiązać liniowe cząstkowe równanie różniczkowe

∂F

∂x
+
∂F

∂y
+
∂F

∂z
= 0 ,

na dwa sposoby: raz przechodząc do nowych zmiennych ξ = x, η = y − x, ζ = z − x, a
dugi raz metodą charakterystyk zaakładając, że funkcja F jest znana na jakiejś (dogodnie
dobranej) dwuwymiarowej powierzchni zanurzonej w R3. Skonfrontować oba rozwiązania.

Zadanie 52
Rozwiązać nieliniowe cząstkowe równanie różniczkowe

∂F

∂x
+
∂F

∂y
F = 0 ,

zadając jakieś dogodne warunki Cauchy (tj. wartość funkcji F ) na jakiejś odpowiednio
dobranej powierzchni (tu w R2 krzywej) Σ. Odpowiedno dobranej i dogodne, czyli takie,
żeby się dało na rozwiązania równań charakterystyk narzucić warunki początkowe.
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Odpowiedzi i podpowiedzi

Zadanie 1: Niewątpliwie ddiscr(x, y) = ddiscr(y, x) oraz x = y, gdy ddiscr(x, y) = 0. Tylko
nierówność trójkąta wymaga sprawdzenia “case by case”:
i) x = y = z, wtedy 0 =≤ 0 + 0,
ii) x = y 6= z, wtedy 0 ≤ 1 + 1,

iii) x = z 6= y, wtedy 1 ≤ 1 + 0,
iv) x 6= y, x 6= z, z 6= y, wtedy 1 ≤ 1+1. I to już chyba wszystko, bo przypadek y = z 6= x
jest taki sam jak iii).

Zadanie 2: K(x0, r): jeśli r = 0, to K(x0, r) = ∅ (bo zgodnie z jednym z warunków
spełnianych przez metrykę jako taką, żadna odległość, od zera mniejsza być nie może),
K(x0, r) = {x0} jeśli 0 < r ≤ 1 (bo odległość ddiscr(x0, x) jest albo równa zeru, albo 1) i
wreszcie K(x0, r) = X , gdy r > 1 (bo przy tej metryce każdy punkt jest od x0 odległy o
nie więcej niż 1). K̄(x0, r): jeśli 0 ≤ r < 1, to K̄(x0, r) = {x0} oraz K̄(x0, r) = X , gdy
r ≥ 1.

Zadanie 3: Wszystkie punkty zbioru A są izolowane, bo zawsze można wybrać kulę
K( 1

n
, r), o r < 1

n(n+1)
, do której oprócz x = 1

n
żadne inne punkty zbioru A nie należą.

Jedynym punktem skupienia zbioru A jest punkt x = 0 ∈ R (tylko dowolna kula o środku
w x = 0 zawsze zawiera punkty typu 1/n), ale on do zbioru A nie należy. Zbiór A
nie posiada punktów wewnętrznych: A nie jest bowiem otoczeniem żadnego ze swoich
elementów bo dowolna kula o środku w 1/n zawiera w sobie punkty, które nie są tej
postaci (nie należą więc do A). Zbiór A nie jest otwarty, bo ani jeden (a musiałyby
wszystkie być) nie jest środkiem kuli całkowicie zwartej w A (czyli składającej się tylko z
punktów typu 1/n). Nie jest też domknięty, bo jego punkt skupienia 0 doń nie należy.

Zadanie 4: Najprościej rozpatrzyć kulę o środku w punkcie (0, 0) i promieniu r =
1 (każda inna wygląda jak taka tylko przesunięta i przeskalowana). W metryce d∞
K((0, 0), 1) = {(x1, x2) ∈ R2| max(|x1|, |x2|) < 1}. Jest to wnętrze kwadratu o środku w
(0, 0) i bokach długości 2 równoległych do odpowiednich osi. W metryce dtaxi K((0, 0), 1) =
{(x1, x2) ∈ R2| |x1|+ |x2| < 1}. Jest to też wnętrze kwadratu który jest zawarty pomiędzy
prostymi y = ±x± 1

Zadanie 5: W metryce d1

d1(f, g) = maxx∈[0,π]| sin x− cos x| = 1√
2
−
(

− 1√
2

)

=
√
2 .

W metryce d2:

d2(f, g) =

∫ π

0

dx | sin x− cos x| =
∫ π/4

0

dx (cosx− sin x) +

∫ π

π/4

dx (sin x− cosx)

=

(

1√
2
+

1√
2
− 1

)

−
(

−1 − 1√
2
− 1√

2

)

= 2
√
2 .
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Zadanie 6: Jak zwykle z początku natłok hieroglifów przyprawia o zawrót głowy, ale
jak wszystko rozebrać na części (a najlepiej zrobić rysunek na kartce, czyli w R2), to się
okazuje, że to oczywiste. Z definicji kuli wynika bowiem, że d(x, x′) < r, więc rzeczywiście
r′ ≡ r − d(x, x′) > 0. Weźmy teraz jakiś dowolny punkt y ∈ K(x′, r′) i zastosujmy
nierówność trójkąta:

d(y, x) ≤ d(y, x′) + d(x′, x) .

Ale d(y, x′) < r′, bo y ∈ K(x′, r′), a z kolei d(x′, x) < r − r′ z tego, co wyżej. Zatem
d(y, x) < r, co oznacza, że każdy punkt K(x′, r′) jest od x odległy o mniej niż r, czyli
należy też do K(x, r), więc istotnie K(x′, r′) ⊂ K(x, r).

Zadanie 7: Zbiór, w tym przypadku K(x, r), jest otwarty, gdy każdy jego punkt y jest
środkiem jakiejś kuli K(y, ry) całkowicie zawartej w tym zbiorze (można tak dobrać ry),
czyli tu w K(x, r). To weźmy jako ry = r − d(x, y) i wtedy z tego, co pokazane zostało
w Zadaniu poprzednim wynika już, iż K(y, ry) ⊂ K(x, r). Zatem istotnie, ponieważ y
był dowolnym punktem K(x, r), kula K(x, r) jest zbiorem otwartym (niezależnie od tego,
jaka jest metryka d).

Zadanie 8: Jeśli

x ∈ O =
⋃

s∈S

Os ,

to x ∈ Os, dla przynakmniej jednej wartości s (x należy do przynajmniej jednego ze
zbiorów wchodzącegi w skład sumy). Zatem ten Os jest otoczeniem x. Ponieważ jednak
Os ⊂ O, więc i O jest otoczeniem x. Tak więc O jest otoczeniem każdego swojego punktu,
więc jest otwarty. Aby dowieść otwartości przecięcia skończonej liczby zbiorów otwartych,
wystarczy rozpatrzyć przecięcie dwóch takich zbiorów. Jeśli x ∈ O = O1∩O2, to x ∈ O1 i
x ∈ O2. Zatem i O1 i O2 są otoczeniami x i stąd także O1 ∩O2 jest otoczeniem x. Zatem
zbiór O jest otoczeniem każdego swojego punktu, co oznacz, że jest otwarty. Jeśli jednak
w R weźmiemy jako rodzinę zbiorów otwartych odcinki otwarte On = (−1/n, 1/n), gdzie
n ∈ N (znów 0 nie uważamy za liczbę naturalną), to

⋂

n∈N

On = {0} ,

tj. przecięcie jest zbiórem złożonym z punktu zero tylko, który to zbiór nie jest otwarty.

Zadanie 9: a) Granica nie istnieje. Zbadać f(xn, yn) z xn = a/n, yn = b/n. b) Granica
jest równa 0; wziąć xn = rn cosϕn, yn = sinϕn z rn → 0. c) Jak w poprzednim. d)
Granica nie istnieje: wziąć xn = a/n, yn = b/n, co da

f(xnyn) =
2a2 + 3b2 + (a2 + b2)/n

a2 + b2
,

i już widać, że granica zależy od a i b, czyli od wyboru ciągu. e) Granica istnieje i
jest równa 0. f) Nie istnieje. g) Nie istnieje. Wziąć raz ciąg (1/n, 1/n), a drugi raz
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(1/n, −1/n) i raz dostanie się granicę 1, a drugi raz 0. h) W punktach (x0, 0) z x0 6= 0
granica oczywiście nie istnieje. W punkcie (0, 0) granica istnieje i jest równa 0.

Zadanie 10: Treść zadania jest dłuższa niż to, co trzeba zrobić (tylko trzeba pomyśleć
i się nie bać). Jeśli odwzorowanie F jest ciągłe w jakimś punkcie-vektorze v0, to znaczy,
że gdy weźmiemy dowolny ciąg vn wektorów zbieżny w normie || · ||1 do v0 (tj. taki,
że ||vn − v0||1 → 0) to ciąg F (vn) jest w sensie normy w V2 zbieżny do F (v0) (czyli
||F (vn)−F (v0)||2 → 0). Załóżmy teraz, że odwzorowanie F nie jest ciągłe w jakimś pukcie-
wektorze v′

0, co zgodnie z kryterium Heinego ciągłości oznacza, że istnieje przynajmniej
jeden ciąg wektorów v′

n zbieżny do v′
0 w normie || · ||1 ale F (v′

n) nie zbiega (w normie || · ||2)
do F (v′

0). No ale biorąc wektor w = v0 − v′
0 możemy stworzyć ciąg w + v′

n zbiegający
do v0 i wobec tego, z założonej ciągłości odwzorowania F w punkcie wektorze v0 musimy
mieć zbieganie ciągu F (w+v′

n) do wektora F (v0), który, na mocy liniowości F , jest równy
F (v′

0)+F (w). Z drugiej jednak strony wzięliśmy (co jest możliwe, jeśli F nie jest ciągłe w
v′
0) taki ciag v′

n, że F (v′
n) nie zbiega do F (v′

0), czyli F (v′
n+w) = F (v′

n)+F (w) nie może
zbiegać do F (v′

0) + F (w). Sprzeczność. Koniec. Zauważmy jeszcze, że to rozumowanie
jest bardzo ogólne i pozostaje słuszne zawsze, niezależnie czym są przestrzenie wektorowe
V1 i V2: mogą one być nawet nieskończenie-wymiarowe a nawet, najbardziej “przepastne”,
czyli nieośrodkowe (a to takie się nam pojawiają w kwantowej teorii pola.

Zadanie 11:

a) fx = 2x+ 3x2y3 − sin y , fy = −1 + 6y + 3x3y2 − x cos y ,

fxx = 2 + 6xy3 , fyy = 6 + 6x3y + x cos y , fyx = fxy = 9x2y2 − cos y ,

b) fx =
1

y − 1
, fy = − x

(y − 1)2
,

fxx = 0 , fyy =
2x

(y − 1)3
, fyx = fxy = − 1

(y − 1)2
,

c) fx = − y

x2 + y2
, fy =

x

x2 + y2
,

fxx =
2xy

(x2 + y2)2
, fyy = − 2xy

(x2 + y2)2
, fyx = fxy =

y2 − x2

(x2 + y2)2
,

fyyx = fyxy = fxyy =
6x2y − 2y3

(x2 + y2)3
, fyxx = fxyx = fxxy =

2x3 − 6xy2

(x2 + y2)3
,

d) fx = n(3x2y + z)n−16xy , fy = n(3x2y + z)n−13x2 , fz = n(3x2y + z)n−1 ,

fxx = n(n− 1)(3x2y + z)n−236x2y2 + n(3x2y + z)n−16y ,

fyy = n(n− 1)(3x2y + z)n−29x4 , fzz = n(n− 1)(3x2y + z)n−2 ,

fyx = fxy = n(n− 1)(3x2y + z)n−218x3y + n(3x2y + z)n−16x ,

fzx = fxz = n(n− 1)(3x2y + z)n−26xy , fyz = fzy = n(n− 1)(3x2y + z)n−23x2 ,

e) fx =
2x

x2 + y2
, fy =

2y

x2 + y2
,
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fxx =
2y2 − 2x2

(x2 + y2)2
, fyy =

2x2 − 2y2

(x2 + y2)2
, fyx = fxy = − 4xy

(x2 + y2)2
,

f) fx =
x

r
, fy =

y

r
, fz =

z

r
, r ≡

√

x2 + y2 + z2 ,

fxx =
y2 + z2

r3
, fyy =

x2 + z2

r3
, fzz =

x2 + y2

r3
,

fyx = fxy = −xy
r3
, fzx = fxz = −xz

r3
, fyz = fzy = −yz

r3
,

g) fx = − x

r3
, fy = − y

r3
, fz = − z

r3
, r ≡

√

x2 + y2 + z2 ,

fxx =
2x2 − y2 − z2

r5
, fyy =

2y2 − x2 − z2

r5
, fzz =

2z2 − x2 − y2

r5
,

fyx = fxy =
3xy

r5
, fzx = fxz =

3xz

r5
, fyz = fzy =

3yz

r5
,

h) fu =
1

u+ ln v
, fv =

1

v (u+ ln v)
,

fuu = − 1

(u+ ln v)2
, fvv = − 1 + u+ ln v

v2(u+ ln v)2
, fuv = fvu = − 1

v (u+ ln v)2
,

i) fx = − 2ax

r (a2 − r2)
, fy = − 2ay

r (a2 − r2)
, fz = − 2az

r (a2 − r2)
,

fxx = −2a [2x4 + x2(y2 + z2) + (a2 − y2 − z2)(y2 + z2)]

r3(a2 − r2)2
,

fxy = fyx = −2axy(a2 − 3r2)

r3(a2 − r2)2
, reszta pochodnych z symetrii,

j) fx = y xy−1 , fy = xy ln x ,

fxx = (y2 − y)xy−2 , fyy = xy ln2 x , fxy = fyx = (1 + y ln x)xy−1 ,

k) fx =
sin y

x
(ln x)−1+sin y , fy = (ln x)sin y cos y ln(ln x) ,

fxx =
sin y

x2
(−1 + sin y − lnx) (ln x)−2+sin y ,

fyy =
(

− sin y + cos2 y ln ln x
)

(ln x)sin y ln ln x ,

fxy = fyx=
cos y

x
(1 + sin y ln ln x) (ln x)−1+sin y ,

l) fx = (x tgz)−1+ln y(tgz) ln y , fy =
ln(x tgz)

y
(x tgz)ln y , fz =

x ln y

cos2 z
(x tgz)−1+ln y ,

fxx = tg2z(−1 + ln y) ln y (x tgz)−2+ln y , fyy =
−1 + ln(x tgz)

y2
ln(x tgz) (x tgz)ln y ,

fzz = − 4

sin2 2z
(cos 2z − ln y) ln y (x tgz)ln y ,

fxy = fyx =
1 + ln y

xy
ln(x tgz) (x tgz)ln y , fxz = fzx =

ln y

cos2 z
(x tgz)−1+ln y ,
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fzy = fyz =
4(1 + ln y)

y sin2 2z
ln(x tgz) (x tgz)ln y ,

m) fx = yzx−1+yz , fy = xy
z

z y−1+z ln x , fz = xy
z

yz(ln z)(ln y) ,

fxx = yz(−1 + yz)x−2+yz , fyy = xy
z

y−2+z(−1 + z + yzz ln x) z ln x ,

fzz = xy
z

yz(1 + yz ln x)(ln x)(ln y)2 , fxy = fyx = x−1+yzy−1+zz (1 + yz ln x) ,

fxz = fzx = x−1+yzyz(1 + yz ln x)(ln y) ,

fyz = fzy = xy
z

y−1+z(1 + z (1 + yz ln y) ln y) lnx ,

n) fx = y g(xy) , fy = x g(xy) ,

fxx = y2 g′(xy) , fyy = x2 g′(xy) , fxy = fyx = g(xy) + xy g′(xy) ,

W przykładzie g) pozornie fxx+fyy+fzz = 0 w całej przestrzeni R3. Równość ta jednak nie
zachodzi w punkcie (0, 0, 0), gdyż w przeciwnym razie prawo Gaussa znane nam (zapewne)
ze szkoły nie mogło by być prawdziwe: funkcja f jest tu bowiem proporcjonalna do
potencjału elektrostatycznego ładunku punktowego umieszczonego w (0, 0, 0) i wobec tego
pochodne fx, fy, fz są składowymi wytwarzanego przez taki ładunek pola elektrycznego
E, a suma fxx + fyy + fzz jest dywergencją ∇ ·E tegoż pola. Prawo Gaussa jednak
mówi, że ∇·E ∝ ρ, gdzie ρ jest gęstością ładunku elektrycznego i całka po objętości V z
dywergencji pola elektrycznego jest proporcjonalna do ładunku zawartego w V (całkowa
wersja wypisanego wyżej prawa Gaussa, które jest jednym z równań Maxwella)

∫

V

d3r∇·E =

∫

ds·E ∝ Q .

Jeśli więc Q 6= 0, nie może znikać i ∇·E ∝ ρ. W istocie, funkcja f nie jest określona w
punkcie (0, 0, 0) i wszystkie wykonane różniczkowania są słuszne tylko poza tym punktem;
nadanie sensu różniczkowaniu także i w punkcie (0, 0, 0) wymaga przejścia do tzw. dysty-
bucji, czyli uogólnionych funkcji - to się zwykle wykłada w ramach Analizy III. Zachodzi
wtedy wzór

fxx + fyy + fzz = −4πδ(3)(r) ,

gdzie ta dystrybucja δ(3)(r) zwana deltą Diraca to jest taka niby funkcja, która jest równa
zeru wszędzie oprócz punktu (0, 0, 0), gdzie jest ona równa nieskończoności i to tak zmyśl-
nie, że całka z niej po dowolnym trójwymiarowym obszarze obejmującym punkt (0, 0, 0)
jest równa 1 (czego to ludzie nie wymyśla!). Podobnie jest z funkcją z punktu e): pozornie
fxx + fyy = 0, ale naprawdę fxx + fyy = 2πδ(2)(r).

Zadanie 12:

a) fx(3, 4) = lim
h→0

(3 + h) + 4−
√

(3 + h)2 + 16− 7−
√
25

h

= 1− lim
h→0

√
25 + 6h+ h2 −

√
25

h
= 1− lim

h→0

6h+ h2

h (
√
25 + 6h+ h2 + 5)

=
2

5
.
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Obliczenie fy(3, 4) jest analogiczne i daje fy(3, 4) = 1/5.

b) fx(1, 2) = lim
h→0

1

h

[

ln

(

1 + h+
2

2(1 + h)

)

− ln 2

]

= lim
h→0

1

h
ln

[

1 +
h

2
+

1

2

(

1

1 + h
− 1

)]

= lim
h→0

1

h
ln

[

1 +
h

2
− h

2(1 + h)

]

= lim
h→0

1

h

(

h

2
− h

2(1 + h)
+O(h2)

)

= lim
h→0

(

1

2
− 1

2(1 + h)
+O(h2)

)

= 0 ,

fy(1, 2) = lim
h→0

1

h

[

ln

(

1 +
2 + h

2

)

− ln 2

]

= lim
h→0

1

h
ln

(

1 +
h

4

)

=
1

4
.

c) (∇nf)(2, 1) = lim
h→0

1

h

[

(

2 +
h√
10

)2

+ 2

(

1 +
3h√
10

)2

− 22 − 2·12
]

= lim
h→0

1

h

(

4h√
10

+
h2

10
+

12h√
10

+
18h2

10

)

=
16√
10
.

Pochodne cząstkowe ∂f/∂x = 2x, ∂f/∂y = 4y sa w punkcie (2, 1) równe odpowiednio 4 i
4 i kombinacja 4n1 + 4n2 jest równa obliczonej wyżej z definicji pochodnej kierunkowej.

d) (∇nf)(1, 1) = lim
h→0

1

h

{

sin

[

π

2

(

1 +
h√
10

+ 1− 3h√
10

)]

− sin π

}

= lim
h→0

1

h
sin

[

π

2

(

2− 2h√
10

)]

= lim
h→0

1

h
sin

(

πh√
10

)

=
πh√
10
,

co zgadza się z odpowiednią kombinacją liniową pochodnych cząstkowych obliczonych w
punkcie (1, 1):

∂f

∂x

∣

∣

∣

∣

(1,1)

=
π

2
cos
(π

2
(x+ y)

)∣

∣

∣

(1,1)
= −π

2
=
∂f

∂y

∣

∣

∣

∣

(1,1)

,

i

n1
∂f

∂x

∣

∣

∣

∣

(1,1)

+ n2
∂f

∂y

∣

∣

∣

∣

(1,1)

=
π

2

(

1√
10

− 3√
10

)

=
π√
10
.

Zadanie 13: a) Ciągłość tej fukcji w punkcie (0, 0) jest oczywista. Abyo bliczyć z definicji
jej pochodne kierunkowe w punkcie (0, 0), bierzemy jednostkowy wektor n o składowych
n1 = cos θ ≡ c i n2 = sin θ ≡ s i obliczamy granicę:

∇nf |(0,0) = lim
h→0

f(hc, hs)− f(0, 0)

h
= c2s .
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Stąd od razu widać, że fx(0, 0) = 0 i fy(0, 0) = 0 bo pierwsza pochodna cząstkowa
odpowiada kierunkowej z c = 1, s = 0, a druga z c = 0, s = 1. Zatem df = 0 niezależnie
od przyrostu (dx, dy), podczas gdy

∆f = f(0 + dx, 0 + dy)− f(0, 0) =
(dx)2dy

[(dx)2 + (dy)2]
,

czyli

∆f − df
√

(dx)2 + (dy)2
=

(dx)2dy

[(dx)2 + (dy)2]3/2
,

nie dąży do zera, gdy
√

(dx)2 + (dy)2 → 0. A wszystko to dlatego, że pochodne fx(x, y)
i fy(x, y)

fx =
2xy3

(x2 + y2)2
, fy =

x4 − x2y2

(x2 + y2)2
,

traktowane jak fukcje na R2 nie są ciągłe w punkcie (0, 0), co już każdy powinien umieć
sprawdzić. Oznacza to że ta “ŕożniczka” df prawdziwą różniczką nie była. Widać tu też,
że pochodna kierunkowa w kierunku jednostkowego wektora n nie jest w punkcie (0, 0)
równa n1fx(0, 0) + n2fy(0, 0) bo ta kombinacja jest zawsze równa zero.

b) Tu ciągłość funkcji w punkcie (0, 0) sprawdzamy rozpatrując np. ciągi xn → 0 i
yn → 0 i pisząc

f(xn, yn) = xn
(x2n/yn)

1 + (x2n/yn)
2
= xn

(yn/x
2
n)

1 + (yn/x2n)
2
.

Niezależnie od tego, jak zachowują się ciągi cn ≡ x2n/yn, lub dn ≡ yn/x
2
n, oba wyrażenia

dążą do zera, gdy xn → 0. Zatem funkcja f jest w punkcie (0, 0) ciągła. Obie pochodne
cząstkowe f jako funkcje na R

2

fx(x, y) =
3x2y3 − x6y

(x4 + y2)2
, fy(x, y) =

x7 − x3y2

(x4 + y2)2
,

są w punkcie (0, 0) ciągłe jeśli badać ich ciągłość wzdłuż prostych, tj. na ciągach xn = a/n,
yn = b/n (albo ogólniej xn = af(n), yn = bf(n), f(n) → 0):

fx(xn, yn) =
3a2b3 − a6b/n2

n (b2 + a4/n2)2
→ 0 , fy(xn, yn) =

−a3b2 + a7/n2

n (b2 + a4/n2)2
→ 0 ,

z wyjątkiem fy badanej wzdłuż osi x, kiedy to b = 0 - pochodna ta w tym kierunku dąży
do ∞. Zatem obie pochodne cząstkowe (∂f/∂x)(0,0) i (∂f/∂y)(0,0) istnieją, bo ta druga
odpowiada granicy fy ale branej wzdłuż osi y (a nie x, gdzie ujawnia się jej nieciągłość).
Tak więc ściśle rzecz biorąc pochodne cząstkowe nie są ciągłe ale pochodne kierunkowe
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istnieją w każdym kierunku, co jak zwykle można sprawdzić biorąc n1 = c, n2 = s
(c2 + s2 = 1):

∇nf |(0,0) = lim
h→0

1

h

[

c3sh4

c4h4 + s2h2
− 0

]

= lim
h→0

c3sh

c2h4 + s2
= 0 ,

z wyjątkiem przypadku s = 0, czyli pochodnej kierunkowej w kierunku osi x, czyli po
prostu pochodnej cząstkowej (∂f/∂x)(0,0), kiedy to powyższe wyrażenie dąży do nieskoń-
czoności; znów jednak pochodna (∂f/∂x)(0,0) jak najbardziej istnieje

(∂f/∂x)(0,0) = lim
h→0

0− 0

h
= 0 .

tylko pochodne kierunkowe jako funkcje kierunku nie są ciągłe. Czyli prawdziwa po-
chodna nie istnieje (bo pochodne cząastkowe fx(x, y) i fy(x, y) nie są w punkcie (0, 0)
ciągłe), nie istnieje zatem i prawdziwa różniczka. Różniczka-Ersatz, czyli (∂f/∂x)(0,0)dx+
(∂f/∂y)(0,0)dy = 0 · dx+0 · dy nie przybliża należycie przyrostu ∆f funkcji, bo wyrażenie

∆f − 0 · dx− 0 · dy
√

(dx)2 + (dy)2
=

(dx)3dy

[(dx)4 + (dy)2]
√

(dx)2 + (dy)2
,

nie dąży bezwarunkowo do zera: np. gdy dy = (dx)2 → 0, wyrażenie to ma postać

(dx)5

2(dx)5
√

1 + (dx)2
,

i ewidentnie nie dąży do zera.

Zadanie 14:
a) Funkcja f(x, y) = x/(1 + y2) jest przyzwoicie ciągła i ciągłe są w każdym punkcie R2

także jej pochodne cząstkowe

fx(x, y) =
1

1 + y2
, fy = − 2xy

(1 + y2)2
.

Jej pochodna f ′ w dowolnym punkcie (x0, y0) zatem istnieje i jest dana przez pochodne
cząstkowe:

f ′(x0, y0) = (fx(x0, y0), fy(x0, y0)) .

