
5 The formalism of second quantization

Systems consisting of many identical particles form the prevailing part of the physical
world. Typical examples are e.g. a solid consisting of electrons in a lattice of ions or
a heavy nucleus built out of many nucleons. While the classical treatement of identical
particles does not differ from the treatement of nonidentical ones - classical theory relies
on the assumption that the motion of each individual particle can always be followed1 - in-
distinguishability of identical2 particles imposes additional requirements on the quantum
theory of systems consisting of identical, indistinguishable particles: vectors representing
their states in a Hilbert space must have definite symmetry properties with respect to
interchanging labels of indistinguishable particles. Imposing this requirement in the or-
dinary approach based on the multi-particle wave function is rather cumbersome. In this
section presented is a convenient formulation - called “second quantization” - of quantum
mechanics of systems composed of many identical indistinguishable particles, allowing to
automatically take into account these symmetry requirements. Its most characteristic fea-
ture is the use of the creation and annihilation operators in terms of which any operator
acting in the relevant Hilbert space can be expressed and the action of which on vectors
representing system’s states is particularly simple. The true essence of this formulation is
however the introduction of the “big” Hilbert space H the vectors of which can represent
states of an arbitrary, also infinite, and even of indefinite numbers of particles. (It is this
Hilbert space in which the action of the creation and annihilation operators is naturally
defined). Quantum mechanics formulated using this formalism, when restricted to a sub-
space of H corresponding to a fixed number N of particles (this is possible if the system’s
Hamiltonian commutes with the particle number operator), can be made fully equivalent
to the quantum mechanics based on the N -particle Schrödinger equation supplemented
with the appropriate symmetry requirements. However, the second quantization also
opens up essentially new possibilities.3 First of all, by allowing to form in the “big”
Hilbert space H superpositions of vectors representing different (also infinite) numbers of
particles, second quantization enables one to consider systems of interacting relativistic
particles because, as will be demonstrated in Chapter 7, Poincaré covariance of transition
amplitudes characterizing scattering processes (covariance of the S-matrix) necessarily
enforces nonconservation of the number of particles by the time evolution (relativistic
Hamiltonians cannot commute with particle number operators). Second quantization
constitutes therefore a link between the ordinary quantum mechanics of many-particle
systems and the relativistic quantum field theory. Moreover, nonseparability of this “big”

1Indistinguishability of identical particles must, nevertheless, be taken into account in classical statis-
tical mechanics to avoid the Gibbs paradox, that is nonextensiveness of entropy.

2One should distinguish the notions of identity and indistinguishability: N oscillators of the same
type are identical but even in the quantum theory are treated as distinguishable.

3In view of this the sometimes encountered statement that “second quantization” is simply a misnomer,
because it is just another formulation of the ordinary quantum mechanics based on the multi-particle
Schrödinger equation (and not a new conceptual step, similar to the transition from classical to quantum
mechanics) does not seem fully justified.
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Hilbert space H (the lack of a countable basis) leads to the existence of infinitely many
unitarily inequivalent representations by operators acting in it of the basic commutation
rules (of the abstract operator algebra) defining the quantum theory. In other words,
the “big” Hilbert space H furnishes a reducible representation of the abstract operator
algebra. Any such representation defines in H a separable subspace called Fock space and
it is the dynamics of the considered physical system and the imposed boundary conditions
which select the proper Fock space in which states of the system physically accessible in
the “thermodynamic limit” (i.e. when the number of degrees of freedom becomes infinite)
are represented. This profound property of the big Hilbert space H is at the heart of
the possibility of capturing within this formulation such phenomena as the Bose-Einstein
condensation in systems of bosons or spontaneous (“parametrical” or dynamical) breaking
of various symmetries in nonrelativistic as well as in relativistic systems.

5.1 Multi-particles Hilbert spaces

Consider first a system of N distinguishable particles (for example all having different
masses). The Hilbert space of a system of N mutually interacting such particles is the

N -fold tensor product H(N) = H(1)
N ⊗ . . .⊗H

(1)
1 of one-particle Hilbert spaces of individual

particles;4 it is spanned by the state-vectors having the form of the tensor product

|Ψ〉 = |ψN 〉 ⊗ . . .⊗ |ψ2〉 ⊗ |ψ1〉 , (5.1)

in which each of the individual state-vectors |ψk〉, k = 1, . . . , N , belongs to the separate

one-particle Hilbert space H(1)
k of the k-th particle. The scalar product of two such states

of N particles is simply given by the formula

〈Φ|Ψ〉 = 〈φN |ψN 〉 · . . . · 〈φ1|ψ1〉 , (5.2)

in which each of the factors 〈φk|ψk〉 is the scalar product in the respective one-particle

space H(1)
k . If the normalized vectors |lk〉, lk = 1, 2, . . . ,∞ form a countable orthonormal

