Przestrzenie metryczne

Analize, czyli badanie lokalnych wtasciwosci zbiorow (albo tych wtasciwosci okreslanie
- bo jak sie okaze sa one do pewnego stopnia zalezne od przyjetych do ich badania in-
strumentow) i funkeji na nich okreslonych, mozna uprawia¢ wtedy, gdy sens ma pojecie
wzajemnej odleglosci dwu elementéw zbioru. 7Z tego powodu wazng role w matema-
tyce odgrywa klasa przestrzeni zwanych przestrzeniami metrycznymi (przypomnijmy, ze
dla matematyka przestrzeni to taki zbior, ktory jest na potrzeby chwili calym swiatem -
troche jak Wszechswiat dla fizyka: pytanie co jest na zewnatrz Wszechswiata albo ma-
tematycznej przestrzeni jest naogot, mowiac jezykiem filozofii, nieprawomocne - a rézne
przestrzenie tacza ze soba tylko odwzorowania, czyli abstrakcyjne przyporzadkowania).

Przypomnienie: Przestrzen metryczna jest to para: (X, d), w ktorej X' jest zbiorem,
a d funkcja, zwana metrykq okreslong na X x X o wartosciach w R, (czyli po ludzku:
maszynks z dwiema dziurami, do ktorych wrzuca sie dwa elementy zbioru X i dostaje
w zamian rzeczywista liczbe nieujemna, ktéra wtasnie nazywamy odlegtoscia wzajemna
tych dwu elementow) o nastepujacych wlasciwosciach (x, y, z sa tu elementami X'):
i) d(x,y) >0, przy czym d(x,y) = 0 tylko, gdy =z = vy,

i) d(z,y) = d(y, ),

i) d(z,y) < d(z,z)+d(z,y) (“nieréwnosé¢ trojkata”).
Nas najbardziej jako przestrzen bedzie interesowa¢ R™ (ktorej elementami sa uporzadko-
wane n-ki liczb (z1, ..., x,) , ktore bedziemy tez pisac¢ jako zywe wektory x) i standardowa
metryka zwana euklidesowq, dana wzorem

d(x, ) = /(w1 = 91> + ..+ (20— yn)?,

ale sita matematyki polega na tym, ze przestrzenie moga by¢ bardzo rozmaite, a ogélne re-
guly pozostaja takie same i wszystko co z nich mozna wywnioskowaé jest prawda niezalez-
nie od tego, “czym” sg przestrzenie, do ktoérych te reguly stosujemy. W samej przestrzeni
R™ mozna tez wprowadzi¢ inne metryki, ale zanim do nich przejdziemy, rozpatrzmy (tak,
aby sie przesta¢ ba¢ matematyki - jak mowitem kiedy$ na wyktadzie, trudna rzecza jest
tworcze uprawianie matematyki; zrozumieé to, co matematycy wymyélili, to juz kazdy
moze) jako przyklad przestrzen X, ktora jest' jednostkowy okrag w R?, czyli zbiér punk-
tow R? spetniajacych warunek z? + 23 = 1. Na tym zbiorze mozna okregli¢ jako metryke
funkcje d; poprzez przeniesienie nan metryki euklidesowej z R? danej wzorem powyzej,
albo funkcje dy, ktora jest odlegloscia od siebie dwu punktéow liczona “po tuku”. Inny,
bardziej “zaawansowany” przyktad? to przestrzen C|0, 1] wszystkich rzeczywistych funkcji
cigglych® okreslonych na odcinku [0, 1] (przyklad ten latwo uogélni¢ na funkcje ciagte

TA tu jakby mozna wyjs¢ poza przestrzen X, w R2, w ktorej X jest zanurzona. To dlatego, ze te
prestrzen konstruujemy przez “zanurzenie” w wiekszej przestrzeni.

2Rozne rzeczy dotyczace tego przykladu biore z tetralogii Reeda i Simona, ktéra przy okazji bardzo
wszystkim polecam, bo jej autorzy w wielu miejscach ttumaczg co i dlaczego robia; poza tym jest to dzieto
zorientowane na fizyke i pozwalajace zrozumieé rézne matematyczne aspekty mechaniki kwantowe;j.

3Dlaczego ciagltych? Po to zeby nie trzeba bylo pyta¢ w jakim sensie ta calka, ktora jest w definicji
metryki ds i zeby funkcja nie robila sie nigdzie na odcinku [0, 1] nieskoriczona, co by pozbawialo sensu
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Rysunek 1: Ciag f,, rzeczywistych ciagtych funkcji na odcinku [0, 1].

okreslone na odcinku [a, b]). Na tej przestrzeni mozna okresli¢ (m.in.) metryki (f i g to
funkcje bedace elementami, czyli punktami przestrzeni C|0, 1])

0:(f. 9) = maxscpy |f(2) — 9()],  do(frg) = / dx|f(z) - g(a)] .

Dopiero gdy na przestrzeni X jest zadana jakas metryka, mozna dyskutowaé¢ zagad-
nienie zbieznodci ciagdbw x,, n = 1,2, ... elementéw przestrzeni X': moéwimy, ze cigg taki
zbiega do elementu x € X, czyli ze lim,, o x, = x, gdy d(x,,z) — 0.

To, czy dany ciag zbiega do czego$ w X, czy nie, zalezy jednak od przyjetej metryki d.
W przykladzie pierwszym (w ktérym przestrzen X byta jednostkowym okregiem w R?)
zachodza do$é¢ oczywiste nieréwnosci (p i p’ to sa punkty na rozpatrywanym okregu)

di(p,p') < do(p,p') < (7/2) di(p, D),

co powoduje, ze metryki te sa rownowazne: jesli cigg punktéw p,, okregu zbiega do punktu
p w jednej tych metryk, to zbiega i w drugiej. Nie jest tak jednak w drugim przyktadzie.
Tu bowiem mozna tylko napisa¢ nieréwnosé

d2(f7 g) < dl(f7 g) )

i te dwie metryki nie sa réwnowazne. Rozpatrzmy bowiem ciag f,, rzeczywistych funkcji
ciaglych na odcinku [0, 1] zdefiniowanych na rysunku 1 (latwiej spojrze¢ na rysunek, niz
czytaé hieroglificzne wzorki). Ciag ten w metryce ds jest zbiezny do funkcji f(z) = 0. Nie
jest on jednak zbiezny w metryce dy, bo di(f,,0) = 1, niezaleznie od n. Metryka d; (w
ktorej zbieznosé ciggu funkcji jest zbieznoscia jednostajng, podczas gdy w metryce ds jest
ona tylko zbieznoscia punktowa) jest “silniejsza”: kazdy ciag funkcji, ktory jest zbiezny
w metryce dy, jest tez zbiezny w metryce dy (bo dy < dy), ale, jak wida¢ z powyzszego
przyktadu, nie na odwrot.

definicje metryki dy. Poza tym, gdyby dopusci¢ funkcje nieciagte, to z da(f,g) = 0 nie wynikaloby, ze
f = g, tak jak tego wymaga definicja metryki: nieciggle funkcje f i g moglyby sie bowiem rézni¢ na
zbiorach miary zero, czyli, méwiac nieprecyzyjnie, w pojedyniczych punktach.



Pewnym zabawnym przyktadem metryki, ktéra mozna wprowadzi¢ w zasadzie na do-
wolnym zbiorze X jest tzw. metryka dyskretna:

, _JO0, gy z=y
ddlscr(x>y)_{1’ gdy x%y .

W tej metryce zagadnienie zbieznosci ciagow wyglada dosé karykaturalnie (zbiezne sa
tylko ciagi stale z,, = x), niemniej funkcja dgiser(z,y) jest mozliwa metryka, bo spelnia
wszystkie podane w definicji metryki warunki.*

Majac metryke na X mozna tez zdefiniowa¢ ciggi Cauchyego, czyli takie, ze dowolne
dwa ich wyrazy, poczynajac od pewnego N leza dowolnie blisko siebie, tj. d(z,,z,) < &
dla dowolnie malego ¢ > 0, jesli tylko n',n > N(e). Ciagi takie stanowia podstawowe
narzedzie (Srubokret i klapcazki) analizy matematycznej. Kazdy ciag zbiezny jest, jak
tatwo zobaczyé¢, ciagiem Cauchy’ego, ale nie kazdy cigg Cauchy’ego jest zbiezny. Dlatego
o takiej “dobrej” przestrzeni X', w ktorej kazdy ciagg Cauchy’ego elementow X jest zbiezny
(tzn., ma granice, ktora jest tez elementem X') mowimy, ze jest zupetna. Bo choé¢ intuicyj-
nie wydaje nam sie, ze jak elementy z,, ciagu Cauchy’ego sa coraz blizej jedne drugich, to
powinny do czegos zbiegaé, to wcale tak by¢ nie musi. np. jesli X = W (przestrzen liczb
wymiernych) z metryka d(z,y) = |x — y|, a jako ciag x,, wezmiemy

1 n
xn:<1+—) ,
n

to taki ciag, ktorego wszystkie wyrazy sa liczbami wymiernymi, nie zbiega, choé¢ jest
ciggiem Cauchy’ego, bo jak wiemy, jego granica, jest niewymierna liczba e, ale ona nie
nalezy do W. I nalezy sie tu postawi¢ w pozycji Poldzia Kroneckera: dobry Pan Bog
dal nam zbiér liczb naturalnych; my chytrze skonstruowaliSmy z nich liczby wymierne,
czyli przestrzein W, ale poza nig nic nie istnieje! To jest to, co wyzej bylto: przestrzeii W
jest na razie calym $wiatem - niema nic poza nim! I liczby niewymierne, czyli przestrzen
R, trzeba dopiero stworzy¢. Jak? Poprzez tzw. popotnienije Koszi przestrzeni W, czyli
przez podzielenie ciagéw Cauchy’ego elementéw tej przestrzeni na klasy réwnowaznosci
(dwa ciagi Cauchy’ego, co wydaja sie zbiega¢ do tego samego, uznajemy za to samo),
stworzeniu nowej przestrzeni X = R, ktorej elementami s te klasy rownowaznosci ciggéw
Cauchy’ego, ktore to klasy utozsamiamy z liczbami rzeczywistymi.

Oczywiscie to, czy dana przestrzen X jest zupelna, czy nie jest, zalezy od tego, kakoj
mietrikoj ana nadieliena: mozna np. pokazaé (cho¢ to juz wyzsza szkota jazdy), ze
przestrzen C[0, 1] jest zupelna, gdy rozpatrujemy ja jako przestrzen metryczna z metryka
dy, a niezupelna, gdy z metryka ds.

Pojecie wzajemnej odleglosci dwoch elementéw zbioru, ktéremu sens nadaje metryka,
jest potrzebne, by zdefiniowaé¢ ciaglo$é odwzorowan. Odwzorowanie jednej przestrzeni
metrycznej w druga: f : (X,dy) — (),dy) nazywamy ciaglym w punkcie x € X,
gdy dla kazdego ciagu x,, € X (0 x, # x) zbieznego (w metryce dy) do z ciag f(z,)

4Ale po co nam taka metryka? Nie wiem. Matematycy, choé genialni, sg troche jak dzieci: znajduja
sobie zabawki i sie nimi radosnie bawia, cho¢ nikt poza nimi nie rozumie, z czego tak sie cieszg...



jest zbiezny (w metryce dy) do f(x) € Y. Powinno juz by¢ jasne, ze ciaglosé danego
odwzorowania zalezy od tego, jakie sa metryki. Np. odwzorowanie F' : (C[0,1],ds) —
(C[0,1],d4), ktore funkeji f przypisuje te sama funkcje (czyli odwzorowanie tozsamo-
Sciowe) nie jest ciaglte (rozpatrzy¢ przyktad ciagu funkcji z rysunku 1), a odwzorowanie
“odwrotne” F~1: (C[0,1],d;) — (C[0, 1], dy), okazuje sig, jest.

Dobrze jest tez uogodlnié kilka poje¢ znanych z analizy uprawianej w przestrzeni R na
dowolne przestrzenie metryczne. I tak

Kulg otwartg K(xg,r) o promieniu r i srodku w xy nazywa sie zbior wszystkich
takich = € X, ktorych odleglosé od xq jest mniejsza niz r. Hieroglifami: K (xg,r) =
{x € X| d(x, ) < r}.

Zbior A C X jest nazywany otwartym (w X, przy zadanej metryce d), jesli kazdy
element x € A jest srodkiem jakiej$ kuli otwartej K (x,r) catkowicie zawartej w A
(tzn. mozna tak dobraé¢ r, zeby wszystkie punkty kuli nalezaty do A). Otwartosé
zbioru zalezy od przyjetej metryki. Np. w metryce dyskretnej kazdy zbior A C X
jest otwarty, bo K(z,1) = {z} C A.

Zbior O zwie sie otoczeniem punktu xy € O, jesli istnieje kula otwarta K (zq,r) C O.
Mozna tez ograniczy¢ sie do otoczen bedacych kulami.

Punkt = € A jest punktem wewnetrznym zbioru A C X jesli A jest otoczeniem
punktu x. Czasem formuluje sie to mowiac, ze istnieje kula K(x,r) C A; zbior
wszystkich punktow wewnetrznych zbioru A nazywa sie jego wnetrzem (intA).

Punkt = € A jest punktem izolowanym zbioru A C X jedli istnieje taka kula K (x,r),
ze AN (K(z,r) —{z}) = 0, czyli kula o érodku w x, ktéra poza samym z innych
punktéw zbioru A nie zawiera.

Punkt = nazywa si¢ punktem skupienia zbioru A C X, gdy kazda kula o $rodku
w z (i dowolnym promieniu r) zawiera punkty nalezace do A. Sam punkt x moze
przy tym nie naleze¢ do zbioru A. Skoriczony (czyli tez dyskretny) zbiér punktow
przestrzeni metrycznej nie posiada punktéow skupienia.

Zbior A zwie sie zbiorem domknietym, gdy naleza don wszystkie jego punkty skupie-
nia. Zbiér punktéw skupienia dowolnego podzbioru A przestrzeni metrycznej jest
wiec zawsze domkniety. Domkniecie A zbioru A C X to sam zbiér A i wszystkie
jego punkty skupienia. Domkniecie A zbioru A jest wiec zbiorem domknietym.

Brzeg OA zbioru A C X to 0A=A— A .

Zbior A jest ograniczony, gdy istnieje jaka$ kula (o skonczonym promieniu r), w
ktorej A sie zawiera calty. Ograniczonosé tez moze zalezeé od przyjetej metryki: np.
w metryce dyskretnej, kazdy zbiér jest ograniczony.’

5Dlaczego? Zob. Zadanie 2 i pomysl.
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Rysunek 2: Dziwne metryki na R? a) rzeczna (linia falista to rzeka) i b) kolejowa (gruba
kropka to kolejowy wezel centalny).

Po tych odstuplenijach powr6¢my na grunt dobrze nam znanej przestrzeni R”. Jak
juz bylo powiedziane mozna w niej wprowadzi¢ wiele metryk. Oprécz metryki dyskret-
nej, ktora jest nie jest specjalnie subtelna, mozliwymi metrykami (oczywiscie nie sa to
wszystkie mozliwe!) sa (x = (z1,...,2,))

e metryka maximum d(X,y) =max;—1__,|z; — yil,

e metryka nie wiedzie¢ czemu zwana metryka taxi dei(X,y) = Yoy |2; — ¥i| (zwana
jest ona takze® metryka “miejska”),
e wspomniana juz metryka euklidesowa dpya(x,y) = [>or, (z; — vi)?]V/2.
Dla zabawy mozna tez np. w R? wprowadzi¢ tzw. metryke “rzeczng’ pokazang na rysunku
2a, w ktorej

driv(xla X2) = dEucl(Xla Xz) ) driv(X27 Xs) = dEucl(Xh >~<2) + dEuCl(i% >~<3) + dEucl(i?), X3) )

albo pokazang na rysunku 2b metryke “kolejowa” w ktorej

dyol (X1, X2) = dpua(X1,X2) diol (X2, X3) = dpuc (X2, 0) + dgua (0, X3) -
Mozna sie¢ zabawi¢ sprawdzaniem, ze to tez sa dobre metryki.

Przyktady kuli otwartej w przestrzeni metrycznej (R?, dgua) i zbioru A, ktory nie jest
ani otwarty ani domkniety pokazuje rysunek 3. Zbior A jest zdefiniowany jako A =
{(z1,29) € R} 23 + 23 < 1, z; > 0, x5 > 0}. Oba zbiory pokazane na tym rysunku sa
ograniczone (kula choc¢by dlatego, ze jest zawarta sama w sobie). Inne jeszcze przykltady
(juz bez rysunkow):

e zbior A = {(z1,29) € R} a < 7y < b, ¢ < z9 < d} jest otwarty i ograniczony,
bo jest np. zawarty w kuli K ((z\”,2), r), gdzie z\” = s(a+Db), 20 = s(c+d),
r=3y/(0b—a)?+(d-c)?

5No, to mozna juz zrozumieé: niektérzy po miescie sie obwoza takséwka (zamiast na rowerze...),
cho¢ akurat krakusy taksowkami nazywaja prywatne samochody, a nasza warszawska takséwke nazywaja
“taryfa’.
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Rysunek 3: Przyktady zbioréw w przestrzeni R%: a) Kula K (xg,7); punkt x jest punktem
skupienia tej kuli, punkt X’ tez, ale x nalezy do K, a x’ nie nalezy; b) Zbior A, ktory nie
jest ani otwarty ani domkniety; punkty linii zaznaczonych falkami naleza do A; punkty
lezace na ¢wieré¢tuku do A nie nalezg; i jedne i drugie sa punktami skupienia zbioru A.

e zbior B = {(z1,13) € R?| |z1| < al, |z2| < |b]} jest i ograniczony i domkniety,

e zbior C = {(21,22) € R?| 0 < sinz; < 1} jest otwarty i nieograniczony (z1 €

(0, tm) U (2m, Bm)u...UCr, m) U (7, 3m)U...)

o zbior D = {(x1,72) € R?| 21,09 € W,0 < 21,29 < 1} (liczby 1 i x5 s3 wymierne z
otwartego przedziatu (0,1)) nie jest domkniety bo np. jego punkt skupienia (%, %)
doni nie nalezy ale w kazdym otoczeniu tego punktu (albo w kazdej, o dowolnie ma-
tym promieniu r kuli o sSrodku w tym punkcie) sa inne punkty nalezace do D (dlatego
jest to punkt skupienia zbioru D), np. punkty (;::ﬁ"’, %), gdzie xﬁ") to n-te dziesietne
przyblizenie liczby %; ale nie jest tez i otwarty, bo w dowolnie matym otoczeniu (do-
wolnie malej kuli zesrodkowanej na nim) kazdego punktu (1, x2) o wymiernych z,
xo, znajduja sie takze punkty o niewymiernych x;, o (pomiedzy kazdymi dwiema
roznymi liczbami wymiernymi znajdzie sie jaka$ liczba niewymierna).

Z ostatniego przyktadu widaé, ze zbiér nieotwarty nie musi by¢ domkniety, a niedomkniety
nie musi byé¢ otwarty. Samo za$ R? jako podzbioér R? jest przykladem zbioru, ktory jest
jednoczesnie i otwarty i domkniety. Prawda jest natomiast, ze (i jest to stwierdzenie
ogolne, dotyczace dowolnych przestrzeni metrycznych) jesli zbior A € X jest otwarty, to
zbior X — A jest domkniety i na odwrot: jesli zbior A € X jest domkniety, to zbior X — A
jest otwarty. Inne stwierdzenia ogélne to:

e Kula K(zg,r) zdefiniowana wyzej i troche na wyrost nazwana “otwarta”, jest rze-
czywiscie zbiorem otwartym niezaleznie od metryki (Zadanie 7).

e Kula K(zg,7) = {x € X| d(xg,z) < r} jest zbiorem domknietym niezaleznie od
metryki.

e Jesli xy jest punktem skupienia zbioru A C X, to kazda kula K(xq,r) zawiera
nieskonczenie wiele punktow zbioru A.



e Jesli zbiory O, i =1,...,n < 00 sa w (X, d) zbiorami otwartymi, to O; U...U O,
oraz O1N...NO, tez sa w (X, d) zbiorami otwartymi. Jesli chodzi o sume zbiorow
to prawdziwe jest mocniejsze stwierdzenie: mianowicie, dowolna suma (nawet nie-
skoniczonej rodziny) zbioréw otwartych jest zbiorem otwartym; ale tylko przeciecie
skoniczonej liczby zbioréw otwartych musi byé zbiorem otwartym.

e Jesli zbiory Dy, i =1,...,n < 0o sagw (X, d) zbiorami domknietymi, to D1U...UD,,
oraz Dy N...N D, tez sa w (X,d) zbiorami domknietymi. I tu na odwrét: to
przeciecie dowolnej (nawet nieskonczenie licznej) rodziny zbioréw domknietych musi
by¢ zbiorem domknictym, podczas gdy domknieta musi byé¢ suma tylko skoriczonej
liczby zbioréw domknietych.

Bardzo waznym pojeciem ogoélnym jest zwartosé zbioru: zbior A € X jest zbiorem
zwartym, jesli z kazdego ciagu punktow x, € A mozna wyjaé¢ podciag zbiezny do x €
A. Inny sposob zdefiniowania zwartosci jest jeszcze bardziej abstrakcyjny (jako, ze jest
on par excellence topologiczny). Pokryciem otwartym zbioru A zawartego w przestrzeni
metrycznej (X, d) nazywa sie rodzine {O;}ses zbioréw otwartych (S jest pewnym zbiorem
indeksow, niekoniecznie skoniczonym i niekoniecznie nawet przeliczalnym) takich, ze

Acljo,.

Zbior A jest zwarty, jesli z kazdego jego pokrycia otwartego mozna wybraé¢ podpokrycie
skoniczone (tzn. zostawié¢ tylko skonczona liczbe zbiorow Oy tak, ze one nadal pokrywaja
A w tym sensie, ze zbidr A jest zawarty w ich sumie).

Pojecie zwartosci jest jednak zbedne, gdy uprawiamy analize w przestrzeniach R,
bo w takich przestrzeniach zwartosé¢ zbioru jest (na mocy twierdzenia Borela-Lebesgue’a)
rownowazna jego domknietosci i ograniczonosci (rownowaznosé taka nie zachodzi jednak w
dowolnych przestrzeniach metrycznych, a w szczegolnosci w przestrzeniach funkceji, takich
jak C[0, 1] i innych, i dlatego zwarto$¢ odgrywa wazna role w analizie funkcjonalnej, ktora
jest wlasnie analiza uprawiana w abstrakcyjnych przestrzeniach metrycznych).

Jesli danych jest kilka przestrzeni metrycznych (X;, d;), 1 = 1,..., k, to iloczyn karte-
zjanski X; X ... x X} mozna wyposazy¢ w naturalna metryke iloczynowa (sie mowi “pro-
duktowsg”, ale to jako$ nie po naszemu), w ktorej odlegloscia punktow x = (z(y, ..., zx))
1y = (Way,---Yw), gdzie x4), yu) € A, jest

1/2
d(x,y) = [Z(di(x(i)ay(i))>2] :

Wazna klasa przestrzeni, ktore w sposob naturalny (matematycy uzywaja tu swojego
ulubionego stéwka “kanoniczny” - to im daje poczucie legitymizacji ich dzialar) mozna
przeksztalcié w przestrzenie metryczne sa wektorowe (mowi sie tez liniowe) przestrzenie
unormowane. Ogolnie przestrzen liniowa unormowana, to taka para (V, | - |), w ktorej
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V' jest przestrzenia wektorowa (dla nas nad R lub C), a | - | odwzorowaniem V w R, o
wlasciwosciach:

i) |v] =0, przy czym |v| =0 tylko gdy v =0,
i) |av| = |a||v], gdzie « jest liczba z ciala,
iti)  |v+u| <|v]|+ |u| (“nier6wnosé trojkata”).

Jesli w przestrzeni wektorowej jest zadany iloczyn skalarny (:|-)s - moze bedzie na wy-
ktadzie pozniej w czedci algebraicznej, a na pewno o iloczynie skalarnym jest w moim
skrypcie - to automatycznie jest tez i norma |v| = (v|v)s. Dzieki liniowosci norma
zadaje tez naturalng metryke wzorem
d(ve,vy) = |vi — vo|.

Kazda wiec przestrzen wektorowa z jakims iloczynem skalarnym (a w kazdej skonczenie
wymiarowej przestrzeni wektorowej, czyli takiej, jakimi si¢ zajmowaliSmy w czedci alge-
braicznej, mozna jakis iloczyn skalarny bardzo tatwo wprowadzi¢) jest w naturalny sposob
przestrzenia metryczna.

Analiza w R"
Ciag w R" (tu bedziemy mie¢ zawsze na mysli metryke euklidesowa) to po prostu zespot n
ciggow z R:
X = (T),...,77).
Ciag (w1, yx) w R? (zeby mniej pisa¢) jest zbiezny do (a,b), gdy z, — a i jednoczesnie

yr — b w sensie zwyktych ciggéw z R (z metryka zadang przezmodul roznicy). Np. z
trzech ciagow w R?

1 1 1
— —_ k _— — 3 —_
(0 (CDR, (=g psink), (2 cos ),

pierwszy jest niezbiezny (bo (—1)* nie zbiega), drugi zbiezny do (1,0) € R2, a trzeci
zbiezny do (2,1) € R2.

Bedziemy mie¢ do czynienia z r6znymi odwzorowaniami:

e R — R (to byto éwiczone w pierwszym semestrze),

e R" = R, np. f(z,y) = 2%+ y? jako przyklad R? — R,

e R — R” - mechanika newtonowska pojedynczej czastki jest naogét badaniem tra-
jektorii czastki r(t), czyli badaniem odwzorowania R — R?

e mogg wreszcie by¢ odwzorowania R™ — R” takie jak np. statyczne pole elektryczne
punktowego tadunku @, ktore jest odwzorowaniem R3 — R? danym wzorami”

Q (z — o)
[(z — 20)2 + (y — 0)? + (2 — 20)2]3/2’

"Piszemy je tu w naturalnych jednostkach Gaussa - SI to jest uktad dla idiotéw - systéme des idiots,
jak sama jego nazwa wskazuje.

E*(z,y,2) =




Q (z — x0)

(= a0 + (3= w0 + (= P
Q (z — x0)

[(x = 20)? + (y — y0)? + (2 — 20)?>/%’

EY(x,y,z2) =

E*(z,y,2) =

Jak wida¢ odwzorowanie R™ — R" to jest po prostu n odwzorowan R™ — R. Innym
przyktadem odwzorowania R”™ — R" jest znane nam z algebry odwzorowanie liniowe
m wymiarowe] przestrzeni wektorowej w n-wymiarowa przestrzeri wektorowa, ktore
przy ustalonych bazach obu tych przestrzeni ma posta¢ (a;; sa tu stalymi)

1/,..1 m 1

Yy ([L’ N ) a;py a2 ... QAim X

2(,.1 m 2

Yy ([L’ N ) . 21 QA92 ... QA9m X
1

yt(xt . a™) Api  Gno .. Gnm ™

Ostatni przyklad jest bardzo wazny: okaze sie bowiem, ze pochodna (ale jak jest ona
zdefiniowana, to dopiero trzeba bedzie sobie powiedzie¢) kazdego odwzorowania R™ — R"
jest wlasnie (w danym punkcie R™) takim odwzorowaniem liniowym.

Trzeba teraz zajaé sie zagadnieniem cigglosci odwzorowania. Jedna definicja ciaglosci
juz byta sformutowana ale jg tu jeszcze raz podamy w nieco innej formie, najpierw definiu-
jac granice funkcji w punkcie: fy jest granicg funkcji f(x) w punkcie xo, gdy® dla kazdego
e > 0 mozna dobra¢ § > 0, ze | f(x) — fo| < e, gdy |[x —xo| < d (tzw. definicja Cauchy’ego
granicy funkcji). Inna definicja, tzw. Heinego (albo ciagowa, rownowazna tej Cauchy’ego)
jest taka: fy jest granica funkcji f(x) w punkcie xq, gdy fo jest granica kazdego ciagu
punktow f(xy) otrzymanego jako obraz dowolnego ciagu xy, byle takiego, ze (i to jest
tu bardzo istotny warunek!) x; # Xo, zbieznego do x¢. Odwzorowanie f jest w punkcie
X ciagle, gdy jego granica w tym punkcie istnieje i jest réwna wartosci funkcji w tym
punkcie (bo zawsze mozna sobie arbitralnie zdefiniowaé, ze danym punkcie funkcja ma
jakas wartos¢). Definicja Heinego jest bardzo wygodna, gdy chcemy pokazaé¢, ze funkcja
f mie moze by¢ ciagta w danym punkcie (bo nie ma tam granicy): wystarczy wymysli¢
jakiekolwiek dwa ciagi x; 1 x}, oba zbiezne do xq i pokaza¢ ze lim f(xy) # lim f(x},).
Trudniej jest wykaza¢ z jej pomoca, ze funkcja moze by¢ w danym punkcie ciagta, bo
trzeba pokazaé ze granica f(xy) jest ta sama dla wszystkich mozliwych ciagow zbieznych
do xg. Niemniej czasem si¢ to w miare prosto daje zrobic.

Rozpatrzmy np. funkcje R? — R (glownie takich odwzorowaniach bedziemy badac¢
granice i ciaglosé, bo jak juz zauwazylismy, odwzorowanie R” — R™ to jest m odwzorowan
R™ — R i kazde z nich z osobna mozna bada¢ w xo pod tym katem).

fln = {0 20

8Poniewaz bedziemy mie¢ zawsze na mysli metryke euklidesowa, zamiast pisaé¢ d(x,y) bedzemy odtad
pisa¢ |x —y|.



(wzdtuz calej osi y funkcja jest zadana odrebnym wzorem) i zbadajmy jej ciagltosé w
punktach postaci (0,y). Rozpatrzymy osobno punkt (0,0) i osobno puntkty postaci (0, y)
z y # 0. Wezmy najpierw jakies ciagi x, — 01y, — 0 (ale pamietamy, ze jednoczesnie,
tzn. dla tego samego m nie moze byé¢ z, = 01y, = 0) i niech ¢, = f(x,,y,). Jesl
Yo = 0, a x, # 0 (zbiegamy do punktu (0,0) wzdtuz osi z), to stale ¢, = 0, wiec
jesliby granica funkcji w (0,0) miala istnie¢, to musiataby by¢ réwna zeru. Ogolniej, jesli
TpYn — 0, co zachodzi zawsze gdy (x,,y,) — (0,0), to sin(x,yn) = TpYn 1 ¢ — Yn.
Wiec poniewaz rozpatrujemy takie ciagi, ze y, — 0, granica funkcji w (0,0) jest zero i
arbitralnie przypisana funkcji (w podanym wzorze ja definiujacym) wartosé 0 w punkcie
(0,0) “pasuje”: funkcja tak zdefiniowana jest w (0,0) ciagla. Jednak w punktach postaci
(0,y) z y # 0 jest gorzej: Jesli rozpatrujemy np. ciagi (z,,y,) — (0,1), to sin(z,y,) —
TpYn 1 ¢ = yp — y = 1. Tymezasem podany wzor przypisuje funkeji w punkcie (0, 1)
(i wszystkim punktom na osi y) wart$¢ zero! Zatem funkcja tak zdefiniowana jest ciagta
w punkcie (0,0) ale nie w punktach postaci (0,y) z y # 0 (oczywiscie poza osia y jest
ona bezdyskusyjnie ciggta). Aby byla ona ciagta (ale nie bytaby to ona, tylko juz inna
funkcja) trzebaby ja okresli¢ wzorem

[ Lsin(zy), x#0
f(x,y)—{ Y, r=0"

Drugi (typowy) przyktad, to funkcja R? — R poza punktem (0,0) zadana wzorem

Ty
T,Y) = —->5.
flz,y) = — 7
Zobaczmy, czy ma ona jaka$ granice w (0,0) (gdyby miala, mozna by ja odpowiedno
zdefiniowaé, tak by byla tam ciagta). W tym celu wystarczy rozpatrzy¢ klase ciagow
(Tn, Yn), W ktorych z,, = a/n, y, = b/n (rézne wartosci a i b daja rozne ciagi). Wtedy

Tn Yn ab

f(@n, yn) = 22 + 12 - a? + b2’

niezaleznie od n, a to oznacza, ze

. ab
nh—>nolo f(xna yn) - m ’
czyli ze granica zalezy od ciaggu. Gdy zbiegamy do punktu (0,0) wzdtuz osi = (ciagi o
b =0), lub wzdluz osi y (ciagi o a = 0), to dostajemy w granicy zero. Ale jesli zbiegamy
wzdhuz diagonali (a = b) lub antydiagonali (a = —b), to granica jest 1/2 lub —1/2. Zatem
badana funkcja nie ma granicy w punkcie (0,0). Do tej samej konkluzji mozna dojsé
rozpatrujac ciagi postaci (1, cos ., r, sing,), co odpowiada zapisaniu tej samej funkcji
w zmiennych biegunowych (fizyk powinien mie¢ w gtowie, ze zawsze mozna wprowadzi¢ na
ptaszczyznie, czy dowolnej przestrzeni R” jakies inne, by¢ moze dogodniejsze dla analizy
danego konkretnego problemu, zmienne). Aby taki ciag (z,, y,) zbiegal do punktu (0, 0)
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wystarczy, by r, — 0; ciag ¢, moze sie przy tym zachowywaé¢ dowolnie (np. jesli ¢,
ro$nie monotonicznie, odpowiada to zbieganiu do punktu (0,0) po jakiej$ spirali). Mamy
wtedy

f(rpcosgp, rysinp,) = 3 sin 2, ,

i od razu wida¢, ze granica nie istnieje, bo sin 2¢,, moze zbiega¢ do dowolnej wartosci (z
przedziatu [—1,1]) albo w ogole do niczego nie zbiegac.

Trzeci przyklad to funkcja R? — R poza punktem (0,0) zadana wzorem

2
-y
T,Y) = —->.
flay)=— vy
Znow zobaczmy, czy ma ona jakas granice w (0,0). Wezmy najpierw te sama klase ciagow,
ktorg wykorzystaliSmy w przyktadzie drugim. Tym razem

2 2
TpYn a“b

f(xmyn>: l’%"—y% - n(a2+b2)

—0,

1 granica ta nie zalezy od a i b. Jest wiec lepiej, ale to jeszcze niczego nie dowodzi,
bo to tylko jedna klasa ciagéw, ktora nie wyczerpuje wszystkich mozliwosci (do punktu
(0,0) mozna zbiega¢ np. po paraboli, albo po jakiejs spirali, albo jeszcze jako$ inaczej).
Sprobujmy wiec rozumowaé bardziej ogdlnie: zatoézmy, ze (x,,y,) — (0,0) czyli, ze z,, —
0, ¥, — 0, co oznacza tez, ze i 2 +y2 — 0. Niech ¢, = max(|x,|, |y,|). Wtedy |22y,| < 3,
a z kolei 2 + y2 > ¢2. Mozna wigc napisa¢ oszacowanie:

5%

0 < [ f(@n, ya)| < 2 = ¢, =0,
C

3N

ktore pokazuje, ze na kazdym ciagu zbieznym do punktu (0,0) ciag f, = f(zn, yn) zbiega
do zera. Granica funkcji w tym punkcie jest wiec zero i taka trzeba nadaé¢ wartosé funkeji
w tym punkcie, jesli chcemy, by byla ona w nim ciagta.

W tym przyktadzie sztuczka z przejsciem do ciggdéw zapisanych w zmiennych bieguno-
wych (w R® mozna uzyé¢ zmiennych cylindrycznych, albo sferycznych, albo jakichs jeszcze
innych) daje wynik natychmiast bo

f (7 co8 0y, Ty sin @) =7, sin @, cos® @, — 0,
a dowolny ciag (7, y,) punktéow R? mozna zapisaé¢ jako ciag (r, cos p,, T, sin ¢,) i jedy-
nym warunkiem jego zbiegania do (0,0) jest r,, — 0.
Rozpatrzmy jeszcze funkcje R? — R poza punktem (0, 0) zadang wzorem
2

__ry
f(x’y>_x4+y2’
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i znéw zobaczmy, czy ma ona jakas granice w (0,0). Nie ma: jesli wezmiemy np. x, — 0 i
Yn = az, — 0 (co obejmuje zbieganie do punktu (0, 0) wzdtuz kazdej prostej z wyjatkiem
osi y) to

3

azx;, az,

f(@n,yn) = flan, az,) = 22(22 + a?) - (22 + a?) — 0.

Jedli jednak wezmiemy x,, — 0 iy, = 22 — 0, co odpowiada zbieganiu do punktu (0,0)
po paraboli (punkty takiego ciagu leza w plaszczyznie R? na paraboli y = 2?) to wtedy

LL’4

f(xnayn) = f(xnaxi) - z

1
= — =
x4+t 2

Na tym ciagu wartos¢ funkcji ma inna granice! Oznacza to, (poniewaz kryterium Heinego
nie jest spelnione), ze badana funkcja nie ma granicy w punkcie (0,0). Zauwazmy tez,
iz przyklad ten jest bardzo podobny do przykladu drugiego: gdyby podstawié¢ z = z?
to funkcja f(z,5) = f(\/z, y) by byla (przynajmniej na R x R,) ta samg funkcja, co
rozpatrywana w tamtym przyktadzie.

WezZmy jeszcze funkcje zdefiniowana wzorami

Ty
flay)=—— gdy z#y,
r—y
i f(x,z) = 01 zapytajmy, czy funkcja ta moze by¢ ciaglta w punkcie (0,0) oraz w innych
punktach postaci (zg,x¢). Gdy wezmiemy ciag (x,,y,) zbiezny do punktu (0,0), np. z
r,=1/niy,=—1/n, to

f(xn,yn) = —1/2n — 0.
Ale jesli wzigé

1+1
Ty = — + —
n nd

S|+

to
n nd)/n

1 1\1 1
f(xnayn):n?’(_“— )—:n+——>oo.
n

Zatem niema szansy, by funkcja ta mogta by¢ ciagta w (0,0), bo nie ma ona w tym
pukcie granicy. W pozostatych punktach typu (zg,x¢) jest podobnie: wystarczy wziacé
np. x, = o+ 1/n, y, = ro — 1/n, by zobaczy¢, ze

n 1 n 1
f(:)sn,yn):§ <:£(2)——) 25333———)00.
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Inny jeszcze (czasem spotykany) sposob spojrzenia na granice funkcji np. w (0,0) to
tzw. granice iterowane: poroéwnujemy wynik granic branych w odwrotnej kolejnosci:

lim (lim f(:c,y)) N (hm f(x,y)) .

z—0 \ y—0 y—0 \z—0

Zastosujmy go tu do zbadania granicy w (0, 0) funkeji

-yt +y°
f(xuy)_ .flf-'-y )
Mamy wtedy
: : . [z +a? :
iy (i ) = iy () =ty =1,
e N A R i Y -
iy (i ) = fi (2707 ) =yt ) = 1

Poniewaz otrzymuje sie w ten sposéb dwa rézne wyniki, wystarcza to do stwierdzenia, za
badana funkcja w (0,0) granicy mie¢ nie moze. Sposob ten jest jest jednak mato ogolny,
bo odpowiada tylko (w przypadku lim,_,(lim,_,o f)) zejSciu na o$ = (w dowolnym punkcie
x # 0) a nastepnie zbiegnieciu wzdluz osi x do zera. Jest wiec to to samo, co badanie
f(x,y) na ciagach (z,,0) z z,, — 0. I nawet gdyby sie okazalo, ze obie granice iterowane sg
takie same, to nie dowodzitoby to jeszcze, ze granica funkcji w badanym punkcie istnieje.

I jeszcze ostatni przyktad: zbadajmy istnienie granicy funkcji

1 1
f(z’y)_x—jty <y+xsm;),

w punktach (zg, —x¢). Znéw wyobrazmy sobie ciag (,, yn) = (To + an, —To + by), taki,
ze a, — 01b, — 0 (ale (an, b,) # (0,0)). Wtedy

1 1
f(xmyn> = an"_bn {_x0+bn+(x0+an)8inx0+an}
1 11 Qy,
:an+bn —x0+bn+(:€0+an)sm :(,’_O_Sl,’_g+ .

W drugim kroku rozwineliSmy argument sinusa wok6t x = ¢ (ten krok nie przejdzie, gdy
xo = 0, wiec ten przypadek trzeba bedzie zbada¢ osobno). Widaé teraz, ze naogot skori-
czona granica nie istnieje (dostaje sie 0o) bo licznik pozostaje niezerowy, podczas gdy
mianownik dazy do zera. Ale w punktach postaci 1/zq = /2 + 27k sytuacja wyglada
inaczej: wtedy



i licznik, gdy n — oo zachowuje si¢ jak —x¢ + b, + (x¢ + a,)[1 + O(a?)] — a, + b, i
cale wyrazenie dazy do 1. Zatem w punktach zq = (7/2 + 27k)~!. ktore zageszczaja sie
koto x = 0 (pozostajac jednak zawsze punktami izolowanymi) funkcja ma granice réwne
1. Pozostaje zbada¢ punkt (0,0). Napiszmy x,, = 7, COS @pn, Yn = 'y sin @, gdzie r,, — 0,
ale ¢, jest zupelnie dowolnym ciggiem (ktory nie musi zbiega¢ do niczego, gdy n — 00).

Wtedy
1 . . 1
f(@n,yn) = - sin @, + Cos @, sin| ——— ,
COS Yy, + SIN @, Ty COS Oy

i poniewaz argument ostatniego sinusa dazy do nieskoriczonosci (bo r, — 0, a | cos ¢, | <
1), sam sinus szaleje i cale wyrazenie do niczego konkretnego nie zbiega: np. jesli p,, = 27n
(moze by¢ taki ciag) to f(x,,y,) = sin(1/r,), co nie zbiega do niczego.

Na koniec zauwazmy, ze jakkolwiek nie jest w ogdlnosci prawda, ze przy odwzorowa-
niu ciaggtym obrazem zbioru otwartego jest zbior otwarty (kontrprzyktad to np. funkcja
f(z) = sinz okreslona na otwartym zbiorze (—3m/4, 37/4) - obrazem jest zbior [—1, 1],
ktory jest domkniety), to prawda jest, ze przy ciaglym odwzorowaniu przeciwobrazem
zbioru otwartego jest zbior otwarty.
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Ro6zne pochodne funkcji wielu zmiennych na R”

Niech punktami R™ beda (1, ..., x,). Pochodng czgstkowq funkcji f : R™ — R w punkcie

(xgo), . ,:17%0)) nazywa sie granice (jesli granica ta istnieje) ilorazu réznicowego

0 0 0 0 0 0
af f(:cg), .,x,i)+h,...,x£))—f(:cg),...,x,(ﬁ),...,x%))
oxy, @0 @@y B0 h '

7 powyzszego wzoru widac¢, ze pochodna czastkowa w punkcie (xgo), o ,xS?’) mozna, obli-

czy¢, tylko jesli funkcja jest w tym punkcie okreslona (choé¢by nawet w taki sposob, ze nie
jest tam ciggta w sensie badanym przez nas poprzednio). Z praktycznego punktu widze-
nia obliczanie pochodnej czastkowej 0f/0xy, czasem oznaczanej tez f,, , sprowadza si¢ do
potraktowania wszystkich zmiennych oprécz x; jak statych i obliczenia pochodnej po x
zgodnie ze zwyklymi regutami obliczania pochodnych znanymi z operowania funkcjami
jednej zmiennej. Pochodna taka zdaje sprawe z tego, jak funkcja zmienia si¢ wzdhuz jedne;j
konkretnej prostej (wzdtuz osi xy) przechodzacej przez punkt (xgo), o ,:17%0)) i prosta ta
jest zwiazana z wyborem zmiennych xq, ..., z,. Poniewaz dla fizyka oczywiste jest, ze za-
wsze mozna np. obroci¢ osie uktadu wspotrzednych pokrywajacego przestrzen R”, jest tez
jasne, ze musi istnie¢ naturalne uogolnienie pochodnych czastkowych. Sa nimi pochodne
kierunkowe, ktore od razu tu zdefiniujemy (no bo skoro to naturalne uogélnienie...), ktore
zdaja sprawe ze zmiennosci funkcji wzdluz dowolnego kierunku, niekoniecznie réwnole-
glego do ktoérejs z osi uktadu x1,...,x,. Aby pochodng kierunkowa zdefiniowaé trzeba
wprowadzi¢ w R" jednostkowy wektor

2 2 2
n=(ny,ny...,n,), nNi+ns+...+n,=1.
Pochodna kierunkowa, oznaczana V,, f, jest wtedy dana wzorem

(Vof) lim f(xgo) +hng,. .20+ hn,) — f(xgo), . x,io), . ,xslo))

0@ D) T 50 h '

Zdaje ona sprawe ze zmlennoéci funkcji wzdluz prostej majacej kierunek wektora n i prze-

chodzacej przez punkt (:L'1 yeees :1:%0)). Widag¢, ze gdy tylko jedna sktadowa n, = 1, a pozo-

state zero, jest to to samo, co zdefiniowana wyzej pochodna czastkowa (0f/0xk)(w(o) NON
O 2l

Wazne jest by rozumieé, ze pochodna czastkowa nie jest tym samym, co prawdziwa
pochodna (nastajaszczaja proizwodnaja) funkcji w danym punkcie. Te prawdziwa po-
chodng zdefiniujemy dalej. W przypadku funkcji R — R, ktérymi zajmowalismy sie w
poprzednim semestrze,’ istnienie pochodnej w danym punkcie x, automatycznie ozna-
czalo, ze funkcja jest w tym punkcie ciaglta. W przypadku pochodnych czastkowych (lub
kierunkowych) funkcji R” — R (n > 1) juz tak nie jest: Wezmy np. funkcje zdefiniowang,
wzorem

A ay/ (2 +y?) dy (x,y) # (0,0)
f(%y)—{ ! 0 ! gd}yf( y)=(0,0)"

9Taka figura retoryczna - ja sie nie zajmowalem, bo material pierwszego semestru nie jest dla mnie
tak zabawny, jak drugiego.
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Funkcja ta nie ma granicy w punkcie (0,0), co tatwo sprawdzié¢ (to juz przeéwiczylismy),
ale zeby mozna byto pyta¢ o jej pochodne czastkowe w tym punkcie ma ona w nim
przypisana warto$¢ rowna 0. Pochodne czastkowe tej funkcji w punkcie (0,0) istnieja:
obliczamy bowiem z definicji

of
Oz

. f(0+h,0) — f(0,0) . 0-0
= lim =
(0,0) h—0 h h—0 h
Dokladnie tak samo (bo funkcja jest symetryczna wzgledem zamiany x <> y) oblicza sie
pochodna (0f/0y)(0,0). Czyli obie pochodne czastkowe tej funkeji w punkcie (0,0) istnieja,
cho¢ funkcja nie jest w tym punkcie, jako funkcja dwu zmiennych, ciggla. Zeby zrozumieé
dlaczego tak jest (to jest to, czego matematycy na ogdl nie dopowiadaja, zostawiajac
publike z rozdziawionymi gebami) wystarczy zobaczy¢, ze obie granice tej funkcji brane
“po osiach” istnieja i sa wilasnie réwne zeru: gdy sprawdzamy granice funkcji “po osi
x”, to badamy zachowanie f(z,,y,) na ciagach postaci (z,,0) gdzie z,, — 0 (ale zawsze
x, # 0), a poniewaz f(x,,0) = 0 granica ta jest rowna zeru, czyli wzdtuz osi z (i tak samo
wzdluz osi y) funkcja jest ciagla (jest ciagta jako funkcja jednej zmiennej). To dlatego
jej pochodne czastkowe (0f/0x),0) 1 (Of/0y)w,0) istnieja. Ale tatwo tez zobaczy¢, ze
skoro przypisaliémy funkcji wartosé 0 w punkcie (0,0), nie jest ona ciagta, gdy zbiegamy
do (0,0) z innego kierunku niz po ktorejs z dwu osi. Np. gdybysmy chcieli obliczy¢
pochodna kierunkowa w (0,0) “po diagonali” (wzdtuz kierunku = = y), tzn. pochodna
kierunkowa odpowiadajaca wzieciu n; = ny = 1/4/2, to ta pochodna nie bedzie istnie¢:

f(O+mnih, 0+ nyh) — f(0,0)

an|(0,o) = }lLl A
T (V2)(RV2) L1
_flfi%{ﬁ Th2 4 1p2 “O0l = hmg g0

Pochodna w tym kierunku istniataby, gdyby$my nadali funkcji w punkcie (0,0) wartosé
1/2 (taka, jaka wynika z granicy branej w tym kierunku). Ale wtedy oczywiscie w (0, 0) nie
istniatyby pochodne 0f/0x 1 0f/0y. Mimo, ze teraz pewnie zaczynamy lepiej rozumiec,
jak to dziata, to dobrze jest wiedzie¢ tez, ze nawet istnienie pochodnych kierunkowych
w danym punkcie (x§0)’ . x&f))) we wszystkich mozliwych kierunkach nie jest jeszcze
wystarczajace, by funkcja mlala w tym punkcie prawdziwa (tj, w silnym sensie) pochodna.
Wynika to z tego, ze w danym punkcie funkcja moze byc cu@gla %dy do tego punktu
zbiegamy po dowolnej prostej, ale nie jest ciagta, gdy do (:cl ye - ) zbiegamy np. po

paraboli, czy jakiej$ spirali. Rozpatrzmy przyktad funkcji (juz taka byia)

2Pyt +y?) edy (z,y) # (0,0)
f(fb’ay)—{ Y 0 ! gdg (x,g)Z(an)'

Wiemy, ze taka funkcja w punkcie (0,0) jest nieciagla (cho¢ jest ciagta wzdtuz dowolnej
prostej przechodzacej przez punkt (0,0) - to tez juz ustaliliémy). Sprobujmy jednak
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obliczy¢ jej pochodne kierunkowe w tym punkcie. Zeby od razu oblicza¢ pochodne w
dowolnym kierunku, wezmy wektor n o sktadowych ny = cosf =ciny =sinf = s.

f(O+ he, 0+ hs) — f(0,0)

h
= lim {1 [7028}’3 - 0} } T

h—0 | h | cth* + s2h? h—0 c*h? +s* s

Pochodna jak wida¢ istnieje zawsze, pozornie z wyjatkiem sytuacji, gdy s = 0, czyli gdy
jest to pochodna wzdtuz osi z. Ale to tylko pozér, bo pochodna kierunkowa w kierunku osi
x, czyli po prostu pochodna czastkowa 0f/0x w punkcie (0,0) mozemy osobno obliczy¢
bezposrednio z definicji

of
ozr

vnf‘(o,o) = flzli%

oy SO R0~ f(0,0) 00
h—0 h h—0 h

(0,0)

Pochodna ta jak najbardziej istnieje, a to, ze musieliSmy ja obliczy¢ osobno pokazuje
tylko, ze pochodna kierunkowa w tym punkcie jest, jako funkcja kierunku, nieciagta (ktos
powiedzial, ze musi by¢?). Mozna tez sprawdzi¢, co polecam jako zadanie domowe (samo
obliczenie podanych tu pochodnych tez naleze potraktowaé jak ¢wiczenie!), ze pochodne
czastkowe potraktowane jak funkcje na R?

213 — 225y 28 — 222

f:c(ifay):m> fy(f’f,y):m,

nie maja w punkcie (0,0) granic, czyli nie sa one, jako funkcje na R? w tym punkcie
ciagte.

Jesli jednak wszystko idzie gtadko, tzn. pochodne czastkowe w punkcie (xﬁo), e ,x%o))
istnieja 1 wszystkie f,,(x1,...,z,) traktowane jak funkcje na R" sa w tym punkcie ciagle,
to pochodna kierunkowa V,, f |(m(0) NOX obliczona z definicji jest réwna kombinacji

1 seebn
0 0
an‘ (0) (o):nl—f —I—...—l—nn—f ,
(@17mn”) 01 |, O 0%y |, O
(217, ) (17,n )
pochodnych czastkowych funkcji f w punkcie (:17&0), e ,:BSLO)).

Pochodne czastkowe funkcji R" — R wyzszych rzedow

Jesli pochodne czastkowe pierwszego rzedu 0f /Oxy funkcji R” — R w jakim$ otoczeniu
(tzn. zbiorze otwartym) punktu (:L’go), ce x%o)) istnieja, to kazda z nich jest w tym otocze-
niu pewng nowa funkcja R™ — R i mozna oblicza¢ pochodne czastkowe tej nowej funkcji,
ktore beda pochodnymi czastkowymi drugiego rzedu wyjsciowej funkcji f. Potem przy
tych samych warunkach mozna oblicza¢ pochodne czastkowe pochodnych czastkowych
drugiego rzedu tworzac pochodne czastkowe rzedu trzeciego itd. Pochodne te oznaczamy

o (0 o2 o /0 52
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etc. Zachodzi pytanie, czy pochodne

f B 82f ) f B 82f
Y7 Oyox YT ox oy’
obliczone w punkcie (xﬁo), .. xﬁ?)) sg sobie rowne? Odpowiedz jest taka: jesli fo, 1 fye
jako funkcje x 1y (przenosi su@ to oczywiécie na wiecej zmiennych) istnieja i sa ciagte w
(xgo), . ) to fo (2@, y0) = £,.(2® y@). Matematycy, z natury troche prestidi-

gltatorzy, hlbl@ mozliwa nieréwnos¢ tych pochodnych demonstrowaé¢ na (kanonicznym w
ich jezyku) przykladzie funkcji R*? — R zadanej wzorem

Floy) = {xy(af2 - @62)/(932 +4°) ég g zg # (8>8) ,

Funkcja ta jest uczciwie ciaglta w (0,0). Nastepnie obliczaja oni pochodne czastkowe tak:

of fO+hy)—f0,y) . -y

— 1 = limy - 5 Y,
ox (0.) h—0 h h—0" h2 + Y

— =1 = lim =1,
Oy (o) 0 h h—0 12+ h2

Po czym radosnie pokazuja, ze w punkcie (0, 0)

w1 w6
oy\oz) oz \ dy

Po takim numerze dalej nie do korica jednak wiadomo, jakie fiku-miku doprowadzito do
tego szokujacego rezultatu. Oto6z, aby to zrozumieé, najlepiej obliczyé¢ obie drugie mie-
szane pochodne w dowolnym punkcie. Po dtuzszych przeksztatceniach (zalecam wprawie-
nie sie na tym przykladzie!) otrzymuje sie

of 2% 4+ 9zty® — 9x?yt —y® of

dy (r%a) @+yP  or <8y)
“Na wzorkach” zatem funkcje f,,(z,y) 1 fy(x,y) to jest zawsze ta sama funkcja! (Czyli
jak komus wyjda te dwie pochodne rézne to nie moze mowic, ze tak moze by¢!) No i teraz
juz wszystko jest jasne: druga mieszana pochodna jest funkcja jednorodng stopnia zero
typu wielomian k-tego (tu szostego) stopnia przez inny wielomian tego samego stopnia.
Po zrobieniu paru przyktadow (i Zadania 9) powinno by¢ jasne, ze takie funkcje sa w
punkcie (0,0) zawsze nieciagte (wyjsciowa funkcja f bytal) bo maja, gdy sie do (0,0)
zbiega z roéznych kierunkéw, rézne tam granice. I ta pochodna, co wyzej data —1, odpo-
wiada braniu wartosci f,,(x,y) przy zbieganiu do (0,0) po osi y (bo najpierw obliczamy
pochodng po x ale otrzymana funkcje rozpatrujemy juz jako funkcje y tylko, ktadac x = 0,
czyli na osi y), a ta druga, rowna +1, odpowiada f,,(z,y) przy zbieganiu do (0,0) po osi
x. I calta tajemnica pryskal!
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Roézniczka df funkcji f i pochodna prawdziwa

I tak dochodzimy wreszcie do prawdziwej pochodnej funkcji f : R™ — R. Niech punkty
(:1:&0), . ,:E%O)) i (:L'go) +dry ..., 20+ dzx,) naleza do dziedziny funkcji f. Niech

Af = f(x§°’ +dzy ..., 29 4 dx,) - f(xgo), Lz

n

bedzie przyrostem wartosci funkcji f, gdy przesuwamy si¢ od punktu (xﬁo), o ,x%o)) do
punktu (xgo) +dry ..., 20+ dx,). Fizyk pyta, jak ten przyrost Af mozna przybli-

zy¢ (niezaleznie od kierunku, w ktorym sie przesunelismy w bok, byle infinitezymalnie).
OdpowiedZ matematyka jest taka, ze jesli pierwsze pochodne czastkowe funkcji f sa w

otoczeniu (x§0)’ . ,:ESLO)) ciaglymi funkcjami, to wtedy

Af ~df (27, .. L2y = For @ O dey + ..+ Fo (@ 2O dz,, |

tzn. to df funkcji, zdefiniowane wyrazeniem po prawej stronie, dobrze przybliza wartosé
Af w tym sensie, ze réznica Af — df zbiega do zera szybciej niz \/(dz1)? + ... + (dx,)?.
Technicznie rzecz ujmujac

Af —df
V()2 + ..+ (dy,)?

—0, gdy +/(dz1)2+ ...+ (dz,)? =0,

niezaleznie od tego jak kazde dx; z osobna zbiega do zera. df, czyli wlasnie rdzniczka'®
funkcji f w punkcie (xgo), e :1:%0)), to jest warto$¢ pochodnej prawdziwej funkcji f w tymze
punkcie na wektorze przyrostu (dzy, ..., dz,). Rozniczka jest zawsze (wbijmy wiec sobie
do glowy to hasto!) gtdwng liniowq czescig przyrostu, tu przyrostu A f, wartosci funkceji f.
Czymze zatem jest ta pochodna prawdziwa? Jest to, najogélniej rzecz ujmujac, kowektor,
czyli odwzorowanie liniowe, ktoére odwzorowuje wektor przyrostu w przestrzen wartosci
odwzorowania; w przypadku funkcji f: R™ — R kowektor odwzorowujacy (dxy, ..., dz,)
w R. (I w tym miejscu widzimy, ze analiza laczy sie nam z algebra i lepiej jest wrocié¢ do
odpowiednich stron mojego skryptu z algebry i to i owo sobie przyswoi¢). Kowektor ten,
jak kazde odwzorowanie liniowe przestrzeni wektorowej,!! jest reprezentowany macierza

10Czyli takie male, co sie rusza - tak kiedys, gdy bylem studentem, odpowiedzial na pytanie “a co to
jest rozniczka?” zadane przez wykladowce fizyki moj kolega; istotnie, sposéb operowania przez fizykow
takimi wielkosciami jak dx, df, musiat prowadzi¢ do takiej wlasnie odpowiedzi...

T tu robimy taki maly myk, Ze nagle to R”, a wlasciwie to réznice punktéw tego R™, zaczynhamy
traktowaé jak przestrzen wektorowa. Naprawde jest to troche inaczej, ale bardziej logiczne przedsta-
wienie tego wymaga przejScia do obrazka, w ktorym funkcja f jest w istocie zdefiniowana na pewnej
rozmaitosci rézniczkowalnej M, czyli takim tworze, ktéry jako§ mozna “obmacaé¢”, a obmacanie to polega
na wprowadzeniu uktadu wspotrzednych (z1, ..., z,) na rozmaitosci calej lub przynajmniej jakims jej ka-
walku; w kazdym punkcie p takiej rozmaitosci identyfikowanym we wprowadzonym ukladzie wartosciami
(argo), . ,x%o)) wspolrzednych jest “przyczepiona” pewna przestrzenl wektorowa oznaczana T,M (w kaz-
dym punkcie jest ona troche inna, cho¢ wszystkie sg jako$ tam do siebie podobne, czyli izomorficzne) i to
wlasnie w tej przestrzeni stycznej istnieja te wektorki infinitezymalnych przemieszczeni z jednego punktu
rozmaitosci do drugiego; z kazdym uktadem wspolrzednych (bo wspolrzedne mozna na tej samej rozma-
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(tu w kanonicznej zero-jedynkowej bazie przestrzeni R" traktowanej jak wektorowa) dana
wzorem

of of
Oy |, 0 8xn MONNC)
('Tl .. geeey Ly )
dzialajaca na sktadowe (dxy,...,dz,) (w tej samej bazie) wektora przesuniecia.

Zadanie
Zbada¢ istnienie w punkcie (0,0) pochodnej odwzorowari R? — R

a) g(r,y) =zt +y*, b) flz,y)=v2*+y%

W przypadku b) sprawdzié¢ takze z definicji istnienie pochodnej w punkcie (g, y0) # (0, 0).
Rozwigzanie: a) Obie pochodne czastkowe funkcji g(x,y) istnieja

(z.1) 223 (z.1) 293
xr l’, = ) l’, - )
geitnd Vat+yt Wy Vvt 4yt

i maja w punkcie (0,0) granice rowne 0, co tatwo sprawdzi¢ juz poznanymi sposobami.
Zatem df = 0 w tym punkcie. Prawdziwa pochodna funkcji ¢g(z,y) w punkcie (0,0)
istnieje (bo pochodne czastkowe istnieja i sa tam ciagle, jesli nada¢ im wartosci 0) i jej
wartos¢ na przyrostach, czyli rézniczka dg, jest réwna 0. Mimo to warunek “dobrego”
przyblizania w tym punkcie przyrostu Ag funkcji przez jej rozniczke jest spetniony. No
bo:

Ag —dg \/ (dx)* —0-dz—0- dy

(dz) + (dy)? (d) (dy)? (dz)* + (dy)?

gdzie “lim” oznacza (dx,dy) — 0. Wyrazenie to zbiega do zera, co najlatwiej zobaczy¢
piszac dx = drcosg, dy = drsiny z dr — 0 (kat ¢ moze sie zmienia¢ dowolnie w miare,
jak dr dazy do zera).

itosci wprowadzac rozne) jest w sposdb naturalny stowarzyszona pewna baza iy, k = 1,...,n przestrzeni

stycznej, wektorek § przesuniecia z punktu p o wspotrzednych (:Cgo), .. (0))

(Igo) + 0z, .. ,x%o) + dx,) ma postaé § =ij0x1 + ...+ 1n6:1:n, a zywy kowektor (jedno-forma)
df, bedacy pochodng prawdziwa funkcji f: M — R, jest dany przez

Jf_(g—f) dxl—l—...—l—((,f—f) dx,, ,
T (m(lo),...,m(no)) Ln (m(lo),...,m(no))

jako kowektor zapisany w bazie dzjy jedno-form dualnej do bazy tworzonej przez wektory i (dualnej,
tj. takiej, ze dzk(i;) = dx;). I tak robi sie z tego geometria rézniczkowa, ktora jest bardzo naturalna i
opanowanie jej prostych podstaw bardzo utatwia zycie fizyka. No ale w R™ wszystko sie trywializuje i
nic z tego piekna nie widaé... Troche tu odlecialem w kosmos, wiec jak kogo$ to przeraza, to niech tego
przypisu nie czyta.

do sads1ednlego p’ o wspol-
rzednych
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W przypadku funkeji f(z,y), pochodne czastkowe
fw (QU, y) =

T T
T ) x? = b
/72 + 42 fy( v) /72 + 42

nie sa ciagte w punkcie (0,0), co tez powinno juz by¢ oczywiste. Jesli obliczamy je w
punkcie (0,0) bezposrednio z definicji, np.

f:(0.0) = Jim I =

to tez nie mozemy im nada¢ wartosci, bo granica h — 07 jest rowna 1, a granica h — 0~
jest réowna —1. Nie mozna wiec nawet napisa¢ prawdziwej roézniczki df w tym punkcie.
Gdyby sie umowic, ze gdy dz i dy sa dodatnie, to bierzemy f,(0,0) =1 = £,(0,0), to i
tak taka “rézniczka” nie przyblizy dobrze przyrostu Af: wyrazenie

Af —df \/ (dz)? + (dy)? — fedx — fydy im (1 dr + dy
\/ (dxz)? + (dy)? V/(dx)? + (dy)? B (dz)? + (dy)?

nie dazy w sposéb bezwarunkowy do zera, co znéw widaé piszac dr = drcosp, dy =
drsin g z dr — 0: poniewaz kat ¢ moze sie zmienia¢ dowolnie w miare, jak dr dazy do
zera, drugi czton w nawiasie jest rowny cos ¢ + sin ¢, co nie musi by¢ jedynka.

W punkcie (zg, yo) # (0, 0) obie pochodne czastkowe f, i f, sa ciagte, wiec twierdzenie
zapewnia istnienie w takim punkcie takze prawdziwej pochodnej i tym samym i rézniczki
df. Warto jednak zobaczyc ze roZniczka ta “dobrze” przybliza przyrost funkcji. Zbadajmy
wiec wyrazenie (Af — df)/+/(dz)? + (dy)?. Jest ono rowne

1 2 xodx + yody

Ty + dr)? + (yo + dy)? —\/ 2k +y3 —
<dx>2+<dy>2[“(° A A N

Korzystajac ze starej sztuczki \/a — vVb = (a — b)/(y/a + v/b) przepisujemy to wyrazenie
W postaci

1 (dx)* + (dy)® + 2(zodx + yody)  wodx + yody
V(dz)? + (dy)? | /(w0 +do)? + (o + dy)* + Vag + 5 25 + 3

Czlon (dx)? + (dy)? na pierwszej kresce utamkowej w nawiasie kwadratowym nawet po
podzieleniu przez +/(dz)? 4 (dy)? znika, gdy +/(dz)? + (dy)? — 0, wiec mozemy go juz
pomingé; poza tym z mianownikow w tymze nawiasie wyciagamy /3 + y2 i, jako ze jest
to pewna stata, nie bedziemy juz tego pisa¢. W mianowiku pierwszego utamka w nawiasie
kwadratowym mamy wtedy

1 1 !
1+\/1+€=2<1—|—16—|—...):2(1—184-...) ,

 2(zodx + yody) + (dx)* + (dy)?
B 3+ 3 '
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Wielokropek oznacza wyzsze potegi €. Pozostaje zobaczy¢, ze

S(Z(]dSL’ + yody |i_1€ e :| ’
(dz)? + (dy)* | 4

zbiega do zera, gdy +/(dx)? + (dy)? — 0. Znéw jednak czlon (dz)? + (dy)? we (iw
wyzszych potegach €) znika w tej granicy, nawet po podzieleniu przez +/(dz)? + (dy)?, a

(zodz + yody)?
(dz)? + (dy)®

tez dazy do zera (to samo bedzie sie dzialo i w wyzszych potegach €), gdy +/(dz)? + (dy)? —
0, co znéw najlatwiej zobaczy¢ piszac dv = drcosp, dy = drsiny z dr — 0. Zatem w
punktach (xg,y0) # (0,0) rézniczka df nalezycie przybliza przyrost Af funkeji.

Na koniec zajmijmy si¢ jeszcze pochodnymi odwzorowan F przestrzeni R™ w przestrzen
R™. Kazde takie odwzorowanie, to po prostu m funkcji R® — R, ktére sobie oznaczymy
Fi(xy,...,2n), ..., Fu(z1,. .., 2,). Innymi stowy, obrazem punktu (zy,...,z,) € R" jest
m-wymiarowy wektor (Fy,..., F,,) € R™. Przyrost AF takiej funkcji, ktory tez jest m-
wymiarowym wektorem, przy przejsciu od punktu (xﬁo), o ,x%o)) do (:cgo) +dxy, ... ,xslo) +
dzx,) jest rowny

F@ +day, .2 +dey) — B, D)
Ap— | B +de,. 2l +de,) — B2

Fm(xgo) tdzy,. .2V + dx,) — Fm(:cgo), . ,xﬁ?))

ijest, gdy wszystkie pochodne czastkowe wszystkich m funkcji, sa w punkcie (xﬁo), ceey :L’%O))

ciggte, dobrze przyblizany przez rézniczke

&ClFl d!L’l + ...+ 8an1 dl’n 8I1F1 8I2F1 N aanl dl’l
dF — 8I1F2 d:)s1+...+8an2 dl’n . 8I1F2 8I2F2 anFQ dl’g
Op B dry + ...+ 0, F day, [0 o S R o S ) dz,

gdzie wprowadzilismy (tez czesto uzywana) notacje

oF
0. F = ,
' 825‘2
i gdzie wszystkie pochodne czastkowe sa obliczone w punkcie (:L’go), e ,x%o)). Wida¢ tu

jak na dtoni, ze pochodna funkcji F' w tym punkcie jest odwzorowaniem liniowym odwzo-
rowujacym n-wymiarowy wektor przyrostow w R™. W kanonicznej bazie zero-jedynkowe;j
jest ona dana powyzsza macierza.
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Skladanie odwzorowan

Rozpatrzymy teraz problem pochodnej funkcji ztozonej. Ogélna sytuacja ktéra mamy na
mysli mowige o skltadaniu odwzorowan wyglada nastepujaco: dane sa trzy przestrzenie

metryczne, ktorymi dla nas sg zawsze R"”-y i dwa odwzorowania, ktore oznaczymy sobie
HiG:

H G
R" — RF — R™.

Niech punktami tych przestrzeni beda

R™  (z1,22,...,%n),
Rk (ylayQa"'ayk)a
R™ (21,22, -y 2m) -
Przy kolejnych odwzorowaniach
y1 = Hi(z1,29,...,2,), 21 =Gy, Y2, - Yk) 5
y2=H2(IE1,ZE2,---,ZEn), Z2=G2(y1,y2,~->yk)>
yk:Hk(xlvx%”’?xn)u Zm = m(ylvy27"'7yk)'

Zgodnie z tym, co juz wiemy o pochodnych odwzorowan, pochodna H’ (zaktadamy, ze
istnieje; czasem oznacza si¢ ja DH, ale to sie myli z rozniczka, ktora - zgodnie z tym,
czego nauczalem wyzej - jest wartoscia pochodnej obliczonej na wektorze przesuniecia)
odwzorowania H jest macierza k x n (k wierszy, n kolumn), tak by dzialajac na n-
wymiarowy wektor dawata wektor k-wymiarowy. Z kolei pochodna odwzorowania G (tez
zakladamy, ze istnieje) jest macierza m x k (m wierszy k kolumn), ktora dzialajac na
k-wymiarowy wektor daje wektor m-wymiarowy.

Ich ztozenie F' = H o GG jest odwzorowaniem z R" bezposrednio w R™ i wyraza sie
wzorami:

2= Fi(r, 29, ... x,) = Gi(Hy(T1, 29, .. ., x0), .-, He(21, 22, ..., 2))

9 = F2(:L’1,x2, e ,.f(fn) = GQ(Hl(SL’l,LUQ, P ,Zl,’n), . .,Hk(xl,x2, e ,Zl,’n)) y

Obliczmy teraz korzystajac z powyzszych wzoréw pochodna po x; funkeji Fy. Tak jak przy
obliczaniu zwyktych pochodnych stosuje si¢ tu metoda “pochodna funkcji zewnetrznej po
jej argumencie razy pochodna funkcji wewnetrznej”. Zatem

% = axlFl = a@hGl ax1[—[1 +...t aykGl alek )
1
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Funkcja F} od x; zalezy poprzez funkcje Gy, ktora zalezy od k funkcji Hy, ..., Hy i dopiero
kazda tych zalezy od ;. Uogélnijmy ten wzorek na pochodna po x; funkeji F;:

k
0uFy = 0,G; 0, H,.

=1

Jesli teraz dobrze sie przyjrzymy temu wzorkowi, to dostrzezemy w nim wzoér na mnozenie
macierzy: pochodna F’, zgodnie z tym, co ma ona robi¢ powinna by¢ macierza m X
n (m wierszy, n-kolumn; ma ona dziala¢ na n-wymiarowy wektor i dawa¢ wektor m-
wymiarowy), a powyzszy wzor daje ja jako iloczyn macierzy: wzor

k
[y =Y 6T [HT,
=1
w ktorym

06,
8yl ’

0H,

J J 825]‘ ’

G, =0,Gi =
jest whasnie (opanowanym na algebrze) wzorem na element [F']'; (tj. element stojacy w

i-tym wierszu i j-tej kolumnie macierzy F’. Pozostaje tylko ustali¢, w jakich punktach
pochodne te (czyli macierze) maja by¢ obliczone. Jesli pochodna F’ ma byé¢ obliczona

w punkcie (z1,...,2,), to w tym punkcie musi tez by¢ wzieta pochodna H’. Natomiast
pochodna G’, ktora obliczamy majac dane funkcje G1(y1, ..., yk)s - Gu(y1, .- yg) 1
rozniczkujac je po y1, . . ., Yk, musi by¢ na konicu wyrazona przez y; = Hy(z1,...,2,), - . .,

yr = Hp(z1, ..., x,). Tak wiec

!
(G © H)(I17---750n) - G/(Hl($1,~~~7$n)7~~~,Hk($1,...,wn)) ) H(,$1,~~~,90n) ’

gdzie kropka oznacza mnozenie macierzy. Ot i wszystko.

Sformutowane wyzej reguly obliczania pochodnych odwzorowan bedacych ztozeniami
innych odwzorowan sprowadzajg sie do znanej z teorii funkcji jednej zmiennej reguty “po-
chodna po jakiej$ wybranej zmiennej fukcji bedacej ztozeniem réwna sie pochodnej po
argumencie funkcji zewnetrznej razy pochodna po wybranej zmiennej funkeji wewnetrz-
nej”. Tyle, ze teraz trzeba posumowaé¢ po argumentach funkcji zewnetrzne;j.

Przyklad
Dane sa dwa odwzorowania: T' : R?> — R3 oraz S : R — R? zadane wzorami

(- [o5] - s0-fute]

Ich zlozeniem (zlozy¢ je mozna tylko w jeden sposob, mam nadzieje, ze to oczywiste)
F =ToS jest odwzorowanie I : R — R3, ktorego wzor dostajemy wstawiajac do wzoru
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na 7', zmienne x i y wyrazone przez t, tak jak dyktuje odwzorowanie S

sint sint
F(t)= | exp{t +In(1 + 9} | = | (1 + 14 ¢!
1 1

Pochodna F’ odwzorowania F' jest macierza o trzech wierszach i jednej kolumnie, czyli
wektorem (bo cate F jest, jak w mechanice pojedynczej czastki trajektoria tej czastki w
przestrzeni, a pochodna F' to “po fizycznemu” po prostu predkosé tej czastki; wartosé tej
pochodnej na “wektorze” przesuniecia, czyli §t, daje zmiane potozenia po czasie 0t):

cost
F'(t) = | (1448 +th) e
0
Sprawdzmy, jak to si¢ ma do iloczynu macierzy bedacych pochodnymi odwzorowan 7' i

S. Pochodna T" odwzorowania T' jest macierza 3 X 2 (trzy wiersze, dwie kolumny), a
pochodna S’ odwzorowania S jest macierza 2 X 1 (czyli dwuwymiarowym wektorem):

Cos & 0

1
/ = Tty Tty / =

lloczyn (macierzowy) tych pochodnych, to

Cos T 0 1 CcosS ¥
T -5 = | e*tv "ty ( 3 4 ) = | 1 +4¢3/(1+t*)] exp(z + y)
0 0 4% /(1 + t*) 0

Teraz jednak przypominamy sobie, ze trzeba wyrazi¢ x oi y przez t, tak jak dyktuje
odwzorowanie S: x = t, y = In(1 + t*). Po zrobieniu tego znajdujemy, ze 7" - S’ jest tym
samym co F’.