Jest ona oczywiście kowektorem (jedno-formą liniową), czyli odwzorowaniem z R2 (ale
właściwie to nie z tego R2, które jest dziedziną samej funkcji i tu gra rolę rozmaitości,
tylko tej przestrzeni wektorowej, w której żyją wektory przemieszczeń, czyli przestrzeni
stycznej w danym punkcji (x0, y0) do rozmaitości; no ale na naszym poziomie wszystko
się zlewa w jedno...) w R, czyli w przestrzeń, z której wartości przyjmuje funkcja. W
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punkcie (2, 1) pochodna f jest kowektorem o składowych (w kanonicznej zero-jedynkowej
bazie R2)

f ′(2, 2) =

(

1

2
, −1

)

,

i po zadziałaniu na wektor przyrostu (δλ, 1
2
δλ) daje zero:

f ′(2, 2) ·
(

δλ
1
2
δλ

)

=

(

1

2
, −1

)

·
(

δλ
1
2
δλ

)

= 0 .

Oznacza to, że w tym kierunku, przy przejściu od punktu (2, 1) do punktu (2+δλ, 1+ 1
2
δλ),

funkcja w pierwszym przybliżeniu nie zmienia się (główna liniowa część zmiany wartości
funkcji w tym kierunku jest równa zeru). Zadziaławszy zaś na wektor (δλ, δλ) pochodna
ta daje −δλ/2, co jest główną liniową częścią zmiany wartości przy przejściu od punktu
(2, 1) do punktu (2 + δλ, 1 + δλ).
b) Znów funkcja jest najprzyzwoitsza z możliwych i jej pochodna w punkcie (1, 1) jest
kowektorem

f ′(1, 1) = (4, 6) .

Aby się dowiedzieć, w którym kierunku, ruszając z tego punktu, należy się przemieścić, by
mieć najbardziej “pod górkę” (do szkoły oczywiście), obliczamy wartość tej pochodnej na
przyroście (dx, dy) = (δλ cos θ, δλ sin θ) przyjmując, że δλ ≥ 0 (znak δλ jest “załatwiany”
przez kąt θ):

f ′(1, 1) ·
(

δλ cos θ
δλ sin θ

)

= 2 δλ (2 cos θ + 3 sin θ) .

Prawa strona daje główną liniową część zmiany wartości funkcji74 przy przesunięciu się
z puntu (1, 1) o odległość

√
2δλ w kierunku zadanym przez kąt θ. Trzeba zatem znaleźć

maksimum prawej strony jako funkcji θ ∈ [0, 2π). To już umiemy:

d

dθ
2 δλ (2 cos θ + 3 sin θ) = 0 , gdy tg θ =

3

2
.

W zakresie θ ∈ [0, 2π) są oczywiście dwa rozwiązania tego warunku różniące się o π: w
jednym druga pochodna jest ujemna (maksimum) i w tym to kierunku funkcja rośnie
najszybciej, a w dugim druga pochodna jest dodatnia (minimum) i w kierunku odpo-
wiadającym tej wartości θ funkcja najszybciej maleje. Oczywiście kierunki najszybszego
wzrostu funkcji i najszybszego jej malenia są przeciwne (odpowiednie kąty θ różnią się o
π), bo f ′ wyznaczające (gdy funkcja jest przyzwoita, czyli gdy ma pochodną prawdziwą)
zmianę funkcji w dowolnym kierunku jest odwzorowaniem liniowym, a zmiana θ → θ± π

74Przypomnijmy, że im mniejsza wartość δλ, tym lepiej ta główna liniowa część zmiany przybliża
rzeczywistą zmianę ∆f wartości funkcji.
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odpowiada pomnożeniu wektora przesunięcia przez −1. Oczywiście jest też kierunek, a
nawet dwa, różniące się znów o π, w którym funkcja nie rośnie wcale: są to takie kie-
runki, że wektorek przesunięcia (dx, dy) jest równoległy (w danym punkcie, tu w (1, 1))
do gradientu75 funkcji, czyli do (fx(1, 1), fy(1, 1)).
c) Odwzorowanie R2

+ −→ R3 to po prostu trzy osobne odwzorowania R2
+ −→ R umiesz-

czone na trzech “pięterkach”. Na każdym pięterku z osobna robimy to samo, co w zadaniu
12. Tak więc piszemy

F

([

x
y

])

=





f1(x, y)
f2(x, y)
f3(x, y)



 =





x sin(x+ 2y)
y2 cos(2x− y)

y2x



 ,

i obliczamy z definicji najpierw pochodną kierunkową funkcji f1(x, y):

∇nf1 = lim
h→0

1

h

[(

x+
h√
2

)

sin

(

x+
h√
2
+ 2y +

2h√
2

)

− x sin(x+ 2y)

]

= lim
h→0

1

h

{(

x+
h√
2

)[

sin(x+ 2y) cos
3h√
2
+ cos(x+ 2y) sin

3h√
2

]

− x sin(x+ 2y)

}

= lim
h→0

1

h

[

x cos(x+ 2y) sin
3h√
2
+

h√
2
sin(x+ 2y) +O(h2)

]

=
1√
2
sin(x+ 2y) +

3√
2
x cos(x+ 2y) .

Widać, że jest to to samo, co

n1
∂f1
∂x

+ n2
∂f1
∂y

=
1√
2
[sin(x+ 2y) + x cos(x+ 2y)] +

1√
2
2x cos(x+ 2y) .

Analogicznie postępujemy z drugim pięterkiem, czyli funkcją f2(x, y). Pochodna kie-
runkowa trzeciego pięterka jest może trochę trudniejsza

∇nf3 = lim
h→0

1

h

[

(

y +
h√
2

)2(x+h/
√
2)

− y2x

]

= lim
h→0

1

h

[

exp

{

2

[

x+
h√
2

][

ln y + ln

(

1 +
h√
2 y

)]}

− y2x
]

= lim
h→0

1

h

[

e2x ln ye
√
2 h ln y exp

{

2

(

x+
h√
2

)(

h√
2 y

+ . . .

)}

− y2x
]

= y2x lim
h→0

1

h

[

(1 +
√
2h ln y + . . .)

{

1 + 2

(

x+
h√
2

)(

h√
2 y

+ . . .

)}

− 1

]

= y2x
(√

2 ln y +
√
2
x

y

)

.

75Tak zwykły fizyk zwykle nazywa pochodną prawdziwą funkcji f : Rn −→ R. Znów tu mącimy bo po
pierwsze, co to znaczy, że dwa wektory są równoległe? A po drugie, jak kowektor może być równoległy
do wektora? No właśnie to są skutki tego, że w Rn wszystko się zlewa w jedno...
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Znów jest to to samo, co

n1
∂f3
∂x

+ n2
∂f3
∂y

=
1√
2
2 e2x ln y +

1√
2
2 e2x

x

y
.

Ostatecznie więc pochodna kierunkowa w kierunku n obliczona w dowolny punkcie (x, y)
jest wektorem

∇nF =





∇nf1
∇nf2
∇nf3



 =







1√
2
sin(2x+ y) + 3√

2
x cos(2x+ y)√

2 y cos(2x− y)− 1√
2
y2 sin(2x− y)

y2x
(√

2 ln y +
√
2 x

y

)






,

który, aby uzyskać główną liniową część zmiany (przyrostu) wektorowej wartości funkcji
przy przesunieciu się na płaszcyźnie R2

+ z punktu (x, y) do punktu (x+ n1δλ, y + n2δλ),
należy pomnożyć przez δλ.
d) W tym przypadku pochodna w konkretnym punkcie jest odwzorowaniem liniowym
reprezentowanym macierzą

F ′(1,−1) =

(

f 1
x f 1

y

f 2
x f 2

y

)

(1,−1)

=

(

2x −2y
ex−y −ex−y

)

(1,−1)

=

(

2 2
e2 −e2

)

.

W działaniu na wektor przesunięcia (dx, dy) = (−δλ, 2δλ) daje ona różniczkę funkcji,

F ′(1,−1) ·
(

−δλ
2 δλ

)

=

(

2 δλ
−3δλ e2

)

,

czyli główną liniową część zmiany wektora-wartości odwzorowania F przy przesunięciu
się z punktu (1,−1) do punktu (1 + δλ, −1− 2δλ).
e) Tu też pochodna w konkretnym punkcie jest odwzorowaniem liniowym reprezentowa-
nym macierzą

F ′(1, 3, 0) =

(

f 1
x f 1

y f 1
z

f 2
x f 2

y f 2
z

)

(1,3,0)

=

(

x/
√
x2 + z2 0 z/

√
x2 + z2

0 2y/(1 + y2 + z2) 2z/(1 + y2 + z2)

)

(1,3,0)

=

(

1 0 0
0 3/5 0

)

.

W działaniu na wektor przesunięcia (dx, dy, dz) = (0, δλ, δλ) daje ona różniczkę funkcji,

F ′(1, 3, 0) ·
(

δλ
δλ

)

=

(

0
3δλ/5

)

,

czyli główną liniową część zmiany wektora-wartości odwzorowania F przy przesunięciu
się z punktu (1, 3, 0) do punktu (1, 3 + δλ, δλ).

Zadanie 15: W R2 punkt przez który musi przechodzić prosta ma współrzędne (x0, f(x0)).
Prostą przechodzącą przez taki punkt najłatwiej zadać parametrycznie, tj. podając dwie
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składowe wektora t, do którego prosta ta ma być równoległa. Wiadomo, ze szkoły, że
nachylenie prostej stycznej jest dane przez pochodną. Zatem wektor taki ma składowe
[1, (df/dx)x0] i równanie prostej można napisać w formie

(

x
y

)

=

(

x0
f(x0)

)

+

[

1
(df/dx)x0

]

ξ ,

gdzie ξ ∈ (−∞, ∞) jest rzeczywistym parametrem. (Jak ktoś chce, to może z równania
x = x0+ ξ wyrazić ξ = x−x0 i wstawić do drugiego równania uzyskując równanie prostej
w formie szkolnej, tj. ax+ by + c = 0.)

Uogólnienie na R3 jest proste. Jeśli ustalimy y = y0 to mamy, zmieniając x, funkcję
y = f(x, y0) i płaszczyzna styczna w (x0, y0) do powierzchni będącej wykresem y = f(x, y)
musi być rówoległa do wektora t1 = [1, 0, (∂f/∂x)(x0,y0)], który w kierunku x-owym od-
grywa tę samą rolę, co poprzedno wektor [1, (df/dx)x0]. Analogicznie jest w kierunku
y-owym mamy wektor t2 = [0, 1, (∂f/∂y)(x0,y0)]. Zatem parametrycznie zadajemy płasz-
czyzne styczna w (x0, y0) do powierzchni będącej wykresem y = f(x, y) wzorami





x
y
z



 =





x0
y0

f(x0, y0)



 +





1
0

(∂f/∂x)(x0,y0)



 ξ1 +





0
1

(∂f/∂y)(x0,y0)



 ξ2 ,

gdzie ξ1, ξ2 ∈ (−∞, ∞) są dwoma rzeczywistymi parametrami. (Znów można z równań
x = x0 + ξ1 i y = y0 + ξ2 wyrazić ξ1 = x−x0, ξ2 = y− y0 i wstawić do trzeciego równania
uzyskując równanie płaszczyzny w formie szkolnej, tj. ax+ by + cz + d = 0.)

Nietrudno teraz już zadać parametrycznie w R4 hiperpłaszczyznę styczną do “wykresu”
funkcji t = f(x, y, z) sa teraz trzy wektory t1, t2 i t2:








x
y
z
t









=









x0
y0
z0

f(x0, y0, z0)









+









1
0
0

(∂f/∂x)(x0,y0,z0)









ξ1 +









0
1
0

(∂f/∂y)(x0,y0,z0)









ξ2 +









0
0
1

(∂f/∂z)(x0 ,y0,z0)









ξ3 ,

gdzie ξ1, ξ2, ξ3 ∈ (−∞, ∞) są trzema rzeczywistymi parametrami. Zatem w przypadku
podanej funkcji hiperpłaszczyzna jest zadana parametrycznie wzorami









x
y
z
t









=









1
2
3
18









+









1
0
0
2









ξ1 +









0
1
0
12









ξ2 +









0
0
1
6









ξ3 ,

albo jednym liniowym równaniem 2x+ 12y + 6z − t− 26 = 0.
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Zadanie 16: Trzeba obliczyć pochodne (∂f/∂x) i (∂f/∂y), wstawić do lewej strony i
zobaczyć co tam wyjdzie.

∂f

∂x
=

(

dφ(t)

dt

)

t=y/x

∂

∂x

(y

x

)

− 2x = φ′
(y

x

)(

− y

x2

)

− 2x ,

∂f

∂y
=

(

dφ(t)

dt

)

t=y/x

∂

∂y

(y

x

)

− 2y = φ′
(y

x

)

(

1

x

)

− 2y .

Zatem lewa strona równania jest równa

x
[

− y

x2
φ′
(y

x

)

− 2x
]

+ y

[

1

x
φ′
(y

x

)

− 2y

]

= −2(x2 + y2) .

Zatem w równaniu, które ma spełniać funkcja f(x, y) funkcja g(x, y) po prawe stronie
musi być równa właśnie −2(x2 + y2).

Zadanie 17: Znów wyobrażamy sobie, że f(x, y) = f̃(u(x, y), v(x, y)). Pierwsze po-
chodne ∂f/∂x i ∂f/∂y zostały znalezione w zadaniu w tekście. Korzystając z tamtych
wzorów piszemy

∂2f

∂x2
=

∂

∂x

(

∂f̃

∂u

∂u

∂x
+
∂f̃

∂v

∂v

∂x

)

=
∂u

∂x

∂

∂x

(

∂f̃

∂u

)

+
∂v

∂x

∂

∂x

(

∂f̃

∂v

)

+
∂2u

∂x2
∂f̃

∂u
+
∂2v

∂x2
∂f̃

∂v

=
∂u

∂x

[

∂

∂u

(

∂f̃

∂u

)

∂u

∂x
+

∂

∂v

(

∂f̃

∂u

)

∂v

∂x

]

+
∂v

∂x

[

∂

∂u

(

∂f̃

∂v

)

∂u

∂x
+

∂

∂v

(

∂f̃

∂v

)

∂v

∂x

]

+
∂2u

∂x2
∂f̃

∂u
+
∂2v

∂x2
∂f̃

∂v
.

Po uporządkowaniu:

∂2f

∂x2
=

(

∂u

∂x

)2
∂2f̃

∂u2
+

(

∂v

∂x

)2
∂2f̃

∂v2
+

(

∂u

∂x

)(

∂v

∂x

)

∂2f̃

∂u∂v
+
∂2u

∂x2
∂f̃

∂u
+
∂2v

∂x2
∂f̃

∂v
.

W analogiczny sposób dostaniemy

∂2f

∂y2
=

(

∂u

∂y

)2
∂2f̃

∂u2
+

(

∂v

∂y

)2
∂2f̃

∂v2
+

(

∂u

∂y

)(

∂v

∂y

)

∂2f̃

∂u∂v
+
∂2u

∂y2
∂f̃

∂u
+
∂2v

∂y2
∂f̃

∂v
.

Trzeba teraz prawe strony wyrazić przez u i v. Pierwsze pochodne ux = (∂u∂x), etc.
zostały przez u i v wyrażone (na trzy sposoby) w zadaniu w tekście. Trzeba jeszcze tylko
wyrazić drugie pochodne uxx, i vxx. Oczywiście można to zrobić wypisując jawnie wzory
na u = u(x, y), v = v(x, y), dwukrotnie je różniczkując po x i potem wyrażając zurück
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przez zmienne u i v. Ale bardziej pouczającee jest zastosować metodę “termodynamiczną”.
W zadaniu w tekście otrzymaliśmy dwa związki

1 =
v2 − u2

R4
ux −

2uv

R4
vx,

0 =
u2 − v2

R4
vx −

2uv

R4
ux,

w których R = R(u(x, y), v(x, y)). Drugie z nich można od razu pomnożyć stronami przez
R4, co uprości robotę. Możemy je zróżniczkować jeszcze raz stronami po x co da

0 = (v2 − u2)uxx − 2uvvxx − 2u(u2x + v2x)

− 2

R2

[

(v2 − u2)ux − 2uvvx
]

(2uux + 2vvx) ,

0 = (u2 − v2) vxx − 2uvuxx − 2v(u2x + v2x) .

Ponieważ ux i vx już mamy wyrażone przez u i v, dwa te równania są liniowymi równaniami
na uxx i vxx. Wstawiając do nich ux = v2−u2 i vx = −2uv (korzystamy z wyników zadania
w tekscie) otrzymujemy równania, które możemy zapisać tak

(

u2 − v2 2uv
−2uv u2 − v2

)(

uxx
vxx

)

=

(

2uR4

2vR4

)

.

Wyznacznik macierzy po lewej stronie jest równy R4 i mamy
(

uxx
vxx

)

=
1

R4

(

u2 − v2 −2uv
2uv u2 − v2

)(

2uR4

2vR4

)

=

(

2u(u2 − 3v2)
2v(3u2 − v2)

)

.

Oczywiście ponieważ w tym przypadku jest łatwo odkręcić wzory i dostać

u =
x

x2 + y2
≡ x

κ2
, v =

y

x2 + y2
≡ y

κ2
,

łatwo jest znalećź uxx i vxx “na piechotę. ux = (y2 − x2)/κ4, vx = −2xy/κ4 i (pamiętamy,
że R2 = 1/κ2)

uxx = −2x

κ4
− 2(y2 − x2) 2x

κ6
=

2x(x2 − 3y2)

κ6
= 2u(u2 − 3v2) ,

vxx = −2y

κ4
+

2xy 2x

κ6
=

2y(3x2 − y2)

κ6
= 2v(3u2 − v2) ,

tak jak poprzednio.
W zupełnie analogiczny sposób można otrzymać równania wyznaczające uyy i vyy

różniczkując po y związki

0 =
v2 − u2

R4
uy −

2uv

R4
vy,

1 =
u2 − v2

R4
vy −

2uv

R4
uy,
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uzyskane z różniczkowania po y wzorów wiążących x i y z u i v. Dostaniemy po takich
samych przekształceniach, jak te wyżej,

uyy = 2u(3v2 − u2) , vyy = 2v(v2 − 3u2) .

Zbierając wszystko razem otrzymujemy

fxx = (v2 − u2)2f̃uu + 4u2v2f̃vv − 2uv(v2 − u2)f̃vu + 2u(u2 − 3v2)f̃u + 2v(3u2 − v2)f̃v ,

fyy = 4u2v2f̃uu + (u2 − v2)2f̃vv − 2uv(u2 − v2)f̃vu + 2u(3v2 − u2)f̃u + 2v(v2 − 3u2)f̃v .

Jak te dwa wzory dodamy stronami, to się okaże, że

fxx + fyy = R4(u, v)(f̃uu + f̃vv) .

Przeszliśmy tu dość długą drogę aby pokazać wszystko w detalach w sytuacji, gdy nie
jest tak łatwo odwracać związki łączące dwa zespoły zmiennych. Tu, ponieważ nie jest to
trudne, można było jednak zrobić wszystko trochę prościej. Np. wyrażając fxx przez u i
v można było do wzoru

∂2f

∂x2
≡ fxx =

∂

∂x

(

∂f̃

∂u

∂u

∂x
+
∂f̃

∂v

∂v

∂x

)

≡ ∂

∂x

(

ux f̃u + vx f̃v

)

,

od razu podstawić ∂u/∂x ≡ ux = (y2 − x2)/κ4, ∂v/∂x ≡ vx = −2xy/κ4. Moglibyś-
my wtedy ux i vv różniczkować po x jawnie i dopiero na końcu wyrazić rezultat tych
różniczkowań przez zmienne u i v:

fxx = −4x

κ6

[

(y2 − x2) f̃u − 2xy f̃v

]

+
1

κ4

[

−2x f̃u − 2y f̃v + (y2 − x2)
∂f̃u
∂x

− 2xy
∂f̃v
∂x

]

.

Po małym uporządkowaniu daje to

fxx =
1

κ6

[

2x(x2 − 3y2) f̃u + 2y(3x2 − y2) f̃v

]

+
1

κ4

[

(y2 − x2)
(

ux f̃uu + vx f̃uv

)

− 2xy
(

ux f̃vu + vx f̃vv

)]

,

co po podstawieniu znów ux = (y2−x2)/κ4, vx = −2xyκ4 i wyrażeniu x i y przez zmienne
u i v (co sprowadza się do zastąpienia x przez u, a y przez v i położeniu κ = 1 - dlaczego?
już to przerabialiśmy!) da na fxx ten sam wzór, co wypisany już wyżej.

Zadanie 18: Piszemy

∂

∂y

(

∂f

∂x

)

=
∂

∂y

(

∂f̃

∂u

∂u

∂x
+
∂f̃

∂v

∂v

∂x

)

= ux

(

uy f̃uu + vy f̃uv

)

+ uxy f̃u

+vx

(

uy f̃vu + vy f̃vv

)

+ vxy f̃v .
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Druga zaś pochodna, to

∂

∂x

(

∂f

∂y

)

=
∂

∂x

(

∂f̃

∂u

∂u

∂y
+
∂f̃

∂v

∂v

∂y

)

= uy

(

ux f̃uu + vx f̃uv

)

+ uyx f̃u

+vy

(

ux f̃vu + vx f̃vv

)

+ vyx f̃v .

Widać, że jest to to samo.
Aby jawnie podać pochodną mieszaną fxy wyrażoną przez u i v musimy znaleźć po-

chodne uxy = uyx i vxy = vyx wyrażone przez te właśnie zmienne (wszystkie inne potrzebne
elementy już mamy). Znów, tu jest to łatwe, bo możemy łatwo jawnie napisać wzory
u = x/κ2(x, y) i v = y/κ2(x, y). Ale znów zrobimy to okrężną drogą, czyli “sposobem
termodynamicznym”, aby zobaczyć jak sobie radzić, gdy nie da się łatwo napisać wzorów
u = u(x, y) i v = v(x, y) (a znane są wzory dające x = x(u, v) i y = y(u, v). Mamy z
poprzedniego zadania dwa układy równań

1 =
v2 − u2

R4
ux −

2uv

R4
vx,

0 =
u2 − v2

R4
vx −

2uv

R4
ux,

otrzymany ze zróżniczkowania tożsamości x = x(u(x, y), v(x, y)) i y = y(u(x, y), v(x, y))
po x, oraz drugi układ

0 =
v2 − u2

R4
uy −

2uv

R4
vy,

1 =
u2 − v2

R4
vy −

2uv

R4
uy,

otrzymany przez zróżniczkowanie tożsamości x = x(u(x, y), v(x, y)) i y = y(u(x, y), v(x, y))
po y. Każdy z tych dwu układów może nam posłużyć do wyznaczenia uxy i vxy. Powinny
one dać to samo. Posłużymy się tu pierwszym z nich (zalecając studentom samodzielne
wyprowadzenie wzorów na uxy i vxy z drugiego układu równań). Różniczkujemy więc
pierwsze dwa równania stronami po y co daje

0 = (v2 − u2)uxy − 2uvvxy + 2v (uxvy − uyvx)− 2u(uxuy + vxvy)

− 2

R2

[

(v2 − u2)ux − 2uvvx
]

(2uuy + 2vvy) ,

0 = (u2 − v2)vxy − 2uvuxy + 2u (uyvx − uxvy)− 2v(uxuy + vxvy) .

Podstawiamy tu teraz ux = (y2 − x2)/κ4, vx = −2xy/κ4 oraz uy = −2xy/κ4, vy =
(x2 − y2)/κ4 albo lepiej ux = v2 − u2, vx = −2uv, uy = −2uv, vy = u2 − v2 (zobacz
zadanie w tekście), co od razu uwidacznia, że uxuy + vxvy = 0, a uxvy − uyvx = −R4.
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Dostajemy stąd liniowy układ dwóch równań na uxy i vxy, kt’ory znów zapiszemy w postaci
macierzowej

(

u2 − v2 2uv
−2uv u2 − v2

)(

uxy
vxy

)

=

(

2vR4

−2uR4

)

.

Zatem
(

uxy
vxy

)

=
1

R4

(

u2 − v2 −2uv
2uv u2 − v2

)(

2vR4

−2uR4

)

=

(

2v (3u2 − v2)
2u(3v2 − u2)

)

.

To samo można oczywiście było dostać różniczkując bezpośrednio ux = (y2− x2)/κ4 oraz
vx = −2xy/κ4 po y i wyrażając rezultat tych różniczkowań przez zmienne u i v. Zatem

fxy = 2uv(u2 − v2)
(

f̃uu − f̃vv

)

− (u4 − 6u2v2 + v4)f̃uv

+2v(3u2 − v2)f̃u + 2u(3v2 − u2)f̃v .

Zadanie 19: Niech z = x2 − y2. Obliczamy pochodne funkcji f(x, y) = y φ(x2 − y2):

∂f

∂x
=

∂

∂x
(y φ(z(x, y)) = y

dφ(z)

dz

∣

∣

∣

∣

z=x2−y2

∂z

∂x
= 2xy φ′(x2 − y2) ,

∂f

∂y
=

∂

∂y
(y φ(z(x, y)) = φ(x2 − y2) + y

dφ(z)

dz

∣

∣

∣

∣

z=x2−y2

∂z

∂y

= φ(x2 − y2)− 2y2 φ′(x2 − y2) .

Wykorzystując te pochodne w podanej kombinacji, znajdujemy

1

x

∂f

∂x
+

1

y

∂f

∂y
= 2y φ′(x2 − y2) +

1

y
φ(x2 − y2)− 2y φ′(x2 − y2)

=
1

y
φ(x2 − y2) =

1

y2
f(x, y) .

Zatem funkcja g(x, y) = 1/y2.