(in the sense of the respective scalar products) basis of the k-th particle Hilbert space

H(1)
k , the product state-vectors

|lN , . . . , l2, l1〉 ≡ |lN〉 ⊗ . . .⊗ |l2〉 ⊗ |l1〉 , (5.3)

form the associated countable basis of H(N). For example, if all N considered particles
are spinless (or their spin degrees of freedom are neglected altogether) and can move in
the infinite three-dimensional space, the normalized to unity state-vectors |(lxlylz)k〉 or

4All these one-particle Hilbert spaces fall, in the nonrelativistic case, into classes of identical (isomor-
phic) spaces classified by the spin of the particle they correspond to. One-particle Hilbert spaces H(1) of
particles of spin s are all isomorphic to the (2s+1)-fold Cartesian product of the L2(R

3) spaces (treated
as vector spaces over C) i.e. to the tensor product of L2(R

3) and a 2s+ 1 dimensional vector space over
C.
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|(lrlθlϕ)k〉 (lθ and lϕ stand here, somewhat unconventionally, for the orbital momentum
quantum numbers) of the three-dimensional harmonic oscillator (of arbitrary frequencies

ωk which can be different for each of the different one-particle Hilbert spaces H(1)
k and

within each H(1)
k could even be different for diffent directions) can be taken for |lk〉 (l is

then a three-index lxlylz or lrlθlϕ), because in the position representation any normaliz-
able wave function ψ(x) can be written as a superposition of the functions ψ(lxlylz)(x) =
〈x|lxlylz〉 = ψlx(x)ψly(y)ψlz(z) or ψ(lr lθlϕ)k(r, θ, ϕ) = 〈r, θ, ϕ|lrlθlϕ〉 = ψlr(r)Ylθlϕ(θ, ϕ),
where Ylθlϕ(θ, ϕ) are the spherical harmonics. Similarly, if the system of N particles is
enclosed in a box of volume V = L3 (and periodic boundary conditions are imposed on
the wave function of each individual particle), the vectors

|pN , . . . ,p2,p1〉 = |pN〉 ⊗ . . .⊗ |p2〉 ⊗ |p1〉 , (5.4)

with pk = (2π/L)nk (in this case ψp(x) = 〈x|p〉 = (1/
√
V ) exp(ip · x)), can be taken

for the basis of H(N). That the vectors (5.3) or (5.4) form a (countable) basis of H(N)

follows from the simple observation that any normalizable wave function Ψ(x1, . . . ,xN)
of N particles can be written as a superposition

Ψ(xN , . . . ,x1) =
∑

lN

. . .
∑

l1

clN ...l1 ψlN (xN ) · . . . · ψl1(x1) ,

of the products ψlN (xN) · . . . · ψl1(x1) with

∑

lN

. . .
∑

l1

|clN ...l1 |2 <∞ .

The completeness relation then reads (1̂(N) is the unit operator in H(N))

1̂(N) =
∑

lN

. . .
∑

l1

|lN , . . . , l1〉〈l1, . . . , lN | . (5.5)

It is also possible, as it is customary in one-particle quantum mechanics, to take for the
basis of H(N) the generalized (non-normalizable) vectors5

|xN , . . . ,x2,x1〉 ≡ |xN〉 ⊗ . . .⊗ |x2〉 ⊗ |x1〉 , (5.6)

te scalar product of which is

〈y1, . . . ,yN |xN , . . . ,x1〉 = δ(3)(yN − xN ) · . . . · δ(3)(y1 − x1) , (5.7)

or the generalized (if the theory is formulated in the infinite space) vectors

|pN , . . . ,p2,p1〉 ≡ |pN〉〉 ⊗ . . .⊗ |p2 ⊗ |p1〉 , (5.8)

5More precisely covectors, that is elements of the dual space.
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with the scalar product

〈q1, . . . ,qN |pN , . . . ,p1〉 = (2π)3δ(3)(qN − pN) · . . . · (2π)3δ(3)(q1 − p1) . (5.9)

The completeness relations in these cases read

1̂(N) =

∫

d3xN . . .

∫

d3x1 |xN , . . . ,x1〉〈x1, . . . ,xN |

=

∫

d3pN

(2π)3
. . .

∫

d3p1

(2π)3
|pN , . . . ,p1〉〈p1, . . . ,pN | . (5.10)

Internal degrees of freedom (spin) can be easily incorporated into this formalism by in-
cluding the spin labels σk = −sk, . . . ,+sk in the labels lk of states of indistinguishable
particles or using the variables (xk, σk) or (pk, σk) instead of xk or pk.