Zadanie
Pokaza¢, ze funkcje f(t,x) spelmiajaca dwuwymiarowe rownanie falowe
L o*f  0*f
2o 02
mozna przedstawi¢ w postaci sumy f(t,z) = hp(z — ct) + hr(x + ct) dwoch funkeji

z ktorych jedna, hp, reprezentuje fale przemieszczajaca sie z predkoscia ¢ bez zmiany
ksztaltu w kierunku dodatnim osi xz, a druga, hg, fale przemieszajaca sie bez zmiany
swojego ksztattu i zupekie niezaleznie od tamtej w kierunku ujemnym osi x.
Rozwigzanie: Wyobrazamy sobie, ze'?

f(tvx) = f(U(t, ZL’), u(t,x)) )

2Matematyk pisze f , bo jako maszynka z dwiema dziurami funkcja ta jest inna maszynka niz funkcja
f; fizyk uzywa tej samej litery f na oznaczenie obu funkcji, bo dla niego jest to ta sama wielko$¢ fizyczna.
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gdzie , v =2+ ct au=2x —ct. W zwiazku z tym piszemy zodnie z regula tancuszkowa:

of _of ov of ou _of of
8x_8q8x 8@8&7_01}~ 0u’~
of _0fov  9fou_ Of  Of

ot ovot ouot ‘o Cou

Drugie pochodne obliczamy podobnie (tu jest to proste, bo pochodne (Ou/0x), (Ou/dt)
etc. sa stalymi):

Ff_ 0 (of OF\ _&fov  Pf ou  Ff v Of Ou
or2  Ox \ov 0Oul Ow2dr Ovdu dxr  Oudv Oxr  Ou? Ox
o A

o2 28@8u+w’

Analogicznie

O o (of of\ (P ov O ou O ov 0 Ou
Cc = wa‘l‘ &

0r2 ot \dv  ou ovdu Ot Oudv ot Ou? Ot
O*f 0% O*f
2 “J 2 ZJ 2 —J
— ¢ ov? 2¢ 8vau+c ou?’

Zatem w nowych zmiennych réwnanie falowe przybiera postac
vor w0 (oo (oF)
2ot 0x2  Owou  Ov\ou] T ou\ov)|

z ktorej natychmiast wynika, ze (0f /Ou) nie zalezy od zmiennej v, a (9 f/ Jv) nie zalezy
od zmiennej u. Zatem ze scatkowania (0f/du) po u (lub ze scatkowania (0f/0v) po v)
otrzymujemy f = hy(u) + hgr(v), co jest wlasnie tym, co trzeba byto wykazac.

Zadanie
Przepisa¢ réwnanie rézniczkowe

or\* . (of\* .,
(3) () —r=»

w zmiennych v i v zadanych zwiazkami

u u (% (%

xr = s = — =
w2 +0v2 R? y w2 +0v2 R?

Rozwiagzanie: Chodzi jak zawsze o wyobrazenie sobie, ze f(x,y) = f(u(z,y), v(z,y)).
Tak jak w porzednim zadaniu (uwaga: tu zmienna u traktuje jak piewsza, a v jak druga
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- odwrotnie, niz w poprzednim)

ﬁ_ﬁ@+ﬁ@
Or Oudr Ov oz’
of of ou  Of ov
dy " udy vy

Tu mamy jednak pewng techniczng trudnosé, bo aby np. zrézniczkowaé¢ v po z, musimy
“odkreci¢” podane wzory (wyrazaja one x i y przez u i v, a potrzebujemy na odwrot)
a nastepnie, kiedy juz znajdziemy pochodne (Ju/dx) etc., to trzeba bedzie je zuriick
wyrazi¢ przez zmienne u i v (zeby réwnanie na f bylo wyrazone w tych tylko zmiennych).
Wszystko to sie oczywiscie daje zrobié¢, szczegdlnie w tym zadaniu, bo wzory wiazace
x iy zuiwv sy tu proste. Niemniej przydatna moze byé¢ nastepujaca sztuczka. Niech
F: (u,v) — (x,9) (czyli F to jest to odwzorowanie R? w R?, ktore wyraza z i y przez
wiv),aG: (zr,y) — (u,v) (czyli G to jest F~! czyli odwzorowanie odwrotne do F
wyrazajace uiv przez x 1y). Poniewaz GoF =id - ztozenie odwzorowania i odwzorowanie
odwrotnego jest odwzorowaniem identycznosciowym, wiec pochodna (G o F')' jest, no
wlasnie: czym jest? Oczywiscie macierza jednostkowa I, tu 2 x 2 (nie zerem, jak by
kto§ mogl mniemac¢! W przypadku jednowymiarowym v = G(z), a * = F(u), wiec
(F o G)(x) = z i pochodna jest réwna 1; teraz uogélnijmy to sobie...). Czyli, poniewaz
(GoF) =G F =1, wiec G' = (F')~! - macierz G’ jest macierza odwrotna do macierzy
F’ (po to m.in. sie uczylisSmy odwraca¢ macierze). Poniewaz

(e o) - (e )

wiec (pamietamy: odwracanie macierzy 2 X 2 sprowadza sie do zamienienia miejscami jej
elementow diagonalnych, zmienienia znakow jej elementow pozadiagonalnych i podzielenia
calosci przez wyznacznik odwracanej macierzy)

, [ OufO0x Ou/Oy\ -1 1 dy/ov  —(0x/dv)
¢ = (8@/8:6 8@/85) =(F)" = detF (—(gy/au) oz /du ) ’

Zauwazmy, ze w ten sposob dostajemy od razu pochodne Ju/0x, etc. wyrazone przez
zmienne u i v, dokladnie tak, jak tego potrzebujemy!. No to teraz tylko powypisywaé
wzory w naszym przypadku:

(u? + v?)? 1

1
detF’" = 0 (—(u2 —v?)? — 4u21)2) - = E

e ou/dx Oufdy\ _p (u? —v)?/R 2uv/ R
S\ ov/oxr Ow/dy ) 2uv /R (v —u?)/RY )"
Zatem, jawnie juz,
8u—v2—u2, au——qu, @:—qu, @ZUQ—UQ.

dx oy



No i teraz mozemy przepisa¢ rownanie rozniczkowe w zmiennych u i v:

Of _ o 5 0f of

%—(U— za——QUU%:
Of _ 90w 429t
o 2uvau+(u U)av.

Po podniesieniu do kwadratu i zebraniu do kupy (wyrazy (9f/du)(df/dv) sie skasuja)

dostajemy rownanie
AN ETAY
4 95 g 2
R{u,v) <8u> - (8@) ;=0

Nic prostszego nie wyszto, ale nie o to tu chodzito.
Oczywiscie wszystko mozna zrobi¢ bezposrednio tez.

9 2_u2—|—v2_1
RS TRT TR
wiec
x x y Y
v=Rr=——-=", v = R*y= =,
22 K2 Yy 22 K2
i
ou  y* —a? ou 2wy v 2y o x*—y?
or  k* 7 9y  K*T ox kY Oy K

Teraz trzeba by te wzory zuriick wyrazi¢ przez u i v, ale na nawet nie musimy tego jawnie
robi¢, bo jak podniesiemy do kwadratu pochodne

8f_y2—:)320_f 2xy Of

ox KA du KA 8v’~
oF __2my0f 4=y of
oy K+ Ou Kt Ov’

i dodamy do siebie te kwadraty, to dostaniemy

1 (af\" [af)
[y ] -

ale k=% = R*, wicc rzeczywiscie wyszlo to samo.
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Warto poznaé jeszcze jeden sposob znajdywania pochodnych (0u/0z) etc. wyrazonych
od razu przez zmienne v i v. Jest to w mojej terminologii spos6b'® “termodynamiczny”.
Zamiast jawnie “odkrecac¢” wzory na x i y, zapisujemy je tak

_ u(z,y) y— v(z,y)
R (u(z,y), v(z,y)) R (u(z,y), v(z,y))”

tj. wyobrazamy sobie (ale tylko wyobrazamy, nie musimy wypisywa¢ jawnych wzorow!),
ze u i v sy funkcjami x i y, wiec wypisane wzorki sa jakby tozsamosciami. Mozemy je
teraz zrozniczkowaé stronami po x (traktujac x i y jak zmienne niezalezne, a u i v jak ich
funkcje, tak jak to wynika z zapisu), co da

X

Uy U v? —u? 2uv
1:ﬁ—ﬁ(2uux+20vx): 7 Uy — 7 Vg,

Vs v u? — v? 2uw
O:ﬁ—ﬁ@uum—i—mwx): 7 Uy — 7 Uy,

Jak wida¢ sg to dwa rownania liniowe na dwie niewiadome u, i v, A réwnania liniowe tez
juz nauczylismy sie rozwiazywaé¢ (widza Paristwo, jak potrzebna jest algebral!). Tu akurat
jest to bardzo proste, bo z drugiego mamy v, = 2uvu,/(u* — v?) i jak to wstawimy do
pierwszego, to dostaniemy

v? —u? 4u0?

R R(u? — v?)

ufE )
skad juz tatwo znajdujemy, ze u, = v*>—u?, a potem, ze v, = —2uv. Analogicznie, r6znicz-
kujgc stronami po y wypisane wyzej tozsamosci dostajemy dwa liniowe rownania na u,, i v,
i rozwiazawszy je znajdujemy v, = u® — v? i u, = —2uwv, tak jak poprzednio. Oczywiscie,
calta ta metoda jest tym samym, co metoda polegajaca na odwracaniu macierzy F’, tylko
jest ona nieco inaczej sformutowana. W istocie, rozwigzywanie uktadéw réwnan liniowych
na pochodne u,, vy, etc. jest rownowazne operacji odwracania macierzy (pamietamy z
algebry, ze najprostszym - w moim odczuciu - sposobem znajdywania macierzy odwrotnej
do danej jest potraktowanie tejze jak macierzy zmiany bazy i rozwiazanie odpowiedniego
ukladu rownan liniowych wlasnie).

Zadanie
Gradient funkcji f : R® — R rozumiany

Vf:exfx_l'eyfy_l'ezfza

13Naprawde sposob ten opiera sie na umiejetnosci operowania funkcjami zadanymi w sposéb uwiklany
(a na tym stoi potowa matematycznej - bo nie fizycznej! - czesci termodynamiki; przekona sie o tym ten,
kto bedzie mial szczescie przyj$é na moj wyklad z termodynamiki i fizyki statystycznej). Tego bedziemy
sie uczy¢ dopiero za dwa tygodnie pewnie, ale fizyk sie takimi drobnostkami nie przejmuje, tylko dziata!

4 Naprawde, to gradient nie jest wektorem, tylko kowektorem i wszystko, co tu zrobimy idzie latwiej,
gdy sie to przyjmie do wiadomosci. W XXI wieku dobrze by juz bylo unowoczesnié to nauczanie i
wprowadzi¢ troche elementarnej wiedzy z zakresu geometrii rézniczkowej i form rézniczkowych, bo czyni to
wszystko bardziej zrozumiatym, a nie jest trudniejsze od zwyklego operowania wektorami. Au contraire,
wiele rzeczy sie wrecz upraszcza.

4 “po fizycznemu” jest to wektor o sktadowych
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gdzie e,, e, i e, sa jednostkowymi wektorami (wersorami - ale trzeba pamietaé¢, ze choé¢
brzmi to z angielska, takiego stowa w angielskim sie¢ nie uzywa, podobnie jak stowa “termo-

stat”, ktore tez nam z angielska brzmi) tworzacymi uktad ortonormalny. Wyrazi¢ gradient

we wspoltrzednych sferycznych zdefiniowanych zwigzkami'®

x =rsinfsinp,

y =rsinfcosp,

z=rcosf,
rozpisujac go na wersory €, €g 1 €.

Rozwigzanie: Jak zawsze trzeba sobie wyobrazié, ze

f(@,y,2) = f(r(z,y, 2), 0(z,y, 2), p(2,y,2)).
Wyrazamy wobec tego najpierw skladowe wektora-gradientu w bazie e,, e, i e, a potem
zmieniamy baze¢ na e,, eg i e,. Najpierw wigc pierwszy punkt programu. Zaczynamy od
o
fﬂc :Tmfr+9wf€+90mfeov
i musimy wobec tego wyznaczy¢ pochodne r,, 6, i ¢,. Mozna to zrobi¢ “odkrecajgc”
wzory definiujgce uktad sferyczny czyli wypisujac wzorki
0 = arccos : = arctgi'xz—i_y2 ,

Va2 +y?+ 22 z

_ Y
= arctg—,
z

rozniczkujac po x (a potem, przy wypisywaniu f, po y, a przy wypisywaniu f, po z) i na
koniec wyrazajac otrzymane pochodne na powrdt przez r, 6 i ¢. Tu jednak zastosujemy
mo6j ulubiony trick “termodynamiczny”;, czyli podane wzory definiujace uktad sferyczny
zrozniczkujemy stronami po x (a potem po y i po z) traktujac r, 6 i ¢ jak funkcje
niezaleznych zmiennych z, y i z. Tak czyniac otrzymujemy uktad trzech réwnan liniowych
na ry, 0, i ¢, (uzywamy tu oznaczen sy = sinf, c, = cos g, etc.)

l=rys9c, +0,1CcoCpo — Pu7 5 5,,

0=1ry805,+0,7C5,+ Qa1 50C,,

O0=r,c — 0,71 50.

Z ostatniego 0, = (r,/r)(cy/se) i to do dwu pierwszych. To da
2

l1=r, (se + —9) Co — Pz T Sp Sy,
Sg

<
O=ry|se+—) S, +@arsecy,
So

15Trzeba sobie te wzorki zapamigtaé i nie zamieniaé sinuséw z kosinusami (co czasem studenci robia),
bo wprowadza to zamet, a jest wiele ciekawszych rzeczy, na ktorych trzeba sie skupiac.
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i teraz dodajemy pierwsze razy c, do drugiego razy s, i dostajemy r, = soc,, (Wiec mamy
tez 1 6,), a z kolel pierwsze razy s, minus drugie razy c, da ¢,. Zatem

Co Cy S
Hx:—a = —

Te = S Cyp, .
r T Sp

Po zrézniczkowaniu stronami po y dostajemy uktad

0=rysgcy,+0yrcoycy, — 0y1505,,
1=1y895,+0,7Co5,+ Qyrsecy,,

O:ryc(;—eyrs(;.

ktory mozna rozwikla¢ tak samo, jak poprzedni: 6, = (r,/r)(co/sg) 1

<
O:Ty 59+S— Co — PyT S Sy,
(%

%
L=ry{ss+— |8, +wyrsec,.

So
Stad
Co Sy Cy
Te = S90Sy, ex:—a = -
r T Sp

Wreszcie, zrozniczkowanie stronami po z da

O=r,50c, +0,1CoC, — Q759 5,,
0=r.508,+0.1CH5,+@.750C,,

1l=r,cg—0.750.

Teraz mnozymy pierwsze przez c,, dodajemy do drugiego pomnozonego przez s, i otrzy-

mujemy uktad
Sg Ty >\ (0
Cp —TSp ‘92 - 1 ’

z ktorego latwo dostajemy 7, = ¢y i 0, = —sg/r. Podstawiajac te pochodne do 0 =
r.50C, + 0,rcoc, — ©.1595, znajdujemy, ze ¢, = 0. Mamy wigc

Cy C S
Vf:e:c <$Gc¢fr+%f0_—¢f¢)

T Sg
Co

S C Sg
—|—ey<895gofr+ ¢f€+—wf¢)+ez<09fr__f9>-
r T So r

Mozna teraz obliczy¢ kwadrat gradientu jako sume kwadratow wspotezynnikow przy e,

e, i e,. Wyjdzie
2 2
(V) =)+ (%) + (ﬁ) ,

T Sp
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co podpowiada, ze

Vf:erfr—l—eg&jLe@&,
r T Sp
i tak w istocie jest, ale aby to &ciSle pokaza¢, trzeba wektory e,, e, i e, wyrazi¢ przez
wektory e,, ey i e, i wstawi¢ do wzoru na V f. Wzory w odwrotng stron¢ dosé¢ tatwo
napisac¢:'6 wektor jednostkowy e, biegnie wzdtuz promienia, wiec jego rzut na o$ z idzie z
kosinusem 6, a rzut na plaszczyzne xy idzie z sinusem; rzut ten nalezy jeszcze zrzutowac
na os$ x i y. Z kolei wektor e, jest zawsze rownolegly do plaszczyzny xy i jest taki sam,
jak w uktadzie biegunowym. Wreszcie wektor ey ma rzut na o§ z réwny —sy, a jego rzut

rOwny cy na plaszczyzne xy trzeba jeszcze dodatkowo zrzutowaé na osie x i y. Zatem

€ =€;50C, +€,595,+€,¢p,
€) =€,;ChCp, +€yCyS, — €, Sy,

€, = —€; 5,1+ €,C,.

Zeby te wzory odwikla¢ najlepiej przepisac je tak jak na algebrze

SCp CoCyp —Syp
(er,ep,e,) = (es,ey,€.) | s95, Cosp, Cp
Coy —Sp 0

Stojaca tu macierz zmiany bazy taczy dwa uklady wektoréw ortonormalnych, jest wiec
macierza ortogonalng o wyznaczniku 1 (to, ze 1, a nie —1 wynika z tego, ze dwa te uktady
sa zgodnie zorientowane, cokolwiek by to mialo znaczy¢...) i macierz do niej odwrotna
jest po prostu dana przez jej transpozycje. Zatem

S0Cp S0 Sy Coy
(€s,€y,€.) = (e, ep,e,) | cocy o5, —Sp
Se Cyp 0

albo

€, =€,59Cy, +€9CyCy, — €, S,
€, =€.595, +€CypSy, +€,Cyp,

€, =€,.Cp —€pSp.

Oczywiscie mozna byto uktad réwnan rozwiazaé¢ konwencjonalnie: dodajac pierwsze po-
mnozone przez Sy do drugiego pomnozonego przez ¢y wygaussowuje sie e, a potem to juz
jest uklad dwu réwnan na dwie niewiadome (e, i e,). Z kolei e, dostaje si¢ odejmujac
od pierwszego pomnozonego przez cy drugie pomnozone przez Sg. No i jak sie te wzory
na e;, e, i e, wstawi do tego dlugiego wzoru na gradient, to wyjdzie to, co juz zostalo
napisane wezesniej.

160 wlagnie: elementarna wiedza z geometrii rézniczkowej pozwala wzory na jednostkowe wektory zwia-
zane z dowolnym krzywoliniowym ukladem wspoélrzednych wypisywaé “mechanicznie”, bez wyobrazania
sobie, jak to naprawde w przestrzeni wyglada...
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Rozwiniecie w szereg Taylora funkcji wielu zmiennych

Jak wszyscy dobrze wiedza (lub wiedzie¢ powinni), w przypadku funkcji jednej zmiennej,
czyli odwzorowania z R w R, majacej n + 1 ciaglych pochodnych w caltym przedziale
domknietym [zg, zo + h], stuszny jest wzor Taylora (nie szereg, tylko wzor!)

Bl + 1) = Blxo) + o (w0) b+ o " (20) B2 -+ O (a0) B+ By

Wyraz R, .1, zwany reszta Taylora (a moze doczesnymi resztkami Taylora), jest dany
wzorem (tzw. posta¢ Lagrange’a resztek Taylora - sa tez inne jej postacie)

hn-l—l

B = 0

¢ (zo+0h), gdzie 0<O<1.

Chodzi oczywiscie o to, ze w przedziale (zg, xo + h) jest gdzies (ale gdzie doktadnie, to
tego wlasnie wzor nie méwi) taki punkt,!” ze obliczona w nim (n+1)-sza pochodna funkcji
¢(z) dopemia wzor Taylora do uczciwej rownosci. Sztandarowym przykladem, jak dziata
wzor Taylora jest zastosowanie go z o = 0 do funkcji

¢(x) = exp (—%) :

Funkcja ta ma w o = 0 pochodne dowolnego rzedu, ale wszystkie one, jak jeden maz (cho¢

to dziewczyny!), sa rowne zeru: ¢™(0) =0, n = 0,1, ... Wobec tego wszystkie wyrazy we
wzorze Taylora sa rowne zeru oprocz - wlasnie! - tej reszty, ktora daje doktadnie wartosé
o(h).

Dowodzi sie (np. u Lejka - to naprawde bardzo przyjazna cztowiekowi ksiazeczka!), ze
rOwnowaznie reszte Taylora mozna tez zapisa¢ w postaci

n+1 ~ _ ~
(1—0)"p™ VD (xg +6h), gdzie 0<6<1.

Rn—i—l =

Czasem bywa to uzyteczne.

Dopiero, gdy w przedziale domknietym [xg, zo + h] istnieja pochodne dowolnego rze¢du
funkcji ¢(z) i gdy mozna pokaza¢, iz przy n — oo reszta R,.; dazy do zera,'® wzor
Taylora staje si¢ nieskonczonym szeregiem potegowym. Oczywiscie promieni zbieznosci
takiego szeregu jest wtedy réwny conajmniej h (no bo jak pokazalismy, ze przy danym h
reszta zbiega do zera, to tak musi by¢; odwracajac kota do gory ogonem, jesli napiszemy
nieskoniczony potegowy szereg Taylora i zobaczymy, ze ma on skoriczony promien zbiez-
nosci r, to to znaczy, ze przy |h| > r, lub |h| > r - zaleznie od zachowania szeregu na
kranicach przedzialu zbieznosci - reszta Taylora do zera nie zbiega).

ITUtarta jakas taka tradycja matematyczna, zeby wielko$é¢ parametryzujaca niepewnoéé, gdzie obliczaé
te pochodng w reszcie Taylora oznaczaé¢ 6. Nie wiem skad to poszlo, ale nie bedziemy tej tradycji tu
tamac.

18 Jest jasne, ze w przypadku funkcji ¢(z) = exp(—1/22) tego wlasnie nie mozna pokazac!
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Wzoér Taylora obowigzujacy w przypadku funkcj wielu zmiennych, czyli odwzorowan!®

f: R" — R, mozna otrzymac z przypomnianego wyzej wzoru Taylora dla funkcji jedne;j
zmiennej. W tym celu stosujemy ten wzor do funkcji

¢(t) = (0 +1t) = f(x+th),

potraktowanej jak funkcja jednej zmiennej t. Przyrost h = (hq, ..., h,) jest tu ustalonym
wektorem. Zakladajac, ze funkcja ¢(t) ma w przedziale [0, 1] pochodne do rzedu (n + 1)-
20

szego wlacznie,” mamy

o) = F)+13) g—f

J=1

hjhy, + ...

2' Z Z a"l:']lax]z X

Ji1=1j2=1
r N n 8rf
NP IR Y

Wykorzystana tu zostalta regutka obliczania pochodnych ztozenia funkcji: np.

hj, ... hj, + Royi.

X

do(t)| _[d
dt o |idt f(l‘l—i-thl,...,xn‘i‘thn)]t:o
_Of(x1,... 1) Of (x1,...,xy)
= oo xh1+...+ o xhn,

etc. Mozna teraz polozy¢ t = 1 i w ten sposéb otrzymuje sie wzor Taylora dla funkcji
wielu zmiennych.

W wystepujacych w k-tym wyrazie (1 < k < r) sumach pochodnych k-tego rzedu
wiele wyrazow si¢ powtarza, bo mieszane pochodne sa sobie réwne. Np. w wyrazie o
k = 2 mamy

0?f
81’181’2 x

0*f
81’281’1 x

hlhg = h2hl .

Zawsze mozna taki k-ty wyraz zapisa¢ tak, by juz nie bylo powtarzania sie takich samych
pochodnych:

orf
hj, ... Z Z c T RPY b

kix p1=0 pn=0 X

Jj1=1 Je=1

C’p1 pn jest tu pewnym czynnikiem kombinatorycznym, ktory jest rowny zeru, jesli p; +
.+ pn # k. Jesli wydaje sie to zawite, to najlepiej wzia¢ przypadek funkcji dwoch

Y0Odwzorowania F : R® — R™ to po prostu m osobnych funkcji F; : R® — R, i = 1,...,m; wzor
Taylora stosujemy do kazdej z nich osobna.

20To czy ma, zalezy oczywiscie tez od wektora przyrostu h. Zawsze mozna ten wektor “skroci¢” tak,
zeby funkcja ¢(t) te pochodne do rzedu (n + 1)-szego w przedziale [0, 1] miata. No chyba, ze funkcja f(x)
jest jakas wredna, ale takimi sie nie zajmujemy.
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zmiennych (n = 2):

2 2 orf
Z: Z: 8% 8I]k

W hsP.

-2 (o
T 2\ ) odt ol

Czynnik C’I(,]f,),,pn jest tu po prostu symbolem Newtona. k-ty wyraz wzoru Taylora mozna
tez napisa¢ nieco symbolicznie w postaci

Z Z 093]1. 0xjk

ji=1 Jk=1

X

hj, ... h;j, hi+ +h 0 kf( z,) = d f|
) g1 10;);'1 naxn L1y, Tp) = .

rozumiejac, ze nalezy tu k-krotnie zadziala¢ na funkcje f operatorem rézniczkowym

0 0
(hla—xl+ +hn8—:cn)'

Symbol d* f|, mozna rozumie¢ jako rézniczke k-tego rzedu funkcji f.
Reszte R,y otrzymuje si¢ przy tej konstrukcji z reszty
t?‘—l—l

Rr—l—l = (T‘l‘ 1)'

PUTV(t)  gdzie 0< <1,

wzoru Taylora dla funkcji ¢(t), ktadac t = 1:

1 a a r+1
B = (r+1)! (hl oxy +”'+hn8—xn) /

x+6h

Napiszmy jeszcze w pelnej krasie wzor Taylora dla funkeji f(z,y) dwoch zmiennych:

0 0
Fathovt ) = fo)+ 5o ot 2L
h;)
T,y
hp;hr-l-l—p .

hy

"E7y

2
eyt o

h2 2
x + 8y2

ox vy
L oF
2\ 022,
an
/r' Z < ) I'Payr p
§ r+1 o= 1f
7“+ 1) (r+1)! D dzPdyr+1-p

Tak jak w przypadku funkcji jednej zmiennej, jesli mozna pokazaé, ze R,.; dazy do
zera, gdy n — oo, otrzymuje si¢ nieskoniczony szereg Taylora. Poniewaz szereg Taylora
jest jednoznaczny, naogot zamiast tepo oblicza¢ pochodne czgstkowe, wygodniej jest przy
rozwijaniu funkcji wielu zmiennych w taki szereg skorzystaé¢ ze znanych rozwinieé kilku

Ox Jy

hp hT’_p

Ty

x+6hg,y+0hy

35



funkcji elementarnych. Ponizej zobaczymy to na przykladach. Rozwiniecie w szereg
Taylora daje tez uzasadnienie metody szukania ekstremoéw funkcji wielu zmiennych, czym
zajmiemy sie w przysztym tygodniu.

Przyktlady

Rozwina¢ w szereg Taylora wokol punktu (0,0) do trzeciego rzedu wtacznie funkcje
f(z,y) = €® siny. Korzystamy ze znanych?' rozwinie¢ funkcji exponens i funkcji sinus:

1 1 1
flz,y) = (1—|—l’—|—§$2—|—61’3—|—...) (y—6y3+...)
1

— Yty saty— oyt
: FUARIE

Sprawdzamy, ze to samo wychodzi z pochodnych: f(0,0) =0,

fo(z,y) = €” siny, f2(0,0) =0,
fy(z,y) =¢€® cosy, f,(0,0) =1,
fue(@,y) = €" siny, f22(0,0) =0,
Jyy(z,y) = —€" siny, f4y(0,0) =0,
fuy(@,y) = €” cosy, fay(0,0) =1,
feaa(T,y) = €" siny, fr22(0,0) =0,
foay(T,y) = €” cosy, fa2y(0,0) =1,
fogy(x,y) = —€" siny,  fuyy(0,0) =0,
fyyy(T,y) = —€” cosy, fyy(0,0) = —1.

I teraz sktadamy to w calosé (pierwsze liczby w srodkowych wyrazach w nawiasach sa
czynnikami kombinatorycznymi bioracymi sie z symbolu newtona):

1
1
57 (002" +3- 12y +3-0- 2y + (=1) o),

co jest tym samym rozwinieciem, co uzyskane wyzej.

To samo z funkcja f(x,y) = In(1+x+y?): rozwijamu do trzeciego rzedu wokot punktu
(0,0). Najpierw sprytem: pamictamy, ze*? In(1 +¢) = ¢ — %52 + %53 + ..., wiec, biorgc
eE=x+ yz,

1 1

n(ltz+y’)=at+y’ 5@ +y’) +o@ty?) +...

=W

1 1 1
:a:+y2—5382—:):@/2—§y4+§x3+x2y2+xy4+§y6+...

21To sg rzeczy, ktore trzeba pamietaé az po grob.
227n6w: to trzeba przez sen recytowad!
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Ograniczajac rozwiniecie do wyrazow trzeciego rzedu mamy wiec

1 1
=r——2’+yi+ -2t —ayt 4.

In(1+z + y?) 5 3

Teraz to samo zw wzoru z pochodnymi: f(0,0) = 0 i (dobre ¢wiczenie w obliczaniu
pochodnych!)

fo(z,y) = H—%%—y?’ f2(0,0) =1,
o) = s £,(0,0) =0,
fea(,y) = —m, f22(0,0) = —1,
fuliy) = 2 Fn(0,0) =2,
2y

Jay(,y) = NIEE FEEk fay(0,0) =0,
Fueal,y) = m Frea 0,0) = 2,
fazy(T,y) = (:[_‘_;l—?j_yg)g7 f22y4(0,0) =0,
Fonlrg) =~ 0.0 = 2,

No i znow sktadamy to w catosé
1 2 2
flr,) =0+1-24+0- vt (1) 2 +2-0-2y+2-y°)

3' (2-2°4+3-0-2°y+3-(=2)-2y*+0-9°),

[ znéw jest to to samo, co poprzednio.

Rozwinmy jeszcze funkcje f(x,y) = —2? + 22y + 3y* — 62 — 2y + 4 w szereg Taylora
wokol punktu, dla odmiany, (—2,1): f(—=2,1)=—-4—-44+3+12—-2+4=91

folz,y) =—2z+2y—6,  f,(0,0)=0,
folz,y) = 3$+6y—2 f4(0,0) =0,
fralz,y) =
fyy(@,y) = 6,
fay(z,y) =
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Wszystkie dalsze pochodne sg po prostu réwne zeru - wzér Taylora ma w tym przypadku
skoriczong liczb¢ wyrazow. Skladamy w calosé: hy, = +2, hy =y — 1:

1
F(=24he, 1+h)=9+0-hy+0-h,+ =

2(—2~hi+2-2~hxhy+6~y2),

czyli, wstawiajac h, =x +21 hy =y — 1,
fl@,y)=9—(x+2?+2(x+2)(y— 1) +3(y—1).

Jest to oczywiscie ten sam wielomian, co funkcja f(x,y), tylko inaczej pogrupowany.
Kazdy wielomian wielu zmiennych skonczonego stopnia n mozna rozwinaé¢ w szereg Tay-
lora wokoét dowolnego punktu i zawsze wyjdzie ten sam wielomian, tylko inaczej zorgani-
ZOWany.

Napiszmy jeszcze wzor Taylora rzedu trzeciego uwzgledniajacy reszte stosujac go do
funkcji f(z,y) = sin®(z+y) i punktu (7, 7). Oczywiscie f(m,7) = 0. Obliczamy pochodne:
fa(z,y) = fy(z,y) = sin(2z + 2y)
fea(T,y) = fuy (7, y) = foy(2,y) = 2cos(2x + 2y),
Joae(T,Y) = faay(2,Y) = foyy(T,4) = fyyy(v,y) = —4sin(2z + 2y) .

Zatem fac(ﬂ-vﬂ) = fm(Trvﬂ-) =0 fmm(ﬂ'vﬂ-) = fyy(Traﬂ-) = fmy(ﬂ'vﬂ-) =21 fmmm(ﬂ'ﬂr) =
faay (T, m) = foyy(m,m) = fyyy(m,m) = 0. Kladziemy h, =2 — 7w, h, =y — m:

1
f(r+hy, 7+ hy)=04+0-h,+0-h, +2'
Zero przed R4 to sa wyrazy rzedu trzeciego, ktore sg wszystkie zerami. Reszta Ry zgodnie
z przytoczonymi wczesniej wzorami jest dana przez

4 oY
4@2()M@

gdzie 0 < 6 < 1. Oczywiscie caly wic w tym, ze (bez szczegdlowej analizy konkretnej
funkcji) nie wiadomo ile ta § ma by¢, ale tu mozemy prosto oszacowaé |R4| od gory, czyli
oszacowaé btad popeliany przez urwanie wzoru Taylora na wyrazach trzeciego rzedu (i
nieuwzglednianiu reszty). Daje sie to zrobi¢, bo wszystkie pochodne czwartego rzedu tej
badanej tu funkcji sg takie same
of
oxP Oyr—r
Obliczamy je w jakim§ punkcie (m + 6h,, 7 + 6h,), ale ze | cos(2x + 2y)| < 1, to mozemy
napisacé

(2-h2+2-2-hyhy+2-h2) +0+ Ry.

pp4—p
hehy P,

(m+0hg,m+0hy)

—8cos(2z+2y), p=0,1,234.

4
1 4 B
|Ra| = ‘_I 2% (p) WPhEP 8 cos (2(r + Ohy) + 2(7 + Ohy))
p:
8 |\ (4 1
= Z% (p> Wty 7| = gl bl
p:
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Ekstrema funkcji wielu zmiennych

Ze wzoru Taylora wynikaja warunki istnienia lokalnych ekstreméw funkeji wielu zmien-
nych. Niech bowiem f(z1,...,x,) bedzie funkcja ciagla i (przynajmniej) dwakro¢ roz-
niczkowalng w pewnym (otwartym) otoczeniu punktu x* = (z3,...,25) € R™ o ciagtych
w otoczeniu tego punktu drugich?® pochodnych. Zastosowany do funkcji f w otoczeniu
punktu x* wzor Taylora drugiego rzedu (ktoéry, przypomnijmy, jest Scista réwnoscia) ma
postac

hy
f@y+hy, o+ ha) = fy, o al) + (fo o el |
P
fw1m1 e fmlmn hl
1 S :
+§(h1,...,hn) _ _
fl‘nxl AR f:(:n:cn X*+9h h’n

Pochodne drugiego rzedu sa tu obliczone gdzies na linii pomiedzy punktem x* i punktem
x*+h (0 <0 <1, jak to we wzorze Taylora). Jesli wszystkie pochodne czastkowe pierw-
szego rzedu obliczone w punkcie x* sg rowne zeru (znika caly czton liniowy w wektorze
h w pierwszej linii powyzszego wzoru Taylora), a forma kwadratowa drugich pochodnych
funkeji f obliczonych w punkcie x* (a nie w punkcie x* + 6h !)

frlwl s f:vlwn h'l
hihy = (hy,... b)) | .
.f:cnxl ce fxnxn x* h’n

0°f

Qx+(h) = Qij(x )hihj = or; 0xj .

jest dodatnio (ujemnie) okreslona, tzn. wyrazenie to jest zawsze dodatnie (ujemne) dla
kazdego wektora przemieszczenia h, to funkcja ma w punkcie x* lokalne minimum (maksi-
mum). Istotnie: poniewaz zalozylismy, ze drugie pochodne funkcji f sa ciagle w otoczeniu
punktu x*, to zawsze mozna wybra¢ tak male otoczenie (czyli takze dostatecznie “krotki”
wektor h), zeby w calym tym otoczeniu, wiec takze i w nieznanym a priori punkcie x*+6h,
forma kwadratowa drugich pochodnych byla tez dodatnio (ujemnie) okreslona (przez ana-
logie: jesli f(0) > 0, a funkcja f jednej zmiennej jest ciagta w otoczeniu punktu 0, to
zawsze mozna dobrac taki |e|, ze f(e) > 0 rowniez; kluczowa jest tu ciaglosc). Zatem
przy dostatecznie krotkich wektorach h dodatnio (ujemnie) okreslona jest tez forma kwa-
dratowa (w ktorej drugie pochodne sa obliczone w punkcie x* 4+ ¢h) w wypisanym wyzej
wzorze Taylora drugiego rzedu i tym samym jest jasne ze dla dowolnego punktu x* + h
nalezacego do tego otoczenia f(x* 4+ h) > f(x*), czyli w x* funkcja ma lokalne minimum
(f(x*+h) < f(x*) i funkcja ma w x* lokalne maksimum).

2376 pierwsze sa ciggle wynika z istnienia drugich pochodnych.
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Punkty x*, w ktorych znikaja wszystkie pierwsze pochodne czastkowe funkcji f nazywa
sie jej punktami krytycznymi lub punktami stacjonarnymi (ta druga nazwa, to dlatego,
ze przy odchyleniu sie od takiego punktu warto$é funkcji z doktadnoscia do pierwszego
rzedu nie zmienia sie, czyli pozostaje stacjonarna). Jesli spelnione sa zalozenia o ciaglosci
drugich pochodnych w otoczeniu takiego punktu, a forma kwadratowa drugich pochod-
nych ma w punkcie x* sygnature mieszana (zob. skrypt do algebry), tj. ile$ plusow i iles
minusoéw (i, by¢ moze jakies zera), to punkt taki nazywa sie punktem siodfowym funkcji
f, co wynika z tego, ze przy pewnych wyborach kierunku wektora h zachodzi ostra nie-
rownosé¢ f(x* +h) > f(x*), a przy innych wyborach kierunku zachodzi ostra nieréwnosé
f(x* +h) < f(x*): w szczegolnym przypadku funkcji f : R? — R ma ona, na trojwy-
miarowym wykresie, w otoczeniu punktu x* ksztalt mniej lub bardziej przypominajacy
siodto.

Moze tez sie zdarzy¢, ze w punkcie krytycznym x* forma kwadratowa drugich pochod-
nych ma sygnature z zerami. Jedli jest to sygnatura typu kilka pluséw, kilka minuséw i zero
(lub zera), to w punkcie takim funkcja nie ma ekstremum, bo i tak (znéw przy zatozonej
ciggtosci drugich pochodnych!) sa kierunki (te “plusowe”), w ktorych f(x*+h) > f(x*) i
sa inne kierunki (te “minusowe”), w ktorych f(x*+h) < f(x*). Mniej jasna jest sytuacja,
gdy sygnatura formy kwadratowej drugich pochodnych w punkcie krytycznym jest kilka
plusow i zera (kilka minuséw i zera) lub tez same zera (forma @ zerowa, tzn. dajaca
zero na kazdym wektorze). W tym przypadku nie mozna sie odwota¢ do ciaglosci (zero
w sygnaturze formy w punkcie x* naogot przestaje by¢ zerem juz w sasiednim punkcie) i
bez dokladniejszej analizy nie wiadomo, jaka jest sygatura formy w (nieznanym a priori)
punkcie x* + 6h (w ktorym bierze sie forme kwadratowa drugich pochodnych we wzorze
Taylora drugiego rzedu). Czasem mozna jednak orzec, czy w takim punkcie krytycznym
jest ekstremum. Np. jesli w punkcie krytycznym x* forma kwadratowa drugich pochod-
nych jest catkowicie zerowa (znikaja w tym punkcie wszystkie drugie pochodne czastkowe),
a mozna wypisa¢ wzor Taylora trzeciego rzedu bo trzecie pochodne funkcji f istnieja i sg
one ciaglte w jakims$ otwartym otoczeniu punktu x* i nie sa wszystkie tozsamosciowo (w
tym otoczeniu) zerowe, to funkcja f nie ma w punkcie x* ekstremum, bo forma trojliniowa

O3f

0x;0x;0xy, il

x*+6h

nie znika (znéw dzieki zalozonej ciagltosci trzecich pochodnych) na przynajmniej niekto-
rych wektorach, a jej wartos¢ zmienia znak przy zmianie zwrotu wektora h, tak iz jesli
f(x*+h) < f(x*), to f(x* —h) > f(x*). W takim przypadku (zerowej formy kwadra-
towej drugich pochodnych) dopiero znikanie w x* takze wszystkich trzecich pochodnych
czastkowych stwarza szanse na istnienie w takim punkcie minimum lub maksimum. Czy
funkcja ma rzeczywidcie w takim punkcie ekstremum, to zalezy od charakteru formy te-

40



traliniowej?4

o

ikl =
J Ox; Ox; Oy Oy | .

T'(h) = Tyjihihjkih, T;

ale charakteru takich form nie nauczyliSmy sie badaé¢, wiec takimi przypadkami sie nie
bedziemy tu zajmowac. Jeszcze bardziej skomplikowane sg sytuacje, gdy sygnatura formy
kwadratowej drugich pochodnych w punkcie krytycznym x* sa same plusy i zera lub same
minusy i zera. Ekstremum moze wtedy w takim punkcie istnie¢, ale zeby to stwierdzié,
trzeba zbadaé¢ zachowanie formy tréjliniowej trzecich i tetraliniowej czwartych pochodnych
na takich wektorach h, na ktorych forma kwadratowej drugich pochodnych w punkcie
krytycznym x* sie zeruje (znéw forma trojliniowa trzecich pochodnych musi na takich
wektorach znika¢, aby byta szansa na istnienie ekstremum).

W calej procedurze szukania ekstreméw funkeji wielu zmiennych najtrudniejszym kro-
kiem jest znalezienie punktéow krytycznych, gdyz trzeba znalezé (wszystkie) rozwiazania
uktadu n réwnan, ktére naogot nie sa liniowe. Wymaga to zwykle troche “sprytu boisko-
wego”. Pozostate kroki sg juz bezproblemowe. Charakter form kwadratowych nauczyliSmy
sie juz bada¢ w czesci algebraicznej. Mozna to robi¢ albo diagonalizujac ja metoda La-
grange’a, albo (najczesciej) stosujac kryterium “minorowe”.

Wreszcie, trzeba mie¢ $wiadomosé, ze funkcja f moze mieé¢ ekstrema, ktorych istnienia
nie da sie zbada¢ stosujac wzor Taylora, bo np. moga one si¢ znajdowa¢ w punktach, w
ktorych np. funkcja nie jest rézniczkowalna, albo nie ma pochodnych wyzszych rzedéw.
Jakies przyktady tego typu beda nizej.

Zadanie EX.Z1
Znalez¢ punkty krytyczne funkcji okreslonej na R? o wartoéciach rzeczywistych

r+y
(1+22)(1+y?)

fx,y) =

i zbadaé, czy sa one minimami, maksimami, czy punktami siodtowymi.

Rozwigzanie: Znajdujemy najpierw pierwsze pochodne czastkowe. Poniewaz funkcja ma
symetri¢ x <+ y, wystarczy znalez¢ jedna, np. f;, a f, mozna bedzie otrzymac zamieniajac
w f, miejscami x z y-kiem. W ten sposob dostajemy

fi(z.) 1 — a2 — 2y
z\T, = ’
Vo U+ 221+
1—9y%—2zy
fy(x>y) =

(T+22)(1+y2)?

24T jak tetradrachma (jak w wierszu Kawafisa “Orofernes™ Ten, ktory na tetradrachmie ma twarz jak
gdyby rozjasniong usmiechem...) - taka moneta z greckiej, a wlasciwie hellenistycznej, starozytnosci, albo
jak tetrarchia - system rzadéw wymyslony przez Dioklecjana, czy tetralogia - juz byla wspomniana w
tym skrypcie tetralogia Reeda i Simona.
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Rysunek 4: Ksztatt funkcji z Zadania EXZ1. O$ z biegnie od lewej ukosem nieco w dot,
a 0§ y ukosem w prawo do gory.

W punktach krytycznych, czyli tam, gdzie funkcja moze mie¢ ekstrema, f, =01 f, = 0.
Poniewaz mianowniki f, i f, sa zawsze dodatnie, rozwigzujemy uklad dwoch réwnarni:

1—a2?—22y=0,
1—y* =22y =0.

Odejmujemy jedno od drugiego stronami i znajdujemy, ze w punktach krytycznych x? =
y?, czyli albo x =y, albo v = —y. Jedli x = —y, to wyzej wypisane réwnania 1 + 2% = 0
nie maja rozwiagzan. Zatem punkty krytyczne sa tylko w x =y = +1/+/3.

Trzeba teraz obliczyé¢ drugie pochodne czastkowe. Poniewaz funkcja jest troche skom-
plikowana, jest to dobre ¢wiczenie w rézniczkowaniu (znéw f,, 1 f,, roznia sie zamiana
x <> y). Znajdujemy:

_ 2(=3z —y+2° + 32%y) ~ 8x(2? —1)

Jou = A+a22P1+y?) [, Q42217
2(—z — 3y + 3zy* + ¢°) 8z(z? — 1)

N (s e E M (R
2(—x —y + 2%y + 2y?) dz(2® — 1)

N (R (s M (e D

Obliczamy teraz w kazdym z dwu punktéow krytycznych, z; = y; = 1/4/3 oraz z, =
Y, = —1/4/3, macierz drugich pochodnych. Widaé, ze macierze te réznia sic znakami
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Rysunek 5: Ksztalt funkcji z Zadania EXZ2 w poblizu punktu (a,b) = (1/2,1/2). Mak-
simum w tym punkcie jest stabo widoczne i pewnie bez analizy pochodnych trudno by
byto by¢ pewnym, ze ono tam rzeczywiscie jest.

tylko (tzn. wszystkie elementy macierzy drugich pochodnych w punkcie z; =y, = 1/4/3
r6znig sie tylko o znak od odpowiadajacych im elementéw macierzy drugich pochodnych
w punkcie zy = yy = —1/+/3). Jak tatwo obliczyé, w 21 =y, = 1/V/3

)]

Macierz ta jest ujemnie okreslona, zatem w punkcie z; = y; = 1/4/3 funkcja ma maksi-
mum lokalne. Zatem w x5 = yo = —1/+/3 macierz Q(x, y») jest dodatnio okreslona i tam
funkcja ma lokalne minimum. Ze tak jest rzeczywiscie pokazuje wykres 4.

Zadanie EX.Z2
Zmalez¢ punkty krytyczne funkcji okreslonej na R? o wartosciach rzeczywistych

flz,y) = (2% = 2az)(y* — 2by) = zy(z — 2a)(y — 2b),

i zbadaé, czy sa one minimami, maksimami, czy punktami siodtowymi.

Rozwiazanie: Tu moznaby mysle¢, ze skoro badana funkcja jest iloczynem funkeji g(z) =
x(z—2a), ktéra ma minimum w punkcie z = a (bo to zwykta funkcja kwadratowa) i funkcji
h(y), ktéra ma minimum w punkcie y = b, to f(x,y) tez musi mie¢ minimum w punkcie
(a,b). Nie jest to jednak takie proste. Pochodne czastkowe

fo(z,y) =2y (v — a)(y — 20),

43



fy(Iay) =2z (ZIZ' - 2@)(y - b) ’
zeruja sie bowiem w kilku punktach, z ktorych (a, b), jest tylko jednym z mozliwych:

i) i) iii) i) v)

(a,b), (0,0),  (2a,2b), (2a,0),  (0,2b).
Drugie pochodne

fmc(xvy> = 2y (y - 2b)7
fyy(Iay) =2z (I - 2&),
fxy(x>y) :4(x—a)(y—b),

Daja w tych punktach odpowiednio formy kwadratowe

_2b2 0 0 4ab 0 _4ab

Pierwsza forma kwadratowa jest zawsze (z wyjatkiem sytuacji, gdy @ = b = 0) ujemnie
okreslona z czego wynika, ze odwrotnie niz moznaby mysle¢, w punkcie (a,b) funkcja ma
lokalne maksimum. W pozostatych czterech punktach formy kwadratowe drugich pochod-
nych sa nieokreslone. Aby sie o tym przekonaé (jesli nie ufamy kryterium “minorowemu”)
wystarczy zbada¢ je na dwoch prostych wektorach przesunie¢ h = (h,h) i h = (h, —h);
wezmy np. Qn’),iii)i

0 4(1,6 h o 2 . 0 4(1b h _ 2
o () ()= g () () = s

Teraz kilka mniej typowych zadan.

Zadanie EX.Z3
Znalez¢ ekstrema funkcji okredlonej na R? o wartoéciach rzeczywistych

flz,y) =2 — /322 + 4y>.

Rozwigzanie: Pochodne czastkowe tej funkcji

b ) u
T r,Yy) = ——F——,
\/3x? + 4y? Y \/3x? + 4y?

sa rozne od zera wszedzie, poza punktem (0,0). W tym punkcie sa one nieciagte: funkcja
ma w punkcie (0,0) pochodne kierunkowe w kazdym kierunku, ale nie jest w tym punkcie
rozniczkowalna w sensie mocnym. Wobec tego, nie mozna tu odwotac sie do reguty, ze eks-
trema funkcji znajduja sie w punktach, w ktorych znikaja wszystkie pochodne czastkowe.
Niemniej jest oczywiste, ze f(z,y) < f(0,0) = 2 we wszystkich punktach (z,y) # (0,0).
Zatem funkcja ma w punkcie (0,0) ma maksimum i jest to nawet maksimum globalne.

fx(x>y) ==
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Rysunek 6: Ksztalt funkcji z Zadania EXZ3 w poblizu punktu (0,0). Widaé. ze w tym
punkcie funkcja ma “dziubek”, wiec nie jest tam rézniczkowalna.

Ksztalt funkcji jest pokazany na rysunku 6. Widaé, ze nierdzniczkowalnos$¢ funkcji w
mocnym sensie w punkeie (0,0) wynika z tego, Ze ma ona tam “dziubek”.

Zadanie EX.Z4
Znalez¢ ekstrema funkcji okreglonej na R? o wartosciach rzeczywistych wzorem

fla,y)=a"—y".

Rozwigzanie: Pochodne czastkowe tej funkcji

fﬂc(xvy> = 8'T77 fy(x7y> = _42/3;

istnieja na calym R? i sg ciagte, podobnie jak drugie pochodne czastkowe

fzz(x7y> = 56‘7;67 fyy(x7y> = _122/2, fzy(xvy) = 0

Obie pierwsze pochodne czastkowe zeruja sie tylko w punkcie (0,0) - jest wiec to jedyny
punkt krytyczny badanej funkcji - ale forma kwadratowa drugich pochodnych jest w tym
punkcie catkowicie zerowa. Zatem nie mozna na jej podstawie okresli¢ charakteru tego
punktu krytycznego. Mozna jednak to zrobié¢ postugujac sie zdrowym rozsadkiem. Wy-
starczy zauwazy¢, ze f(0,0) = 0, oraz, ze we wszystkich punktach postaci (g,0), ktore
moga, gdy € — 0 leze¢ w dowolnie matym otwartym otoczeniu punktu krytycznego, war-
tos¢ funkcji jest wicksza od zera, a we wszystkich punktach postaci (0, ¢), tez mogacych
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Rysunek 7: Ksztalt funkeji z Zadania EXZ5.

leze¢ w w dowolnie matym otwartym otoczeniu punktu krytycznego, wartos¢ funkeji jest
mniejsza od zera. Zatem punkt krytyczny jest tylko punktem siodtowym.

Zadanie EX.Z5
Zmalez¢ punkty krytyczne funkcji okreslonej na R? o wartosciach rzeczywistych wzorem

f(z,y) =32y — 2® — y*,

i zbadaé ich charakter.
Rozwigzanie: Pochodne czastkowe tej funkcji

fx(l',y)ZGIL'y—Bl’z, fy(xay):3x2_4y3>

zeruja sie jednoczesnie w punkcie (0,0) i w punkcie (6,3). Widaé¢ to w zasadzie od reki:
jesli f, = 0 boz =0, to wtedy zerowanie si¢ f, wymaga by iy = 0; jesli zas (z,y) # (0,0),
to f; = 0 daje x = 2y, co wstawione do f, = 0 daje y = 3. Sa wiec dwa punkty krytyczne.
Drugie pochodne

fxw(x7y> = 6y - 6']:7 fyy(ajuy) = _12y27 fwy(xuy) = 6377

Daja one w punkcie (0, 0) catkowicie zerowa macierz formy kwadratowej. Poniewaz jednak
funkcja jest wielomianem, czyli wokét kazdego punktu moze byé doktadnie reprezento-
wana skonczonym wielomianem, mozna spojrze¢ na pochodne czastkowe trzeciego rzedu.
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Poniewaz kilka z nich, np. fizz, fozy, jest w punkcie (0, 0) niezerowych, funkcja nie moze
mie¢ w tym punkcie ekstremum.?
W punkcie (6, 3) macierz formy kwadratowej drugich pochodnych ma posta¢

~18 36 1 -2
<36 —108)__18<—2 6)'

Macierz ta jest ujemnie okreslona (—macierz jest dodatnio okreslona), zatem w tym punk-
cie funkcja ma maksimum lokalne. Ksztalt tej funkcji pokazuje rysunek 7.

Zadanie EX.Z6
Znalez¢ ekstrema funkcji okreglonej na R? o wartosciach rzeczywistych wzorem

f(z,y) =sinzsinysin(z +vy) .
Rozwigzanie: Pierwsze pochodne

fe(z,y) = cosxsinysin(z 4 y) + sinz siny cos(x + y) = sinysin(2z + y),
fy(z,y) =sinxcosysin(x + y) + sinx sin y cos(x + y) = sinzsin(z + 2y) ,

zeruja sie albo tam, gdzie sinx = siny = 0, czyli w punktach postaci (z,y) = (km,Ir),
gdzie k i [ sa dowolnymi liczbami catkowitymi, lub tam, gdzie 2x +y =prix+2y =rm
(p ir tez sa dowolnymi liczbami catkowitymi). Odejmujac stronami te dwa rownanka
znajdujemy, ze y = x — w(p — r), czyli x moze sie rézni¢ od y o catkowita wielokrotnosé
7 1 wstawiajac ten zwiazek do ktoregokolwiek z tych dwu réwnanek dostajemy, ze x =
2(2p —1r), ay = Z(2r — p). W zasadzie trzeba jeszcze rozpatrzy¢ rozwigzania takie,
w ktorych = = km i 22 + y = nm (lub na odwrot), ale to jest to samo, co x = k7 i
y = nm — 2kw = Im, wiec one nie daja nic nowego. Zatem czes¢ z tych punktéw, np.
punkt o p = r = 0, pokrywa sie¢ z uprzednio juz znalezionymi, ale sa tez i nowe. Poniewaz
badana funkcja jest, jak tatwo sie zorientowaé, biperiodyczna, tzn. f(x + Im, y + k7)) =
f(z,y), przy dowolnych catkowitych k i I, wystarczy zbada¢ tylko charakter punktow
krytycznych lezacych w “komoérce fundamentalnej” tj. w obszarze [0, 7) x [0, 7). Wynika
z tego natychmiast, ze rozpatrywaé trzeba tylko punkty o p = r (bo inaczej albo x albo y
jest ujemne). W sumie wiec w na plaszczyznie R? punkty krytyczne tworza caly sieé, ale

w [0,7) x [0,7) sa tylko trzy
T 27 27
0,0 -, = —, —).
( Y )7 (37 3)7 ( 3 ) 3 )
Drugie pochodne po prostych przeksztatceniach mozna zapisa¢ w prostej formie
Jfaa(®,y) = 2siny cos(2z + y),
fyy(z,y) = 2sinx cos(z + 2y),
fey(2,y) = sin(2x + 2y) .

25W przypadku zerowania sie w punkcie krytycznym formy kwadratowej drugich pochodnych warun-
kiem koniecznym, cho¢ nie dostatecznym!, istnienia w tym punkcie ekstremum jest - w przypadku funkcji,
ktore w otoczeniu tego punktu moga by¢ reprezentowane wzorem Taylora czwartego rzedu - znikanie
wszystkich trzecich pochodnych czastkowych.
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Rysunek 8: Funkcja z Zadania EX.Z6 w ksztalcie “korobki dla jajic” w dZzwiecznym jezyku
rosyjskim.

Wida¢ wige, ze we wszystkich punktach typu (km, I7), w szczegolnosei w punkcie (0, 0),
macierz formy kwadratowej drugich pochodnych jest zerowa i trzeba charakter takich
punktow zbadaé jakos inaczej. Jest jednak oczywiste, jesliz =y =ci|e] < 1,to f(e,e) =
2¢3 i jesli € > 0 to funkcja jest dodatnia, a jedli ¢ < 0, to ujemna. To wystarcza, by
stwierdzi¢, ze w dowolnie malym otwartym otoczeniu punktu (0,0) (a zatem i wszystkich
punktow (km, I7) z uwagi na biperiodycznosé) leza punkty, w ktorych wartos¢ funkcji jest
wiegksza i mniejsza od f(0,0). Zatem funkcja nie ma w tym punkcie ekstremum.
Pozostaje zbadaé¢ charakter punktow krytycznych typu

T T 2 27

(5’5)’ (3’ 3)'

Macierze formy kwadratowej drugich pochodnych maja w tych punktach postacie

5. 203

Jest wiec jasne, ze “komorce fundamentalnej” [0, ) x [0, ) funkcja ma maksimum w punk-
cie (%,%) i minimum w punkcie (3, 27) oraz, ze w punkcie (0,0) jest siodlo. Struktura

ta powtarza sie biperiodycznie na calej plaszczyznie R?, jak to wida¢ z rysunku 8.
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Zadanie EX.Z7
Zmalez¢ punkty krytyczne funkcji o wartosciach rzeczywistych okreslonej wzorem

22 1
y+——|—

f(IayaZ):I2+_ N
i Y ¥4

na R3 z wylgczeniem plaszezyzn o =0, y = 01 z = 0 i zbadaé ich charakter.
Rozwigzanie: Trzy réwnania wyznaczajace punkty krytyczne

fa(x,y, 2) :2x—£ =0,

1'2
1 22
fy(xvyvz):;_E207
2z 1
z y Y :___:Oa
Flows) =2 - 5

sprowadzaja sie, po pomnozeniu odpowiednio przez %, xy? i yz* (co wolno zrobi¢, bo

r#0,y#0iz#0)do22® =y, y? = 22° i 22 = y. Z polaczenia pierwszego z
trzecim dostaje sie 23 = 23, czyli @ = 2 i teraz pierwsze, 223 = y, w polaczeniu z drugim
zamienionym na 2y® = 22° daje y = 0, co jest wykluczone, lub y = 5. Zatem z* = 1,
czyli ¥ = 2z = 1/4'/3. Jest wiec tylko jeden punkt krytyczny.

Drugie pochodne

2y 222 2 2
fmm:2+ 3 fyy_?a fzz_g 23

1 2z
fmy_ ﬁv fmz:oa fyz__?a

daja w punkcie krytycznym macierz

6 —2*3 0
_24/3 28/3 _27/3

0 —27/3 12

Wszystkie trzy minory tej macierzy My, Msy i M3z sa dodatnie, wiec funkcja ma w
punkcie krytycznym minimum lokalne.

Zadanie
Pokazaé, ze funkcja

flz,y) = (1+€*)cosy +xe®,

ma nieskonczenie wiele lokalnych minimoéw, ale zadnego maksimum.
Rozwigzanie: Warunki wyznaczajace punkty krytyczne

fe(z,y) =" (1 + 2 +cosy) =0,
fy(x,y) = —(1+e")siny =0,
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Rysunek 9: Funkcja majaca same minima i zadnych maksimow (0§ 2 pokazana w poblizu
z =0).

maja jako swoje rozwiazania punkty y = nm (f, = 0) i, wobec tego (bo cos(nm) = (—1)",

co wszyscy powinni wiedzie¢), © = —1 — (—1)". Punktow krytycznych jest wiec (prze-
liczalnie) nieskoriczenie wiele. Sprawdzamy drugie pochodne (druga réwnosé zachodzi w
punktach krytycznych):

fez(z,y) =€* (1 + 2+ cosy) +e” =e€”,
fow=—(1+€")cosy = (—)”+1 (1+e%),

Zatem pierwszy minor M;; macierzy formy drugich pochodnych jest w kazdym punkcie
krytycznym dodatni, ale drugi minor My, jest dodatni tylko w punktach o nieparzystych n.
W tych punktach sa wiec minima lokalne, a w punktach o parzystych n punkty siodtowe.
Zatem rzeczywiscie funkcja ma nieskoriczenie wiele minimoéow i zadnych maksiméw. Jak to
jest mozliwe? Ano tak, jak pokazuje rysunek 9 - po prostu garby funkcji sa nieco pochylone
w kierunku z-owym i dlatego sa tylko siodtami. W minimach natomiast w kierunku z-
owym sa dotki, bo sa to funkcje f(z,7) = —-1—e"(1—2)= —-1—(1+z+..)(1—2)=
—2 + 22

Jeszcze inny typ zagadnien ilustruje
Zadanie (Ekstrema na zbiorze zwartym)
ZnaleZ¢ najwieksza i najmniejsza warto$é funkcji f(z,y) = 2% — 2y* na zbiorze punktow
(x,y) ograniczonych warunkiem % + y* < 36.
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Rozwigzanie: Punktem krytycznym funkcji jest punkt (0,0). W punkcie tym forma
kwadratowa drugich pochodnych ma posta¢

(%)

funkcja nie ma wiec tam ekstremum. Jakie$ maksimum i jakie§ minimum funkcja jednak
mie¢ musi, bo jak pisal wielki poeta (ktory Mtodziezy kochana?!):

“Zbiorze szlachetny, cny zwarty zbiorze,

na Tobie cztek funkcje okresli¢ sobie moze,

co jesli ciggta, zachowa Twq zwartosc,

i przyjmie po drodze swq najwiekszq wartosé!”

Skoro jednak wewnatrz zbioru (tzn. na zbiorze otwartym, x*+y? < 36) ekstreméw funkcja
nie ma, musza one by¢ na brzegu zbioru. Jedli wstawimy y? = 36 — 22, otrzymamy funkcje
f(x) = 32% — 72, ktéra ma minimum réwne —72 w x = 0, czyli minimalng swa wartosé
funkcja f(x,y) przyjmuje w punktach (0, £6). Powinna ona jednak mieé¢ gdzies i wartosé
najwicksza. Oczywiscie podstawiajac y* = 36 — 22 zgubilismy?® punkty (46,0). W nich
to wlasnie funkcja przyjmuje swe wartosci najwicksze, réwne 36.

26Bo jak sie zaraz dowiemy zajmujac sie tzw. funkcjami zadanymi w sposéb uwiktany, w tych punktach
warunek F(z,y) = 22 — y? — 36 = 0 nie wyznacza funkcji y = f(z), za to wyznacza funkcje x = x(y).

o1



Odwzorowania zadane w spos6b uwiklany

Sytuacja ktora sie tu zajmiemy jest nastepujaca: w przestrzeni R” jest wyrozniony przez
jakies m warunkow (m < n) majacych postac¢ rownosci (zawsze mozna je tak zapisac)

Fl(.flfl,...,.l’n)zo, ooy Fm(Il,...,LE‘n):O,

pewien zbior E. Warunki te, przyjmujemy, sa wszystkie niezalezne, tzn. spelnienie tylko
kilku z nich nie powoduje, ze ktorys z pozostatych jest juz automatycznie spetniony.?”
Ogolniej jeszcze, dane jest odwzorowanie F' zbioru D C R™ w R™ (m < n), czyli wlasnie
m funkcji F;, o ktérych zaktadamy to co wyzej. Zakladamy tez, ze odwzorowanie F' jest
na zbiorze D ciagte. Zbiér EF C D jest zadany jako przeciwobraz punktu 0 € R™, tzn.
F|g =0 € R™ (po ludzku: odwzorowanie F' ograniczone do zbioru F jest tozsamosciowo
zerowe, albo: F odzwzorowuje caly zbior E' w jeden punkt przestrzeni R™, mianowicie w
jej zero). Interesuje nas wtedy pytanie, kiedy zbior E definiuje (w sposéb uwiklany - stad
wlasnie nazwa “odwzorowania uwiktane”) uczciwe odwzorowanie f : R"™™ — R™. A jesli
definiuje, to jak oblicza¢ pochodne czastkowe tego odwzorowania? Pochodne czgstkowe
moga by¢ potrzebne, bo jak mamy zadane w ten sposéb np. odwzorowanie f : R3 — R!
(tzn. sytuacje odpowiadajaca n = 4, m = 1 w naszych ogblnych rozwazaniach), to
mozemy chcie¢ zna¢ jego ekstrema, a do tego, jak juz wiemy z poprzednego rozdzialiku,
trzeba umie¢ badaé¢ pochodne czastkowe tego odwzorowania. Zeby da¢ jaki§ przyktad:
wezmy znane nam z algebry réwnanie liniowe

x
a1 Ce A1n ) bl 0

Am1 -+ Qmn bm 0
Tn

w ktérym m < n, zapisane w troche nietypowy sposob. W tej postaci lewa strona jest
pewnym odwzorowaniem F : R" — R™ a punkty (zi,...,z,) € R" speliajace to
rownanie (z wektorem zerowym po prawej) tworza wtasnie w R” zbior F. Zalozmy, ze
rzad macierzy po lewej stronie jest rowny doktadnie m. Jest to wlasnie zadanie (liniowej)
niezaleznosci uktadu m réwnan. W takiej sytuacji jest (na podstawie tego, co wiemy z
algebry - algebra to potega!) jasne, ze F~1(0), czyli wtasnie zbior F, zadaje odwzorowanie
f: R — R™. Pamietamy przeciez: mozemy w macierzy wybra¢ niezerowy minor
rzedu m - zalézmy (jak zwykle dla prostoty zapisu), ze tworzy go pierwsze m kolumn

2TW szczegdlnosci oznacza to, ze nie sg one liniowo zalezne, tzn. zadanie, by
/\1F1(I1,...,In)+...+AmFm(I1,...,In) = O,

(znak = oznacza tu ze kombinacja po lewej stronie ma by¢ funkcja tozsamosciowo, a wiec na calym

R™, a nie tylko na E, réwna zeru) pociaga za soba rownos¢ \y = ... = A, = 0; jednak sformulowane
zadanie jest ogolniejsze, bo wyklucza tez sytuacje takie, ze np. Fy(w1,...,7,) = (Fi(x1,...,7,))?,
czy Fy(x1,...,0,) = [2Fi(21,...,2,) — 3F3(x1, ..., 2,)]Y/3, czy co$ w tym guscie. Warunki te mozna

pominaé, wtedy nalezy to troche bardziej zawile sformulowaé - nie bedziemy sie tu w to wdawac.

52



macierzy; n —m zmiennych z,, 1, ..., x, wraz z wektorem b przenosimy na prawsg strone
rOwnania i np. kramersictami rozwiazujemy uktad liniowych réwnan na niewiadome 1,
.. . Rozwiazanie istnieje dla dowolnych wartosci zmiennych 11, . . ., x, (i dowolnego
wektora b - dlaczego? sprawdzcie Parstwo swoje rozumienie algebry!). W rezultacie
otrzymujemy jako rozwiazanie zwiazki

czyli wlasnie jawna funkcje f: R"™™ — R™ (wektor b jest tu nieistotny dla nas; inny
wektor b, to po prostu inne odwzorowanie F' i inne zatem f). Przyklad ten, jakkolwiek
szczegbdlny - bo daje sie tu odwzorowanie f napisa¢ jawnie - pokazuje tez, ze nie zawsze
da si¢ np. dosta¢ funkcje

bo moze sie zdarzyé¢, ze minor stopnia m utworzony z m ostatnich kolumn macierzy
problemu jest akurat zerowy.

Widag¢ tez, ze mozna by tu byto zatozy¢, iz rzad macierzy problemu jest rowny r < m.
Przy zalozeniu, ze macierz rozszerzona (z dostawiona kolumna wektora b) tez jest rzedu
r byto by wtedy po prostu r < m niezaleznych réwnan na n niewiadomych i, zaktadajac,
ze r pierwszych kolumn i r pierwszych wierszy macierzy tworzy niezerowy minor stopnia
r, (zgodnie z procedura opisana w skrypcie do algebry) odrzuciliby$émy m — r ostatnich
rownan otrzymujac, po wykorzystaniu kramersigt, jawne odwzorowanie f: R"™" — R"

W przykladzie powyzszym zawsze sie daje otrzymac jawnie m (albo r) jakichs funkcji
n —m (albo n — r) zmiennych. Wobec tego pochodne mozna juz potem sobie obliczac¢
normalnie. W ogélnym przypadku jednak, kiedy odwzorowanie F': R" — R™ (m < n)
nie jest liniowe, naogdt odpowiednich zwigzkow nie daje sie jawnie rozwiktaé, ale daje sie
powiedzie¢, ze w otoczeniu jakiegos punktu x € D odwzorowanie F' zadaje jakas uczciwa
funkcje f n—m (lub n—r) ktoérychs z-6w w m (lub r; ale sytuacje, w ktorych nie wszystkie
roOwnania sa niezalezne wykluczyliSmy z zatozenia, wiec juz dalej nie bedziemy maci¢ tym
ogolniejszym przypadkiem) pozostatych z-6w, czyli wlasnie funkcje f: R — R™, i
daje sie oblicza¢ pochodne takiej funkcji i to dowolnego rzedu bez operowania jawnymi
wzorami na funkcje f. Chodzi wigc o to, by umie¢ powiedzie¢, w otoczeniu ktoérych
punktéw nalezacych do “poziomicy zerowej” F~1(0) C D, czyli do przeciwobrazu zera
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przestrzeni R™, definiowanej przez dane odwzorowanie F' : R" — R"™ odwzorowanie
to po pierwsze definiuje funkcje f : R®"™™ — R™ i po drugie, by umieé¢ oblicza¢ po-
chodne takich funkcji. Po co to fizykowi? A no np. dlatego, ze cala termodynamika
fenomenologiczna - przepickna i fascynujaca teoria, ktéra mam okazje dreczy¢ studentow
na wyktadzie na czwartym roku - wykorzystuje odwzorowania uwiktane. Np. zadana jest
entropia S jako funkcja S = f(U,V,n), a my chcemy mieé¢ raczej funkcje U = ¢(S,V,n)
i ja rozniczkowaé. Wtedy pytaniem jest, czy wszedzie F(S,U,V,n) = f(U,V,n) — S -
funkcja z R* w R! - zadaje, poprzez warunek F(S,U,V,n) = 0, funkcje U = ¢(S,V,n),
czyli wlasnie funkcje z R® w R i jak oblicza¢ pochodne U, nie umiejac jawnie napisaé
na U wzoru. W termodynamice naogét milczaco zaklada sie, ze wszedzie tak sie daje i
to w dowolng strone, np. ze daje sie tez napisa¢ V = h(S,U,n). Ale matematyk musi
wszystko mie¢ udowodnione... Jeszcze przykltadzik z termodynamiki. Wszyscy znaja row-
nanie stanu gazu doskonatego p V = nRT. Poniewa jest ono proste,?® mozna z niego
jawnie wyznaczy¢ p jako funkcje V., T i n, albo wyznaczy¢ V jako funkcje p, T i n i
sobie te wielkosci rézniczkowaé np. zeby obliczy¢ mierzalne wspotczynniki izotermicznej
Scisliwosci i1 termicznej rozszerzalnosci objetosciowej

o= L (Y _1(ov
v\ )., “-vi\er)

Ale sg bardziej skomplikowane rownania stanu. Np. rownanie VAW (Van der Waalsa)

2
(p+ ‘%) (V = nb) = nRT,
I przy takim réwnaniu obliczenie powyzszych wspotczynnkikéw, to juz nie jest takie oczy-
wiste...

W kazdym razie wazne jest zeby sobie uswiadomié: a) to jest uzyteczne, b) to nie
jest trudne! Zdrowy fizyczny rozum wystarcza, zeby sobie z tym dawaé rade. Zeby nie
komplikowaé zbytnio, bedziemy sie nizej zajmowaé prawie wylacznie przypadkiem, m = 1,
tj. kiedy odwzorowanie F' zbioru D (ktérym moze by¢ cale R™ lub jaki§ duzy otwarty
podzbior R™) jest dane jedna funkcja F(z1,...,x,). Na poczatek bedziemy sie zajmowaé
przypadkiem n = 2, czyli bedziemy bada¢, kiedy F(x,y) = 0 zadaje funkcje y = y(z),
albo funkcje z = z(y). Zbiéor E C D C R? mozna wtedy hieroglifami zapisa¢ tak

E={(r,y) €eR?: F(z,y) =0}.

Np. jesli F(z,y) = 2> +y? + 1, to F jest zbiorem pustym i sprawa jest bezprzedmiotowa;
jesli zas F(z,y) = 2* + y*/4 — 1, to zbiér E jest elipsa. Pytamy w tym przypadku,
kiedy przez punkt (z¢,yo) € E przechodzi krzywa, dajaca sie zapisa¢ jako ciagta funkcja
y = y(x), ktorej wszystkie punkty naleza do zbioru E. Czy jest jedna taka krzywa, czy

28Na drugim roku jest jaki§ wyklad niby z termodynamiki i po tym wyktadzie studenci mysla, ze
wszystko jest gazem doskonalym i wszyscy chodza jak (doskonale) zagazowani... A termodynamika to
jest teoria obejmujaca wszystkie uktady fizyczne, nie tylko gazy!
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moze kilka? To samo pytanie mozna postawi¢ zastepujac y = y(x) funkcja x = x(y). Na
tym drugim przyktadzie wida¢ wszystko jasno: mozemy napisaé

y=vV4—4x?, lub  y=—VvV4— 422,

i wiemy, ze przez dany punkt (zo,y) lezacy na rzeczonej elipsie przechodzi albo jedna z
tych krzywych albo druga. Wyjatki stanowia punkty (1,0) i (—1,0) bo tam wykres elipsy
na plaszczyznie zy jest pionowy i nie jest wykresem zadnej funkcji y = y(x) (inaczej:
dwie funkcje zdefiniowane powyzszymi wzorami sie w tych punktach tacza). Za to przez

te dwa punkty spokojnie przechodza wykresy funkcji z = z(y): funkcji x = /1 — y2/4
przez pierwszy i funkcji x = —4/1 —y?/4 przez drugi, ktore to funkcje sa uczciwymi

ciggltymi funkcjami wszedzie oprocz punktow (0, —2) i (0, 2) elipsy.