Zadanie 20: Wprowadźmy oznaczenia u = z/x i v = y/x. Obliczamy następnie po-
chodne:

∂H

∂x
= 2xF

(z

x
,
y

x

)

+ x2
[

∂F (u, v)

∂u

]

u=z/x,v=y/x

∂u

∂x
+ x2

[

∂F (u, v)

∂v

]

u=z/x,v=y/x

∂v

∂x

= 2xF
(z

x
,
y

x

)

+ x2 [Fx(u, v)]u=z/x,v=y/x

(

− z

x2

)

+ x2 [Fv(u, v)]u=z/x,v=y/x

(

− y

x2

)

= 2xF
(z

x
,
y

x

)

− z [Fx(u, v)]u=z/x,v=y/x − y [Fv(u, v)]u=z/x,v=y/x .
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I analogicznie

∂H

∂y
= x2 [Fv(u, v)]u=z/x,v=y/x

1

x
= x [Fv(u, v)]u=z/x,v=y/x ,

∂H

∂z
= x2 [Fu(u, v)]u=z/x,v=y/x

1

x
= x [Fu(u, v)]u=z/x,v=y/x .

Gdy wiec wstawimy te pochodne do kombinacji

x
∂H

∂x
+ y

∂H

∂y
+ z

∂H

∂z
,

wszystkie wyrazy z Fu i Fv ulegną redukcji o kombinacja ta okaże się równa 2x2F (z/x, y/x).
Zatem w równaniu spełnianym przez H funkcja g(x, y, z) musi być stała i równa 2.

Zadanie 21:

a) sin(x+ y) = x+ y − 1

6
x3 − 1

2
x2y − 1

2
xy2 − 1

6
y3 + . . . ,

b) ex
2

cos y = 1 + x2 − 1

2
y2 +

1

2
x4 − 1

2
x2y2 +

1

24
y4 + . . . ,

c) ln(1 + x+ 2y) = x+ 2y − 1

2
x2 − 2xy − 2y2 +

1

3
x3 + 2x2y + 4xy2 +

8

3
y3 + . . . ,

d) x+ y +
√

x2 + y2 = 2 + 2(x− 1) + y +
1

2
y2 − 1

2
(x− 1)y2 + . . . ,

d) xy = 1 + (x− 1) y − 1

2
(x− 1)2y +

1

3
(x− 1)2y +

1

2
(x− 1)2y2 + . . .

Zadanie 22:
a) Równania fx = 2x−λy =, fy = −λx+2y = 0 mają tylko jedno rozwiązanie x = 0 = 0.
Punktem krytycznym jest więc tylko punkt (0, 0). Drugie pochodne są stałe (takie same w
każdym punkcie). Forma kwadratowa drugich pochodnych jest więc wszędzie taka sama,
więc i w punkcie krytycznym też ma ona postać

(

2 −λ
−λ 2

)

.

Jej minory: M11 = 2 > 0, M22 = 4− λ2. Zatem jeśli |λ| < 2, funkcja = x2 + y2 − λxy ma
w punkcie (0, 0) minimum lokalne. Jest też jasne, że ekstremum, jeśli istnieje, musi być
w punkcie (0, 0), bo badana funkcja jest funkcją jednorodną stopnia drugiego, tzn. taką,
że

f(ξx, ξy) = ξ2 f(x, y) .

Widać stąd, że gdy |ξ| > 1, wartość funkcji w punkcie (ξx, ξy) jest większa niż w (x, y), a
gdy |ξ| < 1 mniejsza - funkcja nie może więc mieś w (x, y) lokalnego ekstremum; wyjątkiem
jest punkt (0, 0) bo wtedy (ξ · 0, ξ · 0) to jest ten sam punkt i argument nie działa.
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Rysunek 20: Kształt funkcji z Zadania 22a, gdy λ = 7. W punkcie (0, 0) można się
domyślić punktu siodłowego.

Jeśli |λ| > 2, drugi minor jest ujemny i forma kwadratowa drugich pochodnych, jest
nieokreślona - w punkcie (0, 0) jest punkt siodłowy - co trochę widać (jak już się wie)
z rysunku 20. Szczególny przypadek zachodzi, gdy |λ| = 2: forma kwadratowa dru-
gich pochodnych ma wtedy sygnaturę (+, 0), czyli istnieje kierunek płaski na wektorach
przesunieć skierowanych wzdłuż tego kierunku forma daje zero, a na wszystkich innych
(skierowanych choćby tylko nieznacznie w bok od tego kierunku) daje wartość dodatnia.
Zwykle tak nie jest, bo wyrazy trzeciego rzędu w h “zaginają” jakoś taki płaski kierunek,
ale tu, ponieważ cała funkcja f jest tu wielomianem tylko drugiego stopnia, jest tościśle
płaski kierunek, bo wtedy po prostu f(x, y) = (x ± y)2 (± zależnie od znaku parametru
λ) i jest jasne, że funkcja jest całkowicie stała wzdłuż linii x = y lub x = −y.
b) Drugie z równanń

fx(x, y) = 9x2 + 6xy − 15 = 0 ,

fy(x, y) = 3x2 − 3y2 = 0 ,

wyznaczających punkty krytyczne ma jako rozwiązanie x = y bądź x = −y. Jeśli x = y,
to pierwsze równanie sprowadza się do 15x2−15 = 0. Istnieją więc dwa punkty krytyczne
o x = y: (1, 1) i (−1,−1). Z kolei jeśli x = −y, to pierwsze równanie sprowadza się do
3x2 − 15 = 0 i są dwa punkty krytyczne o x = −y: (

√
5, −

√
5 ) i (−

√
5,

√
5 ). Drugie

pochodne cząstkowe są równe

fxx = 18x+ 6y , fyy = −6y , fxy = 6 ,

175



Rysunek 21: Kształt funkcji z Zadania 22b. Oś x-ów jest od −3 do 3; oś y-ków od −4 do
4.

i macierze form kwadratowych w kolejnych punktach krytycznych są równe
(

24 6
6 −6

)

,

(

−24 −6
−6 6

)

, 2
√
5

(

2 1
1 1

)

, 2
√
5

(

−2 −1
−1 −1

)

.

Pierwsze dwie formy są nieokreślone, więc punkty (1, 1) i (−1,−1) są punktami siodło-
wymi badanej funkcji. W punkcie (

√
5, −

√
5 ) forma drugich pochodnych jest dodatnio

oreślona - w tym punkcie jest więc minimum, i ujemnie określona (bo forma −Q jest tam
dodatnio określona) w punkcie (−

√
5,

√
5 ), w którym jest zatem maksimum. Można to

chyba dostrzeć z rysunku 21.

c) Tu znalezienie punktów krytycznych wymaga trochę sprytu. Wyznaczające punkty
krytyczne równania

fx(x, y) = 2x+ y − a3

x2
= 0 ,

fy(x, y) = 2y + x− a3

y2
= 0 ,

są bowiem trochę skomplikowane. Ponieważ funkcja f jest symetryczna w swoich dwóch
argumentach, f(x, y) = f(y, x) jest jasne, że rozwiązania tych równań muszą albo być
postaci (x∗, x∗), albo występować parami: (x∗, y∗) i (y∗, x∗) (tzn. jeśli rozwiązaniem
jest np. (a, b) to rozwiyazaniem musi też być punkt (b, a)). Znajdźmy więc najpierw
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Rysunek 22: Kształt funkcji z Zadania 22c, gdy a = 1.

rozwiązania typu (x∗, x∗). Oba powyższe równania stają się wtedy tym samym równaniem
3x− a3/x2 = 0 i jedynym takim punktem krytycznym jest punkt (a/31/3, a/31/3). Drugie
pochodne

fxx = 2 + 2a3/x3 , fyy = 2 + 2a3/y3 , fxy = 1 ,

tworzą w tym punkcie formę
(

8 1
1 8

)

,

która jest oczywiście dodatnio określona. W punkcie (a/31/3, a/31/3) jest zatem minimum
lokalne.

Aby pokazać, że innych punktów krytycznych badana funkcja nie ma, uprościmy sobie
wpierw wzory dokonując przeskalowania zmiennych x/a→ x, x = y/a→ y, tak iż funkcja
przybierze postać

x2 + xy + y2 +
a3

x
+
a3

y
→ a2

(

x2 + xy + y2 +
1

x
+

1

y

)

.

Ponieważ multiplikatywna stała a2 nie ma wpływu na położenie punktów krytycznych,
można ją pominąć. Równania wyznaczające punkty krytyczne, po pomnożeniu ich stro-
nami przez odpowiednio x2 i y2 mają teraz postać

2x3 + x2y = 1 ,

2y3 + y2x = 1 .
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Odejmując jedno od drugiego dostajemy

2(x3 − y3) + xy(x− y) = (x− y)
[

2(x2 + xy + y2) + xy
]

= 0 .

Ponieważ rozwiązanie o x = y już znamy, możemy założyć, że x 6= y i rozwiązywać układ
równań

2x3 + x2y = 1 ,

2x2 + 3xy + 2y2 = 0 .

Z pierwszego wyznaczamy y: y = (1− 2x3)/x2 i wstawiamy do drugiego, co daje

2x2 + 3x
1− 2x3

x2
+ 2

(1− 2x3)2

x4
=

1

x4
(

2x6 + 3x3(1− 2x3) + 2(1− 2x3)2
)

= 0 .

Podstawiamy teraz t = x3 i przyrównujemy do zera zawartość nawiasu (czynnik 1/x4 nie
może być równy zeru):

2t2 + 3t− 6t2 + 2− 8t+ 8t2 ≡ 4t2 − 5t + 2 = 0 .

Ponieważ ∆ = 25− 32 jest ujemna, równanie to nie ma rzeczywistych rozwiąń. Oznacza
to, że układ równań fx = 0, fy = 0 nie ma innych rozwiązań niż x = y = 1/21/3 (czyli, w
nieprzeskalowanych zmiennych, a/21/3). Potwierdza to rzut oka na rysunek 22. Funkcja
f(x, y) nie jest określona wzdłuż osi x i osi y - przy zbieganiu do punktów leżących na
tych osiach funkcja dąży do +∞ bądź −∞. Wyjątkiem jest punkt (0, 0) - przy zbieganiu
do tego punktu wzdłuż linii x = y granicą funkcji jest zero.

d) Pierwsze pochodne cząstkowe funkcji

fx(x, y) = 4(x+ y)3 + 6(x− y)5 , fy(x, y) = 4(x+ y)3 − 6(x− y)5 ,

istnieją, są ciągłe na całym R
2 i znikają tylko w punkcie (0, 0) (o czym się można przekonać

biorąc sumę 8(x + y)3 = 0 i różnicę 12(x − y)5 = 0 równań fx = 0 i fy = 0). W tymże
punkcie jednak macierz formy kwadratowej drugich pochodnych jest całkowicie zerowa
i nie można na jej podstawie określić charakteru punktu krytycznego (0, 0). Niemniej,
widać, że f(0, 0) = 0, a w dowolnym punkcie (x, y) 6= (0, 0) wartość funkcji jest większa
od zera, więc jest tak i w dowolnie małym otoczeniu otwartym punktu krytycznego. W
punkcie tym znajduje się zatem minimum badanej funkcji i jest to jej minimum globalne,
co widać z rysunku 23.

e) Przyrównanie do zera pierwszych pochodnych cząstkowych tej funkcji

fx(x, y) = 1− 3y

x2 + y2
+

x

x2 + y2
=
x2 + x+ y2 − 3y

x2 + y2
,

fy(x, y) = −2 +
3x

x2 + y2
+

y

x2 + y2
=

−2x2 − 2y2 + 3x+ y

x2 + y2
,
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Rysunek 23: Kształt funkcji z Zadania 22d.

daje, bo mianowniki nie są istotne, układ równań

x2 + x+ y2 − 3y = 0 ,

2x2 + 2y2 − 3x− y = 0 .

Po pomnożeniu pierwszego przez 2 i odjęciu od drugiego znajduje się, że x = y i wstawienie
tego do pierwszego da x2 − x = 0. Pochodne zerują się więc w punktach (0, 0) i (1, 1).
Pierwszy z tych punktów leży jednak pozza dziedziną funkcji (bo ln 0 jest wielkością źle
określoną, więc jedym przwdziwym punktem krytycznym jest punkt (1, 1).

Drugie pochodne cząstkowe (znów dobre ćwiczenie w ich liczeniu)

fxx =
−x2 + y2 + 6xy

(x2 + y2)2
, fyy =

x2 − y2 − 6xy

(x2 + y2)2
, fxy =

−3x2 + 3y2 − 6xy

(x2 + y2)2
,

dają w punkcie (1, 1) macierz

1

4

(

6 −1
−1 −6

)

,

która nie jest ani dodatnio ani ujemnie określona. W punkcie tym zatem funkcja ma
punkt siodłowy. Funkcja poza tym jest, jak widać z rysunku 24, nieciągła na osi y, bo
nieciągły jest arctg, który dąży do ±π/2, gdy y → 0±.

f) Funkcja jest biperiodyczna, tzn. f(x+kπ, y+lπ) = f(x, y) przy dowolnych całkowitych
k i l, oraz symetryczna f(x, y) = f(y, x). Wystarczy więc znaleźć jej punkty krytyczne
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Rysunek 24: Kształt funkcji z Zadania 22e.

leżące nad diagonalą w kwadracie [0, 2π) × [0, 2π). Przyrównanie do zera pierwszych
pochodnych cząstkowych tej funkcji daje równania

fx(x, y) = cos(x+ y)− cos x = 0 , fy(x, y) = cos(x+ y)− cos y = 0 ,

równoważne równaniom cosx = cos y = cos(x+ y). W obszarze [0, 2π)× [0, 2π) pierwsze
oznacza albo x = y albo y = 2π − x (wystarczy popatrzyć na wykres cosinusa). Druga
możliwość oznacza, że cosx = 1 czyli x = 0. Pierwsza zaś to cosx = cos 2x czyli
cosx = 2 cos2 x− 1. Daje to na t = cosx równanie kwadratowe

2t2 − t− 1 = 2(t− 1)(t+
1

2
) = 0 .

Rozwiązanie cosx = 1 czyli x = y = 0 jest równoważne x = 0 i y = 2π, bo funkcja jest
biperiodyczna. Drugie zaś cosx = −1

2
daje dwie możliwości x = y = 2

3
π i x = y = 4

3
π.

Zatem w obszarze [0, 2π) × [0, 2π) funkcja ma trzy punkty krytyczne: (0, 0), (2
3
π, 2

3
π) i

(4
3
π, 4

3
π). Drugie pochodne

fxx(x, y) = sin x− sin(x+ y) , fyy(x, y) = sin y − sin(x+ y) , fxy(x, y) = − sin(x+ y) ,

dają w tych trzech punktach następujące formy kwadratowe

(

0 0
0 0

)

,

√
3

2

(

2 1
1 2

)

, −
√
3

2

(

2 1
1 2

)

,
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Rysunek 25: Kształt funkcji z Zadania 22f w obszarze [0, 2π)× [0, 2π).

W punkcie (2
3
π, 2

3
π) funkcja ma zatem minimum lokalne (forma jest dodatnio określona),

a w punkcie (4
3
π, 4

3
π) lokalne maksimum. Gorzej jest z punktem (0, 0), bo forma jest

zerowa. Można jednak zobaczyć, że jest to punkt siodłowy:

f(0 + hx, 0 + hy) ≈ −1

2
hxhy(hx + hy) ,

jak wynika z rozwinieć funkcji sinus. Jeśli np. hx = hy = ε, to f(0 + hx, 0 + hy) <
f(0, 0) = 0; jeśli zaś np. hx = ε > 0, a hy = −1

2
ε, to f(0+hx, 0+hy) = 1

8
ε3 > f(0, 0) = 0.

Wszystkie te ustalenia potwierdza wykres funkcji pokazany na rysunku 25.

g) Pierwsze pochodne cząstkowe funkcji f(x, y) = x4 − y4 − 4xy2 − 2x2

fx(x, y) = 4(x3 − x− y2) , fy(x, y) = −4y(y2 + 2x) ,

zerują się w trzech punktach

(0, 0) , (1, 0) , (−1, 0) .

Drugie pochodne cząstkowe

fxx(x, y) = 12x2 − 4 , fyy(x, y) = −122 − 8x , fxy = −8y ,

dają w tych trzech punktach krytycznych następujące macierze form kwadratowych
(

−4 0
0 0

)

,

(

8 0
0 −8

)

,

(

8 0
0 8

)

.
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Rysunek 26: Kształt funkcji z Zadania 22g.

Druga macierz ma sygnaturę mieszaną, więc punkt (1, 0) jest punktem siodłowym. Trzecia
macierz jest dodatio określona i wobec tego w punkcie (−1, 0) jest lokalne minimum. Na
podstawie pierwszej macierzy, która ma sygnaturę (−, 0) nie można wykluczyć, że w
punktcie (0, 0) funkcja ma lokalne maksimum (na wszystkich wektorach przemieszczeń
macierz ta daje wartości ujemne lub zero, ale nigdy dodatnie). Trzeba tu pogłowkować.
Np. f(ε, 0) = ε4 − 2ε2 i przy dostatecznie małych wartościach |ε|, mamy 0 = f(0, 0) >
f(ε, 0). Ale

f(−ε2, ε) = ε8 + ε4 > 0 .

Zatem w dowolnie małym otwartym otoczeniu punktu (0, 0) zawsze są punkty, w których
wartość f jest większa i takie, w których jest mniejsza niż w punkcie (0, 0). Zatem w
punkcie tym funkcja nie ma extremum. Nie jest to łatwo zobaczyć patrząc na kształt tej
funkcji pokazany na rysunku 26!

Zadanie 23: Pierwsze pochodne fx(x, y) = 12x3−8xy i fy(x, y) = −4x2+2y rzeczywiście
znikają w punkcie (0, 0) - jest więc to punkt krytyczny - ale drugie pochodne fxx(x, y) =
36x2 − 8y, fyy = 2 i fxy(x, y) = −8x dają w tym punkcie macierz

(

0 0
0 2

)

,

która nie jest dodatnio ani ujemnie określona. Nie jest jednak z tej postaci jasne, czy jest
to tylko wypłaszczenie funkcji, które może zostać “zagięte” do góry przez dalsze wyrazy
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Rysunek 27: Kształt funkcji z Zadania 22 w pobliżu punktu (0, 0). Ponieważ f(−x, y) =
f(x, y), pokazana jest tylko dodatnia część osi x.

rozwinięcia, czy rzeczywiście jest to punkt siodłowy. Zaraz się tym zajmiemy. Najpierw
jednak sprawdźmy, że rzeczywiście w punkcie (0, 0) jest minimum na każdej prostej prze-
zeń przechodzącej. Podstawmy zatem do wzoru y = ax, czyli zbadajmy jako funkcję x
funkcję

g(x) = f(x, ax) = 3x4 − 4ax3 + a2x2 .

Oczywiście g′(0) = 12x3 − 12ax2 + 2a2a = 0 i g′′ = 36x2 − 24ax+ 2a2 = 2a2 > 0. Wzdłuż
prostych y = ax rzeczywiście funkcja g(x) ma w x = 0 minimum. trzeba jeszcze sprawdzić
prostą, której wzór y = ax nie obejmuje, tj. prostą x = 0. Wtedy h(y) = f(0, y) = y2 i
jest jasne, że ma ona minimum w zerze.

Pozostaje jeszcze wyjaśnić, co się w punkcie (0, 0) naprawdę dzieje. W tym celu
najlepiej rozpatrzyć funkcję f̃(z, y) = f(

√
x, y), tj. podstawić x2 = z. Funkcja f̃(z, y)

zdaje sprawę z zachowywania się f(x, y) tylko w obszarze x ≥ 0 ale to nam wystarczy.
Funkcja f̃(z, y) ma oczywiście punkt krytyczny w (0, 0) ale macierz formy kwadratowej
jej drugich pochodnych w tym punkcie ma postać

(

6 −4
−4 2

)

.

I teraz jest jasne, że może ona na wektorach przesunięć dawać wartości zarówno dodatnie,
jak i ujemne (np. gdy (hz, hy) = (ε, 2ε) daje ona −2ε2, a gdy (hz, hy) = (ε, 0) daje 6ε2).
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Oznacza to, że w dowolnie małym otwartym otoczeniu punktu (x, y) = (0, 0) są punkty,
w których wartość funkcji jest ujemna, np. punkty typu (

√
ε, 2ε) ale jeśli z ustalonego

takiego puktu do (0, 0) wytyczymy prostą, to pomiędzy nimi tuż przy (0, 0) są już tylko
punkty, w których wartość f jest dodatnia. Punkty, w których wartość f jest ujemna
biegną bowiem do punktu (0, 0) po paraboli. Konia z rzędem temu, kto to zobaczy z
wykresu funkcji pokazanego na rysunku 27!

Zadanie 24: Najpierw sprawdzamy, czy funkcja ma jakieś ekstrema wewnątrz trójkąta.
Pierwsze pochodne cząstkowe

fx(x, y) = 2xy − 8 , fy(x, y) = x2 − 4 ,

zerują się w punktach (−2,−2) i (2, 2). Pierwszy punkt leży poza trójkątem, a drugi leży
dokładnie na jednym jego z boków. Zatem wewnątrz trójkąta funkcja nie ma ekstremów.
Może je tylko mieć na brzegu. Na brzegu y = 0, funkcja f(x, 0) = −8x jest malejąca i
najmniejszą wartość −32 przyjmuje w x = 4, czyli w punkcie (4, 0). Na brzegu x = 0,
funkcja f(0, y) = −4y też jest malejąca i najmniejszą wartość −16 przyjmuje w x = 4 czyli
w punkcie (0, 4). Trzeci bok, ten na którym wypadł punkt krytyczny, jest wyznaczony
równaniem y = 4− x. Na tym boku funkcja jest dana wzorem

h(x) = f(x, 4− x) = −x3 + 4x2 − 4x− 16 ,

(oczywiście h(0) = f(0, 4) = −16, a h(4) = f(4, 0) = −32). Jej pochodna

h′(x) = −3x2 + 8x− 4 = −3(x− 2)(x− 2

3
) ,

zeruje się, gdy x = 2 i tam druga pochodna, h′′(x) = −6x + 8 jest ujemna, oraz gdy
x = 2/3 i tam h′′(2/3) = 4 jest dodatnia. Zatem funkcja h(x) ma lokalne minimum,
równe h(2/3) ≈ −17 w x = 2/3 i lokalne maksimum, równe h(2) = −16 w punkcie x = 2.
Zatem najmniejszą wartością funkcji f(x, y) jest −32 osiąganą w (4, 0) a największą, 0
osiąganą w punkcie (0, 0) - tego punku wcześniej nie sprawdziliśmy, ale nie należy o nim
zapominać!

Zadanie 25:
a) Sprawdzamy: F (0, π

4
) = 0, czyli (0, π

4
) ∈ F−1(0).

Fx(x, y) =
1

cos2(x+ y)
− y , Fy(x, y) =

1

cos2(x+ y)
− x ,

i Fy(0,
π
4
) = 2 6= 0, więc F = 0 definiuje w otoczeniu tego punktu taką funkcję y = y(x),

że y(0) = π
4
. Poza tym, Fx(0,

π
4
) = 2− π

4
, czyli y′(0) = π

8
− 1.

Fxx(x, y) = Fyy(x, y) =
2 tg(x+ y)

cos2(x+ y)
, Fxy(x, y) =

2 tg(x+ y)

cos2(x+ y)
− 1 ,

i Fxx(0,
π
4
) = Fyy(0,

π
4
) = 4, Fxy(0,

π
4
) = 3. Zatem

y′′(0) = − 1

23
[

4 · (2)2 − 2 · 3 · 2 · (2− π/4) + 4 · (2− π/4)2
]

= −1 +
π

8
− π2

32
.
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b) F (π
6
, 0) = −1 + 1 = 0, czyli (π

6
, 0) ∈ F−1(0).

Fx(x, y) = −3y + 2 cosx , Fy(x, y) = 1− 3x+ cos y ,

Ponieważ Fy(
π
6
, 0) = 1 − π

2
+ 1 6= 0, więc F = 0 definiuje w otoczeniu tego punktu taką

funkcję y = y(x), że y(π
6
) = 0. Poza tym, Fx(

π
6
, 0) =

√
3, czyli y′(π

6
) = −

√
3/(2− π

2
).

Fxx(x, y) = −2 sin x , Fyy(x, y) = − sin y , Fxy(x, y) = −3 .

Stad Fxx(
π
6
, 0) = −1, Fyy(

π
6
, 0) = 0. Zatem

y′′(
π

6
) = −[−1 · (2− π/2)2 − 2 · (−3) ·

√
3 · (2− π/2)]/(2− π/2)3 .

c) F (π
6
, 0) = 2− 2− 1 + 1 + 1 = 0, czyli (2, 1) ∈ F−1(0).

Fx(x, y) =
1

y
+

4

x2
, Fy(x, y) = − x

y2
− 1 .

Fy(2, 1) = −3 6= 0, więc F = 0 definiuje w otoczeniu tego punktu taką funkcję y = y(x),
że y(2) = 1. Fx(2, 1) = 2, więc y′(2) = 2/3.

Fxx(x, y) = − 8

x3
, Fyy(x, y) =

2x

y3
, Fxy(x, y) = − 1

y2
.

Fxx(2, 1) = −1, Fyy(2, 1) = 4, Fxy(2, 1) = −1.

y′′(2) =
1

3

[

−1 · (−3)2 − 2 · (−1) · 2 · (−3) + 4 · 22
]

= −5

3
.

d) F (2.0) = 0, czyli (2, 0) ∈ F−1(0).

Fx(x, y) = − 1 + 2y

(x− 1)2
+ 3y , Fy(x, y) =

2

x− 1
+ 3x .

Fy(2, 0) = 2 + 6 = 8 6= 0, więc F = 0 definiuje w otoczeniu tego punktu taką funkcję
y = y(x), że y(2) = 0. Fx(2, 0) = −1, więc y′(2) = 1/8.

Fxx(x, y) =
4y + 2

(x− 1)3
, Fyy(x, y) = 0 Fxy(x, y) = − 2

(x− 1)2
+ 3 .