The scalar product6 of a state-vector of the form (5.1) with the basis vectors (5.6)
gives then the N -particle wave function

Ψ(xN , . . . ,x1) = 〈x1, . . . ,xN |Ψ〉 = ψN (xN) · . . . · ψ1(x1) . (5.11)

The wave-function (more generally, the state-vector) of a linear superposition of the state-
vectors of the form (5.1) or (5.3) cannot in general be written as a product of one-particle
wave functions (one-particle state-vectors); states represented by vectors |Ψ〉 which do not
factorize as (5.1) are called entangled states and play crucial roles in modern quantum
optics and quantum information theory.

Consider now a system consisting of N identical and indistinguishable particles of
one type,7 bosons or fermions (continuing to omit in the notation their spin labels). In
this case the requirement of the Bose-Einstein or Fermi-Dirac statistics has to be imple-
mented: state-vectors should be symmetric with respect to interchanges of variables of
any two identical bosons and antisymmetric with respect to interchanges of variables of
any two fermions.8 This requirement has to be added as an extra rule selecting possible
state-vectors inH(N) spanned by vectors of the form (5.1). In the framework of the nonrel-
ativistic quantum mechanics it cannot be given any sound foundation; the Bose-Einstein
(Fermi-Dirac) statistics obeyed by systems of many identical particles having integer (half-
integer) spin must simply be regarded as a phenomenological input.9 Justification of this
celebrated spin-statistics connection comes only from the relativistic quantum field the-
ory; this will become evident in Chapter 8. This spin-statistics connection is implemented

6Or, more precisely, the value of the covector (5.6) on the vector (5.1).
7Generalization of the formalism to several types of identical and indistinguishable particles is straight-

forward.
8In two spatial dimensions there are more possibilities.
9The Planck sectrum of the black body radiation can be taken for the empirical evidence that photons

obey the Bose-Einstein statistics (are bosons); similarly, stability of matter is the best physical indication
that electrons (and nucleons) obey the Pauli exclusion principle (are fermions).
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by defining the state-vectors |ψ1, ψ2, . . . ψN〉 spanning the Hilbert space H(N) of a system
of N identical and indistinguishable particles in terms of the one-particle state-vectors by
the formula

|ψN , . . . , ψ2, ψ1〉 =
1√
N !

∑

P

ζP |ψP (N)〉 ⊗ . . .⊗ |ψP (2)〉 ⊗ |ψP (1)〉 , (5.12)

in which |ψi〉, i = 1, . . . , N are some arbitrary one-particle state-vectors belonging to
a one-particle space H(1) and P denotes permutations of the labels of indistinguishable
particles. We have introduced here the symbol ζ

ζ =

{

+ 1 if the particles are bosons
− 1 if the particles are fermions

,

and by ζP understand, if the particle are fermions, the sign of the permutation P . (ζP = 1
if particles are bosons). For example, if there are N = 2 indistinguishable particles which
can be in two one-particle states |a〉 and |b〉, the prescription (5.12) yields the following
three state-vectors

|a, b〉 = 1√
2!

(|a〉 ⊗ |b〉+ |b〉 ⊗ |a〉) ,

|a, a〉 =
√
2 |a〉 ⊗ |a〉 , (5.13)

|b, b〉 =
√
2 |b〉 ⊗ |b〉 ,

if these particles are indistinguishable bosons and only one state-vector

|a, b〉 = 1√
2!

(|a〉 ⊗ |b〉 − |b〉 ⊗ |a〉) ,

if they are indistinguishable fermions. The scalar product (obtained by extending by
linearity the scalar product (5.2)) of state-vectors of the form (5.12) is

〈ϕ1, . . . , ϕN |ψN , . . . , ψ1〉 =
1

N !

∑

P

∑

Q

ζPζQ〈ϕQ(N)|ψP (N)〉 · . . . · 〈ϕQ(1)|ψP (1)〉

=
1

N !

∑

R

∑

Q

ζR〈ϕN |ψR(N)〉 · . . . · 〈ϕ1|ψR(1)〉

=
∑

R

ζR〈ϕN |ψR(N)〉 · . . . · 〈ϕ1|ψR(1)〉 , (5.14)

(in the second step a new permutation R = PQ−1 has been defined, its sign is ζR = ζP ζQ).
If the particles are fermions, (5.14) is just the determinant

〈ϕ1, . . . , ϕN |ψN , . . . , ψ1〉 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

〈ϕN |ψN〉 . . . 〈ϕN |ψ1〉
· ·
· ·
· ·

〈ϕ1|ψN〉 . . . 〈ϕ1|ψ1〉

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,
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while if they are bosons, the scalar product differs from the determinant by having all
signs in the Laplace expansion positive. Notice that in the example (5.13) of N = 2
particles the state-vectors |a, a〉 and |b, b〉 of bosons are not properly normalized even if
the one-particle state-vectors |a〉 and |b〉 are orthonormal: 〈a, a|a, a〉 = 〈b, b|b, b〉 = 2.