Ogolnie sprawe zatatwia takie twierdzenie (dowod byt na wyktadzie, ale skupmy sie i
przeczytajmy z uwaga): jesli odwzorowanie F'(z,y) ma w otoczeniu punktu (xg, o) € E,
tj. takiego, ze F'(xo,yo) = 0, ciagte pochodne czastkowe F, i F} i ta druga pochodna nie
znika w tym punkcie, tj. Fy(xo,yo) # 0, to w D istnieje (choc¢by nie wiem jak malutkie)
takie otoczenie otwarte punktu (g, 3), w ktérym odwzorowanie F' wyznacza jedna i tylko
jedna funkcje y = y(z), ktora jest ciagta i jej pochodna 3’ jest w tym otoczeniu dana (na
pierwszy rzut oka dziwnym, ale jak zaraz zobaczymy zupelnie oczywistym) wzorem

Dziwny dopisek ,—,(,) oznacza, zZe prawg stron¢ nalezy obliczy¢ nie w dowolnym punkcie
(z,y) tego otoczenia, tylko w punkcie nalezacym do zbioru E (czyli do przeciecia E z
tym otoczeniem). Z tego wzoru wida¢, ze warunek F,(zo,yo) # 0 jest tu jakos kluczowy
(z ciaglosci funkeji F' 1 jej pochodnych wynika, ze jak F,(xo,y0) # 0 to F, # 0 takze
w pewnym otwartym otoczeniu punktu (zg,yo) wiec powyzszy wzor jest dobry w tym
otoczeniu). Oczywiscie wszystko mozna odwrocié i jezeli Fy(xo,yo) # 0, to w pewnym
otoczeniu punktu (xg, 7o) istnieje analogiczna jednoznaczna funkcja x = z(y) i 2/(y) =
—Fy(ZL', y)/Fx(x> y)|m:w(y)-

Przyktady
1) Niech F(z,y) = —10 4 exp(2z — 3y). To jest przyktad, w ktorym mozna rozwiazaé
warunek F'(z,y) = 0 i dosta¢ jawnie funkcje y = y(z):

2 1
y(z):§x—§ln10,

wiec ¢ (z) = % Ale zobaczmy, jak dziala podany wzoér na pochodna funkcji zadanej w
sposob uwiktany. Pochodne czastkowe funkcji F'(z,y)

Fy(z,y) =2,  F,(z,y) =—-3""%,

nie zeruja sie nigdzie (na calym R?) wiec zgodnie z twierdzeniem przez kazdy punkt zbioru
E = F~1(0) przechodzi dokladnie jedna krzywa y = y(z) (i oczywiscie doktadnie jedna
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krzywa x = x(y)). Pochodna funkcji y = y(x) zadanej réownoscia F(x,y) = 0, ktora daje
podany wcze$niej wzor jest rowna

i jest oczywiscie ta sama pochodna, co obliczona bezposrednio.
2) Bardziej skomplikowany przyktad. Niech

F(r,y) =22 — 2%*y* + (1 — 2%) siny.

Pytamy, czy przez punkt (0, 0) przechodzi jakas krzywa bedaca wykresem funkcji y = y(x)
zadanej warunkem F'(x,y) = 07 A jak tak, to jaka jest pochodna tej funkcji? Najpierw
sprawdzamy, czy punkt (0,0) w ogole nalezy do zbioru E (czyli, czy pytanie ma sens,
albo, w jezyku filozofow, czy jest prawomocne). Nalezy, bo F(0,0) = 0. To teraz trzeba
sprawdzi¢ pochodng czastkows F):

F,(z,y) =22YIn2 — 22%y + (1 — 2%) cos y,

i F,(0,0) = 1. Poniewaz w punkcie (0,0) pochodna F, nie znika i punkt ten nalezy
do F~1(0), przechodzi przezeri dokladnie jedna krzywa bedaca w jakim§ otoczeniu tego
punktu wykresem uczciwej funkcji y = y(z), cho¢ jawnie nie jesteSmy w stanie napisac
wzoru na te funkcje. Poza tym, y(0) = 0. No i, poniewaz F,(z,y) = 2Y — 2xy* — 2z siny,
wiec w tym otoczeniu punktu (0, 0)

2Y — 2xy? — 2z siny
x29In2 — 222y + (1 — a2) cosy

y(z) =

Po lewej stronie 3 jest napisane jako funkcja z tylko, a po prawej wystepuje i x i y.
Nalezaloby oczywiscie po prawej stronie wstawi¢ y = y(x), ale nie potrafimy tego prak-
tycznie zrobi¢, bo jak juz mowilismy nie jesteSmy w stanie rozwikta¢ wzory F(z,y) = 0
wzgledem y. No coz, takie jest zycie z funkcjami uwiktanymi... Ale jedno zawsze mozna:
mozna warunek F'(x,y) = 0 wykorzysta¢ zeby jako§ sobie prawa strone inaczej zapisac.
Np. mozemy zawsze napisa¢ x2¥ = x?y* — (1 — 2?) siny i przeksztalci¢ powyzszy wzor na
pochodng w

2Y — 2xy? — 2z siny

/
yi(e) = (22y? — (1 — 2?)siny) In2 — 222y + (1 — 22) cosy
Jest to rownie dobra i catkowicie rownowazna postaé¢ tej pochodnej w tym sensie, ze jesli
prawe strony tych dwu wzoréw obliczymy w jakims punkcie (xg, yo) nalezacym do FE, czyli
takim, ze F'(zo,y0) = 0, to oba wzory dadza te sama liczbe (pochodna), czyli to samo
nachylenie krzywej y = y(z) w punkcie xo, w ktorym y(x¢) = yo. Oczywiscie, poniewaz w
(0, 0) nie znika tez pochodna F,(x,y), mozna krzywa wyznaczang przez warunek F(x,y) =
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Rysunek 10: Lis¢ Kartezjusza (feuille de Descartes), czyli krzywa bedaca zbiorem FE
punktéw spelniajacych réwnosé 2® + ¢ — 3zy = 0.

0 traktowa¢ w otoczeniu tego punktu jak funkcje x = x(y) i wtedy pochodna tej funkcji
jest rowna

F,(x,y) £2YIn2 — 22y + (1 — 2?) cosy
Fy(z,y) 2V — 2xy? — 2xsiny

(z?y? — (1 — 2%)siny) In2 — 2z%y + (1 — 2?) cosy
a 2V — 2xy? — 2wsiny '

3) Przyktad sztandarowy, bardzo pouczajacy, wziety z Lejka. Niech
F(z,y) =2 +9y° — 32y.

Zbior punktow (z,y) € R? spelniajacych réwnosé F(x,y) = 0 jest tzw. lisciem Kartezju-
sza. Jest jasne, ze gdy |z| > 1, warunek F(z,y) = 0 ma jedno rozwiazanie rzeczywiste
y ~ —x (pozostale dwa rozwigzania - bo to w koricu jest réwnanie trzeciego stopnia na
y - sa przy takich z-ach zespolone). Mniej oczywiste, ale mozna tez do tego dojs¢ ro-
zumem, jest to, ze tak jest zawsze, gdy = < 0. Zato gdy =z > 0, ale = nie jest za duze,
istnieja trzy rzeczywiste rozwiazania: wyglada to tak jak na rysunku 10: krzywa idaca
od gory od ujemnych x-6w przechodzi przez (0,0), robi w pierwszej ¢wiartce plaszczyzny
xy zawijasa, ponownie wraca do punktu (0,0) i dalej juz biegnie, gdy z rosnie od zera,
w dol czwartej éwiartki. Jest wiec przynajmniej od razu jasne, ze punkt (0,0) jest jakos
trefny, bo wychodza z niego cztery linie bedace obrazem zbioru F, a nie dwie, i te jakby
dwie krzywe przechodzace przez punkt (0, 0) sa w kazdym, nawet najmniejszym otwartym
otoczeniu tego punktu. To zobaczmy, jak to wyglada z punktu widzenia twierdzenia o
funkcji uwiktanej? Pochodna czastkowa po y funkcji F'(z,y)

Fy(x,y):?)(yz—x)7

zeruje sie na calej paraboli z = 32, ale z punktu widzenia istnienia funkcji uwiktanej nas
interesuja tylko te zera pochodnej F),, ktore sa punktami zbioru E, czyli sa rozwiazaniami
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ukladu dwoch rownan

Fy(a,y) =3(y* —a) =0,
F(z,y) =2 +y* - 32y =0.

Podstawiajac z pierwszego x = y? do drugiego dostajemy réwnanie y3(y® — 2) = 0.
Zatem istotnymi z punkt widzenia twierdzenia o funkcji uwiktanej punktami sg (0,0) i
(22/3,21/3) bedace rozwiazaniami tego uktadu dwoch rownan. W nalezacym do E punkcie
(223, 21/3) zeruje sie F, wige przez ten punkt nie przechodzi uczciwa funkcja y = y(x):
istotnie: to jest na tym zawijasie, ktory wykres zbioru E robi w pierwszej ¢wiartce,
punkt potozony najbardziej na prawo - krzywa reprezentujaca zbior F “staje tam deba”,
czyli w samym punkcie (22/3, 21/3) biegnie doktadnie pionowo. To nie moze by¢ wiec w
tym punkcie funkcja y = y(x)! Ale oczywiscie taka krzywa moze jak najbardziej by¢
wykresem uczciwej funkcji 2 = x(y). I rzeczywiscie: w punkcie (22/3, 21/3) nie znika
pochodna F,, F,(22/3, 21/3) =£ 0 i twierdzenie o istnieniu funkcji uwiktanej nie zabrania
przechodzenia przez ten punkt funkcji x = x(y) - przeciwnie, méwi ono, ze przez ten
punkt i w jego otoczeniu biegnie jedna i tylko jedna funkcja x = z(y). Analogiczny jest
punkt (2'/3, 22/3) réwniez nalezacy do E (jest to punkt polozony najwyzej na krzywej
z rysunku 10 w pierwszej ¢wiartce), w ktorym zeruje sie na odmiane Fy, a F, # 0: w
tym punkcie (i jego otoczeniu) istnieje funkcja y = y(z), ale nie istnieje funkcja = = x(y).
Natomiast charakter punktu (0,0) jest inny. Latwo zobaczy¢, ze w tym punkcie zeruje sie
rowniez F,. Skoro wiec w punkcie (0,0) nalezacym do zbioru E zeruja sie obie pochodne,
F, i F,, to z twierdzenia wynika, zZe nie moze przez ten punkt przechodzi¢ ani funkcja
y = y(x), ani funkcja = = x(y). Tak wlasnie odzwierciedla sie zauwazona wyzej “trefnos¢”
punktu (0,0). bardziej matematycznie rzecz ujmujac, jest to punkt osobliwy (ale dlaczego
“osobliwy” ma by¢ lepiej niz “trefny”?).

Zajmijmy sie teraz zrozumieniem, skad sie bierze ten dziwny wzér na pochodng v’
funkeji y = y(z) zadanej w sposob uwiktany. Chodzi oczywiscie o to, ze jak sie ten wzor
rozumie, to nie trzeba nic pamieta¢ - mozna go zawsze natychmiast sobie odtworzy¢ (i
zycie staje sie lzejsze). Mozna ten wzor zrozumie¢ na przynajmniej dwa sposoby. Po
pierwsze, jesli funkcja y = y(z) jest zadana przez réownos¢ F(z,y) = 0 (w otoczeniu
jakiegos przyzwoitego punktu) to znaczy, ze F(z, y(z)) = 0 - wyrazenie po lewej jest, jako
funkcja z-a, tozamosciowo zerowe. Liczymy pochodna tej tozsamosciowo zerowej funkcji
z-a (czyli pochodna tez jest zero tozsamosciowo) stosujac regutki, ktore juz znamy:

0= L by = W) A
y=y(z) Y t
dy
= Fu(e, y(@) + Fyla, () .
x
Wyliczamy stad y' = dy/dz i mamy ten “dziwny” wzor.

Drugi sposob widzenia skad sie bierze wzor na pochodna y'(x) jest bardziej zabawny,
ale wielce ksztatcacy. Bedzie on nam bardzo pomocny przy rozumieniu rownan réznicz-
kowych, a poza tym rézne tozsamosci termodynamiczne (ze znéw wskocze na ulubionego

y=y(z)
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konika), ktore studentéow strasza po nocach, daja sie w ten sposoéb zrozumieé i calko-
wicie oswoi¢. Mamy sobie funkcje dwoch zmiennych F(z,y) i jesteSmy na plaszczyznie
xy w jakim§ punkcie (zg,y0) € E czyli takim, ze F(xo,y9) = 0. Piszemy teraz zwykla
dwuwymiarowg rézniczke funkeji F' w tym punkcie

dF = Fw(l'o, y(]) dx + Fy(l'o, y(]) dy .

Roézniczka dF méwi nam, o ile mniej wiecej - pamietamy, to jest gltéwna liniowa czesé
prawdziwej zmiany AF - warto$¢ funkcji F' zmieni sie, gdy z (xg,yo) (gdzie F' = 0)
przesuniemy sie do jakiego$ innego punktu (zo + dz, yo + dy). Na ogot jakos sie zmieni.
Ale mozemy zapytac, jak kroczek dy w kierunku y musi by¢ skorelowany z kroczkiem dx
w kierunku z, by wartos¢ funkcji F' pozostata ta sama, co w (zg, yo) (czyli rowna zeru)?
Tzn. jak musza te sktadowe wektora przesuniecia byé ze soba skorelowane, by przesunaé
sie z (o, yo) do sasiedniego punktu zbioru E? No, po prostu tak, zeby dF = 0, czyli
dy _ Fu(xo, 1)

dr|, .  Fy(z0,v0)

A ten stosunek dy do dz to jest wlasnie to, co zwiemy pochodna vy’ funkcji y = y(z).
I tak musi byé¢é w kazdym punkcie zbioru E, w otoczeniu ktorego istnieje i przez ktory
przechodzi funkcja y = y(x). Widac tez, co si¢ dzieje w punktach trefnych: jesli F, = 0,
to, musi by¢ dx = 0 czyli trzeba z (z,yo) sie przesunaé pionowo, zeby warto$¢ F' sie nie
zmienita i dlatego nie istnieje tam funkcja y = y(x), zato istnieje funkcja x = z(y) (i ma w
tym punkcie zerowa pochodna). Jesli zasi F, = 01 F,, = 0, to niema zadnej korelacji dz-a
z dy-kiem i mozna si¢ przesunaé¢ w dowolnym kierunku wiec w sumie nie wiadomo, gdzie i
dlatego taki punkt jest trefny. Zobaczymy tez, ze taka sama jest przyczyna zbiegania si¢ w
niektorych punktach krzywych catkowych réwnan rézniczkowych pierwszego rzedu (jak sie
na te rownania patrzy w sposob fizyczny, czyli tak jak tu, a nie poprzez te matematyczne
hieroglify).
Zauwazmy jeszcze, ze ostatni wzoér w termodynamice zapisalibysmy jako

(@) _ E _ (9F/0x),

O F, = (0F/ay).

Te subskrypciki (fuj, jaki anglicyzm!) g, ., , w termodynamice si¢ dopisuje, zeby pamie-
ta¢, ktora zmienna jest trzymana stata. Powstaje z tego taki “szokujacy” wzorek

(), (5), (GF). =

W moich wyktadach z termodynamiki - zgodnie z moja manierg nadawania wszystkiemu
oswajajacych nazw - zwie sie to “the shocking relation” - relacja szokujaca. No ale teraz
juz niema w niej nic szokujacego.

Idac za ciosem wyprowadzmy jeszcze wzorek na druga pochodna funkeji y = y(x) w
punkcie, w ktorym ta funkcja istnieje. y = y(x) ma w otoczeniu takiego punktu i druga
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pochodna, jesli drugie pochodne czastkowe F,,, F,, i I, W otoczeniu tego punktu istnieja
i sa ciagte. Co to jest druga pochodna? No, jest to pochodna pierwszej pochodnej. Zatem

%ﬁuﬁjéﬁ%%%%ﬂz—lQ%amwm0+ﬁ(%&uwMO,

i dalej tancuszkowo:

d , 1 dy F, dy
dxy(z) F, ( * ydx)+Fy2( v ¥ yydm)

Iy

teraz przypominamy sobie, ze dy/dx =y’ = —F,/F,, wstawiamy i po malym uporzadko-
waniu mamy

d ,, . Fy. Fy2 —2F,, F, F,+ F,, F?
() =y (@) = - T

(z,y=y(z))

Prawda, ze §liczny wzorek? Nawet da sie go zapamieta¢, ale po co? Przeciez mozna go
zawsze w minutke wyprowadzié...

Mozemy ten wzorek sprawdzi¢. Wezmy pierwszy przerabiany przyktad, czyli odwzo-
rowanie F(z,y) = —10 + exp(2x — 3y). Warunek F'(z,y) = 0 definiuje funkcje:

2 1
y(:z):gx—glnlo,

wiec y”’(x) = 0. A co da wyprowadzony wyzej wzor? Pamietamy, ze
Fag) =259, Fy(ay) = -3¢+,
1 wobec tego
Frolz,y) =462 F(z,y) =9e¢="% | F,(x,y) = -6
Czyli:
3

Fuo F? = 2F, F, Fy+ Fp F2 = [4-(=3) =2 (=6) - (2) - (=3) +9- (2)°] (¢***)* = 0.

Zgadza sie.

Inny przyktad. Znajdzmy pierwsza i druga pochodna funkcji y = y(x) zadanej w
sposob uwiktany warunkiem F(x,y) = xeV —y + 1 = 0 i wyrazmy te pochodne przez
zmienng y tylko. (Po co? A tak, dla wprawy). Obliczamy:

Fo(z,y) =€, Fy(r,y)=ze’ -1,

wiec
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Rysunek 11: Rysunek zbioru £ C R? zadanego réwnoscia y —esiny —z = 0, gdy € = 0.7.

W ostatnim kroku w mianowniku wykorzystalismy (juz wiemy, ze wolno) to, ze na krzywej
rxeY —y+1=0, czyli xe¥ = —1 + y. Teraz drugie pochodne:

Frp(z,y) =0, Fy, =xé¥, Foy(z,y) =€’

To do tego §licznego wzoru:

" 1 Y (V)2 ] Y e Y e
y(z):—ﬁ{ze (6)—266(1’6—1)}:—ﬁ(2—1’6):—ﬁ(3—y),
y y y

no i jeszcze w mianowniku £y, = xe¥ — 1 = y — 2. Ostatecznie

Zadanie Uwik.1

Jaka moze by¢ warto$¢ parametru €, zeby wzorek y —esiny = x definiowat globalnie, czyli
na calym R okreslona funkcje y = y(x) ?

Rozwigzanie: Niewatpliwie jesli ¢ = 0, jest to przyzwoita funkcja y(z) = x. Ale jak |¢|
ro$nie, to na te prosta y = x nakltadaja sie falki (zob. rysunek 11) i przy zbyt duzym |¢| te
falki powoduja, ze jednemu x-owi juz nie odpowiada jeden tylko y-ek. Pytanie, jak duzy
moze by¢ jeszcze |e|, zeby tak nie bylo? Napiszmy F(z,y) =y — esiny — x i zastosujmy
to, co juz umiemy, czyli twierdzenie o funkcji uwiktanej. Warunkiem, by F(z,y) = 0
wyznaczalto wszedzie (dla wszystkich x € R) przyzwoita funkcje y = y(x) jest, by nigdzie
na zbiorze £ nie zerowala si¢ pochodna F,. Ale

Fy(x,y) =1—c¢ccosy,

i wida¢, ze nie moze sie ona zerowad, jesli |¢| < 1 (bo cosinus nie bywa wiekszy niz 1). Ot
i wszystko.
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Rysunek 12: Rysunek zbioru E C R? zadanego réwnoscia Iny/22 + y2 — arctg(y/z) = 0.

Zadanie Uwik.2
W ktorych punktach ptaszezyzny xy odwzorowanie

F(z,y) =In\/2x? +y? — arctgg ,
x

nie zadaje, poprzez warunek F(x,y) = 0 funkcji y = y(z) 7
Rozwigzanie: Znéw obliczamy pochodne F":

Folw,y) = —— ( 4 )—:Hy

:L'2—|—y2_ _:L'2+y2 _$2+y2’
_ Y X Tz +y
Fy(fl?,y)_ 22 + 42 - (x2+y2) - x2+y2'

Wida¢, ze F, zeruje si¢ na linii y = z, ale oczywiscie interesuja nas tylko te punkty,
w ktorych linia ta przecina sie ze zbiorem E wyznaczanym przez warunek F(z,y) = 0.
Szukamy zatem rozwiazan rownania F'(x,z) = 0, czyli

Inv2z2 = %

Zatem punkty w ktorych F(x,y) = 0 nie definiuje funkcji y = y(z), to

1
r=y=+——¢"*.

V2
A jak w ogole wyglada zbior E?7 Jesli przejdziemy do zmiennych biegunowych, to naiwnie
mozna by sadzi¢, ze F(x,y) = 0 daje po prostu Inr = ¢, czyli spirale 7(¢) = exp(p).
Ale to nie jest do korica tak, bo jak sie tak napisze, to sie wydaje, ze zmienna ¢ moze
sie zmienia¢ od —oo do +o0o. Tymeczasem, zeby funkcja F'(x,y) byla dobrze okreslona
funkcja trzeba sie zdecydowaé na jaka$ gataz funkcji arctg. Konwencjonalnie przyjmuje
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sie, ze arctg(0) = 0 (inne gatezie tej funkcji odpowiadaja przyjeciu arctg(0) = krm z
jakims§ catkowitym k # 0) i tak sobie przyjmijmy. Wtedy arctg zmienia sie od —m/2
do +7/2. Zatem we wzorze r = exp(y) w zmiennych biegunowych —7/2 < ¢ < 7/2,
ale to dotyczy wtedy tylko polptaszczyzny = > 0; drugiej poélptaszcezyzny w taki sposob
nie obejmiemy, a F(x,y) = 0 ma i tam rozwiagzanie. Teraz zobaczmy, jaki sie dostaje
y z warunku F(z,y) = 0, gdy 2 — 07. Sa dwie mozliwosci: jest rozwigzanie z y > 0
- wtedy arctg(y/x) przy skoriczonym y dazy do /2 i widaé, ze rozwiazaniem warunku
Iny/y? = arctg(y/z) — 7/2 jest y = exp(m/2). Jest tez i drugie rozwiazanie z y < 0:
wtedy arctg(y/x) przy skoriczonym y dazy do —m/2 i widaé, ze rozwiazaniem warunku
ln\/? = arctg(y/z) — —7m/2 jest y = —exp(—n/2). Jest tez jasne, ze dwa te punkty:
(0, —e~™/2) i (0,e™/?) musza byé¢ koricami krzywej r = exp(yp) i ze pierwszy odpowiada
r=e7? ¢ = —71/2 adrugir = e/? ¢ = 7/2. Analogicznie, gdy x* — 07, jest
rozwigzanie ujemne y = —exp(7/2) i dodatnie y = exp(—n/2). Warunek F(z,y) = 0
wyznacza wiec na plaszczyznie xry dwie roztaczne krzywe: jedng potozona w obszarze
x > 01 druga w obszarze z < 0. Calo$¢ wyglada tak, jak na rysunku 12. Znalezione
wyzej punkty, w ktorych F'(z,y) = 0 nie definuje funkcji y = y(z) sa to: punkt najbardziej
potozony na prawo na prawej gatezi rysunku 12 i punkt potozony najbardziej na lewo na
lewej gatezi tego rysunku. W obu tych punktach krzywe “staja deba”. Z kolei F(x,y) =0
nie definiuje funkcji x = x(y) w punktach

1
— e
V2
potozonych na przecieciu krzywych z rysunku 12 z prosta y = —x. W punktach tych

zeruje sie pochodna F)., a krzywe z rysunku 12 majg zerowe nachylenie w stosunku do osi
x.

T=-—y==

Zadanie Uwik.3
Znalez¢ punkty krytyczne funkeji (liczba pojedyricza lub mnoga - zaraz zostanie wyja-
$nione dlaczego) y = y(x) zadanej w sposob uwiktany warunkiem

F(z,y) =8z —Szxy +y* —4y =0,

i zbadaé, czy sa one jej ekstremami.

Rozwigzanie: W zasadzie wszystko sprowadza si¢ do tego, co w szkole: trzeba znalezé
te z-y, w ktorych zeruje sie pochodna 3/(z), a potem zobaczy¢, jaki jest znak drugiej
pochodnej y”(x) w takich punktach (lub, co tu mniej wygodne, sprawdzi¢ czy pochodna
y'(z) zmienia znak i z jakiego na jaki przy przejsciu przez taki punkt). Jedyna réznica z
tym, co bylo w szkole (a moze juz tego w szkole niema? moze to za trudne dla ministrow?)
jest taka, ze teraz mamy pewien szczeg6lny sposob znajdywania pochodnych y/(z) i y”(z).
No i jest jeszcze jedna sprawa: jesli sie znajdzie ze dwa punkty krytyczne funkeji (punkty,
w ktorych ¢ = 0), to naogol nie jest jasne, czy sa to dwa punkty krytyczne tej samej
funkeji y = y(x), czy dwu réznych funkeji y = y1(x) i y = yo(x) zadawanych tym samym
warunkiem. Czasem jest to latwo ustali¢. A czasem nie. Zycie z funkcjami uwiktanymi
ma swoje uroki...
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Poniewaz y'(z) = —F,/F,, a funkcja y = y(x) jest funkcja tylko tam, gdzie F, # 0,
przeto szukanie zer pochodnej 1’ sprowadza sie do rozwiazania uktadu rownan

F.(z,y) = 16z —8y =0,
F(z,y) = 82* —8xy+y* —4y =0.

7 pierwszego y = 2x, to do drugiego i dostajemy réwnanie

2

2t — 2P -1 =0.

Nie zrazamy si¢ tym, ze jest ono czwartego stopnia, tylko czujnie rzucamy na nie okiem
i widzimy, ze jednym z pierwiastkow jest x = 1, a drugim oczywiscie z = 0. Wiec (nie
zaczyna sie zdania od “wiec”) piszemy

20— —r=2(r—-1)22* +ar+1)=0,

i tatwo ustalamy, ze a = 2. Poniewaz A dwumianu kwadratowego w nawiasie jest ujemna,
innych rzeczywistych rozwigzan niz x = 0 i = 1 niema. Zatem punkty, w ktérych zeruje
si¢ (na zbiorze E) pochodna F, to (0,0) i (1,2), czyli ¥'(0) = 0 w miejscu, gdzie y(0) =0
i9/(1) = 0 w miejscu, gdzie y(1) = 2. No i wlasnie: mamy dwa punkty krytyczne, ale
bez dalszego wnikania w sprawe nie wiemy, czy to punkty krytyczne tej samej funkcji, czy
dwoch réznych. Zato od razu mamy wartosci funkeji w tych punktach. No to teraz drugie
pochodne. W ogolnosci sa one dany tym $licznym (dla niektérych moze strasznym?)
wzorem Yy’ = —(FmFy2 — 2F,, F,F, + Fnyﬁ)/F; Ale tu przyjemna niespodzianka: w
punktach krytycznych funkcji y = y(z), w ktorych chcemy znaé¢ pochodna 3", zeruje sie
F,! Wigc ten §liczno-straszny wzor sprowadza sie do y”|,—o = —F,,/F, | A nas interesuje
i tak tylko znak tego wyrazenia. Wszystko jest wiec juz banalnie proste: F.(z,y) = 16,
F,(z,y) = 4y*® — 8z — 4 i w punkcie (0,0) —F,,/F, = 4 - funkcja y = y(z) ma tu
minimum lokalne réwne 0; z kolei w punkcie (1,2) —F,,/F, = —4/5 1 w tym punkcie
krytycznym funkcja y = y(z) ma lokalne maksimum réwne 2. Jesli sobie narysujemy
zbior E wyznaczony warunkiem F(z,y) = 0, to wyglada on tak, jak na rysunku 13.
Widaé¢ z rysunku, ze sa to ekstrema dwoch roznych funkeji (albo jak kto woli, dwoch
roznych galezi tej samej funkeji), bo to, ze jest to ciagta jedna zamknieta krzywa nic nie
znaczy: sa jak wida¢ dwa punkty (z1,41) i (w9, 9), gdzie ta krzywa staje deba - w tych
punktach F(z,y) = 0 nie wyznacza funcji y = y(x) i trzeba to wlasnie interpretowac tak,
ze w tych punktach x; i xq, ktore nie naleza do dziedziny zadnej z funkcji y = y;(x) i
y = yo(z) te dwie rozne funkcje (lub dwie galezie jednej funkeji) tylko sie zbiegaja.

Teraz uogdlnimy te metody na wiecej zmiennych, tj. na przypadek funkcji f : R —
R zadanych w sposob uwiklany jako zerowa poziomica odwzorowania F : R"*! — R.
Niech

F(x,y,z) =€ —ayz—1.

Pytamy, kiedy warunek F(x,y,z) = 0 wyznacza np. funkcje z = z(z,y) 7 (Mozna tez
pytac o fukcje y = y(x, z) lub x = z(y, 2)). Odpowiedz jest oczywiscie taka, ze tam, gdzie
F, # 0, tzn. w tych punktach zbioru £ = F~1(0) C R3, w ktorych F,(z,y,z) # 0.
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Rysunek 13: Rysunek zbioru E C R? zadanego réwnoscia 822 — Sxy + y* — 4y = 0.

Obliczmy pochodne czastkowe 0z/0z i 0z/dy funkeji z = z(x, y) zdefiniowanej warun-
kiem F'(x,y, z) = 0 w punkcie (29, yo, 20) = (2, 1,0). Punkt ten, jak tatwo zobaczy¢, nalezy
do zbioru E i w punkcie tym pochodna F,(z,y,z) = e* — xy jest rowna 1 — 2 = —1 # 0,
wiec postawiony problem ma sens: w tym punkcie i w jego jakims otwartym otoczeniu
funkcja z = z(x,y) istnieje. W celu obliczenia pochodnych 0z/0x i 0z/0Jy postuzymy sie
zdrowym fizycznym rozsadkiem. Napiszemy w tym punkcie rézniczke funkcji F':

dF = Fy(xo, Y0, 20) dx + Fy(z0, Yo, 20) dy + F,(x0, Yo, 20) dz

i zapytajmy znéw, jak trzeba skorelowaé sktadowe dx, dy i dz wektora przemieszczenia,
by nie “spas¢” z poziomicy zerowej funkcji F, tj. by przemiesci¢ sie do sasiedniego punktu
zbioru E. Tzn. jak skorelowa¢ dz, dy i dz, by dosta¢ dF' = 0. Oczywiscie to jest teraz
jeden warunek na trzy sktadowe. Jesli jednak “przytrzymamy” y, tzn., potozymy dy = 0,
to aby dosta¢ dF' = 0, musimy mieé¢

dz  Fy(2o, Y0, %0)

dr— F.(xo,y0, %)

Ale ten stosunek po lewej jest dokladnie tym, czym jest pochodna czastkowa funkeji z(x, y)
po x: stosunkiem zmiany dz wielkosci z, gdy maciupko, o dx (mys$lmy o granicy dz — 0),
zmienimy x trzymajac y ustalone. Analogiczne rozumowanie dotyczy stosunku dz/dy,
gdy nie zmienia sie = (czyli gdy dx = 0). W przypadku rozpatrywanej funkcji F, = —yz,
F, = —xz ale, ze rozpatrujemy punkt (2,1,0), to Fy(xo, o, 20) = 0, Fy(xo,v0,20) = 0,
czyli

Zx(onyo) =0, Zy(x(]vyO) =0.

Przypadkiem, jak sie wydaje, trafiliémy na punkt krytyczny funkcji z = z(x,y). Zaraz sie
nim zajmiemy.
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To samo rozumowanie musi oczywiscie by¢ stuszne w kazdym punkcie (z,y, z) zbioru
E, w ktorym nie znika F, i dzieki temu funkcja z = z(z, y) istnieje. Zatem mamy ogélne

Wzory
0z Fo(x,y,z 0z F,(x,y, 2
aSL’ y FZ (I, y7 Z) z:z(x,y) ay T FZ(:C', y’ Z) Z:Z(I7y)

(Dla szpanu - uzywa sie jeszcze tego §licznego stowa? - napisaliémy te pochodne zgodnie
z maniera termodynamiczng zaznaczajac ktora zmienna jest trzymana ustalona). Oczy-
wiscie te same wzorki mozemy wyprowadzi¢ zauwazajac, ze z = z(x,y) jest taka funkcja,
ze F(x, y, z(x,y)) = 0 tzn. jest to funkcja = i y tozsamosciowo réwna zeru. Mozemy
oblicza¢ pochodne czastkowe tej tozsamosciowo zerowej funkcji stosujac juz opanowane
(mam nadzieje!) reguly stuszne dla pochodnych funkcji ztozonych:

0z

0
O = %F(za ya Z(Z',y)) == Fx(zayaz)|zzz(x7y) + Fz(z’y’z)|zzz(x,y) a_x’

i stad wywiktujemy te sama pochodng 0z/0x, co dana wzorem wypisanym wyzej.

No to “idac za ciosem” (powtarzam sie, ale to tez element przemyslanej taktyki - ma na
celu uswiadomienie Panstwu, ze wszystko idzie tak samo jak poprzednio) wyprowadzmy
wzory na drugie pochodne czastkowe funkcji z = z(z, y).

P O [ Fulw,y z(xy)] 1 0F  F, OF
or2 Oz | F.(z,y, 2(xy)|  F. 0r F2 Ox

- L (Fm + P %) t i (Fx + F.. %) :

F, Oz F? Ox
Teraz wstawiamy tu 0z/0x = —F,/F, i po malym fiku-miku mamy
0%  FuF2—2F, F,F, +F.. F?
2 3 ’
ox F: = 2(eg)
9%  F, F!—2F,.F,F.+F..F?
92 3 )
dy E; e=(a)
0%  FyF?—F,.F,F.—F,.F,F.+F.F,F,
Ox Oy N F3 =)

Drugi wzoér zostal otrzymany przez zamian¢ w pierwszym , na ,. Trzeci zostawiam Pan-
stwu do samodzielnego wyprowadzenia.

Jak juz mamy i wzory na drugie pochodne funkcji z = z(z,y) zadanej w sposob
uwiklany, to mozemy szale¢: w szczegélnosci mozemy badaé punkty krytyczne takich
funkcji i1 sprawdzaé¢, czy sa w nich ich ekstrema. W tym przypadku znéw znajdujemy
przyjemne uproszczenie: w punktach krytycznych F, = 01 Fy, = 0 i te straszne ogdlne
wzory wypisane wyzej redukuja sie do

0%

da?

2g=2y=0
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Rysunek 14: Rysunek zbioru F C R? zadanego réwnoscia e* — xyz — 1 = 0.

0% F,

2 - )
ay 2z =2y=0 FZ z=z(z,y)
0% ey
— S A
O 2z =2y =0 FZ z=z(z,y)

Prawda, ze to bardzo przyjemne?

No to teraz mozemy wroci¢ do funkcji z = z(x,y) zadanej w sposob uwiklany wa-
runkiem F(z,y,z) = ¢* — xyz — 1 = 0 i zbadaé¢ charakter przypadkiem znalezionego jej
punktu krytycznego (2,1,0). Znajdujemy jednak, ze F,.(x,y,2) =0, Fyy(z,y,2) = 01
Foy(z,y, z) = z, wiec w badanym punkcie krytycznym forma kwadratowa drugich pochod-
nych funkcji z = z(z, y) jest catkowicie zerowa. Zatem nic nie mozna powiedzie¢. Ale jesli
przypatrzymy sie uwazniej warunkowi F'(z,y, z) = e* —xzyz — 1 = 0, to zobaczymy, ze jest
on spelniony przez wszystkie punkty lezace w R? na plaszczyZnie z = 0. Punkt, ktory
badalismy jest wlasnie jednym z nich i w sposéb oczywisty funkcja z = z(z,y) jest po
prostu funkcja tozsamosciowo réowna zeru. Ale zawod nas spotkal!!l Ale nie narzekajmy.
Przy okazji czegos sie nauczylismy! Wyprowadziliémy ogdlne wzory na pochodne i drugie
pochodne takich funkeji, a to juz co§! Poza tym, warunek F(z,y,2) =e* —zyz—1=10
nie jest taki trywialny: jesli zapuscimy Mathematice kazac jej wymalowaé powierzchnie
z = z(z,y) bedace rozwigzaniem tego warunku, to zobaczymy rysunek 14. Wida¢, ze
warunek e* — xyz — 1 = 0 definiuje tez i inne funkcje z = z(x,y). Ich powierzchnie
przecinaja sie z powierzchnia funkeji z(x,y) = 0. Tak moze by¢. Oczywiscie w takich
punktach przecinania si¢ powierzchni zerujg si¢ wszystkie pochodne F,, F, i F, i warunek
F(z,y,z) = 0 nie wyznacza w otoczeniu takich punktéw zadnej funkcji: ani z = z(z, y),
anie r = z(y, z), ani y = y(z, z). Tak samo jak mialo to miejsce w punkcie samoprzeci-
nania sie liscia Kartezjusza.
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Zadanie Uwik.4 (‘“cieciurzynka” - tzn. wziete z zadan dr G. Cieciury)
Zbadaé¢ punkty krytyczne funkcji z = z(x,y) w obszarze x,y # 0 zadanej warunkiem

Flz,y,2) = (x + 2)(y + 2) <1+x—2) —8=0.

Rozwigzanie: Punkty krytyczne wyznaczaja réwnosci

Fo(z,y,2) = (y+2) KHi) —i(x+z)] = (y+2) (1—2—2) —0,

xy x2y x2y
Fy(z,y,2) = (z+2) Kuxiy) —y%(yjtz)] = (z+2) (1—%) —0,

F(z,y,2) = (z+2)(y + 2) (1+I—Z) —8=0.

Jak zwykle w takich zadaniach, nawet z funkcjami zadanymi jawnie!, a co dopiero, gdy sg
zadane w sposob uwiklany, trudnym etapem jest rozwiazanie tych réwnan. Reszta to juz
rutynowe czynnosci. Jedli w pierwszym lub drugim réwnaniu wybralibySmy rozwiazanie
y = —z i/lub 2 = —z, to nie bedzie spelnione trzecie. Zatem y # —z i x # —z. Musi
zatem by¢ 2° = 2%y i 22 = y?x, co razem oznacza, ze* © =y, czyli 22 = 2° = y3. Zeby nie
operowaé pierwiastkami przejdziemy do niezaleznej zmiennej ¢ zdefiniowanej przez z = 3
iz =y = t2. Podstawiamy to do ostatniego z réwnan sprowadzajac je tym samym do
postaci

1
( +12)* <1+¥) =38.
czyli po prostu do (t* +t)® = 8, albo,
P4t —2=@1t—-1)(t+2)=0.
Zatem punkty krytyczne, to
(1,1,1)  oraz (4,4,-8).

W punktach tych pochodna
Fy) =@+ (1) +@+2) (1+2)+ @+ 2)w+2)—
Lz, 2) = z — T+ z — T+ z z)—,
Y Y 2y 2y Y 2y
w ktorej mozna polozyé z = 3, x = y = t2, co sprowadza ja do

1 1
F (12, 2,13) = 2(82 + 17) (1 + ;) +4 (2 + )" = (2t + 1)(1 + )2,

Mo, ze takie punkty nalezy sprawdzié, wynika z symetrii funkcji F(x,y,2) = F(y,x, z); jednak przy
symetrii punkty krytyczne moglyby tez wystepowaé parami: (a, b, c) i (b, a, ¢); teraz juz wiemy, ze takich
tu niema.
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jest rowna 12 (w punkcie (1,1,1), ¢ = 1) i —3 (w punkcie (4,4, —8), t = —2). Nie jest wiec
rowna zeru (trzeba to zawsze sprawdzi¢! nie zapominaé o tym!!!), czyli w tych punktach
rzeczywiscie warunek F'(x,y,z) = 0 definiuje fukcje z = z(x,y) (a czy to jest ta sama
funkcja w obu punktach, czy dwie rozne, tego juz nie wiemy...). Reszta, jako sie rzeklo,
to juz rutyna.

2
z
Fee(z,y, =2 —3 >
(z,y,2) =2(y + 2) =
22
Fyy(xvyvz) = 2(5(7 + Z) yg—x )
Z2 Z2 23
Fo ey, 2) = (1 - 2— —1 .
y(l’ Y Z) ( ny) + (y+2) x2y2 + «T2y2

Wiee, gdy 2 =y =%, 2 = 83, F,, = F,, = 2(1+1t), F,, = 1 +t. Pamictajac, ze w
punktach krytycznych z,, = —F,./Fs, 2yy = —Fyy / Fs, 22y = —Fyy / F,, dostajemy w tych
punktach nastepujace macierze form kwadratowych

1 (4 2 1(-2 -1
12\2 4)° 3\-1 —2)/°

Pierwsza z nich, odpowiadajaca punktowi (1,1, 1), jest ujemnie okreslona i tam funkcja
z = z(x,y) ma lokalne maksimum. Druga, odpowiadajaca punktowi (4,4, —8), jest tez
ujemnie okreslona i tam funkcja z = z(z,y) ma tez lokalne maksimum. Zeby nie zy¢ w
niepewnosci, czy to sg ekstrema tej samej funkcji, czy dwoch réznych, zaprzegamy znoéw
Mathematice i otrzymujemy rysunek 15. Warunek F'(z,y,z) = 0 definiuje w pokazanym
obszarze az cztery rozne funkcje z = z;(x,y), i = 1,2, 3, 4 (czwarta nie jest tu widoczna, ale
mozna ja zobaczy¢ obracajac wykres w Mathematice, lub po prostu wnosié o jej istnieniu
odwolujac sie do symetrii F(z,y,z) w zmiennych z i y), z czego tylko dwie (ten “dach”
na rysunku 15 i ten placek na dole) maja (to ustaliliémy analitycznie) punkty krytyczne,
ktore sg ich maksimami.

Na koniec, zeby$my mieli poczucie, ze umiemy sobie radzi¢ w kazdej uwiktanej (byle nie
w sprzecznosci) sytuacji rozpatrzmy jeszcze przypadek dwoch warunkéw na trzy zmienne,
czyli odwzorowanie F' : R® — R2, ktore przez F~1(0) = E C R3 zadaje funkcje
f:R — R2, czyli po prostu krzywa w R? sparametryzowana jedna zmienng. Niech

Fi(z,y,z) =xz4+Iny+yln z,
FQ(ZL’,y,Z):LU—y—i-Z.

Znajdzmy w punkcie (0,1,1) pochodne dy/dx i dz/dx funkcji + — (y(z), z(x)) zadanej
warunkami Fi(z,y,z) = 0, Fy(z,y,2) = 0. Kazdy z tych warunkéow z osobna definiuje
(najpewniej) jakas powierzchnie w R? (no, czasem kilka roztacznych, albo przecinajacych
sie - to juz wiemy z poprzednich przyktadow), a punkty spetniajace oba te warunki leza na
przecieciu takich powierzchni, ktore to przeciecie najbardziej typowo jest wtasnie krzywa,
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Rysunek 15: Rysunek zbioru E C R? zadanego réwnoscia (z+2)(y+2)(1+2/zy) —8 = 0.

ktora mozna sparametryzowaé np. z-em i o to tu chodzi. Podany punkt (0,1, 1) nalezy
jak wida¢ do zbioru E bo spelia oba warunki: Fj(0,1,1) = 0, F5(0,1,1) = 0. Aby
obliczy¢ pochodne dy/dx i dz/dz w punkcie (0,1, 1) piszemy w tym punkcie rézniczki obu
tych funkcji (numer funkcji F' teraz bedziemy pisa¢ u gory zeby na dole mie¢ miejsce na
symbol pochodnej czastkowej)

dF' = F,dz+ F, dy + F dz,

dF? = F2dz+ F. dy+ F2 dz,
obliczajac pochodne czastkowe F!, etc. w punkcie (0,1,1). Znoéw pytamy jak skorelowac

sktadowe dx, dy, dz wektora przemieszczenia, zeby nadal ' = 01 F? = 0, czyli, zeby
dF* =01idF? = 0. Jawnie

1
dF' = zdx + (g—l—lnz) dy + (%er) dz,
dF? = dv — dy + dz.
W punkecie (0,1, 1) warunki dF' =0 i dF? = 0 daja zwiazki

dr+dy+dz=0,
dr —dy+dz=0.

Ich rozwiazaniem jest oczywiscie dz = —dx, dy = 0 - dx. Zatem w punkcie (0,1,1), w
ktorym y(0) =1, 2(0) =1

dy dz

— =0 — =—1.

dzx " dx

W dowolnym punkcie, aby dosta¢ te pochodne, rozwiazywalibysmy wypisany wyzej
og6lny uktad rownan, ktéry mozna przeksztatci¢ do postaci

Fy/F, F}/F;\ (dy\ _ (—dz
F2/F; F2/F} ) \dz —dx )’
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skad

(dy)_ FF; (FS/Fg? —F,J/Fé)(—dx)
dz) ~ FIF? - FIF2 \ —F}/F? F;/F} )\ —dz )’

Dostaliby$my wiec np.

dy FlF? F!'  F?
dr  F)F?~ FIF} (ﬁ - ﬁ) '

Przy okazji wida¢, w jakich punktach przestrzeni R? warunki F'(x,y, 2) = 01 F?(z,y,2) =
0 wyznaczaja funkcje R — R*: w takich, w ktorych nie znika F) F? — F}F;. Te same
pochodne dy/dz i dz/dx mozna tez dostac i nasza druga metoda, tj. piszac dwie tozsa-
mosciowo réwne zeru funkcje F'(z, y(x), z(z)) = 0, F?(z, y(z), 2(x)) = 0, rézniczkujac
te tozsamosci po x, co da

0=F)+Fy +F %,
0=F+Fy+F7,

i rozwiazujac ten uktad liniowych réwnan wzgledem y' = dy/dx i 2/ = dz/dz. Ale jest
to ten sam uktad, co poprzednio napisany. Roézniczkujac wypisane wyzej obie réwnosci
jeszcze raz stronami po x 1 wstawiajac potem juz wyliczone 3’ i 2/, dostaniemy za$ uktad
dwu réwnan na drugie pochodne y” i 2”. Naprawde juz wszystko mozemy!

Ogolnie, jesli poziomica zerowa F~1(0) C R", 0 € R™ odwzorowania F : R" — R™,
gdzie m < n, ma lokalnie, w otoczeniu jakiego$ punktu (xgo),...,xgo)) spetniajacego
rownosci

FUE0 2y =0, ..., FE9 29y =0,

n

wyznaczaé “przyzwoita” funkcje f: R"™™ — R™, np.

0)

to w punkcie (:cg : .,x,(?)) to wyznacznik macierzy

OF'/0xy ... OF')Oxy, _O(F,... F™)

o 8(x1,...,xm) ’

OF™/0xy ... OF™/0x,
powinien nie by¢ zerowy. Widaé, ze jest to uogodlnienie tego, co mielismy, gdy warunek

F(z,y) = 0 mial wyznacza¢ funkcje y = y(z) lub gdy warunek F'(z,y, z) = 0 mial wyzna-
czaé z = z(z,y). W przypadku “rozwiklywania” odwzorowania F': R" — R™ o m < n
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mozna to skonfrontowa¢ z przyktadem odwzorowania liniowego, od ktorego rozpoczeli-
sSmy ten rozdzial: nieznikanie powyzszego wyznacznika jest tam wtasnie warunkiem, by
odpowiedni minor stopnia m macierzy A problemu nie znikal. Przy okazji wspomniany
byl tam problem niezaleznoéci warunkow F'(zy,...,z,) =0, ..., F™(zy,...,1,) = 0.
Tym z kolei rzadzi macierz pochodnej F” funkcji F:

oF'/ox, ... OF'/0x,
OF™/0xy ... OF™/0x,
Warunki £ (zy,...,2,) =0, ..., F™(x1,...,2,) = 0sa w otoczeniu punktu (:L’go), o ,x%o))

niezalezne, gdy rzad tej macierzy jest maksymalny, tj. réowny m (znéw mozna to skon-
frontowaé z przyktadem odwzorowania liniowego i uwagami poczynionymi na jego temat).
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Ekstrema warunkowe czyli zwigzane.

Zagadnieniem wiazacym sie naturalnie z odwzorowaniami uwiktanymi jest szukanie lo-
kalnych ekstremow funkeji F'(zq, ..., x,) okreslonej na jakim$ podzbiorze (ograniczonym
lub nieograniczonym) E C R"™, ktory to podzbior jest zadany jako poziomica zerowa
G710) C R" pewnego odwzorowania G : R" — R™ (m < n). Mowiac bardziej przy-
ziemnym jezykiem, szukamy ekstremum funkcji F'(zy, ..., z,) przy ubocznych warunkach
Gl xy,...,2n) =0, ..., G™(x1,...,2,) = 0 zwanych takze wiezami. Gdyby w oto-
czeniu jakiego$ punktu (z7,...,2%) € E dalo sie jawnie wywikla¢ m ktorych§ zmien-
nych x w funkcji pozostatych n — m zmiennych z, czego warunkiem koniecznym jest
by macierz G’ pochodnej odwzorowania G w tym punkcie byta rzedu m (co bedziemy
tu zawsze zaktadac), np. gdyby dalo sie otrzymaé¢ funkcje z1 = x1(Tma1, .-, Tn),s - .-,
Ty = T (Tma1,- -, Zn), czego warunkiem koniecznym jest (patrz koniec poprzedniego
rozdziatu), by nie znikal wyznacznik macierzy m x m utworzonej z pierwszych m kolumn
macierzy G’ pochodnej odwzorowania G w tym punkcie, to mozna by bylo po prostu
badaé¢ funkcje n — m zmiennych

f(@mat, oy xn) = F(x1(Tmat, -3 @n), oo Ton( Tty -+ - Ty Tl -+ 5 T

stosujac znane juz nam standardowe metody. Gdyby nie dato si¢ wywiktaé xy, ..., z,,, to,
przy przyjetym zaltozeniu, ze rzad macierzy G’ jest rowny m, datoby sie wywiktaé¢ jawnie
m ktorych$ innych zmiennych, np. z,_,41,...,2, W funkcji zq,..., 2, . Naogol sie
jednak nie daje tego zrobi¢ jawnie. Co wiecej, widzieliSmy na przyktadach, ze czasem
w otoczeniu jednego punktu zbioru E da sie wywikta¢ m jednych x-6w, a w otoczeniu
innego punktu zbioru E daje sie wywikta¢ tylko m innych zmiennych, a my bysmy chcieli
problem szukania lokalnych ekstreméw funkcji f na zbiorze F rozwiaza¢ jakos globalnie,
w tym sensie, zeby nie musie¢ dzieli¢ zbioru E na kawaltki i w jednym wywiktywaé jaw-
nie, lub tylko niejawnie, jednych zmiennych, a w innym innych. Do tego stuzy metoda
wykorzystujaca mnozniki Lagrange’a. (Mnozniki te znajduja zastosowanie w wielu pro-
blemach, np. w mechanice, gdy rozpatruje sie sity reakcji, a takze - jakze by inaczej! - w
mojej ulubionej termodynamice. Kto do mnie trafi na wyktad ten zobaczy).

Najpierw jak wyznaczamy na zbiorze F punkty krytyczne? Zaldézmy, ze tak jak wyzej
wywiktaliSmy m pierwszych zmiennych x w funkcji pozostatlych n —m. Chodzi jednak
o to, ze tylko zakladamy; nie bedziemy musieli tego robi¢ jawnie i, co wiecej, koricowe
wzory nie beda wyrédznia¢ zadnej z n zmiennych z, wiec beda stuszne globalnie na catym
zbiorze E, pod warunkiem, ze w kazdym jego punkcie, ktéres m zmiennych z sie daje
wywiklaé (a to, jak juz bylo wyzej, jest zadaniem, by w kazdym punkcie £ macierz G’
byla rzedu m, a nie mniejszego). Punkty krytyczne sa wiec wyznaczone przez zerowanie
sie pochodnych funkcji f po niezalezych z-ach, czyli przez uktad n — m réwnan

0
P) F(l’1($m+1, >$n)> axm($m+1> ,Zlfn), Tm+1, >$n) = 07
Lm+1
0
o F(xl(xm—i-lw . '>$n)a cee ,l’m(l'm+1, .- ~>$n)> Tm+1s - - '>$n) =0.
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Obliczajac np. pochodna po x,,.1 musimy wiec rézniczkowaé F' po x1 i x1 po Tpu1, F
PO X2 1 x9 PO 41 itd. To mam nadzieje jest jasne. Ale, i teraz nam sie przydaje wiedza

o odwzorowaniach uwiktanych, skoro x1 = 1 (a1, Tn)y -+ oy T = Ton(Tisty - -+, Tn)
biorg sie z rozwiktania warunkéow G*(z1,...,2,) =0, ..., G™(z1,...,2,) =0, to
1 _
G (x1(Tmats - Tn)y oo s T (Tt -+ s T, Tinats -, Tp) =0,
m —
G™(x1(Timaty s Tn)y ooy Ton( Tty -+ o5 Tn)y Tty - -+, L) =0
sg tozsamosciami wzgledem niezaleznych zmiennych 1, ..., z, i ré6zniczkujac je po tych
zmiennych dostajemy zera. Mozemy powyzsze m tozsamosci zroézniczkowaé po 41 1 to
da m liniowych réwnan na m pochodnych 0z1/0%, 11, .., 0%y /0Tmy1. Jesli wypisane
wyzej tozsamosci kropniemy po .2, to dostaniemy m liniowych réwnan na m pochod-
nych 0z1 /0T o, - .., 0T /0T mie, itd. Razem rézniczkujac te tozsamosci po xp,11, ..., Ty

dostaniemy n—m liniowych uktadéw po m réwnan na m pochodnych kazdy i w ten sposéb
mozemy wyliczy¢ wszystkie potrzebne nam pochodne od 0x1/0x,,+1, po 0x,,/0x,. Latwo
dostrzec w tym po prostu zastosowanie tego, co byto na koricu poprzedniego rozdziatu.
Jednak robi sie to wszystko zawile, nie tyle z powodu komplikacji samej materii,
co z powodu nadmiaru literek i wskaznikow, a wiadomo: nec Hercules contra plures,
czyli i Herkules dupa,®® gdy wskaznikow kupa - nawet Einstein by teorii wzglednosci
nie wymyslil, gdyby nie wpad! na pomyst konwencji sumacyjnej (juz jej uzywaliSmy na
algebrze to i tu uzyjemy). Pora wiec dokonaé skoku technologicznego i zapisac to wszystko
w zwarty sposob. Mamy wiec m warunkéow G* =0, a = 1,...,m, a zmienne (z1,...,,)
zapiszemy jako (Y1, ..., Yms Tmst, - - -, Tn), albo jeszeze krocej, jako®! (y@, z8), a=1,...,m
oraz i = m + 1,...,n. Bedziemy tez pisa¢®® F! = 0F/0x" oraz F| = OF/dy®. Wszyscy
dorodli tak pisza, to my tez. No to teraz warunki wyznaczajace ekstrema funkcji f(z?)
zapisza sie w jedej linijce (przypominam, ze po wskazniku wystepujacym dwa razy, raz na
gorze, raz na dole, sumujemy; jesli ten sam wskaznik - ta sama literka robiaca za wskaznik

- pojawi sie wiecej niz dwa razy, to znaczy, ze co§ schrzaniliSmy po drodze - tak naucza
wujek Albercik)

a a
fi=Fl+F25 =
ox’

a owe n —m uktadéw po m réwnan liniowych na m niewiadomych pochodnych kazdy tez
sie zapisza w jednej linii:

0, t=m-+1,...,n,

b 0" _
* O0x’

30Przepraszam za wulgaryzm, ale inaczej sie nie rymuje; zreszta, jak mowil T. Konwicki - pisarz zdaje
sie dzi$ zupelnie zapoznany, a dla mojego pokolenia “kultowy” - “Czasem brzydkie slowo jest jak lyk
Swiezego powietrza.” Sytuacja ogdlna jest taka, ze az chce sie mu przytaknaé.

31Umieszczamy tu wskaznik 7 u gory, bo x? i y® maja sens sktadowych (w bazie kanonicznej) wektora
z R™ i w ten sposéb bedziemy mieli “algebraiczny” porzadek w interesie.

32Poprzednio pochodne czastkowe funkcji, np. f = f(z,y,z), pisaliSmy jako f, f,; teraz jednak
bedzie wygodniej pochodna opatrywad tez primem, czyli pisa¢ f. itd., bo pochodne funkcji f(a!, 22, 23)
bedziemy teraz pisa¢ jako fj’ = Of/0x7; trzeba troche sie wykazywaé inteligencja i rozumieé¢ co jest
pochodna, a co ma wskaznik bo jest wektorem “od urodzenia”...

(G, + [G] 0, di=m+1,...,n.
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Wskaznik b sie zmienia od 1 do m i numeruje réwnania w i-tym uktadzie; po a jest
sumowanie od 1 do m. Wskaznik ¢ = m + 1,...,n numeruje te n — m uktadéw réwnan.
G’ to jest pochodna®® odwzorowania G jest ona macierza m x n (tj. ma m wierszy, n
kolumn - to juz wiemy!). Poniewaz zalozylismy, ze da sie wyznaczy¢ y-ki (czyli 1, ..., x)
- jeszeze raz to sobie przypomnijmy) jako funkcje x-6w (czyli 41, . .., Ty), to Znaczy, ze
wyznacznik macierzy (kwadratowej, m x m) [G']’, jest niezerowy i mozna ja odwréci¢.>t
Zatem

oy®
ox?

=- (GG, i=m+l,..n.

No to teraz to wstawiamy do warunkéow f/ = 0 na punkty krytyczne i dostajemy

a

F/ - F (&), 167, =0, i=m+1,...n.

Te z kolei réwnania mozemy zapisa¢ w chytry sposéb wprowadzajac wlasnie te zapowie-
dziane mnozniki Lagrange’a:
Fi'—)\b[G']bizo, i=m-+1,...,n,

gdzie A, = F![(G')71]", sa wlasnie mnoznikami Lagrange’a numerowanymi wskaznikiem
b = 1,...,m. Pamietamy przy tym - potosmy walkowali te funkcje uwiktane! - ze
rozwigzania tych wszystkich warunkéw nas interesuja nie na catym R™, tylko na G=1(0) C
R™, czyli gdy spelnione sg warunki G* = 0, a = 1,...,m. No to teraz juz mozemy
wszystko zapisaé elegancko: Aby znalezé punkty krytyczne funkcji f odwzorowujacej
E = G71(0) € R" w liczby rzeczywiste, tworzymy pomocnicza funkcje

Fa',...,2") = F2', ..., 2") = (2!, ..., 2") G(2', ..., 2"),

i rozwiazujemy uktad réwnan

ktory mozna réwnowaznie zapisa¢ jako

F =[G =0 i=1,....n,

Gz',...,2") =0, a=1,...,m.

Mnozniki A\, sa w zasadzie funkcjami z-6w, ale gdy je rézniczkujemy, to ich pochodne
sa mnozone przez funkcje G°, ktére maja by¢ i tak zero; wiec z praktycznego punktu

33Logiczniej by ja byto pisa¢ jako (G)p, bo to jest n pochodnych m réznych funkcji, ale wtedy by
trudniej zobaczy¢ w tym zapisie macierz.

34Zalozylismy, ze macierz G’ ma rzad maksymalny, czyli m, wiec ktére§ m x-6w da sie wyrazié przez
pozostale; jak nie te to inne.

75



widzenia, mozna tu traktowac¢ mnozniki Lagrange’a jak state. Zatem jest to n+m réwnan
na n + m niewiadomych: n niewiadomych z’ oraz m niewiadomych ),. Rozwigzaniem
jest m wartosci #% i m wartosci A\;. Ten nowy uktad réwnari jest tym samym co ukltad
wypisany wezesniej, bo te definicje mnoznikéw Lagrange’a, A, = F,[(G')7']%,, mozna
zapisaé (zurlick odwracajac kwadratowa macierz pochodnych) jako
F =G, =0, a=1,....,m,

i te m rownan w polaczeniu z n — m rownaniami F/ — \,[G']’, =0, i =m+1,...,m
daje razem takie same réwnania wypisane wyzej tylko z numerujacym je wskaznikiem ¢
biegnacym juz od 1 do n. Widaé teraz, ze otrzymany uktad réwnan nie wyrdznia zadnych
m zmiennych x sposrod pozostatych i tym samym nie musimy deklarowaé, ktore z-y da
sie wyrazi¢ przez pozostate. Uff. Zaszalalem. Taki mam bezkompromisowy charakter.?®
Jesli kogos te straszne wzory przerazaja, to niech o nich natychmiast zapomni i przyswoi z
notatek wyktadowcy prosty przypadek jednej funkcji i jednego warunku. No i wystarczy,
by pamietat ogoélny praktyczny przepis.

WyprowadziliSmy wiec praktyczny przepis na znajdywanie na zbiorze E punktow kry-
tycznych funkcji. Teraz jeszcze musimy podaé kryterium, kiedy w takich punktach sg
rzeczywiscie ekstrema lokalne funkcji na zbiorze E. Gdy nie bylo zadnych warunkéw,
tzn., gdy pytaliémy o ekstrema funkcji zadanej na R™ (lub na jakim$ otwartym podzbio-
rze R"), to badaliSmy okreslonos¢ (sygnature) formy kwadratowej drugich pochodnych
funkcji w znalezionym punkcie krytycznym. Opieralo si¢ to na wzorze Taylora i fakcie,
ze pierwsze pochodne funkcji w punkcie krytycznym znikaty. Teraz nie mozemy si¢ bez-
posrednio do tej metody odwotaé, bo pierwsze pochodne funkcji w punkcie krytycznym
naogol nie znikaja. Znikaja owszem, pierwsze, pochodne tej pomocniczej funkeji F', ale
to nie to samo - nas interesuja ekstrema f = F|g (funkcji F' obcietej do zbioru E), a
nie funkcji F na R™! Sa tu rozne podejécia. Jedno najprostsze jest takie: jesli zbior
E = G71(0) jest zwarty (w R"™ oznacza to, ze E jest domkniety i ograniczony), a intere-
suja nas tylko ekstrema globalne (czyli najwieksza i najmniejsza wartosé funkcji na E), to
po prostu mozna sprawdzi¢ wartos¢ funkcji F' w kazdym z tych punktéw, bo twierdzenie
Weierstrassa (Zbiorze szlachetny,... itd., to wlasnie to!) mowi ze funkcja ciagla na zbiorze
zwartym osiaga swe kresy, i wybra¢ wartos$é najwicksza i najmniejsza.

Drugi sposob propagowany przez Wykladowce® (i zapewne uzasadniony na wyktadzie)
ale w formie przez niego zaprezentowanej stosowalny tylko do przypadku funkcji na R? i
jednego warunku ubocznego polega na potraktowaniu funkeji F jak funkeji z-6w (wszyst-
kich n 2-6w) i dodatkowo funkcji m mnoznikéw Lagrange’a (pisalem, ze z praktycznego
punktu widzenia one sa jak stale, a teraz bedziemy je uwazaé za niezalezne zmienne):

F(zb, 2™ M, A) = F(at, . a™) = NGOt 2™,

35 Ale tez uwazam, ze czasem zajecie sie ogolnym przypadkiem nie jest jakos specjalnie trudniejsze, a
rzuca troche wiecej $wiatla na ogdélng metode i dlatego warto troche zainwestowaé.
36Pisalem to, gdy wykladal prof. J. Wojtkiewicz. Moze to teraz nieaktualne.
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i zbadaniu, gdy n = 2, m = 1, tylko jednej liczby, mianowicie wyznacznika macierzy
drugich pochodnych tej funkcji, jako funkcji n + m = 3 zmiennych (macierz formy kwa-
dratowej drugich pochodnych jest wiec w tym podej$ciu macierza 3 x 3), wzietych w
punktach krytycznych, tj. zl,... 22, \*. Jedli ten wyznacznik jest dodatni, to w punkcie
krytycznym funkcja ma maksimum lokalne (a nie minimum, jak by mozna mysleé!), a jesli
jest ujemny, to lokalne minimum.
Jeszcze inny sposob, najczesciej wykorzystywany, bo nie jest ograniczony do przypadku
n = 2, m = 1, polega na badaniu macierzy formy kwadratowej drugich pochodnych funk-
cji F (nie F!), ale teraz traktowanej, jak funkeja tylko n zmiennych (z, ..., 2") (mnozniki
Lagrange’a traktujemy tu jak zupekie state). W tym podejsciu macierz tej formy obli-
czona w punkcie (zl, ... 2") - mnoznikom Lagrange’a nadajemy w tym podejsciu wartosci
I,- .., Ay, - jest macierza n X n. Nie badamy jednak jej okreslonosci na wszystkich moz-
liwych wektorach przyrostow (hl, ..., h"), a tylko na wektorach (h',... k") stycznych do
warunku wiezow, tzn., tylko na wektorach spetniajacych m warunkow

oGt | oGt

WX*}-L .._'_%X*h —O’
R .
Gt | B | =0

W naszej zwartej notacji warunki te mozna napisaé¢ po prostu jako
[G;*]alhlzo’ a:17’m

Wektory h = (h!,... h") spetiajace tych m liniowych warunkéw (albo jeden macie-
rzowy warunek) maja tylko n — m niezaleznych sktadowych, bo m ich sktadowych mozna
wyrazi¢ przez m pozostatych (znoéw trzeba w macierzy G’ wymiaru m x n, o ktorej zatozy-
liSmy, ze jest rzedu m, wybra¢ podmacierz m x m i to wybor tej podmacierzy wyznacza,
ktore sktadowe wektoréw h sie da wyrazi¢ przez pozostale). Z praktycznego punktu wi-
dzenia badanie formy kwadratowej () drugich pochodnych na wektorach h spetniajacych
powyzsze warunki, mozna przeprowadzi¢ nastepujaco: do wyrazenia

QM) = Q1 h'ht +2Q12 W' h? + ... 4 Qpp h™h",

bedacego jawnym rozpisaniem dziataniem formy () na wektor h, podstawiamy wyzna-
czone 7z tych dodatkowych warunkéw sktadowe h' = AY(R™TL ... pmth o A =
R (R o h™Th) L (albo inne, jesli akurat wyznaczylismy/dalo sie wyznaczyé m
innych). Poniewaz zwiazki te sa liniowe, calo$¢ nadal bedzie mialta postaé¢ formy kwadra-
towej Q dzialajacej juz na “krotszy” wektor przyrostow h majacy tylko n — m sktado-
wych. Mozna to nazwaé redukowaniem formy do formy kwadratowej zadanej wytacznie
na wektorach stycznych do powierzchni wiezéw. Forme Q mozemy znéw zwinaé do po-
staci macierzowej i zastosowac¢ do jej badania metode minorowg. To, ze drugie pochodne
badamy na wektorach przemieszczen stycznych do powierzchni wiezow jest zrozumiale:
tylko takie przemieszczenia nie wyprowadzaja nas poza zbiér F, a to na zbiorze E tylko
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interesuja nas ekstrema funkcji F'. Oczywiscie, jesli sie zdarzy (a zdarza sie to do$é cze-
sto), ze cala forma kwadratowa @) drugich pochodnych funkcji F jest w danym punkcie
krytycznym (zl,...,27), Xi,..., \* okreslona (ma sygnature z samymi plusami, albo z
samymi minusami), to na wszystkich wektorach przemieszczeni, wiec takze i na wektorach
stycznych do powierzchni wiezow, daje wartosci tylko jednego znaku i nie trzeba juz badaé
jej specjalnie na wektorach stycznych do wiezow.

Nasuwa sie naturalne pytanie, dlaczego ta metoda dziata? Dlaczego nie wystarczy
np. badanie na wektorach stycznych do wiezéow formy kwadratowej drugich pochodnych
(wzietych w punkcie krytycznym) samej funkeji F (a nie ). To akurat jest jasne: bo
pierwsze pochodne funkcji F' nie musza znika¢ w punkcie krytycznym, wiec nie dziata
orgument, ze o kierunku zmiany wartosci funkcji przey przesunieciu sie z x, o h decyduje
Q(h) nawet jesli forme @ bedziemy bada¢ tylko na wektorach h stycznych do wiezow. Ale
dlaczego akurat przepis z funkcja F dziata? Tez sic zastanawiatem i wymyslitem kiedys
taki tego dowod. Wyobrazmy sobie, ze szukamy na R™ (a nie na F) ekstremow funkcji

F(x) = F(x) — \o(x) G*(x),

w ktorej m funkeji A\,(x) jest zupelnie dowolnymi funkcjami na R", ograniczonymi tylko
warunkiem by A,(x*) = A!, gdzie x* i A} to jest badany punkt krytyczny na E i odpo-
wiadajace mu warto$ci mnoznikéow Lagrange’a w naszym wyjsciowym problemie. Funkcja
F(X) jest tak skonstruowana, ze po pierwsze na zbiorze E przyjmuje doktadnie te same
wartosci, co funkcja F' rozpatrywana w wyjsciowym problemie, a po drugie, na R™ ma te
same punkty krytyczne co F' na zbiorze E (by¢ moze ma takze i inne, poza F, ale to nie
jest tu wazne). No bo warunki na punkty krytyczne

F'=F —(\);G*— )\, G, =0,

sa spelniane przez punkty x* € F dzieki temu, ze G* = 0 na E i ze o funkcjach \,(x)
zatozylismy, iz A\,(x*) = A, Wypiszmy teraz (w zwartej notacji) drugie pochodne tej
funkcji:

Fz,]/ = leg, - (A;)z (G/)aj - ()‘:z)j (G,)ai — A (G”)aij - ()‘g)ij G*.

Teraz wszystko jest standardowo: pierwsze pochodne funkeji ' sq w punkcie x* rowne
zeru, wiec mozemy, szukaé¢ ekstremow F odwolujac sie do wzoru Taylora i stosujac go do
wektorow przesunie¢ h stycznych do wiezéw (bo one nie wyprowadzaja poza zbiér E, a
na F funkcja F przyjmuje takie same wartosci jak funkcja F ) badamy w x* powyzsza
forme kwadratowa drugich pochodnych. W punktach krytycznych na E ostatni czlton
znika (bo G* = 0 na E). W szczegolnosei, z punktu widzenia ekstremoéw na zbiorze
E tylko (przypomnijmy, ze na F funkcja F ma te same wartosci, co F ) interesuje nas,
jak ta forma dziala na wektory przemieszczen styczne do wiezéw, tzn., interesuje nas
dodatnia lub ujemna okreslono$¢ wyrazenia hlﬁ;’]’ h? na wektorach stycznych. Ale na
takich wektorach (G')*h" = 0 wigc dwa wyrazy z pochodnymi funkcji A\, wypadaja i
wszystko sprowadza sie do tego, co zostalo podane w praktycznym przepisie.
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Tak jak w przypadku szukania ekstremoéw zwyktych, najtrudnejszym elementem w
calej tej zabawie jest rozwiazanie uktadu réwnan wyznaczajacych punkty krytyczne na
E. Wymaga to czesto pewnej dozy sprytu i “orientacji w terenie”. Gdy te punkty juz
sa znalezione, reszta jest sprawa rutynowych czynnosci. Teraz mozemy juz przejé¢ do
praktycznych przyktadow.

Zadanie Wex.1

Znalez¢ ekstrema funkcji f(x,y) = 2y na zbiorze E C R? zadanym warunkiem G(z,y) =
2+ 2 —-2=0.

Rozwigzanie: Tworzymy funkcje pomocnicza

flz,y) =2y — N2’ +y* —2),

Obliczamy pochodne czastkowe tej funkcji: f, =y — 2)z, fy = — 2\y i przyrownujemy
je do zera wraz z warunkiem G = 0:

y—2X\x =0,
r—2\y=0,
Pyt —2=0.

Szukamy rozwiazan tego uktadu rownan mnozac pierwsze przez y drugie przez x i odej-
mujac pierwsze od drugiego. Daje to 2? = 92, czyli y = +2. Ostatnie réwnanie w obu
przypadkach daje 222 = 2, czyli x = £1. Sa wicc az cztery punkty i kazdemu z nich,
poprzez pierwsze lub drugie rownanie, odpowiada pewna warto$¢ mnoznika A:

(1,1), (1,-1), (—=1,1), (—1,-1).
D . D Y A=t
2 2 2 2

Zbior E = G71(0) jest w tym przypadku zbiorem zwartym (i bez brzegu, bo to okrag) i
mozemy od razu zobaczy¢, ze w pierwszym i ostatnim punkcie funkcja f przyjmuje wartosé
1, a dwoch srodkowych punktach przyjmuje wartos¢ —1. W punkcie pierwszym i ostatnim
funkcja f ma wiec maksima (globalne na E), a w dwoch $rodkowych ma minima (tez
globalne na F). Zobaczmy jednak, jak dziataja te dwa rézne przepisy sprawdzania, czy w
swoim punkcie krytycznym funkcja f ma na E ekstremum (lokalne). Najpierw ostatnia
(powszechniej stosowana) metoda. Obliczamy macierz drugich pochodnych funkcji fw
zmiennych x i y, traktujac mnoznik A jak stata: fm = fyy = —2)\, fmy = 1. Macierz formy
kwadratowej w pierwszym i w ostatnim punkcie ma wiec postac

)

Ogolnie rzecz biorac jest to macierz o sygnaturze (—,0), ale wiemy, ze to co jest istotne,
to to, jakie wartosci daje ona na wektorach stycznych do wiezow. W punktach (1,1) i
(—1,—1) pochodna G' = (2x, 2y) to macierz (kowektor)

/(1,1) = (2, 2)> /(—1,—1) = (—2> —2)-
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Sktadowe (hq, he) wektorow przemieszczen stycznych do wiezow w kazdym z tych punktow
spelniaja taki sam warunek 2hy +2hy = 0. Okreslonos¢ formy drugich pochodnych funkcji
f malezy zatem w punktach (1,1) i (—1,—1) bada¢ tylko na wektorach przemieszczen

postaci (h, —h):
(h, —h) (‘11 _11) (_hh) = —4h”.

Jej wartosé jest wiec na takich wektorach zawsze ujemna, co oznacza, ze w punktach (1, 1)
oraz (—1,—1) funkcja ma na zbiorze E lokalne maksimum. Analogicznie w $rodkowych
dwoch punktach krytycznych, tj. w (1,—1) i (—1,1), pochodna G’ = (2x,2y) to macierz
(kowektor)

/(1,—1) = (27 _2) ) /(—1,1) = (_27 2) )

i macierz formy kwadratowej drugich pochodnych funkeji F' w tych punktach trzeba badaé
na wektorach (stycznych do wiezow), ktore sa postaci (h, h):

(h,h) G }) (Z) — 4

Wartosé tej formy na wektorach przemieszczen stycznych do wiezow jest zawsze dodatnia
i wobec tego na E funkcja f ma w tych punktach minima.

Sprawdzmy jeszcze jak dziala metoda zalecana na wyktadzie. Teraz zajmujemy sie
funkcja F(z,y,\) = xy — Mz 4+ y* — 2) i znajdujemy jej drugie pochodne w trzech
zmiennych:

Fxx:_Q)\a

Foy=1,

y:_2)‘> F)\)\Zoa
)\:—21’, Fy)\:—Q’y.

8 l@’ﬁl

W punkcie (1,1) i w punkcie (=1, —1), gdy A = 1/2, macierz 3 x 3 formy kwadratowej
drugich pochodnych maja postacie

-1 1 -2 —1 1 2
1 -1 -2, 1 -1 2],
2 -2 0 2 2 0

i w obu przypadkach wyznacznik jest réowny 4, czyli dodatni (maksimum). Z kolei w
punktach (1,—1)1i (—=1,1), gdy A = —1/2, macierze te maja postacie

i ich wyznaczniki sg rowne —4, czyli sa ujemne (minima). Wida¢, ze i ta metoda dziala!
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W przyktadzie tym warunek G(x,y) = 0 daje sie oczwiscie odwiktaé¢, ale nie globalnie.
Wyznacza on dwie funkcje

g+(z) =+V2—2a2, oraz g_(z)=-V2—2?,

ktore sa dobrymi funkcjami jedna w otoczeniu punktow (1,1) i (=1, 1), a druga w otocze-
niu punktéow (1,—1) i (=1, —1). Punktami, w ktérych G(z,y) = 0 nie wyznacza zadnej
dobrej funkcji y = y(z), sa punkty (£v/2, 0) (warunek G(z,y) = 0 wyznacza tam dobre
funkcje x = z(y)), ale tu na szczescie dwie funkcje g4 () i g—(z) sa dobrze zdefiniowane na
dwoch kawatkach E obejmujacych razem wszystkie punkty krytyczne. Na goérnej potowie
E. zbioru E (gornej, tj. tej, gdzie y > 0) funkcja fi = F|g, moze by¢ zapisana jako
funkcja

fi(x) =2 g4 (2) = av2 — 22

Jej pochodna

2 2 — 222
(z)=V2 2 - 2 = ,
f+( ) \/2_$2 \/2_3:2

zeruje sie w punktach z =11 x = —1 (ktérym odpowiada y = 1), a jej druga pochodna

—4x 2z (1 — 2?)