Fxx(2, 0) = 1/4, Fxy(2, 0) = 5/2.

y′′(2) = − 1

83

[

1

4
· 82 − 2 · 5

2
· 8 · (−1)

]

.
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Rysunek 28: Zbiór E z Zadania 26a.

Zadanie 26:
a) Pochodne F : Fx(x, y) = (2/3)x−1/3, Fy(x, y) = (2/3)y−1/3. Punktami, w których
F = 0 nie wyznacza funkcji y = y(x) są rozwiązania układu

x2/3 + y2/3 = a2/3 , y−1/3 = 0 .

Takich niema. Ale nie należy zapominać, że aby w ogóle w otoczeniu jakiegoś punktu
można było pytać o fukcję y = y(x), czy x = x(y), muszą w tym punkcie istnieć i być ciągłe
(w sensie wałkowanej przez nas ciągłości funkcji wielu zmiennych) obie pochodne Fx(x, y)
i Fy(x, y). Tu w punktach (0,±a), które należą do zbioru E, nie istnieje Fx, a w unktach
(±a, 0), które też należą do zbioru E, nie istnieje Fy. Zatem w tych punktach F = 0
nie wyznacza ani y = y(x), ani x = x(y). Jak wygląda zbiór E? Jest to jakby kwadrat
z wierzchołkami położonymi symetrycznie na osiach x i y, któremu boki się wklęsły do
wewnątrz. Dlaczego nie na zewnątrz? Jak sobie względem y (przyjmując, że y > 0 np.)
rozwiążemy uogólniony warunek |x|p + |y|p = 1 (zawsze można przeskalować zmienne,
żeby się tego a pozbyć), który niewątpliwie przy p = 1 wyznacza właśnie kwadrat: y =
(1 − xp)1/p i na obliczymy y′ = −xp−1(1 − xp)−1+1/p, to widzimy, że w x = 0 pochodna
ta się zeruje, jeśli p > 1, czyli funkcja y = y(x) dochodzi do wierzchołka płasko (kwadrat
jest wypuczony na zewnątrz), jest równa −1, gdy p = 1 (prawdziwy kwadrat właśnie) i
jest równa −∞, gdy p < 1, co właśnie oznacza, że kwadrat się wkłęsł do wewnątrz. Gdy
p = 2/3 wygląda to jak na rysunku 28. Widać teraz, że rzeczywiście wszystkie cztery
wierzchołki są punktami, w których nie może istnieć y = y(x), ani x = x(y), bo krzywa
będąca zbiorem E ma tam dziubki. Teraz pochodne y′ i y′′ w punktach zbioru E, które
nie są wierzchołkami

y′ = −
(y

x

)1/3

, y′′ = −y
3

3

[

(x2y)−2/3 + (y2x)−2/3
]

.

b) To jest obrócona hiperbola. Fx = 2x+3y, Fy = 3x− 2y. Punkty, w których F = 0 nie
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Rysunek 29: Zbiór E z Zadania 26b. Pokazane są oba układy współrzędnych: pierwotny
i obrócony o kąt θ; dwie dodatkowe linie pionowe stykają się z ramionami hiperboli w
punktach, w których warunek x2 − y2 + 3xy = 1 nie zadaje funkcji y = y(x): w tych
punktach krzywa (z punktu widzenia układu xy) “staje dęba”.

wyznacza y = y(x) to rozwiązania układu

Fy = 3x− 2y = 0 ,

F = x2 − y2 + 3xy − 1 = 0

Daje to x = ±2/
√
13, x = y = ±2/

√
13. Żeby zobaczyć dlaczego, wzprowadźmy nowe

osie x′ i y′ wzorami

x = x′ cos θ − y′ sin θ ≡ x′cθ − y′sθ ,

y = x′ sin θ + y′ cos θ ≡ x′sθ + y′cθ ,

i podstawmy do F (x, y) = F (x′cθ − y′sθ, x
′sθ + y′cθ) = 0. Da to

x′2(c2θ − s2θ + 3sθcθ)− y′2(c2θ − s2θ + 3sθcθ) + x′y′(3c2θ − s2θ)− 4sθcθ) = 1 .

Można teraz dobrać kąt θ tak, by wyzerować człon z x′y′:

tg 2θ =
3

2
,

Równanie F (x, y) = 0 przybierze wtedy postać

x′2
(

13

3
sθcθ

)

− y′2
(

13

3
sθcθ

)

= 1 .

To już jest “szkolne” równanie hiperboli. Jak duży jest kąt θ? Można i do tego dojść (bez
kalkulatora): warunek

2sθcθ
c2θ − s2θ

=
3

2
,
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jest równoważny równości

t2θ +
4

3
tθ − 1 = 0 ,

której rozwiązaniem (mniejszym) jest

tθ ≡ tg θ =
−2 +

√
13

3
.

Ponieważ
√
13 < 4, tg θ < 1, czyli obrót jest o mniej niż π/4. I rzeczywiście, rysunek 29

krzywej x2− y2+3xy = 1 pokazuje, że jest to”szkolna” hiperbola w ździebko pochylonym
układzie.

Zadanie 27:
a) Fx(x, y) = 2x − 2, Fy(x, y) = 2y − 2. Fx = 0 w punkcie x = 1, któremu odpowiada y
będący rozwiązaniem warunku F (1, y) = 0, czyli −2y+y2 = 0. Rozwiązaniami warunków
Fx = 0 i F = 0 są więc dwa punkty (1, 0) i (1, 2). W obu tych punktach pochodna Fy nie
jest równa zeru, więc w ich otoczeniach warunek F = 0 definiuje - teraz to jest oczywiste,
bo x jest ten sam - dwie różne funkcje: y = y1(x) w otoczeniu punktu (1, 0) i y = y2(x)
w otoczeniu punktu (1, 2). Oczywiście y1(1) = 0, a y2(1) = 2. Dla obu tych funkcji
x = 1 jest punktem krytycznym, bo y′1(1) = 0 i y′2(1) = 0. Ponieważ Fxx(x, y) = 2, a
Fy(x, y) = 2y − 2, drugie pochodne tych funkcji są w x = 1 równe

y′′1(1) = −Fxx(1, 0)

Fy(1, 0)
= 1 , y′′2(1) = −Fxx(1, 2)

Fy(1, 2)
= −1 .

Funkcja y = y1(x) ma więc w x = 1 (lokalne) minimum, a funkcja y = y1(x) ma w tym
punkcie (lokalne) maksimum.

Warunek F (x, y) = y2 − 2y + x2 − 2x + 1 można w tym przypadku zresztą jawnie
rozwiązać (bo to zwykłe równanie kwadraticznoje), dostając

y = 1∓
√

1− (x2 − 2x+ 1) .

Widać, że − daje funkcję y = y1(x), bo dla x = 1 y = 1 − 1 = 0, a + daje funkcję
y = y2(x). “Szkolne” pochodne tych funkcji są równe

y′1(x) = − 2− 2x

2
√

1− (x2 − 2x+ 1)
, y′2(x) =

2− 2x

2
√

1− (x2 − 2x+ 1)
.

Obie zerują się w x = 1 i, ponieważ różnią się tylko znakiem, gdy pochodna y′1 zmienia
się z ujemnej na dodatnią, przy przejściu x-a (z lewa na prawo) przez punkt x = 1 (co
zapewnia, że w x = 1 jest lokalne minimum funkcji y1), to pochodna y′1 zmienia się z
dodatniej na ujemną.

b) Fx(x, y) = 2y + 2x, Fy(x, y) = 3y2 + 2x. Warunek Fx = 0 jest spełniony, gdy y = −x,
a warunek F (x,−x) = 0 ma jako rozwiązania x = 0 oraz x = −1, czyli punktami
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podejrzanymi są punkty (0, 0) i (−1, 1) zbioru F−1(0) ⊂ R2. Ale w punkcie (0, 0) zeruje
się pochodna Fy, więc w tym punkcie (i jego otoczeniu) warunek F (x, y) = 0 nie wyznacza
funkcji y = y(x). Zostaje zatem do zbadania tylko punkt (−1, 1), w którym Fy = 1.
Fxx = 2 i y′′(−1) = −Fxx(−1, 1)/Fy(−1, 1) = −2. Funkcja y = y(x), taka że y(−1) = 1,
ma więc w punkcie −1 maksimum lokalne.

Zadanie 28: Po pierwsze sprawdzamy, czy pytanie ma sens, tj. czy podany punkt
(1, 3, 2) należy do poziomicy zerowej odwzorowania F (x, y, z) = z3 − xyz − 2. Należy, bo
F (1, 3, 2) = 0. Pochodne cząstkowe F

Fx(x, y, z) = −yz , Fy(x, y, z) = −xz , Fz(x, y, z) = 3z2 − xy ,

mają w punkcie (1, 3, 2) wartości: Fx = −6, Fy = −2, Fz = 9. Ponieważ Fz w tym puncie
nie znika, a wszystkie te pochodne są, jako funkcje na R

3 ciągłe w otoczeniu (dowolnym
zresztą) tego punktu, więc warunek F (x, y, z) = 0 wyznacza w otoczeniu punktu (1, 3, 2)
funkcję z = z(x, y). Jej pierwsze pochodne cząstkowe są tam równe

zx(1, 3)|z=2 = −Fx(1, 3, 2)

Fz(1, 3, 2)
=

2

3
, zy(1, 3)|z=2 = −Fy(1, 3, 2)

Fz(1, 3, 2)
=

2

9
.

(Piszemy zx(1, 3)|z=2, a nie zx(1, 3) po prostu, bo może się zdarzyć, że jest jakieś inne
jeszcze rozwiązanie warunku F (1, 3, z) = 0 z z = z0 6= 2, i wtedy by były dwie różne
funkcje z = z1(x, y) i z2(x, y) zdefiniowane w otoczeniu tego samego punktu (1, 3) ∈ R2).
Drugie pochodne cząstkowe odwzorowania F są w punkcie (1, 3, 2) równe

Fxx(1, 3, 2) = 0 , Fyy(1, 3, 2) = 0 , Fzz(1, 3, 2) = 12 ,

Fxy(1, 3, 2) = −2 , Fxz(1, 3, 2) = −3 , Fyz(1, 3, 2) = −1 .

Aby obliczyć drugie pochodne cząstkowe funkcji z = z(x, y) w punkcie (1, 3, 2) wstawiamy
te liczby do wyprowadzonych wzorów

zxx = −Fxx F
2
z − 2Fxz Fx Fz + Fzz F

2
x

F 3
z

,

zyy = −Fyy F
2
z − 2Fyz Fy Fz + Fzz F

2
y

F 3
z

,

zxy = −Fxy F
2
z − Fxz Fy Fz − Fyz Fx Fz + Fzz Fx Fy

F 3
z

.

i dostajemy zxx(1, 3)|z=2 = −4/27, zyy(1, 3)|z=2 = −4/243, zxy(1, 3)|z=2 = 42/243. (Może
się nie pomyliłem).

Zadanie 29: Brzmi to zawile (bo zadania w zbiorku ś.p. G. Cieciury są zawsze w
taki skomplikowany sposób formułowane - ja i tak je sprowadzam do ludzkiego...), ale
jest banalnie proste. Jeśli funkcja φ(t) jest różniczkowalna w okolicy t = 0, to jest tam
przyzwoita, nie robi siupów, ma ciągłą pochodną φ′(t), i jedyny problem, że nie wiemy,
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jak wygląda. Ale to pestka bo poza tym wszystko normalnie działa. Obliczamy pochodne
cząstkowe odwzorowania F korzystając ze znanych już reguł

Fx(x, y, z) = ez φ′(x ez − y e−z
)

,

Fy(x, y, z) = − ez φ′(x ez − y e−z
)

,

Fz(x, y, z) =
(

x ez + y e−z
)

φ′(x ez − y e−z
)

− 1 .

Ponieważ φ(t) i φ′(t) jako się rzekło są przyzwoite, więc φ′(0) istnieje i ma skończoną
wartość. Zatem w punkcie (0, 0, z0), gdzie z0 jest takie, że F (0, 0, z0) = 0, pochodna Fz

jest po prostu równa −1 (bo czynnik przed φ′ jest równy zeru), a nie zero i twierdzenie o
funkcji uwikłanej gwarantuje, że w otoczeniu (0, 0) ∈ R

2 istnieje funkcja z = z(x, y) taka,
że z(0, 0) = z0 i mająca w tym otoczeniu pochodne

zx(x, y) = − Fx(x, y, z)

Fz(x, y, z)

∣

∣

∣

∣

z=z(x,y)

, zy(x, y) = − F(x, y, z)

Fz(x, y, z)

∣

∣

∣

∣

z=z(x,y)

.

Równanie różniczkowe ma więc postać

∂z

∂x
+ g(z)

∂z

∂y
= − 1

Fz

{

ez φ′(x ez − y e−z
)

− g(z) e−z φ′(x ez − y e−z
)}

= 0 .

Jest jasne, że funkcja z(x, y) je spełnia, jeśli g(z) = e2z.

Zadanie 30:
a) Obie pochodne cząstkowe odwzorowania F

Fx(x, y, z) = −21(x2 − 1)z + 4(2x+ y) , Fy(x, y, z) = 2(2x+ y) ,

zerują się jednocześnie, gdy y = −2x i x = ±1. Wartość z wyznacza warunek

F (±1,∓2, z) = 6z3 ± 14z − 20 = 0 .

Gdy x = 1

6z3 + 14z − 20 = (z − 1)(6z2 + 6z + 20) = 0 ,

a gdy x = −2

6z3 − 14z − 20 = (z − 2)(6z2 + 12z + 10) = 0 .

W obu przypadkach ∆ trójmianu w drugim nawiasie jest ujemna. Zatem punktami kry-
tycznymi są

(1,−2, 1) , (−1, 2, 2) .

Tzn, (1,−2) i (−2, 2) są punktami krytycznymi funkcji z = z(x, y) (jednej funkcji, a
może dwóch różnych? tego się właśnie przy funkcjach zadanych w sposób uwikłany nie
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wie...), a w tych punktach z(1,−2) = 1 i z(−1, 2) = 2. Reszta to rutyna. Pochodna
Fz(x, y, z) = 18z2 − 7(x3 − 3x) jest w tych punktach równa odpowiednio 32 i 58,

Fxx(x, y, z) = 8− 42xz , Fyy(x, y, z) = 2 , Fxy(x, y, z) = 4 ,

i stąd macierze form kwadratowych drugich pochodnych w tych punktach krytycznych
mają postać

Q(1,−2,1) = − 1

32

(

−34 4
4 2

)

, Q(−1,2,2) = − 1

58

(

92 4
4 2

)

.

Pierwsza forma jest nijaka i w punkcie (1,−2) funkcja z = z(x, y) ma punkt siodłowy;
druga forma jest ujemnie określona i punkcie (−1, 2) funkcja z = z(x, y) (ta sama, albo
inna) ma lokalne maksimum.

b) Obie pochodne cząstkowe odwzorowania F

Fx(x, y, z) = 14z
1− x2

(1 + x2)2
+ 4(2x− y) , Fy(x, y, z) = −2(2x− y) ,

zerują się jednocześnie, gdy y = 2x i x = ±1 lub z = 0. Jednak z = 0 jest sprzeczne z
F = 0 (bo F = 9, gdy z = 0 i y = 2x), więc są tylko dwie możliwości. Gdy (x, y) = (1, 2),
to

F (1, 2, z) = z3 + 8z + 9 = (z + 1)(z2 − z + 9) = 0 ,

co daje z = −1 (bo ∆ trójmianu jest ujemna); gdy (x, y) = (−1,−2), wówczas

F (1, 2, z) = z3 − 6z − 9 = (z + 3)(z2 − 3z + 3) = 0 ,

i znów jedynym pierwiastkiem jest z = −3. Zatem punktami krytycznymi są

(1, 2,−1) , (−1,−2,−3) ,

tzn., (1, 2) i (−1,−2), a w tych punktach z(1, 2) = −1 i z(−1,−2) = −3. Pochodna
Fz(x, y, z) = 3z2 + 1 + 14z/(1 + x2) jest w tych punktach równa odpowiednio 11 i 21.

Fxx(x, y, z) = 2zx
x2 − 3

(1 + x2)3
+ 8 , Fyy(x, y, z) = 2 , Fxy(x, y, z) = −4 ,

i stąd macierze form kwadratowych drugich pochodnych w tych punktach krytycznych
mają postać

Q(1,2,−1) = − 1

11

(

15 −4
−4 2

)

, Q(−1,−2,−3) = − 1

21

(

−13 −4
−4 2

)

.

Pierwsza forma jest ujemnie określona i w punkcie (1, 2) funkcja z = z(x, y) ma lokalne
maksimum; druga forma jest nijaka (mieszana sygnatura) i punkcie (−1,−2) funkcja
z = z(x, y) (ta sama, albo inna) ma punkt siodłowy.
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c) Obie pochodne cząstkowe odwzorowania F

Fx(x, y, z) = 7z sin(x+ y) + 20
1− x2

(1 + x2)2
, Fy(x, y, z) = 7z sin(x+ y) ,

zerują się jednocześnie, gdy x+ y = kπ (k ∈ Z) i x = ±1. Są więc takie możliwości: gdy
(x, y) = (1,−1 + 2kπ), to

F (1,−1 + 2kπ, z) = 3z3 − 7z + 10 = (z + 2)(3z2 − 6z + 5) = 0 ,

co daje z = −2 (bo ∆ trójmianu jest ujemna); gdy (x, y) = (1,−1 + π + 2kπ), to

F (1,−1 + π + 2kπ, z) = 3z3 + 7z + 10 = (z + 1)(3z2 − 3z + 10) = 0 ,

i z = −1 (znów ∆ < 0). Z kolei, gdy (x, y) = (−1, 1 + 2kπ), wówczas

F (−1, 1 + 2kπ, z) = 3z3 − 7z − 10 = (z − 2)(3z2 + 6z + 5) = 0 ,

i jedynym pierwiastkiem jest z = 2 (znów ∆ < 0) i wreszcie, gdy (x, y) = (−1, 1+π+2kπ),
to

F (−1, 1 + π + 2kπ, z) = 3z3 + 7z − 10 = (z − 1)(3z2 + 3z + 10) = 0 ,

i z = 1 (bo ∆ < 0). Istnieją więc cztery serie punktów krytycznych

(1,−1 + 2kπ,−2) , (1,−1 + π + 2kπ,−1) , (−1, 1 + 2kπ, 2) , (−1, 1 + π + 2kπ, 1) .

ale wszystkie punkty każdej z serii mają identyczny charakter (periodyczność kosinusa!)
więc wystarczy położyć k = 0. Pochodna Fz(x, y, z) = 9z2 − 7 cos(x + y) jest w tych
czterech seriach punktów równa odpowiednio 29, 16, 29 i 16.

Fxx(x, y, z) = 7z cos(x+ y) + 40x
x2 − 3

(1 + x2)3
,

Fyy(x, y, z) = Fxy(x, y, z) = 7z cos(x+ y) ,

i stąd macierze form kwadratowych drugich pochodnych w tych punktach krytycznych
mają postać

Q(1,−1,−2) = − 1

29

(

−24 −14
−14 −14

)

, Q(1,−1+π,−1) = − 1

16

(

−3 7
7 7

)

,

Q(−1,1,2) = − 1

29

(

24 14
14 14

)

, Q(−1,1+π,1) = − 1

16

(

3 −7
−7 −7

)

.

Pierwsza forma jest dodatnio określona i w punkcie (1,−1) funkcja z = z(x, y) ma lokalne
minimum; druga forma jest nijaka (mieszana sygnatura) i punkcie (1,−1+π) funkcja z =
z(x, y) (ta sama, albo inna) ma punkt siodłowy. Trzecia macierz jest ujemnie określona i
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tam (jakaś) funkcja ma maksimum, a czwarta jest nieokreślona i punkt (−1, 1 + π) jest
punktem siodłowym (jakiejś) funkcji z = z(x, y).

Zadanie 31: Najpierw sprawdzamy, czy F (1,−1, 1, 1) = 0 ∈ R2, czyli, czy F 1(1,−1, 1, 1) =
0 i F 2(1,−1, 1, 1) = 0. Zgadza się. Jeśli w otoczeniu tego punktu F zadaje funkcje
x = x(y, t) i z = z(y, t), to

F 1(x(y, t), y, z(y, t), t) ≡ 0 , F 2(x(y, t), y, z(y, t), t) ≡ 0 ,

Symbol ≡ oznacza, że są wyrażenia po lewej są tożsamościowo zerami ze względu na
zmienne y i t. Aby znaleźć pochodne xy i zy różniczkujemy te tożamości po y:

∂

∂y
F 1(x(y, t), y, z(y, t), t) = 2y − 2zxy − 2xzy = 0 ,

∂

∂y
F 2(x(y, t), y, z(y, t), t) = 3x2xy + 3y2 − 3z2zy = 0 .

Daje to liniowe równania na xy i xt:
(

z x
3x2 −3z2

)(

xy
zy

)

=

(

y
−3y2

)

,

Stąd (macierze 2× 2 odwracamy już w pamięci!)
(

xy
zy

)

=
1

−3z3 − 3x3

(

−3z2 −x
−3x2 z

)(

y
−3y2

)

,

skąd

xy =
z2y − y2x

x3 + z3
, zy =

x2y + y2z

x3 + z3
.

Równania wyznaczające xt i zt otrzymane z

∂

∂t
F 1(x(y, t), y, z(y, t), t) = 2t− 2zxt − 2xzt = 0 ,

∂

∂t
F 2(x(y, t), y, z(y, t), t) = 3x2xt + 3t2 − 3z2zt = 0 .

mają taką samą strukturę (z powodu symetrii F 1(x, y, z, t) i F 2(x, y, z, t) względem za-
miany y ↔ t), więc

xt =
z2t− t2x

x3 + z3
, zt =

x2t+ t2z

x3 + z3
.

W punkcie (1,−1, 1, 1) daje to następującą macierz pochodnych cząstkowych (która to
macierz jest pochodną funkcji R2 −→ R

2):
(

xy xt
zy zt

)

=

(

−1 0
0 0

)

.

193



Zadanie 32:
a) Tworzymy funkcję F̃ (x, y) = x2+y2−λ(x3+y3−16) i przyrównujemy do zera jej obie
pochodne cząstkowe wraz z warunkiem:

F̃x(x, y) = 2x− 3λx2 = 0 ,

F̃y(x, y) = 2y − 3λy2 = 0 ,

G(x, y) = x3 + y3 − 16 = 0 .

Z pierwszego x = 0 lub λx = 2/3, i podobnie z drugiego y = 0 lub λy = 2/3. Pukt (0, 0)
odpada, bo G(0, 0) 6= 0, więc zostają trzy możliwości. Ogólnie, macierz formy Q drugich
pochodnych ma postać

Q =

(

2− 6λx 0
0 2− 6λy

)

,

a pochodna warunku G to G′ = (3x2, 3y2).
Gdy x = 0 i λy = 2/3, warunek G(0, y) = 0 daje y = 24/3. Macierz Q drugich

pochodnych ma na diagonali 2 i −2, czyli ma sygnaturę (+,−). Jednak warunek G′
x∗
·h =

0, zG′ = (0, 3·28/3) w badanym punkcie mówi, że istotne są tylko wartości formyQ drugich
pochodnych na wektorach postaci (h, 0), a na takich Q przyjmuje tylko wartości dodatnie.
Zatem w punkcie (0, 24/3) funkcja F ma na E minimum. Symetria x ↔ y mówi, że tak
samo jest w punkcie (24/3, 0).

Gdy λx = λy = 2/3, czyli x = y, warunek G(x, x) = 0 daje x = y = 2, zatem
λ = 1/3 i macierz formy Q ma na diagonali −2 i −2. Jest więc ona w tym punkcie
ujemnie określona i nie trzeba dodatkowo badać jej na wektorach stycznych. W punkcie
(2, 2) funkcja F ma na E maksimum lokalne.

b) Tworzymy funkcję F̃ (x, y) = 2x2y2 − λ(x4 + y4 − 1) i przyrównujemy do zera jej obie
pochodne cząstkowe wraz z warunkiem:

F̃x(x, y) = 4xy2 − 4λx3 = 0 ,

F̃y(x, y) = 4x2y − 4λy3 = 0 ,

G(x, y) = x4 + y4 − 1 = 0 .

Z pierwszego x = 0 lub λx2 = y2 i podobnie z drugiego y = 0 lub λy2 = x2. Pukt (0, 0)
odpada, bo G(0, 0) 6= 0. Jeśli x 6= 0 i y 6= 0, to wtedy λ = x2/y2 = y2/x2, czyli x4 = y4

i są cztery możliwości (2−1/4, 2−1/4), (2−1/4, −2−1/4), (−2−1/4, 2−1/4), (−2−1/4, −2−1/4).
Wszystkim tym punktom odpowiada λ = 1. Rozwiązaniami są też punkty (0,±1) i
(±1, 0), którym odpowiada λ = 0. Razem jest więc 8 punktów krytycznych.

Ogólnie, macierz formy Q drugich pochodnych ma postać

Q =

(

4y2 − 12λx2 8xy
8xy 4x2 − 12λy2

)

,

a pochodna warunku G to G′ = (4x3, 4y3). Gdy x = 0, y = ±1 i λ = 0 macierz ta ma
postać

Q =

(

4 0
0 0

)

,
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ale warunek G′ · h = 0 ogranicza wektory, na których należy badać jej określoność do
postaci (h, 0), a na takich wektorach ma ona zawsze wartość dodatnią, czyli w punktach
takich funkcja F ma na E minima. Tak samo jest w punktach (±1, 0).

Z kolei w czterech punktach, którym odpowiada λ = 1, macierz drugich pochodnych
przyjmuje postać

Q = 4
√
2

(

−1 ±1
±1 −1

)

,

przy czym wyrazy pozadiagonalne są dodatnie, gdy y = x = ±2−1/4 i ujemne, gdy
y = −x = ±2−1/4. Jednak warunek G′ ·h = 0 ogranicza wektory, na których należy badać
określoność macierzy drugich pochodnych do postaci (h,−h), gdy y = x i do postaci
(h, h), gdy y = −x, a na takich wektorach macierz Q jest we wszystkich tych punktach
ujemnie określona:

(h,∓h)
(

−1 ±1
±1 −1

)(

h
∓h

)

= −4h2.

Zatem we wszystkich tych czterech punktach funkcja F ma na E lokalne maksimum.

Zadanie 33: Dowolny punkt o współrzędnych (x, y) jest od punktu P = (3, 12) oddalony
(najlepiej operować kwadratami odległości - unikniemy pierwiastków) o

D ≡ d2 = (x− 3)2 + (y − 12)2 .

Jeśli punkt (x, y) ma leżeć na paraboli, to szukamy ekstremum D(x, y) (jeśli D ma eks-
tremum, to d > 0 też) przy ubocznym warunku G(x, y) = y2 − 6x. Dalej wszystko idzie
już regulaminowo: tworzymy funkcję

D̃(x, y) = (x− 3)2 + (y − 12)2 − λ
(

y2 − 6x
)

,

i rozwiązujemy układ równań

D̃x(x, y) = 2(x− 3) + 6λ = 0 ,

D̃y(x, y) = 2(y − 12)− 2λy = 0 ,

y2 − 6x = 0 ,

albo x = 3(1− λ), y = 12/(1− λ) i y2 = 6x czyli

144

(1− λ)2
= 18(1− λ) .

Zatem (1 − λ)3 = 8, a stąd λ = −1, x = 6, y = 6. Drugie pochodne funkcji D̃(x, y):
Dxx(x, y) = 2,Dyy(x, y) = 2(1−λ),Dxy(x, y) = 0 dają w znalezionym punkcie krytycznym
dodatnio określoną formę kwadratową drugich pochodnych. Zatem punkt P ′ = (6, 6) jest
położony najbliżej rzeczonej paraboli. Można też zauważyć, że wektor biegnący od P
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do P ′ o składowych [6 − 3, 6 − 12] = [3, −6] jest prostopadły do wektora stycznego w
punkcie P ′ do paraboli. To akurat można ustalić “po szkolnemu”: parabola o równaniu
y =

√
6x ma jako funkcja pochodną

√

3/2x i w punkcie x = 6 tangens nachylenia równy
1/2 Zatem wektor styczny do paraboli w punkcie P ′ ma x=ową składową dwa razy większą
niż y-kową, np. wektor [2, 1] jest stczny w P ′ do paraboli i jest (znów “po szkolnemu”)
prostopadły do wektora P ′P . Po cichu wprowadziliśmy tu kanoniczny iloczyn skalarny w
R2.

Problem ten można oczywiście rozwiązać inaczej po prostu wstawiając do funkcji
D(x, y) funkcję x = x(y) = 1

6
y2 wywikłaną z równania paraboli i szukając zwykłego

ekstremum funkcji D(y):

d

dy
D(y) = 2

(

1

6
y2 − 3

)

1

3
y + 2(y − 12) = 0 ,

co prowadzi do rówanania y3 − 216 = 0, czyli y = 6. Poza tym

d2

dy2
D(y) =

1

3
y2 ,

więc jest to minimum.

Zadanie 34:
Jeśli krawędzie akwarium mają długości x, y i z, to jego objętość jest równa xyz. Za to
pole powierzchni zużytego szkła jest dane funkcją

S(x, y, z) = xy + 2xz + 2yz .

Dlaczego nie 2xy + 2xz + 2yz? - żeby dać kotu szansę... Problem sprowadza się zatem
do zminimalizowania funkcji S(x, y, z) przy ubocznym warunku V (x, y, z) = xyz − 32.
Tworzymy więc funkcję

S̃(x, y, z) = xy + 2xz + 2yz − λ(xyz − 32) ,

i rozwązujemy rówanania

S̃x(x, y, z) = y + 2z − λyz = 0 ,

S̃y(x, y, z) = x+ 2z − λxz = 0 ,

S̃x(x, y, z) = 2x+ 2y − λxy = 0 ,

V (x, y, z) = xyz − 32 = 0 .

Odejmując np. od drugiego pierwsze dostajemy (x − y)[1− λz] = 0. Zatem abo λz = 1,
albo x = y (symetria problemu względem zamiany x ↔ y podpowiada, że to to właśnie
będzie właściwym rozwiązaniem). Jeśli λz = 1, to dwa pierwsze równania zgodnie dadzą

S̃x(x, y, z) = y + 2z − y = 2z = 0 ,

S̃y(x, y, z) = x+ 2z − x = 2z = 0 ,
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czyli z = 0. To zaś oznacza, że λ = ∞ i nie da się spełnić S̃z(x, y, z) = 0. Zatem zostaje
tylko rozwiązanie z x = y. Równania S̃x(x, y, z) = 0 i S̃y(x, y, z) = 0 stają się tym samym
i układ równań redukuje się do

x+ 2z − λxz = 0 ,

x (4− λx) = 0 ,

x2z − 32 = 0 .

Ponieważ x = 0 jest sprzeczne z trzecim, drugie daje λx = 4, a to wstawione do pierwszego
daje x = 2z. To zaś użyte w ostatnim mówi, że 4z3 = 32, czyli z = 2 i stąd już x = y = 4
i λ = 1. Drugie pochodne

S̃xx(x, y, z) = 0 , S̃yy(x, y, z) = 0 , S̃zz(x, y, z) = 0 ,

S̃xy(x, y, z) = 1− λz , S̃xz(x, y, z) = 2− λy , S̃yz(x, y, z) = 2− λx ,

dają w znalezionym punkcie krytycznym nastepująca macierz Q formy kwadratowej

Q =





0 −1 −2
−1 0 −2
−2 −2 0



 .

W ogólności nie jest to macierz określona, ale trzeba ją badać na wektorach (hx, hy, hz)
stycznych do powierzchni więzów, tj. spełniających warunek

(yz, xz, xy)|(4,4,2)





hx
hy
hz



 = (8, 8, 16)





hx
hy
hz



 = 0 ,

czyli takich, że np. hz = −1
2
(hx + hy). Podstawiając ten związek do

Q(h) = −2hxhy − 4hxhz − 4hyhz ,

dostajemy

−2hxhy + 2(hx + hy)(hx + hy) = 2h2x + 2h2y + 2hxhy = (hx, hy)

(

2 1
1 2

)(

hx
hy

)

.

Forma zredukowana do wektorów stycznych do powierzchni wiezów jest wiec dodatnio
określona i w punkcie krytycznym (4, 4, 2) funkcja S(x, y, z) = xy + 2xz + 2yz ma na
zbiorze E = {(x, y, z) ∈ R3 : xyz = 32} minimum.

Zadanie to można rozwiązać także zwyczajnie, bo z warunku ubocznego można bez
trudu wywikłać dowolną ze zmiennych. Oczywiście najlepiej wywikłać zmienną z, by
utrzymać w jawnej postaci wspomnianą już symetrię problemu względem zamiany x↔ y.
Zatem z = 32/xy i pole powierzchni, które chcemy zmininalizować wyraża się wzorem

s(x, y) = xy +
64

x
+

64

y
.
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Przyrównane do zera pierwsze pochodne funkcji s(x, y)

sx(x, y) = y − 64

x2
,

sy(x, y) = x− 64

y2
,

dają równania x2y = 64 i xy2 = 64, a ponieważ funkcja s(x, y) jest określona na R2 w
wyłączeniem osi x i osi y (gdy x = 0 lub y = 0 akwarium jest tak płaskie, że nawet
rybka rozduszona przez kota się nie zmieści) więc rozwiązaniem jest x = y = 4. W tym
punkcie drugie pochodne sxx = 128/x3, syy = 128/y3 i sxy = 1 tworzą formę kwadratową
o macierzy

(

2 1
1 2

)

,

(nieprzypadkowo jest ona tą samą macierzą, którą otrzymaliśmy wyżej w wyniku reduk-
cji formy drugich pochodnych, gdy szukaliśmy minimum warunkowego). Forma ta jest
dodatnio okreĺona, czyli w punkcie x = y = 4 funkcja s(x, y) ma minimum.

Zadanie 35: Najpierw posłużymy się metodą ekstremów warunkowych. Tworzymy funk-
cję F̃ (x, y, z) = xy2z3−λ(x+2y+3z−1) i przyrównujemy do zera jej oierwsze pochodne
cząstkowe wraz z warunkiem

F̃x(x, y, z) = y2z3 − λ = 0 ,

F̃y(x, y, z) = 2(xyz3 − λ) = 0 ,

F̃z(x, y, z) = 3(xy2z2 − λ) = 0 ,

G(x, y, z) = x+ 2y + 3z − 1 = 0 .

Równania y2z3 = xyz3 = xy2z2 = λ mają kilka rozwiązań.
i) Jeśli x = 0, to λ = 0 i albo y = 0 albo z = 0. Daje to dwa punkty (0, 0, 1

3
) oraz (0, 1

2
, 0).

ii) Jeśli y = 0, to λ = 0 i jest cała rodzina rozwiązań (1− 3α, 0, α) z dowolnym α.
ii) Jeśli z = 0, to λ = 0 i jest cała rodzina rozwiązań (1− 2α, α, 0) z dowolnym α.
Widać też, że punkt (0, 0, 1

3
) należy do rodziny rozwiązań (1 − 3α, 0, α) i odpowiada

α = 1/3, a punkt (0, 1
2
, 0) należy do rodziny rozwiązań (1−2α, α, 0) i odpowiada α = 1/2.

Jeśli ani x ani y ani z nie znika, to y2z3 = λ = xyz3 daje x = y i z y2z3 = λ = xy2z2 ≡ y3z2

mamy y = z, czyli x = y = z = 1/6 i λ = 1/65, ale wartoćć λ nie jest istotna dalej. Drugie
pochodne funkcji F̃ (które tu są tożsame z drugimi pochodnymi funkcji F )

F̃xx(x, y, z) = 0 , F̃yy(x, y, z) = 2xz3 , F̃zz(x, y, z) = 6xy2z ,

F̃xy(x, y, z) = 2yz3 , F̃xz(x, y, z) = 3y2z3 , F̃yz(x, y, z) = 6xyz2 ,

Dają w punkcie x = y = z = 1/6 macierz Q formy kwadratowej

Q =
1

64





0 2 3
2 2 6
3 6 6



 .
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Ma ona sygnaturę (0,−,+), nie jest więc nijak określona. Wektory h styczne do po-
wierzchni więzów, na których trzeba ją badać spełniają warunek

G′|x=y=z=1/6 ·





hx
hy
hz



 = (1, 2, 3)





hx
hy
hz



 = hx + 2hy + 3hz = 0 .

Wstawiając hx = −2hy − 3hz do

Q(h) =
1

64
(

2h2y + 6h2z + 4hxhy + 6hxhz + 12hyhz
)

,

dostajemy

Q(h) =
1

63
(

−h2y − 2h2z − 2hyhz
)

= − 1

63
(hy, hz)

(

1 1
1 2

)(

hy
hz

)

.

Ponieważ wyrażenie to jest ujemnie określone, w punkcie x = y = z = 1/6 funkcja F
ma na zbiorze E maksimum lokalne. W punktach (0, 0, 1/3) i (0, 1/2, 0) cała macierz
drugich pochodnych funkcji F̃ jest zerowa i nie można na jej podstawie ustalić charakteru
tych punktów krytycznych. Tak samo zerowa jest macierz drugich pochodnych w każdym
punkcie krytycznym z rodziny (1 − 2α, α, 0). W punktach krytycznych z rodziny (1 −
3α, 0α) niezerowy jest tylko środkowy element tej macierzy (z wyjątkiem punktów α = 0
i α = 1/3, gdzie i ten element znika), więc też na wektorach postaci h = (0, 0, h) daje ona
zero i nie można na jej podstawie określić charakteru tych punktów.

Jeśli z warunku G(x, y, z) = 0 wyznaczymy np. x = 1− 2y − 3z to badamy ekstrema
zwykłej funkcji

f(y, z) = y2z3 − 2y3z3 − 3y2z4 .

Przyrównanie do zera jej pierwszych pochodnych cząstkowch

fy(y, z) = 2yz3 − 6y2z3 − 6y2z4 = 2yz3(1− 3y − 3z) = 0 ,

fz(y, z) = 3y2z2 − 6y3z2 − 12y2z3 = 3y2z3(1− 2y − 4z) = 0 ,

daje następujące punkty (0, α), (α, 0) z dowolnym α oraz (1/6, 1/6). Widać, że odpowia-
dają one dokładnie znalezionym w metodzie ekstremów warunkowych dwóm rodzinom
punktów (1−2α, α, 0) i (1−3α, 0, α) i punktowi (1/6, 1/6, 1/6). Drugie pochodne funkcji
f(y, z)

fyy(y, z) = 2z2 − 12yz3 − 6z4 ,

fzz(y, z) = 6y2z − 12y3z − 36y2z2 ,

fyz(y, z) = 6yz2 − 18y2z2 − 24yz3 ,

dają w punkcie (1/6, 1/6) macierz formy kwadratowej

Q = − 1

63

(

6 6
6 12

)

,
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Rysunek 30: Kształt funkcji z Zadania 35. Oś y w zakresie (−2, 2), oś z w zakresie (−1, 1).
Maksimum w punkcie (1/6, 1/6) jest słabo widoczne.

która jest ujemnie określona - w punkcie tym funkcja f ma lokalne maksimum. Tak jak
w poprzedniej metodzie, macierz drugich pochodnych w punktach rodziny (1 − 2α, α, 0)
jest całkowicie zerowa, a w punktach rodziny (1 − 3α, 0, α) ma niezerowy tylko element
Qyy z wyjątkiem α = 1/3, kiedy jest całkowicie zerowa. Jest jasne, że funkcja f(z, y) =
y2z3(1−2y−3z) nie może mieć uczciwych ekstremów, bo f(0, α) = f(α, 0) = 0 i znalezione
dwie rodziny punktów krytycznych tworzą jej tzw. płaskie kierunki: z każdego takiego
punktu można się przymieścić do dowolnie jemu bliskiego punktu sąsiedniego, w którym
wartość funkcji jest taka sama. Kształt tej funkcji jest pokazany na rysunku 30.

Zadanie 36: Postępujemy regulaminowo: tworzymy funkcję

F̃ (x, y, z) = F (x, y, z)− λ2G
1(x, y, z)− λ2G

2(x, y, z)

= xyz − λ1(x+ y + z − 5)− λ2(xy + xz + yz − 8) ,

której pierwsze pochodne cząstkowe

F̃x(x, y, z) = yz − λ1 − λ2(y + z) ,

F̃y(x, y, z) = xz − λ1 − λ2(x+ z) ,

F̃z(x, y, z) = xy − λ1 − λ2(x+ y) ,

przyrównane do zera tworzą, wraz z warunkami ubocznymi układ pięciu równań wyzna-
czający punkty krytyczne i odpowiadające im wartości λ1 i λ2 (czyli razem wyznaczający
pięć niewiadomych):

yz − λ1 − λ2(y + z) = 0 ,

xz − λ1 − λ2(x+ z) = 0 ,

xy − λ1 − λ2(x+ y) = 0 ,

x+ y + z − 5 = 0 ,

xy + xz + yz − 8 = 0 .
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Z uwagi na symetrię funkcji względem permutacji zmiennych F (y, z, x) = F (x, y, z) =
F (x, z, y) = . . ., wydaje się naturalne szukanie punktu krytycznego postaci (x, x, x). Takie
rozwiązanie wypisanego wyżej układu równań jednak nie istnieje, bo z dwóch ostatnich
dostajemy wtedy równania x = 5/3 i x2 = 8/3, które są sprzeczne. Trzeba zatem szukać
innych rozwiązań. Np. postaci (a, a, b), (a, b, a), (b, a, a) respektujących w mniej trywialny
sposób symetrię problemu.76 Jeśli odejmiemy pierwsze równanie od drugiego, dostaniemy
(x − y)(z − λ2) = 0. Zatem albo x = y, albo z = λ2. Zjamijmy się najpierw tą pierwszą
możliwością. Dwa ostatnie równania redukują się do z = 5 − 2x oraz x2 + 2xz − 8 = 0.
Razem dają one na x równanie kwadratowe

x2 + 2x (5− 2x)− 8 = −3x2 + 10x− 8 = (x− 2)(−3x+ 4) = 0 .

Możliwe są więc rozwiązania (2, 2, 1) i (4/3, 4/3, 7/3). Z drugiego i trzeciego równania,
które stają się teraz układem dwóch liniowych równań na λ1 i λ2 odczytujemy, że pierw-
szemu odpowiada λ1 = −4 i λ2 = 2, a drugiemu λ1 = −16/3 i λ2 = 4. Drugie pochodne
funkcji F̃

F̃xx(x, y, z) = 0 , F̃yy(x, y, z) = 0 , F̃zz(x, y, z) = 0 ,

F̃xy(x, y, z) = z − λ2 , F̃xz(x, y, z) = y − λ2 , F̃yz(x, y, z) = z − λ2 ,

dają w punkcie krytycznym (2, 2, 1), któremu odpowiada λ2 = 2 następującą macierz Q
formy kwadratowej drugich pochodnych

Q(2,2,1) =





0 −1 0
−1 0 0
0 0 0



 .

Jej określoność należy jednak badać na wektorach h spełniających warunki

(G1)′(2,2,1) · h = (1, 1, 1)





hx
hy
hz



 = 0 ,

(G2)′(2,2,1) · h = (3, 3, 4)





hx
hy
hz



 = 0 ,

których rozwiązaniem jest hz = 0, hy = −hx. Na takich wektorach przemieszczeń forma
kwadratowa drugich pochodnych

Q(2,2,1)(h) = (h, −h, 0)





0 −1 0
−1 0 0
0 0 0









h
−h
0



 = 2h2,

76W języku teorii grup powiedzielibyśmy, że rozwiązanie postaci (a, a, a) - gdyby istniało - stanowiłoby
trywialną reprezentację grupy symetrii; rozwiązania postaci (a, a, b), (a, b, a), (b, a, a) stanowią zaś razem
jej reprezentację trójwymiarową (co to jest reprezentacja grupy - zob. skrypt do algebry).

201



jest zawsze dodatnia, co oznacza, że funkcja F na zbiorze E ma w punkcie (2, 2, 1), a
także, z uwagi na jej symetrię, w punktach (2, 1, 2) i (1, 2, 2), minimum lokalne.

Analogicznie w punkcie (4/3, 4/3, 7/3), któremu odpowiada λ2 = 4 macierz formy
kwadratowej drugich pochodnych ma postać

Q(4/3,4/3,7/3) =
1

3





0 −5 −8
−5 0 −8
−8 −8 0



 ,

a wektory, na których należy badać jej określoność spełniają warunki

(G1)′(2,2,1) · h = (1, 1, 1)





hx
hy
hz



 = 0 ,

(G2)′(2,2,1) · h =
1

3
(11, 11, 8)





hx
hy
hz



 = 0 ,

których rozwiązaniem znów jest jest hz = 0, hy = −hx. Na takich wektorach

Q(4/3,4/3,7/3)(h) = (10/3)h2 ,

i znów w punkcie (4/3, 4/3, 7/3) oraz w 7/3, 4/3, 4/3) i (4/3, 7/3, 4/3) funkcja F ma na
zbiorze E (lokalne) minimum.

Można też pokazać, że ostatnia możliwość, z = λ2 nie prowadzi do żadych rozwiązań.
Dwa pierwsze równania redukują się wtedy do jednego i tego samego i ukkład równań
przechodzi w (a ≡ x+ y, b ≡ xy):

λ1 + λ22 = 0 , λ1 + aλ2 − b = 0 , λ2 = 5− a , aλ2 + b = 8 ,

Ostatnie z pomocą drugiego można wtedy przerobić na λ1 = 2b− 8 i teraz korzystając z
tego i z trzeciego podstawiamy do pierwszego i drugiego λ1 i λ2, co daje dwa równania:

2b− 8 + (5− a)2 ≡ a2 + 2b− 2a+ 17 = 0 ,

2b− 8 + a(5− a)− b ≡ −a2 + b+ 5a− 8 = 0 .

No to jeszcze je do siebie dodać, co da 3b+3a+9 = 0, czyli b = −a−3 i to do pierwszego:

a2 + 2(−a− 3)− 2a+ 17 ≡ a2 − 4a+ 11 = 0 ,

i teraz już widać, że niema rozwiązań.

Zadanie 37: Składowe (w kanonicznej bazie przestrzeni R3) wektorów stycznych do
podanej powierzchni otrzymujemy wóżniczkując definiujące powierzchnię związki:

tt =





aω cosωt cos ξ
ω cosωt sin ξ

−aω sinωt+ aω/ sinωt



 , tξ =





−a sinωt sin ξ
ω cosωt cos ξ

0



 .
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Wektory te mogą przestać być liniowo niezależne tylko w takich punktach, w których
zeruje się ostatnia składowa wektora tt. To zaś zdarza się tam, gdzie sin2 ωt = 1, czyli
gdy ωt = π

2
+ kπ. W takich punktach cosωt = 0 i cały wektor tt = 0 i rzeczywiście w

takich punktach wymiar (pod)przestrzeni TPM staje się równy 1, a nie 2, jak w innych
punktach. Punkty takie są więc punktami osobliwymi badanej powierzchni. Zauważmy
też, że w punktach, w których ωt = lπ ostatnia składowa wektora tt staje się nieskoń-
czona. W tych punktach jednak z → ∞, czyli w kierunku z-owym powierzchnia rozciąga
się do nieskończoności, która jest osiągana w skończonym “czasie t” - nie są to więc punkty
osobliwe powierzchni jako takiej, tylko raczej pewna osobliwość układu współrzędnych,
którymi pokryliśmy tę powierzchnię. Takie rzeczy się zdarzają często przy badaniu róż-
nych czasoprzestrzeni w ramach ogólnej teorii względności.

Zadanie 38:
a) Rozdzielamy zmienne i całkujemy

∫

dy

1 + y2
=

∫

dxx .

Całkować już umiemy, zatem dostajemy

arctg y =
1

2
x2 + C , czyli y = tg

(

1

2
x2 + C

)

.

Widać, że stała C jest określona modulo π, bo funkcja tangens jest okresowa. Oczywiście
wydaje się, że każda funkcja (scharakteryzowana konkretną wartością C z przedziału
[0, π)) to jest nieskończenie wiele krzywych całkowych (bo tak Mathematica maluje funkcję
tangens). Ale to nie o to chodzi: chodzi o to, że przez każdy punkt przebiega jedna i
tylko jedna krzywa całkowa (bo funkcja f(x, y) w dy/dx = f(x, y) jest super regularna).
Np. przez punkt (7, 1) przebiega krzywa scharakteryzowana przez C = π/4 − 49/2, i
tylko to się liczy, bo równanie należy właśnie rozumieć w sensie warunku ograniczającego
ruchy, gdy się jest w jakimś punkcie: gdy jesteśmy w punkcie (7, 1) to możemy iść tylko
po jednej z nieskończenie wielu rozłącznych krzywych, jakie daje formalny wzór y =
tg(1

2
x2 − 49/4+ π/4). Krzywą tę można też dostać wykonując całki oznaczone, tj. pisząc

∫ y(x)

y0

dξ

1 + ξ2
=

∫ x

x0

dη η ,

i całkując już bez konieczności dobierania później stałych.

b) Tak jak poprzednio, rozdzielamy zmienne i całkujemy
∫

dy

y
=

∫

dxx ,

dostając

ln |y| = 1

2
x2 + C , czyli y = ± exp

(

1

2
x2 + C

)

.
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y ≡ 0 też jest rozwiązaniem - włączamy je w całkę ogólną pisząc ±eC = C̃ (y ≡ 0 teraz
odpowiada C̃ = 0). Przez każdy punkt płaszczyzny xy przechodzi dokładnie jedna krzywa
całkowa (wszystkie one są uczciwymi funkcjami y = y(x)) bo funkcja f(x, y) = xy jest
regularna na całym R

2.

c) Znów rozdzielamy zmienne i całkujemy
∫

dy

y
=

∫

dx

x
,

dostając

ln |y| = ln |x|+ C ≡ ln(|C̃ x|) , czyli ln

∣

∣

∣

∣

y

C̃x

∣

∣

∣

∣

= 0 ,

co jest równoważne |y/C̃x| = 1, czyli po prostu

y = C̃ x .

Widać, że przez każdy punkt płaszczyzny xy z wyjątkiem punktów (0, y) przechodzi jedna
funkcja y = y(x). Przez punkty na osi x też, bo robiąc manewry ze stałą całkowania
(przechodząc od C do C̃) chytrze upchnęliśmy w całkę ogólną rozwiązanie y ≡ 0, którego
pierwotna forma tej całki nie obejmowała. Przez punkty (0, y) o y 6= 0 nie przechodzi
żadna funkcja obejmowana przez całkę ogólną, a przez punkt (0, 0) przechodzi ich nie-
skończenie wiele. Znów oznacza to, że w punkcie (0, 0) funkcja f(x, y) = x/y może być
dookreślona tak, by być ciągłą w dowolnym (ale tylko jednym) kierunku, a w punktach
(0, y) o y 6= 0 nie może. Ale oczywiście jak się pytamy nie o funkcje tylko o krzywe
całkowe, to równania zapisane w postaci xdy = y dx jest zupełnie symetryczne względem
zamiany x↔ y i punktu na osi y (i y 6= 0) powinny mieć taki sam charakter, jak punkty
na osi x (i x 6= 0). I rzeczywiście tak jest, bo x ≡ 0 jest też krzywą całkową. Rozwiązania
przechodzące przez dowolny punkt (x0, y0) nie leżący na żadnej z osi można oczywiście
dostać wykonując całki oznaczone:

∫ y(x)

y0

dξ

ξ
=

∫ x

x0

dη

η
,

co daje ln |y/y0| = ln |x/x0|.
d) Analogicznie jak w poprzednim przypadku rozdzielenie zmiennych prowadzi, po scał-
kowaniu, do wyniku

y =
C

x
, albo, w symetrycznej postaci x y = C .