Vi@ @-a)pP

jest w tych punktach odpowiednio ujemna (maksimum lokalne) i dodatnia (minimum
lokalne). Analogicznie na F_ mamy funkcje f_(z) = x g_(x), ktora rozni si¢ od fi(x)
znakiem i wobec tego ma w punktach z = 1 i 2 = —1 (ktérym odpowiada y = —1)
odpowiednio minimum i maksimum.

() =

Zadanie Wex.2

Jaka jest maksymalna mozliwa objeto$é¢ prostopadtoscianu wpisanego w elipse o potosiach
rownych a, b i c?

Rozwigzanie: Jesli rozsadnie umiescimy $rodek elipsy w punkcie (0,0,0) tak, by jej
osie gltowne byty osiami z, y i z, to funkcja, ktorej ekstremum trzeba znalezé jest V =
8zyz, ale technicznie wygodniej bedzie szuka¢ maksimum funkeji (V/8)? = 22y?22%, bo w
konicu kwadrat jednej 6smej objetosci jest maksymalny wtedy, gdy sama objetosé jest tez
maksymalna. Warunkiem ubocznym jest tu réwnanie elipsy

2 2 2
T Y z
StEta=L

Mozna zrobié jeszcze jeden myk polegajacy na przeskalowaniu zmiennych: zamiast ope-

rowa¢ x, y i z, bedziemy operowaé¢ zmiennymi & = x/a, § = y/b, Z = z/c (tych tyld nie
bedziemy pisa¢; odpowiada to mierzeniu odlegtosci wzdtuz osi  w jednostkach a, wzdtuz
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osi y w jednostkach b i wzdtuz osi z w jednostkach ¢ - kto nam moze tego zabroni¢?!).
Tworzymy wiec pomocnicza funkcje

Fla,y,a) = a2y = A@® + 2 + 2 — 1),

(bo (V/8)? = a?b*c*i*y*2?, a czynnik a?b?c® nie wplywa na polozenie maksimum) i po-
stepujemy wedhug regulaminu: przyrownujemy do zera jej pochodne i warunek uboczny

Rk

(x,y,2) = 2x (y2z2—>\) =0,
(x,y,2) =2y (:L’222 —)\) =0,
Z(l’,y,Z) =2z ($2y2_A> 207
Gr,y,2) =2 +y*+2°—-1=0.

xT

z@ﬁz

Oczywiscie rozwiazania z x = 0 lub y = 0 lub z = 0 odpowiadaja zerowej objetosci,
czyli minimum (absolutnemu) funkcji F' i sa nieinteresujace. Mozna wiec trzy pierwszr
rownania zastapi¢ rownaniami y222 = \, 2222 = i 2%y? = \. Jesli te z kolei poodejmowaé
parami jedno od drugiego, to dostaniemy x? = y? = z2. Znoéw, ujemnych z, y i z nie
rozpatrujemy - funkcje F i F sa funkcjami tylko 22, 32 i 22, wiec i tak, nawet gdyby
nie mysle¢ o z, y i z jak o dtugosciach bokéw prostopadtoscianu, to punkty krytyczne o
ujemnych warosciach tych wspotrzednych mialyby taki sam chakter, jak te o dodatnich
tylko - wiec

5l

Drugie pochodne funkeji F sa nastepujace:

Fm(x, y,z) = 2(y222 —A), ﬁ’yy(x, y,z) = 2(x2z2 —A), Sz, y,2) = 2(x2y2 —A),

z@l

i macierz @) formy kwadratowej drugich pochodnych w punkcie krytycznym ma postaé

A 0 1 1
R==-11 0 1],
"\1 1 0

Forma nie jest wiec bezwzglednie dodatnio okreslona, ale na wektorach stycznych musi
taka by¢, bo zbior E jest zbiorem zwartym, jakie§ maksimum funkcja [’ na nim mieé¢
musi, a jedynym kandydatem jest znaleziony punkt krytyczny. Ale zobaczmy na tym
przyktadzie, jak dziala w praktyce przedstawione w Regulaminie redukowanie formy do

formy okreslonej na wektorach stycznych tylko. Na dowolnym wektorze przemieszczenia
h = (hy, hy, h,) (pominiemy dla przerzystosci te 4/9)

Q(h) = 2h,hy + 2h,h. + 2hyh. .
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Pochodna G’ = (2z, 2y, 22) warunku G(x,y, z) = 2% +y*+ 2% — 1 dzialajac w punkcie kry-
tycznym na wektor h przemieszczenia zgodny z wiezami ma dawacé zero. Zatem wektory
takie musza spetnia¢ warunek

2 i
@, 1,1 h|=0
V3 h,

czyli np. h, = —h, — h,. Wstawiamy to do Q(h) i porzadkujemy:

Q = 2hyhy + 2(hy + hy)(—hy — hy)

o B -2 -1 hy
= —2h2 th thhy—(hmvh’y)(_]_ _2) (hy )

I teraz metoda “minorowa” mowi, ze —() jest formg dodatnio okreslong, wiec @ jest forma
ujemnie okreglong, a to znaczy, ze w punkcie z = y = z = 1/4/3 funkcja F ma na E
maksimum, tak jak to juz ustaliliémy fizycznym rozumowaniem. Jesli teraz odskalujemy
spowrotem zmienne, to wynik jest taki, ze maksymalna objeto$¢ ma wpisany w elipse
o polosiach a, b i ¢ prostopadioscian o x = a/V/3, y = b/V/3, z = ¢/+/3. Maksymalna
objetosé prostopadloscianu wpisanego w taka elipse jest réwna S8abc/3+/3.

Mozna tez na tym przyktadzie sprawdzi¢ metode z wykltadu ustalania charakteru
punktu krytycznego. Jesli F' potraktujemy jak funkcje z, y, z i A, to dojda drugie po-
chodne F’x)\ = —2ux, F’y)\ = —2y, ]*:’Z,\ = —2z, F}\,\ = 0. W punkcie krytycznym macierz
drugich pochodnych wyglada wtedy tak

0 1 1 —«
Al 1 0 1 -—a 3
Q=511 1 0o ol a_§¢§

—-a —a —a 0

Wyznacznik tej macierzy (no trzeba troche poLaplasowac) jest rowny —3a?(4/9)%. Zatem
widaé¢ na tym przyktadzie, ze kryterium podane na wyktadzie nie dziala w przypadku
funkeji na R™ o n > 2 i/lub wiekszej liczby warunkéw ubocznych.

Rowniez 1 to zadanie mozna rozwiaza¢ zwykta metoda szukania ekstremum (maksi-
mum) funkcji dwoch zmiennych. Mozna bowiem z réwnania elipsy wywikltaé¢ 2?2 i szukaé
ekstremoéw funkceji

2 2,22 2,2, 2 a?

V* = F(x,y) = 64x°y“z" = 64c°z°y (1—?—ﬁ>.

Znow lepiej jest zdefiniowaé¢ nowe zmienne u = z%/a%, v = y?/1?, i szuka¢ w obszarze
0<u<1,0<v <1 ekstremum funkceji

flu,v) = wv(l —u —v) = uww — w* — v?v.
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Szukamy jej puktow krytycznych rozwiazujac rownania

fu=v—2uw—v*=0,

fo=u—2uv—u’>=0.

Odejmujac jedno od drugiego dostajemy (u — v) — (u* — v?) = (u —v)[1 —u —v] = 0.
Zatem albo u = v iwtedy u—3u? =0iu=01lubu = 1/3, albov = 1—wu i to podstawione
np. do f,=0dau=1({1v=0)Ilubu=0(v=1). u=0lubv = 0 oznacza zerowa
objetos¢, czyli minimum funkcji, i te mozliwosci odrzucamy. Zostaje wiec u = v = 1/3.
Drugie pochodne f,, = —2v, f,, = —2u i fu, = 1 — 2u — 2v daja w badanym punkcie
krytycznym nastepujaca macierz () formy kwadratowej drugich pochodnych

o_ (23 L3
“\-1/3 —2/3)°
ktora jest ujemnie okreslona (sygnatura (—, —)), co oczywiscie oznacza, ze w punkcie kry-

tycznym funkcja ma maksimum (tu jest to maksimum absolutne). Oczywiscie dostajemy
w wyjsciowych zmiennych te same z = 1/v/3, y = b/v/3 i z = ¢/V/3.

Zadanie Wex.3 (cze$¢ zadania 82 ze skryptu do algebry)
Zmalez¢ odleglo$¢ w Eg miedzy prostymi [y i ls zadanymi nastepujaco:

ll: {(QUl,ZIJ’Q,,’,U:g)EEg: .Z'1+;U2:17 l’1+2x2+x3:2},
T 0 1
Iy o | =2 +¢t|1
I3 0 2

Rozwigzanie: W skrypcie do algebry to zadanie jest tez rozwigzane czysto geometrycz-
nie, ale tu rozwigzemy je analitycznie. Wprowadzamy w tym celu funkcje

f(l’l, S(Zg,l’3,t) = (LL’l - t)z + (LL’Q —1t— 2)2 + (1’3 - 2t>2 s

bedaca kwadratem odleglosci punktu X o wspotrzednych (zq, x2, 23) od punktu na prostej
ly scharakteryzowanego parametrem t. Minimalizujemy zatem funkcje czterech zmien-
nych. Warunkiem dodatkowym jest to, ze punkt X musi leze¢ na prostej /i, co oznacza,
ze wspolrzedne (x1, xo, x3) musza spelia¢ warunki (uprosciliémy tu drugi z warunkow
zadajacych prosta ly odejmujac oderi pierwszy)

g1(x1, 9, x3,t) =21 + 20— 1 =0,

Go(21, 29, 3,1) =29+ 23 —1=0,

(chociaz warunki g; i go dotycza tylko wspohrzednych punktu X, to mimo to, nalezy je for-
malnie traktowaé jak funkcje wszystkich zmiennych, ze wzgledu na ktoére minimalizujemy
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funkcje f). Znow tworzymy funkcje pomocniczg zalezng od dwu mnoznikow Lagrange’a

)\1 1 >\22
F(x1, 29, 3, t) = f(x1, 22, T3, 1) + 2M191(21, T2, T3, 1) + 2XA292(21, T2, 23, 1),

(zeby sie tadniej liczby komponowaly przyjeliSmy za mnozniki Lagrange’a 2X\; i 2);) i
przyrownujemy do zera jej pochodne czastkowe po xy, o, 231 t:

F, = 2(x; —t)+2M\ =0,

Fl, = 2wy —t—2)+2\ + 2 =0,

F! = 25— 2) + 22 =0,

F' = 201 —t) — 2wp —t — 2) — 4(ws — 2) = 0.

W potaczeniu z warunkami ubocznymi daje to uktad szesciu rownan

r1—t+ A =0,
To—t+ A+ X =2,
x3—2t+ X =0,

T1+ 2o + 223 — 6t = 2,
T+ a9 =1,

To+x3=1.

Aby je systematycznie rozwigza¢ wyznaczamy z pierwszych trzech x; = t — A\, 25 =
t— A — X+ 2, x3 = 2t — Ay 1 wstawiamy do pozostatych trzech. Pierwsze z nich daje
wtedy

20 +3X =0,
a pozostale

2t =2\ — Ay = —1,
3t— A —2\=—1.

Po wyeliminowaniu \; otrzymujemy dwa réwnania

2t 42X = —1,
1
3t—=-d=-1
2 2 )
ktorych rozwiazaniem sa t = —%, Ay = —%; dalej juz tatwo: A\; = % oraz
8 22
T T3 = 14 s To = 14 .
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Wartos¢ minimalizowanej funkcji f (1, 72, v3,t) w tym punkcie wynosi 5; (tak jak nam to
wyszto w zadaniu 81). Macierz @) drugich pochodnych w zmiennych xl, To, x3 1t funkcji
F(x1, 29, x3,t, A1, \2) ma postac

2 0 0 -2
0 2 0 -2
@= 0 0 2 -4
-2 =2 —4 12

Nie jest ona dodatnio okreslona bo najwiekszy jej minor jest rowny zeru (aby to zoba-
czy¢ wystarczy do ostatniego wiersza doda¢ dwa pierwsze wiersze i podwojony trzeci, co
da macierz gornotrojkatna majaca na diagonali trzy dodatne wyrazy i jeden zerowy).
Ale macierz te trzeba badaé¢ na wektorach stycznych. Poniewaz gradientami wiezow
g1(x1, e, 23, 24) = 01 go(w1, T2, 3, 24) = 0 sa tu kowektory

91=1(1,1,0,0),  g¢5=(0,1,1,0),

najogolniejszy wektor styczny do wiezéw jest postaci

na tym wektorze i forma drugich pochodnych daje

1
Q(h) = 612 — 6hk + 12k = 6 (h, k) (_11 22) (Z) .
2
Wida¢ wiec (metoda minorowa np.), ze jest to wielkos¢ zawsze dodatnia. Znaleziony
punkt krytyczny jest wiec minimum funkcji f.

Mozemy tez wykorzysta¢ to, co zrozumieliémy przy okazji dyskusji warunkéw dostatecz-
nych istnienia ekstreméw warunkowych (konstrukcja wektoréw przemieszczenia stycznych
do powierzchni wiezow) i rozwiazaé takie ksztatcace zadanie.

Zadanie Wex.4
Zmalezé wektory styczne do zanurzonej w R? powierzchni (bedacej elipsoida) zadanej
rownaniem

1’2 y2 22

Sttt g =1
Rozwigzanie: Traktujemy to réwnanie jak warunek wiezéw w poprzednich zadaniach
72 2 L2

Y
G(:L’,y,z):—+b—2+——1 0,
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i teraz wiemy, ze w dowolnym punkcie tej powierzchni tj. punkcie P = (z,y, z) takim,
ze G(z,y,z) = 0, wektory styczne tp maja te wlasciwos¢, ze zeruje sie na nich kowek-
tor (forma liniowa), ktorym jest (tlumaczyliSmy to sobie jaki§ czas temu) pochodna G’
obliczona w punkcie P, czyli

=G x,y,2) = (22/d?, 2y/b*, 22/c?).

Jesli wektor tp ma (w kanonicznej bazie zero-jedynkowej) sktadowe t%, t% i t5, to musza
one spelnia¢ warunek

20t /a* + 2yt /b* + 2215 /c* = 0.

Jest to jeden warunek na trzy sktadowe, wiec w kazdym punkcie P = (z,vy, z) sa (znow
algebra!) dwa liniowo niezalezne takie wektory rozpinajace razem w R3 dwuwymiarows
podprzestrzen oznaczang TpM (M oznacza tu “manifold”, po naszemu ‘rozmaitosé¢”, jaka
jest elipsoida, a T jest od “tangent”). Wektory te mozna oczywiscie wybraé¢ na wiele spo-
sbow. Jednak jesli wprowadzimy jakas parametryzacje powierzchni (choc¢by tylko lokalna),
czyli moéwiac jezykiem geometrii rozniczkowej, uktad wspotrzednych na rozmaitosci M w
otoczeniu jej punktu P, to kazdy taki uktad wspolrzednych (parametryzacja) w naturalny
sposob wyrdznia w punkcie P pewng baze przestrzeni Tp M. Zobaczmy to na przykladzie.
Wprowadzmy dwa parametry 0 < 0 < 710 < ¢ < 27 wzorami

x = asinfcosp = asgc,,
y =bsinfsinyp =bsys,,

z =ccosl =co.

Jest jasne, ze dla dowolnych wartosci 0 i ¢ (z podanego ich zakresu) otrzymuje sie x, y i 2
speliajace warunek G(z,y,z) = 0. To wlasnie oznacza sparametryzowac rozmaitos¢ M
(zanurzona w R™; mozna to bardziej uabstrakcyjni¢, ale sa od tego inni specjalisci) zadana
jakim§ warunkiem lub warunkami. Latwo tez sprawdzi¢, ze dwa wektory (zapisane tu w
kolumienkach, zawierajacych ich sktadowe w kanonicznej zero-jedynkowej bazie e,, e,, e,
przestrzeni R®, w ktorej wszystko tu sie rozgrywa - uabstrakcyjnienie polega m.in. na
tym, ze mozna sie obywaé bez takiej przestrzeni R", ale tego juz nie musimy tu zglebiac)

acycy —a 59 Sy
to=| beos, |, t, = bspcy ,
—C Sy 0

spelniaja automatycznie warunki G’ - tg = 0, G’ - t, = 0, czyli sa wektorami stycznymi
do powierzchni w punkcie P (identyfikowanym teraz wartosciami parametrow 6 i ¢).

A jak te wektory zostaly otrzymane? A no po prostu pierwszy przez rozniczkowanie
zwiazkow definiujacych uktad wspotrzednych po 6, a drugi przez ich rézniczkowanie po
©. Dlatego tez fachowi geometrzy rézniczkowi oznaczaja te wektory tak:

0 0

t(g:%, t¢:%

87



Nie bedziemy tu ich nasladowaé, zeby nas te “gote” pochodne nie straszyly po nocach
(moga nas gonié i chcie¢ zrozniczkowac!). Ale patent na konstruowanie wektorow stycz-
nych do rozmaitosci, gdy jest ona sparametryzowana jakimi$ wspotrzednymi, jest uniwer-
salny. Fizyk moze go zreszta tatwo przyswoié¢ bez konsultowania sie z fachowymi geome-
trami. Wystarczy wyobrazié¢ sobie, ze zmieniamy np. parametr 6 trzymajac parametr
ustalony. Wytyczamy w ten sposéb w przestrzeni R pewng krzywa lezaca oczywiscie na
powierzchni elipsoidy (na rozmaitosci). No i teraz mozemy sobie wyobrazié, ze 6 to jest
taki parametr jak czas t w mechanice, ktory tez parametryzuje trajektorie. A kazdy wie,
ze pochodna potozenia po czasie to jest wektor predkosci, ktory jest zawsze styczny do
toru. I tu jest tak samo!

Dodajmy jeszcze, ze taki uklad wspohrzednych, czyli odwzorowanie R¥ w R”, gdzie
k < n, definiuje w R™ powierzchnie (rozmaitos¢), ktora jest regularna (tzn. ma wymiar k)
w danym punkcie P, gdy wszystkie k wektorow stycznych uzyskanych z powyzszego prze-
pisu tworzy w punkcie P uktad wektoréw liniowo niezalezych, bo jesli nie sg one liniowo
niezalezne, to znaczy, ze rozpinana przez nie (pod)przestrzen styczna ma wymiar mniejszy
niz k, a to znaczy, ze w tym punkcie powierzchnia (rozmaito$¢) ma jakas osobliwosé, czyli
robi jakie§ siupy...
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ODE, czyli ré6wnania r6zniczkowe zwyczajne.

Roéwnania rézniczkowe to jest obszerny dzial matematyki, ktory kiedys, gdy fizyka spro-
wadzata si¢ do mechaniki klasycznej, elektrodynamiki, elastomechaniki, hydrodynamiki
itd., byt podstawowym dzialem dla kazdego fizyka (no, przede wszystkim teoretyka). Dzi§
trzeba umie¢ i algebre®” i geometrie rézniczkows i co§ wiedzie¢ o analizie funkcjonalne;
i o topologii i analizie zespolonej, teorii prawdpodobienstwa, teorii grup... Ale réwnania
rozniczkowe pozostaja wciaz jakas wspolna dla wszystkich podstawa.

Roéwnania rézniczkowe moga byé réozne. Przede wszystkim mozna je podzielié na
ODE i PDE. ODE, czyli réwnania rézniczkowe zwyczajne, sa réwnaniami wyznaczaja-
cymi nieznang funkcje jednej zmiennej na podstawie zadanego zwigzku tej funkcji z jej
pochodng lub pochodnymi i podanego warunku lub warunkéw (zwanych naogot warun-
kami poczatkowymi). Nazywaja sie zwyczajnymi, bo w zwiazkach tych wystepuja po-
chodne zwyczajne. ODE mozna jeszcze dalej podzieli¢ na rownania wyznaczajace funkcje
odwzorowujace R w R i takie, ktore wyznaczaja funkcje odwzorowujace R w R” on > 1.
Drugi ich podzial, to na réwnania rézniczkowe pierwszego rzedu (sa one zwiazkami miedzy
funkcja i jej pierwsza pochodna) i wyzszych rzedow (tu wiaza one funkcje z jej wyzszymi
pochodnymi az do pewnego skoriczonego rzedu 7). Jak sie przekonamy, réwnanie roz-
niczkowe rzedu r wiazace funkcje odwzorowujaca R w R, mozna zawsze przeksztalcié
w rownanie rézniczkowe pierwszego rzedu na funkcje odwzorowujaca R w R” (ogdlniej:
ODE rzedu r na funkcje odwzorowujaca R w R™ mozna zapisaé¢ jako ODE pierwszego
rzedu na funkcje odwzorowujaca R w R™"). Pewna szczegdlna klase rownan stanowia
réwnania zwyczajne pierwszego rzedu o zmiennych rozdzielonych, a druga (klasy te nie sa
roztaczne) rownania liniowe (moga by¢ i wyzszego rzedu), tzn. takie, w ktorych zwiazek
funkcji i jej pochodnych jest liniowy w samej funkcji; rozszerzeniem tej klasy sg rownania
liniowe z niejednorodnoscia, tzn. majace posta¢ rownosci pewnego operatora (rézniczko-
wego) dziatajacego na funkcje i pewnej zadanej (ustalonej z gory) funkcji. Te dwie klasy
rownan sg szczegoblnie tatwe i nimi si¢ bedziemy tu sporo zajmowac.

Osobny dzial stanowia PDE - czyli réwnania rézniczkowe wiazace odwzorowania z
R™ w R (mozna tez rozpatrywaé takie dotyczace odwzorowania z R™ w R™ - takimi sa
np. znane kazemu fizykowi rownania Maxwella) z ich pochodnymi czastkowymi pierw-
szego rzedu tylko - wtedy mamy do czynienia z PDE pierwszego rzedu - albo i wyzszego
rzedu. Okazuje sie, ze PDE pierwszego rzedu daje si¢ sprowadzi¢ do réwnan réznicz-
kowych zwyczajnych. Zwie sie to metoda charakterystyk. Dziala ona troche prosciej,
gdy rozpatrywane PDE jest liniowe, lub liniowe z niejednorodnoscia, ale stosuje si¢ ona
takze do nieliniowych PDE pierwszego rzedu. Kiedy$ te metode sobie przyswoitem (w
wersji stosowalnej do liniowych PDE pierwszego rzedu jest ona potrzebna przy analizie
tzw. grupy renormalizacji w kwantowej teorii pola i fizyce statystycznej) wiec jakie§ dwa
proste przyktady jej zastosowania beda na deser (tylko nie mowi¢ wyktadowcy...). Dalej

377 jaka rezerwa podchodzili fizycy do algebry, kiedy nagle okazalo sie, ze mechanike kwantows mozna
- to zrobit Heisenberg - sformutowaé¢ w jezyku takich dziwnych obiektow, jak macierze! Dopiero wtedy w
Getyndze (a gdziezby indziej to sie moglo wydarzy¢, jak nie tam, gdzie byl patronat Hilberta?) usiedli
Max Born z Pascualem Jordanem i zaczeli sie uczyé od tamtejszych znakomitych matematykow tego, co
Panstwo dzi§ juz maja w malym palcu...
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rozciaga sie po horyzont, i pewnie nawet dalej, §wiat skomplikowanych réwnan réznicz-
kowych czgstkowych wyzszych rzedow; te drugiego rzedu sie jeszcze jako$ klasyfikuje na
rOwnania typu parabolicznego, hiperbolicznego itd., a co z wyzszego rzedu, to juz tylko
spece wiedza. To tak, zeby$smy mieli jakas $wiadomosé, w co sie zaglebiamy. “Und somit
fangen wir an”, jak méwi Thomas Mann konczac wstep do Der Zauberberg.

Zaczniemy oczywiscie od réwnan rézniczkowych zwyczajnych pierwszego rzedu wia-
zacych nieznang funkcje y = y(x) z jej pierwsza pochodna 3/(x). Zwiazek taki moze by¢
jawny

Y (z) = f(x,y),

zaktada sie wtedy, ze f(z,y) jest odwzorowaniem ciaglym pewnego (otwartego) zbioru
D C R? w R, lub mie¢ posta¢ uwiklang

F(z,y,y") =0,

o ktorej zaktada sie, ze F'(z, vy, z) jest odwzorowaniem ciaggtym pewnego (otwartego) zbioru
E c R® w R. Jak juz wiemy, przy zalozeniu, ze F, # 0, réownos¢ F' = 0 wyznacza
(lokalnie) funkcje z = z(x,y), czyli daje sie wtedy postaé¢ druga sprowadzi¢ do pierwszej,
wiec zajmiemy sie gtownie ta pierwszg.

Catkq rownania takiego jak te wyzej nazywa sie kazda rozniczkowalna (na pewnym
podzbiorze R) funkcje y = y(x) taka, ze jej wykres (takie szkolne pojecie) lezy w zbiorze
D CR*i

y'(z) = flz,y(x)) =0, lub F(z, y(z), y'(x)) =0.

Wykres y = y(z) jest krzywq catkowq réwnania rozniczkowego, ale, jak to sobie zaraz
powiemy, moga by¢ tez krzywe catkowe réwnania, ktére nie sg wykresem funkcji y =
y(x). Powstaje zaraz oczywiste dla matematyka pytanie, czy réwnanie rézniczkowe ma
rozwiazanie przechodzace przez zadany punkt (g, y) plaszczyzny R, tj. takie, ze y(xo) =
Zp, a jak ma, to czy jednoznaczne i jak zbior takich rozwiazan przechodzacych przez
rozne punkty skatalogowaé. Fizyk formutuje ten pierwszy problem w postaci pytania o
rozwiazanie speliajace zadany warunek poczgtkowy y(zo) = zo (mato sie zastanawiajac
nad jednoznacznoscia).

Zadanie Ode.1 Zanim przytoczymy stosowne twierdzenia, rozpatrzmy taki przyktad (z
nieocenionego Lejka). Niech réwnanie ma postaé (te druga)

xy +x—2y=0.

Mozna sprawdzi¢ przez bezposrednie podstawienie do wypisanego wyzej réwnania, ze
rozwigzaniem jego jest funkcja’®

y(z) =Ca2* 4+,

387a niedlugo stanie sie jasne, skad sie ona bierze. Rozpatrywane réwnanie jest bowiem przykladem
rOwnania liniowego z niejednorodnoscia.
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Rysunek 16: Bedace uczciwymi funkcjami krzywe catkowe rownania y' = 2(z/y) — 1.

w ktorej C' jest zupelnie dowolna stala (rzeczywista). Jest wiec to cata rodzina catek
wypisanego réwnania rézniczkowego. Jesli sie spojrzy na rysunek 16, to widaé, ze gdy
C > 0, jest to rodzina parabol idacych “do gory”, a gdy C' < 0, rodzina parabol idacych
“w dot”, ale kazda z tych parabol przechodzi przez punkt (0,0) € R?; gdy C' = 0, jest
to prosta rozdzielajaca jakby te dwie rodziny parabol. Jest wiec mniej wiecej oczywiste,
ze przez kazdy punkt plaszczyzny R? z wyjatkiem punktow (0, 1) przechodzi tylko jedna
z tych parabol; przez punkt (0,0) przechodzi ich nieskoriczenie wiele (kazda z calek tego
réwnania), a przez punkty (0,y) o y # 0 nie przechodzi zadna krzywa catkowa. Widac
wiec, ze punkty (0,7y) sa jako$ nienormalne: czasem moga dzia¢ sie jakie§ takie siupy.
Sprobujemy jednak takie zachowanie rozwiazan zrozumieé po “fizycznemu’.

Stosowne twierdzenie wyjete z Lejka i odnoszace si¢ do pierwszego, jawnego, sformuto-
wania problemu, brzmi tak: Jesli odwzorowanie f(x,y) i jego pochodna f,(z,y) sa ciagle
w punkcie (z,y) € R?, to przez punkt ten (i jakie$ jego otoczenie) przechodzi dokladnie
jedna krzywa catkowa rownania y' = f(z,y). (Jak to wyrazi¢ w przypadku réownania
danego w sprosob uwiktany jako F'(x,y,y’) = 0, powinno by¢ jasne, gdy sie wie, kiedy
warunek F'(z,y,z) = 0 wyznacza regularna funkcje z = z(z,y)).

W swietle tego Lejkowego twierdzenia jest jasne, ze punkty (0,y) sa, w przypadku
rozpatrywanego wyzej przykladu, trefne: funkcja (uzyskana po przedstawieniu réwnania
w pierwszej postaci)
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jako odwzorowanie f : R? — R, nie jest (to juz wiemy! - po to uczyliémy sie analizowac
ciaglos¢ takich odwzorowan) ciagta w zadnym z punktéow postaci (0,y). Przytoczone
twierdzenie nie rzuca jednak $wiatta na pytanie, dlaczego punkt (0, 0) jest inny niz punkty
(0,y) oy # 0. Sprawa wyjasnia sie troche (ale nie do korica), jesli popatrzymy na funkcje
f(z,y) jak na majaca zadawac¢ na plaszczyznie R? pole kierunkéw, albo pole nachylen
krzywej y = y(z) - wiemy bowiem, ze pochodna y'(x) jest nachyleniem takiej krzywej
w punkcie z, czyli tangensem kata nachylenia w stosunku do osi x prostej stycznej do
wykresu tej krzywej w punkcie (x,y). Krzywa catkowa réwnania rozniczkowego ma w
danym punkcie (x,y) mie¢ nachylenie takie, jak zadaje funkcja f(z,y). No a jaka wartos¢
ma w punktach (0,y) € R? funkcja f(x,y) = 2y/x — 1, czyli jakie nachylenie ona w tych
punktach zadaje? No, rowne +oo, gdy y # 0, czyli takiej funkcji y = y(z) przechodzacej
przez punkt (0,y) nie moze by¢. A w punkcie (0,0)? Dowolne! Bo wiemy, ze gdy do
punktu (0, 0) zbiegamy na plaszczyznie R? z réznych kierunkoéw po prostych, to dostajemy
skoriczona wartosé funkeji f(x,y) = 2x/y — 1, tyle ze zalezng od kierunku zbiegania.
Mozna wiec zrozumieé, dlaczego przez punkty (0,y) o y # 0 nie przechodzi zadna krzywa
catkowa postaci y = y(x) badanego rownania, ale jeszcze nie jest jasne, dlaczego wszystkie
takie krzywe przechodza przez punkt (0,0). Na razie rozumiemy tylko, ze ma to jakos$
zwiazek z tym, ze funkcja f(z,y) daje sie w punkcie (0,0) “uciagli¢” w kierunkach “po
prostych”. Jednak samo to jeszcze nie wystarcza, bo, jak sie okazuje, dziata to tylko
tylko w jedng strone: jedli przez dany punkt plaszczyzny R? przechodza jakie§ krzywe
catkowe, to z tego wynika tylko, ze w tym punkcie funkcja daje si¢ w jakich$ kierunkach
uciagli¢ (tu w dowolnym kierunku); w szczegolnosci zdarza sie (sa takie przyklady w
zadaniach do samodzielnej zabawy), ze przez dany punkt przechodzi nieskoriczenie wiele
rozwigzann y = y(x) réownania roznieczkowego y' = f(x,y) i kazde z nich ma w tym
punkcie inne nachylenie (w tym przyktadzie tu wszystkie rozwiazania przechodzace przez
(0,0) maja w tym punkcie to samo nachylenie) - to oznacza, ze funkcje f(x,y) mozna
uciagli¢ w tym punkcie w dowolnym kierunku (tzn. nie moze byé¢ ona uczciwie ciagta
w tym punkcie jako funkcja f(x,y) na R?). Jednak badany tu przyktad pokazuje, iz z
faktu, ze funkcja daje sie uciggli¢c w danym punkcie w dowolnym kierunku nie wynika,
ze bedzie przez ten punkt przechodzi¢ nieskoriczenie wiele rozwigzan o réznych w tym
punkcie nachyleniach ani ze w ogole jakies beda przezenn przechodzi¢ (przyktady sa w
Zadaniu 38c, d i f). Warunek ciaglosci f,(z,y) tez jest istotny. Kluczowe tu jest takze to,
zeby, gdy do punktu (0,0) zbiegamy po prostej y = ax, tzn. majacej w (0,0) nachylenie
o tangensie rownym a, funkcja f(z,y) stawalta sie w tym kierunku ciagta jesli nadamy jej
w (0,0) wartos¢ doktadnie a. Te dwie rzeczy: nachylenie kierunku zbiegania i konieczna
do ciaggtosci wartosé funkeji w tym punkcie nie musza by¢ ty samym! I tu wlasnie mamy
tego ilustracje: gdy zbiegamy do (0,0) po prostej y = z o nachyleniu 1, to zgadza sie
ono z wartoscia uciaglajaca funkcje f(z,y) w tym kierunku; przy zbieganiu zas po prostej
y = ax z a # 1 warto$¢ uciaglajaca fukcje f(z,y) w takim kierunku jest réowna 2a —1 # a.
I dlatego wszystkie catki badanego réownania przechodzace przez punkt (0,0) maja w
x = 0 nachylenie réwne 1 (wida¢ wiec, ze mamy jakie$ wyttumaczenie tego, dlaczego przez
punkt (0, 0) przechodza krzywe o nachyleniu 1, ale nie tego, dlaczego jest ich nieskonczenie
wiele...).
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Ponadto fakt, ze w punktach (0,y) o y # 0 nachylenie krzywej catkowej musiatoby by¢
nieskoniczone, pozwala spojrze¢ na réwnanie rézniczkowe nieco inaczej i rozszerzy¢ zbior
jego rozwigzan. Jesli bowiem przepiszemy réwnanie w postaci

dy = f(x,y)dz,

albo postaci

plz,y)de +q(z,y)dy =0,

w ktorej p(z,y) i q(x,y) sa jakimis dwiema funkcjami ograniczonymi tylko warunkiem, by
—p(z,y)/q(z,y) = f(z,y) (tam, gdzie f(z,y) jest dobrze okreslona i ciagta), i popatrzymy
na nie jak na zwiazek korelujacy “kroczki” dy i dz, o jakie wolno nam przesunaé si¢ z
punktu (z,y) w bok (juz ten punkt widzenia w tym skrypcie wykorzystywaliSmy - nie
na darmo ja mam nawyki wyrobione na termodynamice i kwantowej teorii pola!), to tym
samym dopuécimy do gry rozwigzania - dalej bedziemy je zwaé¢ krzywymi calkowymi”
réwnania rézniczkowego - ktore nie sa (przynajmniej nie wszedzie) funkcjami y = y(x),
tylko jakimis krzywymi na plaszczyznie xy. Mozna wtedy jako rozwigzania rozpatrywaé
krzywe zapisane w postaci parametrycznej x = z(7), y = y(7); spelniaja one wtedy
rOwnanie

dx dy

p((7), y(7)) o + alx(7), y(7)) -~

Jesli badane tu rownanie napiszemy w postaci

rdy = (2y — x)dx,

0.

to zobaczymy, ze krzywa catkowa jest tez prosta x = 0. Tzn. mozemy rozpoczaé spacer z
dowolnego punktu na osi y, ale powyzszy zwiagzek mowi, ze kroczek wykonywany z takiego
punktu musi by¢ o dr = 0 - nie wolno i$¢ ani o wlos w prawo lub lewo - tylko wzdtuz
osi y! Zatem i przez punkty polozone na osi y, punkty (0,y) o y # 0 przechodzi krzywa
catkowa, tylko nie jest ona funkcja w szkolnym znaczeniu. Oczywiscie z punktu (0, 0)
nadal udaje sie ruszy¢ w dowolnym kierunku, bo w tym punkcie korelacja “kroczkow”
ma postaé¢ 0dy = 0dx, czyli nie narzuca zadnego warunku. Mamy w zasadzie catkowita
wolnoéé wyboru, w ktorym kierunku ruszymy.*°

Zadanie Ode.2 Inny przyktad. Rozpatrzmy rownanie rézniczkowe:

y =y (@),

Mozemy je tatwo scatkowaé, tzn. znalezé (jakies) rozwigzania, dzielac stronami przez y?/
i catkujac stronami po dux:

/ da y‘z’/g@) = / da Z—i Y (z) = / da .

39W samej nazwie “krzywa” catkowa, a nie “funkcja’ jest juz przeciez ta mozliwosé ukryta!

40Ale po ruszeniu w dowolnym kierunku daje sie tu i§¢ dalej tylko wtedy, gdy wybrany kierunek nie
jest niezgodny z kierunkiem zadawanym przez f(z,y) w punkcie ciut obok punktu (0, 0) tak jest tu tylko,
gdy ruszymy z (0,0) w kierunku o nachyleniu réwnym 1.

93



05

-10F

Rysunek 17: Rodzina krzywych calkowych réwnania 3/ = 3%/3.

Po lewej stronie dokonujemy zamiany zmiennej calkowania! z x na y = y(z); czynnik

dxy' jest akurat tym, co potrzebne, czyli dy, i mamy po tym po lewej stronie catke

/ dy(z) y23(z) = 3y™° + C.

Catka po prawej daje x+ C i scalajac state C' = C7 — Cy mamy rodzine rozwiazan (catek)

roéwnania rézniczkowego:
3
x—C
x) = .
y(x) ( 3 )

Jak wida¢ z rysunku 17 kazda z tych krzywych catkowych przecina o$ z-6w w punkcie
r = C. Latwo jednak zauwazy¢, ze y(z) = 0 jest tez rozwiagzaniem badanego réwnania®? i
to rozwiazaniem, ktore nie odpowiada zadnej statej C' w znalezionym powyzej rozwigzaniu,
cho¢ jest uczciwa funkcja y = y(z). Znéw wine za to, ze przez kazdy punkt na osi x
przechodza dwie (a nie jedna) krzywa calkowa, mozna zrzuci¢ na niespelnienie zalozen
Lejkowego twierdzenia: pochodna f,(x,y) = (2/3)y~%/3 nie jest bowiem ciagla (ani nawet
nie moze mie¢ granicy) w punktach typu (z,0). Mozna to tez widzie¢ tak, ze gdy patrzymy

41 Oczywiscie zwykle bezrefleksyjnie réwnanie takie catkuje si¢ “przenoszac dz pochodzace z dy/dx na
prawa strone”. Tu jednak chcialem pokazaé, ze mozna na to spojrzeé bardziej ortodoksyjnie.

27n6w tatwo wpasé na to piszac rownanie w postaci dy = y2/3 dx - widaé¢ wtedy, ze gdy jestesmy na
osi x, gdzie y = 0, korelacja kroczkow jest taka, ze dy = 0, a dx nie jest niczym ograniczone.
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na punkty (z, |¢]) i (z, —|¢|), czyli tuz nad osig x i tuz pod nia, to w obu tych punktach
nachylenie krzywej dazy do zera, gdy ¢ — 0 i ma ten sam znak: krzywe otrzymane z
catkowania ‘“zlewajg” sie na moment z krzywa y = 0; w tych punktach to wtasnie krzywe
y = ((x — C)/3)3 sa w jaki$ sposob patologiczne, a regularnym rozwigzaniem jest y = 0.

Rodzine y = y(z,C) rozwiazan réwnania rézniczkowego (zwyczajnego pierwszego
rzedu) parametryzowang stala C nazywa sie catkq ogdlng tego réwnania. Przyktad powy-
zej pokazal, ze catka ogolna nie musi obejmowaé wszystkich rozwiazan (nawet wszystkich,
ktore sg uczciwymi funkcjami y = y(x), a nie tylko krzywymi catkowymi).

Pewna wyrézniong podklase zwyczajnych réwnan rézniczkowych pierwszego rzedu sta-
nowia rownania o zmiennych rozdzielonych, tj. postaci®3

W _ PO gy dy+ pa) de = 0,

v qly)’

Calki ogoélne takich réwnan sa od razu dane “w kwadraturach” - ta nieco archaicznie
brzmiaca nazwa (spotykana np. w niemiertelnym podreczniku do mechaniki Rubinowicza
i Krolikowskiego) oznacza po prostu, ze rozwigzania takich réwnan sa “od reki” dane w
postaci konkretnych calek (a czy calki te sie da analitycznie wykonaé, to juz inna historia).
Naogol jednak otrzymuje sie w ten sposob zwiazek G(x,y) = 0, czyli funkcje y = y(z),
albo x = z(y) w postaci uwiktanej; ale jako sposob zadania krzywych catkowych jest
to zupelnie wystarczajace. Drugi nasz przykitad byl wlasnie réwnaniem rézniczkowym
takiego rodzaju (a pierwszy - nie).

Zadanie Ode.3

Zmalez¢ wszystkie krzywe catkowe rownania rézniczkowego

y=02z-1)y.

Rozwigzanie: Jest to wlasnie réwnanie o zmiennych rozdzielonych. Mozemy je przepisaé
w postaci dogodnej do scatkowania

J2 = [area-n,

Wykonujemy caltki (kazda jako calke nieoznaczona, ale dwie stale catkowania mozemy
ztaczy¢ w jedna) i dostajemy

Iny|=2® -2+ C,
czyli

y = :I:exp(C—l—;U2 —SL’) = C:’exp(:c2 —x).

43Minus jest dla porzadku w interesie, zeby nazwy funkcji p i ¢ byty takie jak poprzednio; jest jasne,
ze mozna by to bylo zapisaé¢ tez jako dy/dx = Q(y)P(z) lub Q(y)/P(x), czy jakos podobnie.
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Rysunek 18: Rodzina krzywych catkowych rownania y' = (22 — 1) y.

Zastapilismy tu multiplikatywny czynnik +e€ przez stala C, dopuszczajac oba jej znaki;
oczywiscie stata C' = 0 odpowiada C' = —oo. Troche wiec to podejrzane (bo czy uczciwa
stala catkowania moze by¢ nieskoriczona?), ale mozemy zauwazy¢, ze w ten sposoéb w
catke ogoélna wtaczylismy krzywa catkowa y = 0, ktora tez jest rozwiazaniem wyjéciowego
roOwnania, ale nie byta objeta catka ogdlna ze stala w eksponencie. Rodzina rozwigzan
tego rownania jest pokazana na rysunku 18. Mozemy tez zobaczy¢, ze przez kazdy punkt
plaszczyzny zy przechodzi teraz dokladnie jedna funkcja y = y(x) bedaca rozwiazaniem
rownania. Istotnie: jesli chcemy, mie¢ funkcje przechodzaca przez punkt (xg,yo) dobie-
ramy odpowiednio statg C:

C = ypexp(xg — :E(Q)) )

Musi tak by¢, bo w réwnaniu zapisanym w postaci dy/dx = f(z,y), funkcja f(z,y) jest
super przyzwoita funkcja: ciggla i nawet rézniczkowalng ma calym R? i to nieskoriczenie
wiele razy.

Zadanie Ode.4 (przyklad z Krysickiego-Wlodarskiego)
Znalez¢ wszystkie rozwiazania (krzywe catkowe) rownania

, 2y’

y_l—l-:vz'

Rozwigzanie: Rownanie jest rownaniem o zmiennych rozdzielonych i catkujemy je stan-
dardowo

dy 2z . I 2
/?—/dxm, czyli —;—C+1n(1—|—x).
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Stad

1
C+In(l+4a?)°

y:

Znoéow C' = oo odpowiada formalnie rozwigzaniu y = 0. Tu x = 0 nie jest rozwigzaniem
rownania (1 + 2?) dy = 2zy%dy, ale i tak przez kazdy punkt (zg,yo) przechodzi doktadnie
jedna krzywa calkowa réwnania i to zawsze bedaca uczciwa funkcja y = y(z), bo funkcja
f(z,y) = 22y*/(1 + 2?) jest na calym R? regularna i jej pochodna f,(z,y) tez taka
jest. Aby rozwiazanie przechodzito przez punkt (zg,yo), stala C' musi by¢ wyznaczona z
warunku

1
C+In(1+22)’

Yo =

ktory zawsze ma rozwigzanic C' = —1/yo — In(1 + 23) (trzeba oczywiscie przyjac, ze
yo = 0 odpowiada C' = oo, ale to jest wlasnie to, co dopusciliSmy juz). Zatem rozwigzanie
przechodzace przez punkt (zg, o) ma postacé

1
1y +In(1+22) — In(1 +22)

Y

Charakter tych funkcji zalezy jednak od punktu (xg, o). Trzeba rozpatrzy¢ rézne przy-
padki. Czynnik In(1 + 2?) w mianowniku jest zawsze nieujemny, wiec jesli 1/yo + In(1 +
x3) > 0, co zachodzi zawsze, gdy yo > 0, tj. gdy punkt, przez ktory rozwiagzanie ma
przechodzié¢ lezy w gornej potptaszezyznie (yo = 0 juz mamy zatatwione - odpowiada mu
zawsze, niezaleznie od xg, rozwiazanie y = 0), mianownik rozwiazania zawsze zeruje sie w
dwoch punktach, co oznacza, ze rozwiazanie przechodzace przez dowolny punkt (zg, yo) o
Yo > 0 ma dwie pionowe asymptoty, tj. nigdy nie siega w x-ach dalej w lewo niz pewne
x_ 1w prawo niz pewne x,, gdzie

Ty = IF\/el/yO(l +a2)—1.

Sytuacja, gdy 1/yo+In(1+z2) > 0 moze tez zachodzi¢, gdy yo = —|yo| < 0, ale to zalezy
teraz od wartosci In(1 + z3). Ogdlnie, gdy yo < 0 sa mozliwe trzy przypadki (myslmy o
ustalonym z i analizujmy rézne ujemne yo): —1/|yo|+In(1+23) > 0, —1/|yo|+In(1+22) <
01 taki przypadek krytyczny, gdy ten caly czynnik jest réwny zeru. Krzywa odpowiadajaca
temu przypadkowi, dana wzorem

1
v= CIn(1 4 22)’

lezy (zaleznie od tego, czy xy > 0, czy o < 0 - przypadek xy = 0 nie moze daé
—1/|yo| + In(1 + 22) = 0) w prawej lub lewej dolnej ¢wiartce, i biegnie od z = oo
(od # = —00), gdzie dazy do zera od dolu, do z = 0%, gdzie dazy do —oo, czyli ma
w x = 0 asymptote pionowa. Krzywa ta rozdziela (pamietamy: z, sobie ustaliliSmy)
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Rysunek 19: Rodzina krzywych catkowych réownania 3y’ = 2xy%/(1 + 2?). Trzeba tu
uwzglednié¢ to, ze Mathematica maluje przy zadanym zy = 1 i y, takze kawatki krzywych
za asymptotami, co jest mylace. W szczegélnosci pozorne jest widoczne na rysunku
utozsamienie asymptot pionowych krzywych lezacych w dolnej i gornej potptaszcezyznie
(polozenie asymptot, czy w ogole ich istnienie, zalezy od wyboru punktu (xg,yo)). Dlatego
trzeba sie wezyta¢ w przedstawiona w tekscie dyskusje.

krzywe nalezace do dwoch pozostatych przypadkow. Krzywe odpowadajace pierwszemu
z nich, zachodzacemu, gdy —1/|yo| + In(1 + 23) > 0, biegna jesli o > 0 (zg < 0) od
x =00 (x = —00) przez (xg, yo) do pewnego x, (x_) - danego wzorem wypisanym wyzej,
w ktérym maja asymptote pionowa (nie dochodza wiec nigdy do x = 0. Z kolei krzywe
odpowiadajace przypadkowi, gdy —1/|yo| + In(1 + z3) < 0, biegna od z = —oo przez
(x0,%0) do z = +00 majac minimum w z = 0. Mozna sie w tym zorientowa¢ wnikliwie
wpatrujac sie w rysunek 19.

Czesto na pozér beznadziejne réwnanie rézniczkowe udaje sie rozwiazaé przy pomocy
jakiego§ sprytnego chwytu. Czasem jest to przedefiniowanie szukanej funkcji, czasem
zamiana zmiennych, a czasem jedno i drugie razem. Jeden prosty chwyt daje sie zawsze
zastosowac, gdy funkcja f(x,y) w rownaniu y' = f(z,y) jest funkcja jednorodna stopnia
zerowego, tj. taka, ze f(Ax, A\y) = f(x,y). Funkcja taka musi by¢ bowiem funkcja ilorazu
y/x, tj. f(z,y) = f(y/x). Podstawienie y = zu(zx) sprowadza wtedy rownanie do postaci

u+zu = f(u), czyli v =—u+ f(u),
t.j. do rownania o zmiennych rodzielonych. Poza tym, przy szukaniu sprytnych pod-
stawieni niema jednak (chyba - moze matematycy maja jakie$ tajne sposoby) zadnych

ogoblnych regul postepowania i wszystko opiera si¢ na sprycie boiskowym i orientacji w
terenie (a w tym matematycy goruja nad reszta ludzkosci).
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Zadanie Ode.5

Rozwiaza¢ rownanie rézniczkowe
/ 2 1
x

Rozwigzanie: W podanej postaci nie jest to ani réwnanie o zmiennych rozdzielonych,
ani tez réwnanie liniowe (tymi zajmiemy sie za nizej), bo wystepuje w nim y?. Ale zamiast
szukaé funkcji y = y(z) poszukajmy funkcji v = u(x) wiazacej sie z y = y(z) przez

Podstawiamy to do wyjsciowego rownania i mamy

2u 2u N u? N I 0

r 22 x2 22

Po pomnozeniu stronami przez % przybiera to postaé
20 —2u+ut+1=2zu + (u—17?=0,

a to juz jest rownanie o rozdzielonych zmiennych. Mozemy je wiec scatkowaé:

/ du dx
N S
(u—1)2 x

co daje

9 _
—— =C+Inlz|=n|Cz,
u—1

czyli u(z) = 14 2/1n|C z|. Mozemy teraz napisa¢ szukana funkcje y = y(x):

ya) =+ —

r  zxln|Cx|
Sprawdzmy (samokontroli nigdy dos¢!):

2 4 ~
=2 (1),
Y 2 g21n?|C g Gl

, 1 4 4

= — — + = .
Vo 22In|Cz|  221n?|C x|

Jak to dodamy i dodamy jeszcze 1/x? to rzeczywiscie wyjdzie zero. Oczywiscie roz-
wiazaniem wyjsciowego réwnania jest tez y(r) = 1/x. Odpowiada ono dopuszczeniu w
znalezionej caltce ogolnej |C| = oo.
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Przy przejsciu do funkcji w trzeba bylo wykluczyé punkty o z = 0 (w réwnaniu
v = f(z,y) = —(y* + 1/2%)/2 funkcja f(z,y) jest nieciagta w punktach (0,y) wiec
nie moga przez nie przechodzié¢ funkcje y = y(x), ale moze jakas funkcja = = x(y) moze?).
Zobaczmy, co z nimi. Przepiszmy wiec wyjéciowe réwnanie w postaci

20%dy = —(2%y* + 1) dw.
Teraz widaé, ze jest ono takze spetniane przez prosta z = 0.

Przechodzimy teraz do drugiego typu réwnan rézniczkowych, ktore daje sie rozwiazy-
waé systematycznie. Sa to rownania (na razie wciaz pierwszego rzedu) liniowe z niejed-

norodnoscia, ktore ogolnie daja sie zapisa¢ w postaci*

Y +g(@)y = f(r).

f(z) i g(x) sa tu zadanymi z gory funkcjami. Niejednorodnoscia jest funkcja f(z). Za-
uwazmy, ze gdy f(x) = 0, jest to rownanie o zmiennych rozdzielonych. Szukana funkcja
y = y(x) wystepuje tu w pierwszej potedze i na tym polega liniowos$¢ tego réwnania.
Dzicki temu lewa jego strone mozna zapisa¢ w ogélnej postaci

D(x)y(z),

gdzie D(x) jest operatorem rézniczkowym. Powinno nam sie to zaczaé kojarzy¢ z algebra:
fukcje y mozna traktowaé jak element przestrzeni wektorowej (i coz, ze nieskonczenie
wymiarowej?) funkeji, a D(x) mozna traktowa¢ jak odwzorowanie liniowe tej przestrzeni
w nig sama. Ten sposdb widzenia jest tu przydatny, bo zaraz zobaczymy, ze rozwiazania
takich rownan maja taka sama strukture, jak rozwiazania liniowych réwnan typu F-x = b,
ktorymi zajmowaliSmy sie w ramach algebry.

Rownania takie rozwiazuje sie metoda uzmiennienia statej catkowania. Zademonstru-
jemy ja tu na prostym przyktadzie.®?

Zadanie Ode.6

Znalez¢ rozwiazanie (catke ogdlna) réwnania

y':g+3x.
x

Rozwigzanie: Najpierw rozwigzujemy réwnanie jednorodne, tj.

Yy +g(x)y=0.

447 awsze mozna réwnanie tak napisaé, zeby najwyzsza pochodna szukanej funkcji - tu jest to pierwsze
pochodna - nie byta przez nic mnozona.

45Réwnanie rozniczkowe uzyte jako przyklad na samym poczatku tego rozdziatu tez zostato rozwigzane
metoda uzmiennienia stalej. Po przetrawieniu ponizszego przyktadu moga Panstwo wréci¢ do poczatku
i samemu sobie tamto réwnanie rozwiazac.
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czyli w danym przypadku réwnanie

y==.
T

Poniewaz, jak juz zauwazyliSmy, jest to rownanie o zmiennych rozdzielonych, i to takie
jak w zadaniu 38c, od razu wypisujemy jego rozwiazanie (catke ogolna)

Yhom = C' .

Dodalismy dopisek “hom” od homogeneous, czyli jednorodne, zeby pamictaé czego to jest
rozwigzanie. Teraz nastepuje drugi krok od ktérego bierze si¢ nazwa metody: zastepu-
jemy stala C nieznang funkcja h(z) i funkcje y = x h(x) podstawiamy jako Ansatz® do
wyjsciowego réwnania:

d , 1
— (zh(x)) = h(z) + xh'(z) = = (z h(x)) + 3z.
dx x
Dzieje sie wtedy to, co zawsze sie dzieje w takich przypadkach (na tym polega caly wic tej
metody!): wyrazy z h(x) po obu stronach réwnania sie nawzajem redukuja i zostajemy z

zh'(z) =3z, czyli W(z)=3.

Dostajemy wiec rownanie na funkcje h, ktére ma zawsze posta¢ rownania o zmiennych
rozdzielonych i to takiego, w ktéorym pochodna A’ nieznanej funkcji jest po prostu rowna
pewnej funkcji x. Roéwnanie takie catkuje sie zazwyczaj latwo, a w kazdym razie daje
sie rozwiazanie napisa¢ jako kwadrature. Tu jest to banalne: h(z) = 3x + C’ (zaraz
zobaczymy, ze pisanie statej dowolnej nie jest tu konieczne: mozna wzigé jakiekolwiek
rozwigzanie). I teraz nastepuje ostatni krok: dodajemy do siebie dwie czeSci: Ypom 1 ten
Ansatz, ktory nazywamy ¥inhom =  h(z) (od inhomogeneous):

y:yhom+yinhom:Cx‘l’l'(gl"l‘cl) :31'24—@1’

Mozna sprawdzi¢ podstawiajac do wyjsciowego réwnania, ze jest to rzeczywiscie rozwigza-
nie. Widacé tez, ze rzeczywiscie W ¥innom mozna byto pominaé stata C’ bo i tak polaczyla
sie ona ze stata C' W ynom (zawsze sie tak dzieje). Jest to kompletna catka ogolna wyjscio-
wego réwnania. Stala C mozna dobrac tak, by spelni¢ warunek poczatkowy?” y(xq) = yo.

46Tak to sie nazywa w ogdlnostowianskim jezyku niemieckim.

47Qczywiscie stosujg sie tu wszystkie przewalkowane juz reguly dotyczace tego, kiedy przez dany punkt
(x0,y0) przechodzi zawsze doktadnie jedno rozwiazanie; czasem nie przechodzi zadne i wtedy nie mozna
narzuci¢ takiego warunku, czasem przechodzi wiecej niz jedno i wtedy takie warunki poczatkowe sa
nie do przyjecia, a czasem akurat tego rozwiazania, co przechodzi przez (xo,yo), catka ogélna otrzymana
metoda uzmiennienia statej moze nie obejmowacé. W szczegdlnosci w rozpatrywanym przyktadzie warunki
poczatkowe z = 0 musza by¢ trefne bo f(z,y) = y/x + 3z jest nieciagta na osi y. Przepisujac jednak
(cate) wyjsciowe rownanie w postaci

rdy = (y + 32?) dz,

widzimy, ze jego rozwiazaniem jest jeszcze prosta x = 0 i to jest wlasnie krzywa catkowa przechodzaca
przez punkty (0,yo).

101



Uzyskana metoda uzmiennienia statej catka ogolna ma doktadnie taka sama strukture,
jak najogolniejsze rozwiazanie algebraicznego problemu F'-x = b: jest ono suma najogol-
niejszego (tzn. tu zaleznego od stalej dowolnej) rozwiazania réwnania jednorodnego i
jakiegokolwiek (dlatego stala C” mozna bylo od poczatku pominaé¢) rozwiazania petnego
roéwnania niejednorodnego. Przypomnijmy wiec, ze najogélniejsze rozwiazanie algebraicz-
nego rownania F'-x = b miato posta¢ x = C1x;+. ..+ C.X, +Xinhom = Xhom + Xinhom, gdzie
X;, © = 1,...r byly wektorami takimi, ze F'- x; = 0, a Xjyhom byl jakimkowiek wektorem
spelniajacym réownanie F' - Xjnom = b. Choé¢ powinno to po algebrze byé¢ oczywiste, ale
moze warto jeszcze raz zobaczy¢, dlaczego rozwiazanie réwnania liniowego z niejednorod-
noscia ma taka strukture. Wyobrazmy sobie, ze mamy dwie rézne funkcje (kazda z nich
moze odpowiadaé¢ innym warunkom poczatkowym np.) y = y1(x) i y = y2(x), spelniajace
to samo liniowe réwnanie z niejednorodnoscia:

Yy + @)y = f(x),
Yo +g(x) y2 = f(x).

Odejmijmy te réwnania jedno od drugiego stronami:

d / /
. (y1 —ys) +g(x) (yy —y5) = 0.

Roznica y; — yo spetnia wiec réwnanie jednorodne. Moéwiac inaczej: kazde dwa rozwiaza-
nia rownania niejednorodnego r6znig si¢ od siebie o jakies rozwigzanie rownania jednorod-
nego. Wiec jak mamy jakiekolwiek rozwiazanie rownania niejednorodnego (a to wtasnie
znajdujemy uzmienniajac stata, ale mozna by bylo je zamiast tego znalezé na Smiet-
niku, czy $ciagna¢ od kolegi/kolezanki), to wystarczy don doda¢ naogodlniejsze (w sensie
calki ogolnej) rozwiazanie rownania jednorodnego, by dosta¢ w ten sposob najogolniejsze
rozwigzanie rownania niejednorodnego, czyli skonstruowac jego catke ogolng. Mozna tez
napisa¢ formalny wzor na caltke ogdlng réwnania niejednorodnego y' + g(z)y = f(x). Ma
on postac

y=e 0@ ( o /xdl’/f @) eG(m’)) ’
ﬂ@z/mym.

Zamiast go pamieta¢ (ale warto go sobie wyprowadzi¢ jako sprawdzian, czy sie wszystko
zrozumialo!), lepiej jest w kazdym konkretnym przypadku postepowaé¢ wedtug podanego
wyzej schematu.

Powiedzmy tez od razu tutaj, zeby potem juz nie powracac do tego, ze ten sam schemat
pozostaje stuszny w przypadku liniowych réwnan rézniczkowych rzedu r z niejednorod-
noscia, tj. postaci

T r—1

d"y
d!L’T + gr—l(x)

d
1 @) g el@)y = ()
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Tak samo jak w przypadku réwnan liniowych pierwszego rzedu z niejednorodnoscia, row-
niez i tu, kazde dwa rozwigzania powyzszego réwnania niejednorodnego réznig si¢ o jakies
rozwigzanie rownania jednorodnego z funkcja f zastapiong przez zero. I dlatego tak samo
wystarczy znalezé (kupi¢ na czarnym rynku albo pchlim targu) jakiekolwiek jedno (choéby
juz mocno uzywane) rozwiazanie rownania niejednorodnego i doda¢ do niego najogdlniej-
sze rozwiazanie rownania jednorodnego (catka ogdlna tego réwanania w tym przypadku
zalezy od r stalych dowolnych: C4,...,C,), by skonstruowa¢ kompletna calke ogblna
liniowego réwnania niejednorodnego rzedu r z niejednorodno$cig, ktora wobec tego ma
postac

Yy = yinhom(z) + yhom(xa Cla ey Cr) .

Zobaczymy to dalej na przyktadzie réwnania drugiego rzedu, ale takiego prostego, w
ktorym funkcje g1 (z) i go(x) sa statymi. W innych przypadkach, gdy funkcje g1(x) i go(x)
sa nietrywialnymi funkcjami metoda pozostaje w mocy, ale naogét trudno jest znalezé
catke ogolna rownania jednorodnego. (Gdy wszystkie funkcje g,._1,...,go sa stalymi sa
proste sposoby - tez je poznamy wtlasnie na przyktadzie takiego réwnania o r = 2 -
by ogodlna catke rownania jednorodnego skonstruowac). Ostatnia uwaga jest taka, ze
jezeli niejednorodnos$é réwnania linowego ma postaé¢ sumy dwoch funkeji, f(z) = fi(z) +
f2(x), to rozwiazanie Yinom () réwnania niejednorodnego tez ma postaé¢ sumy yl(r}})wm(x) +
yi(ri)mm(x), gdzie yl(rh)lom(x) jest rozwiazaniem réwnania liniowego z niejednorodnoscia fi(z),
a yl(f})wm(x) jest rozwiazaniem tegoz rownania z niejednorodnoscia fo(z).

Zadanie Ode.7

Zmalez¢ rozwiazanie rOwnania
y' cosx + 2ysinx = 2sinzx,

przechodzace przez punkt (zg, yo).

Rozwigzanie: Jest to wladnie liniowe rownanie pierwszego rzedu z niejednorodnoscia.
Postepujemy wiec standardowo. Najpierw znajdujemy catke ogélng réwnania jednorod-
nego

y 4+ 2ytgr =0.

Rozdzielamy zmienne i catkujemy

d i .
—y:—Q/d:c smx’ czyli Inly| =2In|cosz|+ C = In|C cos® z|.
y cos T

Stad (zdejmujac modut upychamy znak + w stalg C)
Yhom = C cos® .

Teraz szukamy v;,nom metoda uzmiennienia statej, tj. podstawiamy do wyjsciowego row-
nania Ansatz y = h(z) cos? z. Daje to

(B cos® v — 2h coswsinx) cosx + 2h(z) cos® zsinz = 2sinz .
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Wyrazy z gotym h sie redukuja i dostajemy na h réwnanie

2sinx

h' =

cos?x
ktore daje h = 1/cos’z. Zatem Yiunom = h(x)cos?x = 1 po prostu (co mozna bylo
zauwazy¢!) i pelne rozwiazanie wyjsciowego rownania (jego catka ogolna) ma postaé

Y = Yinhom T Yhom = 14 éCOSz.ZL’.

Mozemy teraz dobra¢ C' tak, by rozwigzanie spelniato warunek poczatkowy, tj. by krzywa
przechodzita przez punkt (xg, yo):

Yo —
y=1+ 3 cos® x .
COs“ T

Widaé¢ jednak, ze jest to mozliwe tylko wtedy, gdy xo # (7/2) + kn. Patrzac na catke
ogbélng y = 1 + C cos? x widzimy tez, ze wszystkie obejmowane przez nig funkcje (czyli
nieskoniczenie wiele rozwigzani) przechodza przez punkty (3 + km, 1) i wszystkie one maja
w tych punktach zerowe nachylenie. Mozna to zrozumieé piszac wyjsciowe, niejednorodne
réwnanie w kanonicznej postaci®® ¢’ = 2(1 — y)tgx. Widaé z niej, ze funkcja wystepujaca
po prawej stronie jest, jako funkcja na R?, nieciggla w punktach z = 5+Hkmiy#1, ale
w punktach (§ + k7, 1) mozna ja zawsze dookresli¢ tak, by byla ciggla wzdtuz jednego,
dowolnie wybranego kierunku; niemniej tylko gdy uciaglamy ja wzdluz osi z, to wartosé
uciagglajaca - czyli zero* - pasuje do nachylenia “kierunku ucigglania”. I dlatego wszystkie
rozwigzania y = y(z) przechodzace przez punkty (+4km, 1) musza mie¢ zerowe nachylenie.
Z kolei przez punkty (5 + k7, y) o y # 1 nie przechodzi zadna funkcja y = y(z), ale jesli
wyjsciowe rownanie przepisa¢ w formie cos z dy = 2(1 — y) sinx dzx, to stanie sie jasne, ze
jego rozwigzaniami sg tez proste r = 7 + km, ktore sa przyzwoitymi funkcjami x = z(y).

Zajmiemy sie teraz rownaniami rézniczkowymi rzedu r > 1 majacymi wyznacza¢ jedna
funkcje (jednej zmiennej) i uktadami r rownan rézniczkowych pierwszego rzedu na r funk-
cji. Oczywiscie tylko pewnymi szczegdlnie prostymi klasami probleméw nalezacych do
tych dwoch typow. Rozpatrzymy tez moze jeden ukiad réwnan drugiego rzedu na kilka
funkcji (jako rozszerzenie rozwazan na przypadek ukladu p réownan r-tego rzedu na p
szukanych funkcji).

Ogolnie rownanie rézniczkowe rzedu r na jedna funkcje y = y(z) ma jedna z dwu
postaci

(T) = f(x7 y7 y/7”’7y(7‘_1))7 IUb F(x7y7y/7"'7y(/r)) :0'

48 czywiscie widaé, ze jest to réwnanie o zmiennych rozdzielonych i mozna je bylo rozwiazaé takze bez
uzywania metody uzmienniania statej. Oczywiscie wynik bedzie ten sam - zalecam sprawdzenie!

49W poblizu punktu z = zg, gdzie zo = %+ km, funkcja tangens zachowuje si¢ jak 1/(z —xo), wiec gdy
badamy f(z,y) na ciaggach postaci x = z¢ + a/n, y = 1 + b/n, czyli zbiegamy do punktu (x¢, 1) wzdluz
prostych o tangensie kata nachylenia rownym b/a, warto$¢ uciaglajaca f(x,y) w (2o, 1) jest rowna —2b/a.

Y
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Calka takiego rownania nazywamy kazda funkcje y = y(x), spetniajaca te rownania tozsa-
mosciowo na jakims otwartym podzbiorze R. Calka ogdlng zas - rodzine calek sparametry-
zowang r dowolnymi statymi C1, ..., C,, czyli funkcje y = y(x, C4, ..., C,). Zaleznosé¢ od
r statych dowolnych pozwala (naogét) narzuci¢ na catke rownania r-tego rzedu r lokalnych
warunkéw poczatkowych
y(wo) = o, ¥'(w0) = v - ¥y (zo) =yi Y.

Przez “lokalne warunki” rozumiemy tu to, ze wszystkie one sa zadane w jednym i tym sa-
mym punkcie xy. Przy odpowiednich warunkach spetnianych przez fukecje f(x, y1, ..., y-—1)
w punkcie (g, yp, - - - ,y(gr_l)) (lub funkcje F(x,y1,...,y,) W punkcie (zq, ¥y, - - - ,y(()r)) przy
sformutowaniu uwiktanym) i w jego jakims otwartym otoczeniu istnienie spelniajacej takie
warunki calki rownania jest zagwarantowane przez odpowiednie twierdzenia.?® Najprost-
szym przypadkiem takich réwnan sa réwnania liniowe z niejednorodnosdcia, o ktorych juz
moéwilismy wezesniej. Tu zajmiemy sie takimi réwnaniami o statych wspotezynnikach,
tzn. postaci

d"y d 1y dy
%—i—ar_lm+...+a1%+a0y:f(:c),

i drugiego rzedu, tj. o r = 2, bo w fizyce najczesciej wystepuja réwnania drugiego rzedu.

Roéwnanie rozniczkowe rzedu r na jedna funkcje tatwo przeksztalci¢ w r rownan pierw-
szego rzedu na r funkeji, podstawiajac po prostu y = y1, ¥ = ya, ..., y") = y,.
Otrzymujemy wtedy uktad réwnan pierwszego rzedu

y1:y27
yé:yi’)a

y;“ = f(x7y17y27"'7y7‘)7
ktory jest szczegolnym przypadkiem ogélnego uktadu r réwnan pierwszego rzedu

yi = fl(x7y17y27"'7y7“)7
yé = f2(x>ylay2a .. '>yr)a

y;’ = fT(xMylvy?v e 7y7‘>7

na r funkcji. Uktady takie, nawet ten szczegdlny, wypisany wyzej, sa dos¢ skomplikowane
i dlatego zajmiemy sie tylko przypadkiem, w ktérym prawe strony od nieznanych funkcji

*ONie zawsze takie lokalne warunki s naturalne: np. w zagadnieniach wariacyjnych (typu: zna-
lezé¢ ksztalt zjezdzalni po ktoérej masa m najszybciej zjedzie z wysokosci h w polu grawitacyjnym - to
jest klasyczy problem brachistochrony) ktore prowadza do rownan drugiego rzedy naturalne sa warunki
y(x1) = y1, y(z2) = yo, czyli nielokalne. Przy takich warunkach jednak twierdzenia matematyczne o
istnieniu rozwigzania sg czesto bezradne.
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Y1, - .-, Y, zaleza liniowo. Mozna je wtedy, gdy chodzi o jednorodne réwnania zapisaé
macierzowo

n f11(93) f12(93) e flr(l") n
i Y2 | _ fa(x)  falz) ... fa(z) Y2
Yr frl(x> fr2(x) frr(x> Yr

Albo krotko w postaci dy /dxz = F(x)-y. Formalne rozwiazanie takiego uktadu ma postacé

yio) = Poesod [ :dx'm)} Yo

w ktorej yo = y(xq) jest wektorem warunkéw poczatkowych, a P, oznacza operacje upo-
rzadkowania iloczynu macierzy F(z1) - ...  F(z,) wystepujacego w n-tym wyrazie

/d’ /dxFa:l F(a),

rozwiniecia funkcji exponens® w kolejnosci (idac od prawej strony) od najmniejszej war-
tosci zmiennej z; do najwickszej. W ogoélnosci macierzy dzialajacej na wektor yo nie
daje sie jednak jawnie wypisa¢ i dlatego rozwigzanie to nazwaliSmy formalnym. Problem
upraszacza sie, gdy macierz F' w rownaniu dy/dx = F -y nie zalezy od zmiennej x.
Rozwiazanie jest wtedy dane prostym wzorem

y =exp{(x —z9) F'} - yo.

Zauwazmy tez, ze uogoédlniajac macierz F' dzialajaca na wektory pewnej r-wymiarowej
przestrzeni wektorowej (tu nad ciatem R, ale mogta by by¢ i nad C) do operatora liniowego
H dziatajacego w pewnej nieskoriczonej przestrzeni wektorowej nad C ("dziatajacego”, tzn.
odwzorowujacego te przestrzen w nig sama), z iloczynem skalarnym (-|-)g i zupelnej (tj.
takiej w ktorej wszystkie Cauchy-ciagi maja swoje granice) i zmieniajac nazwe zmiennej
niezaleznej z x na t, otrzymujemy typowy problem ewolucji czasowej wektora stanu w
mechanice kwantowej. Operator H jest w takim przypadku operatorem energii, zwanym
Hamiltonianem, a rozwiazywane réwnanie - rownaniem Schrédingera

d .
h [0(t)) = HIY(t))

Takimi rownaniami zajmiemy sie teraz (po to na algebrze uczyliSmy sie znajdywaé ekspo-
nensy macierzy). Naturalnym uogodlnieniem sa uklady liniowe réwnan z niejednorodnoscia
postaci

dy

— =F-y+Db(z).

I y +b(x)

S!Macierz F(x1), ..., F(x,) sa, gdy 2-y w nich sa roézne, réznymi macierzami i nie sa przemienne:
F(x1) - F(x2) nie jest ta samg macierza, co F(z2) - F(x1); operacja P, definiuje wiec, w jakim porzadku
maja one byé mnozone w réznych podobszarach catego obszaru [xg,x] X ... X [xg, x] C R™ calkowania po
dry...dx,,.
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w ktorych w ogoélnosci macierz F' mogtaby zaleze¢ od zmiennej x, ale tu bedziemy roz-
patrywaé tylko takie, w ktorych macierz F jest stala (niezalezna od z). Rownania takie
mozna rozwigzywaé¢ omoéwiona juz wyzej metoda uzmienienia stalej: uzmienniona stata
jest w tym przypadku wektor h(z) zastepujacy wektor warunku poczatkowego yo w roz-
wigzaniu (calce ogdlnej) rownania jednorodnego (tzn. spelniajacego rownanie z wektorem
b = 0). Do takiego rownania z macierza F' i wektorze b(z) szczegolnych postaci

0 1 0 0 0
0 0 1 0 0
F= ’ ) b(x) = )
0 0 0 1 0
—ay —a; —Qy ... —Qp_q f(x)

sprowadza si¢ wypisane wyzej rownanie liniowe rzedu r o stalych wspotczynnikach:

d"y d 1y dy B
%+CLT_1W+...+CL1£+CL0:U—_]C(SL’).

Zadanie Ode.8
Zmnalez¢ ogolne rozwigzanie jednorodnego liniowego uktadu trzech réwnan rézniczkowych
pierwszego rzedu®?

d yl(t> 2 -1 1 yl(t>
7 ypt) | =10 1 0 ya2(t)
ya(t) I =12 ya(t)
Poda¢ takze rozwiazanie spelniajace warunki poczatkowe: y;(t = tg) = a, y2(t = to) = b,

Ys (t = to) = C.
Rozwigzanie: Oznaczmy przez F wystepujaca w tym réwnaniu rézniczkowym macierz.
Rozwiazaniem takiego rownania, tj. rownania postaci y(t) = F - y(t), jest zawsze

y(t) ="y (t),

tj. macierz e"*)F dziatajaca na wektor warunkéw poczatkowych. Nie musimy zatem
znajdywaé calej macierzy exp(tF'); wystarczy znalezé jej dzialanie na podany wektor
warunkéw poczatkowych. Szukamy zatem najpierw wartosci wlasnych macierzy F':

2\ -1 1
Wr(A)=det| 0 1-X 0 =—A=-1)A=-22+A=-1)=-A=1*)(A-3).
1 -1 2-)

Odpowiadajacymi im wektorami wtasnymi sa:

1 1 0
A=3: 01, A=1: 11, oraz 1
1 0 1

52Jako ze w problemach fizycznych zmienng niezalezna w tego typu réwnaniach jest czas, zmienimy tu
z nat.
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Mimo ze druga z warto$ci wlasnych ma krotnos¢ dwa, to istnieja dwa odpowiadajace
jej liniowo niezalezne wektory wtasne. Rozwiazanie bedzie mialo zatem charakter czysto
eksponencjalny. Rozktadamy dowolny wektor warunkéw poczatkowych zadanych w ¢ = ¢
na znalezione wektory wtasne:

‘b‘ Ca—btce |l Latb—c } L Tatb+e
2 1 2 0 2 1
Stad
yp(t a 1
yz(t) —elt=t)F | | — a—b+tc e3t=to) [
2

ys(t) 1

1 0

a+b—rc o) [ 1 —a+b+c o) [ 1

2 0 2 1

bo dziatanie e*~%)¥ na kazdy z wektorow wlasnych sprowadza sie do pomnozenia go przez
czynnik et odzie \ jest odpowiadajaca temu wektorowi wartoscia wtasna.