Teraz przez punkt (0, 0) przechodzą tylko dwie krzywe całkowe y = 0 i x = 0 (obie
odpowiadające C = 0). Warto ten przykład skonfrontować z poprzednim: w obu tych
przypadkach funkcję f(x, y) w równaniu y′ = f(x, y) można w punkcie (0, 0) dookreślić

204



-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Rysunek 31: Krzywe całkowe równania y′ = −y/x.

tak, by była w nim ciągła wzdłuż dowolnie wybranego kierunku, czyli może ona w tym
punkcie wyznaczać dowolne nachylenie krzywej całkowej. Niemniej tam przez punkt ten
przechodziło nieskończenie wiele krzywych (każda o innym nachyleniu w tym punkcie),
a tu tylko dwie. Tak może być, bo możliwość dookreślenia funkcji w punkcie w dowolny
sposób jest tylko warunkiem koniecznym na to, by przez taki punkt mogło przechodzić
nieskończenie wiele krzywych całkowych, ale nie warunkiem dostatecznym. W istocie w
przykładzie teraz rozptrywanym krzywe całkowe obejmowane przez wypisaną wyżej całkę
ogólną są pokazanymi na rysunku 31 hiperbolami, które pozornie biegną ku punktowi
(0, 0), a zawsze ostatecznie go “omijają”, odchylając się w bok.77 Z punktu (0, 0) można
tylko “ruszyć” wzdłuż osi x lub y; próba ruszenia (np. przez numeryczne całkowanie
równania) w ciut innym kierunku jest niewykonalna, bo tuż po wyjściu z punktu (0, 0)
w jakimś innym kierunku kończy się natychmiast (tj. w punkcie infinitezymalnie bliskim
punktowi (0, 0)) natrafieniem na kierunek całkowicie inny niż ten, w którym zamierzaliśmy
się udać.78

e) W tym przykładzie rozdzielenie zmiennych prowadzi do całek
∫

dy

y
=

∫

dx

x3
, co daje ln |y| = − 1

2x2
+ C ,

czyli

y(x) = ± exp

(

− 1

2x2
+ C

)

≡ C̃ exp

(

− 1

2x2

)

.

77Wygląda to jak bieg stałych sprzężenia w pobliżu odpychającego punktu stałego w równaniach grupy
renormalizacji...

78Jeśli jeszcze chwilę o tym pomyśleć, to zauważy się, że różnica między dwoma przypadkami polega
na tym, że wartość funkcji y/x wynikająca z ciągłości wzdłuż wybranego kierunku jest dokładnie taka,
że zadaje ona dokładnie to nachylenie, które odpowiada wybranemu kierunkowi zbiegania do (0, 0); w
przypadku funkcji −y/x - jej wartość zadaje nachylenie odpowiadające prostej ortogonalnej do kierunku
zbiegania.
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Rysunek 32: Krzywe całkowe równania y′ = y/x3 obejmowane przez całkę ogólną.

Znów zastąpiliśmy czynnik ±eC przez stałą C̃ dopuszczając oba jej znaki i znów w ten
sposób włączyliśmy w całkę ogólną funkcję y ≡ 0 (które teraz odpowiada C̃ = 0), której
pierwotnie całka ta nie obejmowała (jeśli nie dopuszczało się C = −∞). Rodzinę funkcji
obejmowanych przez całkę zupełną pokazuje rysunek 32. Przez wszystkie punkty płasz-
czyzny xy z wyjątkiem punktów (0, y) przechodzi tylko jedna funkcja y = y(x); przez
punkty (0, y) o y 6= 0 nie przechodzi żadna, a przez punkt (0, 0) przechodzi ich nieskoń-
czenie wiele (wszystkie rozwiązania obejmowane prze całkę ogólną). Jest to spowodowane
tym, że f(x, y) = y/x3 nie jest ciągła (z żadnego kierunku) w punktach (0, y) o y 6= 0, a
w punkcie (0, 0) można jej nadać wartość 0 czyniąc ją ciągłą tylko wzdłuż osi x - wszyst-
kie krzywe całkowe obejmowane przez całkę ogólną mają w x = 0 nachylenie równe zero
(pamiętamy: funkcja exp(−1/x2) ma w zerze wszystkie pochodne równe zero). Oczywi-
ście równanie zapisane w postaci x3dy = y dx ma także jako rozwiązanie prostą x ≡ 0.
Rozwiązanie spełniające warunek y(1) = 1 to y(x) = exp((1 − 1/x2)/2); odpowiada ono
C̃ = e1/2.

f) W tym przykładzie rozdzielenie zmiennych prowadzi do całek
∫

dy

y
=

∫

dx

x2
, co daje ln |y| = −1

x
+ C ,

czyli

y(x) = ± exp

(

−1

x
+ C

)

≡ C̃ exp

(

−1

x

)

.

Znów tym manewrem ze stałą całkowania włączyliśmy do całki ogólnej rozwiązanie y ≡ 0.
W tym przypadku jednak wszystkie rozwiązania obejmowane przez całką ogólną są nie-
ciągłe w x = 0, ale nadal przez każdy punkt (x0, y0) płaszczyzny xy, z wyjątkiem punktów
(0, y) o y 6= 0 przechodzi dokładnie jedno rozwiązanie y = y0 exp(−1/x + 1/x0). Roz-
wiązania te pokazuje rysunek 33. Teraz też funkcja f(x, y) = y/x2 może być “uciąglona”
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Rysunek 33: Krzywe całkowe równania y′ = y/x3 obejmowane przez całkę ogólną.

w punkcie (0, 0) wzdłuż kierunku y = 0 przez nadanie jej tam wartości 0 (w punktach
(0, y) o y 6= 0, funkcja f(x, y) = y/x2 oczywiście, nie może być “uciąglona”). Umożliwia to
zbieganie się w (0, 0) krzywych całkowych y = y(x) z obszaru x ≥ 0; wszystkie one mają
tam nachylenie równe zero - pochodna funkcji y = C̃ exp(−1/x) ma w x = 0 wartość
zero.79 Poza tym, równanie przepisane w postaci x2dy = y dx ma jako swoje rozwiązanie
także prostą x ≡ 0.

g) Oczywiście y ≡ 0 jest możliwym rozwiązaniem. Aby rozdzielić zmienne zakładamy, że
y 6= 0, że x 6= nπ (na razie szukamy takich rozwiązań). Rozdzielenie prowadzi do całek

∫

dy

y
=

∫

dx
cosx

sin x
, czyli ln |y| = ln | sinx|+ C = ln |C̃ sin x| .

Zatem (znów manewr ze stałą całkowania pozwolił włączyć do całki ogólnej rozwiązanie
y ≡ 0)

y = C̃ sin x = y0
sin x

sin x0
.

Druga postać pokazuje, że jeżeli tylko x0 6= nπ, stałą C̃ można tak dobrać, by rozwiązanie
przechodziło przez punkt (x0, y0). A co z punktami o (x0, y) = (nπ, y) ? Jeśli równanie
przepiszemy w formie

sin xdy = y cos xdx ,

79Znów można próbować zrozumieć, dlaczego w punkcie (0, 0) nie zbiegają się krzywe całkowe z obszaru
x < 0. Gdy ruszamy z punktu (0, 0) płasko w kierunku dodatnich x-ów, nachylenie zerowe jest tylko
infinitezymalnie różne od nachyleń zadawanych przez funkcję y/x2 tuż pod osią x-ów i tuż nad nią; gdy
zaś ruszymy z punktu (0, 0) z zerowym nachyleniem w kierunku ujemnych x-ów, nachylenie to różni się
od tego, jakie zadaje funkcja y/x2 tuż pod osią x-ów i tuż nad nią: np. gdybyśmy chcieli “wystartować
i wznieść” się nad oś x-ów, to taka wznosząca się krzywa całkowa musiała by mieć nad osią nachylenie
ujemne, a funkcja y/x2 nad osią x zadaje nachylenie dodatnie!
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Rysunek 34: Funkcje z(x) = 2arctg(x+ C), C = 0± 2.

to od razu zobaczymy, że krzywymi całkowymi są też proste x(y) = nπ. Ostatecznie
więc przez wszystkie punkty (x, y) 6= (nπ, 0) przechodzi tylko jedna krzywa całkowa tego
równania, a przez punkty (nπ, 0) przechodzi ich nieskończenie wiele. Wynika to z tego,
że f(x, y) = y ctgx jako funkcja na R

2 jest nieciągła w punktach (nπ, y), ale że ctgx ∼
1/x, gdy x ≈ 0 (wszystkie pozostałe punkty o x = nπ są dzięki periodyczności funkcji
ctgx takie same - wystarczy więc rozpatrzyć x = 0), funkcję f(x, y) można dookreślić
w punktach (nπ, 0) tak by była ciągła w (jednym) dowolnie wybranym kierunku. To
dlatego przez punkty te punkty może przechodzić nieskończenie wiele funkcji y = y(x).
Za to przez punkty (nπ, y) o y 6= 0 może przechodzić tylko jedna funkcja x = x(y), bo
w równaniu dx/dy = g(y, x) = tgx/y funkcja g(y, x) jest w takich punktach zupełnie
regularna.

Zadanie 39:
a) Po podstawieniu y = −x + z(x) do y′ = cos(x + y) dostajemy z′ = 1 + cos z i to już
jest równanie o zmiennych rozdzielonych. Całkujemy

∫

dz

1 + cos z
=

∫

dx .

To wymaga przypomnienie sobie stosowanych do obliczania takich całek podstawień...
Pamiętają Państwo? Podstawia się t = tg(z/2). Wtedy

dz =
2dt

1 + t2
, sin z =

2t

1 + t2
, cos z =

1− t2

1 + t2
.

Całka po lewej przechodzi wtedy w
∫

dz

1 + cos z
=

∫

dt = tg(z/2) .

Zatem

y(x) = −x+ 2arctg(x+ C) .

Sprawdźmy to.

y′ = −1 +
2

1 + (x+ C)2
,

cos(x+ y) = cos(2 arctg(x+ C)) = −1 + 2 cos2 (arctg(x+ C)) ,
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ale cos2 α = (1 + tg2α)−1, więc

cos(x+ y) = −1 +
2

1 + tg2[arctg(x+ C)]
= −1 +

2

1 + (x+ C)2
.

Zgadza się.
No a jak to jest z przechodzeniem krzywych całkowych przez punkty płaszczyzny xy?

W równaniu y′ = cos(x + y) funkcja po prawej stronie jest na całym R2 regularna i
zgodnie z twierdzeniem, przez każdy jej punkt powinna przechodzić jedna krzywa będąca
uczciwą funkcją y = y(x). To samo powinno być prawdą i na płaszczyźnie xz (i jedno
implikuje drugie) i to łatwiej przeaanalizować. Na pozór tak nie jest, bo przecież funkcje
z = 2 arctg(x + C) wyglądają tak, jak na rysunku 34. No ale to dlatego, że to jest
tylko funkcja arctgx zdefiniowana konwencjonalnie; wiemy, że można ją zdefiniować tak,
by przyjmowała wartości nie z przedziału (−π/2, π/2), tylko z dowolnego z przedziałów
(nπ − π/2, nπ + π/2), bo tg(α+ nπ) = tgα. Ale to jeszcze nie załatwia sprawy punktów
(x, z) o z = −π+2kπ: żadna z tych funkcji 2arctg(x+C) nie przechodzi przez takie punkty.
Niemniej, jak spojrzymy jeszcze raz na równanie z′ = 1 + cos z, to zobaczymy, że jego
rozwiązaniami są również (nieobejmowane przez całkę ogólną) funkcje z(x) = π+2kπ (bo
wtedy cos z = −1). I teraz już wszystko jest w porządku: przez każdy punkt płaszczyzny
xz (a co ta tym idzie i płaszczyzny xy) przechodzi dokładnie jedno rozwiązanie równania
z′ = −1 + cos z (równania y′ = cos(x+ z)).

b) Podstawiamy y(x) = u(x)/x do y′ = −y/x+ cos(xy)/x2:

u′

x
− u

x2
= − u

x2
+

cos u

x2
.

Równanie upraszcza się do równania xu′ = cosu o zmiennych rozdzielonych. Całkujemy
więc

∫

du

cos u
=

∫

dx

x
,

Znów całka po lewej stronie wymaga podstawienia t = tg(u/2):

∫

du

cos u
= 2

∫

dt

1− t2
=

∫

dt

(

1

1 + t
+

1

1− t

)

= ln |1 + t| − ln |1− t| .

Zatem

ln
|1 + t|
|1− t| = C + ln |x| = ln |C̃ x| ,

i stąd, odwracając kota do góry ogonem,

C̃ x+ 1

C̃ x− 1
= t = tg(u/2) .
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Ostatecznie więc

u = 2arctg

(

C̃ x+ 1

C̃ x− 1

)

.

Jak zwykle sprawdzamy. Lewa strona równania xu′ = cos u:

xu′ =
2x

1 + (C̃ x+ 1)2/(C̃ x− 1)2

[

C̃ (C̃ x+ 1)

(C̃ x− 1)2
− C̃ (C̃ x− 1)

(C̃ x− 1)2

]

=
4C̃ x

(C̃ x+ 1)2 + (C̃ x− 1)2
.

Z kolei prawa strona to:

cosu = cos

[

2 arctg

(

C̃ x+ 1

C̃ x− 1

)]

= −1 + 2 cos2

[

arctg

(

C̃ x+ 1

C̃ x− 1

)]

= −1 +
2

1 + tg2[arctg((C̃ x+ 1)/(C̃ x− 1))]

=
2

1 + (C̃ x+ 1)2/(C̃ x− 1)2
− 1 =

4C̃ x

(C̃ x+ 1)2 + (C̃ x− 1)2
.

Zgadza się. Rozwiązaniem wyjściowego równania jest więc

y(x) =
2

x
arctg

(

C̃ x+ 1

C̃ x− 1

)

.

Znów możemy zapytać, czy przez każdy punkt płaszczyzny xy przechodzi jedna krzywa
całkowa? W wyjściowym równaniu prawa strona nie jest regularna na osi y, tj. w punktach
(0, y) i przez te punkty nie przechodzi żadna z funkcji y = y(x) obejmowanych przez
znalezioną wyżej całkę ogólną. Niemniej, gdy się przepisze równania w postaci x2dy =
(−xy + cos(xy))dx, to widać, że prosta x ≡ 0 spełnia je też. W pozostałych punktach
płaszczyzny funkcja po prawej stronie równania y′ = f(x, y) jest zupełnie regularna i
przez każdy taki punkt przechodzi jedna tylko funkcja (choć może to wymagać innej niż
konwencjonalna definicji funkcji arctgx).

c) Tu chodzi o zamianę zmiennej niezależnej. Wyobrażamy sobie, że y(x) = ỹ(t(x)), gdzie
t(x) = ln x. Zatem

y′ =
dỹ

dt

dt

dx
=

1

x

dỹ

dt
= e−t dỹ

dt
,

y′′ =
d

dx

(

1

x

dỹ

dt

)

= − 1

x2
dỹ

dt
+

1

x2
d2ỹ

dt2
= e−2t

(

d2ỹ

dt2
− dỹ

dt

)

.
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I teraz te pochodne wstawiamy do równania x2y′′ + x y′ + y = 0:

e2t
[

e−2t

(

d2ỹ

dt2
− dỹ

dt

)]

+ et
[

e−t dỹ

dt

]

+ ỹ = 0 .

Wychodzi więc równanie

d2ỹ

dt2
+ ỹ = 0 ,

które każdy fizyk już umie rozwiązać: ỹ(t) = A cos t +B sin t, czyli

y(x) = A cos(ln x) +B sin(ln x) .

A co, gdy x < 0? A nic. Tzn. dokładnie tak samo: można było z mety podstawić
t = ln |x|. Można więc napisać

y(x) = A cos(ln |x|) +B sin(ln |x|) .

Można było się w tym zorientować od razu, bo wyjściowe równanie ma symetrię x↔ −x.
Dokładniej, jeśli y = f(x) jest jego rozwiązaniem, to y = f(−x) też jest: d2f(−x)/dx2 =
d2f(−x)/d(−x)2, a df(−x)/dx = −df(−x)/d(−x) ale xdf(−x)/dx = (−x)df(−x)/d(−x).
Wiec jak f(x) spełnia równanie, to f(−x) też. To jak z równaniami mechaniki (gdy niema
sił tarcia): jeśli r(t) jest rozwiązaniem, to r(−t) też: nie sposób powiedzieć, czy film jest
puszczony do przodu, czy do tyłu. A co z jajkiem, co spada ze stołu i robi się z niego
jajecznica? Też nie można odróżnić czy film był puszczony od tyłu? No i tu wchodzimy
w problemy fizyki statystycznej i tego, czy entropia może zmaleć (trzeba tylko jeszcze
się umówić, o której entropii mówimy)... Ale kluczem jest to, że jajko to jest circa 1023

cząstek. Pozostańmy więc przy jednej do kilku najwyżej i wtedy jesteśmy bezpieczni.
Tylko x = 0 jest trefne, ale tu nie mamy (tzn. MY nie znamy, bo o tym nie było na
wykładzie) twierdzeń, ale pewnie jakieś założenia są niespełnione...

d) Znów sobie wyobrażamy, że y(x) = ỹ(t(x)) gdzie t = arccosx. No, tu x musi być pomię-
dzy −1 i 1. Tylko w tym obszarze możemy tak podstawić. Zatem dt/dx = −1/

√
1− x2 =

−1/| sin t|. I jedziemy:

y′ =
dỹ

dt

dt

dx
= − 1√

1− x2
dỹ

dt
,

y′′ =
d

dx

(

− 1√
1− x2

dỹ

dt

)

= − x

(1 − x2)3/2
dỹ

dt
+

1

1− x2
d2ỹ

dt2
.

Podstawiamy

(1− x2)

[

1

1− x2
d2ỹ

dt2
− x

(1− x2)3/2
dỹ

dt

]

− x

[

− 1√
1− x2

dỹ

dt

]

+ ω2ỹ = 0 .

Wychodzi

d2ỹ

dt2
+ ω2ỹ = 0 ,
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I to znów umiemy to rozwiązać

y(x) = A cos(ω arccosx) +BA cos(ω arccosx) .

e) Znów sobie wyobrażamy, że y(x) = ỹ(t(x)) i teraz t = 1/x

dy

dx
= − 1

x2
dỹ

dt
,

d2y

dx2
=

d

dx

(

− 1

x2
dỹ

dt

)

=
2

x3
dỹ

dt
+

1

x4
d2ỹ

dt2
.

Wstawiamy do równania x4y′′ + 2x3y′ + x2y = 0:

x4
[

1

x4
d2ỹ

dt2
+

2

x3
dỹ

dt

]

+ 2x3
[

− 1

x2
dỹ

dt

]

+ x2y = 0 ,

Czyli

d2ỹ

dt2
+
ỹ

t2
= 0 .

Tego to chyba nie umiemy rozwiązać.

f) A to akurat jest proste, choć wygląda na skomplikowane. Podstawić należy (udało mi
się to zgadnąć - widać jakąś orientację w terenie mam) f = ey. Wtedy

f ′ = ey y′ , f ′′ = ey (y′)2 + ey y′′ = ey
[

y′′ + (y′)2
]

.

Więc wyjściowe równanie y′′ + (y′)2 = 2 e−y, to po prostu f ′′ = 2. “As simple as that”
powiedzieliby rodacy pana Pepysa (takie zdanie gdzieś u Herlinga-Grudzińskiego zapa-
miętałem). Stąd f = A+B x+ x2 i

y = ln(A+B x+ x2) .

Żeby spełnić warunki początkowe trzeba wziąć A = 2 i B = 2.

g) Równanie y′′ = 2 y3 wygląda jak równanie ruchu w jednym wymiarze punktu o masie
m = 1 pod wpływem siły 2 y3, która jest potencjalna, tzn. 2 y3 = −dV (y)/dy, gdzie
V = −y4/2 (tylko zamiast czasu t zmienna się nazywa x). Zatem “energia” mechaniczna
powinna być zachowana, czyli

d

dx

(

1

2
(y′)2 +

1

2
y4
)

= 0 .

Formalnie można się o tym przekonać mnożąc równanie y′′ = 2 y3 stronami przez y′ i
zauważając, że

y′y′′ =
d

dx

(

1

2
(y′)2

)

, i podobnie 2 y′y3 =
d

dx

(

1

2
y4
)

.
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Zatem mamy równanie pierwszego rzędu (y′)2 = C + y4, czyli

y′ = ±
√

C + y4 ,

które jest równaniem o zmiennych rozdzielonych. Zanim scałkujemy je, od razu zauwa-
żamy, że warunki początkowe y(0) = 1, y′(0) = 1, czyli y′ = 1, gdy y = 1, są tak dobrane,
by C = 0. Poza tym trzeba wybrać znak +. Zatem

∫

dx =

∫

dy

y2
= −1

y
+ A .

(Gdyby nie to, że C = 0, nie umielibyśmy całki po prawej stronie obliczyć). No i teraz,
ponieważ y = 1/(A − x) znów zauważamy, że A = 1, by y(0) = 1. Rozwiązaniem
spełniającym warunki początkowe jest zatem y = 1/(1− x).

h) Jeśli u = tg(y/2), czyli y = 2 arctg(u), to tak jak przy uniwersalnym podstawieniu w
całkach z funkcji trygonometrycznych

y′ =
2u′

1 + u2
, sin y =

2u

1 + u2
, cos y =

1− u2

1 + u2
,

i gdy to podstawimy do równania y′ + sin y + x cos y + x = 0, to dostaniemy równanie
liniowe z niejednorodnością

u′ + u = −x ,

Równanie jednorodne po rozdzieleniu zmiennych du/u = −dx daje ln |u| = C ′ − x, czyli
(±eC′

= C)

uhom = C exp(−x) .

Do niejednorodnego podstawiamy Ansatz uinhom = h(x) e−x i dostajemy

h′ = −x ex , czyli h = (1− x) ex .

czyli uinhom = 1− x, co zresztą można było zgadnąć. Zatem

u = uhom + uinhom = C e−x + 1− x ,

i y = 2arctg (C e−x + 1− x).

i) Ponieważ jest to równanie o prawej stronie będącej funkcją jednorodną stopnia zero-
wego, podstawiamy y = x u(x). Daje to równanie x u′ =

√
u2 − 1 o zmiennych roz-

dzielonych (rozwiązania szukamy oczywiście w obszarach u ≥ 1 i u ≤ −1). Całkowanie
daje

∫

du√
u2 − 1

=

∫

dx

x
= ln |C x| .
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Rysunek 35: Funkcje u(x) = (1 + C2x2)/2Cx, C = ±1
2
,±2,±3.

Całka po lewej stronie jest równa80 ln |u+
√
u2 − 1|. Zatem, zdejmując logarytmy, Cx−u =√

u2 − 1. i podnosząc tę równość stronami do kwadratu otrzymujemy

u =
1 + 2C2x2

2Cx
.

Rodzinę tych funkcji przedstawia rysunek 35. Nie całe jednak krzywe są rozwiązaniami
równania x u′ =

√
u2 − 1: lewa strona musi być nieujemna, bo taka jest prawa strona.

Oznacza to, że gdy x > 0 funkcja u(x) musi być rosnąca, a gdy x < 0, malejąca. Za-
tem tylko kawałki krzywych pokazanych na rysunku 35 spełniają ten warunek. Gdy
pytamy o krzywą przechodzącą przez punkt (x0, u0) dostajemy na C równanie kwadra-
towe i trzeba wybrać tę wartość C, która w punkcie (x0, u0) daje funkcję rosnącą, jeśli
x0 > 0 i malejącą, jeśli x0 < 0. Warunek początkowy y(1) = 2 odpowiada u0 = 2,
x0 = 1. Równanie 2 = (1 + C2)/2C ma dwa rozwiązania: C = 2 ±

√
3. Odpowiadające

tym dwóm stałym krzywe są pokazane na rysunku 36. Widać, że tylko jedna z nich daje
funkcję o dodatniej pochodnej w punkcie x = 1. Całką ogólną wyjściowego równania
jest y = x u(x) = (1 + C2x2)/2C. Równanie to, jak można bezpośrednio sprawdzić ma
jednak także rozwiązania (będące uczciwymi funkcjami) y = ±x nieobejmowane przez
całkę ogólną. Krzywą całkową równania jest też prosta x = 0.

Zadanie 40:
a) Jest to równanie liniowe z niejednorodnością. Rozwiązujemy najpierw równanie jed-
norodne xy′ = y, czyli y′ = y/x (szukamy jego całki ogólnej zależnej od dowolnej stałej).
Jest to równanie o zmiennych rozdzielonych i to takie, jakie już było w Zadaniu 38c.
Zatem piszemy “od ręki”

yhom(x, C) = C x .

Teraz uzmienniamy stałą, tj. do równanania nieliniowego y′ = y/x + 2x2 podstawiamy
Ansatz yinhom = xh(x). Daje to na h równanie

h′ = 2x ,

80Podstawienie u = ch θ sprowadza całkę do
∫

dθ; z dwóch rozwiązań na Arch(u) trzeba wybrać to
dodatnie, które jest funkcją rosnącą, bo pochodna, czyli funkcja 1/

√
u2 − 1 pod całką, była dodatnia.
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Rysunek 36: Funkcje u(x) = (1+C2x2)/2Cx, odpowiadające C = 2±
√
3. Obie spełniają

warunek u(1) = 2, ale tylko krzywa odpowiadająca C = 2 +
√
3 jest w tym punkcie

rosnąca.

czyli h = x2 i stąd, całka ogólna wyjściowego równania ma postać

y = yinhom(x) + yhom(x, C) = x3 + C x .

Znów widać, że wszystkie krzywe całkowe obejmowane przez całkę ogólną przechodzą
przez punkt (0, 0) i żadna nie przechodzi przez punkty (0, y) o y 6= 0. Oczywiście jest
to możliwe dzięki temu, że funkcję występującą w równaniu y′ = y/x + 2x2 po prawej
stronie (traktowanej jak funkcja na R2) można w punkcie (0, 0) uczynić ciągłą w dowolnie
wybranym jednym kierunku, a w punktach (0, y) o y 6= 0 nie można. Zatem na funkcję
y = y(x) spełniającą równanie y′ = y/x+2x2 nie można narzucić warunku początkowego
y(0) = 0, bo przez (0, 0) przechodzi nieskończenie wiele rozwiązań, ani warunku y(0) =
y0 6= 0, bo żadna uczciwa funkcja y = y(x) przez te punkty nie przechodzi. Jednak
równanie zapisane w postaci x dy = (2x3 + y)dx jest spełniane też przez prostą x(y) ≡ 0
i na krzywą całkową (nie funkcję) można narzucać warunek y(0) = y0 6= 0.

b) Jak wyżej, jest to równanie liniowe z niejednorodnością. Odpowiadające mu równanie
jednorodne całkujemy rozdzielając zmienne

∫

dy

y
= −

∫

dxx

1 + x2
, co daje ln |y| = C ′ − 1

2
ln(1 + x2) = ln

∣

∣

∣

∣

C√
1 + x2

∣

∣

∣

∣

.

Zatem

yhom =
C√

1 + x2
.

Uzmienniamy stałą, tj. do równania y′ = −xy/(1 + x2) − 1/2x(1 + x2) podstawiamy
Ansatz yinhom = h(x)/

√
1 + x2. Daje to

h′√
1 + x2

= − 1

2(1 + x2)
, czyli h′ = − 1

2x
√
1 + x2

.

Całkujemy więc (podstawiając po drodze x = 1/t, dx/x = −dt/t

h = −1

2

∫

dx

x
√
1 + x2

=
1

2

∫

dt√
1 + t2

=
1

2
ln
(

t+
√
1 + t2

)
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=
1

2
ln
(

1 +
√
1 + x2

)

− 1

2
ln |x| .

Dostajemy zatem jako całkę ogólną wyjściowego równania funkcję

y = yinhom + yhom =
1

2
√
1 + x2

(

ln
(

1 +
√
1 + x2

)

− ln |x|
)

+
C√

1 + x2
.

Przez każdy punkt (x, y) o x 6= 0 przechodzi dokładnie jedna krzywa bo funkcja f(x, y) =
−xy/(1 + x2)− 1/2x(1 + x2) jest we wszystkich takich punktach regularna. W punktach
(x, y) o x 6= 0 nie jest ona ciągła i nie można jej tam w żaden sposób “uciąglić”, więc
przez takie punkty żadna funkcja y = y(x) nie przechodzi. Ale jak równanie zapiszemy w
postaci 2x(1 + x2)dy = (−1− 2x2y)dx to prosta x = 0 jest też jego rozwiązaniem.

c) To jest niby równanie drugiego rzędu, ale jak położymy f = y′ to się z niego zrobi
liniowe równanie pierwszego rzędu z niejednorodnością, tyle, że na funkcję f : xf ′+f = 4x.
Dalej już działamy regulaminowo: rozwiązujemy równanie jednorodne f ′ = −f/x, które
jest równaniem o zmiennych rozdzielonych, więc

∫

dy

y
= −

∫

dx

x
, czyli ln |f | = C ′ − ln |x| = − ln |C x| ,

albo fhom = C/x po prostu. Teraz do równania niejednorodnego f ′+f/x = 4 podstawiamy
Ansatz finhom = h(x)/x i dostajemy

− h

x2
+
h′

x
+

1

x

h

x
= 4 ,

czyli po prostu h′ = 4x. Zatem h = 2x2 i, składając wszystko do kupy,

y′ = fhom + finhom =
C

x
+ 2x .

Jeszcze raz to całkujemy, i mamy

y = A + C ln |x|+ x2 .

Rozwiązanie spełniające zadane warunki y(−1) = 0, y′(−1) = 0 otzymujemy dobierając
stałe A i C: z drugiego −C − 2 = 0, czyli C = −2, a z pierwszego A = −1.

d) Całkujemy równanie jednorodne y′ sin x = −y cosx rozdzielając zmienne
∫

dy

y
= −

∫

dx
cosx

sin x
,

co daje yhom = C/ sin x. Uzmienniamy stałą: yinhom = h(x)/ sin x i wstawiamy do równa-
nia niejednorodnego, co da

h′ = sin 2x , czyli h = −1

2
cos 2x ,
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Stąd y = C/ sin x− cos 2x/2 sin x. Niby jest osobliwość w mianowniku, gdy x = 0, ale jak
się weźmie C = 1, to

y =
2− cos 2x

2 sin x
= sin x .

Łatwo zobaczyć, że y = sin x rzeczywiście spełnia równanie y′ sin x+ u cosx = sin 2x.

e) Podstawiamy oczywiście y = f 2, żeby się pozbyć pierwiastka. Na f daje to równanie

f ′ =
2f

x
+

1

2
x ,

które już jest równaniem liniowym z niejednorodnością. Standardowo: fhom = C x2, a
podstawiając finhom = x2h(x) do powyższego równania otrzymujemy h′ = 1/2x, czyli
h = 1

2
ln |x|. Zatem

y = f 2 =

(

C x2 +
1

2
x2 ln |x|

)2

.

Warunek początkowy y(1) = 1 jest spełniony, gdy C = 1.

f) Podstawiamy oczywiście u = ln |y|, żeby się pozbyć logarytmu szukanej funkcji. Po-
nieważ u′ = y′/y, na u dostaje się równanie

u′ =
u

x
− ln |x|

x
,

które już jest równaniem liniowym z niejednorodnością. Dalej standardowo: uhom = C x,
a podstawiając uinhom = xh(x) do powyższego równania otrzymujemy

xh′ = − ln |x|
x

, czyli h = −
∫

dx

x

ln |x|
x

.

Naturalne podstawienie ξ = ln |x|, dξ = dx/x sprowadza tę całkę do

h = −
∫

dξ ξ e−ξ = (1 + ξ) e−ξ =
1 + ln |x|

x
.

Zatem u = C x+ 1 + ln |x| (łatwo sprawdzić, że funkcja ta spełnia równanie na u) i stąd

y = ln|C x+ 1 + ln |x|| .

Warunek początkowy y(1) = ln 2 jest spełniony, gdy C = 1.

Zadanie 41: Napiszemy najpierw równanie stycznej do krzywej y = f(x) w punkcie x0.
Ma ono szkolną postać y = ax + b, przy czym a jest nachyleniem, czyli pochodną w x0
funkcji f . Prosta

y = x f ′(x0) + b ,
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ma przechodzić przez punkt (x0, f(x0)) więc b = −x0f ′(x0) + f(x0). Z kolei prosta
przechodząca przez punkt (0, 0) i prostopadła do tej stycznej (bo odległość prostej od
punktu, to odległość liczona po prostopadłej właśnie) ma równanie

y = − 1

f ′(x0)
x .

Gdzie się te dwie proste przecinaja? Rozwiązujemy układzik y = ax + b, y = −x/a i
znajdujemy punkt przecięcia (x̃, ỹ)

x̃ = − ab

1 + a2
, ỹ =

b

1 + a2
,

przy czym oczywiście a = f ′(x0), b = f(x0)−x0f ′(x0). Odległość d tego punktu przecięcia
od punktu (0, 0) (czyli właśnie odległość stycznej od początku układu) jest oczywiście
równa

d =
√

x̃2 + ỹ2 =
b√

1 + a2
.

Odległość ta, zgodnie z żądaniem, ma być równa x0. Ponieważ ma to być słuszne dla
dowolnego punktu krzywej, przeto zmieniamy oznaczenia z x0 na x, f(x0) na y(x) i f ′(x0)
na y′(x) i piszemy ten warunek, który staje się tym samym równaniem różniczkowym na
y = y(x):

x2 =
(y − x y′)2

1 + (y′)2
,

czyli

x2 = y2 − 2x y y′.

Jak to rozwiązać (ani to liniowe, ani o zmiennych rozdzielonych)? Ano, pewnie podstawić:
samo się narzuca, bo 2yy′ = d(y2)/dx. Więc u = y2 i mamy

xu′ = u− x2 .

teraz to jest równanie liniowe z niejednorodnością. Jednorodne to u′ = u/x - już dwa
razy takie było, więc uhom = C x i podstawiamy Ansatz uinhom = x h(x). Ostatecznie
h′ = −1, czyli h = −x i (C ′ = C/2, żeby było wygodniej) u = −x2 + 2C ′x. teraz
przypominamy sobie, że u = y2 i mamy z tego okrąg (x − C ′)2 + y2 = C ′2 o środku w
(C, 0) i promieniu |C|. Ale to jeszcze nie wszystko: jak napiszemy otrzymane równanie
na u w formie x du = (u − x2)dx (albo 2xy dy = (y2 − x2)dx), to widzimy, że x ≡ 0 też
jest rozwiązaniem. No i wszystko się zgadza: prosta x = 0 jest sama do siebie styczna
(w każdym swoim punkcie); styczna do niej, czyli ona sama, jest odległa od (0, 0) o zero
i odcięta każdego punktu tej prostej też jest równa zero. Więc warunek jest spełniony!
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Chociaż samo równanie różniczkowe wyprowadziliśmy przyjmując po cichu, że szukana
krzywa jest funkcją y = y(x), to jakoś “wie” ono także o krzywych, które funkcjami nie
są. Zapewne przez jakoś rozumianą “ciągłość matematyki”.

Zadanie 42: Jeśli w równaniu y′ = y a(x) + yn b(x) wykładnik n = 0, jest to równanie
liniowe z niejednorodnością y′ = y a(x) + b(x), które rozwiązuje się metodą uzmiennienia
stałej, by znaleźć yinhom, a yhom znajduje się rozdzialając zmienne. Jeśli n = 1, rówananie
y′ = y [a(x) + b(x)] jest po prostu równaniem a zmiennych rozdzielonych i całkuje siye
je standardowo. Gdy n 6= 0, 1, jest to równanie nieliniowe. Jesna podstawienie z = y1−n

sprowadza je do równania liniowego z niejednorodnością. Bo istotnie:

y′ =
z′

1− n
z

1
1−n

−1 =
z′

1− n
z

n
1−n =

z′

1− n
yn , y = z

1
1−n = z

1−n+n
1−n = z yn .

Po wstawieniu tych wyrażeń do równania przybiera ono postać

z′ = (1− n) z a(x) + (1− n) b(x) ,

czyli równania liniowego z niejednorodnością na funkcję z = z(x).
Podane równanie odpowiada n = −2 i trzeba dokonać podstawienia u = y3, co i tak

można łatwo zgadnąć bez odwoływania się do równań typu Bernoulliego. Podstawienie
to prowadzi do równania

xu′ = 2u+ x3 ,

które jest równaniem liniowym z niejednorodnością. Całką ogólną równania jednorodnego
jest uhom = C x2, a podstawienie do równania niejednorodnego Ansatzu uinhom = x2h(x)
daje na funkcję h równanie h′ = 1. Stąd,

u = C x2 + x3 , i y =
(

C x2 + x3
)1/3

.

Zadanie 43:
a) Jak zawsze rozwiązaniem jest y(t) = exp(tF ) · y(0). Cała wiec trudność polega na
znalezieniu eksponensu macierzy tF . Równanie charakterystyczne macierzy F

WF (λ) = −λ3 − 3λ2 − 3λ− 1 = −(λ + 1)3 = 0 ,

ma jeden pierwiastek potrójny. Szukamy wektorów własnych macierzy F :




3 −1 2
5 −2 3
−1 0 −1









a
b
c



 =





0
0
0



 .

Jest tylko jeden




1
1
−1



 .
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Macierz F nie jest diagonalizowalna. Szukamy zatem jej wektorów pierwiastkowych, na
których zeruje się macierz (F + I)3. Ponieważ cała przestrzeń jest trójwymiarowa ma-
cierz ta jest po prostu macierzą zerową, a podprzestrzenią pierwiastkową odpowiadającą
(jedynej) wartości własnej λ = −1 jest po prostu cała przestrzeń wektorowa. Zatem za
wektory pierwiastkowe można wybrać dowolne dwa wektory, byle z wektorem własnym
tworzyły bazę całej przestrzeni. Szczególnie prostym i dogodnym do dalszych rachunków
wyborem są wektory





1
0
0



 ,





0
1
0



 .

Rozkładamy teraz wektor warunków początkowych na wektor własny i te dwa




1
0
1



 = −





1
1
−1



 + 2





1
0
0



 +





0
1
0



 ,

i działamy na obie strony macierzą etF :

etF ·





1
0
1



 =





−1
−1
1



e−t + e−t

[

I + t(F + I) +
t2

2
(F + I)2

]











2
0
0



 +





0
1
0











,

Napisaliśmy tu jak zwykle etF = e−tI et(F+I) i rozwinęliśmy drugi eksponens w szereg
wykorzystując to, że macierz (F + I)3 jest już macierzą zerową. Zatem

etF ·





1
0
1



 =





−1
−1
1



e−t + e−t



I + t





3 −1 2
5 −2 3
−1 0 −1



 +
t2

2





2 −1 1
2 −1 1
−2 1 −1













2
1
0



 .

Składając wszystko razem mamy




y1(t)
y2(t)
y3(t)



 = e−t





1 + 5t+ 3t2/2
8t+ 3t2/2

1− 2t− 3t2/2



 .

Całą macierz etF można znaleźć albo rozkładając na te same wektory co wyżej ogólny
wektor (a, b, c), działają tak jak wyżej macierzę etF i potem zapisując wynik w postaci
pewnej macierzy (którą będzie właśnie szukana macierz etF ) działającej na wektor (a, b, c),
albo metodą CH. W tej drugiej metodzie wykorzystujemy to, żeWF (−1) = 0, W ′(−1) = 0
iW ′′(−1) = 0. W rezultacie na współczynniki a2, a1 i a0 wielomianu-reszty a2λ2+a1λ+a0,
które wchodzą w rozkład etF = a2F

2 + a1F + a0I możemy napisać układ równań

e−t = a2 − a1 + a0 , t e−t = −2a2 + a1 , t2 e−t = 2a2 .
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Zatem

et etF =
t2

2





−3 1 −3
−8 4 −5
0 1 2



 + (t+ t2)





2 −1 2
5 −3 3
−1 0 −2



 +

(

1 + t+
t2

2

)





1 0 0
0 1 0
0 0 1



 .

Ostatecznie więc

etF = e−t





1 + 3t+ t2 −t− t2/2 2t+ t2/2
5t + t2 1− 2t− t2/2 3t+ t2/2
−t− t2 t2/2 1− t− t2/2



 .

b) Tu też rozwiązaniem jest y(t) = exp(tF ) · y0, gdzie y0 jest wektorem pełniącym rolę
stałych dowolnych. Wielomian charakterystyczny macierzy F

WF (λ) =

∣

∣

∣

∣

∣

∣

−2 − λ 1 0
1 −2− λ 1
0 1 −2 − λ

∣

∣

∣

∣

∣

∣

= −λ3 − 6λ2 − 10λ− 4 ,

ma jako pierwiastek (trzeba trochę popróbować) λ1 = −2. Zatem

WF (λ) = −(λ+ 2)(λ2 + aλ + 2) = −(λ+ 2)(λ2 + 4λ+ 2),

i pozostałymi dwoma pierwiastkami są λ+ = −2 +
√
2 oraz λ− = −2 −

√
2. Wektory

własne odpowiadające tym wartościom własnym spełaniające równania




0 1 0
1 0 1
0 1 0









a1
b1
c1



 =





0
0
0



 ,





∓
√
2 1 0

1 ∓
√
2 1

0 1 ∓
√
2









a±
b±
c±



 =





0
0
0



 ,

też daje się znaleźć, co pozwala rozłożyć na nie dowolny wektor y0 warunku początkowego,




a
b
c



 = x1





1
0
−1



+ x+





1√
2
1



+ x−





1
−
√
2

1



 .

Układ ten rozwiązuje się wyjątkowo łatwo i otrzymuje się




a
b
c



 =
a− c

2





1
0
−1



+
a+

√
2 + c

4





1√
2
1



+
a−

√
2 + c

4





1
−
√
2

1



 .

Stąd




y1(t)
y2(t)
y3(t)



 =
a− c

2
e−2t





1
0
−1





+
a +

√
2 + c

4
e−(2−

√
2)t





1√
2
1



+
a−

√
2 + c

4
e−(2+

√
2)t





1
−
√
2

1



 .
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Można też znanym sposobem otczytać z prawej strony powyższego wzoru całą macierz
exp(tF ):

etF =
e−2t

2





1 + ch(
√
2t)

√
2 sh(

√
2t) −1 + ch(

√
2t)√

2 sh(
√
2t) ch(

√
2t)

√
2 sh(

√
2t)

−1 + ch(
√
2t)

√
2 sh(

√
2t) 1 + ch(

√
2t)



 .

c) Najpierw rozwiążemy te równania traktując je traktując je jak układ trzech liniowych
równań jednorodnych. Wielomian charakterystyczny macierzy F

WF (λ) =

∣

∣

∣

∣

∣

∣

1− λ 0 0
1 −1 − λ −1
−2 4 3− λ

∣

∣

∣

∣

∣

∣

= −(λ− 1)(λ2 − 2λ+ 1) = −(λ− 1)3 ,

ma tylko jeden, zato potrójny, pierwiastek λ = 1. Wektory własne spełniające równanie




0 0 0
1 −2 −1
−2 4 2









a
b
c



 =





0
0
0



 ,

są dwa, bo jest tylko jedno równanie a − 2b − c = 0 do spełnienia. Ponieważ macierz
(F − I)2 jest po prostu macierzą zerową (musi być taką zgodnie z twierdzeniem CH, ale
można to bezpośrednio sprawdzić), jako wektor pierwiastkowy odpowiadający wartości
własnej λ = 1 można wziąć jakikolwiek wektor liniowo niezależny od wektorów własnych.
Jako bazę całej przestrzeni można więc wziąć dwa wektory własne macierzy F i jakiś
liniowo od nich niezależny trzeci wektor i rozłożyć na nie dowolny wektor warunków
początkowych:





a
b
c



 = α





1
0
1



 + β





2
1
0



+ γ





0
0
1



 .

Układ równań rozwiązuje się błyskiem: α = a − 2b, β = b, γ = −a + 2b + c. Działamy
teraz macierzą exp(tF ) na obie strony tej równości

etF ·





a
b
c



 = et







(a− 2b)





1
0
1



+ b





2
1
0



 + (−a+ 2b+ c) [I + t (F − I)]





0
0
1











.

Działając na wektor pierwiastkowy zapisaliśmy etF jako etIet(F−I) = et[1+ t(F −I)+ . . .] i
skorzystaliśmy z tego, że wykropkowane wyrazy rozwinięcie są już macierzami zerowymi.
Zbierając wszystko razem dostajemy

etF ·





a
b
c



 = et





a
b− t(−a + 2b+ c)

(1 + 2t)(−a + 2b+ c)



 = et





1 0 0
t 1− 2t −t

−2t 4t 1 + 2t









a
b
c



 .
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Macierz stojąca po prawej stronie to etF . Dla wprawy znajdziemy ją jeszcze metodą
CH. Ponieważ istnieje jeden dodatkowy wektor własny macierzy F , należy skorzystać
ze zredukowanego wielomianu charakterystycznego, co obniża stopień wielomianu-reszty;
poza tym, ponieważ jest tylko jedna wartość własna o krotności trzy, trzeba skorzystać z
tricku z pochodną. Zatem równaniami wyznaczającymi współczynniki wielomianu-reszty
są

et = a1 + a0 , t et = a1 .

Stąd etF = a1F + a0I = et [t F + (1− t)I], czyli

etF = et







t





1 0 0
1 −1 −1
−2 4 3



+ (1− t)





1 0 0
0 1 0
0 0 1











.

Po złożeniu tego w jedną macierz dostaje się to samo co wyżej.
Ponieważ równanie na y1, które po wypreparowaniu go z zapisu macierzowego ma

postać dy1/dt = y1, jest niezależne od pozostałych, jego jawne rozwiązanie y1 = et a
można wstawić do równań na y2 i y3 i przepisać je w postaci układu równań liniowych
pierwszego rzędu z niejednorodnością:

d

dt

(

y2
y3

)

=

(

−1 −1
4 3

)(

y2
y3

)

+

(

et a
−2 et a

)

.

Wielomianem charakterystycznym stojącej tu macierzy 2×2 (oznaczmy ją F̃ ) jestWF̃ (λ) =
(λ− 1)2. Ma on podwójny pierwiastek λ = 1. Macierz F̃ ma tylko jeden wektor własny,
więc przy znajdywaniu exp(tF̃ ) musimy znów skorzystać z tricku z pochodną; równania
na a1 i a0 są zresztą te same, co i wyżej. Zatem

etF̃ = et
{

t

(

−1 −1
4 3

)

+ (1− t)

(

1 0
0 1

)}

= et
(

1− 2t −t
4t 1 + 2t

)

.

(Zabawnie jest sprawdzić, że zamiana t → −t daje, tak jak być powinno, macierz od-
wrotną). Podstawiając do równania niejednorodnego Ansatz ỹinhom = exp(tF̃ ) · h(t)
otrzymujemy na wektor h(t) równanie

d

dt

(

h2
h3

)

= e−t

(

1 + 2t t
−4t 1− 2t

)(

et a
−2 et a

)

=

(

a
−2a

)

.

Możemy zatem złożyć kompletne rozwiązanie na funkcje y2 i y3 (C2 i C3 są dwiema
dowolnymi stałymi w rozwiązaniu równania jadnorodnego):

(

y2
y3

)

= et
(

1− 2t −t
4t 1 + 2t

)(

C2 + at
C3 − 2at

)

.

Aby tak jak poprzednio y2(0) = b, y3(0) = c, należy położyć C2 = b, C3 = c. Po
zadziałaniu macierzą exp(tF̃ ) na stojący po prawej stronie wektor otrzyma się (wyrazy z
t2 zredukuja się) na y2 i y2 te same rozwiązania, co poprzednią metodą:

y2(t) = et [(a− c) t + (1− 2t) b] , y3(t) = et [−2a t + 4b t + (1 + 2t) c] .
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Zadanie 44:
a) Najpierw rozwiązujemy układ macierzowy. (Jest to macierzowe równanie liniowe z wek-
torową niejednorodnościa). Nietrudno znaleźć (a kto ma w głowie transformację Lorentza,
ten to od razu widzi), że

exF = I ch x+ F sh x =

(

1 0
0 1

)

ch x+

(

0 1
1 0

)

sh x .

Zatem ogólnym rozwiązaniem równania jednorodnego jest
(

y1
y2

)

hom

=

(

C1

C2

)

ch x+

(

C2

C1

)

sh x .

Podstawiąjąc do równania niejednorodnego jako Ansatz yinhom = exp(xF ) · h(x), dosta-
jemy na h równanie h′ = exp(−xF ) · b, gdzie b jest wektorem-niejednorodnością, czyli

(

h′1
h′2

)

=

(

sin x
2 cosx

)

chx−
(

2 cosx
sin x

)

sh x .

Całkowanie jest elementarne (najlepiej wszystkie funkcje pod całkami przerobić na eks-
ponensy) i daje

(

h1
h2

)

=

(

−3
2
ch x cosx− 1

2
shx sin x

1
2
ch x sin x+ 3

2
sh x cosx

)

.

Po zadziałaniu na ten wektor macierzą exp(xF ) dostajemy
(

y1
y2

)

inhom

=

(

−3
2
ch x cosx− 1

2
sh x sin x

1
2
ch x sin x+ 3

2
sh x cosx

)

ch x+

(

1
2
ch x sin x+ 3

2
sh x cosx

−3
2
ch x cosx− 1

2
sh x sin x

)

sh x .

Po skorzystaniu z tożsamości ch2x− sh2x = 1 upraszcza się to znacznie i ostatecznie, jako
całkę ogólną pełnego równania niejednorodnego otrzymujemy

(

y1
y2

)

=

(

y1
y2

)

hom

+

(

y1
y2

)

inhom

=

(

C1

C2

)

ch x+

(

C2

C1

)

sh x+

(

−3
2
cosx

1
2
sin x

)

.

Można (i należy!) sprawdzić przez bezpośrednie podstawienie części yinhom do równania, że
jest ono przez tę część rzeczywiście spełniane. Aby spełnić warunki początkowe y1(0) = 2
i y2(0) = 0 należy położyć C1 = 7/2 i C2 = 0.

Ten sam układ dwóch równań

y′1 = y2 + sin x ,

y′2 = y1 + 2 cosx ,

można (prościej chyba) rozwiązać, dodając i odejmując te dwa równania jedno od dru-
giego. Otrzymuje się wtedy dwa nizależne równania

z′1 = z1 + sin x+ 2 cosx ,

z′2 = −z2 + 2 cosx− sin x ,
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z których każde z osobna jest liniowym równaniem z niejednorodnością Rozwiązania rów-
nań jednorodnych są oczywiste, zhom1 = D1e

x, zhom2 = D2 e
−x, a standardowe podstawienia

zinhom1 = ex f1(x), zinhom2 = e−x f2(x) dają

f1 =

∫

dx e−x (sin x+ 2 cosx) ,

f2 =

∫

dx ex (2 cosx− sin x) .