Oczywiscie skoro znamy dzialanie e®~%)" na dowolny wektor (a,b,c), mozemy bez
wickszych trudnosci znalezé i sama macierz e*=%)¥. W tym celu przepisujemy (ktadac
to = 0 dla uproszczenia)

a (a—b+c)ed+ (a+b—c)e
e lo == (a+b—c)et+(—a+b+c)e
(a—b+c)ed + (—a+b+c)et

. P T . R . a

=3 0 2¢e 0 b

3 —et —ed et e 4 e c

Stojaca w ostatniej linii macierz jest wlagnie macierza e'f'.

Zauwazmy tez, ze ys(t) = e'7"0bh = e'7%9,(0), bo réwnanie rozniczkowe wyznaczajace
y2(t) bylo w istocie niezalezne od wy;(t) i y3(t). Mozna wiec bylo najpierw rozwiazaé
niezalezne réwnanie 1 = o, i otrzymane jego rozwiazanie wstawi¢ jako jawng juz funkcje
do uktadu dwéch réwnan na y; i ys, ktory w ten sposéb przybraltby postac

i U1 (t) . 2 1 Y1 (t) . b et_to

dt \ ys3(t) 1 2 y3(t) bel=to )
czyli uktadu réwnan liniowych z niejednorodnoscia, ktory ogélniej, oznaczajac F wyste-
pujaca w nim macierz, zapiszmy w postaci

d .
v =F.y+b(t).
R y + b(t)
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Pozwala nam to zademonstrowa¢ na tym przyktadzie metode uzmienniania statej w wersji
wektorowej. Macierz F', ma tu wartosci wlasne 3 i 1, ktorym odpowiadaja oczywiste
wektory wlasne. Rozwiazujemy najpierw liniowe réwnanie jednorodne z jakim$ dowolnym
warunkiem poczatkowym 2, y9:

(yl(t)) _ e(t—to)ﬁ (y?) _ y? + y?(,] 3(t—to) <1) 4 y? - yg p(t=t0) ( 1 )
= L) === 173 .
Y3(t) J pomm Ys 2 1 2 —1

Teraz jednak juz potrzebna bedzie jawna postaé¢ macierzy exp{(t — to)F'}, wiec ja szybko
znajdujemy:

(t—to)F 1 [ e3(t—to) 4 gt—to  3(t—to) _ ot—to
e == e3(t=to) _ pt—to  3(t—to) 4 ot—to

2

(Jest to ta sama macierz, co znaleziona wyzej, tylko z usunieta $rodkowa kolumna i
srodkowym wierszem.) Nastepnie, do rownania niejednorodnego podstawiamy Ansatz

Vinhom (£) = elF L)
Poniewaz

d

7 h(t),

<€(t—to)ﬁ' . h(t)) _ F . €(t_tO)F . h(t) + e(t—to)F . %
cztony F - e=)F . h(¢) sie redukuja i otrzymujemy
- d -
elt—to)F & h(t) _ b(t) 7 czyli h(t) = /dt e~ (t—to)F b(t) .

Jawnie, w rozpatrywanym tu przypadku,
1 6_3(t_t0) + e_(t_to) 6_3(t_t0) — 6_(t_t0) bet—to
h(t) = ) /dt (6—3(t—t0) _e—(t—to)  o=3(t—to) 4 o—(t—to) bet—to
66_2(t_t0) 1 be_z(t_to)
= _/dt b e—2(t—to) = 9\ pe2t—to) |-
(Calka z wektora to po prostu calki z jego “pieterek”). Zatem

_ - 1 e3(t—t0) + et—to 63(t—t0) o 6t—t0 be—Q(t—to)
Yinhom = e(t t)F h(t) = Z (63(t—t0) _ et—t() e—3(t—t()) + et—t() be—Q(t—to)

1 b et—to
-1 ( bet_to) .

Sktadamy teraz pelne rozwiazanie: y = Ynom(t, ¥¥, ¥3) + Yinhom (t):
1 e3(t—t0) + et—t() e3(t—to) _ et—to y? 1 bet—to
Y(t) = 5 (63(t—to) _et~to o=3(t—to) | ot—to yg + 5 het—to |
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Teraz dopiero, majac calo$¢, mozemy dobrac state y? i y§ tak, by spetni¢ warunki y; (to) =
a i ys(tg) = c. Po polozeniu t = t, macierz dzialajaca na 3? i ¢y staje si¢ macierza
jednostkows (musi tak by¢) i odezytujemy, ze y) = a — 3b i y§ = ¢ — 3b. No i teraz
mozemy odczytaé, ze

yi(t) = % (63(t—to) + et—to) a— % (63(t—to) _ et—to) b+ % (63(t—t0) _ et—to) c,
ys(t) = % (63(t—to) _ et—to) a— % (63(t—to) _ et—to) b+ % (63(t—t0) + et—to) c.

Jest to oczywiscie to samo, co jako y;(t) i y3(t) otrzymalismy pierwszym sposobem.

Zadanie Ode.9

Znalez¢ rozwigzanie uktadu rownan rézniczkowych
= y1—3Y%+4y;
Yo = 4y1 —Ty2+8ys
Ys = 6yr—Tya+Tys.

Rozwigzanie: Podany uktad rownan mozna przepisa¢ w postaci macierzowej

y(t) =F-y(t),
Z macierza
1 -3 4
F=14 -7 8
6 -7 7

Rozwiazanie ma oczywiscie postaé

y(t) ="y (t),

Trzeba zatem znalezé macierz e’ lub jej dziatanie na dowolny wektor (a, b, ¢) warunkow
poczatkowych (y1(to), y2(to), ys(to)) zadanych w t = to. Macierz F' byla juz przedmiotem
Zadania 78 w notatkach do algebry. Macierz e!" zostata tam znaleziona dwoma sposobami.
Mozemy wiec napisa¢ “od reki” (dla uproszezenia ktadziemy tg = 0):

y1(t) et —2te”! —edt et +te edt —et a
yo(t) | = | 23 —2e7t —4te™t —2e3 4+ 37t + 2te™t 2e3 — 27! b
ys(t) 2% —2e7t —2te”t  —2e* 42t +tet 2eM —e! c

Przypomnijmy jeszcze, ze czynniki liniowe w ¢ (w t — o jesli tg # 0) pochodza z tego,
ze macierz F' ma jedna dwukrotnag wartos¢ wtasna, ktoérej to wartosci wlasnej odpowiada
tylko jeden wektor wlasny (a nie dwa) i zachodzi koniecznosé rozktadania wektora warun-
kow poczatkowych na dwa wektory wlasne i jeden wektor pierwiastkowy (lub stosowania
sztuczki z rozniczkowaniem w twierdzeniu C-H).
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Zadanie Ode.10
Rozwiaza¢ liniowe rownanie rézniczkowe z niejednorodnoscia

d U1 —1 —1 1 U1 t
7 Yo | = 1 0 O yo | + 2

Rozwigzanie: Jest to rownanie pierwszego rzedu liniowe (wzgledem szukanego wektora
y(t)) z niejednorodnoscia. Ma ono postac

y(t) = F-y(t) +£(t).

Zgodnie z ogblna metoda rozwiazywania takich réwnan (juz przeéwiczona w zadaniu
Ode.8), szukamy najpierw rozwigzania réwnania jednorodnego y(t) = F - y(t). Znaj-
dujemy w tym celu pierwiastki wielomianu charakterystycznego

Wr(A) = —A% — A

macierzy F' stojacej po prawej stronie. Sa nimi A; = 0 oraz Ay = i, A3 = —i. Odpowiada-
jacymi im wektorami wlasnymi sa

0 1 1

1], —i |, 7

1 1 1
Ogolne rozwigzanie réwnania jednorodnego ma postaé y(t) = exp(tF) - Yeonst, gdzie
Yeonst = (a,b,¢) jest jakim§ dowolnym wektorem (ktorego na razie nie nalezy utozsa-

mia¢ z wektorem warunkow poczatkowych y(t = 0) = yo; to, czy takie utozsamienie
bedzie mozna zrobi¢, zalezy od wyboru szczegbdlnego rozwigzania rownania niejednorod-
nego). Poniewaz macierz F jest diagonalizowalna, aby znalezé e'f” rozkladamy dowolny
wektor yeonst Na wektory wlasne F:

a 0 1 1 1 1
bl=(c—a)|1l|+=zlat+ifa+b—0c)]| —i | +=la—i(la+b—0c)]| i |,
2 2
c 1 1 1
i dzialamy narni macierza e!":
a 0 1 ' 1 1 (1
e lv]=(c—a)|1 +§[a+i(a+b—c)]e” —1 +§[a—i(a+b—c)]e_“
c 1 1

= | c—a+5a[(1 —i)e" + (1 +a)e ] + §b(e” + &™) — Je(e + e ™)
" . .

1 ! —H)e“ + (1 fz)g—it] %(e’:t — e 1_%"62' i) a
— (sl per s (e <1 e peren ] (o
%[(1 + i)elt + (1 _ i>€—zt] -1 %(ezt _ e—zt) _%(ezt e—zt) +1
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Stojaca tu macierz jest wlagnie macierza e'*’. Jest ona jawnie rzeczywista. Mozna ja tez
przepisa¢ w postaci

cost —sint —sint sint
e = | —1+cost+sint cost 1—cost
—1+4+cost —sint —sint 1+sint

Aby znalezé szczegblne rozwigzanie réwnania niejednorodnego, mozemy postuzyé sie
metoda uzmienniania statej. “Stata” jest w tym przypadku staty wektor yeonst = (@, b, ¢).
Szukamy wiec rozwiazania w postaci

Yinhom(t) - etF'V(t) .

Wstawiamy ten Ansatz do réwnania niejednorodnego y(t) = F'-y(t) 4+ f(t) i otrzymujemy

Jak zwykle zdarzylo si¢ to, co si¢ zawsze w takim przypadku zdarza, tj. czes$é wyrazow
skrocita sie. Zatem

v(t) = (¢F) T £(1),

ale odwrotnosciag macierzy e'f’ jest oczywiscie macierz , Wiec na szczescie nie musimy
bawié¢ sie w odwracanie macierzy 3 x 3... Wektorowa funkcja v(t) jest zatem dana przez
catke

53 e—tF

v(t) = / tdt’ eT'EE(Y),

a calte najogolniejsze rozwigzanie wyjsciowego réwnania niejednorodnego ma postac

t
y(t) = e Yeonst + €T / dt' e " £ (t) .

Jawnie:
cost +sint sint —sint t tcost + sint

e f(t)= | —1 +cost —sint cost 1—cost 2 = | 1+ cost —tsint |,
—1 +cost+sint sint 1—sint 1+t 1+sint+ tcost

tF

53Prosze sprawdzié¢ bezposrednio, ze et - et czyli

cost —sint —sint sint cost +sint sint —sint 1
—1+cost+sint cost 1—cost —1+cost—sint cost 1—cost | =10
0

—1+cost —sint —sint 1+ sint —1+cost+sint sint 1 —sint

S = O

0
0
1

- jest to dobry sprawdzian, czy dobrze wyznaczyliémy macierz e!*’! Drugim takim sprawdzianem jest jest

rownosé % (etF) = F . etf,
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wiec

t tsint
v(t) = / dt' e " F£{t) = | t +tcost |,
t+tsint
1 wreszcie
cost —sint —sint sint tsint 0
Vinhom (t) = € -v(t) = | =14 cost +sint cost 1— cost t+tcost | = 2t
—1+4+cost —sint —sint 1+sint t+tsint t

Jesli chcemy, by staty wektor y onst miat interpretacje warunku poczatkowego wt = 0,
to catke w powyzszych wzorach nalezy napisa¢ jako oznaczong:

t
y(t) = ey (0) + etF-/ dt' e " £t
0

tak, by Yinhom (0) = 0; jak widaé znalezione wyzej rozwigzanie yinnom(t) spelnia ten waru-
nek. Cale rozwiazanie z warunkiem y(0) = (a, b, ¢) ma zatem postac

y1(t) acost — (a+b—c)sint 0
yo(t) | = c—a+asint+ (a+b—c)cost | + | 2t
y3(t) c—a+acost—(a+b—c)sint t

Przedstawiona tu metoda jest zupelnie ogélna i zadziatataby takze w przypadku,
gdyby macierz F' nie byta diagonalizowalna. Skoro jednak wystepujaca w zadaniu macierz
F jest diagonalizowalna, mozna podac¢ znacznie prostszy sposob znalezienia najogolniejsze;j
postaci rozwiazania. Jak poprzednio wypisujemy najpierw ogodlne rozwiagzanie rownania
jednorodnego:

0 (1 (1
Vhom(t) = A 1| +Ze" | —i | + 2% | i
1 1

Jest ono jawnie rzeczywiste, jesli Z jest zespolona stala.

Aby znalez¢ jakie$ szczegolne rozwigzanie rownania niejednorodnego, rozktadamy nie-
jednorodnosé na znalezione wektory wlasne macierzy F':

t 0 1 1 1 1
2 | =)0+ | =i |+50-0 |
14+t 1 1 1

Szczegdlnego rozwiagzanie réwnania niejednorodnego szukamy uzmienniajac state Ai Z w
wypisanym wyzej rozwigzaniu rownania jednorodnego

0 1 1
yinhom(t) = C(t) 1 + D(t) €it —1 + D*(t> €_it
1 1
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Po wstawieniu tego do wyjsciowego réwnania niejednorodnego wyrazy bez pochodnych
funkeji C'(t) 1 D(t) redukuja sie i otrzymujemy (kropki oznaczaja pochodne po t)

. (0 e . (1 ON 4y 1 f—i 1
CH)l 1| +Dt)e" | —i | +D*t)e™|i ] =11 5 —i | + 5 i
1 1 1 1 1 1

Poniewaz wektory wlasne macierzy F' sa liniowo niezalezne, daje to nastepujace rownania
s . it 1 . k —it 1 .
Ct)=1, D(t)e :§(t+z), D*(t)e :§(t—z)
(trzecie rownanie jest sprzezeniem zespolonym drugiego). Stad
1 —it » [

Pelne rozwigzanie réwnania niejednorodego ma zatem postac

0 . 1 . 1
vy =(A+t) [ 1|+ (Zzet+2t) | =i |+ (z7e—2¢) [ i
2 2
1 1 1
Wstawiajac tu wyznaczone juz wczesniej (przy okazji rozwigzywania tego uktadu réwnan
metoda ogblna) wspolezynniki rozktadu warunku poczatkowego y(0) = (a,b,c) na wek-

tory wlasne macierzy F: A =c¢—a, Z = t[a+i(a+ b — ¢)] mozna si¢ przekonad, ze jest
to to samo rozwigzanie, co uzyskane poprzednio.

Uproszczona metoda zademonstrowana wyzej mozna si¢ takze postuzy¢ do rozwiazania
nastepujacego zadania

Zadanie Ode.11
Rozwiaza¢ uktad liniowych réwnan rézniczkowych drugiego rzedu

d2

ﬁyl(t)+w2(2yl—y2—y3) =0
d2
P Y2 () + w?(—y1 +2y2 — y3) = 0

d2
ﬁyg(t) —i—w2(—y1 —y2+2y3) = 0.

Rozwigzanie: Uklad ten mozna zapisa¢ w postaci macierzowej

2 hn -2 1 1 n
§75) Y2 | = w? I -1 1 Y2
Ys r 1 =2 Ys
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Wartosciami wlasnymi wystepujacej tu macierzy sa Ay = 0 (pojedyncza) i Ay = —3
(podwojna), a odpowiadajacymi im wektorami wlasnymi sa

1 1 0
)\1 : 1 s )\2 . 0 i 1
1 -1 -1

Mimo ze jedna warto$¢ wlasna ma krotno$é dwa, macierz jest diagonalizowalna. (Oczy-
wiscie zamiast podanych dwu wektoréow wtasnych odpowiadajacych Ao = —3, mozna by
wziaé jakie§ inne dwie kombinacje liniowe tychze). Rozwiazania mozemy wiec szukaé¢ w
potaci Ansatzu

y1(t) 1 1 0
yo(t) | =a®) | L | +0) [ O | +c(t)| 1
ya(t) 1 -1 —1

Po wstawieniu do réwnania otrzymujemy

1 1
d*a(t) d?b(t) d?c(t) ) N

-1 -1 -1 -1

Skorzystalismy tu z faktu, ze macierz dziatajac na wektor wtasny mnozy go przez odpo-
wiadajaca mu warto$¢ wlasna. Poniewaz wektory wlasne sa liniowo niezalezne, musza
zachodzi¢ réwnosci
d*a(t) d?b(t) d?c(t)
dt? dt? dt?
ktorych rozwiazania sa oczywiste: a(t) = Ay + Ast, b(t) = By coswt + Bysinwt i ¢(t) =
C1 coswt + Uy sinwt.

=0,

= —3wb(t), = —3we(t),

Przy okazji warto sie zastanowi¢, jak nalezaloby rozwigza¢ podobne liniowe réwnanie
drugiego rzedu w przypadku, gdyby macierz nie byta diagonalizowalna (tj. bytoby mniej
wektorow wlasnych niz potrzeba). Réwnanie

w ktorym y(t) jest n-wymiarowym wektorem, a F' macierza n X n mozna oczywiscie
przerobi¢ na réwnanie pierwszego rzedu:

d(y®\_(0 I\ [y

dt \y(t) F 0 y(t) )’
czyli na standardowe réwnanie macierzowe postaci v(t) = F - v(t), ktorego rozwigzaniem
jest

. = 0 I
V(t) = etF-VConSt7 gdZIQ F = (F O) , & Veonst — (52) .
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Istnieje tez prosty zwiazek miedzy wielomianami charakterystycznymi wyjsciowej macie-
rzy F'i macierzy F"

Wa(\) = Wp(A2).

Jesli wiec Ay, ..., A\; sa wartoSciami Wlasnyml o krotnosciach nq, ..., ng (n1+...4+n, =n)
macierzy F', to Wartosc1am1 wlasnymi A macierzy F sa £v/\1, ..., v\, o takich samych
krotnosmach.54 Mozna tez podaé zwiazek miedzy wektorami wtasnymi macierzy F i ma-
cierzy F: jesli w(;) jest (n-wymiarowym) wektorem wlasnym macierzy F' odpowiadajacym
jej wartosci wlasnej \;, to wektorami wlasnymi macierzy F odpowiadajacymi wartosciom
wlasnym £v/)\; sa (2n-wymiarowe) wektory

(4)
W(:l:z _<:t\/_W(2)

Jasne jest wiec, ze jesli macierz F jest diagonalizowalna tj. ma n wektorow wlasnych, to
istnieje®® 2n wektorow wlasnych macierzy F' i ogoélne rozwiazanie réwnania v(t) = F-v(t)
mozna napisa¢ od reki

) =) A e ),
Ti

gdzie A = £V Suma rozcigga si¢ tu na 2n wektoréw wilasnych w4 macierzy F.
Kto wprawny, ten od razu widzi, ze “gorne pieterko” rozwiazania v(t), tzn. n goérnych
sktadowych tego wektora, jest tym samym rozwiazaniem, ktore uzyskalismy wyzej stosujac
uproszczona metode. Podejscie poprzez sprowadzenie wyj$ciowego rownania drugiego
rzedu do réwnania pierwszego rzedu z macierza F zadziala jednak takze i wtedy, gdy
uproszczone zawiedzie, tj. gdy macierz F' okaze sie niediagonalizowalna. Oczywiscie
musimy wtedy szukaé¢ wektoréw pierwiastkowych macierzy 2n x 2n, tj. wektoréw (liniowo
niezaleznych od wektoréw wtasnych), na ktorych zeruje sie macierz (gdy n; = 2)

FVNI I VNI I P+ NI F2VNI
F FVNI F FVNIL ) T \F2VNE F+ NI )

lub stosowa¢ sztuczki rézniczkowaniem w twierdzeniu Cayleya-Hamiltona. Cata proce-
dura moze by¢ uciagzliwa, niemniej w “principie” daje sie przeprowadzic.

54Wyjzadtek stanowi wartos¢ wlasna réwna zeru: jesli macierz F' ma taka wartosé¢ wlasna o krotnosci ng,
to macierz F' ma warto$¢ wlasna A = 0 o krotnosci 2ng.

% 7Znéw przypadkiem szczegdlnym jest wystepowanie zerowej wartoSci wlasnej macierzy F: macierz
F ma wtedy tylko jeden wektor wtasny odpowiadajacy A = 0 i trzeba znalezé wektor pierwiastkowy.
Nietrudno zobaczyé¢, ze tymi dwoma wektorami sa

W(O) _ (WéO)) (W wl/asny) oraz v~v(p) = (zzg;) (W pierwiastkowy, bo F\X/’(p) = V~V(0))

Patrzac na rozwiazane wlasnie zadanie widzimy dlaczego tak jest: musi wtedy w rozwiazaniu wystapic¢
czton potegowy (w tym zadaniu liniowy) w ¢, a to wlasnie, jak juz wiemy, gwarantuje wektor pierwiast-
kowy.
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Zadanie Ode.12
Rozwiaza¢ liniowe rownanie rozniczkowe drugiego rzedu

2 -2 ()

Rozwigzanie: Wystepujaca tu macierz F' ma jedng podwodjna wartos¢ wiasna A = 4 i
tylko jeden wektor wtasny
w— 1
=)

i sztuczka z rozpisaniem y (t) na wektory wtasne M nie uda sie. Trzeba przerobi¢ wyjsciowe
rownanie drugiego rzedu na réwnanie pierwszego rzedu

yi(t) 0 0 10 yi(t)
dfwpt)] _[ 0 001 ya(t)
dt | 9:1(¢) 2 2 00 U1(t)
Ua2(t) -2 6 0 0 Ua2(t)

Wektorami wlasnym figurujacej w tej postaci réwnania macierzy F sa

1 1

5 . 1 5 . 1

)\(_,_) =2: Wy = 9 oraz )\(_) = -2 Wy = 9 s
2 —2

ale trzeba znalez¢ odpowiadajace tym wartosciom wlasnym wektory pierwiastkowe. Szu-
kamy zatem rozwiazan rownan (macierze (F F 21)% mozemy obliczy¢ korzystajac z poda-
nego wyzej ogdlnego wzoru)

6 2 -4 0 ag4) 0
-2 10 0 —4||[by | |0
—8 —8 6 2 C+) N 0|’
8 —24 -2 10/ \du 0
oraz

6 2 4 0 a(—) 0
-2 10 0 4 by | |0

8 8 6 2 C(—) N 0
-8 24 -2 10/ \d., 0

Znajdujemy® w ten sposob dwa wektory pierwiastkowe uiy 1 u_y odpowiadajace war-
toSciom wlasnym Ay =21 A_) = -2

Uy =

56Poniewaz do wektora pierwiastkowego mozna zawsze dodaé¢ wielokrotnosé odpowiadajacego tej samej
wartosci wlasnej wektora wlasnego, mozna szuka¢ rozwiazan, w ktorych b1y = 0.
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Przedstawiamy nastepnie dowolny wektor (warunku poczatkowego) w postaci kombinacji
liniowe] a1y W4y + B U(4) + ooy W(—) + By -y wektoréow wlasnych i pierwiastkowych:

a 1 9 1 9
b 1 0 1 0
clEem o | TEn | 3 | Tao | o | T | 3
d 9 1 9 1

Doé¢ tatwo znajdujemy, ze

1 1
Q(t) = 5[):‘: E(C"‘ ?)d),
1 1

Rozwiazaniem roéwnania v(t) = F - v(t) jest

v(t) = e (a Wiy + B Ty + o) W) + By )

= agy o2t Wi + B o2t et(ﬁ‘—21)‘l~l(+)

—2t ~ —2t 6zt(F+2I)

taey e T W) + B e e

Jak zwykle dzialanie e¥" na wektory pierwiastkowe, po wyfaktoryzowaniu czynnika eth

mozemy znalezé przez rozwiniecie e’ w szereg Taylora: poniewaz (F' — A)? zeruje sie
na wektorze pierwiastkowym (odpowiadajacym \), szereg urywa sie i dostajemy

2—1
o i ~ ~ —t
e a gy = agy +H(F =210y = 32t |’
—1 -2t
24+t
~ ~ ) - ~ t
et(F+2I)'U(_) :u(_)+t(F+2[)U(_) = _3_9¢ )
1-—2t
Ogolne rozwigzanie ma zatem postac
y1(t) 1 2t
yQ(t) 2t 1 _t
a@) | T Y 2| TR | 3o
i (1) 2 o
1 2+1
e qam | o | T8 | gy
) 1-2t



Nietrudno dostrzec, ze “dolne pieterka” sa, tak jak by¢ powinno, pochodnymi odpowied-
nich “gérnych picterek”. Mozemy zatem napisa¢ rozwigzania

ni(t) = ame” + 82—t e tame ™ + 8 2+t e ™,
ya(t) = Q) e — B+ te* 4 Q) e 2 4 B-) te 2,
Sprawdzenie, Ze speniaja one uklad rownan d?y, /dt? = 2y, + 2y, d?y, /dt? = —2y; + 6y

pozostawiamy jako proste ale obowiazkowe (wyrabianie niezbednych nawykow!) éwicze-
nie.

Oczywiscie podany uktad réwnan mozna tez rozwiazaé¢ prosciej: Dodajac i odejmujac
od siebie wyjsciowe rownania

d2

mh = 2y1 + 2y,

d2

m = —2y1 + 6y2

1 wprowadzajac nowe zmienne £ = y; +y2, 7 = Y1 — Y2 otrzymujemy réwnowazne rownania

d2
gt T e
d2
' =

Drugie z tych réwnan daje sie natychmiast rozwiazac:

n(t) = 264 e* + 26y e

Dowolne state oznaczyliSmy 2834, Zeby od razu uzyska¢ te samg posta¢ rozwigzania
uktadu, co poprzednio. Pierwsze rownanie jest wtedy rownaniem liniowym z niejednorod-
noscia. Jego rozwiazanie jest wiec, jak zwykle, suma ogolnego rozwiazania &nom(t) rOW-
nania jednorodnego d?¢/dt* = 4¢€ i jakiego$ szczegdlnego rozwigzania Enpom(t) réwnania
niejednorodnego. Ogoélna metoda szukania takiego szczegdlnego rozwiazania jest podana
w zadaniach Ode.13 i Ode.14. Tu postaramy sie je znalez¢ stosujac prosty Ansatz oparty
na tym, ze w takich sytuacjach, gdy macierz problemu liniowego jest niediagonalizowalna,
w rozwigzaniu wystepuja wyrazy proporcjonalne do te. Podstawiamy zatem

ginhom(t) = (A+ + B+t) e2t + (A_ + B_t) 6_2t .
do rownania d*¢/dt* = 4§ — 80y e* — 83 e~*" i mamy

4(AL + B+ Bit)e* +4(A_ — B_+ B_t)e ? =4(A. + Byt)e* +4(A_ 4+ B_t)e ™
— Sﬁ(_,_)ezt — SB(_)e_2t .

Wida¢, ze réwnanie bedzie spelnione, jesli podstawimy B, = —281) 1 B_ = 25).
Stale AL sa dowolne, bo to sa po prostu state w ogolnym rozwiazaniu &,om(t) rownania
jednorodnego. Zapiszemy je jako Ay = 2(ovx) + Ba))-
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Mamy wiec rozwigzania

E@) = 2(o) + By — Bt) € + 2 (o) + By + Boyt) e
n(t) = 2 B4y e +2fy e

Biorac potowe sumy i potowe réznicy dostajemy

n(t) = aw e + 82—t e +arye ™ + B2+t e ™
() = o e — B+) te? + Q) e + B te

czyli te same rozwiazania, co poprzedno.

Rozpatrzymy teraz ogblne rownanie drugiego rzedu liniowe i liniowe z niejednorodno-
Scig o statych wspotezynnikach na jedna tylko funkcje. Uzyta tu metode nie polegajaca
na przeksztatceniu takiego rownania w uktad dwoch réwanan pierwszego rzedu mozna tez
rozciggnaé na analogiczne réwnania wyzszego rzedu. Jest to proste w przypadku rownan
jednorodnych i troche trudniejsze w przypadku niejednorodnych.

Zadanie Ode.13
Rozwiaza¢ liniowe réwnanie rozniczkowe (Lr.r.) drugiego rzedu

d2

d
ﬁy+a—y+by:0,

dt

o statych i rzeczywistych wspotezynnikach a i b, przyjmujac jako warunki poczatkowed”
y(0) = yo oraz y(0) = o (réwnanie rézniczkowe zwyczajne rzedu n wymaga zadania n
warunkow poczatkowych). Rozpatrzy¢ wszystkie mozliwe przypadki.
Rozwiazanie: Postulujemy rozwiazanie postaci® y(t) = Aexp(At). Daje to réwnanie
kwadratowe na A\ (takze zwane rownaniem charakterystycznym l.r.r.):

AN 4+a\+b=0.

Roéwnanie to moze mie¢ dwa rézne pierwiastki rzeczywiste, jeden rzeczywisty pierwiastek
podwojny lub dwa wzajemnie sprzezone pierwiastki zespolone.

o Jesli pierwiastkami sg rzeczywiste i rézne A i Ay, to ogdlnym rozwigzaniem jest
y(t) = Ay eMt + Ay et
Z podanych warunkéw poczatkowych wyznaczamy state Ay i Ag:

A+ A = y(0) =1y,
MAL+ XA = y(0) =190,

5TOgolniejszymi warunkami bylyby y(to) = yo oraz g(to) = go; czasem w zastosowaniach warunkami
mogg by¢ y(t1) = y1 oraz y(t2) = go.

*8Fizyk wyksztalcony na Feynmana Wyktadach z Fizyki zwykt podstawiaé raczej y(t) = Aexp(iwt),
ale wynik konicowy oczywiscie od tego nie zalezy.
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Dostajemy stad
1
YD
1
A2 — Ap

At

y(t) (X200 — 90) € — (A1 yo — Yo) 6A2t]

[y(] ()\2 e)\1t —\ e)\zt) _ yo (eklt _ 6)\2t):| .

Jesli jest jeden pierwiastck podwojny A = —3a, tj. gdy a® = 4b (A = 0), wowczas
rozwigzaniem jest

y(t) = (A+ Bt)eM.
Sprawdzmy to:

d

ﬁy(t) =A(A+Bt)eM + BeM,

d2

Tz y(t) = M (A+ Bt)eM +2\BeM.

Wstawiamy to do lewej strony réwnania i mamy
N(A+Bt)eM+20BeM +a[A(A+ Bt)eM + BeM] +b(A+ Bt)eM.

Poniewaz A i B sg dwiema dowolnymi statymi, wyrazy je mnozace powinny zerowaé

sie niezaleznie. Istotnie: wspolczynnik przy AeM jest réwny A2 + Xa + b = 0;

wspotezynnikiem przy BeM jest zas (A2 + \a+b)t + 2\ +a; znika on, gdyz A = —2a.

7 warunkéw poczatkowych mamy w tym przypadku: i
A=y, B+ A =7y,
i stad
y(t) = [yo + (9o — Ayo) t] .
Wreszcie, gdy sa dwa pierwiastki zespolone A\ i A* rozwigzanie ma ogdlna postaé
y(t) = (A+iB)eM + (A —iB) e,

Jest ono, jak tatwo zobaczy¢, rzeczywiste (y*(t) = y(t)). Znoéw sa dwie state do-
wolne, ktore nalezy wyznaczy¢ z warunkéow poczatkowych:

Stad B = —i[299 — (A + XN)yo]/[2(A — A*)] 1 rozwiazanie uwzgledniajace warunki
poczatkowe ma postac:

1 .
y(t) = 3 Y0 (eM+eMt) +

290 — (>‘ + )‘*)yO At ¥t
30— ) (e e ) .

Na po6zniejszy uzytek przepiszemy je jeszcze tak

y(t) _ )\*yi S ()\*6)\1‘, . )\6)\*15) + )\*yi S (6)\*1‘, . e)\t) )
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Dobrze jest zobaczy¢, ze rozwiazanie w przypadku, gdy jest jeden pierwiastek rze-
czywisty podwojny mozna otrzymac jako granice Ay — A\; = A pierwszego przypadku i
jako granice ImA — 0 przypadku trzeciego. W pierwszym przypadku obliczamy granice
(wykorzystujac definicje pochodnej jako ilorazu roznicowego)

. et — et d Mt
)\zlg\rllf)\ >\2 - >\1 N a =te
X >\2 6)\1t — >\1 €>\2t . 1 At it Aot Aot
)\213\1/115)\ >\2 — >\1 a )\ll—I}}q )\2 — )\1 [(A2 B >\1)€ + )\16 B ()\1 B )\2)6 B >\2€ ]
ho X2 — ) et d
T A1t Aot N2 1 _9 X _ © At
—All—?}l{e +e . } 2 — (Ae)

=2eM — M NteM = (1 - At)eM.
Zatem

[yO ()\2 6)\1t _ )\1 6)\2t) + yo (6)\2t _ 6)\1t)i|

. ) 1
)\ll—rg\l y(t) N )\ll—rg\l Ay — A\

=yo (L —At)eM +gote,
co jest tym samym wynikiem, ktory uzyskalismy w punkcie drugim. Podobnie w trzecim

przypadku, gdy A = £ + in (i £ utozsamimy z pojedynczym rzeczywistym pierwiastkiem
rownania charakterystycznego) granica ImA = n — 0 daje

1 ’ ’ 2y0 — 2 . .
lim y(t) = ?171_% {5 yo et (e + =) 4 u €t (it — e—mt)}

n—0 din
int _ ,—int
e - € i © e
yoeo + (o —&wo)e nl_rf(l] 2in
) . sin(nt )
=yoet' + (Yo — £yo)€5t}71§g)# = [yo + (9o — Eyo) t] €,

czyli ten sam rezultat, co poprzednio. Pokazuje to, ze przy ustalonych warunkach poczat-
kowych rozwiazanie jest ciagta funkcja parametréw a i b réwnania.

Zadanie Ode.14
Rozwiazaé to samo, co w Zadaniu Ode.13 réwnanie rézniczkowe

d2

d
ﬁera%erby:O,

y(0) = yo, 9(0) = 9o, sprowadzajac je do rownania pierwszego rzedu.
Rozwigzanie: Wprowadzamy oznaczenia: y; = y oraz y, = y = y;. Mamy wtedy

d

%?ﬁ = Y2,

d d? d .

Eyzz ﬁy:—aay—by:—ayg—byl,
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lub to samo macierzowo

()= (8 ) ()=a(2):

Rozwigzaniem réwnania z podanymi warunkami poczatkowymi y;(0) = 3¥ = yo, y2(0) =

Y9 = 9o jest wtedy™
(y1(t)) _ A (yo)
ya(t) Yo

Aby znalezé eksponens macierzy A szukamy jej wektoréw wlasnych, rozwiazujac jak
zwykle jej réwnanie charakterystyczne

o N T W -
det(_b _a_)\)—A +Xa+b=0,

Wyszlo oczywiscie to samo rownanie charakterystyczne, co w poprzedniej metodzie. Za-
t6zmy najpierw, ze ma ono dwa rézne pierwiastki A\; i Ao. Ré6wnanie wyznaczajace wektory

wlasne
( )\1’2 : ) ( o ) ( )
b a )\172 /31,2 0
1 1
! )\1 ’ 2 )\2 ’

(poniewaz dwa te rownania musza by¢ liniowo zalezne rozwiazujemy gorne kladac po
prostu o = 1). Rozkladamy nastepnie warunek poczatkowy na wektory wlasne wy i wo

()= () el)=( ) ()

i wyznaczywszy wspotczynniki rozktadu (; i (5 dzialamy na wektor warunkéw poczatko-
wych macierza exp(tA):

(yl(t))_etA_{)\2yo—?)o<1>_>\1y0—yo<1)}
w)) A2 — A1 A1 A2 — A A2

:)‘2?/0_.@061514.(1)_)\1'3/0_90615,4.<1)

A2 — A A As — Ay As )

% 0golniej, gdy warunki zadane sa w to: y1(to) = 49, y2(to) = yJ, rozwiazanie ma postaé
(yl(t)) _ lt—to)A (y?)
- P
ya(t) Ya
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Poniewaz exp(tA) dziata tu na wektory wlasne macierzy A otrzymujemy

<y1(t)> _ A2 Yo — Yo ey ( 1 ) ALY — Yo e < 1 )
y2(t) A2 — A A1 A2 — A\ Ay )

Gorna sktadowa wektora stojacego po prawej stronie daje

1
X — N\

n(t) =y(t)

Y

[(A2y0 = 90) €™ = (A1 o — Go) €]

co jest rozwiazaniem znalezionym w pierwszym punkcie poprzedniego zadania. Dolna zas
sktadowa wektora stojacego po prawej stronie daje po prostu pochodna tego rozwiazania:

ya(t) = y(2) (A1 (A2y0 — 90) €™M — Ao (M yo — 90) €] .

SN
Zauwazmy jeszcze, ze rozwiazanie to pozostaje stuszne nawet jesli rownanie charaktery-
styczne ma dwa pierwiastki zespolone: podstawiajac tu Ay = A i Ay = \* i przegrupowujac
wyrazy otrzymujemy od razu rozwiagzanie dla tego przypadku wypisane w poprzednim
zadaniu. Jest tak dlatego, ze - jak juz kiedy$ zauwazyliémy - macierz exp(tA) wychodzi
rzeczywista nawet wtedy, gdy “po drodze” do jej znalezienia trzeba rozszerzyé przestrzen
wektorowa nad cialem R do przestrzeni nad cialem C.

Rozpatrzmy jeszcze przypadek, gdy jest jeden podwoéjny pierwiastek A = —%a rOwW-

nania charakterystycznego, tj. gdy b = iaz. Roéwnanie wyznaczajace wektor wlasny ma

wtedy postaé
—A 1 a\ _ [ 3a 1 a (0
b —a—\ B) -1 —la B) \0)"

Jest wtedy tylko jeden wektor wlasny, jako ktéry mozna wzigé¢ wektor

(Z)

Rozktad przestrzeni wektorowej na podprzestrzenie pierwiastkowe jest w tym przypadku
trywialny, gdyz cala prestrzenn wektorowa jest po prostu jedna podprzestrzenia pierwiast-
kowa; w zwiazku z tym

1 1
. 2: §a 1 ECL 1 _ 0 0
= (e ) (e ) -

i jako drugi wektor rozpinajacy te podprzestrzen pierwiastkowa (czyli cala przestrzer)
mozemy wybraé¢ dowolny wektor liniowo niezalezny od wektora wtasnego; np. moze by¢
to wektor
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Rozktadamy teraz wektor warunkéw poczatkowych na te dwa wektory i znajdujemy roz-
wigzanie

(i) =={a (20) +[zow e (V)
= %yoe” (_2a) - (%ayo—i-yo) ML +t(A— )] (2) .

W pierwszym wyrazie macierz exp(tA) dziata na wektor wlasny macierzy A, co sprowadza
sie do pomnozenia tego wektora przez eM. W drugim wyrazie zastosowali$my stary chwyt
polegajacy na napisaniu

2
A GIATHIA=N) _ M HA=AD) _ M HA-M) _ M {] FHA =)+ %(A SV }

i zauwazeniu, ze (A—\I)? i wszystkie wyzsze potegi s tu po prostu macierzami zerowymi.

Zatem
i)\ _ L a2 1 , x| (0 1
(yg(t))_2y06 Ly + 2ay0—|—y0 e 1 +t —a)?
i gorna sktadowa daje uzyskane juz w poprzednim zadaniu rozwigzanie, a dolna jego

pochodng.

Zadanie Ode.15
Zmnalez¢ ogodlne rozwiazanie liniowego réwnania rézniczkowego drugiego rzedu o statych
wspotczynnikach z niejednorodnoscia

d? d )
@y+2vay+woy=f(t),

w przypadku, gdy w? > ~v? (zgodnie z tradycja fizyczna stale a i b z porzednich zadan
oznaczyliémy tu odpowiednio 2v i w3).
Rozwigzanie: Rozwigzujemy najpierw réwnanie jednorodne

e d
VT2 YWy =0,

podstawiajac don (tym razem dajmy upust naszym fizykalnym nawykom) y(t) = A exp(i§2t).
Dostajemy na €) réwnanie kwadratowe

—Q% +2iyQ+wg =0,

ktore, gdy w2 > 7%, ma dwa rézne pierwiastki

Q=iy+ /w2 - =iytw.

125



Ogoélnym rozwiazaniem jest wiec
Ynom (1) = (Z et 7% e_i“t) e .

w ktorym Z € C jest zespolong stala catkowania (czyli sa to dwie rzeczywiste stale
dowolne) i ktére wygodnie bedzie przepisa¢ w postaci

Ynom (t) = C1yi(t) + Caya(t),

czyli w postaci kombinacji liniowej z rzeczywistymi wspotcezynnikami C i Cy dwoch li-
niowo niezaleznych rzeczywistych rozwiazan

y1(t) = e sinwt, Yo (t) = e " coswt,

roéwnania jednorodnego

Szukamy nastepnie jak zwykle jakiegokolwiek (tzw. rozwiazania szczeg6lnego) roz-
wigzania rownania niejednorodnego. Mozemy probowaé znalezé je metoda uzmiennienia
statych catkowania w rozwiazaniu réwnania jednorodnego. Piszemy wiec

Yinhom (t) = A1(t) y1(t) + Aa(t) ya(1) .

Rozwiazanie rownania jednorodnego zalezy od dwu statych, wiec uzmiennilisémy tu je obie.
Po wstawieniu tego, jak to sie nazywa, Ansatzu do rownania otrzymujemy

Ty + 240y + Avyy + 27 (AL yn + A yh) + wi A
+ A5 yo + 2A5 Y + A yy + 2y (Ayyo + Az ys) +WSA2?J2 = f(t).

Jak zwykle czes¢ wyrazow wypada, bo y;(t) i y2(t) spelniaja rownanie jednorodne i mamy

Al yr +2A y1 + 27vAT 1
+ A3y + 2A5 45 + 27 ALy, = f(1).

Nie wyglada to jednak wesoto, bo mamy jedno réwnanie (i to drugiego rzedu) na dwie
nieznane funkcje A;(t) i A2(t). Mozna by wprawdzie powiedzie¢, ze skoro szukamy jakie-
gokolwiek rozwiazania rownania niejednorodnego, to mozemy np. przyjacé, ze A; = 0, ale
to daloby nam na A;(t) rownanie niejednorodne drugiego rzedu (i to gorsze niz to, kto-
rego rozwigzania wlasnie szukamy, bo o wspotezynnikach bedacych funkcjami ¢). Sztuczka
polega na tym, by na szukane funkcje A;(t) i As(t) narzuci¢ dodatkowy warunek

Alyi+ Ayye =0,
ktorego konsekwencja jest tez zwiazek
AV yr+ A gy + Ay o + Ayyp = 0.
Roéwnanie niejednorodne przybiera wtedy postacé
Ay + Ayyy = f(1).
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Poza tym, narzucony zwiazek pozwala wtedy wyrazi¢ np. Af przez A}: A, = —(y1/y2) A
lub A} = —(y2/y1)A,. Otrzymujemy wtedy na A;(f) i As(t) rownania

Y2 / n
Ay =—————f(t), Ay=———[(1).
L b — i 2y — Vi
Mianownik W (y1, y2) = 1195 — ¥1y2 nazywa si¢ wronskianem.® Jest on w tym przypadku
rowny

W(yi,y2) = 114y — Y1y = —we 27",

Zatem

1 1
Al == f(t) e coswt, A= —= f(t) e sinwt.
w w

Najogolniejsze rozwiazanie réwnania niejednorodnego ma zatem postaé

1 t /
y(t) = Cre "sinwt + Coe " coswt + — e " sin wt/ dt' f(t') e coswt’
w

1 ! :
——e " coswt / dt' f(t') e sinwt’.
w

Dolne granice catek moga by¢ dowolne - wpltywaja one tylko na redefinicje dowolnych
statych C i C5 i razem z nimi sg wyznaczane przez warunki poczatkowe.

Zadanie Ode.16
Otrzymaé bez sztuczek z Wroniskianami rozwiazanie niejednorodnego liniowego réwnania
rozniczkowego drugiego rzedu o statych espotczynnikach przerabiajac je na liniowy uktad
dwoch réwnan pierwszego rzedu z niejednorodnodcia.
Rozwiazanie: Jest ono bardzo podobne do tego, co zostalo zrobione w Zadaniu Ode.10.
Roéwnanie

2
%wa%wby:f@),

przepisujemy w formie

()= (5 2 (o)

wprowadzajac oznaczenia y; = y, ¥ = y;. Rownanie jednorodne zostalo juz rozwiazane w
Zadaniu Ode.14. Tu zatozymy, ze stojaca tu macierz F' ma dwie rézne wartosci wlasne \;

60 Jozef Maria Hoene-Wroriski (1776-1853) - polski fizyk, matematyk i filozof. Jeden z przedstawicieli
polskiego mesjanizmu. Pamietamy: Mickiewicz, Towianski i te sprawy - zob. Gorgy Spiro “Mesjasze”.
Cho¢, jak twierdzi Mitosz (w “Ziemi Ulro”), Hoene-Wronski “wierszoklety i jego mistycznej bandy” nie
znosit...
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i A9 i, co za tym idzie, dwa wektory wlasne. Potrzebna macierz exp(tF') mozemy znanym
sposobem odczyta¢ dziatajac nia na wypisany juz w zadaniu Ode.14 rozktad

a\ ar—b (1 _ ala—b (1
b N )\2 — )\1 )\1 )\2 - )\1 )\2 ’
dowolnego wektora na wektory wtasne. Otrzymujemy w ten sposob

F 1 ( )\2 et)q _ )\1 €t>\2 et)\z _ et)\l )
(& .

- )\2 — )\1 )\1)\2(6M1 — e’“?) )\2 et>‘2 — )\1 et)‘l

Jak zawsze pelne rozwiazanie jest suma ogélnego rozwiazania yy, rOwnania jednorodnego
i jakiego$ rozwigzania réwnania niejednorodnego, ktore konstruujemy podstawiajac do
rownania niejednorodnego Ansatz Yinhom = exp(tF') - h(t). Daje to na h réwnanie:

() = S ()

Po jawnym zadzialaniu macierza exp(—tF’) da to

M) = [t = ™) ),

1 - -
BV /dt (Aae™2 = Ape™™) f(2).

ho(t)

Otrzymujemy wiec wektor yinnom(t) W postaci

1 ( )\2 €t>\1 o >\1 €t>\2 et)\z _ et)\l ) /tdt/ ( (e—t’Ag _ e_t,)‘l)f(t’) )
()\2 — )\1)2 )\1)\2(6”‘1 — €t>\2) >\2 €t)‘2 — )\1 €t)‘1 ()\2€_tl>\2 — )\1€_tl)\1>f(t/) '
Wyglada troche zawile, ale trzeba cierpliwie wypisa¢ jawnie pierwsze pieterko tego wektora
(tylko pierwsze jest naprawde potrzebne, bo to sktadowa y; wektora y = Ynom + Yinhom
jest szukang funkcja y(t); sktadowa y, powinna da¢ pochodna szukanej funkcji y(t), czyli
powinien zachodzi¢ zwiazek y, = v, ktory moze by¢ uzyty do sprawdzenia poprawnosci
rachunkow)

| 1 t / :
yinhom _ m {(}\2 et)q - )\1 et)\g)/ dt/ (e—t Ao e—t )\1) f(t/)

t
+ (e — ™) / at ()\2 et ) e—“1> f(t’)} .

7 oémiu wyrazow cztery sie parami redukuja i zostaje

| 1 P et
yinhom _ m {_)\2 et)q/ dt/e t' A\ f(t/) _ )\1 etA2/ dt/e t' o f(t/)

t t
+ o 2 / dt e 2 f(t') + Ay et / dt' e~ t'M f(t’)},
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a po zebraniu razem takich samych catek

1 t / ¢ )
Yinhom = T T {_et)q/ dt e—t A1 f(t/) _I_et)\Q/ dt’ e—t A2 f(t/)} )
2~ /M1

To zas jest tym samym, co juz bylo znalezione jako yinhom W zadaniu Ode.15, tylko troche
ogblniej zapisane. Istotnie, w tamtym Zadaniu zatozylidémy, ze rownanie charakterystyczne
ma dwa wzajemnie sprzezone pierwiastki zespolone. W notacji tego zadania odpowiadan-
loby to polozeniu A\; = —y + iw, i Ay = —y — iw (gdzie w = Jwi —~2). W takim

przypadku otrzymane tu rozwigzanie ma postaé

. + .
Yinhom = 2L {_e—“/t—l—iwt/ dt’ eﬁftl_thl f(t/) + e—’Yt—iwt/ dt' e’Yt’—I—iwt’ f(t/)} '
w

+iwt

Po napisaniu e = coswt * i sin wt potowa wyrazéw sie zredukuje i zostanie doktadnie
to, co jako ¥inhom zostato otrzymane w Zadaniu Ode.15.

Zadanie Ode.17

Znalez¢ jakie$ rozwiazanie Yinnom () rOWnania
y'+ay +by = fcos(Q+9),

o rzeczywistych wspotczynnikach a i b.

Rozwigzanie: W przypadku niejednorodnosci, ktéra ma postaé¢ funkcji sinus lub ko-
sinus, albo ogodlnie kombinacji eksponenséow (ewentualnie mnozonych przez wielomian)
zamiast wykorzystywaé ogdlne wzory wyprowadzone w poprzednich zadaniach, prosciej
jest zastapi¢ powyzsze réwnanie réwnaniem

Z”—G—CLZ’—}—bZ:fﬁ’ZQt,

w ktorym z moze przyjmowac wartosci zespolone, a f = fe'. Powinno byé jasne, ze czesé
rzeczywista Re(zipnom) rozwiazania tego réwnania bedzie spelnia¢ wyjsciowe réownanie
(z fcos(Qt + 0) jako niejednorodnoscia), a czes¢ urojona Im(zinom) rozwiazania bedzie
spelnia¢ wyjsciowe réwnanie z f sin(Qt + ) jako niejednorodnoscia.

Aby znalez¢ rozwiazanie ziynom Wystarczy do rownania podstawic¢ jako Ansatz zipnom (1)
= A e Czynniki ¢’ wtedy wypadaja i zostaje rownanie algebraiczne na A, ktérego
rozwigzaniem jest

A~ ~

f f

A: =
— P2 +iaQ+b (2 —0)2+a*Q?

(b—Q*—iaQ).

Zatem
f
Zinhom (f) = (€2 — )2 + a2
+i [(b— Q%) sin(Q 4 0) — aQcos(Qt +6)] } .

{[(b— Q%) cos(Qt + &) + aQsin(Qt + 6)]

I teraz mozna sobie wzia¢ cze$¢ rzeczywista albo urojona - co tam komu potrzebne...
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Nietrudno sie zorientowaé, ze metoda znajdywania szczegdlnego rozwiazania liniowego
rownania drugiego rzedu z niejednorodnoscia zaprezentowana w Zadaniu Ode.15 pozo-
staje w mocy nawet wtedy, gdy jest to réwnanie liniowe o wspotczynnikach, ktore nie
sa stale, tj. sa funkcjami ¢. Oczywiscie jej zastosowanie wymaga znajomosci dwu li-
niowo niezaleznych rozwigzan réwnania jednorodnego i to naogot ktadzie sprawe, bo gdy
wspotezynniki tego réwnania nie sa stale, réwnanie takie jest trudno rozwigzaé.%! Jednak,
gdy (przypadkiem) znane jest juz jedno z dwu liniowo niezaleznych rozwiazan réwnania
jednorodnego (podwedzilismy je komus, okazyjnie na pchlim targu kupilismy, etc...) to,
okazuje sie, prosta sztuczka z Wroniskianem pozwala znalezé takze i drugie liniowo nieza-
lezne rozwiazanie i wtedy metoda z Zadania Ode.15 daje sie¢ zastosowa¢ i mozna znalezé
kompletne (zalezne od dwu stalych dowolnych) rozwiazanie réwnania niejednorodnego.
[lustruje to

Zadanie Ode.17

Znalez¢ jakie$ rozwigzanie Yinnom(t) rOwnania

-2t 1

1
/i / o
'y + 2y + 2 y_t_3’

jesli wiadomo, ze jednym z dwu liniowo niezaleznych rozwigzan réwnania jednorodnego
jest yi(t) = e/t
Rozwigzanie: Rownanie jest ogblnej postaci

Y +a(t)y +ao(t)y = f(t).

Wroniskian réwnania jednorodnego, W (t) = y1y5 — yy2, w ktorym y;(t) i y2(t) sa dwoma
liniowo niezaleznymi rozwigzaniami tego réwnania, spetnia réwnanie rézniczkowe pierw-
szego rzedu, w ktorym wystepuje funkcja aq (t):

W/ = —a (t) W
Rzeczywiscie:

daw  d
= — (1Y — Yiv2) = Y1y — Y12,

dt o dt
wyrazy z ;15 zredukowaly sie) 1 jesli teraz uwzgledni sie, ze y; 1 y, spelniaja réwnanie
YIazy 7 Y1y y s1€) 1] gle € Y1 1Y2 Sp Ja
jednorodne, tzn. podstawi si¢ tu y! = —a1(t)y; — ao(t)y;, i = 1,2, to otrzyma si¢ podane
rOwnanie. Zatem Wronskian jest dany jego rozwigzaniem

W(t) = exp (- / dta, (t)) .

61 Przedstawiona wczesniej metoda, polegajaca na zredukowaniu problemu rozwiazania liniowego réw-
nania jednorodnego drugiego rzedu do rozwiazania uktadu réwnan pierwszego rzedu na dwie funkcje jest
niepraktyczna, bo cho¢ mozna napisa¢ formalne rozwiazanie to bezposrednie wyliczenie wystepujacego w
nim operatora P; exp ( [ dtF (t)), gdzie F'(t) jest macierza 2 x 2, jest naogo6! niewykonalne.
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W przypadku badanego réwnania ai(t) = 2/t> i W(t) = C e*!. Stala catkowania C
odpowiada temu, ze zamiast y;(¢) i y2(t) jako liniowo niezalezne rozwigzania réwnania
jednorodnego mozna by wziaé¢ Chy1(t) i Coya(t) z dowolnymi (byle nie zerowymi) statymi
Cl 1 02.

Jesli znane jest jedno rozwiagzanie rownania jednorodnego ¥ (t), to znajomosé jawnej
postaci Wroniskianu moze zosta¢ wykorzystana do znalezienia drugiego jako rozwiazania
liniowego réwnania rézniczkowego pierwszego rzedu z niejednorodnoscia:

y1ys —yry2 = W(t),
ktore wobec tego mozna rozwiaza¢ znana juz metoda uzmiennienia statej.

W przypadku rozpatrywanego tu réwnania ma ono postac

1
ety 4 > My, = C et

gdzie C' jest dowolng stata catkowania. Catkujemy najpierw réwnanie jednorodne:

1
yé + t_2 y2 - 0 )
co da Yonom(t) = D e, Uzmienniamy stala D, czyli szukamy ¥oinnom(t) W postaci

Yoinhom (t) = h(t) e!/*. Funkcja h(t) spetnia zatem réwnanie h' = C, czyli h(t) = Ct
(tu, jakzwykle, stala calkowania mozna pomina¢) Ogolne rozwiazanie roéwnania z Wron-
skianem na y, ma postaé

yo(t) = DYt Ctel/t,

ale ze potrzebne nam sg jakickolwiek dwa liniowo niezalezne rozwiazania wyj$ciowego
réwnania jednorodnego, mozemy jako to drugie wzia¢ po prostu ys(t) = te'/t. Sprawdzmy
(dla pewnosci), ze y1(t) 1 y2(t) speliaja wyjsciowe rownanie jednorodne

1 1 2
Uy = el/t ) yi ) el/t ) yil - 61/t + 13 61/t )
t t t
1 1
Yo = tel/t, yé — el/t . % el/t’ yé’ _ t_g el/t_

Wstawiamy do réwnania i sprawdzamy:

1 2 1 1 2
2 L 1 4 in o LAY i
t<t4e + e )+2< e )+<t2 t)e =0,
1 1 1 2
2 (L i 1t Lo 12 1/t _
t(t?’e )+2<e te )+<t2 t)te =0.

Zgodnie z metoda z Zadania Ode.15 szukamy teraz szczegdlnego rozwigzania wyjscio-
wego réwnania niejednorodnego w postaci

Yinh = A1(t) y1(t) + Aa(t) ya(2)
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narzucajac warunek A} (t) y1(t) + A5(t) y2(t) = 0. Kopiujac z Zadania Ode.15, piszemy
rownania na A;(t) 1 As(t):

ya(t tellt 1 o
Ai(t) = _Wi((t)) ft)=— Y ft)=—te 1/t = — e l/tt_4’
Ya(t) el/t Sl

A0 =~ 10 = G f0) =V .

(Tu Wronskian juz jest jednoznaczny - niema w nim dowolnej statej - bo wybralismy
konkretne y;(t) 1 y2(t).) Proste catkowanie (podstawiamy & = 1/t) daje

2 1
Ait) = — <2+— + —) e M1,

t 2
6 3 1
Ay(t) = (6+; tot t—3) e Mt

i stad
1
yinh(t) = 4 -+ 6t —+ ; .

Latwo sprawdzié¢, ze istotnie jest to rozwiazanie wyj$ciowego réwnania niejednorodnego.
Najogolniejsze jego rozwigzanie ma wiec postac

1
y(t) = Cryi(t) + Caya(t) + ymn(t) = (C1 + Ca t) et + 4+ 6t + .
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PDE pierwszego rzedu

Jako zapowiadane zwieniczenie tego krotkiego kursu réwnan rézniczkowych oméwimy klase
rownan rozniczkowych czastkowych, ktére rozwiazuje sie sprowadzajac problem do roz-
wigzania kilku sprzezonych rézniczkowych réwnan zwyczajnych. Nazywa sie to metodg
charakterystyk. Stosuje sie ona do réwnan rézniczkowych czastkowych pierwszego rzedu,
tj. takich, w ktorych wystepuje szukana funkcja® F(€,... €""1) i tylko jej pierwsze
pochodne. Réwnania te sg ogoélnie postaci

G(F, 0,F, &) =G(F,p;, &) =0.

Uzyta tu zostala standardowa skrotowa notacja O;F = 9F/0¢'. Sama funkcja G(-,-,-)
moze by¢ nieliniowa funkcja swoich argumentoéw, ale metoda charakterystyk upraszcza sie
znacznie, jesli G zalezy od F' liniowo (rozumiejac tu pochodne jako operacje dzialajace
na F' liniowo) lub quasi-liniowo, tj. jesli

G(F. 0. €) = (V1€ 5 + 0 ) F =0,
lub
G(F, 0,F, €) = Vi(€) a? L CE) =0.

Przy analizie rownan rézniczkowych czastkowych wygodne jest spojrzenie geome-
tryczne. Zmienne (£1,... ") dobrze jest widzie¢ jako wspolrzedne na pewnej n + 1
wymiarowej rozmaitosci®® Z. Szukana funkcja F(&', ..., &™) jest wtedy funkcja okre-
slong naprawde na punktach p tej rozmaitosci. Naturalnym zas zagadnieniem, przez ma-
tematykow zwanym zagadnieniem Cauchy’ego (znéw ten Cauchy!), jest znalezienie funkcji
F na = (lub jakim§ otwartym podzbiorze =), jesli jest ona zadana na podrozmaitosci 3

wymiaru n zanurzonej w rozmaitosci = (lub w jej otwartym podzbiorze).

Omoéwimy najpierw metode rozwiazywania rownan (quasi-)liniowych. W tych przy-
padkach procedura jest prosta: z kazdego punktu py o wspolrzednych (&} ntly

px) 0 Spy

podrozmaitosci ¥ prowadzimy charakterystyke £i(t, &), tj. krzywa w =, w kazdym

62Zwykle w zastosowaniach jedna ze zmiennych & jest jako§ wyrdzniona i dlatego przyjmujemy tu, ze
zmiennych jest n 4+ 1 (a nie do n).

630 r ozmaitosciach juz w tym skrypcie bylo (przy okazji objetosci i pol powierzchni), wiec tylko przy-
pomnijmy, ze dla fizyka jest to takie co$, co mozna obmacaé i co mozna sparametryzowac¢ wspolrzednymi,
tj. kazdy punkt rozmaitosci identyfikowaé przez podanie wartosci kilku zmiennych. Na danej rozmaitosci
mozna wprowadzaé rézne uktady wspodlrzednych i tu wtasnie kryje sie wielka wygoda traktowania wielu
przestrzeni, czy zbioréw jak rozmaitosci. Jesli dla kogos te uwagi sa zbyt abstrakcyjne, to niech ma przed
oczyma sfere zanurzona w zwyklej przestrzeni R? okres§long réwnaniem z2 + y2 4+ 22 — R? = 0; sfera
taka jest wlasnie rozmaitoscia, a naturalnymi na niej wspolrzednymi sg katy ¢ i ¢, ale lokalnie moga
wspolrzednymi byé kartezjariskie x i y lub x i z etc. Kazda funkcja okreslona na rozmaitosci jest funkcja
wspOlrzednych te rozmaitosé (lub jej czes$¢) parametryzujacych (kazda funkcja okreslona na sferze jest
funkcja katow 9 i ).
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swoim punkcie p € = styczng do wektora V*(€) (wielkosci V*(€) mozna w geometrycznym
obrazku uwazac za skltadowe pewnego pola wektoréw zadanego na =; sa one sktadowymi
pola wektorowego w bazie stowarzyszonej z uktadem wspolrzednych £), tj. spelniajaca
rownania

DG €)= VIER &), (0, 6) =&

dt
Sama podrozmaito$¢é ¥ mozna sparametryzowaé jakimi§ n wspolrzednymi (71, ..., 7).
Tzn. punkty ps, ktére naleza do > maja jako punkty = wspotrzedne 5;2, 1=1,...,n+1,
ale te mozna sparametryzowaé n wspotrzednymi 7°: f;z =&t ) i=1,...,n=1.

Zatem lokalnie, w otoczeniu podrozmaitosci 32 mozna na rozmaitosci = wprowadzi¢ nowy
uklad n+1 wspotrzednych (¢, 71, ..., 7"), réwnie dobrze, jak 1, ..., "1 identyfikujacych
punkty p € =: podajemy wspolrzedne punktu startowego na X oraz “czas” t, jaki z
tego punktu nalezy podroézowaé po charakterystyce przezen przechodzacej, by dotrzeé
do danego p € =. Matematycznie, zamiana wspotrzednych (wyrazenie starych przez
nowowprowadzone) wyraza si¢ zwigzkami (zmienne 7!,... 7" zastepuja tu Eps)

=&, T).

W nowych wspotrzednych operator rézniczkowy wystepujacy w rownaniu rézniczkowym
ma prosta postac¢tt

0 0

V(O gE =g

Dwa warianty réwnania przybieraja wiec odpowiednio postacie

(5 + @) r=o.

OF -
wr +C(&(t) =0.

Ich rozwiazania juz latwo teraz napisa¢. Geometrycznie (niezaleznie od ukladu wspol-
rzednych) sa to

FWMMPJ@ﬂw%—KWCWﬂmw,

oraz

Fiplt,pe)) = Fips) — [ af O ).

0

64Nie dowodzimy tu tego; jest to proste éwiczenie z zakresu zamiany zmiennych w operatorze réznicz-
kowym i kazdy powinien to sam przeé¢wiczy¢.
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We wspotrzednych zas odpowiednio

FiEtm) = £ e [ tdtfc@(tm)) ,

oraz

t
FE(t ) = F(r) - [ ar oEem).
0

W takiej formie rozwigzania zadawalajg jednak tylko zatwardzialych matematykow,
poniewaz sa troche niejawne: moéwia one, jaka jest warto$¢ funkcji F' w punktach osiag-
galnych po charakterystyce idacej przez pewien punkt py, na podrozmaitosci X. Tymcza-
sem interesujace jest naogdt pytanie odwrotne: mamy pewien punkt = o wspotrzednych
(€Y, ..., &™) i cheemy wiedzieé¢ jaka jest wartosé funkcji w tym punkcie (a nie jakims§ in-
nym do ktorego wiedzie charakterystyka z punktu py). Oczywiscie mozna, i tak bedziemy
robi¢ w ogélnym przypadku, wybra¢ na ¥ warunki poczatkowe charakterystyki tak, by
trafiala ona w wybrany punkt Z o wspotrzednych (£1,..., "), W przypadku rozpatry-
wanych tu rownan liniowych i quasi-liniowych tatwo jest jednak przeformutowaé podane
wyzej rozwigzania tak, by przybraly uzyteczna forme jawnie. Mianowicie charakterystyke
wypuszczamy z punktu p € = (p ¢ ¥) o wspotrzednych (£1,..., ") w kierunku X, tzn.
bierzemy takie rozwigzanie £'(t) wypisanych wyzej réwnan zwyczajnych, ze £(0) = £
Jesli podrozmaito$é ¥ jest zadana réwnaniem hg (€1, ..., ") = 0, wyznaczamy “czas”
t, taki, by

hs(EN(L), ..., &\ (t,)) = 0.

Rozwiazania maja wtedy postaé

oraz

_ tp _
F(€) = PIE() + [ it CEr)).
0
Zmiana znaku przed calkami bierze sie stad, ze charakterystyka jest teraz przebiegana w
odwrotnym kierunku niz poprzednio.

Zadanie
Rozwiaza¢ metoda charakterystyk czastkowe réwnanie pierwszego rzedu postaci

0 0
(bxa—y—by%—a) F(z,y)=0,

w ktorym a i b sa stalymi, a warunkiem brzegowym jest F'(z,0) = f(x), gdzie f(z) jest
dowolng rézniczkowalna funkcja.
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Rozwigzanie: Postepujemy zgodnie z naszkicowana wyzej metoda. Zmiennymi sa tu
¢ =z, €2 =y, a skladowymi pola wektorowego sa V! = —by, V? = bz; funkcja C(€) jest
stata, rowna —a. Réwnania charakterystyk

%j(t) = —bij(t), %ﬂ(t) = bz (1),

latwo rozwiaza¢ taczac je w jedno rownanie na zmienng z(t) = Z(t) + ig(¢)

d _ o
pr Z(t) = ibz(t) .

Rozwigzaniem jest z(t) = ¢%z(0), czyli (bo jesli charakterystyka jest wypuszczona z
t

punktu p o wspolrzednych (z,y), to Z(0) = z + iy)

t) = xcosbt — ysin bt ,
t) = xsinbt + ycosbt.

(
yl

Poniewaz warunek brzegowy jest zadany na linii (hiperpowierzchni ) y = 0, “czas” t,
potrzebny do dojscia do niej jest wyznaczony przez warunek g(t) = 0 i rowny

1 y
t, = ——arctg=.
b b g:ﬂ

Uwzgledniajacym warunek brzegowy rozwigzaniem rownania jest wiec

tp
Floy) = Fla(t). gtt)exo(a [ ar )
0
- Y 4+ ysin(arctg @ reta
= F(:c cos(arctgz) + ysm(arctgx), 0) exp(b arctggE) .

Kombinacje wystepujaca jako pierwszy argument funkcji F' po prawej stronie tatwo prze-
ksztalci¢ pamigtajac, ze cosa = 1/v/1 + tan® @, a sina = tana/v/1 + tan? o; sprowadza
sie ona do

x cos(arctgg) +y sin(arctgy) = v+ y?,
T T

a poniewaz F'(z,0) = f(z), ostatecznie rozwiazanie ma postac

F(z,y) = f(\/2® + yz)exp<% arctg%) :

Nietrudno tez sprawdzié, ze jest to rozwiazanie postawionego problemu: poniewaz
dy Ox ’

65Kto studiowal juz mechanike kwantowa, ten wie, ze to jest oczywiste, bo operator w nawiasie jest
proporcjonalny do operatora (w reprezentacji potozeniowej - jako stary belfer nie moge sie powstrzymac od
uscislania...) z-owej sktadowej orbitalnego momentu pedu; w zmiennych sferycznych, czy cylindrycznych,
sprowadza si¢ on do 9/9¢p, a funkcja f zalezy tylko od r, a nie od .

65
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0 0 0 0 a Y
Y L _ 2 L .2 Y _,Z i J
<bx 9 by &r) F(z,y) =bf(\/ 22 +y?) (x o y@x) exp(b arctgx)
_ 21 .2 @ gy ¢ o_. 9 y
bf(v/22 +y )exp(b arctgz) 2 {(93 o y@x) [arctgx} }

Wyrazenie w kreconych nawiasach jest, jak tatwo sprawdzi¢, réwne 1, co koriczy spraw-
dzenie.

Zadanie
Rozwiaza¢ metoda charakterystyk czastkowe réwnanie pierwszego rzedu postaci

0 0
(x%+y8—y+a) F(z,y) =0,

w ktorym a jest stata. Rozpatrzy¢ dwa przypadki:

i) warunkiem brzegowym jest F'(z,yo) = f(x), przy czym yo # 0,

ii) warunkiem brzegowym jest F'(z,x + 1) = f(z).

W obu przypadkach f(x) jest dowolng rozniczkowalna funkcja.

Rozwigzanie: Zmiennymi sa tu &' = xz, €2 = y, a skladowymi pola wektorowego sg
V1 =ux, V2 = y; funkcja C(€) jest stalg réwna a. Réwnania charakterystyk

%x(t) = Z(t), % g(t) =5(t),

maja oczywiste rozwiazania Z(t) = €'z(0), y(t) = €'g(0).

Przypadek i). Jesli charakterystyka wybiega z punktu p o wspotrzednych (z,y), to Z(t) =

tp =1n(yo/y) -

Rozwiazaniem jest wiec

Floay) = Fia(t). git) espa | t”dtf) - (%)F(y L) - (‘%)f(y o

Poniewaz znéw (x0, + y0,) f (yox/y) = 0, tatwo sprawdzi¢, ze jest to zgodne z warunkiem
brzegowym rozwiazanie wyjsciowego réwnania.

Przypadek ii). Teraz “czas” t, jest wyznaczony przez warunek y(t,) = Z(t,)+1 i, poniewaz
tak jak poprzednio Z(t) = e'x, y(t) = ey,

t,=—In(y —x).

Rozwiazaniem jest wiec

Ploa) = Pt st ew(a [(ar) = () 1(-2).
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7Znoéow

0 0 x
<x8_w+y8_y)f(y—x) -0

i tatwo zobaczyé¢, ze jest to zgodne z warunkiem brzegowym rozwigzanie wyjéciowego
réwnania.

W ogélnym przypadku metoda charakterystyk jest bardziej ztozona. Majac dana
funkcje G(F, p;, &) definiujemy najpierw pole wektorowe V', pole kowektorowe X; oraz
pole sklarne C":

oG - oG oG
— V{F = X;(F, p, &), —=

C(F,p,¢&).

Roéwnaniami charakterystyk sa

SEW =VI(F0), plt), €0)
d _ _ _
S nlt) = ~X.(F(0), pl0), €1)) — p1) C(F (1), p(r), E(0))
d _ o
() = pl0) VI (F(), (1), €(1)
Charakterystyki te sa teraz krzywymi nie tyle na rozmaitosci = (parametryzowanej zmien-
nymi & ... 7Y co w rozszerzonej 2(n+1)+1 wymiarowej przestrzeni. Jesli warunkiem
brzegowym jest dowolna funkcja f zadana na podrozmaitosci ¥, to w kazdym punkcie
py € X zadane sa tez wartosci pochodnych kierunkowych szukanej funkcji F' we wszyst-
kich kierunkach stycznych do ¥ (bo te mozna oblicza¢ jako pochodne funkcji f); z kolei
réwnanie G(F, p;, &) = 0 pozwala na ¥ wyznaczy¢ takze pochodng kierunkows F w kie-
runku prostopadltym do ¥. Tym samym w kazdym punkcie X zadane sa wartosci: funkcji
F, wszystkich jej czastkowych pochodnych p; i wszystkich zmiennych £, Wypisane wyzej
rOwnania sa takie, ze jesli z jakiego§ punktu py wypuszczona zostanie charakterystyka,
tzn. zadane zostang wartosci F(0), p;(0) i £(0) réwne F, p; i €' w punkcie py € ¥, to jak
tatwo sprawdzi¢

D irin - g
Inaczej mowiac, funkcja G F(t), pi(t), gl(t)) jest, jako funkcja t stala. W potaczeniu z
tym, ze G(F(0), pi(0), £'(0)) = 0, oznacza t0,% ze F'(t) jest wartoscia funkcji F'(§) w kaz-
dym punkcie przez ktory przechodzi charakterystyka. Rozwiazanie to jest jednak troche

66Dla kompletnosci argumentu trzeba jeszcze zauwazyé, ze w kazdym punkcie takiej charakterystyki
spetniony jest warunek




niejawne: jedli interesuje nas wartosé szukanej funkcji F© w punkcie = o wspotrzednych
(€Y., &™) to musimy przebiec z tego punktu charakterystyke wstecz, dojé¢ do hiper-
powierzchni ¥, tam “pobra¢” wartos¢ funkcji F' oraz jej pochodnych i wroci¢ do punktu
startu. Oznacza to, ze uklad rownan na charakterystyki rozwiazywaé trzeba z mieszanymi
warunkami poczatkowymi: wartosci £ s ustalone na jednym koricu charakterystyki (w
punkcie p o wspotrzednych £%), a wartoéci p; oraz F sa ustalone na drugim jej koricu (na
Y)). Znacznie utrudnia to praktyczne dzialania. W ogolnosci, tylko w przypadku rownan
liniowych i quasi-liniowych uktad réwnan na &' jest niezalezny od réwnaii na p; i F' i daje
sie znalez¢ wszystkie charakterystyki do korica, czyli podaé jawng posta¢ FI(EL, ..., L),

Zadanie
Postepujac zgodnie z metoda ogblng rozwiazaé jeszcze raz czastkowe rownanie pierwszego
rzedu postaci

0 0
(x%+ya—y+a) F(z,y) =0,

w ktorym a jest stata. Ponownie rozpatrzy¢ dwa przypadki:

i) warunkiem brzegowym jest F'(x,yo) = f(z), przy czym yo # 0,

i) warunkiem brzegowym jest F(z,z 4+ 1) = f(x).