Ostatecznie więc w ten sposób dostajemy

z1 = D1 e
x − 3

2
cosx+

1

2
sin x ,

z2 = D2 e
−x +

3

2
cos x+

1

2
sin x ,

i stad

y1 =
1

2
(z1 − z2) = D1 e

x −D2 e
−x − 3

2
cosx ,

y2 =
1

2
(z1 + z2) = D1 e

x +D2 e
−x +

1

2
sin x .

jest to to samo co poprzednim sposobem jeśli utożsamić D1 z (C1 + C2)/2, a D2 z (C2 −
C1)/2.

b) Wielomian charakterystycznu macierzy F

WF (λ) =

∣

∣

∣

∣

∣

∣

3− λ −1 0
0 3− λ −1
−2 5 −1− λ

∣

∣

∣

∣

∣

∣

= −λ3 + 5λ2 − 8λ+ 4 = −(λ− 1)(λ2 − 4λ+ 4) ,

ma jeden pierwiastek pojedyńczy λ1 = 1 i jeden pierwiastek podwójny λ2 = 2. Wektory
własne spełniające równania





2 −1 0
0 2 −1
−2 5 −2









a1
b1
c1



 =





0
0
0



 ,





1 −1 0
0 1 −1
−2 5 −3









a2
b2
c2



 =





0
0
0



 ,

są tylko dwa. Macierz F nie jest więc diagonalizowalna i potrzebną macierz exp(tF )
znajdziemy metodą CH wykorzystując trick z różniczkowaniem. Współczynniki w a2, a2
i a0 w równości exp(tF ) = a2F

2 + a1F + a0I są wyznaczone przez równości

et = a2 + a1 + a0 ,

e2t = 4a2 + 2a1 + a0 ,

t e2t = 4a2 + a1 ,
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Znajdujemy: a0 = 4et − (3− 2t)e2t, a1 = −4et + (4− 3t)e2t, a2 = et − (1− t)e2t. Stąd

etF = et(1− (1− t)et)





9 −6 1
2 4 −2
−4 12 4





+ et(−4 + (4− 3t)et)





3 −1 0
0 3 −1
−2 5 −1



 + et(4− (3− 2t)et)





1 0 0
0 1 0
0 0 1





= et





1 + 2t et −2 + (2− 3t)et 1− (1− t)et

2− 2(1− t)et −4 + (5− 3t)et 2− (2− t)et

4− (4− 2t)et −8 + (8− 3t)et 4− (3− t)et



 .

Rozwiązanie równania jednorodnego jest dane działaniem tej macierzy na wektor dowol-
nych stałych (C1, C2, C3). Rozwiązaniem równania niejednorodnego jest ta sama macierz
działająca na wektor h(t), dany przez całkę




h1(t)
h2(t)
h3(t)



 =

∫

dt e−tF ·





et

0
0



 =

∫

dt





1 + 2t et

2− 2(1− t)et

4− (4− 2t)et



 =





t− 2(1− t) et

2t− 2(2− t)et

4t− 2(3− t)et



 .

Całka ogólna wyjściowego równania niejednorodnego ma więc postać




y1(t)
y2(t)
y3(t)



 = et





1 + 2t et −2 + (2− 3t)et 1− (1− t)et

2− 2(1− t)et −4 + (5− 3t)et 2− (2− t)et

4− (4− 2t)et −8 + (8− 3t)et 4− (3− t)et









C1 + t− 2(1− t) et

C2 + 2t− 2(2− t)et

C3 + 4t− 2(3− t)et



 .

Ponieważ macierz exp(tF ) jest w t = 0 macierzą jednostkową, aby spełnić warunek po-
czątkowy y1(0) = 1, y2(0) = 1, y3(0) = 3, należy przyjąć C1 = 3, C2 = 5, C3 = 9. Jawne
zadziałanie macierzą exp(tF ) na wektor zostawiamy już wytrwałym.

Zadanie 45: Jest to równanie liniowe z niejednorodnością, więc jego całka ogólna ma
postać y = yhom(x, C1, C2)+yinhom. Rozwiązanie yhom(x, C1, C2) znajdujemy podstawiając
y = exp(λx) do równania jednorodnego 5 y′′ − 6 y′ + 5 y = 0, co da równanie charaktery-
styczne 5λ2 − 6λ+ 5 = 0, o dwóch sprzężonych zespolonych pierwiastkach

λ1 =
3 + 4i

5
, λ2 =

3− 4i

5
.

Zatem

yhom(x, C1, C2) = e
3
3
x

(

C1 cos
4

5
x+ C2 sin

4

5
x

)

.

Rozwiązania równania niejednorodnego możemy szukać podstawiając Ansatz yinhom =
A sin 4

5
x+B cos 4

5
x. Daje to na A i B układ równań

9A+ 24B = 5 , − 24A+ 9B = 0 .
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Rozwiązaniem jest A = 5/73, B = 40/219. Zatem całka ogólna równania ma postać

y = e
3
3
x

(

C1 cos
4

5
x+ C2 sin

4

5
x

)

+
5

73
sin

4

5
x+

40/

219
cos

4

5
x .

Zadanie 46: Pierwiastkami równania charakterystycznego są λ1 = 1 i λ2 = 2. Zatem

yhom(x, C1, C2) = C1 e
x + C2 e

2x .

Aby znaleźć rozwiązanie równania niejednorodnego można posłużyć się ogólnym wzorem
wyprowadzonym w tekście

yinhom(x) =
1

λ2 − λ1

{

eλ2x

∫ x

dx′ e−λ2x′

f(x′)− eλ1x

∫ x

dx′ e−λ1x′

f(x′)

}

,

który tu daje

yinhom(x) = e2x
∫ x

dx′ e−2x′

sin
(

e−x′
)

− ex
∫ x

dx′ e−x′

sin
(

e−x′
)

.

Naturalne podstawienie ξ = e−x′

sprowadza ten wzór do

yinhom(x) = −e2x
∫ e−x

dξ ξ sin ξ + ex
∫ e−x

dξ sin ξ .

Całki są elementarne i dostajemy

yinhom = −ex cos
(

e−x
)

+ e2x
{

− sin
(

e−x
)

+ e−x cos
(

e−x
)}

.

Całkę ogólna ma więc postać

y = C1 e
x + C2 e

2x − e2x sin
(

e−x
)

.

Zadanie 47: Podstawienie exp(λx) daje równanie charakterystycze

λ7 − 3λ6 + 5λ6 − 7λ4 + 7λ3 − 5λ2 + 3λ+ 1 = 0 .

Patrząc na nie przytomnie, od razu można dostrzec, że pierwiastkiem jest λ = 1. Po
napisaniu

(λ− 1)(λ6 − 2λ5 + 3λ4 − 4λ3 + 3λ2 − 2λ− 1) = 0 ,

znów można się zorientować, że λ = 1 jest pierwiastkiem drugiego nawiasu. Zatem

(λ− 1)2(λ5 − λ4 + 2λ3 − 2λ2 + λ− 1) = 0 ,
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I po raz trzeci λ = 1 jest pierwiastkiem drugiego nawiasu:

(λ− 1)3(λ4 + 2λ2 + 1) = (λ− 1)3(λ2 + 1)2 = 0 .

Ostatecznie więc pierwiastkami są λ1 = 1, potrójny oraz λ2 = i i λ3 = −i oba podwójne.
Rozwiązaniem równanania różniczkowego, jego całką ogólną, jest więc

y = Aex +B xex + C x2 ex + D eix + Ex eix + D
∗ e−ix + E

∗ x e−ix

= (A+B x+ C x2) ex +D1 cosx+D2 sin x+ x (E1 cosx+ E2 sin x).

Zadanie 48: Podstawienie exp(λx) do równania jednorodnego daje równanie charakte-
rystycze

λ3 + λ2 + λ+ 1 = (λ+ 1)(λ2 + 1) = 0 ,

którego pierwiastkami są −1 i ±i. Rozwiązanie równania jednorodnego ma więc ogólną
postać

yhom = Ae−x + B eix + B
∗ e−ix = Ae−x +D cos x+ E sin x .

Aby znaleźć jakies rozwiązanie równania niejednorodnego będziemy szukać rozwiązania
y
(1)
hom z niejednorodnością x e−x i rozwiązania y

(2)
hom z niejednorodnością cosx. Szukane

rozwiązanie będzie wtedy sumą y
(1)
hom + y

(2)
hom. Spróbujmy najpierw jako y

(1)
hom podstawić

C xe−x. Niestety po lewej stronie wszystkie wyrazy z xe−x się zredukują i zostanie tylko
stała razy e−x - nie da się więc w ten sposób spełnić równania niejednorodnego. Zgodnie
ze wskazówką rozpatrzmy więc równanie y′ + y = x e−x. Tu można zastosować metodę
uzmiennienia stałej (w wyjściowym równaniu trzeba by było robić sztuczki z wrońskia-
nami, albo przerobić równanie na równanie macierzowe pierwszego rzędu) i znajdziemy,
że szczególnym rozwiązaniem tego równania pierwszego rzędu jest 1

2
x2e−x. Lekcja, jaką

z tego wyciągamy jest taka, że trzeba szukać rozwiązania w postaci wielomianu drugiego
stopnia razy e−x. Podstawmy więc y(1)inhom = (αx2 + βx) e−x. Dostajemy wtedy po lewej
stronie

[α (−x2 + 6x− 6) + β (−x+ 3)] e−x + [α (x2 − 4x+ 4) + β (x− 2)] e−x

+[α (−x2 + 2x) + β (−x+ 1)] e−x + [αx2 + β x] e−x

= [α (4x− 4) + 2β] e−x ,

Jest więc jasne, że trzeba przyjąć α = 1/4 i β = 1/2. Podobnie spróbujmy skonstruować
y
(2)
inhom jako (α′x cos x+β ′x sin x)e−x (o jedną potęgę x-a więcej niż po prawej stronie). Po

lewej stronie dostaniemy wtedy

−2α′ (cosx+ sin x) + 2β ′ (cosx− sin x) ,

i widać, że tu trzeba położyć α′ = −1/4, β ′ = 1/4.
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Ostatecznie więc całka ogólna wyjściowego równania ma postać

y = Ae−x +D cosx+ E sin x+
1

4
(x2 + 2x) e−x − 1

4
x (cos x− sin x) .

Zadanie 49: Jest to przypadek z “degeneracją”, tj. dwoma liniowo niezależnymi rozwią-
zaniami równania jednorodnego są

y1 = exp(−at/2) , y2 = t exp(−at/2) .

Rozwiązanie równania niejednorodnego otrzymujemy robiąc sztuczkę z wrońskianem:

W (y) ≡ y1y
′
2 − y′1y2 = e−at .

Funkcje A1(t) i A2(t) w rozwiązaniu yinhom = A1(t)y1(t) + A2(t)y2(t) spełniają równania

A′
1 = − y2(y)

W (y)
f(t) = −t e−at/2 f(t) ,

A′
2 =

y1(y)

W (y)
f(t) = e−at/2 f(t) .

Zatem całka ogólna ma postać

y = (A+B t) e−at/2 − e−at/2

∫ t

dt′ t′ eat
′/2 f(t′) + t e−at/2

∫ t

dt′ eat
′/2 f(t′) .

Dość łatwo sprawdzić przez bezpośrednie podstawienie pochodnych

y′inhom =
a

2
e−at/2

∫ t

dt′ t′ eat
′/2 f(t′)− t f(t)

+
(

1− a

2
t
)

e−at/2

∫ t

dt′ eat
′/2 f(t′) + t f(t) ,

y′′inhom = −a
2

4
e−at/2

∫ t

dt′ t′ eat
′/2 f(t′) +

a

2
t f(t)

+

(

a2

4
t− a

)

e−at/2

∫ t

dt′ eat
′/2 f(t′) +

(

1− a

2
t
)

f(t) ,

i samej funkcji yinhom do równania y′′ + a y′ + 1
4
a2 y = f(t), że jest ono spełnione.

To samo rozwiązanie można także dostać przepisując równanie w postaci macierzowej

d

dt

(

y1
y2

)

=

(

0 1
−1

4
a2 −a

)(

y1
y2

)

+

(

0
f(t)

)

,

gdzie y1 = y, a y2 = y′. Macierz ma tu tylko jeden wektor własny i jedną wartość
własną λ = −a/2. Macierz exp(tF ) znajdujemy metodą CH korzystając ze sztuczki z
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różniczkowaniem. W ten sposób układ równań e−ta/2 = a1(−a/2) + a0, t e−ta/2 = a1 daje
a0 = (1 + at/2) e−ta/2 i stąd

etF = e−ta/2

(

1 + a
2
t t

−a2

4
t 1− a

2
t

)

,

Rozwiązanie równania niejednorodnego ma postać yinhom = exp(tF ) · h(t), gdzie
(

h′1
h′2

)

= eta/2
(

1− a
2
t −t

a2

4
t 1 + a

2
t

)(

0
f(t)

)

.

Stąd szczególnym rozwiaząniem macierzowego równania niejednorodnego jest
(

y1
y2

)

= e−ta/2

(

1 + a
2
t t

−a2

4
t 1− a

2
t

)(

−
∫

dt t eat/2f(t)
∫

dt (1 + at/2) eat/2f(t)

)

,

a szczególnym rozwiaząniem wyjściowego równania jest y1:

y1 = e−ta/2

[

−
(

1 +
a

2
t
)

∫

dt t eat/2 f(t) + t

∫

dt
(

1 +
a

2
t
)

eat/2 f(t)

]

.

Widać, że jest to to samo, co metododa z wrońskianem.

Zadanie 50: Podstawiając do równania jednorodnego y1(t) = tα, łatwo znajdujemy, że
jednym z jego dwu liniowo niezależnych rozwiązań jest y1(t) = t2.

Przepisujemy następnie równanie w postaci

y′′ − t2 − 2

t2 − 2t
y′ + 2

t− 1

t2 − 2t
y = − t

t− 2
.

Wrońskian W (t) = y1y
′
2 − y′1y2 spełnia zatem równanie

W ′ =
t2 − 2

t2 − 2t
W ,

i proste całkowanie daje (z dokładnością do multiplikatywnej stałej, którą można przyjąć
równą 1)

W (t) = t(t− 2) et .

Równanie na drugie liniowo niezależne rozwiązanie y2(t) równania jedorodnego ma zatem
postać

t2y′2 − 2t y2 = t(t− 2) et , lub t y′2 − 2 y2 = (t− 2) et .

Ogólnym rozwiązaniem jednorodej jego wersji jest y2hom(t) = Dt2, które tu jest po prostu
identyczne ze zgadniętym rozwiązaniem jednorodnej wersji wyjściowego równania. Szu-
kamy więc rozwiązania równania niejednorodnego w Wrońskianem uzmienniając stałą D,
tj. podstawiając y2inhom(t) = t2 h(t). Prowadzi to do

h(t) =

∫

dt

(

1

t2
− 2

t3

)

et =
1

t2
et .
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Zatem y2inhom(t) = t2 h(t) = et i wobec tego, jako dwa liniowo niezależne rozwiązania
jednorodnej wersji wyjściowego równania można przyjąć81 y1(t) = t2 i y2(t) = et. Łatwo
zobaczyć, że rzeczywiście dają one Wrońskian, taki jak otrzymany z całkowania wyżej.

Szukamy teraz rozwiązania wyjściowego równania niejednorodnego w postaci yinh(t) =
A1(t)y1(t) + A2(t)y2(t) i po standardowych sztuczkach (Zadanie Ode.15) dostajemy na
A1(t) i A2(t) równania

A′
1 = − et

W (t)

(

− t

t− 2

)

=
1

(t− 2)2
,

A′
2 =

t2

W (t)

(

− t

t− 2

)

= − t2

(t− 2)2
e−t .

Pierwsze daje od razu A1(t) = −1/(t − 2). Druga całka wygląda na beznadziejną, ale
okazuje się, że Mathematica sobie z nią radzi!:

A2(t) = −
∫

dt
t2

(t− 2)2
e−t =

t+ 2

t− 2
e−t .

Ostatecznie więc najogólniejszym rozwiązaniem podanego równania jest

y(t) = C1 t
2 + C2 e

t − t2

t− 2
+
t+ 2

t− 2
.

Zadanie 51: Zamieniając zmienne przyjmujemy, że F (x, y, z) = F̃ (ξ(x), η(x, y), ζ(x, z))
wtedy

∂F

∂x
+
∂F

∂y
+
∂F

∂z
=

(

∂F̃

∂ξ
− ∂F̃

∂η
− ∂F̃

∂ζ

)

+
∂F̃

∂η
+
∂F̃

∂ζ
=
∂F̃

∂ξ
= 0 .

F̃ zależy więc tylko od zmiennych η i ζ i rozwiązaniem jest F (x, y, z) = F̃ (y − x, z − x).
Przy metodzie charakterystyk pole wektorowe, do którego charakterystyki mają być

styczne jest stałe: V x = V y = V z = 1. Zatem charakterystyki spełniają równania

dx̄(t)

dt
=
dȳ(t)

dt
=
dz̄(t)

dt
= 1 ,

i są dane przez x̄(t) = x + t, ȳ(t) = y + t, z̄(t) = z + t. Ponieważ funkcja C(x, y, z) ≡ 0,
F (x, y, z) = F (x(tp), y(tp), z(tp), gdzie tp jest “czasem” dojścia po charakterystyce od
punktu (x, y, z) = (x̄(0), ȳ(0), z̄(0)) do punktu leżącego na dwuwymiarowej powierzchni,
na której funkcja F jest zadana. Powierzcjnia ta jest zadana równaniem hΣ(x, y, z) = 0
więc “czas” tp jest rozwiązaniem równania hΣ(x̄(tp), ȳ(tp), z̄(tp)) = 0. Weźmy np. jako
Σ płaszczyznę hΣ(x, y, z) = z = 0. Wtedy tp = −z i rozwiązaniem jest F (x, y, z) =
F (x− z, y− z, 0) ≡ f(x− z, y− z). Jest to równoważne rozwiązaniu uzyskanemu metodą
zamiany zmiennych jeśli przyjąć, że F̃ (η, ζ) = f(η − ζ, −ζ).

81Właściwie, to rozwiązanie y2(t) = et też można było zgadnąć.
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Bardziej ogólnie, nie specyfikując jawnie powierzchni Σ, można powiedzieć, że funkcja
h̃(x, y, z, tp) = hΣ(x+ tp, y + tp, z + tp) = 0 wyznacza w sposób uwikłany tp = tp(x, y, z)
i rozwiązaniem jest

F (x, y, z) = F (x+ tp(x, y, z), y + tp(x, y, z), z + tp(x, y, z)) ,

przy czym argumenty funkcji po prawej stronie są takie, że jest ona brana na powierzchni
Σ, na której jej wartość jest dana. Że równanie jest spełnione widać następująco:

∂F

∂x
=

(

1 +
∂tp
∂x

)

Fx +
∂tp
∂x

Fy +
∂tp
∂x

Fz ,

wiec

∂F

∂x
+
∂F

∂y
+
∂F

∂z
=

(

1 +
∂tp
∂x

+
∂tp
∂y

+
∂tp
∂z

)

(Fx + Fy + Fz) .

Z kolei z pochodne cząstkowe tp są dane, jako, że jest to funkcja zadana w sposób uwikłany,
przez

∂tp
∂x

= − (∂h̃/∂x)

(∂h̃/∂tp)
= − (∂hΣ/∂x)

(∂hΣ/∂x) + (∂hΣ/∂y) + (∂hΣ/∂z)
.

i widać, że cały nawias mnożący (Fx + Fy + Fz) jest równy zeru.

Zadanie 52: Funkcja definiująca problem ma tu postać G(F, pi, ξi) = px + pyF = 0.
Zatem V x = 1, V y = F , Xx = Xy = 0 i C = py. Równaniami charakterystyk są

d

dt
x̄(t) = 1 ,

d

dt
p̄x(t) = −p̄x(t) p̄y(t) ,

d

dt
ȳ(t) = F̄ (t) ,

d

dt
p̄y(t) = −p̄2y(t) ,

d

dt
F̄ (t) = p̄x(t) + p̄y(t) F̄ (t) .

Sukcesywnie je rozwiązujemy (równania na x̄(t) i p̄y(t) są niezależne, potem mając p̄y(t)
można rozwiązać równanie na p̄x(t), potem równanie na F̄ , które jest równaniem liniowym
z niejednorodnością i na koniec równanie na ȳ(t)):

x̄(t) = x̄(0) + t ,

p̄y(t) =
p̄y(0)

1 + t p̄y(0)
,

p̄x(t) =
p̄x(0)

1 + t p̄y(0)
,

F̄ (t) =

(

F̄ (0) +
p̄x(0)

p̄y(0)

)

[1 + t p̄y(0)]−
p̄x(0)

p̄y(0)
,

ȳ(t) = ȳ(0) +

(

F̄ (0) +
p̄x(0)

p̄y(0)

)[

t+
t2

2
p̄y(0)

]

− p̄x(0)

p̄y(0)
t .

232



Przyjmijmy teraz, że końce charakterystyk odpowiadające t = 0 są na powierzchni danych
początkowych, tj. na Σ, a tk odpowiada punktowi (x, y), w którym chcemy znaleźć
wartość funkcji F (x, y). Zatem hΣ(x̄(0), ȳ(0)) = 0, a x̄(tk) = x, ȳ(tk) = y, skąd mamy
tk = x− x̄(0). Warunki początkowe na p̄x(t), p̄y(t) i F̄ (t) muszą z kolei być zadane przy
t = 0, tj. na powierzchni (linii) warunków Cauchy’ego. Na tej powierzchni musi zachodzić
związek G(F̄ (0), p̄x(0), p̄y(0), x̄(0), ȳ(0)) = 0. Oznacza to, że

F̄ (0) +
p̄x(0)

p̄y(0)
= 0 ,

co znacznie upraszcza sprawę: wzory na p̄x(t) i p̄y(t) nie są już potrzebne (ich otrzymanie
było konieczne do znalezienie F̄ (t) i ȳ(t) tylko) i równania, z których otrzyma się szukaną
funkcję F (x, y) = F̄ (tk) to

x = x̄(0) + tk , F̄ (tk) = F̄ (0) , y = ȳ(0) + tk F̄ (0) .

Ponieważ charakterystyka x̄(t) ma prostą postać, wygodnie będzie zadać warunki Cau-
chy’ego na linii x = 0, czyli przyjąć hΣ(x, y) = x. Przyjmiemy zatem jako warunki
brzegowe F (0, y) = f(y). Wtedy x̄(0) = 0 i tk = x. Szukaną wartością funkcji F w punk-
cie (x, y) jest wtedy po prostu F̄ (0) = F (0, ȳ(0)) = f(ȳ(0)). Ostatnia z wypisanych wyżej
równości jest warunkiem wyznaczającym ȳ(0). Jeśli np. przyjmiemy f(y) = y otrzymamy
ȳ(0) = y/(1 + x) i w konsekwencji F (x, y) = f(ȳ(0)) = ȳ(0) = y/(1 + x). Nietrudno zo-
baczyć, że funkcja F (x, y) = y/(1 + x) rzeczywiście spełnia równanie Fx + FyF = 0.
Gdyby jako warunki Cauchy przyjąć F (0, y) = f(y) = a = const., to rozwiązaniem by
była funkcja stała F (x, y) = a.

Jeszcze inny rozwiązywalny przykład to f(y) = ay2. Wtedy równanie wyznaczające
ȳ(0) jest równaniem kwadratowym y = ȳ(0) + ax(ȳ(0))2 i jego rozwiązaniem jest

ȳ(0) =
1

2ax

(

−1 +
√
1 + 2ax

)

.

(Drugie rozwiązanie nie prowadzi do ȳ(0) = y, gdy x = 0). Szukaną funkcją jest wtedy

F (x, y) = F̄ (tk) = F̄ (0) = f(ȳ(0)) =
1

4ax2

(

−1 +
√
1 + 2ax

)2

.

Znów można bezpośrednio sprawdzić, że równananie Fx + FyF = 0 jest spełnione.
Można też pokazać ogólnie, że podana konstrukcja daje funkcję F (x, y) spełniającą

równanie Fx + FyF = 0. Niech bowiem warunek hΣ(x̄(0), ȳ(0)) = 0 wyznacza lokalnie
x̄(0) = h(ȳ(0)) i niech warunkiem brzegowym (Cauchy) na Σ będzie F (x̄(0), ȳ(0)) =
f(ȳ(0)) = F̄ (0). Wtedy tk wyznaczone z warunku x = x̄(0) + tk wstawione do warunku
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y = ȳ(0) + tkF̄ (0) daje równanie82

y = ȳ(0) + [x− h(ȳ(0))] f(ȳ(0)) ,

wyznaczające ȳ(0) jako funkcję x i y. Napiszmy więc ȳ(0) = Y (x, y). Szukaną funkcją
jest F (x, y) = F̄ (0) = f(Y (x, y)). Spełnia ona równanie

Fx + F Fy = f ′(Y )Yx + f(Y ) f ′(Y )Yy = 0 .

Żeby to zobaczyć trzeba poprzednią równość zpisaną jako tożsamość (po x i y)

y = Y (x, y) + [x− h(Y (x, y))] f(Y (x, y)) ,

zróżniczkować stronami po x i po y (metoda “termodynamiczna”!), co da dwie tożsamości

0 = Yx + [1− h′ Yx] f + [x− h] f ′ Yx ,

1 = Yy − h′ f Yy + [x− h] f ′ Yy ,

z których pierwsza wyznacza Yx, a druga Yy; po wstawieniu tych pochodnych do równania
dostaje się rzeczywiście zero.

82Można też na równanie to i równość F̄ (tk) = F̄ (0) spojrzeć inaczej: pokazują one, że charakterystyki
badanego równania są prostymi, i na tych prostych wartość funkcji jest stała. Inaczej mówiąc: jeśli
weźmiemy punkt (x0, y0) (w notacji z tekstu (x̄(0), ȳ(0)) = (h(ȳ(0)), ȳ(0))) i znamy w nim wartość
F0 funkcji F (w notacji z tekstu F̄ (0)) to wartość funkcji F jest stała (bo F̄ (tk) = F̄ (0)) i równa F0

na całej prostej przechodzącej przez punkt (x0, y0) o współczynniku kierunkowym równym F0. Ten
punkt widzenia jest podstawą po matematycznemu nakomplikowanej (i przez to mało strawnej) analizy
właściwości rozwiązań równania Fx + FyF = 0 w notatkach ś.p. G.C.
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