Rozwigzanie: Funkcja G ma tu posta¢ xp, + yp, + aF. Pola: wektorowe V' oraz
kowektorowe X; sa wiec rowne V! =z, V2 =y, X; = p,, X2 = p,, a pole C jest stale:
C = a. Charakterystyki sa w tym podejéciu wyznaczane réwnaniami

dz dp,

- =7 - - 1 D.

a (1+a)p., .

dy  dp, ) aF
il o (1+a)py, o = e + by

Widaé, ze rownania na & sa w przypadku rézniczkowego réwnania liniowego w F' nieza-
lezne od réwnan na p; i na F. Pozwala to tatwo zrealizowa¢ “podr6z” od punktu p ¢ X
do hiperpowierzchni ¥ i potem powrdt do punktu p.

W przypadku i), by z punktu p o wspotrzednych (z,y) dojs¢ do linii y = yo musimy
podrozowaé przez “czas” t, = In(yo/y). Nastepnie w osiagnietym w ten sposob punkcie
na ¥ (na linii y = yo) o wspotrzednych (yo(x/y), yo) musimy znalezé¢ wszystkie pochodne
czastkowe funkcji F'. Tu, poniewaz ogdlnie F'(x,yo) = f(z), co implikuje, ze F,(z,yo) =
f'(z), od razu mamy na ¥ warto$¢ pochodnej czastkowej p,: zatem® p,(0) = f'(yo(x/y)),

oraz pokazaé, ze zachodza takze zwigzki

dF(t) _,  dEt) :
— — P (t — =0, =1,...,n.
drt pi(t) drt ’ "
Razem zwiazki te sa (poniewaz (t,71,...,7") stanowia lokalny uklad wspolrzednych na =) réwnowazne

zwigzkowi rézniczkowemu dF — p;dé® = 0, ktéry zapewnia, ze p; w danym punkcie charakterystyki sa
istotnie rowne pochodnym czastkowym funkcji F, ktorej wartos¢ w danym punkcie jest rowna F.

67T juz liczymy “czas” t zgodnie z podroéza zuriick, czyli od ¥ do punktu p: ¢ = 0 odpowiada wiec
teraz punktowi na ¥, a t = —¢, punktowi p.
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a ze zwigzku
%o gpxan +405,(0) +aF(0) =0,
w ktorym F(0) = f(yo(z/y)), znajdujemy, ze na
Pu0) = = wola/y) = - Slunlar/y)

Majac juz wszystkie warunki poczatkowe (z(0),%(0)) = (yo(z/y), v0), (P2(0),p,(0)) oraz
F(0) = f(yo(x/y)) na 3 wracamy po charakterystyce, czyli zgodnie z rozwiazaniami
(1) = €2(0),  Pult) = e TR (0),
¢g(0),  py(t) = e, (0),
L _ — — — —a
0) = — (#(0) p(0) + 5(0) py(0)) (=1 +¢7*) ,
wypisanych wyzej rownan charakterystyk, do punktu p, tj. ktadziemy w tych rozwiaza-

niach #, = —t, = In(y/yo) (tak, by Z(tx) = x i §(t,) = y) Wartos¢ F(t;) jest whasnie
wartoscia szukanej funkcji F' w punkcie o wspotrzednych (x,y):

Pla,y) = Fity) = f(yo g)

g () sl () 5 (=)

Wyrazy z f' 1 czes¢ wyrazow z f sie redukuje i otrzymujemy

o () 1(02)

tak jak poprzednia, prostsza (bo dostosowana do réwnan liniowych) metoda.

W przypadku i), gdy warunki brzegowe sa zadane na linii (podrozmaitosci) y = x +1,
“czas” dojscia z punktu p o wspotrzednych (z,y) do ¥ jest rowny ¢, = —In(y — z), a
osiagany w ten sposob punkt ¥ ma wspohrzedne (ktoére beda wartosciami poczatkowymi
z(0) i g(0) do podrozy zuriick)

W)= )=

(Widag¢, ze y(0) = z(0) + 1). Wartos¢ szukanej funkcji F' w tym punkcie jest wyznaczona
przez warunek brzegowy: F(0) = F(2(0),%(0)) = f(2(0)) = f(z/(y — x)). Za to z po-
chodnymi jest teraz troche bardziej zawile, bo kierunek styczny do Y nie pokrywa sie z
kierunkiem zadnej z pochodnych czastkowych funkeji F' (w uktadzie uzywanych tu wspot-
rzednych (x,y) - znéw: przy patrzeniu geometrycznym jest jasne, ze pochodne czastkowe
sa po prostu pochodnymi kierunkowymi w kierunkach wyréznionych przez - arbitralnie w
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konicu - wybrany uktad wspotrzednych!). Poniewaz ¥ jest tu dos¢ prosta powierzchnia,
wektory styczne do niej sa proporcjonalne do jednostkowego wektora (1,1)/+/2, a prosto-
padte do niej, do jednostkowego wektora (1,—1)/v/2. Pochodna funkcji F' w kierunku
stycznym do 3, ta ktéra mozna wyrazi¢ przez warunek brzegowy, czyli funkcje f, jest
wiec dana przez

1
%(FﬁFy)E.

Poniewaz w punkcie X, do ktorego dotarlismy z (z,y) po charakterystyce, F, = p.(0),
F, = p,(0), mozemy napisa¢ uklad réwnan wyznaczajacy p,(0) i p,(0):

p
y— y—z

Pierwsze z tych rownan wynika wtasnie z tego, co wyzej, a drugie to po prostu zwiazek

G(F(0),p.(0),p,(0),z(0),5(0)) = 0; argumentem f i f' (nieuwidocznionym tu) jest z/(y—
x). Rozwiazujac ten uktad réwnan znajdujemy

Po0) = ——V2f +af,
y—x

ﬁy(o) ==

T V2 —af.
xr

Wstawiajac te wartosci (oraz 7(0) = x/(y—z), 4(0) = y/(y—2) i F(0) = f(z/(y—=2))) do
wypisanych wyzej rozwiazan rownan charakterystyk i ktadac tam ¢ = ¢, = —t, = In(y—x)
znajdujemy rozwiazanie

F<x,y>=F<tk>=f( : )—1{;“" ( y \/if’+af)

y—x a T\ y—=x

Y <_ X \/if/ . af)} (_1 +€—aln(y—x)) )
y—x

y—x

Ponownie wyrazy z f’ sic redukuja®® i otrzymujemy

e (1) 155)

jako zgodne z warunkami brzegowymi rozwiazanie czastkowego réwnania rézniczkowego.

68To redukowanie sie wyrazéw z pochodnymi dowolnej funkeji f powinno zachodzi¢ w tym formalizmie
zawsze, ilekro¢ rozwiazywane rownanie jest liniowe lub quasi-liniowe (bo w podanej wezesniej metodzie
rozwiazywania takich rownan pochodne f nie wystepuja). Na razie nie wiem, jak to udowodnié¢ ogolnie.
Niech studenci potraktuja to jak cieckawe wyzwanie.
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Zadanie
Rozwiaza¢ metoda charakterystyk jednowymiarowe rownanie Hamiltona-Jacobiego

s 1 <6S)2

—+— | 5] =0,

at  2m \ Oz
odpowiadajace ruchowi swobodnej czastki o masie m. Jako warunek brzegowy przyjaé
S(0,x) = f(x). Dobra¢ jakas konkretng funkcje f(z) pozwalajaca jawnie wyznaczy¢ state
catkowania w rownaniach charakterystyk.
Rozwiazanie: Funkcja G ma tu postac p;+p2/2m. Pola: wektorowe V? oraz kowektorowe
X; sa wiec rowne VI = 1, V¥ = p,/m, X; = 0, X, = 0, a pole C znika: C = 0.
Charakterystyki sg zadane rownaniami (poniewaz t jest tu jedna ze zmiennych £°, “czas”
oznaczamy teraz \)

dt dpy
- =1 = =
dx d\ 0, B
dz  p,  dp, as _ _ P
Dm @ TP
Roéwnania te tatwo rozwiazac:
t(A\) =£0) + X, p(A) = pi(0),
I P=(0) S — s
TN =20)+ ==X, p(N) = (0,

S(A\) = 5(0) + (pt(O) + %) A

State £(0), z(0), p:(0), p(0) trzeba teraz tak dobraé¢, by charakterystyka biegta od linii
(hiperpowierzchni ) ¢ = 0, na ktorej zadana jest funkcja S(0,z) = f(z) do ustalonego
(ale dowolnego) punktu (¢,z). Stad t(0) = 0, a Ay = ¢. Ponadto, Z(0) i p,(0) musza
speliaé¢ warunek

Na linii warunku brzegowego p.(0) = f'(Z(0)), a p;(0) jest wyznaczone przez warunek
G =0, czyli przez

Oznacza to, ze
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Poniewaz z(0) jest teraz argumentem pochodnej dowolnej funkcji f’; nie daje sie bez wy-
brania jakiej$ konkretnej jej postaci jawnie wyznaczy¢ statych z(0), p,.(0) i p,(0). Wezmy
wiec np.

f(x) = %amZ + bx.

Przy takim wyborze p,(0) = f'(z(0)) = az(0) + b i otrzymujemy na Z(0) rownanie
t
7(0) + — (az(0) + ) = z.
z(0) + — (az(0) +b) = x

Stad z(0) = (z — (b/m)t) /(1 + (a/m)t). Wybér funkcji f(z) daje takze
5(0) = 5(10),20)) = 5(0.2(0)) = 7(a(0) = § (T 20) 4o (22070
Jako rozwigzanie S(t,z) = S()\) wyjsciowego réwnania otrzymujemy wiec
_a m)t x — (b/m)t 1 e (b/m)t 2
S(t,x)—2( m)t (1+ (a/m)t )+2m [ <1+(a/m)t)+b] !
(x — (b/m)t)? b
=2 11 (afmt ”(‘”‘%t)

Nietrudno sprawdzié¢, ze otrzymana funkcja S(¢, x) rzeczywiscie spetnia wyjsciowe réwna-

nie.%

69Rozwigzywanie réwnania Hamiltona-Jacobiego metoda charakterystyk jest jednak pewna sztuka dla
sztuki, bo po drodze musimy rozwiazaé¢ réwnania charakterystyk, ktore (te na & i p;) sa dokladnie
réwnaniami kanonicznymi Hamiltona i, z punktu widzenia probleméw mechaniki, gdy juz te rozwiazemy
to sama funkcja S nie jest naogol potrzebna. Wic z réwnaniem Hamiltona-Jacobiego w mechanice
polega na tym, ze rownanie to mozna rozwiaza¢ inaczej niz metoda charakterystyk (naogol metoda
separacji zmiennych) i rozwiagzanie go w ten sposob pozwala znalez¢ ruch ukladu inaczej niz bezposrednio
rozwiazujac rownania kanoniczne Hamiltona.
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Zadania do samodzielnej zabawy

Zadanie 1.
Sprawdzi¢, ze metryka dyskretna jest rzeczywiscie metryka (tj. Ze spelnia ona konieczne
warunki).

Zadanie 2.

Zbadaé jak wyglada w metryce dyskretnej kula otwarta K (xg,r) i kula-bar zdefiniowana
ogolnie (na razie bez zwiazku z domknieciem) wzorem K (z¢,7) = {x € X| d(x¢,z) < 1},
w zaleznosci od wartosci jej promienia r € [0, 00).

Zadanie 3.

Niech X = R! z metryka Euklidesowa, ktora jest tu tym samym, co metryka taxi d(z,y) =
|z —y|. Niech A = {x = 1/n, n € N} (tu przyjmujemy, ze zero nie jest liczba naturalna).
Znalez¢ wszystkie punkty izolowane zbioru A, wszystkie punkty skupienia (i w przypadku
kazdego orzec, czy nalezy on do A, czy nie) i punkty wewnetrzne. Orzec takze czy zbior
A jest otwarty oraz czy jest on domkniety.

Zadanie 4.
Zbadac jak w (R?, dy) i w (R2, diaxi) Wygladaja kule otwarte K (xg, 7).

Zadanie 5.
Jaka jest odlegtosé miedzy nalezacymi do C[0, 7| funkcjami f = sinx i g = cosz w metryce
di 1 w metryce dy?

Zadanie 6.
Niech (X, d) bedzie przestrzenia metryczna. Wykazaé, ze jesli 2’ € K(z,r), gdzie v € X,
ar>0,tor=r—d(z2)>0i K ") C K(x,r).

Zadanie 7.

Niech (X, d) bedzie przestrzenig metryczna. Udowodnié (od razu strach w oczach! - to
najpierw trzy zdrowaski odmowié, a potem jeszcze raz spokojnie przeczytac...) korzystajac
z poprzedniego zadania ze kazda kula K (x,r) w X (tak jak ja zdefiniowaliémy na stronie 4
tych notatek) jest zbiorem otwartym (tez w sensie zdefiniowanym tuz pod definicja kuli).

Zadanie 8.
Uzasadni¢, ze jesli Og, s € S (S jest pewnym zbiorem indeksow, niekoniecznie nawet
przeliczalnym), jest rodzing zbior6ow otwartych, to

0=[]o;,
ses

jest tez zbiorem otwartym. Pokazaé tez, ze przeciecie skonczonej liczby zbiorow otwar-
tuch jest zbiorem otwartym i podac jaki§ prosty przyktad przeciecia nieskoriczonej liczby
zbioréw otwartych, ktore nie jest zbiorem otwartym
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Zadanie 9.
Zbada¢ granice w punkcie (0, 0) funkcji R? — R zadanych wzorami

2 .2

O @)=
S = 5L
O S =Ls,

2 2 3 3
d) f(:)s,y):2x +i?;++yf +y ’
)  flz.y)=("+y") (" +y%),

1
) flay pEEerE

2,2
9 T@D= G
1

(w ostatnim przyktadzie chodzi o zbadanie granicy funkcji w punktach (z,0).

Zadanie 10.

Niech (Vi, |- |1) 1 (Va, | - |2) beda dwiema przestrzeniami wektorowymi i niech F': V} —
Vs bedzie odwzorowaniem liniowym. Pokazaé¢, ze jesli odwzorowanie F' jest ciagle (w
metrykach d; i dy zadawanych przez normy |- |1 i | - [2) w jednym punkcie-wektorze
przestrzeni V7, to jest ciagle wszedzie.

Wskazéwka: Zastosowaé rozumowanie ad absurdum.

Zadanie 11.

Obliczy¢™ wszystkie pochodne czastkowe pierwszego rzedu i drugiego (sprawdzajac przy
tym, ze mieszane pochodne drugiego rzedu sa takie same, tzn. ze np. 0%f/0xdy =
02 f /OyOx) ponizszych funkcji R® — R (n = 2 lub 3). Jak kto$ chce si¢ bardziej ¢wiczyé,
moze i pochodne trzeciego rzedu poobliczac.

a)  f(z,y) =2 —y+3y° +2°y’ —wsiny,

b Sy =

ST
d)  f(z,y,z) = B2y +2)",

70Zadanie jest idiotyczne, ale spelnia¢ ma ono te sama role, co codzienne rypanie na pianinie znanego
kawalka “kurki trzy” przez poczatkujacych pianistow (zaawansowani tez to rypia na rozgrzewke) - reka
musi sie utozy¢ i rozruszac.
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)  flz,y) =In(*+y?),

) fley,2) =22 +y? + 22,
9 flo )= et Oblicz  fun + foy + for

h)  f(u,v) =In(u+Inv),

i) f(x,y,z>=ln<“_”2“’2“2>,

a+ /2% +y* + 22
7)) flay) =",

k) flay) = (lna)™7,
0 flay2) = (vtg2)"?,
m)  flz,y.z) =2,

W fe) = [,

Zadanie 12.
Obliczy¢ bezposrednio z definicji (tj. jako granice odpowiedniego ilorazu réznicowego)
a) pochodne czastkowe f, i f, w punkcie (3,4) funkcji

fle,y) =a+y— a2+ 92,

b) pochodne czastkowe f, i f, w punkcie (1,2) funkcji

o)~ 2).

¢) pochodna kierunkowa w punkcie (2, 1) w kierunku wektora n = (1, 3)/+/10 funkcji
fla,y) =2* + 297,

i sprawdzi¢, ze jest ona réwna odpowiedniej kombinacji pochodnych czastkowych funkcji
f obliczonych w tym samym punkcie,
d) pochodna kierunkowa w punkcie (1, 1) w kierunku wektora n = (1, —3)/4/10 funkcji

f(z,y) = Sin(g (z + y)) :

i sprawdzi¢, ze jest ona réwna odpowiedniej kombinacji pochodnych czastkowych funkcji
f obliczonych w tym samym punkcie.

Zadanie 13.
Pokazaé, ze funkcje f: R? =+ R

[/ ) edy (2y) # (0,0)
" f(sc,y>—{ Ty e (0.0)
_ [P/t ) ady () # (0,0
b) f(fv,y)—{ ’ 0 ! §d§f (:c,yy)z(O,O)’
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cho¢ sa w punkcie (0,0) ciagte (pokazaé to) i maja w tym punkcie pochodne kierunkowe
w kazdym kierunku (tez pokazac), nie sa tam nierézniczkowalne, tzn. df nie przybliza
nalezycie przyrostu Af tych funkcji.

Zadanie 14.
a) Znalez¢ pochodng fukcji f: R? — R zadanej wzorem
x
f(z,y) = W )
w punkcie (z,y) = (2,1) i obliczy¢ jej warto$¢ na wektorze przesuniecia (dz,dy) =

(6A, 30)), oraz na wektorze przesuniecia (dz, dy) = (0X, 6X),
b) W jakim kierunku w punkcie (1,1) funkcja f: R? — R zadana wzorem

f(z,y) = 22° + 3y>,

ro$nie najszybciej?

. 2, . e . . . . . 2 3
c) Obliczy¢ z definicji w dowolnym punkcie (x,y) dziedziny odwzorowania F': R — R
danego wzorem

r([2])- [P |

pochodng kierunkowa w kierunku wektora n = (1, 1)/v/2. Sprawdzi¢, ze pochodna kie-
runkowa obliczona w ten sposob jest taka sama, jak otrzymana z kombinacji liniowej

pochodnych czastkowych.
d) Znalez¢ pochodna fukcji F' : R? — R? zadanej wzorem

()= Lo 2]

w punkcie (z,y) = (1,—1) i obliczy¢ jej warto$¢ na wektorze przesuniecia (dz,dy) =
(=N, 20).
e) Znmalez¢ pochodna fukcji F': R3 — R? zadanej wzorem

ALY VeeE?
‘Z T In(1 492+ 22) |

w punkcie (x,y) = (1,3,0) i obliczy¢ jej warto$é¢ na wektorze przesuniecia (dz, dy,dz) =
(0, 5, N).

Zadanie 15. (Co$ bardziej praktycznego)

Podaé¢ réwnanie hiperplaszczyzny w R?* (doktadniej to w AR? - czterowymiarowej prze-
strzeni afinicznej - zob. moj skrypt do algebry) stycznej w punkcie (1,2,3) do “wykresu”
funkcji f : R® — R danej wzorem f(z,y,2) = 2* + y> + 2%
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Wskazéwka: Najpierw pomyéleé jak znajdujemy rownanie prostej w R? stycznej w ja-
kim$ konkretnym z, do wykresu funkcji y = f(z), a potem sprobowaé¢ to uog6lni¢ na
réwnanie plaszezyzny w R? stycznej w jakims konkretnym (g, o) do powierzchni funkcji
z = f(z,y) (kiedy jeszcze mozemy sobie to wyobrazi¢), a na koniec przenies¢ metode na
problem w czterech wymiarach.

Zadanie 16.
Pokaza¢, ze funkcja f(x,y) postaci

flay) = o(2) —a* —y*,

spelnia rownanie rézniczkowe

x%jtya—y:g(x,y),

w ktorym g(x,y) jest pewna funkcja = i y, ktorej postac¢ nalezy podac.

Zadanie 17.
Przepisa¢ dwuwymiarowy laplasjan

0% 0%
922 T a2

w zmiennych v i v zadanych zwiazkami

u u (% (%

rT=——-= V= i

u+0v2 R?’ u? + v2

Zadanie 18.
Stosujac bezposrednio regutke rézniczkowania lancuszkowego, sprawdzi¢ bezposrednim
rachunkiem, ze wyrazone przez nowe zmienne v = u(z,y) i v = v(x, y) pochodne mieszane

9 (of oy 2 (91
ay\az ) ax\ay )

sg dane tymi samymi wyrazeniami.”' Obliczy¢ jawnie te pochodna w przypadku, gdy

dane sa wzory = = x(u,v) i y = y(u,v) i sa one takie same jak w poprzednim zadaniu.
Zadanie 19.
Pokaza¢, ze funkcja dwoch zmiennych f(x,y) dana wzorem

.f(xay) = y¢(!)§'2 - y2)>

"IPotraktowaé to zadanie jak wprawke w rézniczkowaniu lancuszkowym. Zazwyczaj studenci maja z
tym jakie$ klopoty.
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spelnia rownanie rézniczkowe

1nglg—g(x,y)fZO,

z 0z y Oy
w ktorym g(x,y) jest pewna konkretng funkcja, ktorej postaé¢ nalezy podac.

Zadanie 20.
Pokaza¢, ze funkcja trzech zmiennych H(z,y, z) dana wzorem

H(a:,y,z):sz(E, g),
x T

spelnia rownanie rézniczkowe

OH OH OH
x%ija—y—l—zg—g(:c,y,z)H—O,

w ktorym g(x,y, z) jest pewna konkretna funkcja, ktorej postaé¢ nalezy podac.

Zadanie 21.
Rozwina¢ w szereg Taylora do wyrazow trzeciego rzedu wiacznie wokot punktu (zg, yo)
funkcje

a) f(z,y) =sin(z +y), (z0,90) = (0,0),
b) flz,y) = e’ cosy, (0, 90) = (0,0),
o) flz,y)=hl+z+2y), (z0,%0) = (0,0),
d) flr,y)=z+y+v22+y*,  (o,%) = (1,0),
e) flx,y)=a", (x0,%0) = (1,0).

Otrzymaé rozwiniecie raz wykorzystujac znane rozwiniecia funkcji jednej zmiennej i drugi
raz obliczajac pochodne czastkowe.

Zadanie 22.
Znalez¢ punkty krytyczne nastepujacych funkeji dwu zmiennych (dziedzina niektorych z
nich jest w oczywisty sposob troche mniejsza niz R?).

a) flz,y)=2"+y" — Azy,

b)  fla,y) =32 +32%y — y* — 152,
a®  a?

c) f(x,y)=x2+xy+y2+;+? a>0,

d) flz,y)=(@+y)'+ (x—y)°,

e) f(x,y)::c—2y—3arctgz+ln\/x2+y2,
Yy

1) fle,y) = sin(z+y) — sinz — siny,

9) fla,y) =a* —y* —day® — 227,
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i zbada¢ ich charakter. Jesli funkcja zalezy od rzeczywistego parametru A, to zbadaé
punkty krytyczne w zaleznosci od jego wartosci.

Zadanie 23.
Pokazaé, ze funkcja

f(z,y) = 3a* — 42’y +

nie ma w punkcie (0, 0) minimum jako funkcja dwoch zmiennych, ale ma w nim minumum,
jesli jest ograniczona do dowolnej prostej przechodzacej przez ten punkt.

Zadanie 24.
Zmalez¢ najwieksza i najmniejsza wartosé funkeji

flwy) =2’y — 8z — 4y,
w trojkacie (z brzegami) o wierzchotkach w punktach (0,0), (4,0) i (0,4).

Zadanie 25. (z niesmiertelnego Krysickiego-Wtlodarskiego)
Sprawdzi¢, czy wypisane nizej odwzorowania F' : R? — R wyznaczajg, przez warunek
F(z,y) =0, funkcje y = y(z) w otoczeniu podanych punktow:

@) Floy)=—1—ay+tgz+y), (0,5,

4
b) F(x,y)=—-14+y—3xy+2sinx +siny, (%,0),
x 4
F =———— 1 2,1
c) F(z,y) , vt (2,1),
T+ 2y

d) F(z,y)= =1 + 3xy — 2, (2,0),

W kazdym z tych przyypadkow, jesli funkcja y = y(x) istnieje, obliczy¢ jej pochodne ¢’ i
y” w podanym punkcie.

Zadanie 26.

W jakich punktach plaszczyzny xy warunek F(x,y) = 0 nie wyznacza funkeji y = y(z)
i/lub funkeji = z(y)? W punktach, w ktorych wyznacza funkcje y = y(x) obliczy¢ jej
pochodne y' i y”

a) Flay) ="+ ¢ —a?,
b) Fr,y)=2"—y*+3zy—1.
Sprébowaé narysowaé sobie zbior E = F~1(0) C R%

Zadanie 27.
Znalez¢é punkty krytyczne (i zbadaé ich charakter, tj. powiedzieé¢, czy w punktach tych
jest minimum, maksimum, czy punkt przegiecia) funkcji y = y(x) zadanych w sposob
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uwiktany warunkami

a) F(r,y)=2>-20-2y+y*+1=0,
b) F(r,y) =y’ +2zy+a* =0,

Jesli mozna, napisa¢ te funkcje jawnie i sprawdzé otrzymane wnioski “szkolnym” sposo-
bem.

Zadanie 28.
Czy odwzorowanie R? w R dane wzorem

3

F(x,y,z)=2"—zyz — 2,

zadaje w otoczeniu punktu (1,3, 2) funkcje z = z(z,y) 7 Jesli zadaje, to obliczy¢ wartosé
w tym punkcie wszystkich pierwszych i drugich pochodnych czastkowych tej funkcji.

Zadanie 29. (“cieciurzynka”)

Pokazac, ze jesli ¢ : R — R jest funkcjg rézniczkowalng w otoczeniu zera i jej pochodna
jest tam ciagta, to warunek F(x,y,z) = 0, w ktérym odwzorowanie F' : R3> — R jest
dane wzorem

F(z,y,2) :Cb(l'ez—y@_z) —Z,

definiuje w otoczeniu punktu (0,0) € R? pewna funkcje z : R? — R, spelniajaca
réwnanie rézniczkowe czastkowe

0z 0z

w ktorym g(z) jest pewna funkcja z, ktorg nalezy podagc.

Zadanie 30. (zndéw ‘cieciurzynki”)
Znalez¢ punkty krytyczne funkcji dwoch zmiennych z = z(x, y) zadanej w sposob uwiktany
warunkiem F'(z,y,z) =0

a) F(z,y,2) =62 —7(z* —32)2 + (22 +y)* — 20,
142z

b) F(r,y,2)=2+2+ T2 + (22 —y)* +9,
20x
F =322 -7 —
c) (2,9, 2) 2z zcos(x +y) + 2

i zbadac ich charakter (minimum lokalne, maksimum lokalne funkcji, jej punkt siodtowy?).

Zadanie 31

Niech F(z,y, 2,t) = y*+t2 =222 1 F?(x,y, 2,t) = 23+y3+t3—23 zadaja razem w otoczeniu
punktu (1,—1,1,1) € R* odwzorowanie F' : R* — R?. Pokaza¢, ze F~1(0) C R* zadaje
w sposob uwiklany x = z(y,t) i z = 2(y,t), tj. funkcje f : R?> — R? i obliczy¢ pochodnag

151



(tj. macierz pochodnej - pamietamy, ze pochodna funkcji R" — R™ jest macierza m X n
- ma m wierszy i n kolumn) tej funkcji w tym punkcie.

Zadanie 32

Znalez¢ ekstrema (warunkowe) funkcji przy podanych warunkach
a) Flwy)=2"+y",  Glay)=2"+y"-16=0,
b)  Fl(z,y) =227y, Gz,y)=a"+y'—1=0,

Zadanie 33
Znalez¢ na paraboli o réownaniu y? = 6z punkt ekstremalnie oddalony (w sensie zwyklej
metryki Euklidesowej) od punktu P = (3,12).

Zadanie 34
Poda¢ jakie musi mie¢ wymiary prostopadloscienne akwarium o objetosci 32m3, by zuzyte
na nie szklo miato jak najmniejsze pole powierzchni.

Zadanie 35
Znalez¢ ekstrema funkcji F'(x,y, 2) = xy?2® na zbiorze E zadanym warunkiem G (z,y, z) =
x4+ 2y +3xr —1 = 0. Rozwiaza¢ ten problem zaréwno metoda szukania ekstremow

warunkowych, jak i zwyczajnie, eliminujac jedng ze zmiennych.

Zadanie 36

Znalez¢ przynajmniej jeden punkt krytyczny funkcji F(z,y,2) = zyz na zbiorze £ C R?
zadanym dwoma warunkami: G*(z,y, z) = x+y+2z—5=0iG*(z,y, 2) = vy+rz+yz—8 =
0 i zbadac jego charakter.

Zadanie 37
Pewna powierzchnia zanurzona w R3 jest zadana parametrycznie wzorami

r = asinwtcosé,
Yy = asinwtsiné,
z = zy + acoswt + alnftg(wt)].

Zmienne 0 <t <001 —00 < € < 00 sg wiee uktadem wspotrzednych na tej powierzchni.
Poda¢ wektory styczne do tej powierzchni i zbada¢, w jakich punktach nie jest ona regu-
larna.

Zadanie 38

Zmalez¢ wszystkie krzywe catkowe zwyczajnych rownan rézniczkowych pierwszego rzedu o
zmiennych rozdzielonych (jesli podany jest warunek, to poda¢ takze konkretne rozwigzanie
spelniajace ten warunek):



d) y =-y/z,
e) y=y/®, yl)=1,
)y =y/a*,

2
Yy sinx =ycosz,

Przedyskutowaé charakter rozwigzania w zaleznosci od warunku poczatkowego (xo, o).
Jesli takowe wystepuja, skomentowaé przypadki punktow, przez ktore przechodzi wiecej,
lub mniej niz doktadnie jedno rozwiazanie.

Zadanie 39
Rozwiazaé (jesli sie da) rownania rézniczkowe dokonujac w nich zaproponowanych pod-
stawienn (lub jakims§ innym sposobem) nastepujace réwnania rozniczkowe:

a) y =cos(zx+y), yl&)=—v+2(x),

y , cos(zy) u(x)
b) y/:_;—i_ 22 ) y(fﬁ):77
c) 2y +ay +y=0, x=¢,

d (1-2%y" -2y +w’y=0, x=cost,
e) 2ty +23y +2fy=0, ax=1/t,

Y Y+ @) =2eY, y(0)=I2, y(0)=1,
9 y'=2y", y0)=1, y(0)=1,

) Y +siny+zcosy+z=0, u=tg(y/2),

i) Y =ylr+/(y/x)? -1, y()=2.

O punkcie f) powiem tylko, ze trzeba napisa¢ rownanie na przedefiniowana odpowiednio
funkcje (ale tej samej zmiennej z). Prosze sprobowaé¢ samemu zgadna¢! Co do punktu
g), to kazdy fizyk, ktory wykorzystywal zasade zachowania energii w problemach mecha-
nicznych, powinien od razu skojarzy¢, co trzeba zrobi¢. W punkcie ¢) zauwazy¢, ze prawa
strona jest funkcja jednorodna stopnia zerowego. Przedyskutowaé tu zaleznosé rozwia-
zania of warunku poczatkowego y(zg) = yo. Znalezé¢ takze rozwiazanie nieobejmowane
przez catke ogdlna.

Zadanie 40
Rozwiaza¢ liniowe réwnania rézniczkowe z niejednorodnoscia

a) xy —y=21",
T 1
y/+ Y = - )
1+ 22 2x(1 4 2?)

)
) wy'+y =dr,  y(=1)=0, y(-1)=0,

S

o

d) y'sinz+ycosz =sin2zr, y(0)=0,
4y
) y'=—+avy, yl)=1,
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,  y(l)=In2.

f) yzﬂmﬁ

r lx

W punktach e) i f) rownania liniowe z niejednorodnoscia otrzymuje sie po sprytnym
podstawieniu.

Zadanie 41
Wyznaczy¢ taka krzywa y = y(x), zeby odlegltosé od punktu (0, 0) stycznej do tej krzywej
w kazdym jej punkcie (z, y(z)) byla rowna odcietej™ tego punktu, czyli z.

Zadanie 42
Uzasadnié, ze réwnanie Bernoulliego™

Y =ya(x) +y"b(x),

w ktorym a(x) i b(z) sa zadanymi funkcjami (zat6zmy, ze regularnymi w jakims obszarze
R), a n jest liczba catkowita, mozna rozwiaza¢ poznanymi juz metodami. Korzystajac z
tego rozwigzaé¢ rOwnanie

3xyty’ = 2% + a® .
Zadanie 43

Rozwiaza¢ uklady réwnan rézniczkowych pierwszego rzedu z podanymi warunkami po-
czatkowymi

a) E Y2 | = 5 -3 -3 Y2 |, y2(0) =(0],
Y3 -1 0 =2 Y2 y2(0) 1
d Al -2 1 0 Y1
b) e = 1 -2 1 vy |,
Y3 0o 1 =2 Y2
d U1 O O Y1 yl(O) 1
C) E Ya2 | = 1 -1 -1 Y2 |, y2(0) =11
Y3 -2 4 3 Y2 y2(0) 1

Ostatnie réwnanie rozwigza¢ na dwa sposoby tak jak zadanie Ode.8 w tekscie.

Zadanie 44
Rozwiaza¢ uktady liniowych réwnan rézniczkowych pierwszego rzedu z niejednorodnodcia

z podanymi warunkami poczatkowymi

a) %(z;):(? (1)) (z;)+<2sé2§x)’ @283):(3)’

g (0 3 -1 0 o et y1(0) 1
b) at Y2 | = 0 3 -1 y2 | +1 0|, y2(0) | = 1
Y3 -2 5 -1 Y3 0 y3(0) 3

"2Byty kiedy$ takie $mieszne nazwy "rzedna’ i “odcieta”. Moze nawet nadal sa?
™ Ale ktérego?! Tylu ich byto!
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Uktad a) rozwiazaé¢ na dwa sposoby: raz jako réwnanie macierzowe, a drugi raz jako dwa
niezalezne rownania otrzymane przez wzigcie odpowiednich kombinacji liniowych réwnan
tworzacych powyzszy uklad.

Zadanie 45
Zmalez¢ catke og6lng rownania rézniczkowego

" / o 4
oYy —6y +5y—sm5x.

Zadanie 46
Znalez¢ calke ogolna rownania rézniczkowego

y' =3y +2y = sin(e‘w) )

Zadanie 47
Zmnalez¢é catke ogoblng liniowego jednorodnego réwnania rézniczkowego

y D —3yO 45y — 7y 1+ 7y® — 5y + 3y +y=0.

Zadanie 48
Zmalez¢ catke og6lng rownania rézniczkowego

nmn

y"' +y" +y +y=2e " +sinx.

Waskazowka: Sprobowaé zgadnaé rozwiazanie rownania niejednorodnego. Jesli proste

podstawienie nie zadziala, to rozpatrzy¢ najpierw rownanie ' +y = re ",

Zadanie 49
Zmalez¢ najogolniejsze rozwigzanie liniowego réwnania rézniczkowego drugiego rzedu

1
y”+ay’+1a2y=f(t)a

z dowolna niejednorodnoscia f(t).

Zadanie 50
Zmnalez¢ najogolniejsze rozwiazanie liniowego réwnania rézniczkowego drugiego rzedu o
niestatych wspotczynnikach:

(2t — )y + (2 - 2)y —2(t — 1)y =t>.

Waskazéwka: Przynajmniej jedno rozwiazanie réwnania jednorodnego daje sie zgadnaé
(mozna probowaé szukaé¢ go w postaci y;(t) = t*. Druga przydatna uwaga jest taka, ze
na pozér beznadziejna catka daje sie jednak jawnie wykonag!

Zadanie 51
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Rozwiaza¢ liniowe czastkowe réwnanie rézniczkowe

oF n oF n or 0
or oy 0z

na dwa sposoby: raz przechodzac do nowych zmiennych £ =z, n=y—x, ( =2z—1x, a
dugi raz metoda charakterystyk zaakladajac, ze funkcja F' jest znana na jakiej$ (dogodnie
dobranej) dwuwymiarowej powierzchni zanurzonej w R3. Skonfrontowaé¢ oba rozwiazania.

Zadanie 52

Rozwiaza¢ nieliniowe czastkowe rownanie rézniczkowe
OF OF
—+ —F =0,
or Oy

zadajac jakies dogodne warunki Cauchy (tj. wartos¢ funkcji F') na jakiej$ odpowiednio
dobranej powierzchni (tu w R? krzywej) ¥. Odpowiedno dobranej i dogodne, czyli takie,
zeby sie dato na rozwiazania rownan charakterystyk narzuci¢ warunki poczatkowe.
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Odpowiedzi i podpowiedzi

Zadanie 1: Niewatpliwie dgiser (2, Y) = daiser (Y, ) oraz x = y, gdy dgiser(z,y) = 0. Tylko
nieré6wnos¢ trojkata wymaga sprawdzenia “case by case’”:

i)r=y=z wtedy 0 =< 040,

i) x =y # z, wtedy 0 < 1+1,
i) x = z £y, wtedy 1 < 1+0,
w)x #y,x# 2z, z#y, wtedy 1 < 1+1. I to juz chyba wszystko, bo przypadek y = z # =
jest taki sam jak 74i).

Zadanie 2: K(xg,r): jesli r = 0, to K(xg,7) = 0 (bo zgodnie z jednym z warunkow
spelnianych przez metryke jako taka, zadna odlegtosé, od zera mniejsza by¢ nie moze),
K(xg,r) ={zo} jesli 0 < r < 1 (bo odleglosé dgiser(o, ) jest albo réwna zeru, albo 1) i
wreszcie K(xg,r) = X, gdy r > 1 (bo przy tej metryce kazdy punkt jest od xy odlegly o
nie wiecej niz 1). K (zg,7): jesli 0 < r < 1, to K(xg,r) = {xo} oraz K(zo,r) = X, gdy
r>1.

Zadanie 3: Wszystkie punkty zbioru A sa izolowane, bo zawsze mozna wybraé¢ kule
1 1

K (%,r), or < oy do ktorej oprécz x = - zadne inne punkty zbioru A nie naleza.
Jedynym punktem skupienia zbioru A jest punkt z = 0 € R (tylko dowolna kula o srodku
w x = 0 zawsze zawiera punkty typu 1/n), ale on do zbioru A nie nalezy. Zbior A
nie posiada punktow wewnetrznych: A nie jest bowiem otoczeniem zadnego ze swoich
elementow bo dowolna kula o srodku w 1/n zawiera w sobie punkty, ktére nie sa tej
postaci (nie naleza wiec do A). Zbiér A nie jest otwarty, bo ani jeden (a musiatyby
wszystkie by¢) nie jest srodkiem kuli catkowicie zwartej w A (czyli sktadajacej sie tylko z

punktoéw typu 1/n). Nie jest tez domkniety, bo jego punkt skupienia 0 dori nie nalezy.

Zadanie 4: Najprosciej rozpatrzy¢ kule o srodku w punkcie (0,0) i promieniu r =
1 (kazda inna wyglada jak taka tylko przesunieta i przeskalowana). W metryce do,
K((0,0),1) = {(z1,72) € R?| max(|z1|, |x2|) < 1}. Jest to wnetrze kwadratu o srodku w
(0, 0) i bokach dtugosci 2 rownoleglych do odpowiednich osi. W metryce di.; K((0,0),1) =
{(z1, ) € R?| |21|+]|z2| < 1}. Jest to tez wnetrze kwadratu ktory jest zawarty pomiedzy
prostymi y = +x + 1

Zadanie 5: W metryce d;

1 1
di(f,9) = max,ep 7| sine — cosx| = 7 (—_) —2.

W metryce ds:

T w/4
d2(f,g):/ dx\sinx—cos:d:/ dx(cos:c—sin:c)—i—/ dx (sinx — cosx)
0

0 /4
() - ()
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Zadanie 6: Jak zwykle z poczatku nattok hieroglifow przyprawia o zawrot glowy, ale

jak wszystko rozebra¢ na czeéci (a najlepiej zrobi¢ rysunek na kartce, czyli w R?), to sie

okazuje, ze to oczywiste. Z definicji kuli wynika bowiem, ze d(z, x’) < r, wiec rzeczywiscie
J A—

" =r —d(x,2’) > 0. Wezmy teraz jakis dowolny punkt y € K(2',7") i zastosujmy
nieréwnosc¢ trojkata:

d(y,z) < d(y,2') +d(z',x).

Ale d(y,2') < ', boy € K(2/,7"), a z kolei d(z',z) < r —r' z tego, co wyzej. Zatem
d(y,x) < r, co oznacza, ze kazdy punkt K (z',r") jest od x odlegly o mniej niz r, czyli
nalezy tez do K(z,r), wiec istotnie K (z/,r") C K(x,r).

Zadanie 7: Zbior, w tym przypadku K(z,r), jest otwarty, gdy kazdy jego punkt y jest
srodkiem jakiejs kuli K'(y,r,) catkowicie zawarte] w tym zbiorze (mozna tak dobrac ),
czyli tu w K(z,7). To wezmy jako r, = r — d(x,y) 1 wtedy z tego, co pokazane zostato
w Zadaniu poprzednim wynika juz, iz K(y,r,) C K(x,r). Zatem istotnie, poniewaz y
byt dowolnym punktem K (z,r), kula K (x,r) jest zbiorem otwartym (niezaleznie od tego,
jaka jest metryka d).

Zadanie 8: Jesli

re0=_]Jo,

ses

to x € Oy, dla przynakmniej jednej wartosci s (x nalezy do przynajmniej jednego ze
zbiorow wchodzacegi w sklad sumy). Zatem ten O; jest otoczeniem x. Poniewaz jednak
Os C O, wiec i O jest otoczeniem x. Tak wiec O jest otoczeniem kazdego swojego punktu,
wiec jest otwarty. Aby dowie$¢ otwartosci przeciecia skoriczonej liczby zbioréw otwartych,
wystarczy rozpatrzy¢ przeciecie dwoch takich zbiorow. Jeslix € O = O1 N0y, tox € Oy i
x € Oy. Zatem i Oy i Oy s3 otoczeniami x i stad takze O; N Oy jest otoczeniem x. Zatem
zbior O jest otoczeniem kazdego swojego punktu, co oznacz, ze jest otwarty. Jesli jednak
w R wezmiemy jako rodzine zbioréw otwartych odcinki otwarte O,, = (—1/n, 1/n), gdzie
n € N (znéw 0 nie uwazamy za liczbe naturalna), to

() 0. = {0},

neN
tj. przeciecie jest zbiérem ztozonym z punktu zero tylko, ktory to zbiér nie jest otwarty.
Zadanie 9: a) Granica nie istnieje. Zbada¢ f(z,,yn) z v, = a/n, y, = b/n. b) Granica

jest rowna 0; wziaé¢ =, = r,cos@,, Y, = sing, z r, — 0. ¢) Jak w poprzednim. d)
Granica nie istnieje: wzia¢ x,, = a/n, y, = b/n, co da
_2a* 4+ 30* + (a* + V%) /n

f(xnyn) - ag + b2 ’

i juz wida¢, ze granica zalezy od a i b, czyli od wyboru ciagu. e) Granica istnieje i
jest rowna 0. f) Nie istnieje. g) Nie istnieje. Wziaé raz ciag (1/n, 1/n), a drugi raz
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(1/n, —1/n) i raz dostanie si¢ granice 1, a drugi raz 0. h) W punktach (z9,0) z 9 # 0
granica oczywiscie nie istnieje. W punkcie (0,0) granica istnieje i jest réwna 0.

Zadanie 10: Tre$¢ zadania jest dtuzsza niz to, co trzeba zrobi¢ (tylko trzeba pomysle¢
i sie nie ba¢). Jesli odwzorowanie F jest cigglte w jakim$ punkcie-vektorze vy, to znaczy,
ze gdy wezmiemy dowolny ciag v, wektoréw zbiezny w normie | - |; do vo (tj. taki,
ze |vn, — vo|1 — 0) to ciag F(v,) jest w sensie normy w V, zbiezny do F(vg) (czyli
|E(vy)—F(vo)|2 — 0). Zaloézmy teraz, ze odwzorowanie F' nie jest ciagle w jakims pukcie-
wektorze vy, co zgodnie z kryterium Heinego ciaglosci oznacza, ze istnieje przynajmniej
jeden ciag wektorow v, zbiezny do v{, w normie |- |; ale F'(v},) nie zbiega (w normie |- |2)
do F(v{). No ale biorac wektor w = vy — v{, mozemy stworzy¢ ciag w + v/, zbiegajacy
do vy i wobec tego, z zalozonej ciggtosci odwzorowania F' w punkcie wektorze vy musimy
mie¢ zbieganie ciagu F'(w+v/,) do wektora F'(vy), ktory, na mocy liniowosci F', jest rowny
F(vy)+ F(w). Z drugiej jednak strony wzieliSmy (co jest mozliwe, jesli F' nie jest ciagte w
vy) taki ciag v/, ze F(v!) nie zbiega do F(v{), czyli F'(v),+w) = F(v!)+ F(w) nie moze
zbiega¢ do F(v{) + F(w). Sprzecznosé. Koniec. Zauwazmy jeszcze, ze to rozumowanie
jest bardzo ogoélne i pozostaje stuszne zawsze, niezaleznie czym sg przestrzenie wektorowe
V11 V5 moga one by¢ nawet nieskonczenie-wymiarowe a nawet, najbardziej “przepastne”,
czyli nieosrodkowe (a to takie sie nam pojawiaja w kwantowej teorii pola.

Zadanie 11:

a) fo=2zx+32%° —siny, f,=—1+6y+32°y* —xcosy,
fozx = 2+ 6277, fyy:6—|—6:)33y—l—zcosy, fyx:fxy:9x2y2—cosy,

1 T
) fo=— fy= s,
) y—17 " (y—1)?
2x 1
fmm:ov f = 7 \3> fm:fw N
Yooy =1 Y (y—1)?
Y T
c) f:c:—m, fy:m>
b= 22y foo 22y P y? — a2
m_(:c2+y2)2’ vy — (:L’Q—l—y?)?’ yr wy_(x2+y2)2’
622y — 213 203 — 6xy?
fyy:c:fyxy:fxyy:ﬁa fya:x:fxyx:fxxy:ﬁa
(2% +y2) (22 +y?)

d) fo=n(a’y+2)" 6xy, f,=n@a’y+2)" 8%, f.=nBaty+2)",

fow = n(n — 1)(32%y + 2)"362°y* + n(32°y + 2)" 6y,

fow =n(n—1)(32% + 2)" 292", f..=n(n—1)(32%y +2)" 2,

foe = fay = n(n — 1)(32%y + 2)" 182" + n(3z%y + 2)" "6,

foe = foe =n(n—1)(32%y + 2)" 262y, fy. = foy =n(n—1)(32%y + 2)" 2322,
2x 2y

e) fx:m, fy:m>
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29% — 222 222 — 29 dzy
foo= 5 fw = Ta e fe =l =
(22 +y?) (22 +y?) (22 +y?)
T z
f) fl‘:_a fy:y> fz:_a 7“5\/11724'?/24'2’2a
T T T
y? + 2 x2 + 2z 2?2 + 92
.f:c:c 3 ) fyy 3 ) fzz: 3 )
r T T
Ty Tz Yz
fyx = f:cy = 73 fzx = f:cz = 73 fyz = fzy = ﬁ,
x Y z
g) .fSL‘: 3 fy_ ﬁa fz_ ﬁa TEVx2+y2+22a
22 — y? — 22 202 — 2% — 22 922 — g2 — g2
fmm— 5 > fyy 5 ) fzz: 5 ’
r r r
3y 3xz 3Yz
fyw:fry_ 5 ) fzm:fxz_r—57 fyz:fzy: )
1 1
h u = v T 1 N
) f u~+Inv f v (u+Inv)
1 l+u+Inv 1
fuu:_ﬁa fvv:_ﬁv fuv:fvu:_
(u+Inv) v2(u+ Inv) v (u+Inv)

, 2ax 2ay 2az

7’) fw__ (a2—7‘2)’ fy— T(CLz 2)7 fz__r(az—rz)7

C2a20t + 22 (y* 4+ 2%) + (@ — y* = 22) (Y + 2°)]

7’3(&2 —7’2) )

2azy(a® — 3r?)
f:cy = fyx = 7"3(@2 2)2 ’

j) fe=ya't, fy=a2"Inz,
fxx:(y2_y)xy—2’ fyy:xy1n2$a fxy:fyx:(1+ylnx)zy_la

.f:c:c =

reszta pochodnych z symetrii,

k) f.= Sny (Ing)~ 'ty f = (Inz)*™Y cosy In(Inx),
fox = Sl;‘y (=1 +siny — Inxz) (Inz) =20y
foy = (=siny + cos’yInlnz) (Inz)™¥Inlnz,
fay fyac_ﬂ (1+sinyInlnz) (Inx)~ ey
1 1
) fo= (g2 (g Iy, S, = OB gy g2 T (g gy,
—1+In(zt
oo = 8251 gy o1ge) >0, £, = D o) (o),
4
fzz ) (cost—lny)lny(xtgz)lny,
sin® 2z
1+Iny In Iny i4In
fxy:fy:c: Ty lIl(ZL'th) (:Etgz) y’ fxz:fzx:@( th) * y’
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B B 4(1+1Iny)
Joy = Jy= = ysin2 2z

m) fo=yx T f,=av 2y e, f.=2"y*(Inz)(Iny),
for =y (=14+y) a2 f, =2y (14 2+ y°2lnx) zlnw,
Jor = zyzyz(l +y lnz)(Inz)(Iny)?, fo = fre=2 "y 2 (1 4y Ina),
foe = foo =27y (1 + y*Ina)(Iny),
fo=foy=2"y "1 +2(1+y*Iny)lny)Inz,
n) fo=yglzy), fy=zg(xy),
foo =029 (xy), oy =279 (xy),  foy = foo = 9lay) + 2y g (2y),

In(rtg?) (rtgz)™Y,

W przykladzie g) pozornie fu,+ fyy+ f.. = 0 w calej przestrzeni R®. Rownos¢ ta jednak nie
zachodzi w punkcie (0, 0,0), gdyz w przeciwnym razie prawo Gaussa znane nam (zapewne)
ze szkoly nie moglo by byé prawdziwe: funkcja f jest tu bowiem proporcjonalna do
potencjatu elektrostatycznego tadunku punktowego umieszczonego w (0,0, 0) i wobec tego
pochodne f;, f,, f. sa skladowymi wytwarzanego przez taki tadunek pola elektrycznego
E, a suma f,, + fyy + f.. jest dywergencja V -E tegoz pola. Prawo Gaussa jednak
mowi, ze V-E o p, gdzie p jest gestoscia tadunku elektrycznego i catka po objetosci V' z
dywergencji pola elektrycznego jest proporcjonalna do tadunku zawartego w V' (catkowa
wersja wypisanego wyzej prawa Gaussa, ktore jest jednym z réwnan Maxwella)

/d3rV-E: /ds-Eoc Q.
\4

Jesli wiec @@ # 0, nie moze znika¢ i V-E o p. W istocie, funkcja f nie jest okreslona w
punkcie (0,0, 0) i wszystkie wykonane rézniczkowania sa stuszne tylko poza tym punktem;
nadanie sensu rézniczkowaniu takze i w punkcie (0,0, 0) wymaga przejscia do tzw. dysty-
bucji, czyli uogdlnionych funkcji - to sie zwykle wyktada w ramach Analizy III. Zachodzi
wtedy wzor

fmm + fyy + fzz = _477'5(3)@) )

gdzie ta dystrybucja 6® (r) zwana delta Diraca to jest taka niby funkcja, ktora jest réwna
zeru wszedzie oprocz punktu (0,0, 0), gdzie jest ona rowna nieskoriczonosci i to tak zmysl-
nie, ze catka z niej po dowolnym trojwymiarowym obszarze obejmujacym punkt (0,0, 0)
jest rowna 1 (czego to ludzie nie wymysla!). Podobnie jest z funkcja z punktu e): pozornie
foz + fyy = 0, ale naprawde fo, + f,, = 2m6@(r).

Zadanie 12:

(3+h)+4—+/(B+h)?2+16
a)  fa(3, 4)—,135 thi+ + -
\/25+6h+h2—\/ 6h + h? 2

=1-—lim =1-lim =
h—0 h h—>0h(\/25—|—6h+h2—|—5) 5
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Obliczenie f,(3,4) jest analogiczne i daje f,(3,4) =1/5.

D) £(1,2) = lim % {ln(l +ht ﬁ) —an}

h—0

—l'mllnl—i-ﬁjL1 L—1 —l'mllnl—i-ﬁ—L
50k 2 "2 \1+h ~hs0h 2 2(1+h)

1 (h h 1 1
i = (2o 2 Y e (L 2y ) _
hli%h<2 2(1+h)+0(h)) flffé<2 2(1+h)+0<h)> 0,
1 2+ h 1 h\ 1
fy(1,2) = lim 7 [1H<1+T) —1112} = lim Eln(l—l——) =1

h—0 h—0 4

<2+¢%)2+2(1+%)2_22_2'12]

1(4h +h_2+12h+18h2)_16
vio 10 1o 10 V10~

Pochodne czastkowe 0f /Ox = 2x, 0f /0y = 4y sa w punkcie (2, 1) réwne odpowiednio 4 i
4 i kombinacja 4n; + 4 ny jest rowna obliczonej wyzej z definicji pochodnej kierunkowe;.

1
d) (Vaf)(1,1)= }Lli% 7 {Sinlg (1 + \/Ll_O +1- j—%)} —sinw}
= lim lsin{ﬁ (2— ﬁ)] = lim lsir1<7T—h) = Lh
G 2 V10| r=0 h V10) V10’

co zgadza sie z odpowiednia kombinacja liniowa pochodnych czastkowych obliczonych w
punkcie (1,1):

&) (Vaf)(21) = lim -

h—0 h

= 111m -
h—0 h

1
w 2L o :E<L_L)ZL_
Orfny " Olay 2\VI0 VI10/ VIO

Zadanie 13: a) Ciaglosé tej fukcji w punkcie (0, 0) jest oczywista. Abyo bliczy¢ z definicji
jej pochodne kierunkowe w punkcie (0,0), bierzemy jednostkowy wektor n o sktadowych
ny = cosf = cing =sinf = s i obliczamy granice:

) he, hs) — £(0,0
Tull — lim L) =100

h
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Stad od razu wida¢, ze f;(0,0) = 01 f,(0,0) = 0 bo pierwsza pochodna czastkowa
odpowiada kierunkowej z ¢ = 1, s =0, a druga z ¢ = 0, s = 1. Zatem df = 0 niezaleznie
od przyrostu (dz, dy), podczas gdy

(dx)*dy

AF = (0 +dw, 0+dy) = £(0,0) =

czyli
Af—df (dx)*dy

(d2) + (dy)2  [(dw)2+ (dy)?]*2

nie dazy do zera, gdy /(dx)? + (dy)?> — 0. A wszystko to dlatego, ze pochodne f,(x,y)
1 fy(Ia Y)

2qy3 ot — a2y?

fo = ($2+y2)2’ fy= (:)52—|—y2)2’
traktowane jak fukcje na R? nie sa ciggle w punkcie (0,0), co juz kazdy powinien umieé¢
sprawdzi¢. Oznacza to ze ta “fozniczka” df prawdziwa rozniczka nie byta. Widaé tu tez,
ze pochodna kierunkowa w kierunku jednostkowego wektora n nie jest w punkcie (0,0)
rowna ny f(0,0) + na f,(0,0) bo ta kombinacja jest zawsze rowna zero.

b) Tu ciaglosé funkeji w punkcie (0,0) sprawdzamy rozpatrujac np. ciagi x, — 0 i
Yn — 0 1 piszac

@a/yn) _ (/%)
Lt (@3 /yn)? 7" L4 (ya/23)?

f(In>yn) = Tp

Niezaleznie od tego, jak zachowuja sie ciagi ¢, = 22 /y,, lub d,, = y,/x2, oba wyrazenia
daza do zera, gdy x, — 0. Zatem funkcja f jest w punkcie (0,0) ciagta. Obie pochodne
czastkowe f jako funkcje na R?

3a2y? — 20y 27 — 2By?

N N e

sa w punkcie (0, 0) ciagte jesli badac ich ciaglos¢ wzdtuz prostych, tj. na ciagach z, = a/n,
yn = b/n (albo ogolniej x,, = af(n), y, = bf(n), f(n) — 0):

3a2b® — ab/n? —a3b? + a” /n?
fx(zn>yn) - n(62 + a4/n2)2 - 0’ fy(l'myn) - n(b2 + a4/n2)2

— 0,

z wyjatkiem f, badanej wzdluz osi z, kiedy to b = 0 - pochodna ta w tym kierunku dazy
do oco. Zatem obie pochodne czastkowe (0f/0x),0) i (0f/0y)(0,0) istnieja, bo ta druga
odpowiada granicy f, ale branej wzdluz osi y (a nie z, gdzie ujawnia si¢ jej nieciagtosc).
Tak wiec Scisle rzecz biorac pochodne czastkowe nie sa ciagte ale pochodne kierunkowe
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istnieja w kazdym kierunku, co jak zwykle mozna sprawdzi¢ biorac ny = ¢, ny = s
(*+s?=1):
1 3sht _ c3sh
VanSloo = }111—% h L‘lh‘l +s2h2 0] T hs0chits? 0
z wyjatkiem przypadku s = 0, czyli pochodnej kierunkowej w kierunku osi z, czyli po
prostu pochodnej czastkowej (0f/0x)0,0), kiedy to powyzsze wyrazenie dazy do nieskori-
czonosci; znéw jednak pochodna (0f/0x)(0,0) jak najbardziej istnieje

. 0-0
tylko pochodne kierunkowe jako funkcje kierunku nie sg ciagle. Czyli prawdziwa po-
chodna nie istnieje (bo pochodne czaastkowe f,(z,y) 1 f,(z,y) nie sa w punkcie (0,0)
ciggle), nie istnieje zatem i prawdziwa rézniczka. Rozniczka-Ersatz, czyli (0f /0x)o,0)dx+
(0f/0y)0,0)dy = 0-dx+0-dy nie przybliza nalezycie przyrostu A f funkcji, bo wyrazenie

Af—=0-dz—0-dy (dx)3dy

(dz)? + (dy)*  [(da)' + (dy)?)/(da)? + (dy)?

nie dazy bezwarunkowo do zera: np. gdy dy = (dz)?> — 0, wyrazenie to ma postaé

(dx)®

2(dx)®+/1 + (dx)?’

i ewidentnie nie dazy do zera.

Zadanie 14:
a) Funkcja f(z,y) = z/(1 + y?) jest przyzwoicie ciggla i ciagle sa w kazdym punkcie R?
takze jej pochodne czastkowe

1 2y

folz,y) = 75 fy = Rk

Jej pochodna f’ w dowolnym punkcie (xg, 7o) zatem istnieje i jest dana przez pochodne
czastkowe:

f'(@o,0) = (fe(xo,90), fy(T0,%0)) -

Jest ona oczywiscie kowektorem (jedno-forma liniowa), czyli odwzorowaniem z R? (ale
wlasdciwie to nie z tego R?, ktore jest dziedzing samej funkcji i tu gra role rozmaitodci,
tylko tej przestrzeni wektorowej, w ktorej zyja wektory przemieszczen, czyli przestrzeni
stycznej w danym punkeji (xg,yo) do rozmaitosci; no ale na naszym poziomie wszystko
sie zlewa w jedno...) w R, czyli w przestrzen, z ktorej wartosci przyjmuje funkcja. W
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punkcie (2,1) pochodna f jest kowektorem o sktadowych (w kanonicznej zero-jedynkowe;j

bazie R?)
re=(3-1).

i po zadzialaniu na wektor przyrostu (JA, %5)\) daje zero:

ren ()~ (50 ()

Oznacza to, ze w tym kierunku, przy przejsciu od punktu (2, 1) do punktu (2402, 1+%5)\),
funkcja w pierwszym przyblizeniu nie zmienia sie (gtéwna liniowa czes¢ zmiany wartosci
funkeji w tym kierunku jest rowna zeru). Zadzialawszy za$ na wektor (A, 6\) pochodna
ta daje —9A/2, co jest gtowna liniowa czescia zmiany wartosci przy przejsciu od punktu
(2,1) do punktu (2 + dA, 1+ dN).

b) Znow funkcja jest najprzyzwoitsza z mozliwych i jej pochodna w punkcie (1,1) jest
kowektorem

f(1,1)= (4, 6).

Aby sie dowiedzieé¢, w ktorym kierunku, ruszajac z tego punktu, nalezy sie przemiescié, by
mie¢ najbardziej “pod gorke” (do szkolty oczywiscie), obliczamy wartosé tej pochodnej na
przyroscie (dz,dy) = (6 cosf, dAsin 0) przyjmujac, ze A > 0 (znak oA jest “zalatwiany”
przez kat 0):

f(1,1) - (gig?ﬁg) =20\ (2cosf + 3sinb).

Prawa strona daje gléwng liniowa czesé zmiany wartoscei funkcji™ przy przesunieciu sie
z puntu (1,1) o odleglosé v/20\ w kierunku zadanym przez kat 6. Trzeba zatem znalezé
maksimum prawej strony jako funkcji 6 € [0,27). To juz umiemy:

i26)\(2(3056’—I—3sir16’):O, gdy tg9:§.
do 2

W zakresie 6 € [0,27) sa oczywiscie dwa rozwiazania tego warunku rézniace sie o T w
jednym druga pochodna jest ujemna (maksimum) i w tym to kierunku funkcja rosnie
najszybciej, a w dugim druga pochodna jest dodatnia (minimum) i w kierunku odpo-
wiadajacym tej wartosci 6 funkcja najszybciej maleje. Oczywiscie kierunki najszybszego
wzrostu funkcji i najszybszego jej malenia sa przeciwne (odpowiednie katy € réznia sie o
7), bo f’ wyznaczajace (gdy funkcja jest przyzwoita, czyli gdy ma pochodna prawdziwa)
zmiane funkcji w dowolnym kierunku jest odwzorowaniem liniowym, a zmiana 6 — 6 £

" Przypomnijmy, Ze im mniejsza wartos¢ dA, tym lepiej ta glowna liniowa cze$é zmiany przybliza
rzeczywista zmiane A f wartosci funkcji.
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odpowiada pomnozeniu wektora przesuniecia przez —1. Oczywidcie jest tez kierunek, a
nawet dwa, rozniace sie znéow o 7, w ktorym funkcja nie rosnie wcale: sg to takie kie-
runki, ze wektorek przesuniecia (dz,dy) jest rownolegly (w danym punkcie, tu w (1, 1))
do gradientu”™ funkcji, czyli do (f.(1,1), f,(1,1)).

¢) Odwzorowanie R — R? to po prostu trzy osobne odwzorowania R — R umiesz-
czone na trzech “pieterkach”. Na kazdym pieterku z osobna robimy to samo, co w zadaniu
12. Tak wiec piszemy

e([2]) - [ | - ||
3\, Y Y

i obliczamy z definicji najpierw pochodng kierunkowa funkcji fi(z,y):

.1 h\ . h 2h :
Vafi = }lll_{l%ﬁ {(ﬁ + ﬁ) sm(x + ﬁ + 2y + ﬁ) — xsin(x 4+ 2y)]
1 h h h
= }Lli% : { (:c + ﬁ) {sin(a: + 2y) cos 3—\/§ + cos(x + 2y) sin %] — zsin(z + 2y)}

1
= lim % {x cos(z + 2y) sin —= + —=sin(x + 2y) + (’)(h2)]

h—0 \/’ \/’

1 3
= —sin(z + 2y) + —= w cos(z + 2y) .

V2 V2

Widag, ze jest to to samo, co

8f1 +n 8f1 1 [sin(z + 2y) + x cos(z + 2y)] + 1 2z cos(x + 2y) .

Yor Ty V2 V2

Analogicznie postepujemy z drugim pieterkiem, czyli funkcja fo(z,y). Pochodna kie-
runkowa trzeciego picterka jest moze troche trudniejsza

(y+ % )Q(Hh/@_yzx]
i o))
el ) ()]
:yzwflg%%[(l%—\/_hlnyjt { 2( )(2 )}—1}

x
=y (\/ﬁlny—l—\/i—) .
Yy
">Tak zwykly fizyk zwykle nazywa pochodng prawdziwa funkcji f : R — R. Znéw tu macimy bo po
pierwsze, co to znaczy, ze dwa wektory sg réwnoleglte? A po drugie, jak kowektor moze byé¢ réwnolegly
do wektora? No wtasdnie to sa skutki tego, ze w R™ wszystko sie zlewa w jedno...

1
Vafs = lim -
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Znoéw jest to to samo, co

af?, af?, I 1,
tne B = 9 Iny 4 ——2eX
Yor Moy T RTT TR

Ostatecznie wiec pochodna kierunkowa w kierunku n obliczona w dowolny punkcie (z,y)
jest wektorem
V. hy f sin(2x + y) + f zcos(2z +y)
VaF = | Vafo | = V2ycos(2r —y) — \/5 y?sin(2z — y)
Vals Y (\/5 lny+\/§§>

ktory, aby uzyska¢ gtowna liniowa cze$é zmiany (przyrostu) wektorowej wartosci funkeji
przy przesunieciu sie na plaszcyznie R2 z punktu (z,y) do punktu (z + nidA, y + n2dA),
nalezy pomnozy¢ przez d\.
d) W tym przypadku pochodna w konkretnym punkcie jest odwzorowaniem liniowym
reprezentowanym macierza

, ([ f1 2x —2y (2 2
FiL-1)= (ff f2)(1—1 - <em_y _em_y)u,—l) B (62 _62).

W dziataniu na wektor przesuniecia (dz, dy) = (—dA, 20\) daje ona rozniczke funkcji,

—0A 20
/ —
F,-1) (2&) = (—3&62) ’
czyli glowng liniowa czes¢ zmiany wektora-wartosci odwzorowania F' przy przesunieciu
si¢ z punktu (1, —1) do punktu (1 + JA, —1 — 26)).
e) Tu tez pochodna w konkretnym punkcie jest odwzorowaniem liniowym reprezentowa-
nym macierzg

1 1 1
F’<1,3,0>=(jﬁz jﬁ f;)
x Yy 130

:(gj/@ 2y/(1+0y2+z2) 227{%2))@30):@ 3(/)5 8)'

)

W dziataniu na wektor przesuniecia (dz, dy,dz) = (0, 0\, 6\) daje ona rézniczke funkeji,

F'(1,3,0)- (§i> = <35§/5) !

czyli gtowna liniowa czes¢ zmiany wektora-wartosci odwzorowania F' przy przesunieciu
sie z punktu (1,3,0) do punktu (1, 34 JA, IA).

Zadanie 15: W R? punkt przez ktory musi przechodzi¢ prosta ma wspotrzedne (g, f(z0)).
Prosta przechodzaca przez taki punkt najtatwiej zada¢ parametrycznie, tj. podajac dwie
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sktadowe wektora t, do ktorego prosta ta ma byé¢ rownolegta. Wiadomo, ze szkoty, ze
nachylenie prostej stycznej jest dane przez pochodng. Zatem wektor taki ma sktadowe
[1, (df /dx),,] 1 rownanie prostej mozna napisa¢ w formie

(Z) - (f&)) " [(df/ilx)xo} &

gdzie £ € (—o0, 00) jest rzeczywistym parametrem. (Jak kto$ chece, to moze z rownania
x = xg+E& wyrazi¢ £ = x —xg 1 wstawi¢ do drugiego réwnania uzyskujac rownanie prostej
w formie szkolnej, tj. ax + by + ¢ =0.)

Uogolnienie na R? jest proste. Jesli ustalimy y = yo to mamy, zmieniajac x, funkcje
y = f(z,yo) 1 plaszczyzna styczna w (zo, yo) do powierzchni bedacej wykresem y = f(z, )
musi by¢ réwolegta do wektora t; = [1, 0, (0f/0%) (x4, ktory w kierunku z-owym od-
grywa te sama role, co poprzedno wektor [1, (df/dx),,]. Analogicznie jest w kierunku
y-owym mamy wektor to = [0, 1, (Of/0Y)(zo )] Zatem parametrycznie zadajemy plasz-
czyzne styczna w (g, yo) do powierzchni bedacej wykresem y = f(z,y) wzorami

T To 1 0
y | = Yo + 0 &1+ 1 &2,
z f(x(]u yO) (af/ax>(xo,yo) (af/ay)(xo,yo)

gdzie &,& € (—00, o0) sa dwoma rzeczywistymi parametrami. (Znéw mozna z rownan
r=x0+& 1y =1yo+ & wyrazié & = x — 20, & = y — yo 1 wstawié¢ do trzeciego rownania
uzyskujac rownanie plaszczyzny w formie szkolnej, tj. axz + by 4+ cz +d = 0.)

Nietrudno teraz juz zadaé¢ parametrycznie w R* hiperplaszczyzne styczng do “wykresu”
funkcji t = f(x,y, z) sa teraz trzy wektory tq, to i to:

X Zo
vyl _ Yo
z 20
t f (o, Yo, 20)
1 0 0
+ 8 &+ (1) §a + (1] €3,
(af/ax)(:vo,ymzo) (af/ay)(r(),yo,zo) (af/az)(ro,ymzo)

gdzie &1,&s,&3 € (—00, 00) sa trzema rzeczywistymi parametrami. Zatem w przypadku
podanej funkcji hiperptaszczyzna jest zadana parametrycznie wzorami

0
1
0

W N =
Iy
w

&1+ &2+

+ N8
N OO =
—_

o= oo

2

—
o

albo jednym liniowym réwnaniem 2x + 12y + 62 — ¢t — 26 = 0.
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Zadanie 16: Trzeba obliczy¢ pochodne (0f/0z) i (0f/0y), wstawi¢ do lewej strony i
zobaczy¢ co tam wyjdzie.

of _(do()) 9

or \ dt tmy /e OF

of _ (do)) 9 (yy o (Y (1)

oy < dt ). 0y (x) 2y =9 (:c) T 2.
Zatem lewa strona réwnania jest réwna

5o -] o[ (2)-a] -

Zatem w rownaniu, ktére ma spetnia¢ funkcja f(z,y) funkcja g(x,y) po prawe stronie

musi by¢ rowna wlasnie —2(z? + y?).

Zadanie 17: Znow wyobrazamy sobie, ze f(z,y) = f(u(:z:,y), v(z,y)). Pierwsze po-
chodne 0f/0x 1 0f /0y zostaly znalezione w zadaniu w tekscie. Korzystajac z tamtych

WZOrOwW piszemy

8_2f 0 8f0u+8f8v
022 Oz \ Ou 0xr ' Ov Ox

_Ou o (of\ ovo(of\ Ouof oof
N oz \ Ou ov 0x?2 Ou  0x? Ov

_oufo (o ou, o (o) o
" Oz |ou\ ou 8 ov\ Ou | Ox
Jov[o (oo, o (ar\ o] awor owos
ox |ou\dv | ox  ov\ov | oz 0x? Ou  0z2 Ov

Po uporzadkowaniu:

PE (0O (00N BT (o (o0 BF o of o of

0z \0x) ou? ox ) Ov? ox dx ) Oudv ' 92 du ' Ox? v
W analogiczny sposéb dostaniemy

Ff _ (N PF (0N Ff (o) (ov) FF 0 of % of

oy2  \dy /) Ou? oy ) Ov? Ay Oy ) Oudv  Oy? Ou  Oy? Ov
Trzeba teraz prawe strony wyrazi¢ przez u i v. Pierwsze pochodne u, = (Judx), etc.
zostaly przez u i v wyrazone (na trzy sposoby) w zadaniu w tekscie. Trzeba jeszcze tylko

wyrazi¢ drugie pochodne g, i v,;. Oczywiscie mozna to zrobi¢ wypisujac jawnie wzory
na v = u(x,y), v = v(x,y), dwukrotnie je rézniczkujac po = i potem wyrazajac zuriick
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przez zmienne u i v. Ale bardziej pouczajacee jest zastosowaé metode “termodynamiczng”.
W zadaniu w tekscie otrzymalismy dwa zwiazki

] v? — u? 2uv
- R4 u(E - R4 USE?
0 u? — v? 2uv

w ktorych R = R(u(z,y), v(x,y)). Drugie z nich mozna od razu pomnozy¢ stronami przez
R*, co uprosci robote. Mozemy je zrézniczkowaé jeszcze raz stronami po  co da

0= (V2 — u?) Upy — 2V, — 2u(u? + v2)
2

R?
0= (u? — v?) Vg — 2uVUg, — 20(u? +02).

[(v* = u?) uy — 2uvv,] (2uu, + 20v,),

Poniewaz u, i v, juz mamy wyrazone przez u i v, dwa te rownania sg liniowymi réwnaniami

na Uy i V. Wstawiajac do nich u, = v*>—u? i v, = —2uv (korzystamy z wynikéw zadania

w tekscie) otrzymujemy réwnania, ktore mozemy zapisaé¢ tak

u? — 2 2uv Ugz \ 2uR*
—2uv  ur—1? Uew ) \ 20R* )"

Wyznacznik macierzy po lewej stronie jest réwny R* i mamy

Ue \ _ L (u?—0*  —2uw 2uRY\ ([ 2u(u® — 30v?)
Ve ) RA\ 2uv o —0? 20RY | T\ 20(3u? —v?) )

Oczywiscie poniewaz w tym przypadku jest tatwo odkreci¢ wzory i dostaé

x x Yy Yy
U= ———=—, v= =L
2212 K2 2+ K2
latwo jest znale¢z ug, i v, “na piechote. u, = (y* — 2?)/k*, v, = —2xy/k* i (pamictamy,
ze R? = 1/k?)
20 2y*—2%) 2z 2z(x® — 3y?)
Uge = =7 = 5 = p = 2u(u® — 3v?),
2y  2xy2x  2y(3x* —y?)
Yoz = _/{4 K6 - K6 - QU(3u2 B Uz) ’

tak jak poprzednio.
W zupelnie analogiczny sposéb mozna otrzymaé¢ réwnania wyznaczajace Uy, i Uy
rozniczkujac po y zwiazki

0 v —u? 2uv

- R4 Uy R4 Uy’
. u? — v? 2uv

- R4 Uy R4 ul/’



uzyskane z rézniczkowania po y wzoréw wiazacych x iy z v i v. Dostaniemy po takich
samych przeksztatceniach, jak te wyzej,

Uy, = 2u(30° —u?), vy, =20(v® — 3u?).
Zbierajac wszystko razem otrzymujemy

fgcgc = (U2 _u2)2fuu+4u U2fvv _QUU( )fvu"‘Qu(U - )fu+2’0(3u —’02) vy
fyy :4u2v2fuu+(u2 - ) fvv _2UU( - )fvu‘|‘2U(3'U — U )fu+22}( )f

Jak te dwa wzory dodamy stronami, to si¢ okaze, ze

fxx + fyy = R4(uav)(fuu + fvv) .

Przeszlismy tu do$¢ dtuga droge aby pokaza¢ wszystko w detalach w sytuacji, gdy nie
jest tak tatwo odwracac¢ zwiazki taczace dwa zespoly zmiennych. Tu, poniewaz nie jest to
trudne, mozna byto jednak zrobi¢ wszystko troche prosciej. Np. wyrazajac f,. przez u i
v mozna byto do wzoru

>f

axz fxx -

(e futva fo).

8f ou Lo 8f ov 0
ou 0r ' Ov Oz 8:6

od razu podstawi¢ u/dr = u, = (y* — 2?)/k*, Ov/0x = v, = —2xy/k*. Moglibys-
my wtedy u, i v, rézniczkowaé¢ po = jawnie i dopiero na koricu wyrazi¢ rezultat tych
rozniczkowan przez zmienne u i v:

4x
6

fxx: [(y —l’)f _2zyfv]+% _2xfu_2yfv+(y2_z2)

ox y o0z

. ) fv]
— 2z .

Po malym uporzadkowaniu daje to

1 2 2\ F 2 2\

Jew = s [2:5(93 —3y°) fu+2y(3z* —y )fv]
1 _ _ _ _
_'_E |:(y2 - LU2) (ux fuu + Vg fuv) - 2$y (um fvu + Vg fvv)} )

co po podstawieniu znéow u, = (y?—x?)/k*, v, = —2xyx? i wyrazeniu z i y przez zmienne

uiw (co sprowadza sie do zastapienia = przez u, a y przez v i potozeniu k = 1 - dlaczego?
juz to przerabialismy!) da na f,, ten sam wzor, co wypisany juz wyzej.

Zadanie 18: Piszemy

ﬁ g 8f ou L of df ov

Oy \ Ox 8y Ou dx ' Ov Oz
= Uy <uy fuu +Uy fuv) +uxy .fu
+v; <uy fvu + Uy fvv) + Uy fv .
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Druga za$ pochodna, to

o (01 _ 0 (0fou of on

or\dy/) Ox\oudy vy
:uy<uxfuu+vx.fuv)+uyx-fu
+Uy<um.f~vu+vmfvv)+vymfv'

Widag, ze jest to to samo.

Aby jawnie poda¢ pochodng mieszang f,, wyrazong przez u i v musimy znalez¢ po-
chodne u,,, = wy, 1 v,y = vy, Wyrazone przez te wlasnie zmienne (wszystkie inne potrzebne
elementy juz mamy). Znoéw, tu jest to tatwe, bo mozemy tatwo jawnie napisa¢ wzory
u = z/k*(x,y) i v = y/k*(x,y). Ale znéw zrobimy to okrezng droga, czyli “sposobem
termodynamicznym”, aby zobaczy¢ jak sobie radzi¢, gdy nie da si¢ tatwo napisa¢ wzoréw
u = u(z,y) iv = v(x,y) (a znane sa wzory dajace r = z(u,v) i y = y(u,v). Mamy z
poprzedniego zadania dwa uktady réwnan

] v? — u? 2uv
- R4 u(E - R4 USE?
0 u? —v? 2uv

otrzymany ze zrozniczkowania tozsamosci x = x(u(z,y), v(z,y)) i y = y(u(z,y), v(z,y))
po z, oraz drugi uktad

0 v —u? 2uv
TR TR

. u? — v? 2uv
TR VTR

otrzymany przez zrozniczkowanie tozsamosci z = x(u(z,y), v(x,y)) iy = y(u(z,y), v(x,y))
po y. Kazdy z tych dwu uktadéw moze nam postuzy¢ do wyznaczenia uyy i v,,. Powinny
one da¢ to samo. Postuzymy sie tu pierwszym z nich (zalecajac studentom samodzielne
wyprowadzenie wzor6w na g, i vy, z drugiego ukladu réownan). Roézniczkujemy wiec
pierwsze dwa réownania stronami po y co daje

0= (V2 — U*)Uyy — 2000y + 20 (Upvy — uyv,) — 2u(Uytly, + V,0,)

2
~ [(v* — w®)uy — 2uvv,]| (2uny, + 2vv,),

0= (u® — v*) gy — 2u0Uyy + 2u (Uyvy — Uzvy,) — 20(Ugtly + V,0,) .
Podstawiamy tu teraz u, = (y? — 2?)/k*, v, = —2zy/k* oraz u, = —2zxy/k*, v, =

(z? — y*)/k* albo lepiej u, = v? — u?, v, = —2uv, u, = —2uv, v, = u® — v* (zobacz
zadanie w tekscie), co od razu uwidacznia, ze u,u, + v,v, = 0, a UV, — uyv, = —RL

172



Dostajemy stad liniowy uktad dwoch réwnan na ug, i vy, kt’ory znoéw zapiszemy w postaci
macierzowe;j
u? —v? 2w gy \ _  20R?
—2uv  u?—? Uy )\ —2uR* )"

Uy \ _ 1 (u?—v*  —2uw 20R* \ [ 2v(3u?® —v?)

Uy ) RY\ 2uv u?—0? —2uR' )\ 2u(3v* —w?) )
To samo mozna oczywiscie bylo dosta¢ rézniczkujac bezposrednio u, = (y* — x?)/k* oraz
v, = —2xy /K" po y i wyrazajac rezultat tych rézniczkowari przez zmienne u i v. Zatem

Zatem

f:cy = 2UU(U2 — 'U2) (fuu - fvv) - (U4 - 6U2U2 + 'U4).fuv
+20(3u® — ) f + 2u(30% — u?) f, .

Zadanie 19: Niech z = 22 — y2. Obliczamy pochodne funkcji f(z,y) = y ¢(x? — y?):

of 0 do(2) 0z

- = — — D 12 .2
5~ 5p WO Y) =y — e On 2y ¢ (2" —y7),
of o 2o do(z) 0z
9~ o (y o(z(x,y)) = (2" —y°) +y = e O
— ¢($2 _ y2) _ 2y2 ¢/($2 _ '3/2)-
Wykorzystujac te pochodne w podanej kombinacji, znajdujemy
10 10 , 1 ,
LI gy )+ e ) - 2 )
x Odxr y Oy Yy

1 1
= §¢(x2—y2) = (z,y) .

Zatem funkcja g(z,y) = 1/y%.

Zadanie 20: Wprowadzmy oznaczenia v = z/x i v = y/x. Obliczamy nastepnie po-
chodne:

a—H:%jF(E7 Q>+x2 9F(u,v) a_ujL:Cz OF (u,v) v
Ox x T Ou |y ey e OF Ov i oy /o OF

. z 2 < 2 Y
= 2xF<;’ ) +x [Fm(u,v)]uzz/mm:y/x <_P> +x [Fv(U7 U)]u:z/wm:y/m <_?>
Yy

z
= 2xF<E7 ;) -z [Fw(u7 U)]u:z/x,v:y/m —Y [FU(U, U)]u:z/m,v:y/x :

g
x
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I analogicznie

oOH 1

— 2 —
a—y = [Fv(u’ U)]u:z/x,v:y/:c ; =T [Fv(u7 U)]u:z/x,v:y/ﬂc ’
oH 1
E =T [Fu(u7 U)]u:z/x,v:y/x ; =T [Fu(u7 U)]u:z/x,v:y/x :

Gdy wiec wstawimy te pochodne do kombinacji

on , on o
e y@y "oz

wszystkie wyrazy z F, i F, ulegna redukeji o kombinacja ta okaze sie rowna 222 F(z/x, y/z).
Zatem w rownaniu spetnianym przez H funkcja g(z,y, z) musi by¢ stata i rowna 2.

Zadanie 21:
1 1 1 1
a) sin(x+y)::E+y—6x3—§x2y—§xy2—6y3+...,
1 1 1 1
b) e eosy=1+2"— -y +-at— —a¥P4 — oyt

2 2 2 24

1 1 8
c) ln(1+x+2y):x—|—2y—§x2—2xy—2y2+§x3+2x2y+4xy2+§y3+...,

1 1
d) :E+y+\/z2+y2:2+2(:)3—1)+y—|—§y2—5(17—1)3/2—{—...,

1 1 1
d) xy:1+(:c—1)y—i(x—1)2y+§(:c—1)2y+§(x—1)2y2—|—...

Zadanie 22:

a) Réownania f, = 20— \y =, f, = —Az+2y = 0 maja tylko jedno rozwigzanie = 0 = 0.
Punktem krytycznym jest wiec tylko punkt (0,0). Drugie pochodne sa state (takie same w
kazdym punkcie). Forma kwadratowa drugich pochodnych jest wiec wszedzie taka sama,
wiec i w punkcie krytycznym tez ma ona postaé

2 =

-\ 2 )
Jej minory: My =2 > 0, My = 4 — \2. Zatem jesli |\| < 2, funkcja = 2% + y* — A\ry ma
w punkcie (0,0) minimum lokalne. Jest tez jasne, ze ekstremum, jesli istnieje, musi by¢

w punkcie (0,0), bo badana funkcja jest funkcja jednorodng stopnia drugiego, tzn. taka,
7€

f(&x, &y) = & flz,y).

Wida¢ stad, ze gdy |£] > 1, wartos¢ funkeji w punkcie (£x, £y) jest wieksza niz w (z,y), a
gdy [¢| < 1 mniejsza - funkcja nie moze wiec mie$ w (z, y) lokalnego ekstremum; wyjatkiem
jest punkt (0,0) bo wtedy (£ -0, £-0) to jest ten sam punkt i argument nie dziata.
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Rysunek 20: Ksztalt funkcji z Zadania 22a, gdy A\ = 7. W punkcie (0,0) mozna sie
domysli¢ punktu siodtowego.

Jesli |A| > 2, drugi minor jest ujemny i forma kwadratowa drugich pochodnych, jest
nieokreslona - w punkcie (0,0) jest punkt siodlowy - co troche widaé¢ (jak juz si¢ wie)
z rysunku 20. Szczegdlny przypadek zachodzi, gdy |\ = 2: forma kwadratowa dru-
gich pochodnych ma wtedy sygnature (+,0), czyli istnieje kierunek ptaski na wektorach
przesunie¢ skierowanych wzdtuz tego kierunku forma daje zero, a na wszystkich innych
(skierowanych cho¢by tylko nieznacznie w bok od tego kierunku) daje warto$é¢ dodatnia.
Zwykle tak nie jest, bo wyrazy trzeciego rzedu w h “zaginaja” jakos taki ptaski kierunek,
ale tu, poniewaz cata funkcja f jest tu wielomianem tylko drugiego stopnia, jest toscisle
plaski kierunek, bo wtedy po prostu f(z,y) = (v 4 y)? (& zaleznie od znaku parametru
A) 1 jest jasne, ze funkcja jest catkowicie stala wzdtuz linii x = y lub x = —y.

b) Drugie z réwnann

felz,y) = 92% + 62y — 15 =0,
fy(z,y) = 32% = 3y* =0,

wyznaczajacych punkty krytyczne ma jako rozwiazanie x = y badz z = —y. Jedli z =y,
to pierwsze rownanie sprowadza sie do 1522 — 15 = 0. Istniejg wiec dwa punkty krytyczne
ox=uy: (1,1)i(—1,-1). Z kolei jesli x = —y, to pierwsze rownanie sprowadza si¢ do

322 — 15 = 0 i s dwa punkty krytyczne o = —y: (v/5, —v/5) i (=5, v/5). Drugie
pochodne czastkowe sg rowne

f$$:181'+6y, fyy:_6ya fwy:67
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Rysunek 21: Ksztalt funkcji z Zadania 22b. O$ z-6w jest od —3 do 3; 0§ y-kow od —4 do
4.

i macierze form kwadratowych w kolejnych punktach krytycznych sa réwne

(2 %) (22 () w3 )

Pierwsze dwie formy sa nieokreslone, wiec punkty (1,1) i (—1,—1) sa punktami siodlo-
wymi badanej funkeji. W punkcie (v/5, —v/5) forma drugich pochodnych jest dodatnio
oreslona - w tym punkcie jest wiec minimum, i ujemnie okreslona (bo forma —@ jest tam
dodatnio okreslona) w punkcie (—v/5, v/5), w ktérym jest zatem maksimum. Mozna to
chyba dostrzeé¢ z rysunku 21.

¢) Tu znalezienie punktéw krytycznych wymaga troche sprytu. Wyznaczajace punkty
krytyczne réwnania

3
a
3
a
fy(x7y):2y+x_E:07

sa bowiem troche skomplikowane. Poniewaz funkcja f jest symetryczna w swoich dwoch
argumentach, f(z,y) = f(y,x) jest jasne, ze rozwiazania tych réwnan musza albo by¢
postaci (z*,z*), albo wystepowa¢ parami: (z*,y*) i (v*,2*) (tzn. jesli rozwiazaniem
jest np. (a,b) to rozwiyazaniem musi tez by¢ punkt (b,a)). Znajdzmy wiec najpierw
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Rysunek 22: Ksztatt funkcji z Zadania 22¢c, gdy a = 1.

rozwigzania typu (z*, x*). Oba powyzsze rownania staja sie wtedy tym samym roéwnaniem
3z —a®/x? = 0 i jedynym takim punktem krytycznym jest punkt (a/3'/3, a/3'/3). Drugie
pochodne

foo =242d%/2° . [, =242y, foy =1,

tworza w tym punkcie forme
8 1
1 8)7

ktora jest oczywiscie dodatnio okreslona. W punkcie (a/3'/3, a/3'/3) jest zatem minimum
lokalne.

Aby pokazac, ze innych punktéw krytycznych badana funkcja nie ma, uproscimy sobie
wpierw wzory dokonujac przeskalowania zmiennych z/a — x, x = y/a — y, tak iz funkcja
przybierze postac

2 2 a_3 a_3 2 (.2 2 11
r+oyt+y +—+——2a" (2" +axy+y +—+ .
z Yy r oy

Poniewaz multiplikatywna stata a? nie ma wplywu na polozenie punktéw krytycznych,
mozna ja pomina¢. Réwnania wyznaczajace punkty krytyczne, po pomnozeniu ich stro-
nami przez odpowiednio 2?2 i y? majg teraz postac

2% + 2%y =1,

2 +yr=1.
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Odejmujac jedno od drugiego dostajemy
2(2° — %) +ay(e —y) = (v —y) [2(* + 2y +¢*) +ay] = 0.

Poniewaz rozwiazanie o x = y juz znamy, mozemy zatozy¢, ze x # y i rozwigzywaé uktad
réwnan

20° + 2’y =1,

222 + 3wy + 2y° = 0.

7Z pierwszego wyznaczamy y: y = (1 — 223)/2? i wstawiamy do drugiego, co daje

1— 223 (1—22%2 1
2 _
22° + 3x = + 2 o =

(22° + 32%(1 — 22%) + 2(1 — 22°)*) = 0.

Podstawiamy teraz t = 3 i przyréwnujemy do zera zawarto$¢ nawiasu (czynnik 1/z* nie
moze by¢ rowny zeru):

22+ 3t —6t2+2 -8t +8t =42 —5t+2=0.

Poniewaz A = 25 — 32 jest ujemna, rownanie to nie ma rzeczywistych rozwian. Oznacza
to, ze uktad réwnan f, = 0, f, = 0 nie ma innych rozwiazai niz z = y = 1/21/2 (czyli, w
nieprzeskalowanych zmiennych, a/2'/%). Potwierdza to rzut oka na rysunek 22. Funkcja
f(x,y) nie jest okreslona wzdtuz osi x i osi y - przy zbieganiu do punktow lezacych na
tych osiach funkcja dazy do +o0o badz —oo. Wyjatkiem jest punkt (0,0) - przy zbieganiu
do tego punktu wzdtuz linii x = y granica funkcji jest zero.

d) Pierwsze pochodne czastkowe funkcji

folz,y) =4z +y)P*+6(x—vy)°, fylz,y)=4(x+y)’—6(z—y)°,

istnieja, sa ciagle na catym R? i znikaja tylko w punkcie (0, 0) (o czym si¢ mozna przekonaé
biorgc sume 8(z + y)* = 0 i réznice 12(z — y)® = 0 réwnan f, = 01 f, = 0). W tymze
punkcie jednak macierz formy kwadratowej drugich pochodnych jest calkowicie zerowa
i nie mozna na jej podstawie okresli¢ charakteru punktu krytycznego (0,0). Niemniej,
widaé, ze f(0,0) = 0, a w dowolnym punkcie (z,y) # (0,0) wartosé funkcji jest wieksza
od zera, wiec jest tak i w dowolnie matym otoczeniu otwartym punktu krytycznego. W
punkcie tym znajduje sie zatem minimum badanej funkcji i jest to jej minimum globalne,
co wida¢ z rysunku 23.

e) Przyrownanie do zera pierwszych pochodnych czastkowych tej funkcji

Fry) =1 3y L :x2+x+y2—3y’
$2+y2 1’2+y2 1’2+y2
fo(oy) = =2+ 3 LY :—2:1:2—2y2—|—3x—|-y
) 1’2—|—y2 1’2—|—y2 1’2—|—y2 )
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Rysunek 23: Ksztatt funkcji z Zadania 22d.

daje, bo mianowniki nie sg istotne, uktad réwnan

?+r+y’—3y=0,
22° + 2% =3z —y =0.

Po pomnozeniu pierwszego przez 2 i odjeciu od drugiego znajduje sie, ze x = y i wstawienie
tego do pierwszego da 2?2 — z = 0. Pochodne zeruja sie wiec w punktach (0,0) i (1,1).
Pierwszy z tych punktow lezy jednak pozza dziedzinag funkcji (bo In0 jest wielkoscia zle
okreslona, wiec jedym przwdziwym punktem krytycznym jest punkt (1,1).

Drugie pochodne czastkowe (znéw dobre ¢wiczenie w ich liczeniu)

—a% + y? + 6zy F o —y? —bay
(@2 +y2)2 7 T (@2 y?)?

16 -1
4\ -1 —-6)"

ktéra nie jest ani dodatnio ani ujemnie okreslona. W punkcie tym zatem funkcja ma
punkt siodtowy. Funkcja poza tym jest, jak wida¢ z rysunku 24, nieciagta na osi y, bo
nieciagly jest arctg, ktory dazy do £7/2, gdy y — 0F.

F. —32% + 3y? — 6ay
Ty (x2 + y2)2

.f:c:c =

Y

daja w punkcie (1, 1) macierz

f) Funkcja jest biperiodyczna, tzn. f(x+km, y+im) = f(x,y) przy dowolnych catkowitych
k i l, oraz symetryczna f(x,y) = f(y,x). Wystarczy wiec znalezé jej punkty krytyczne

179



Rysunek 24: Ksztalt funkcji z Zadania 22e.

lezace nad diagonala w kwadracie [0,27) x [0,27). Przyrownanie do zera pierwszych
pochodnych czastkowych tej funkcji daje réwnania

fa(z,y) = cos(z +y) —cosx =0, fy(z,y) = cos(z +y) —cosy =0,

rownowazne rownaniom cosx = cosy = cos(z + y). W obszarze [0, 27) x [0, 27) pierwsze
oznacza albo z = y albo y = 2w — x (wystarczy popatrzy¢ na wykres cosinusa). Druga
mozliwos¢ oznacza, ze cosx = 1 czyli x = 0. Pierwsza za$ to cosx = cos2x czyli
cosx = 2cos’x — 1. Daje to na t = cos x réwnanie kwadratowe

1
2t2—t—1:2(t—1)(t—|—§):0.

Rozwiazanie cosz = 1 czyli x = y = 0 jest rownowazne x = 0 i y = 27, bo funkcja jest
biperiodyczna. Drugie za$ cosx = —% daje dwie mozliwosci © = y = %71’ ir=y= %W.

Zatem w obszarze [0,2m) x [0,2m) funkcja ma trzy punkty krytyczne: (0,0), (37, 27) i
4

(37, %W). Drugie pochodne
fea(®,y) =sinz —sin(z +y), fylr,y) =siny —sin(z +vy), fulr,y)=—sinz+y),

daja w tych trzech punktach nastepujace formy kwadratowe

o) $(a) 2L
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Rysunek 25: Ksztalt funkeji z Zadania 22f w obszarze [0, 27) x [0, 27).

W punkcie (%’K, %7‘() funkcja ma zatem minimum lokalne (forma jest dodatnio okreslona),

a w punkcie (%7‘(, %’K) lokalne maksimum. Gorzej jest z punktem (0,0), bo forma jest

zerowa. Mozna jednak zobaczy¢, ze jest to punkt siodtowy:
1
f(O+hy, 04+ hy) =~ —3 hyhy(hy + hy),

jak wynika z rozwinie¢ funkcji sinus. Jesli np. h, = hy, = ¢, to f(0+ hy, 04+ hy) <
£(0,0) = 0; jesli zas np. h, =€ >0, a hy, = —%¢, to f(0+h,, 0+hy) = 5% > f(0,0) = 0.
Wszystkie te ustalenia potwierdza wykres funkcji pokazany na rysunku 25.

g) Pierwsze pochodne czastkowe funkcji f(z,y) = 2t — y* — 4ay? — 222
folz,y) =42 =2 — 9%, fyle,y) = —4y(y* + 22),
zeruja sie w trzech punktach
(0,0), (1,0), (=1,0).
Drugie pochodne czastkowe
foa(w,y) = 122" =4, fy(x,y) = —122 =8z,  fo, = -8y,
daja w tych trzech punktach krytycznych nastepujace macierze form kwadratowych
( -4 0 ) ( 8 0 ) (8 0 )
0 0/’ 0 -8/’ 0 8)°
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Rysunek 26: Ksztatt funkcji z Zadania 22g.

Druga macierz ma sygnature mieszana, wiec punkt (1,0) jest punktem siodtowym. Trzecia
macierz jest dodatio okreslona i wobec tego w punkcie (—1,0) jest lokalne minimum. Na
podstawie pierwszej macierzy, ktora ma sygnature (—,0) nie mozna wykluczyé, ze w
punktcie (0,0) funkcja ma lokalne maksimum (na wszystkich wektorach przemieszczen
macierz ta daje wartosci ujemne lub zero, ale nigdy dodatnie). Trzeba tu poglowkowac.
Np. f(g,0) = &* — 2¢? i przy dostatecznie malych wartosciach |e|, mamy 0 = f(0,0) >
f(g,0). Ale

f(=e?e)=e®+e*>0.

Zatem w dowolnie matym otwartym otoczeniu punktu (0, 0) zawsze sa punkty, w ktorych
warto$¢ f jest wieksza i takie, w ktorych jest mnmiejsza niz w punkcie (0,0). Zatem w
punkcie tym funkcja nie ma extremum. Nie jest to tatwo zobaczy¢ patrzac na ksztalt tej
funkcji pokazany na rysunku 26!

Zadanie 23: Pierwsze pochodne f,(z,y) = 1223 —8xy i f,(z,y) = —42?+2y rzeczywiscie
znikaja w punkcie (0,0) - jest wiec to punkt krytyczny - ale drugie pochodne f,.(z,y) =
3622 — 8y, fuy =21 fuy(r,y) = —8x daja w tym punkcie macierz

(02)

ktora nie jest dodatnio ani ujemnie okreslona. Nie jest jednak z tej postaci jasne, czy jest
to tylko wyptaszczenie funkcji, ktére moze zostaé “zagicte” do gory przez dalsze wyrazy
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Rysunek 27: Ksztalt funkeji z Zadania 22 w poblizu punktu (0,0). Poniewaz f(—x,y) =
f(z,y), pokazana jest tylko dodatnia czes¢ osi .

rozwiniecia, czy rzeczywiscie jest to punkt siodtowy. Zaraz sie tym zajmiemy. Najpierw
jednak sprawdzmy, ze rzeczywiscie w punkcie (0,0) jest minimum na kazdej prostej prze-
zeth przechodzacej. Podstawmy zatem do wzoru y = ax, czyli zbadajmy jako funkcje x
funkcje

g(z) = f(x, ar) = 3z* — 4ax® + a®2? .

Oczywiscie ¢'(0) = 1223 — 12ax? + 2a%a = 0 i ¢" = 3622 — 24ax + 2a* = 2a* > 0. Wzdluz
prostych y = ax rzeczywiscie funkcja g(x) ma w x = 0 minimum. trzeba jeszcze sprawdzi¢
prosta, ktorej wzor y = ax nie obejmuje, tj. prosta r = 0. Wtedy h(y) = f(0,y) = y? i
jest jasne, ze ma ona minimum w zerze.

Pozostaje jeszcze wyjasni¢, co si¢ w punkcie (0,0) naprawde dzieje. W tym celu
najlepiej rozpatrzyé funkcje f(z,y) = f(\/Z, y), tj. podstawi¢ 2 = z. Funkcja f(z,y)
zdaje sprawe z zachowywania sie f(z,y) tylko w obszarze > 0 ale to nam wystarczy.
Funkcja f(z,y) ma oczywiscie punkt krytyczny w (0,0) ale macierz formy kwadratowej
jej drugich pochodnych w tym punkcie ma postaé

(%5)

I teraz jest jasne, ze moze ona na wektorach przesunie¢ dawaé¢ wartosci zar6wno dodatnie,
jak i ujemne (np. gdy (h.,h,) = (¢, 2¢) daje ona —2¢2, a gdy (h., h,) = (£,0) daje 62).
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Oznacza to, ze w dowolnie malym otwartym otoczeniu punktu (x,y) = (0,0) sa punkty,
w ktorych wartosé funkcji jest ujemna, np. punkty typu (1/g, 2¢) ale jesli z ustalonego
takiego puktu do (0,0) wytyczymy prosta, to pomiedzy nimi tuz przy (0,0) sa juz tylko
punkty, w ktorych wartos¢ f jest dodatnia. Punkty, w ktorych wartoéé¢ f jest ujemna
biegna bowiem do punktu (0,0) po paraboli. Konia z rzedem temu, kto to zobaczy z
wykresu funkcji pokazanego na rysunku 27!

Zadanie 24: Najpierw sprawdzamy, czy funkcja ma jakies ekstrema wewnatrz trojkata.
Pierwsze pochodne czastkowe

fm(x,y):2$y—8, fy(x,y):x2—4,

zeruja sie w punktach (—2, —2) i (2,2). Pierwszy punkt lezy poza trojkatem, a drugi lezy
doktadnie na jednym jego z bokéw. Zatem wewnatrz trojkata funkcja nie ma ekstremow.
Moze je tylko mie¢ na brzegu. Na brzegu y = 0, funkcja f(x,0) = —8z jest malejaca i
najmniejsza warto§¢ —32 przyjmuje w x = 4, czyli w punkcie (4,0). Na brzegu z = 0,
funkcja f(0,y) = —4y tez jest malejaca i najmniejsza wartos¢ —16 przyjmuje w x = 4 czyli
w punkcie (0,4). Trzeci bok, ten na ktorym wypadl punkt krytyczny, jest wyznaczony
rownaniem y = 4 — z. Na tym boku funkcja jest dana wzorem

h(z) = f(z,4 — ) = —2° + 42* — 42 — 16,
(oczywiscie h(0) = f(0,4) = —16, a h(4) = f(4,0) = —32). Jej pochodna

B (2) = —32% + 82— 4 = —3(z — 2)(x — %) ,
zeruje sie, gdy x = 2 i tam druga pochodna, h”(x) = —6z + 8 jest ujemna, oraz gdy
x = 2/3 i tam h"(2/3) = 4 jest dodatnia. Zatem funkcja h(x) ma lokalne minimum,
rowne h(2/3) ~ —17 w x = 2/3 i lokalne maksimum, réwne h(2) = —16 w punkcie z = 2.
Zatem najmniejsza wartoscia funkcji f(x,y) jest —32 osiagana w (4,0) a najwieksza, 0
osiagana w punkcie (0,0) - tego punku wezesniej nie sprawdzilismy, ale nie nalezy o nim
zapominacd!

Zadanie 25:
a) Sprawdzamy: F(0,%) =0, czyli (0,%) € F~1(0).
Fi(ey) = — Fy(,y) = —5
w(2,y) = ———— — ¥, y)=———x,
i F,(0,%) =2 # 0, wigc F' = 0 definiuje w otoczeniu tego punktu taks funkcje y = y(z),
ze y(0) = 7. Poza tym, F,(0,%) =2 — 7§, czyli /(0) = § — 1.
2tg(z +y) 2tg(z +y)
F"E"E ) = F ) = T 57 N Y F-’E ) Y 17
(I y) yy(x y) COS2(,§L’ +y) y(x y) COS2(,’L' +y)
i Fpr(0,7) = Fyy(0,7) = 4, Fy(0,F) = 3. Zatem
Y(0) = = [4- (27 =232 (2= 1/4) + 4- (2 = 7/4)] _ 44Tl
2° 8 32
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b) F(%,0)=—-1+1=0, czyli (,0) € F~1(0).
Fy(z,y) = -3y +2cosz, F,(r,y)=1—-3x+cosy,

Poniewaz Fy,(%,0) =1 — 3 4+ 1 # 0, wigc F' = 0 definiuje w otoczeniu tego punktu taka
funkcje y = y(x), ze y(%) = 0. Poza tym, Fx(%,()) = /3, czyli y’(%) = —\/g/(Q — g)

Fo.(x,y) = —2sinz, F, (x,y) = —siny, Foy(z,y) = —3.

Stad Fp.(5,0) = —1, F,,(5,0) = 0. Zatem

y'(5)=—[-1-(2-7/2)" =2 (=3)-V3- (2 - 7/2)]/(2 - 7/2)*.

o)

¢) F(Z,00=2—2—1+1+1=0, czyli (2,1) € F7(0).

6’

1 4 x
Fx(x>y):_+_2a Fy(l',y):——2—1

y x Y
F,(2,1) = =3 # 0, wiec F' = 0 definiuje w otoczeniu tego punktu taka funkcje y = y(z),
e y(2) = 1. F,(2,1) = 2, wiec y/(2) = 2/3.

8 2x 1
Fxx(x>y):_ﬁa Fyy(l’ay)zﬁa ny(x>y):_ﬁ'
Fou(2,1) = —1, F,,(2,1) =4, F,,,(2,1) = —1.
" 1 2 2 5
Y(@2) =3[ (3P =2 (-1) 20 () + 402 = 2

d) F(2.0) =0, czyli (2,0) € F~(0).

142y 2
Fo(r,y) = — 3y, Fy(z,y)=——+3x.
(z,y) (x_1>2+y y(2,y) x_1+:)§
F,(2,0) =246 =8 # 0, wiec F' = 0 definiuje w otoczeniu tego punktu taka funkcje
y=y(z), ze y(2) =0. F,(2,0) = —1, wiec y/'(2) = 1/8.

Fyy(l’,y)zo ny(x,y):—

(z —1)?
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Rysunek 28: Zbiér E z Zadania 26a.

Zadanie 26:
a) Pochodne F: F,(z,y) = (2/3)x7 3, F,(z,y) = (2/3)y~'/3. Punktami, w ktérych
F = 0 nie wyznacza funkcji y = y(x) sa rozwiazania uktadu

2213 1 y2/3 _ a2/3, y—1/3 0.

Takich niema. Ale nie nalezy zapominaé, ze aby w ogble w otoczeniu jakiegos punktu
mozna byto pytac o fukcje y = y(x), czy = x(y), musza w tym punkcie istnie¢ i by¢ ciagte
(w sensie watkowanej przez nas ciaglosci funkeji wielu zmiennych) obie pochodne F,(z, y)
i Fy(x,y). Tu w punktach (0, +a), ktore naleza do zbioru E, nie istnieje F,, a w unktach
(£a,0), ktore tez naleza do zbioru E, nie istnieje F,. Zatem w tych punktach F' = 0
nie wyznacza ani y = y(z), ani x = z(y). Jak wyglada zbior E? Jest to jakby kwadrat
z wierzchotkami potozonymi symetrycznie na osiach = i y, ktéremu boki sie wklesty do
wewnatrz. Dlaczego nie na zewnatrz? Jak sobie wzgledem y (przyjmujac, ze y > 0 np.)
rozwiazemy uogélniony warunek |z|? + |y|P = 1 (zawsze mozna przeskalowaé¢ zmienne,
zeby sie tego a pozby¢), ktory niewatpliwie przy p = 1 wyznacza wlasnie kwadrat: y =
(1 — 2P)Y? i na obliczymy y' = —aP~}(1 — 2?)~*V/P to widzimy, ze w x = 0 pochodna
ta sie zeruje, jesli p > 1, czyli funkcja y = y(x) dochodzi do wierzchotka plasko (kwadrat
jest wypuczony na zewnatrz), jest rowna —1, gdy p = 1 (prawdziwy kwadrat wlasnie) i
jest rowna —oo, gdy p < 1, co wlasnie oznacza, ze kwadrat si¢ wklest do wewnatrz. Gdy
p = 2/3 wyglada to jak na rysunku 28. Widaé teraz, ze rzeczywiscie wszystkie cztery
wierzcholki sa punktami, w ktorych nie moze istnie¢ y = y(z), ani = x(y), bo krzywa
bedaca zbiorem F ma tam dziubki. Teraz pochodne y’ i y¥” w punktach zbioru E, ktoére
nie sg wierzchotkami

3

1/3
y =— (g) , Y= —‘% [(2%y) 7 + (yP2) ]
xXr

b) To jest obrocona hiperbola. F, = 2x + 3y, F,, = 3x — 2y. Punkty, w ktérych F' = 0 nie
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Rysunek 29: Zbiér E z Zadania 26b. Pokazane sa oba uklady wspotrzednych: pierwotny
i obrocony o kat ¢; dwie dodatkowe linie pionowe stykaja sie z ramionami hiperboli w
punktach, w ktérych warunek z? — 4% + 3zy = 1 nie zadaje funkcji y = y(z): w tych
punktach krzywa (z punktu widzenia uktadu xy) “staje deba”.

wyznacza y = y(x) to rozwiagzania uktadu
F,=3r—-2y=0,
F=2>—y*+320y—1=0
Daje to x = +2/V/13, © = y = +2/v/13. Zeby zobaczy¢ dlaczego, wzprowadzmy nowe
osie 2/ 1y’ wzorami
x=21a"cosh —y'sinfd = x'cy — y'sg,
y=a'sinf +y cost = 2'sp +9'cy,
i podstawmy do F'(z,y) = F(2'cy — y/'sg, 2'sg + 3'cy) = 0. Da to
2% (cj — 55+ 3sgco) — y'*(c5 — s5 + 3secy) + 7'y (3c; — s5) — 4sgcg) = 1.
Mozna teraz dobra¢ kat 6 tak, by wyzerowaé czlon z 2’y

3
tg20 = —
g 5

Rownanie F(x,y) = 0 przybierze wtedy postac

13 13
z (3 5909) —y (3 5909) =1.

To juz jest “szkolne” rownanie hiperboli. Jak duzy jest kat 7 Mozna i do tego doj$¢ (bez
kalkulatora): warunek

28909 3
2 2 7 o
Cp — Sp 2
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jest rownowazny réwnosci
4
s+ 3to— 1=0,

ktorej rozwigzaniem (mniejszym) jest

_ —2+4V13

ty =tgh 5

Poniewaz /13 < 4, tgf < 1, czyli obrot jest o mniej niz 7/4. 1 rzeczywiscie, rysunek 29
krzywej 22 — y% + 3zy = 1 pokazuje, ze jest to’szkolna” hiperbola w Zdziebko pochylonym
uktadzie.

Zadanie 27:

a) Fy(z,y) =22 — 2, Fy(z,y) = 2y — 2. F, =0 w punkcie z = 1, ktéremu odpowiada y
bedacy rozwigzaniem warunku F(1,y) = 0, czyli —2y+y? = 0. Rozwigzaniami warunkoéw
F,=01F =0 sa wigc dwa punkty (1,0) i (1,2). W obu tych punktach pochodna Fj nie
jest rowna zeru, wiec w ich otoczeniach warunek F' = 0 definiuje - teraz to jest oczywiste,
bo z jest ten sam - dwie rozne funkcje: y = y;(x) w otoczeniu punktu (1,0) i y = yo(x)
w otoczeniu punktu (1,2). Oczywiscie y;(1) = 0, a yo(1) = 2. Dla obu tych funkcji
x = 1 jest punktem krytycznym, bo y;(1) = 0 i y4(1) = 0. Poniewaz F,.(x,y) = 2, a
F,(x,y) = 2y — 2, drugie pochodne tych funkcji sa w x = 1 réwne

" _ Fmr(luo) o " _ Fmr(172)
W="Fwo = 40="Fuy =

Funkcja y = y1(x) ma wiec w x = 1 (lokalne) minimum, a funkcja y = y;(x) ma w tym
punkcie (lokalne) maksimum.

Warunek F(x,y) = y? — 2y + 2° — 22 + 1 mozna w tym przypadku zreszta jawnie
rozwiaza¢ (bo to zwykle rownanie kwadraticznoje), dostajac

y=1T+1—(22—2z+1).

Wida¢, ze — daje funkcje y = y1(z), bodlax =1y =1—-1 =0, a + daje funkcje
y = yo(x). “Szkolne” pochodne tych funkeji sa rowne
2—2x /() 2—-2x
_ , T) = .
oI (2 2211 2,/T— (2> =2z +1)

yi(z) =

Obie zeruja sie w = = 1 i, poniewaz réznia sie tylko znakiem, gdy pochodna y| zmienia
sie z ujemnej na dodatnia, przy przejsciu x-a (z lewa na prawo) przez punkt x = 1 (co
zapewnia, ze w x = 1 jest lokalne minimum funkeji y;), to pochodna y; zmienia sie z
dodatniej na ujemna.

b) Fu(x,y) =2y + 2z, F,(x,y) = 3y* + 2z. Warunek F, = 0 jest spelniony, gdy y = —z,
a warunek F'(z,—z) = 0 ma jako rozwiazania x* = 0 oraz x = —1, czyli punktami
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podejrzanymi sa punkty (0,0) i (—1,1) zbioru F~1(0) C R?. Ale w punkcie (0,0) zeruje
sie pochodna F,, wiec w tym punkcie (i jego otoczeniu) warunek F'(x,y) = 0 nie wyznacza
funkcji y = y(z). Zostaje zatem do zbadania tylko punkt (—1,1), w ktorym F, = 1.
Fop=21y"(—-1) = —F,,(—1,1)/F,(—1,1) = —2. Funkcja y = y(x), taka ze y(—1) = 1,
ma wiec w punkcie —1 maksimum lokalne.

Zadanie 28: Po pierwsze sprawdzamy, czy pytanie ma sens, tj. czy podany punkt
(1,3,2) nalezy do poziomicy zerowej odwzorowania F(z,y,2) = 23 — xyz — 2. Nalezy, bo
F(1,3,2) = 0. Pochodne czastkowe F

Fo(z,y,2) = —yz, Fy(r,y,2)=—xz, F,(zv,y,2)= 32—y,

maja w punkcie (1, 3,2) wartosci: F, = —6, F, = —2, F, = 9. Poniewaz I, w tym puncie
nie znika, a wszystkie te pochodne sg, jako funkcje na R?® ciggle w otoczeniu (dowolnym
zreszta) tego punktu, wiec warunek F'(z,y, z) = 0 wyznacza w otoczeniu punktu (1,3, 2)
funkcje z = z(z,y). Jej pierwsze pochodne czastkowe sa tam rowne

F.(1,3,2) 2 F,(1,3,2) 2
Zx(1’3)|z:2 = _m = ga Zy(1>3)|z:2 = _m = § .

iszemy 2z, _,, & nie 2z, o prostu, bo moze si¢ zdarzy¢, ze jest jakie$ inne
Piszemy 2,(1,3)[,_, i 1,3) po prostu, b ze si¢ zdarzy¢, ze jest jakies I
jeszcze rozwiazanie warunku F'(1,3,z) = 0z z = 29 # 2, i wtedy by byly dwie rézne

funkcje z = 21 (x,y) i 22(z, y) zdefiniowane w otoczeniu tego samego punktu (1,3) € R?).
Drugie pochodne czastkowe odwzorowania F' sa w punkcie (1,3,2) rowne

F,.(1,3,2) =0, F,,(1,3,2) =0, F..(1,3,2) =12,
Foy(1,3,2) = =2, F,.(1,3,2) = -3, F,.(1,3,2) = —1.

Aby obliczyé drugie pochodne czastkowe funkcji z = z(z, y) w punkcie (1, 3, 2) wstawiamy
te liczby do wyprowadzonych wzoréw

Foo F?—2F, F, F, + F,, F?

Z.CB.CB -

F3 ’
Fy, F? — 2F,,F,F.+ F,, Fy2
Ryy = — 3 ’
Fpy F? - F,, F,F,—F,.F,F,+F,F,F,
Zpy = — 73 )

i dostajemy zuu(1,3)|sms = —4/27, 2, (1,3)|sms = —4/243, 25, (1,3)]os = 42/243. (Mosze
sie nie pomylitem).

Zadanie 29: Brzmi to zawile (bo zadania w zbiorku §.p. G. Cieciury sa zawsze w
taki skomplikowany sposob formulowane - ja i tak je sprowadzam do ludzkiego...), ale
jest banalnie proste. Jesdli funkcja ¢(t) jest rozniczkowalna w okolicy ¢t = 0, to jest tam
przyzwoita, nie robi siup6w, ma ciagta pochodna ¢’'(t), i jedyny problem, zZe nie wiemy,
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jak wyglada. Ale to pestka bo poza tym wszystko normalnie dziata. Obliczamy pochodne
czastkowe odwzorowania F' korzystajac ze znanych juz regut

Fo(z,y,z) =¢€* (b/(:c e* — ye_z) ,
F,(z,y,z) = —¢* gb’(:ﬂ e — ye_z) ,
F.z,y,2) = (v’ +ye ?) ¢ (ze” —ye?) — 1.

Poniewaz ¢(t) i ¢'(t) jako sie rzeklo sa przyzwoite, wiec ¢/(0) istnieje i ma skoniczona,
warto$¢é. Zatem w punkcie (0,0, z), gdzie zy jest takie, ze F'(0,0,z) = 0, pochodna F,
jest po prostu rowna —1 (bo czynnik przed ¢’ jest rowny zeru), a nie zero i twierdzenie o
funkcji uwiklanej gwarantuje, ze w otoczeniu (0,0) € R? istnieje funkcja 2 = 2(z,y) taka,
ze z(0,0) = zp 1 majaca w tym otoczeniu pochodne

Fu,y,2)
zy(wy) =— =

Z(T,y) = — : RN :
Fz(l’, Y, Z) z=z(x,y) FZ(ZL', Y, Z) z=z(z,y)

Roéwnanie rozniczkowe ma wiec postac

0 0 1
5e T 5 = e —ye) g g (we —ye) =0,

Jest jasne, ze funkcja z(z,y) je speknia, jesli g(z) = €.

Zadanie 30:
a) Obie pochodne czastkowe odwzorowania F

Fo(z,y,2) = =21(2* = 1)z + 42z +vy), F,(2,y,2) =222 +v),
zeruja sie jednoczesnie, gdy y = —2x i x = 1. Warto$¢ z wyznacza warunek
F(£1,¥2,2) =62 £ 142 — 20 = 0.
Gdy x =1
62° + 142 — 20 = (2 — 1)(62* + 62 +20) = 0,
agdy r = —2
62° — 142 — 20 = (2 — 2)(62* + 122 + 10) = 0.

W obu przypadkach A tréojmianu w drugim nawiasie jest ujemna. Zatem punktami kry-
tycznymi sa

(1,-2,1), (—1,2,2).

Tzn, (1,-2) i (—2,2) sa punktami krytycznymi funkcji z = z(x,y) (jednej funkeji, a
moze dwoch réznych? tego sie wlasnie przy funkcjach zadanych w sposéb uwiklany nie

190



wie...), a w tych punktach z(1,—2) = 11i 2(—1,2) = 2. Reszta to rutyna. Pochodna
F.(x,y,2) = 1822 — 7(x® — 3x) jest w tych punktach réwna odpowiednio 32 i 58,

Fxx(zayaz):8_42xz7 Fyy(x7y7z):2a ny(l',y,Z):4,

i stad macierze form kwadratowych drugich pochodnych w tych punktach krytycznych
maja postac

1 —-34 4 1 92 4
Qu,—21) = ~33 < 4 2) ;o Q122 = ~ra < 4 2) -

Pierwsza forma jest nijaka i w punkcie (1, —2) funkcja z = z(z,y) ma punkt siodlowy;
druga forma jest ujemnie okreslona i punkcie (—1,2) funkcja z = z(x,y) (ta sama, albo
inna) ma lokalne maksimum.

b) Obie pochodne czastkowe odwzorowania F

1 — 22

Fp(x,y,2) = 142 R E

+4(2I - y)> Fy(llj',y,Z) = —2(21' - y)>

zeruja sie jednoczesnie, gdy y = 2z i « = =1 lub z = 0. Jednak z = 0 jest sprzeczne z
F=0(boF =9 gdyz=01y = 2z), wiec sa tylko dwie mozliwosci. Gdy (z,y) = (1,2),
to

F(1,2,2) =22 4+824+9=(2+1)(*—2+9)=0,
co daje z = —1 (bo A tréjmianu jest ujemna); gdy (z,y) = (—1, —2), wowczas
F(1,2,2) =2° —62—9=(2+3)(2* =32+ 3) =0,
i znéw jedynym pierwiastkiem jest z = —3. Zatem punktami krytycznymi sa
(1,2,-1), (—=1,-2,-3),

tzn., (1,2) i (—=1,—2), a w tych punktach 2(1,2) = —11i 2(—1,—2) = —3. Pochodna
F.(z,y,2) =322+ 1+ 14z/(1 + 2?) jest w tych punktach réwna odpowiednio 11 i 21.

z%2—3
wa(xvyvz) ZQZIW—FS, Fyy(x,y,z) :2, me(x,y,z) = —4,

i stad macierze form kwadratowych drugich pochodnych w tych punktach krytycznych
maja postac

1 15 —4 1 (-13 —4
Q(l,2,—1) = _ﬁ (_4 2 ) ) Q(—l,—2,—3) = _ﬁ ( —4 2 ) :

Pierwsza forma jest ujemnie okreslona i w punkcie (1,2) funkcja z = z(z,y) ma lokalne
maksimum; druga forma jest nijaka (mieszana sygnatura) i punkcie (—1,—2) funkcja
z = z(z,y) (ta sama, albo inna) ma punkt siodltowy.
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¢) Obie pochodne czastkowe odwzorowania F

2

1
Fy(z,y,2) = Tzsin(z + y) + 20 -

m, Fy(flf,y,Z) = 7ZSiH($+y>,

zeruja sie jednoczesnie, gdy z +y = kr (k € Z) i x = £1. Sa wiec takie mozliwosci: gdy
(r,y) = (1, =14 2km), to

F(l,—1+2km,2) =32 —724+10= (2 +2)(32° - 62 +5) =0,
co daje z = —2 (bo A tréjmianu jest ujemna); gdy (z,y) = (1, —1 + 7 + 2k7), to
F(l,-1+4m+2km,2)=32"+72+10= (2 + 1)(32* =32+ 10) =0,
iz=—1(znow A <0). Z kolei, gdy (x,y) = (=1, 1+ 2k7), wowczas
F(=1,142km,2) =32 =72 =10 = (2 — 2)(32* + 62 +5) = 0,

i jedynym pierwiastkiem jest z = 2 (znéow A < 0) i wreszcie, gdy (x,y) = (—1, 1+7+2k7),
to

F(=1,1+7+2km, 2) =32+ T72—10 = (2 — 1)(32* + 32 + 10) = 0,
iz=1(bo A <0). Istnieja wiec cztery serie punktoéw krytycznych
(1,-142km,—-2), (1,-147+2km,—1), (—=1,142km,2), (—1,1+7+2km,1).

ale wszystkie punkty kazdej z serii maja identyczny charakter (periodycznosé kosinusa!)
wiec wystarczy potozyé k = 0. Pochodna F.(z,y,2) = 922 — 7cos(z + y) jest w tych
czterech seriach punktéw réwna odpowiednio 29, 16, 29 i 16.

x?—3

(14 22)3°
F(x,y,2) = Fpy(z,y,2) = Tzcos(x + y),

Foo(w,y,2) = Tzcos(z +y) + 40z

i stad macierze form kwadratowych drugich pochodnych w tych punktach krytycznych
maja postac

1 (—-24 —14 1 (-3 7
Q(l,—l,—Q) - _2_9 (_14 _14) ) Q(l,—l-l—ﬂ',—l) = _E ( 7 7) )

1 (24 14 1 3 =7
Q(—I,I,Q) = _@ (14 14) ) Q(—l,l-l—ﬂ',l) = _E (_7 _7) .

Pierwsza forma jest dodatnio okreslona i w punkcie (1, —1) funkcja z = z(z, y) ma lokalne
minimum; druga forma jest nijaka (mieszana sygnatura) i punkcie (1, —1+4 ) funkcja z =
z(x,y) (ta sama, albo inna) ma punkt siodtowy. Trzecia macierz jest ujemnie okreslona i
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tam (jakas) funkcja ma maksimum, a czwarta jest nieokreslona i punkt (—1,1+ 7) jest
punktem siodtowym (jakiejs) funkcji z = z(z, y).

Zadanie 31: Najpierw sprawdzamy, czy F'(1,—1,1,1) = 0 € R?, czyli, czy F'(1,-1,1,1) =
0i F?(1,-1,1,1) = 0. Zgadza sie. Jesli w otoczeniu tego punktu F zadaje funkcje
r=ux(y,t)iz=2z(y,t), to

Fl(z(y,b), y, 2(y, 1), ) =0, F*(a(y,1), y, 2(y, 1), t) =0,
Symbol = oznacza, ze sa wyrazenia po lewej sa tozsamosciowo zerami ze wzgledu na

zmienne y i t. Aby znalez¢ pochodne z, i z, rézniczkujemy te tozamosci po y:

0
g F'(x(y,t), y, 2(y,t), t) = 2y — 222, — 272, = 0,
Y

0
oy F?(x(y,t), y, 2(y,t), t) = 322, + 3y* — 322, = 0.

Daje to liniowe réwnania na x, i o;:

(e 5) (3) = ().

Stad (macierze 2 x 2 odwracamy juz w pamieci!)
Ty \ 1 -3z —x Y
z, ) —323—323\ =32 =z —3y* )’

2Py -yt . Py 4Pz
Yooa3 423 Va3 423

skad

Roéwnania wyznaczajace x; i z; otrzymane z

3}

pr FYa(y,t), y, 2(y,t), t) = 2t — 2z, — 222, = 0,

3}

pr F%(x(y,t), v, 2(y,t), t) = 322z, + 3t* — 32°2, = 0.

maja taka sama strukture (z powodu symetrii F'(x,y,2,t) i F?(x,y,2,t) wzgledem za-
miany y <> t), wiec
22t — 21 2t + 22
Ty = ————— -
PP R 3+ 23

Zt =

W punkcie (1,—1,1,1) daje to nastepujaca macierz pochodnych czastkowych (ktéra to
macierz jest pochodng funkeji R? — R?):

Ty Tt . -1 0
zg z) 0 0)°
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Zadanie 32: 5
a) Tworzymy funkcje F'(z,y) = 22 +y* — A(a® +y> — 16) i przyrownujemy do zera jej obie
pochodne czastkowe wraz z warunkiem:

Fo(z,y) =22 —3)\? =0,

Fy(w,y) =2y = 3\y* =0,

G(r,y) =2 +y*—16=0.
Z pierwszego x = 0 lub A\x = 2/3, i podobnie z drugiego y = 0 lub Ay = 2/3. Pukt (0,0)
odpada, bo G(0,0) # 0, wiec zostaja trzy mozliwosci. Ogodlnie, macierz formy () drugich

pochodnych ma postac
2 —6\x 0
@= ( 0 2 — 6)\y> ’

a pochodna warunku G to G’ = (322, 3y?).

Gdy 2 = 0i Ay = 2/3, warunek G(0,y) = 0 daje y = 2%3. Macierz Q drugich
pochodnych ma na diagonali 2 i —2, czyli ma sygnature (+, —). Jednak warunek G, -h =
0,z G" = (0, 3-2%/3) w badanym punkcie méwi, ze istotne sa tylko wartosci formy @ drugich
pochodnych na wektorach postaci (h,0), a na takich @ przyjmuje tylko wartosci dodatnie.
Zatem w punkcie (0, 2*/%) funkcja F' ma na F minimum. Symetria <+ y méwi, ze tak
samo jest w punkcie (242, 0).

Gdy Az = Ay = 2/3, czyli x = y, warunek G(z,z) = 0 daje x = y = 2, zatem
A = 1/3 i macierz formy ) ma na diagonali —2 i —2. Jest wiec ona w tym punkcie
ujemnie okreslona i nie trzeba dodatkowo badac jej na wektorach stycznych. W punkcie
(2,2) funkcja F' ma na F maksimum lokalne.

b) Tworzymy funkcje F(z,y) = 222y* — M(z* + y* — 1) i prayrownujemy do zera jej obie
pochodne czastkowe wraz z warunkiem:

Fo(z,y) = 4y — 4 a® = 0,

Ey(x,y) = 42y — 40> =0,

Gr,y)=a*+y*—1=0.
Z pierwszego x = 0 lub Az? = y? i podobnie z drugiego y = 0 lub \y? = z%. Pukt (0,0)
odpada, bo G(0,0) # 0. Jesli x # 0 iy # 0, to wtedy A\ = 22/y? = y?/2?, czyli 2 = ¢*
i s cztery mozliwogci (2714, 27V4) (2714 =1/ (=14 2=1/4) (o=1/4  _o=1/4)
Wszystkim tym punktom odpowiada A = 1. Rozwiazaniami sa tez punkty (0,£1) i
(£1,0), ktorym odpowiada A = 0. Razem jest wiec 8 punktéw krytycznych.

Ogolnie, macierz formy () drugich pochodnych ma postaé

Q= 4y? — 1222 8y
N 8xy 422 — 12)\% )’

a pochodna warunku G to G' = (423,4y%). Gdy x = 0, y = +1 1 A = 0 macierz ta ma,

postac
4 0
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ale warunek G’ - h = 0 ogranicza wektory, na ktérych nalezy badaé¢ jej okreslono$é do
postaci (h,0), a na takich wektorach ma ona zawsze warto$¢ dodatnia, czyli w punktach
takich funkcja F' ma na F minima. Tak samo jest w punktach (£1,0).

Z kolei w czterech punktach, ktérym odpowiada A = 1, macierz drugich pochodnych
przyjmuje postac

—1

_4f< 1 j:l)’

przy czym wyrazy pozadiagonalne sa dodatnie, gdy v = o = £27* i ujemne, gdy
y = —x = £27/4. Jednak warunek G’-h = 0 ogranicza wektory, na ktorych nalezy badac
okreslonos¢ macierzy drugich pochodnych do postaci (h, —h), gdy y = z i do postaci

(h,h), gdy y = —x, a na takich wektorach macierz @) jest we wszystkich tych punktach

ujemnie okreslona:
-1 +1 h\ 9
o () (1) = e

Zatem we wszystkich tych czterech punktach funkcja F' ma na E lokalne maksimum.

Zadanie 33: Dowolny punkt o wspotrzednych (x,y) jest od punktu P = (3,12) oddalony
(najlepiej operowaé¢ kwadratami odlegtosci - unikniemy pierwiastkow) o

D=d>=(z—-3)%+ (y—12)°.

Jesli punkt (x,y) ma leze¢ na paraboli, to szukamy ekstremum D(x,y) (jesli D ma eks-
tremum, to d > 0 tez) przy ubocznym warunku G(z,y) = y? — 6z. Dalej wszystko idzie
juz regulaminowo: tworzymy funkcje

i rozwigzujemy uktad réwnan
Dy(z,y) =2(x—3)+6A=0,
Dy(x,y) =2(y —12) = 2\y = 0,
y? — 6z =0,

albo z =3(1— M),y =12/(1 — \) i y* = 6z czyli

144

m:mu—m.

Zatem (1 — X)® = 8, astad A = —1, z = 6, y = 6. Drugie pochodne funkcji D(z,y):
D,.(x,y) =2, Dy, (z,y) = 2(1=X), Dy(z,y) = 0 daja w znalezionym punkcie krytycznym
dodatnio okreslong forme kwadratowa drugich pochodnych. Zatem punkt P’ = (6,6) jest
potozony najblizej rzeczonej paraboli. Mozna tez zauwazy¢, ze wektor biegnacy od P
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do P’ o sktadowych [6 — 3, 6 — 12] = [3, —6] jest prostopadly do wektora stycznego w
punkcie P’ do paraboli. To akurat mozna ustali¢ “po szkolnemu”: parabola o rownaniu
y = +/6x ma jako funkcja pochodna +/3/2x i w punkcie # = 6 tangens nachylenia réwny
1/2 Zatem wektor styczny do paraboli w punkcie P’ ma z—owg sktadowa dwa razy wieksza
niz y-kowa, np. wektor [2,1] jest stczny w P’ do paraboli i jest (znoéw “po szkolnemu”)
prostopadly do wektora P'P. Po cichu wprowadziliSmy tu kanoniczny iloczyn skalarny w
R2.

Problem ten mozna oczywiscie rozwiagzaé¢ inaczej po prostu wstawiajac do funkcji
D(z,y) funkcje = = z(y) = %y2 wywiklana z rownania paraboli i szukajac zwyklego
ekstremum funkcji D(y):

d 1

1
—_— et — 2— — — =
r D(y) =2 <6y 3) Sy +2(y—12) =0,

co prowadzi do réwanania 33 — 216 = 0, czyli y = 6. Poza tym
d? 1

— D(y) = = /2
a0 W) =3y,

wiec jest to minimum.

Zadanie 34:
Jesli krawedzie akwarium maja dtugosci =, y i z, to jego objeto$¢ jest rowna zyz. Za to
pole powierzchni zuzytego szkta jest dane funkcja

S(z,y,2) = xy + 2x2 + 2y=.

Dlaczego nie 2zy + 2xz + 2yz? - zeby daé¢ kotu szanse... Problem sprowadza sie zatem
do zminimalizowania funkcji S(x,y, z) przy ubocznym warunku V(z,y,z) = zyz — 32.
Tworzymy wiec funkcje

S(x,y,z) = xy + 22z + 2yz — Mayz — 32),

1 rozwazujemy roéwanania

(T,y,2)= y+22—Ayz=0,

U e

W2y, 2)= x+2z2—Axz=0,

l

o(T,y,2) =242y — Ay =0,
V(z,y,2z) =2yz—32=0.

Odejmujac np. od drugiego pierwsze dostajemy (z — y)[1 — Az] = 0. Zatem abo Az = 1,
albo z = y (symetria problemu wzgledem zamiany = <+ y podpowiada, ze to to wlasnie
bedzie wlasciwym rozwiazaniem). Jesli Az = 1, to dwa pierwsze réwnania zgodnie dadza

gx(x>y>z): y—I—QZ—y:?ZZO,
Sy(x,y,2) = v4+22—2=22=0,
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czyli z = 0. To zas$ oznacza, ze A = oo 1 nie da si¢ spelni¢ Sz(a:, y,z) = 0. Zatem zostaje
tylko rozwiazanie z x = y. Roéwnania S,(z,y,2) = 01 .S,(z,y, z) = 0 staja si¢ tym samym
i uktad réwnan redukuje sie do

r+2z—Arz=0,
r(4—Xx)=0,
2’z —32=0.

Poniewaz x = 0 jest sprzeczne z trzecim, drugie daje Az = 4, a to wstawione do pierwszego
daje x = 2z. To za$ uzyte w ostatnim moéwi, ze 42° = 32, czyli 2 = 2istad juz x =y = 4
i A = 1. Drugie pochodne

Sealr,y,2) =0, Syy(r,y,2) =0, S..(z,y,2) =0,

Sxy(zayaz) = 1_)\27 sz(il'>y>z) :2_)\y> gyz(zayaz) :2_)\:1:7

daja w znalezionym punkcie krytycznym nastepujaca macierz () formy kwadratowej

0 -1 -2
Q=|-1 0o -2
—2 -2 0

W ogolnosci nie jest to macierz okreslona, ale trzeba ja bada¢ na wektorach (hy, by, h.)
stycznych do powierzchni wiezow, tj. spetiajacych warunek

h hy
(yz, 2z, 2Y)| y40) | Py | =(8,8,16) | hy | =0,
h. h.

czyli takich, ze np. h, = —%(hm + h,). Podstawiajac ten zwiazek do
Q(h) = —2h,h, — 4h,h, — 4h,h,

dostajemy

—2h, by + 2(hy + hy) (e + By) = 202 + 202 + 2h,hy = (b, hy) (? é) (Z) .
y
Forma zredukowana do wektoréw stycznych do powierzchni wiezéw jest wiec dodatnio
okreslona i w punkcie krytycznym (4,4,2) funkcja S(z,y,z) = xy + 2xz + 2yz ma na
zbiorze E = {(z,y,z) € R? : zyz = 32} minimum.

Zadanie to mozna rozwiazaé takze zwyczajnie, bo z warunku ubocznego mozna bez
trudu wywikta¢ dowolna ze zmiennych. Oczywiscie najlepiej wywiktaé¢ zmienng z, by
utrzymacé w jawnej postaci wspomniang juz symetri¢ problemu wzgledem zamiany x < .
Zatem z = 32/xy i pole powierzchni, ktore chcemy zmininalizowa¢ wyraza sie wzorem

64 64
s(x,y) =oy+ —+ —.
Ty
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Przyréwnane do zera pierwsze pochodne funkcji s(x, y)

64
Sx(x>y) =Y — ﬁa

64
Sy\ &L, Y) =2 — —,
y( ) yg

daja réwnania x?y = 64 i xy* = 64, a poniewaz funkcja s(z,y) jest okreslona na R?* w
wylaczeniem osi z 1 osi y (gdy z = 0 lub y = 0 akwarium jest tak ptaskie, ze nawet
rybka rozduszona przez kota sie nie zmiesci) wiec rozwiazaniem jest © = y = 4. W tym
punkcie drugie pochodne s,, = 128/23, s, = 128/y* i s,, = 1 tworza forme kwadratowa

0 macierzy
2 1
1 2)”

(nieprzypadkowo jest ona ta sama macierza, ktora otrzymalismy wyzej w wyniku reduk-
cji formy drugich pochodnych, gdy szukaliSmy minimum warunkowego). Forma ta jest
dodatnio okrelona, czyli w punkcie z = y = 4 funkcja s(x,y) ma minimum.

Zadanie 35: Najpierw postuzymy si¢ metoda ekstreméw warunkowych. Tworzymy funk-
cje F(z,y,2) = xy?z3 — Mz + 2y + 3z — 1) i przyréwnujemy do zera jej oierwsze pochodne
czastkowe wraz z warunkiem

3

H(2,y,2) = P2 —A=0,
y(1,y,2) = 2(zy2* = X) = 0,
L(a,y,2) = 3(ay?2* = N) =0,
G(r,y,z)=x+2y+32—1=0.

!

Réwnania 5?23 = zy23 = xy%2% = X maja kilka rozwigzan.

i) Jesli = 0, to A = 0 i alboy = 0 albo z = 0. Daje to dwa punkty (0,0, 3) oraz (0
i1) Jesli y = 0, to A = 0 i jest cala rodzina rozwiazan (1 — 3a, 0, a) z dowolnym «.
i1) Jesli z =0, to A = 01 jest cala rodzina rozwiazan (1 — 2«a, a,0) z dowolnym .
Widaé tez, ze punkt (0,0, %) nalezy do rodziny rozwiazan (1 — 3«,0,a) i odpowiada
a = 1/3, a punkt (0, % 5> 0) nalezy do rodziny rozwigzan (1 —2a, «,0) i odpowiada o = 1/2
Jesli ani o ani y ani 2 nie znika, to y?2% = A = xy2® dajexr = yiz y?2® = X = 2?22 = 322
mamy y =z, czyliz =y =2 =1/61 X = 1/6°, ale warto¢¢ X nie jest istotna dalej. Drugie
pochodne funkeji F (ktore tu sa tozsame z drugimi pochodnymi funkcji F')

1.0).

)90

Foo(z,y,2) =0, Fyy(:c,y, 2) = 2x2°, E..(z,y,2) = 6xy’z,
Foy(r,y,2) =2y2°,  Fu(,y,2) =3y°2%,  Fp(z,y,2) = 6ay2*,

Daja w punkcie x = y = z = 1/6 macierz @) formy kwadratowej

L [0 2 3

Q=—1[2 2 6
64

3 6 6

198



Ma ona sygnature (0, —,+), nie jest wiec nijak okreslona. Wektory h styczne do po-
wierzchni wiezéw, na ktorych trzeba ja badaé speliaja warunek

ha ha
Gloyecrs | by | =1, 2,3) [ By | =ho+ 20, +3h.=0.
h. h.

Wstawiajac h, = —2h, — 3h, do

1
— (2h2 + 6h2 + 4hyhy, + Ghyh. + 12hy,h.)

Q) = -

dostajemy

1 1
o~ -ty -~ (1) (1)

Poniewaz wyrazenie to jest ujemnie okreslone, w punkcie z = y = z = 1/6 funkcja F'
ma na zbiorze E maksimum lokalne. W punktach (0,0,1/3) i (0,1/2,0) cala macierz
drugich pochodnych funkeji F jest zerowa i nie mozna na jej podstawie ustali¢ charakteru
tych punktow krytycznych. Tak samo zerowa jest macierz drugich pochodnych w kazdym
punkcie krytycznym z rodziny (1 — 2«, a,0). W punktach krytycznych z rodziny (1 —
3a, 0 ) niezerowy jest tylko srodkowy element tej macierzy (z wyjatkiem punktow o = 0
ia=1/3, gdzie i ten element znika), wiec tez na wektorach postaci h = (0,0, h) daje ona
zero i nie mozna na jej podstawie okresli¢ charakteru tych punktow.

Jesli z warunku G(z,y, z) = 0 wyznaczymy np. x = 1 — 2y — 3z to badamy ekstrema
zwyktej funkcji
fly,2) = y*2° — 25°2° — 32"
Przyréwnanie do zera jej pierwszych pochodnych czastkowch
foly, 2) = 2y2° — 6y°2° — 6y*2" = 2@/2 (1-3y—32) =0,
foly, z) = 3y°2" — 6°2% — 12y%2° = 3y*2* (1 — 2y — 42) = 0,

daje nastepujace punkty (0, ), (e, 0) z dowolnym « oraz (1/6,1/6). Wida¢, ze odpowia-
daja one doktadnie znalezionym w metodzie ekstremoéw warunkowych dwoém rodzinom
punktow (1 —2a,a,0) 1 (1—3a,0,«) i punktowi (1/6,1/6,1/6). Drugie pochodne funkcji
fy. 2)

fou(y, 2) = 22% — 12y2° — 62
[y, 2) = 6y z—12y°2 - 36y
fyz(y, 2) = 6yz> —18y°2" — 24y2°,

daja w punkcie (1/6,1/6) macierz formy kwadratowe;

1(6 6
©=- (6 12)
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Rysunek 30: Ksztalt funkcji z Zadania 35. O$ y w zakresie (—2, 2), 0§ z w zakresie (—1, 1).
Maksimum w punkcie (1/6,1/6) jest stabo widoczne.

ktora jest ujemnie okreslona - w punkcie tym funkcja f ma lokalne maksimum. Tak jak
w poprzedniej metodzie, macierz drugich pochodnych w punktach rodziny (1 — 2«, a;, 0)
jest catkowicie zerowa, a w punktach rodziny (1 — 3a, 0, @) ma niezerowy tylko element
Qyy z wyjatkiem o = 1/3, kiedy jest calkowicie zerowa. Jest jasne, ze funkcja f(z,y) =
y%23(1—2y—32) nie moze mie¢ uczciwych ekstreméw, bo f(0, ) = f(c,0) = 0 i znalezione
dwie rodziny punktow krytycznych tworza jej tzw. plaskie kierunki: z kazdego takiego
punktu mozna sie przymieséci¢ do dowolnie jemu bliskiego punktu sasiedniego, w ktérym
warto$é¢ funkcji jest taka sama. Ksztalt tej funkcji jest pokazany na rysunku 30.

Zadanie 36: Postepujemy regulaminowo: tworzymy funkcje

F(l’,y,Z) = F(Jf,y’Z) - >\2G1(x7y72) - >\2G2(x7y72)
=zyz—Mx+y+2—-5)— N(vy+zz+yz—238),

ktorej pierwsze pochodne czastkowe

Fm(xuyvz):yz_kl_>@(y+z)v

Ey(x,y,2) =22 — M\ — Az + 2),
F(z,y,2) =xy — M — Xa(z+7),
przyréwnane do zera tworza, wraz z warunkami ubocznymi uktad pieciu rownan wyzna-
czajacy punkty krytyczne i odpowiadajace im wartosci A; 1 Ay (czyli razem wyznaczajacy
pie¢ niewiadomych):
yz— A —X(y+2)=0,
xz—MN —X(x+2)=0,
Ty — A — Az +y) =0,
r+y+2—-5=0,
ry+rz+yz—8=0.
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Z uwagi na symetrie funkcji wzgledem permutacji zmiennych F(y, z,z) = F(z,y,z) =
F(z,z,y) = ..., wydaje sie naturalne szukanie punktu krytycznego postaci (z, x, x). Takie
rozwigzanie wypisanego wyzej uktadu réwnan jednak nie istnieje, bo z dwoch ostatnich
dostajemy wtedy réwnania x = 5/3 i 2% = 8/3, ktore sg sprzeczne. Trzeba zatem szukaé
innych rozwiazan. Np. postaci (a, a,b), (a,b, a), (b, a, a) respektujacych w mniej trywialny
sposob symetrie problemu.”™ Jegli odejmiemy pierwsze réwnanie od drugiego, dostaniemy
(x —y)(z — A2) = 0. Zatem albo x = y, albo z = A\y. Zjamijmy sie najpierw ta pierwsza
mozliwodcig. Dwa ostatnie réwnania redukuja sie do z = 5 — 2z oraz 2% + 22z — 8 = 0.
Razem daja one na x réwnanie kwadratowe

2?4220 (5—22) —8=-32"+ 10z — 8= (v —2)(-3x+4)=0.

Mozliwe sa wiec rozwiazania (2,2,1) 1 (4/3, 4/3, 7/3). Z drugiego i trzeciego roéwnania,
ktore staja sie teraz uktadem dwoch liniowych rownan na A\; i Ay odezytujemy, ze pierw-
szemu odpowiada \; = —4 1 Ay = 2, a drugiemu A\; = —16/3 i Ay = 4. Drugie pochodne
funkeji F

Frp(z,y,2) =0, Fy(z,y,2) =0, Fzz(

LL’,y,Z):O,
ny(x,y,z):z—)\z, sz(x,y,z)zy—)\g, Fyz(zayaz):Z_A2>

daja w punkcie krytycznym (2,2, 1), ktéoremu odpowiada Ay = 2 nastepujaca macierz Q)
formy kwadratowej drugich pochodnych

0

Qe2ny=1-1 0
0 0

1

o O O

Jej okreslono$¢ nalezy jednak bada¢ na wektorach h speliajacych warunki

xT

h
(Gl)/(2,2,1) -h = (17 L, 1) hy =0,
h

I3

Dy
(Gz)/(2,2,1) -h = (37 3, 4) hy =0,
h.

ktorych rozwigzaniem jest h, = 0, h, = —h,. Na takich wektorach przemieszczen forma
kwadratowa drugich pochodnych

0 -1 0 h
Quon(h)=(h, =h,0) [ =1 0 0| | —h | =2r%
0 0 0 0

"W jezyku teorii grup powiedzieliby$my, ze rozwiazanie postaci (a, a,a) - gdyby istnialo - stanowitoby
trywialng reprezentacje grupy symetrii; rozwiazania postaci (a, a,b), (a,b,a), (b, a,a) stanowia za$ razem
jej reprezentacje trojwymiarows (co to jest reprezentacja grupy - zob. skrypt do algebry).
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jest zawsze dodatnia, co oznacza, ze funkcja F' na zbiorze E ma w punkcie (2,2, 1), a
takze, z uwagi na jej symetrie, w punktach (2,1,2) i (1,2, 2), minimum lokalne.

Analogicznie w punkcie (4/3, 4/3, 7/3), ktéremu odpowiada Ay = 4 macierz formy
kwadratowej drugich pochodnych ma postac

1 0 -5 -8
Q(4/3,4/3,7/3):§ —g 08 —08 ,

a wektory, na ktorych nalezy badaé jej okreslonosé spetniaja warunki

hy
(Gl)/(2,2,1) -h= (17 1, 1) hy =0,
h
1 e
(G2)/(221)'h:_(117 11, 8) hy | =0,
=) 3 h
ktorych rozwigzaniem znéw jest jest h, = 0, hy, = —h,. Na takich wektorach

Quys.assr3)(h) = (10/3)h?,
i znow w punkcie (4/3,4/3,7/3) oraz w 7/3,4/3,4/3) 1 (4/3,7/3,4/3) funkcja F' ma na

zbiorze E (lokalne) minimum.

Mozna tez pokazac, ze ostatnia mozliwosé¢, z = Ay nie prowadzi do zadych rozwigzan.
Dwa pierwsze rownania redukuja sie¢ wtedy do jednego i tego samego i ukklad réwnan
przechodzi w (a =z +y, b = xy):

>\1—|—)\§:0, )\1—|—CL>\2—b:O, >\2:5—a, CL)\Q—'—():S,

Ostatnie z pomoca drugiego mozna wtedy przerobi¢ na A\; = 2b — 8 i teraz korzystajac z
tego i z trzeciego podstawiamy do pierwszego i drugiego A; i A9, co daje dwa rownania:

-8+ (—-a)? =a*>+20—2a+17=0,
2 —84a(b—a)—b=—-a’*+b+5a—-8=0.

No to jeszcze je do siebie doda¢, co da 3b+3a+9 = 0, czyli b = —a — 3 i to do pierwszego:
> +2(—a—3)—2a+17=ad*>—4a+11 =0,
i teraz juz widac, ze niema rozwiazan.

Zadanie 37: Skladowe (w kanonicznej bazie przestrzeni R3) wektorow stycznych do
podanej powierzchni otrzymujemy wozniczkujac definiujace powierzchnie zwiazki:

aw cos wt cos & —asinwtsin &
t, = w cos wt sin & ,  tg= | wcoswtcos§
—aw sinwt + aw/ sin wt 0
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Wektory te moga przesta¢ by¢ liniowo niezalezne tylko w takich punktach, w ktérych
zeruje sie ostatnia sktadowa wektora t,. To za$ zdarza sie tam, gdzie sin?wt = 1, czyli
gdy wt = 7 + kmw. W takich punktach coswt = 0 i caly wektor t; = 0 i rzeczywiscie w
takich punktach wymiar (pod)przestrzeni TpM staje sie rowny 1, a nie 2, jak w innych
punktach. Punkty takie sa wiec punktami osobliwymi badanej powierzchni. Zauwazmy
tez, ze w punktach, w ktorych wt = [r ostatnia sktadowa wektora t; staje sie nieskon-
czona. W tych punktach jednak z — oo, czyli w kierunku z-owym powierzchnia rozcigga
sie do nieskoniczonosci, ktora jest osiggana w skoriczonym “czasie t” - nie sa to wiec punkty
osobliwe powierzchni jako takiej, tylko raczej pewna osobliwosé uktadu wspotrzednych,
ktorymi pokryliémy te powierzchnie. Takie rzeczy sie zdarzaja czesto przy badaniu roz-
nych czasoprzestrzeni w ramach ogoélnej teorii wzglednosci.

Zadanie 38:
a) Rozdzielamy zmienne i catkujemy

dy

Catkowaé juz umiemy, zatem dostajemy

1 1
arctgy:§x2+0, czyli y:tg(§z2+0).

Widag¢, ze stata C' jest okreslona modulo 7, bo funkcja tangens jest okresowa. Oczywiscie
wydaje sie, ze kazda funkcja (scharakteryzowana konkretng wartoscia C' z przedzialu
[0, 7)) to jest nieskoniczenie wiele krzywych catkowych (bo tak Mathematica maluje funkcje
tangens). Ale to nie o to chodzi: chodzi o to, ze przez kazdy punkt przebiega jedna i
tylko jedna krzywa catkowa (bo funkcja f(x,y) w dy/dx = f(x,y) jest super regularna).
Np. przez punkt (7,1) przebiega krzywa scharakteryzowana przez C = w/4 — 49/2, i
tylko to sie liczy, bo réwnanie nalezy wtasnie rozumie¢ w sensie warunku ograniczajacego
ruchy, gdy sie jest w jakim$ punkcie: gdy jesteSmy w punkcie (7,1) to mozemy iS¢ tylko
po jednej z nieskoniczenie wielu roztgcznych krzywych, jakie daje formalny wzor y =
tg(34% —49/4 4 7/4). Krzywa t¢ mozna tez dosta¢ wykonujac calki oznaczone, tj. piszac

/y(r) d¢ /w
—— = [ dnn,
Yo 1 _'_ 52 o

i calkujac juz bez koniecznosci dobierania pdzniej statych.

b) Tak jak poprzednio, rozdzielamy zmienne i catkujemy

/@:/dxa:,
Y

1 1
ln\y\:§$2+07 czyli yI:texp<§:c2+C).

dostajac
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y = 0 tez jest rozwigzaniem - wlaczamy je w calke ogdlng piszac +£e@ = C (y = 0 teraz
odpowiada C' = 0). Przez kazdy punkt plaszczyzny zy przechodzi doktadnie jedna krzywa
catkowa (wszystkie one sa uczciwymi funkcjami y = y(x)) bo funkcja f(z,y) = zy jest
regularna na catym R2.

¢) Znow rozdzielamy zmienne i catkujemy

/@_/@
y ) oz’

dostajac

Inly| =Injz|+C=In(|Cz]), czyli In =0,

Cx

co jest rownowazne |y/Cz| = 1, czyli po prostu
y=Cu.

Widag, ze przez kazdy punkt plaszczyzny zy z wyjatkiem punktow (0, y) przechodzi jedna
funkcja y = y(z). Przez punkty na osi z tez, bo robiac manewry ze stala catkowania
(przechodzac od C' do é’) chytrze upchnelismy w catke ogblna rozwiazanie y = 0, ktorego
pierwotna forma tej catki nie obejmowata. Przez punkty (0,y) o y # 0 nie przechodzi
zadna funkcja obejmowana przez catke ogdlna, a przez punkt (0,0) przechodzi ich nie-
skoniczenie wiele. Znow oznacza to, ze w punkcie (0,0) funkcja f(x,y) = x/y moze by¢
dookreslona tak, by by¢ ciaglta w dowolnym (ale tylko jednym) kierunku, a w punktach
(0,y) o y # 0 nie moze. Ale oczywiscie jak sie pytamy nie o funkcje tylko o krzywe
calkowe, to rownania zapisane w postaci x dy = y dx jest zupelnie symetryczne wzgledem
zamiany z <> y i punktu na osi y (i y # 0) powinny mie¢ taki sam charakter, jak punkty
na osi x (i z # 0). I rzeczywiscie tak jest, bo x = 0 jest tez krzywa calkowa. Rozwiazania
przechodzace przez dowolny punkt (zg,yo) nie lezacy na zadnej z osi mozna oczywiscie
dosta¢ wykonujac calki oznaczone:

/y(x)g_ 1‘@
w & Jam

d) Analogicznie jak w poprzednim przypadku rozdzielenie zmiennych prowadzi, po scal-
kowaniu, do wyniku

co daje In |y/yo| = In |z /x0.

C
y=—, albo, w symetrycznej postaci zy =C'.

x

Teraz przez punkt (0,0) przechodza tylko dwie krzywe calkowe y = 0 1 x = 0 (obie
odpowiadajace C' = 0). Warto ten przyklad skonfrontowaé¢ z poprzednim: w obu tych

przypadkach funkcje f(x,y) w rownaniu ' = f(x,y) mozna w punkcie (0,0) dookresli¢
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Rysunek 31: Krzywe catkowe rownania y' = —y/x.

tak, by byla w nim ciggla wzdluz dowolnie wybranego kierunku, czyli moze ona w tym
punkcie wyznacza¢ dowolne nachylenie krzywej catkowej. Niemniej tam przez punkt ten
przechodzilo nieskoriczenie wiele krzywych (kazda o innym nachyleniu w tym punkcie),
a tu tylko dwie. Tak moze by¢, bo mozliwos¢ dookreslenia funkcji w punkcie w dowolny
sposob jest tylko warunkiem koniecznym na to, by przez taki punkt mogto przechodzié¢
nieskoniczenie wiele krzywych catkowych, ale nie warunkiem dostatecznym. W istocie w
przyktadzie teraz rozptrywanym krzywe catkowe obejmowane przez wypisana wyzej catke
ogblng sa pokazanymi na rysunku 31 hiperbolami, ktére pozornie biegng ku punktowi
(0,0), a zawsze ostatecznie go “omijaja’, odchylajac sie w bok.”” Z punktu (0, 0) mozna
tylko “ruszy¢” wzdluz osi x lub y; proba ruszenia (np. przez numeryczne catkowanie
rownania) w ciut innym kierunku jest niewykonalna, bo tuz po wyjsciu z punktu (0,0)
w jakim$ innym kierunku koriczy sie natychmiast (tj. w punkcie infinitezymalnie bliskim
punktowi (0, 0)) natrafieniem na kierunek catkowicie inny niz ten, w ktoérym zamierzalismy
sie uda¢.™

e) W tym przykladzie rozdzielenie zmiennych prowadzi do catek

dy dx ) 1
/5: e co daje ln|y|:—2—x2+0,

czyli

1 ~ 1
y(r) = Lexp (_2—552 + C’) = Cexp (—2—a72> .

"TWyglada to jak bieg statych sprzezenia w poblizu odpychajacego punktu stalego w réwnaniach grupy
renormalizacji...

"8Jesli jeszcze chwile o tym pomysleé, to zauwazy sie, ze réznica miedzy dwoma przypadkami polega
na tym, ze warto$é funkeji y/x wynikajaca z ciaglosci wzdtuz wybranego kierunku jest doktadnie taka,
ze zadaje ona dokladnie to nachylenie, ktore odpowiada wybranemu kierunkowi zbiegania do (0,0); w
przypadku funkcji —y/x - jej wartosé zadaje nachylenie odpowiadajace prostej ortogonalnej do kierunku
zbiegania.
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Rysunek 32: Krzywe catkowe réwnania ' = y/2® obejmowane przez catke ogélna.

Znow zastapilismy czynnik +e® przez staly C dopuszczajac oba jej znaki i znéw w ten
sposob wlaczylismy w caltke ogolng funkcje y = 0 (ktore teraz odpowiada C = 0), ktorej
pierwotnie catka ta nie obejmowata (jesli nie dopuszczato sie C' = —o0). Rodzine funkcji
obejmowanych przez catke zupelna pokazuje rysunek 32. Przez wszystkie punkty ptasz-
czyzny xy z wyjatkiem punktow (0,y) przechodzi tylko jedna funkcja y = y(zx); przez
punkty (0,y) o y # 0 nie przechodzi zadna, a przez punkt (0,0) przechodzi ich nieskori-
czenie wiele (wszystkie rozwiazania obejmowane prze catke ogolna). Jest to spowodowane
tym, ze f(x,y) = y/x* nie jest ciagla (z zadnego kierunku) w punktach (0,y) o y # 0, a
w punkcie (0,0) mozna jej nada¢ wartosé¢ 0 czyniac ja ciagla tylko wzdtuz osi = - wszyst-
kie krzywe catkowe obejmowane przez catke ogdlna maja w x = 0 nachylenie réwne zero
(pamietamy: funkcja exp(—1/2%) ma w zerze wszystkie pochodne réwne zero). Oczywi-
$cie rownanie zapisane w postaci #3dy = y dr ma takze jako rozwigzanie prostg z = 0.
Rozwigzanie spelniajace warunek y(1) = 1 to y(z) = exp((1 — 1/2%)/2); odpowiada ono
C =el2

f) W tym przyktadzie rozdzielenie zmiennych prowadzi do catek

o
12

d d 1
/_y: x codaje Inly|=——+C,
y x

czyli

y(z) = + exp (-% + C) = Coxp (—%) |

Znéw tym manewrem ze stala catkowania wtaczyliSmy do catki ogolnej rozwiazanie y = 0.
W tym przypadku jednak wszystkie rozwigzania obejmowane przez catka ogélna sa nie-
ciaglte w x = 0, ale nadal przez kazdy punkt (xq, yo) plaszczyzny zy, z wyjatkiem punktow
(0,y) o y # 0 przechodzi doktadnie jedno rozwiazanie y = yoexp(—1/x + 1/z¢). Roz-
wigzania te pokazuje rysunek 33. Teraz tez funkcja f(z,y) = y/x* moze by¢ “uciaglona”
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Rysunek 33: Krzywe catkowe réwnania ' = y/2® obejmowane przez catke ogélna.

w punkcie (0,0) wzdtuz kierunku y = 0 przez nadanie jej tam wartosci 0 (w punktach
(0,y) oy # 0, funkcja f(z,y) = y/x? oczywiscie, nie moze by¢ “uciaglona”). Umozliwia to
zbieganie sie w (0,0) krzywych catkowych y = y(x) z obszaru x > 0; wszystkie one maja
tam nachylenie réwne zero - pochodna funkcji y = C’exp(—l /x) ma w x = 0 wartos¢
zero.” Poza tym, réwnanie przepisane w postaci 2?dy = y dr ma jako swoje rozwigzanie
takze prosta x = 0.

g) Oczywiscie y = 0 jest mozliwym rozwiagzaniem. Aby rozdzieli¢ zmienne zaktadamy, ze
y # 0, ze x # n7 (na razie szukamy takich rozwiazan). Rozdzielenie prowadzi do catek

d ~
/ Y / cosx’ czyli Inly| =1In|sinz|+ C =In|Csinz|.
Zatem (znoéw manewr ze stala catkowania pozwolil wlaczy¢ do catki ogdlnej rozwiagzanie
y=0)

sin
y=Csinz = yp

sin l’o

Druga posta¢ pokazuje, ze jezeli tylko zy # nm, stata C mozna tak dobrac, by rozwiazanie
przechodzito przez punkt (xg,v0). A co z punktami o (zo,y) = (nm,y) ? Jesli rownanie
przepiszemy w formie

sinx dy = ycosxdx,

77néw mozna probowaé zrozumieé, dlaczego w punkcie (0, 0) nie zbiegaja sie krzywe calkowe z obszaru
x < 0. Gdy ruszamy z punktu (0,0) plasko w kierunku dodatnich z-6w, nachylenie zerowe jest tylko
infinitezymalnie rézne od nachylen zadawanych przez funkcje y/z? tuz pod osia 2-6w i tuz nad nia; gdy
za$ ruszymy z punktu (0,0) z zerowym nachyleniem w kierunku ujemnych a-6w, nachylenie to r6zni sie
od tego, jakie zadaje funkcja y/z? tuz pod osia 2-6w i tuz nad nia: np. gdyby$my chcieli “wystartowaé
i wznie$¢” sie nad o$ z-6w, to taka wznoszaca si¢ krzywa catkowa musiata by mieé¢ nad osia nachylenie
ujemne, a funkcja y/z? nad osia r zadaje nachylenie dodatnie!
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Rysunek 34: Funkcje z(x) = 2arctg(x + C), C =0 £ 2.

to od razu zobaczymy, ze krzywymi calkowymi sa tez proste x(y) = nw. Ostatecznie
wiec przez wszystkie punkty (x,y) # (nm,0) przechodzi tylko jedna krzywa catkowa tego
rownania, a przez punkty (nm,0) przechodzi ich nieskoriczenie wiele. Wynika to z tego,
ze f(x,y) = yctgw jako funkcja na R? jest nieciaglta w punktach (nm,y), ale ze ctgr ~
1/z, gdy x ~ 0 (wszystkie pozostale punkty o x = nrm sa dzieki periodycznosci funkcji
ctgr takie same - wystarczy wiec rozpatrzy¢ x = 0), funkcje f(z,y) mozna dookresli¢
w punktach (nm,0) tak by byla ciagta w (jednym) dowolnie wybranym kierunku. To
dlatego przez punkty te punkty moze przechodzi¢ nieskornczenie wiele funkcji y = y(z).
Za to przez punkty (nm,y) o y # 0 moze przechodzi¢ tylko jedna funkcja x = x(y), bo
w rownaniu dz/dy = g(y,x) = tgz/y funkcja g(y,x) jest w takich punktach zupelnie
regularna.

Zadanie 39:
a) Po podstawieniu y = —x + z(x) do 3y’ = cos(x + y) dostajemy 2z’ = 1+ cosz i to juz
jest rownanie o zmiennych rozdzielonych. Catkujemy

[ [
1+ cosz
To wymaga przypomnienie sobie stosowanych do obliczania takich catek podstawiei...
Pamietaja Paristwo? Podstawia si¢ ¢ = tg(z/2). Wtedy

2dt , 2t 11—
:m, Slnzzm, COSZ:1+t2.
Calka po lewej przechodzi wtedy w

/% :/dt:tg(z/Q).

y(x) = —x + 2arctg(x + C).

dz

Zatem

Sprawdzmy to.
2
/ — _1 -
Y 1 + (z+C)?’
cos(x + 1) = cos(2arctg(x + C)) = —1 + 2 cos? (arctg(z + C)),
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1

ale cos? a = (1 + tg?a) ™!, wiec

2 2
=14+ ——
17 tg?[arctg(x + C)] T (x4 C)?

cos(z+y) =—1

Zgadza sie.

No a jak to jest z przechodzeniem krzywych catkowych przez punkty pltaszczyzny xy?
W réwnaniu 3 = cos(x + y) funkcja po prawej stronie jest na calym R? regularna i
zgodnie z twierdzeniem, przez kazdy jej punkt powinna przechodzi¢ jedna krzywa bedaca
uczciwa funkcja y = y(x). To samo powinno byé¢ prawda i na plaszczyznie zz (i jedno
implikuje drugie) i to tatwiej przeaanalizowa¢. Na pozor tak nie jest, bo przeciez funkcje
z = 2 arctg(r + C) wygladaja tak, jak na rysunku 34. No ale to dlatego, ze to jest
tylko funkcja arctgz zdefiniowana konwencjonalnie; wiemy, ze mozna ja zdefiniowaé tak,
by przyjmowata wartosci nie z przedziatu (—7n/2,7/2), tylko z dowolnego z przedziatow
(nm —7/2,nm+ 7/2), bo tg(a + nm) =tga. Ale to jeszcze nie zalatwia sprawy punktow
(x,2) 0z = —m+2km: zadna z tych funkcji 2arctg(z+C') nie przechodzi przez takie punkty.
Niemniej, jak spojrzymy jeszcze raz na rownanie 2’ = 1 + cos z, to zobaczymy, ze jego
rozwigzaniami sa rowniez (nieobejmowane przez catke ogolna) funkcje z(z) = w4 2kn (bo
wtedy cosz = —1). I teraz juz wszystko jest w porzadku: przez kazdy punkt ptaszczyzny
xz (a co ta tym idzie i plaszczyzny zy) przechodzi dokladnie jedno rozwiazanie rownania
2/ = —1 4 cos z (rownania 3y’ = cos(x + z)).

b) Podstawiamy y(z) = u(z)/x do y' = —y/z + cos(zy)/z*:

v u u  cosu

r a2 2 2

Roéwnanie upraszeza sie do roéwnania x v’ = cosu o zmiennych rozdzielonych. Catkujemy

wiec
/ du B dx
cosu | x’

Znow catka po lewej stronie wymaga podstawienia ¢ = tg(u/2):
du dt 1 1
=2 = [dt|—+— ) =In|l+t—In|l—1.
/cosu /1—t2 / (1+t+1—t) n|l+# —In| |

|1+ ¢
11—

Zatem

=C+In|z]=In|Cz|,

In

i stad, odwracajac kota do gory ogonem,

éx+1_
Cx—1

t=tg(u/2).
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Ostatecznie wiec

D+ 1
u = 2arctg CE':L’+ .
Cr—1

Jak zwykle sprawdzamy. Lewa strona rownania zu’ = cos u:

ol — 2 C(Cx+1) C(Cx—1)
14 (Ca+12/(Cx—1)2| (Cz—1)2 (Cz—1)?
4C x

(Cax+12+(Cax—1)2

T+ 1
= —1+2cos® |arctg C::'EjL
Cx—1

Z kolei prawa strona to:

Cr+1
cosu = cos |2arctg| —=
Cx—1

2
T tarcte(Cr 4 1)/(Ca — 1)
B 2 . 4C x
14+ (Cx+12/(Cz—12 = (Cax+12+(Cz—1)2

Zgadza sie. Rozwiazaniem wyjsciowego rownania jest wiec

2 Cr+1
y(x) = - arctg(a ) :

z—1

Znéw mozemy zapytaé, czy przez kazdy punkt ptaszczyzny xy przechodzi jedna krzywa
catkowa? W wyjsciowym réwnaniu prawa strona nie jest regularna na osi y, tj. w punktach
(0,y) 1 przez te punkty nie przechodzi zadna z funkcji y = y(z) obejmowanych przez
znaleziong wyzej catke ogolng. Niemniej, gdy sie przepisze réwnania w postaci z2dy =
(—zy + cos(xy))dz, to widaé, ze prosta x = 0 spelnia je tez. W pozostalych punktach
plaszczyzny funkcja po prawej stronie rownania y' = f(x,y) jest zupelnie regularna i
przez kazdy taki punkt przechodzi jedna tylko funkcja (cho¢ moze to wymagaé innej niz
konwencjonalna definicji funkeji arctg z).

¢) Tu chodzi o zamiang zmiennej niezaleznej. Wyobrazamy sobie, ze y(x) = g(t(x)), gdzie
t(z) = Inz. Zatem

dt de  x dt dt’
(LAY L i L L (#dg
dz \z dt 2 dt  x? dt? dt? dt |-

210



I teraz te pochodne wstawiamy do réwnania z%y” + zy' +y = 0:

o (Y dy dy|
€2t |:€ 2t (ﬁ_%)} +€t |:€ t%] +y:0

Wychodzi wiec réwnanie

d*y
ae V=0

ktore kazdy fizyk juz umie rozwiazac: g(t) = Acost + Bsint, czyli
y(x) = Acos(lnzx) + Bsin(Inz) .

A co, gdy * < 07 A nic. Tzn. doktadnie tak samo: mozna bylo z mety podstawié
t = In|z|. Mozna wiec napisac¢

y(x) = Acos(In |z]) + Bsin(ln |z]) .

Mozna byto sie w tym zorientowaé¢ od razu, bo wyjsciowe réwnanie ma symetrie x <> —x.
Doktadniej, jesli y = f(x) jest jego rozwiazaniem, to y = f(—x) tez jest: d*f(—x)/dx? =
& f(—x)/d(—2)*, adf (—x)/dx = —df (—2)/d(—x) ale vdf (—x)/dx = (—x)df (—z)/d(-=).
Wiec jak f(x) spelnia réwnanie, to f(—z) tez. To jak z rownaniami mechaniki (gdy niema
sit tarcia): jesli r(t) jest rozwiazaniem, to r(—t) tez: nie sposob powiedzie¢, czy film jest
puszczony do przodu, czy do tylu. A co z jajkiem, co spada ze stotu i robi sie z niego
jajecznica? Tez nie mozna odréznié¢ czy film byt puszczony od tytu? No i tu wchodzimy
w problemy fizyki statystycznej i tego, czy entropia moze zmale¢ (trzeba tylko jeszcze
sie¢ uméwié, o ktorej entropii méwimy)... Ale kluczem jest to, ze jajko to jest circa 10%
czastek. Pozostarimy wiec przy jednej do kilku najwyzej i wtedy jesteSmy bezpieczni.
Tylko x = 0 jest trefne, ale tu nie mamy (tzn. MY nie znamy, bo o tym nie bylo na
wykladzie) twierdzen, ale pewnie jakie$ zalozenia sa niespelnione...

d) Znow sobie wyobrazamy, ze y(x) = g(t(x)) gdzie t = arccosz. No, tu x musi by¢ pomie-
dzy —11 1. Tylko w tym obszarze mozemy tak podstawi¢. Zatem dt/dx = —1/+/1 — 22 =
—1/|sint|. I jedziemy:

y_dgat 1 dy
Yo Utde ~  JToaz dt’
p_d (1 dp\_ oz dy 1 4§
Yo\ Tomdt)” (-2 dt  1—22 a2
Podstawiamy
1 d% rdj 1 dj
1 — 22 A —— N e 20=0.
( x){l—ﬂdt? (1—x2)3/2dt] x{ Joma| tvv=0
Wychodzi
Py
ﬁ—i-wyzo,



I to znéw umiemy to rozwiagzac

y(x) = Acos(warccosx) + BA cos(w arccos x) .

e) Znow sobie wyobrazamy, ze y(x) = g(t(x)) i teraz t = 1/x
1

dy dy
de 22 dt’
Py d 1dg\ 2dyg 1 d%
@f@ﬂjﬂﬂ—ﬁa A

Wstawiamy do réwnania xly” + 223y’ + 2%y = 0:

1 d*y 2 dy 1 dy
:)34{ y+ y}+2x3 {———y}%—xzy:(),
T

e o at >t
Czyli
Py g
a0

Tego to chyba nie umiemy rozwigzac.

f) A to akurat jest proste, cho¢ wyglada na skomplikowane. Podstawié¢ nalezy (udato mi
sie to zgadna¢ - wida¢ jaka$ orientacje w terenie mam) f = e¥. Wtedy

f/ — Y y/’ f// = eV (y/)2 + eY y// —_— [y// + (y/)2} )

Wiec wyjsciowe rownanie y” + (y')? = 2e7Y, to po prostu f” = 2. “As simple as that”
powiedzieliby rodacy pana Pepysa (takie zdanie gdzies u Herlinga-Grudziriskiego zapa-
mictalem). Stad f = A+ Bx + 22 i

y=In(A+ Bz +2%).

Zeby speli¢ warunki poczatkowe trzeba wzia¢ A =21 B = 2.

g) Rownanie y” = 2y3 wyglada jak réwnanie ruchu w jednym wymiarze punktu o masie
m = 1 pod wplywem sily 23, ktoéra jest potencjalna, tzn. 2y* = —dV (y)/dy, gdzie
V = —y*/2 (tylko zamiast czasu t zmienna si¢ nazywa ). Zatem “energia’ mechaniczna

powinna by¢ zachowana, czyli

d (1 1

%<§(y/)2+§y4) =0.
Formalnie mozna si¢ o tym przekona¢ mnozac rownanie y” = 2 3 stronami przez 7’ i
zauwazajac, ze

d (1 d (1
rn N2 . . 1,3 _ o4
Yy ——dx<2(y)), i podobnie  2y'y —dx<2y)-
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Zatem mamy réwnanie pierwszego rzedu (y')? = C + y*, czyli
Y =2V C 4y,

ktore jest rownaniem o zmiennych rozdzielonych. Zanim scalkujemy je, od razu zauwa-
zamy, ze warunki poczatkowe y(0) = 1, /(0) = 1, czyli ¥/ = 1, gdy y = 1, sa tak dobrane,
by C'= 0. Poza tym trzeba wybraé¢ znak +. Zatem

(Gdyby nie to, ze C' = 0, nie umielibySmy calki po prawej stronie obliczy¢). No i teraz,
poniewaz y = 1/(A — x) znéw zauwazamy, ze A = 1, by y(0) = 1. Rozwiazaniem
speliajacym warunki poczatkowe jest zatem y = 1/(1 — x).

h) Jesli uw = tg(y/2), czyli y = 2arctg(u), to tak jak przy uniwersalnym podstawieniu w
calkach z funkcji trygonometrycznych

, 2/ . 21 1 —u?

=— ny=-——— cosy = ——
YT T e YT T YT

i gdy to podstawimy do réownania y’ + siny + xcosy + x = 0, to dostaniemy réwnanie
liniowe z niejednorodnodcia

/
U +u=-—x,

Rownanie jednorodne po rozdzieleniu zmiennych du/u = —dx daje In |u| = C" — x, czyli
(e =C)

Unom = Cexp(—1x).
Do niejednorodnego podstawiamy Ansatz tipnom = h(z) e~ i dostajemy
h=—ze®, czyli h=(1—x)¢c".
czyli Uiphom = 1 — @, co zreszta mozna bylto zgadnaé. Zatem
U = Upom + Uinhom = Ce " +1 -,

iy=2arctg(Ce ™ +1—u2x).

i) Poniewaz jest to rownanie o prawej stronie bedacej funkcja jednorodng stopnia zero-
wego, podstawiamy y = z u(z). Daje to rownanie z v/ = y/u? — 1 o zmiennych roz-
dzielonych (rozwiazania szukamy oczywiscie w obszarach © > 11 u < —1). Caltkowanie

daje
d d
/7“: Y —m|Ca].
u?z —1 T
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Rysunck 35: Funkcje u(z) = (1 + C?2?)/2Cx, C = +3,£2, 43,

Calka po lewej stronie jest réwna®® In |u++v/u? — 1|. Zatem, zdejmujac logarytmy, Cz—u =
Vu? — 1. i podnoszac te rownosé stronami do kwadratu otrzymujemy

14 2C%22
U= —-:
2Cx

Rodzing tych funkcji przedstawia rysunek 35. Nie cale jednak krzywe sa rozwiazaniami
rownania z u’ = y/u? — 1. lewa strona musi by¢ nieujemna, bo taka jest prawa strona.
Oznacza to, ze gdy x > 0 funkcja u(x) musi by¢ rosnaca, a gdy x < 0, malejaca. Za-
tem tylko kawalki krzywych pokazanych na rysunku 35 spelniaja ten warunek. Gdy
pytamy o krzywa przechodzaca przez punkt (xg,u) dostajemy na C' réwnanie kwadra-
towe i trzeba wybraé¢ te wartos¢ C, ktora w punkcie (zg,ug) daje funkcje rosnaca, jesli
o > 0 1 malejaca, jesli zyp < 0. Warunek poczatkowy y(1) = 2 odpowiada ug = 2,
zo = 1. Réwnanie 2 = (1 + C?)/2C ma dwa rozwigzania: C' = 2 + /3. Odpowiadajace
tym dwom statym krzywe sa pokazane na rysunku 36. Widaé, ze tylko jedna z nich daje
funkcje o dodatniej pochodnej w punkcie x = 1. Calka ogélna wyjéciowego réwnania
jest y = zu(x) = (1 + C?z?)/2C. Roéwnanie to, jak mozna bezposrednio sprawdzi¢ ma
jednak takze rozwiazania (bedace uczciwymi funkcjami) y = 42z nieobejmowane przez
catke ogolng. Krzywa catkowa réwnania jest tez prosta z = 0.

Zadanie 40:

a) Jest to rownanie liniowe z niejednorodnoscia. Rozwiazujemy najpierw réwnanie jed-
norodne zy' =y, czyli vy = y/z (szukamy jego calki ogolnej zaleznej od dowolnej statej).
Jest to rownanie o zmiennych rozdzielonych i to takie, jakie juz bylo w Zadaniu 38c.
Zatem piszemy “od reki”

Yhom(z,C) =Cx.

Teraz uzmienniamy stala, tj. do réwnanania nieliniowego 3’ = y/x + 22% podstawiamy
Ansatz yinpom = x h(x). Daje to na h rownanie

N =2x,

80Podstawienie u = ch @ sprowadza catke do [df; z dwoch rozwigzan na Arch(u) trzeba wybraé to
dodatnie, ktore jest funkeja rosnaca, bo pochodna, czyli funkcja 1/vu? — 1 pod caltka, byta dodatnia.
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Rysunek 36: Funkcje u(z) = (14 C?x?)/2Cx, odpowiadajace C' = 24+/3. Obie spetniaja
warunek u(1) = 2, ale tylko krzywa odpowiadajaca C' = 2 + /3 jest w tym punkcie
rosnaca.

czyli h = 2? i stad, calka ogdlna wyjsciowego rownania ma postacé
Yy = yinhom(z) + yhom(z, C) = 1'3 + Czx.

Znow widac¢, ze wszystkie krzywe catkowe obejmowane przez catke ogélna przechodza
przez punkt (0,0) i zadna nie przechodzi przez punkty (0,y) o y # 0. Oczywiscie jest
to mozliwe dzigki temu, ze funkcje wystepujaca w rownaniu 4y’ = y/z + 222 po prawej
stronie (traktowanej jak funkcja na R?) mozna w punkcie (0, 0) uczyni¢ ciagta w dowolnie
wybranym jednym kierunku, a w punktach (0,y) o y # 0 nie mozna. Zatem na funkcje
y = y(x) spetniajaca rownanie y' = y/x + 22? nie mozna narzuci¢ warunku poczatkowego
y(0) = 0, bo przez (0,0) przechodzi nieskoriczenie wiele rozwiazani, ani warunku y(0) =
yo # 0, bo zadna uczciwa funkcja y = y(z) przez te punkty nie przechodzi. Jednak
réwnanie zapisane w postaci z dy = (22 + y)dx jest spelniane tez przez prosty z(y) = 0
i na krzywa catkowa (nie funkcje) mozna narzucaé¢ warunek y(0) = yo # 0.

b) Jak wyzej, jest to rownanie liniowe z niejednorodnoscia. Odpowiadajace mu rownanie
jednorodne catkujemy rozdzielajac zmienne

dy / dzr x ) 1 C

== | —, codaje Inly|=C" — =In(1+ 2?) = In|—| .
Zatem

C
Yhom = —F/——— -
V1422
Uzmienniamy stala, tj. do réwnania y = —zy/(1 + 22?) — 1/22(1 + 2?) podstawiamy
Ansatz yinpom = h(x)/v/1+ 2. Daje to
n 1 1
czyli h' =

Vit 20+29)’ N

Catkujemy wiec (podstawiajac po drodze x = 1/t, dx/x = —dt/t
1 dt 1

1 dx
h=—— [ ——— == 7:—ln<t+\/1+t2>
2/:)3\/1+a?2 2) V14+t2 2
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:§1n<1—|—\/1—|—a72> —%ln|aﬁ|.

Dostajemy zatem jako catke ogélng wyjsciowego rownania funkcje

C
= Yinhom + Yhom = — F—— <1H<1+v1+x2)—lnx)+7

Przez kazdy punkt (x,y) o z # 0 przechodzi doktadnie jedna krzywa bo funkcja f(z,y) =
—xy/(1+2?) — 1/2x(1 + %) jest we wszystkich takich punktach regularna. W punktach
(z,y) o x # 0 nie jest ona ciagta i nie mozna jej tam w zaden sposob “uciagli¢”, wiec
przez takie punkty zadna funkcja y = y(x) nie przechodzi. Ale jak réwnanie zapiszemy w
postaci 2z(1 + 2?)dy = (=1 — 22%y)dz to prosta x = 0 jest tez jego rozwigzaniem.

¢) To jest niby rownanie drugiego rzedu, ale jak polozymy f = y’ to sie z niego zrobi
liniowe réwnanie pierwszego rzedu z niejednorodnoscia, tyle, ze na funkcje f: = f'+ f = 4x.
Dalej juz dzialamy regulaminowo: rozwiazujemy réwnanie jednorodne f' = —f/x, ktore
jest rownaniem o zmiennych rozdzielonych, wiec

By [9 i W|f|=C — e = —In|Cal.
y X

albo from = C/z po prostu. Teraz do réwnania niejednorodnego '+ f /z = 4 podstawiamy
Ansatz fippom = h(z)/x i dostajemy

h h 1h
S+ —+-= =4,
X i Tr X

czyli po prostu b/ = 4x. Zatem h = 222 i, skladajac wszystko do kupy,

C
y/ = thm + finhom — ; + 2:(:.
Jeszcze raz to catkujemy, i mamy
y=A+Cln|z|+ 2%.

Rozwiazanie spelniajace zadane warunki y(—1) = 0, y/(—1) = 0 otzymujemy dobierajac
state A1 C: z drugiego —C' — 2 =0, czyli C' = —2, a z pierwszego A = —1.

d) Calkujemy réwnanie jednorodne y’sinx = —y cosx rozdzielajac zmienne

dy / cos T

—~=—[|dex ——,

Y sin
co daje Ynom = C/sinz. Uzmienniamy stala: yinom = h(x)/sinx i wstawiamy do réwna-
nia niejednorodnego, co da

1
h' =sin2x, czyli h= 5 cos 2,
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Stad y = C/ sinx — cos 2z/2 sin z. Niby jest osobliwo$¢ w mianowniku, gdy = = 0, ale jak
sie wezmie C' =1, to

2 — cos2x .
y=——=sinx.
2sinx

Latwo zobaczy¢, ze y = sin x rzeczywiscie spelnia roéwnanie 3’ sin x + u cos x = sin 2.
e) Podstawiamy oczywiscie y = f?, Zeby si¢ pozby¢ pierwiastka. Na f daje to réwnanie
2f 1

,—_ p—
f_ x +2113',

ktore juz jest réwnaniem liniowym z niejednorodnoscia. Standardowo: fiom = C 22, a
podstawiajac fimmem = 2?h(z) do powyzszego réwnania otrzymujemy h' = 1/2x, czyli
h = 1In|z|. Zatem

1 2

Warunek poczatkowy y(1) = 1 jest spetiony, gdy C' = 1.
f) Podstawiamy oczywiscie u = In|y|, zeby sie pozby¢ logarytmu szukanej funkcji. Po-

niewaz u' = y'/y, na u dostaje sie r6wnanie

, u Injx]

)

8 |

a

ktore juz jest rownaniem liniowym z niejednorodnoscia. Dalej standardowo: upe, = C',
a podstawiajac Uinhom = * h(x) do powyzszego réwnania otrzymujemy

xh = _nla] = czyli h=— /d_a: Inje] =
r ’

r
Naturalne podstawienie £ = In |x|, d§ = dz/z sprowadza te calke do

1+1
h:_/dfge—fz(l_l_g)e—fz M
x
Zatem u = Cx + 1+ In|z| (fatwo sprawdzi¢, ze funkcja ta spelnia rownanie na u) i stad
y=|Cz+1+In|z||.
Warunek poczatkowy y(1) = In2 jest spelniony, gdy C' = 1.

Zadanie 41: Napiszemy najpierw rownanie stycznej do krzywej y = f(x) w punkcie .
Ma ono szkolna posta¢ y = ax + b, przy czym a jest nachyleniem, czyli pochodna w x
funkcji f. Prosta

y:l'f,(l'())—‘—b,
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ma przechodzi¢ przez punkt (xq, f(xg)) wiec b = —xof'(xo) + f(xo). Z kolei prosta
przechodzaca przez punkt (0,0) i prostopadia do tej stycznej (bo odleglosé prostej od
punktu, to odlegtosé liczona po prostopadlej wtasnie) ma rownanie

1
y=— x
(o)
Gdzie sie te dwie proste przecinaja? Rozwiazujemy uktadzik y = ax +b, y = —x/a i
znajdujemy punkt przeciecia (Z,7)
- ab . b
xTr = y =

T 14a2’ 1+a2’

przy czym oczywiscie a = f'(xg), b = f(xo) —xo f'(x0). Odleglosé d tego punktu przeciecia
od punktu (0,0) (czyli wlasnie odlegtosé stycznej od poczatku uktadu) jest oczywiscie
rowna

b
V1i+taZ

Odlegtosé ta, zgodnie z zadaniem, ma by¢ réwna xy. Poniewaz ma to by¢ stuszne dla
dowolnego punktu krzywej, przeto zmieniamy oznaczenia z zo na x, f(xo) na y(z) i f'(xo)
na y'(z) i piszemy ten warunek, ktory staje sie tym samym réwnaniem rozniczkowym na
y =y(x):

d = 5:2_’_:&2:

2 -y
1+ (y)*

czyli
z? = y2 — 2z yy.

Jak to rozwiaza¢ (ani to liniowe, ani o zmiennych rozdzielonych)? Ano, pewnie podstawi¢:
samo si¢ narzuca, bo 2yy’ = d(y?)/dz. Wiec u = y* i mamy

ru =u— 2.

teraz to jest réwnanie liniowe z niejednorodnoscia. Jednorodne to w' = u/x - juz dwa
razy takie bylo, wiec upom = C z 1 podstawiamy Ansatz uinpem = 2 h(z). Ostatecznie
h = —1, czyli h = —x i (C" = C/2, zeby bylo wygodniej) u = —2? + 2C"x. teraz
przypominamy sobie, ze u = y? i mamy z tego okrag (z — C’)? + y*> = C" o Srodku w
(C,0) i promieniu |C|. Ale to jeszcze nie wszystko: jak napiszemy otrzymane réwnanie
na u w formie x du = (u — 2?)dx (albo 2zy dy = (y* — 2?)dx), to widzimy, ze z = 0 tez
jest rozwiazaniem. No i wszystko sie zgadza: prosta x = 0 jest sama do siebie styczna
(w kazdym swoim punkcie); styczna do niej, czyli ona sama, jest odlegta od (0,0) o zero
i odcieta kazdego punktu tej prostej tez jest rowna zero. Wiec warunek jest spetniony!
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Chociaz samo rownanie rézniczkowe wyprowadziliémy przyjmujac po cichu, ze szukana
krzywa jest funkcja y = y(z), to jakos “wie” ono takze o krzywych, ktore funkcjami nie
sa. Zapewne przez jakos rozumiang “ciagtos¢ matematyki’”.

Zadanie 42: Jesli w rownaniu 3y’ = ya(x) + y™ b(x) wykladnik n = 0, jest to rownanie
liniowe z niejednorodnoscia y' = y a(z) + b(x), ktére rozwiazuje sie metoda uzmiennienia
statej, by znalez¢ Yinhom, @ Ynom znajduje sie rozdzialajac zmienne. Jedli n = 1, rowananie
y' = yla(x) + b(x)] jest po prostu réwnaniem a zmiennych rozdzielonych i caltkuje siye
je standardowo. Gdy n # 0,1, jest to réwnanie nieliniowe. Jesna podstawienie z = y*="
sprowadza je do rownania liniowego z niejednorodnoscia. Bo istotnie:

z 1 yA n yA 1 1—n+n

/ 4 1 n_ - lontn

y frd 1 Z1l-n g Z1l-n yn’ y = zl-n = z 1-n = Zyn_
—nNn

C1—-n

:l—n

Po wstawieniu tych wyrazen do rownania przybiera ono postac
Z'=(1-n)za(z)+ (1 —n)b(z),

czyli réwnania liniowego z niejednorodnoscia na funkcje z = z(z).

Podane réwnanie odpowiada n = —2 i trzeba dokonaé¢ podstawienia u = 33, co i tak
mozna tatwo zgadnaé¢ bez odwolywania si¢ do rownan typu Bernoulliego. Podstawienie
to prowadzi do rownania

zu =2u+13,

ktore jest rownaniem liniowym z niejednorodnoscia. Catka ogélng réwnania jednorodnego
jest Unom = C 22, a podstawienie do réwnania niejednorodnego Ansatzu Uinhom = l’2h(1’)
daje na funkcje h rownanie h' = 1. Stad,
2 3 : 2 3)1/3
u=Ca*+2°, i y=(Ca?+2%)"".

Zadanie 43:
a) Jak zawsze rozwiazaniem jest y(t) = exp(tF') - y(0). Cala wiec trudnosé¢ polega na
znalezieniu eksponensu macierzy tF'. Rownanie charakterystyczne macierzy F

Wr(A) = =X =3\ -3\ —1=—-(A+1°=0,

ma jeden pierwiastek potrojny. Szukamy wektoréw wiasnych macierzy F':

3 -1 2 a 0
5 -2 3 bl=10
-1 0 -1 c 0
Jest tylko jeden
1
1
—1



Macierz F' nie jest diagonalizowalna. Szukamy zatem jej wektorow pierwiastkowych, na
ktorych zeruje sie macierz (F + I)3. Poniewaz cala przestrzeri jest trojwymiarowa ma-
cierz ta jest po prostu macierzg zerowa, a podprzestrzenia pierwiastkowa odpowiadajaca
(jedynej) wartosci wlasnej A = —1 jest po prostu cala przestrzen wektorowa. Zatem za
wektory pierwiastkowe mozna wybra¢ dowolne dwa wektory, byle z wektorem wtasnym
tworzyly baze calej przestrzeni. Szczegdlnie prostym i dogodnym do dalszych rachunkéw
wyborem sa wektory

1 0
0], 1
0 0

Rozktadamy teraz wektor warunkéw poczatkowych na wektor wlasny i te dwa

1 1 1 0
of==11|+2({0]+[1],
1 1 0 0

i dzialamy na obie strony macierza '’

1 ~1 " 2 0
o= -1 et +e [ IT+HF+I)+—(F+1)? 0f+(1 :
1 1 2 0 0

Napisalismy tu jak zwykle et = e~ e!F+) i rozwinelismy drugi eksponens w szereg

wykorzystujac to, ze macierz (F + I)? jest juz macierza zerowa. Zatem

1 —1 3 -1 2 e (2 -1 1 2
e o) = -1 et+e I+t 5 -2 3 +5( 2 -1 1 1
1 1 -1 0 -1 -2 1 -1 0
Sktadajac wszystko razem mamy
y1(t) 1+ 5t + 3t/2
y(t) | = 8t + 3t%/2
ys(t) 1—2t —3t%/2

Cala macierz e'¥” mozna znalezé¢ albo rozkladajac na te same wektory co wyzej ogdlny

wektor (a,b,c), dzialaja tak jak wyzej macierze eI’ i potem zapisujac wynik w postaci
pewnej macierzy (ktora bedzie wlasnie szukana macierz ') dzialajacej na wektor (a, b, c),
albo metoda CH. W tej drugiej metodzie wykorzystujemy to, ze Wg(—1) =0, W/(—=1) =0
i W”(=1) = 0. W rezultacie na wspolczynniki as, a; i ag wielomianu-reszty asA\?+ai A +ay,
ktore wchodza w rozklad e’ = ay F? 4+ a1 F + agl mozemy napisa¢ uktad réwnain

et=ay—a+ay, tel=-2ay+a;, tlel=2a,.
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Zatem

p (=31 =3 2 -1 2 5
etetFZE —8 4 5| +@+t)| 5 -3 3 +(1+t+—)
0 1 2 -1 0 -2

OO =
O = O
= O O

Ostatecznie wiec
1+3t+t* —t—t*/2 2t +12/2
e =et| 5Ht4t2  1-2t—13/2 3t+1?)2
—t — t* t2/2 1—t—1t%/2

b) Tu tez rozwiazaniem jest y(t) = exp(tF') - yo, gdzie yq jest wektorem pelnigcym role
statych dowolnych. Wielomian charakterystyczny macierzy F

—2—=A 1 0
Wr(\) = 1 —2-A 1 = -\ — 6\ — 10\ — 4,
0 1 —2—-A
ma jako pierwiastek (trzeba troche poprobowaé) \; = —2. Zatem

WrA) = —(A+2) (A +aX+2) = —(A +2)(\ + 4\ + 2),

i pozostatymi dwoma pierwiastkami sa A, = —2 + /2 oraz A_ = —2 — /2. Wektory
wlasne odpowiadajace tym warto$ciom wltasnym spetaniajace rownania
01 0\ [a 0 V2 1 0 at 0
101 b | =(0], 1 T2 1 be | =10],
010/ \a 0 0 1 F+2) \ex 0

tez daje sie znalezé, co pozwala roztozy¢ na nie dowolny wektor y, warunku poczatkowego,

a 1 1 1
b =T 0 + x4 \/5 +x_ _\/§
c —1 1 1

Uktlad ten rozwiazuje sie wyjatkowo tatwo i otrzymuje sie

1 1
— 2 — /2
| e o | Latv2ie( 5 azV2tef 5
2 4 4
c —1 1 1
Stad
1 (t) _ 1
yz(t) :a266 2t 0
y3(t) -1

1 1
+%\/§+C6—<2—ﬁ>t NG, +%\/§+Ce—<z+\/§>t /3
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Mozna tez znanym sposobem otczytaé z prawej strony powyzszego wzoru cala macierz
exp(tF):

o [ 14ch(v2t)  V2sh(v2t) —1+ ch(v/2t)
P =% | V2sh(v2t)  ch(v2t)  V2Zsh(v2t)
2\ 14 ch(v2t) +/2sh(v/2t) 1+ ch(v/2t)

¢) Najpierw rozwiazemy te rownania traktujac je traktujac je jak uktad trzech liniowych
rownan jednorodnych. Wielomian charakterystyczny macierzy F'

11— 0 0
WrA)=] 1 —1-X -1 [=—A-DA\=2X+1)=-A—-1)*,
—2 4 3-A

ma tylko jeden, zato potrojny, pierwiastek A = 1. Wektory wlasne spetniajace réwnanie

0 0 0 a 0
1 -2 -1 bl=1(0],
—2 4 2 c 0

sa dwa, bo jest tylko jedno réwnanie a — 2b — ¢ = 0 do spelnienia. Poniewaz macierz
(F — I)? jest po prostu macierza zerowa (musi by¢ taka zgodnie z twierdzeniem CH, ale
mozna to bezposrednio sprawdzi¢), jako wektor pierwiastkowy odpowiadajacy wartosci
wtasnej A = 1 mozna wziaé¢ jakikolwiek wektor liniowo niezalezny od wektoréw wlasnych.
Jako baze calej przestrzeni mozna wiec wzia¢ dwa wektory wltasne macierzy F' i jaki§
liniowo od nich niezalezny trzeci wektor i roztozyé na nie dowolny wektor warunkow
poczatkowych:

= O O

1
=a|l0])+6|1]|+7y
1

Uktad réwnan rozwiazuje sie blyskiem: o = a — 2b, § = b, v = —a + 2b + ¢. Dzialamy
teraz macierza exp(tF') na obie strony tej rownosci

a 1 2 0
vl =e(a=20) [0 ) +b| 1| +(—a+204+c)[I+t(F-D)]|0
1 0 1

Dzialajac na wektor pierwiastkowy zapisalismy e jako et/ e!F'—1) = ¢t [1 +t(F —1)+.. ] i
skorzystaliémy z tego, ze wykropkowane wyrazy rozwiniecie sa juz macierzami zerowymi.
Zbierajac wszystko razem dostajemy

a a 1 0 0 a
el b =€ | b—t(-a+20+c) | =€ t 1-2t —t b
c (14 2t)(—a+2b+c) -2t 4t 1+2t c
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Macierz stojaca po prawej stronie to ef’. Dla wprawy znajdziemy ja jeszcze metoda,

CH. Poniewaz istnieje jeden dodatkowy wektor wlasny macierzy F', nalezy skorzystac
ze zredukowanego wielomianu charakterystycznego, co obniza stopieri wielomianu-reszty;
poza tym, poniewaz jest tylko jedna wartos¢ wlasna o krotnosci trzy, trzeba skorzystac z
tricku z pochodna. Zatem réwnaniami wyznaczajacymi wspolczynniki wielomianu-reszty

58

et:a1+a0, tet:al.
Stad e = a; F + agl = €' [t F + (1 — t)I], czyli
1 0 0 10 0
eF=edtl 1 -1 -1 |+@0-tf0 1 0
-2 4 3 0 0 1

Po ztozeniu tego w jednag macierz dostaje si¢ to samo co wyzej.

Poniewaz rownanie na gy, ktére po wypreparowaniu go z zapisu macierzowego ma
posta¢ dy;/dt = 1, jest niezalezne od pozostalych, jego jawne rozwigzanie y; = €' a
mozna wstawi¢ do rownan na 1y, i y3 i przepisa¢ je w postaci uktadu rownan liniowych
pierwszego rzedu z niejednorodnoscia:

aln)=C0 ) )+ ()

Wielomianem charakterystycznym stojacej tu macierzy 2x2 (oznaczmy ja F) jest Wi(A) =
(A —1)2. Ma on podwojny pierwiastek A\ = 1. Macierz F ma tylko jeden wektor wtasny,
wiec przy znajdywaniu exp(tﬁ’ ) musimy znoéw skorzystaé¢ z tricku z pochodna; réwnania
na ap i ag sa zreszta te same, co i wyzej. Zatem

(e G (T )

(Zabawnie jest sprawdzi¢, ze zamiana t — —t daje, tak jak by¢ powinno, macierz od-
wrotna). Podstawiajac do réwnania niejednorodnego Ansatz ¥innom = exp(tF) - h(t)
otrzymujemy na wektor h(¢) rownanie

d (hy\ _ (142t t ea \ [ a
dt \hs )~ € 4t 1—2t )\ =2¢ta ) T\ =20 )"

Mozemy zatem zlozy¢ kompletne rozwiazanie na funkcje yo i y3 (Co 1 C3 sa dwiema
dowolnymi stalymi w rozwiazaniu réwnania jadnorodnego):

w\ L f1-2t —t Cs + at
ys ) S\ 4 1+2t )\ 5 —2at )

Aby tak jak poprzednio y2(0) = b, y3(0) = ¢, nalezy potozy¢ Cy = b, C3 = ¢. Po

zadziataniu macierza exp(tF’) na stojacy po prawej stronie wektor otrzyma sie (wyrazy z
t? zredukuja si¢) na ys i y» te same rozwigzania, co poprzednia metoda;

ya(t) = [(a—c)t+ (1 —2t)b], y3(t) =e"[—2at +4bt + (1 + 2t)c].
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Zadanie 44:

a) Najpierw rozwiazujemy uktad macierzowy. (Jest to macierzowe réwnanie liniowe z wek-
torowa niejednorodnoscia). Nietrudno znalezé (a kto ma w glowie transformacje Lorentza,
ten to od razu widzi), ze

eF (1 0 0 1
e —Ichx—i-Fsh:c—(O 1)chx+<1 O)th.

Zatem ogdlnym rozwigzaniem réwnania jednorodnego jest

Y1 o Cl C2
()= (@) ()

Podstawiajac do réwnania niejednorodnego jako Ansatz Yinpom = exp(zF') - h(zx), dosta-
jemy na h rownanie h’ = exp(—xzF) - b, gdzie b jest wektorem-niejednorodnoscia, czyli

, )
(h}) _ ( sin x )chx— (2§osz) <h oy
hs, 2cosx sin

Calkowanie jest elementarne (najlepiej wszystkie funkcje pod catkami przerobi¢ na eks-

ponensy) i daje
hi\ ([ —3chzcosz —ishasinz
hy | %Chl’sinl’—F%thCOSl’ ’

Po zadzialaniu na ten wektor macierza exp(xF') dostajemy

Y1 —3chxcosxz — tshasinz lchesinag + 2shzcose
= 2 . 32 chx+( 24 2, . shx.
Yo /. schzsinz + sshxcosz —=chxcosz — sshxsinz

inhom 2 2 2 2

2

Po skorzystaniu z tozsamosci ch?z —sh®z = 1 upraszcza sie to znacznie i ostatecznie, jako

catke ogodlng pelnego rownania niejednorodnego otrzymujemy

_3
) = () () = (E) e (&) ()
Y2 Y2 hom Y2 inhom Cz Cl 2 S T

Mozna (i nalezy!) sprawdzi¢ przez bezposrednie podstawienie czesci Yinhom do rownania, ze
jest ono przez te czesé rzeczywiscie spelniane. Aby spelié¢ warunki poczatkowe y;(0) = 2
1 y2(0) = 0 nalezy potozy¢ C; =7/21 Cy = 0.
Ten sam uktad dwoch réwnan

Yy =y2 +sinz,

Ys = y1 +2cos,
mozna (prosciej chyba) rozwiaza¢, dodajac i odejmujac te dwa roéwnania jedno od dru-
giego. Otrzymuje si¢ wtedy dwa nizalezne réwnania

2y =z +sinz +2cosx,

2h = —zy+2cosx —sinx,
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z ktorych kazde z osobna jest liniowym réwnaniem z niejednorodnoscia Rozwiazania row-

nan jednorodnych sa oczywiste, 22°™ = D) e, 20°" = D,e~%, a standardowe podstawienia

AN = e fi(x), 4" = e fo(x) daja
fi= /dxe_x (sinx 4+ 2cosz),
fo= /dxex (2cosz —sinz).

Ostatecznie wiec w ten sposéb dostajemy

1
21 :Dle””—§cosx+§sinx,
3
22:D2€_m+§COSSL’+§SiHLU,
1 stad

1 _
ylzi(zl—zg):Dlew—Dge m—icosx,

1 1.
yg:§(z1+22):D16x+D26_x+§s1na:.

jest to to samo co poprzednim sposobem jesli utozsami¢ D z (Cy + Cs)/2, a Dy z (Cy —

C1)/2.
b) Wielomian charakterystycznu macierzy F
3—A -1 0

WrA)=| 0 3-X =1 |==N4+5X2-8\+4=—-A-1)(A\2—4)+4),
—2 5  —1-2A\

ma jeden pierwiastek pojedyniczy A; = 11 jeden pierwiastek podwojny Ay = 2. Wektory
wtasne spelniajace rownania

2 -1 0 a; 0 1 -1 0 as 0
0 2 -1 by | =101, 0 1 -1 by | =10,
-2 5 =2 c 0 -2 5 =3 Co 0

sa tylko dwa. Macierz F' nie jest wiec diagonalizowalna i potrzebna macierz exp(tF')
znajdziemy metoda CH wykorzystujac trick z rézniczkowaniem. Wspotczynniki w ag, as
i ag w rownosci exp(tF') = asF' 2 4 a,F + apl sa wyznaczone przez réwnosci

t
e = ax+ ai—+agp,

e?t 4as + 2a1 + ag

te? = das+ ay,
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Znajdujemy: ag = 4e' — (3 — 2t)e*, a; = —4de' + (4 — 3t)e*, ay = €' — (1 — t)e*'. Stad

9 -6 1
e =c1l—-(1-te)|[ 2 4 -2
—4 12 4
3 -1 0 1 00
+e'(—4+@4 -3t )| 0 3 —1]+ed—-B=2t)e)0 1 0
-2 5 -1 0 0 1

1+2te! —2+4+(2—=3t)et 1—(1—1t)e
=e'[ 2-2(1—1t)e! —4+(5—-3t)e" 2—(2—t)e
4—(4—2t)e" —8+(8—3t)e' 4—(3—1t)e

Rozwiazanie rownania jednorodnego jest dane dziataniem tej macierzy na wektor dowol-
nych stalych (C1, Cy, C3). Rozwiazaniem rownania niejednorodnego jest ta sama macierz
dzialajaca na wektor h(t), dany przez caltke

hy(t) et 14 2te t—2(1—t)e
ho(t) | = /dt el 0| = /dt 2-2(1—1t)et | = [ 2t —2(2 —1t)e
hs (1) 0 4— (4 - 20)et At — 2(3 — t)e!

Calka ogolna wyjsciowego réwnania niejednorodnego ma wiegc postac

Y1 (t) 1+ 2te! —2+4+(2—=3t)e! 1—(1—t)e Cr+t—2(1—1t)e
ya(t) | =€l 2—2(1 —t)e! —4+(5—3t)e! 2—(2—1t)e Cy + 2t —2(2 —t)e!
y3(t) 4—(4—2t)et —8+ (8—3t)e! 4—(3—1t)e C3 + 4t —2(3 —t)e

Poniewaz macierz exp(tF) jest w ¢ = 0 macierza jednostkowa, aby spelié¢ warunek po-
czatkowy y1(0) = 1, y2(0) = 1, y3(0) = 3, nalezy przyja¢ C; = 3, Cy =5, C3 = 9. Jawne
zadzialanie macierza exp(tF') na wektor zostawiamy juz wytrwaltym.

Zadanie 45: Jest to rownanie liniowe z niejednorodnodcia, wiec jego catka ogoélna ma
postaé¢ ¥ = Ynom (, C1, C2) + Yinhom- RoOzWiazanie ypom (2, C1, C2) znajdujemy podstawiajac
y = exp(Az) do rownania jednorodnego 5y” — 6y’ + 5y = 0, co da réwnanie charaktery-
styczne 5A% — 6\ + 5 = 0, o dwoch sprzezonych zespolonych pierwiastkach

3+ _3—4

A= Ay = .
1 57 2 5

Zatem
3 4 A4
Ynom (x, C1, Co) = €37 | C cos g:c—ing sin g:c )

Rozwiazania réwnania niejednorodnego mozemy szukaé podstawiajac Ansatz Yinhom =
Asin %x + B cos %x. Daje to na A i B uktad rownan

9A+24B=5, —24A+9B=0.
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Rozwiazaniem jest A =5/73, B = 40/219. Zatem calka ogélna réwnania ma postaé

Yy = €5 ClCOSéIE—‘—CQSiHéZE + isinézzjL Zli/cosézz.
5 5 73 5 219 5

Zadanie 46: Pierwiastkami réwnania charakterystycznego sa A\; =11 Ay = 2. Zatem
Ynom (2, C1, Co) = Cre® + Cy ™.

Aby znalezé¢ rozwigzanie réwnania niejednorodnego mozna postuzyé sie ogdlnym wzorem
wyprowadzonym w tekscie

1 r ! z ’
yinhom(x> — )\2 — )\1 {6)\21‘/ dxle—)\zx f(SL’/) - e)qx/ dSL’/ e—)qx f(l’,)},

ktory tu daje

X X
- 2)=e [ di'e ® sin(e™ ) —e* | do'e ™ sin(e ™).
Yinhom

xT

Naturalne podstawienie £ = e~*" sprowadza ten wzor do

—xT e*(L‘

Yinhom (T) = —62””/6 dé€siné + 69”/ désin .
Calki sg elementarne i dostajemy
Yinhom = —€” cos(e™") + e {—sin(e™*) + e " cos(e™") }.
Catke ogdlna ma wiec postac

y=Ce" + Che®® — e sin(e‘x) .

Zadanie 47: Podstawienie exp(Az) daje rownanie charakterystycze
AT =3X BN —TA - TA =5 N +3XA4+1=0.

Patrzac na nie przytomnie, od razu mozna dostrzec, ze pierwiastkiem jest A = 1. Po
napisaniu

A=D1\ —2X +3X 4N +3X2-21-1) =0,
znéw mozna sie zorientowad, ze A = 1 jest pierwiastkiem drugiego nawiasu. Zatem

A=1P2N° = A +2X 2N+ 2 -1)=0,
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I po raz trzeci A = 1 jest pierwiastkiem drugiego nawiasu:
A=A +2X+1) = (A -1\ +1)>=0.

Ostatecznie wiec pierwiastkami sa A\; = 1, potrojny oraz Ay =i i A\3 = —i oba podwdjne.
Rozwigzaniem rownanania rézniczkowego, jego catka ogélna, jest wiec

y=Ae" +Bre* +Ca?e" +De” +Exe™ + D e ™ +E*xe ™
=(A+ Bx+Cx*) e + Dycosx + Dysinz + x (E) cosx + Epsinx).

Zadanie 48: Podstawienie exp(Ax) do réwnania jednorodnego daje rownanie charakte-
rystycze

NN+ A+1=A+1)(N\+1)=0,

ktorego pierwiastkami sa —1 i 7. Rozwiazanie réwnania jednorodnego ma wiec ogdlna
postac

Yhom = AP +Be® +B e =Ae "+ Dcosz+ Esinz.

Aby znalez¢ jakies rozwigzanie rownania niejednorodnego bedziemy szukaé¢ rozwiazania
y}(li)m z niejednorodnodcia x e™* i rozwiazania yhim z niejednorodno$cia cosz. Szukane
rozwigzanie bedzie wtedy suma y&)m + y}(lill Spréobujmy najpierw jako y}(l&l podstawic
C xe ™. Niestety po lewej stronie wszystkie wyrazy z e~ " si¢ zredukujg i zostanie tylko
stata razy e™* - nie da si¢ wiec w ten sposob spetni¢ réwnania niejednorodnego. Zgodnie
ze wskazowks rozpatrzmy wiec rownanie iy +y = x e~ *. Tu mozna zastosowaé¢ metode
uzmiennienia stalej (w wyjsciowym réwnaniu trzeba by bylo robi¢ sztuczki z wroriskia-
nami, albo przerobi¢ réwnanie na réwnanie macierzowe pierwszego rzedu) i znajdziemy,
ze szczegblnym rozwiazaniem tego rownania pierwszego rzedu jest %1’26_:0. Lekcja, jaka
z tego wyciggamy jest taka, ze trzeba szuka¢ rozwiagzania w postaci wielomianu drugiego
stopnia razy e~*. Podstawmy wiec yi(rh)mm = (az? + Bx) e7®. Dostajemy wtedy po lewej
stronie

xT

[a (=2 4+ 62 —6)+B(—x+3)]e "+ [a(@®—4r+4)+p(x—2)]e”
+Ha(=2®+22) + B(—z+ )] e ™ + [az® + Ba]e ™
= [a(dz—4)+26]e™,

Jest wiec jasne, ze trzeba przyja¢ o = 1/4 1 f = 1/2. Podobnie sprobujmy skonstruowac

yi(f})mm jako (o/x cosx+ f'zsinz)e ™ (o jedna potege z-a wiecej niz po prawej stronie). Po

lewej stronie dostaniemy wtedy
—2a/ (cosx + sinx) + 23 (cosz —sinz),
i widaé, ze tu trzeba polozyé¢ o/ = —1/4, 5/ =1/4.
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Ostatecznie wiec catka ogdlna wyjéciowego réwnania ma postaé

1 1
y=Ae "+ Dcosx + Esinx + Z(:cz—l—Q:c)e_m — Zm(cosx—sinx).

Zadanie 49: Jest to przypadek z “degeneracja’, tj. dwoma liniowo niezaleznymi rozwia-
zaniami réwnania jednorodnego sa

y1 = exp(—at/2),  y, =t exp(—at/2).
Rozwigzanie rownania niejednorodnego otrzymujemy robiac sztuczke z wronskianem:

—at

W(y) = ys — Yiye =€

Funkcje A;(t) i As(t) w rozwiazaniu Yinnom = A1()y1(t) + A2(t)ys(t) spetiaja rownania

r_ y2(y> _ e—at/2
A=~ 10) = ~te™ 2 1),
)

, nly _ at/2
Ay = W) f(t) = f(t).

Zatem calka ogélna ma postac

t
y = (A + Bt) 6—at/2 . 6—at/2/ dt't 6at’/2 f(t,) + te—at/2/ dt' e at’ /2 f(t )

Dosé tatwo sprawdzi¢ przez bezposrednie podstawienie pochodnych

/ —
Yinhom —

g —at/2 1 at’ /2 _

oo [ o 1)~ 500
( ) —at/2/ dt/eat’/2 f(t/) —|—tf(t>,
y&mz—%eﬂé/wﬂWWﬂﬂ+gw@

2 t
+ <azt_ a) e—at/2/ dt' eat’/2 f(t/) + (1 . gt> f(t),

i samej funkcji yipnpom do rownania y” + ay’ + iaz y = f(t), ze jest ono spetnione.
To samo rozwigzanie mozna takze dosta¢ przepisujac rownanie w postaci macierzowej

%(‘;ﬁ) N (‘?az —1a) (3:) " (f(()t))’

gdzie y; = y, a yo = y'. Macierz ma tu tylko jeden wektor wlasny i jedng wartosé
wlasna A = —a/2. Macierz exp(tF) znajdujemy metoda CH korzystajac ze sztuczki z
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rozniczkowaniem. W ten sposob uktad rownaii e */2 = a,(—a/2) + ag, te %2 = a, daje
ap = (1 + at/2) e7¥/2 i stad

1+5¢ t
6tF _ 6—ta/2 < a22 . ) :
ST

Rozwiazanie rownania niejednorodnego ma postaé¢ Yinnom = exp(tF') - h(t), gdzie

Gi) = (i 124 (o)
h Croo149t )\ ft))

Stad szczegolnym rozwiazaniem macierzowego réwnania niejednorodnego jest

(yl)__mp(wgt t )( — [dtte/f(t) )
v ) ° —ay oy )\ Jar (U atf2) et f (1) )

a szczegblnym rozwiazaniem wyjsciowego réwnania jest yq:

yp:€W2P(1+gﬂ/ﬁmﬂﬁf@+¢/ﬁ<L+%Qﬁmf@ﬂ-

Widag, ze jest to to samo, co metododa z wronskianem.

Zadanie 50: Podstawiajac do réwnania jednorodnego y;(t) = t®, tatwo znajdujemy, ze
jednym z jego dwu liniowo niezaleznych rozwigzan jest y,(t) = t2.
Przepisujemy nastepnie rownanie w postaci

., t2—=2 t—1 t

/
- 9 T y=—
ron! Tt T i
Wronskian W (t) = y1y5 — y1y» spelnia zatem réwnanie
t? —2
W' = w
t2—2t

i proste catkowanie daje (z dokladnoscia do multiplikatywnej statej, ktéra mozna przyjacé
rowna 1)

W(t) =t(t—2)e".

Rownanie na drugie liniowo niezalezne rozwiazanie y»(t) réwnania jedorodnego ma zatem
postac

tyh — 2ty = t(t —2)e',  lub  tyh—2y, = (t —2)€.

Ogoélnym rozwiagzaniem jednorodej jego wersji jest yonom(t) = D12, ktore tu jest po prostu
identyczne ze zgadnietym rozwigzaniem jednorodnej wersji wyjsciowego réwnania. Szu-
kamy wiec rozwiazania réwnania niejednorodnego w Wronskianem uzmienniajac stata D,
tj. podstawiajac Yoinhom (t) = t2 h(t). Prowadzi to do

1 2 1
h(t):/dt(t—z—t—:s) €t:t—2€t.
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Zatem Yoinnom(t) = t2 h(t) = €' i wobec tego, jako dwa liniowo niezalezne rozwigzania
jednorodnej wersji wyjéciowego réwnania mozna przyjac®! yi(t) = t2 i ys(t) = €'. Latwo
zobaczy¢, ze rzeczywiscie daja one Wronskian, taki jak otrzymany z catkowania wyzej.

Szukamy teraz rozwiazania wyjsciowego rownania niejednorodnego w postaci yin(t) =
A1(t)y1(t) + Aa(t)y2(t) i po standardowych sztuczkach (Zadanie Ode.15) dostajemy na
Ay (t) i Ay(t) rownania

4= () =7

e g (7ts) -t

Pierwsze daje od razu A;(t) = —1/(t — 2). Druga calka wyglada na beznadziejna, ale
okazuje sie, ze Mathematica sobie z nia radzi!:

2, t+2

Ostatecznie wigc najogdlniejszym rozwiazaniem podanego réwnania jest

12 t+2

t)=C1t? 4+ Cyel — —_—
A e

Zadanie 51: Zamieniajac zmienne przyjmujemy, ze F(z,y,z) = F({(z), n(z,y), ((z, 2))
wtedy
or Oy 0z oy o¢C o

F zalezy wiec tylko od zmiennych 7 i ¢ i rozwigzaniem jest F(x,y,2) = F(y — x, z — z).
Przy metodzie charakterystyk pole wektorowe, do ktérego charakterystyki maja by¢
styczne jest stale: V¥ = V¥ = V?* = 1. Zatem charakterystyki spetniaja rownania

dz(t) _ dy(t) _ dz(t)
dt dt dt

=1,

i sa dane przez z(t) = x +t, y(t) = y + t, Z(t) = z + t. Poniewaz funkcja C(z,y,2) =0,
F(z,y,z) = F(xz(ty), y(t,), z(ty), gdzie t, jest “czasem” dojscia po charakterystyce od
punktu (z,y, z) = (z(0), y(0), 2(0)) do punktu lezacego na dwuwymiarowej powierzchni,
na ktorej funkcja F' jest zadana. Powierzcjnia ta jest zadana rownaniem hy(x,y,z) = 0
wigc “czas” t, jest rozwiazaniem réwnania hy(Z(t,), ¥(t,), Z(t,)) = 0. Wezmy np. jako
Y plaszczyzne hy(z,y,z) = z = 0. Wtedy ¢, = —z i rozwiazaniem jest F(z,y,z) =
Flx—zy—2,0) = f(x—z,y—2). Jest to rownowazne rozwiazaniu uzyskanemu metoda,
zamiany zmiennych jesli przyjaé, ze F(n,¢) = f(n— ¢, —C).

81'Wlasciwie, to rozwiazanie y2(t) = e’ tez mozna bylo zgadnac.
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Bardziej ogélnie, nie specyfikujac jawnie powierzchni ¥, mozna powiedzieé, ze funkcja
h(z,y,z,t,) = hs(z +t,, y +1t,, z+t,) = 0 wyznacza w sposob uwiktany ¢, = t,(z,y, 2)

1 rozwigzaniem jest
Flz,y,2) = Fz + (2,9, 2), y + tp(2,y,2), 2+ 1,(2,y,2)),

przy czym argumenty funkcji po prawej stronie sa takie, ze jest ona brana na powierzchni
>, na ktorej jej warto$é jest dana. Ze réwnanie jest spetnione wida¢ nastepujaco:

oF ot,, ot, ot,,
e (1+ 8x)FgmL o v g, e
wiec
OF OF OF ot, ot, 0Ot
+ R <1+ 7 T 3 + 82)(Fm+Fy+Fz)-

Dz
Z kolei z pochodne czastkowe t,, sa dane, jako, ze jest to funkcja zadana w sposob uwiktany,

przez
(Oh/0x) (Ohs, /)

Oty _ _

o~ (Oh/ot,)

i wida¢, ze caly nawias mnozacy (F, + F, + F.) jest rowny zeru.

Zadanie 52: Funkcja definiujaca problem ma tu posta¢ G(F,p;,&") = p, + p,F = 0.
Zatem V¥ =1, V¥ =F, X, = X, =01 C = p,. Réwnaniami charakterystyk sa

SR = 207 (1),
yr F(t

d
—z(t) =1
d _ d

—y(t) = F(t — py(t) = —pa(t
Sukcesywnie je rozwiazujemy (réwnania na Z(t) i p,(t) sa niezalezne, potem majac py(t)
mozna rozwigza¢ rownanie na p,(t), potem rownanie na F', ktore jest rownaniem liniowym

T E(t) = palt) + 5y (1) ().

z niejednorodnoscia i na koniec réwnanie na y(t)):

z(t) =z(0) + ¢,
. py(0)
- p(0)
px(0)

Fio = (FO+ 248 1+ 0 - 23
= P2 (0) ] pa(0)
0+ (FO+ 25) o+ 50 - 2
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Przyjmijmy teraz, ze konce charakterystyk odpowiadajace t = 0 sa na powierzchni danych
poczatkowych, tj. na X, a t; odpowiada punktowi (z,y), w ktérym chcemy znalezé
wartos¢ funkcji F(z,y). Zatem hx(z(0), (0)) = 0, a Z(tx) = =, y(tx) = y, skad mamy
ty = — 2(0). Warunki poczatkowe na p,(t), p,(t) i F(t) musza z kolei by¢ zadane przy
t = 0, tj. na powierzchni (linii) warunkéw Cauchy’ego. Na tej powierzchni musi zachodzi¢
zwiazek G(F(0), p.(0), p,(0), 2(0), 7(0)) = 0. Oznacza to, ze

co znacznie upraszcza sprawe: wzory na p,(t) i p,(t) nie sa juz potrzebne (ich otrzymanie
byto konieczne do znalezienie F'(t) i g(t) tylko) i rownania, z ktorych otrzyma si¢ szukana

funkcje F(z,y) = F(tx) to

z=1z(0) + t, F(ty) = F(0), y=9(0) +t, F(0).

Poniewaz charakterystyka z(t) ma prosta posta¢, wygodnie bedzie zada¢ warunki Cau-
chy’ego na linii © = 0, czyli przyja¢ hg(z,y) = . Przyjmiemy zatem jako warunki
brzegowe F'(0,y) = f(y). Wtedy Z(0) = 01 ¢, = z. Szukang wartoscia funkcji F' w punk-
cie (z,y) jest wtedy po prostu F'(0) = F(0, 4(0)) = f((0)). Ostatnia z wypisanych wyzej
rownosci jest warunkiem wyznaczajacym ¢(0). Jesli np. przyjmiemy f(y) = y otrzymamy
9(0) = y/(1 4+ z) i w konsekwencji F(z,y) = f(g(0)) = y(0) = y/(1 + z). Nietrudno zo-
baczy¢, ze funkcja F(x,y) = y/(1 + ) rzeczywiscie spelnia réwnanie F, + F,F' = 0.
Gdyby jako warunki Cauchy przyja¢ F(0,y) = f(y) = a = const., to rozwiazaniem by
byta funkcja stata F(z,y) = a.

Jeszeze inny rozwigzywalny przyktad to f(y) = ay?. Wtedy réwnanie wyznaczajace
7(0) jest réwnaniem kwadratowym y = 3(0) + az(%(0))? i jego rozwigzaniem jest

(0) i(—um).

- 2ax

Ny

(Drugie rozwiazanie nie prowadzi do 4(0) = y, gdy « = 0). Szukana funkcja jest wtedy

2

Fla,y) = F(ty) = F(0) = £(5(0)) = — (—1+ VI + 2az)

daz?
Znoéw mozna bezposrednio sprawdzi¢, ze rownananie Fy, + Fy,F" = 0 jest spelnione.
Mozna tez pokazaé¢ ogodlnie, ze podana konstrukcja daje funkcje F'(z,y) spelniajaca
rownanie F, + F,F' = 0. Niech bowiem warunek hy(Z(0), (0)) = 0 wyznacza lokalnie
z(0) = h(y(0)) i niech warunkiem brzegowym (Cauchy) na X bedzie F'(z(0), (0)) =

f((0)) = F(0). Wtedy ¢ wyznaczone z warunku x = Z(0) + ¢, wstawione do warunku
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y = 7(0) + .. F(0) daje réwnanie®?

y = 9(0) + [z = ~(y(0))] f(5(0)),

wyznaczajace y(0) jako funkcje x i y. Napiszmy wiec y(0) = Y (z,y). Szukana funkcja

jest F(x,y) = F(0) = f(Y(z,y)). Speia ona rownanie
F,+FF,=fY)Y,+fY)f(Y)Y,=0.

Zeby to zobaczy¢ trzeba poprzednia rownosé zpisang jako tozsamosé (po i y)
y=Y(xy)+z—hY(z,y)] f(YV(z,y),

zrozniczkowaé stronami po x i po y (metoda “termodynamiczna™), co da dwie tozsamosci

0=Y, +[1-NY|f+[x—h]fY,,
1=Y,— W fY,+[z—hfY,,

z ktorych pierwsza wyznacza Y, a druga Y,; po wstawieniu tych pochodnych do réwnania
dostaje sie rzeczywiscie zero.

82Mozna tez na rownanie to i réwnosé F'(t) = F(0) spojrzeé inaczej: pokazuja one, ze charakterystyki
badanego réwnania sg prostymi, i na tych prostych wartosé¢ funkcji jest stata. Inaczej mowigce: jesli
wezmiemy punkt (zg,yo) (w notacji z tekstu (Z(0), g(0)) = (h(g(0)), 7(0))) i znamy w nim wartosé
Fy funkcji F' (w notacji z tekstu F(0)) to wartosé funkcji F jest stata (bo F(ty) = F(0)) i réwna Fy
na calej prostej przechodzacej przez punkt (zo,y0) o wspolczynniku kierunkowym rownym Fy. Ten
punkt widzenia jest podstawa po matematycznemu nakomplikowanej (i przez to malo strawnej) analizy

wlasciwosci rozwiazan réwnania F, + Fy, F' = 0 w notatkach §.p. G.C.
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