Let us now construct a basis of the (anti)symmetrized N -particle Hilbert space H(N).
Let |l〉 = |1〉, |2〉, . . . be a countable, complete set of normalizable and orthonormal one-
particle state-vectors (forming a basis of the proper Hilbert space H(1) of a single particle)
labeled by l = 1, 2, . . . ,∞, that is such that

〈l′|l〉 = δl′l ,
∑

l

|l〉〈l| = 1̂(1) .

Again, if the system of spinless particles is enclosed in a box of finite volume L3, the
momentum operator eigenvectors |k〉 with wave-vectors k = (2π/L)n can be taken for
|l〉’s; in the infinite volume one can take for |l〉 the three-dimensional harmonic oscillator
state-vectors |lxlylz〉 (or the vectors |lrlθlϕ〉 in the angular momentum representation).
If particles have a nonzero spin s, the appropriate spin label σ = −s, . . . ,+s must be
included in the label l. As an orthonormal basis of the (proper) Hilbert space H(N) of N
indistinguishable bosons one can then take the vectors10

1√
n1!n2! . . .

|lN , . . . , l2, l1〉 with l1 ≤ l2 ≤ . . . ≤ lN , (5.15)

where |l1, l2, . . . , lN〉 are the vectors of the form (5.12) and n1 is the number of l1 occur-
rences in the sequence l1, l2, . . . , lN , n2 is the number of l2 occurrences, etc. Of course,
n1+n2+. . . = N . As an ortonormal basis of the Hilbert space H(N) of N indistinguishable
fermions one takes instead the vectors (the label l in this case must necessarily include
also a spin variable)

|lN , . . . , l2, l1〉 with l1 < l2 < . . . < lN . (5.16)

If in the example (5.13) of N = 2 bosons the whole H(1) is spanned by only two vectors
|a〉 and |b〉, the basis of H(2) can be formed by the vectors:

1√
2!
|a, a〉 , 1√

2!
|b, b〉 , |a, b〉 .

The factors of 1/
√
2! included in the first two basis vectors ensure their proper normal-

ization. More generally, since when particles are bosons (cf. (5.14))

〈l′1, . . . l′N |lN , . . . , l1〉 =
∑

P

〈l′N |lP (N)〉 · . . . · 〈l′1|lP (1)〉 , (5.17)

10It is assumed that the labels l of the basis state-vectors |l〉 forming a countable set, can be ordered
in some natural way.
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we see that the scalar product is nonzero only if each l′i finds its counterpart among the
li’s. If there are ni occurrences of a particular l′i in the sequences l′1, . . . l

′
N and l1, . . . , lN

(which is possible only if the considered particles are bosons), then there are ni! equal and
nonzero terms contributing to the sum in (5.17). The factors 1/

√
ni! in the definition of

the basis state-vectorss (5.15) of N indistinguishable bosons cancel then the factors ni!
arising in the scalar product.

The completeness relation in the space of N identical bosons or fermions can be
conveniently written in the form

1

N !

∞
∑

lN

. . .

∞
∑

l1

|lN , . . . , l1〉〈l1, . . . lN | = 1̂(N) , (5.18)

in which the orderings of li’s appearing in the definitions of the basis vectors (5.15)
and (5.16) are not respected. Instead, the factor 1/N ! ensures the cancellation of the
multiple counting of the same states. To understand better its working, let us take three
indistinguishable bosons, each of which can be in one of the two states |a〉 or |b〉 and
consider the contribution of the basis vector (1/

√
2! )|a, a, b〉 to the completeness relation

(5.18). In the decomposition of the unit operator only a single term of the form

1̂(3) = . . .+
1

2!
|a, a, b〉〈b, a, a|+ . . .

should be present. The prescription (5.18) gives

1̂(3) = . . .+
1

3!

(

|a, a, b〉〈b, a, a|+ |a, b, a〉〈a, b, a|+ |b, a, a〉〈a, a, b|
)

+ . . .

which is the same taking into account the symmetry of the state-vectors. With this
convention it is possible to work also with the bases formed out of generalized (i.e. non-
normalizable) symmetrized or antisymmetrized state-vectors like e.g. the (here we make
the spin labels explicit) |p1σ1, . . . ,pNσN 〉 ones in the infinite volume; the unit operator
1̂(N) is then decomposed as:

1̂(N) =
1

N !

∫

d3pN

(2π)3
. . .

d3p1

(2π)3

∑

σN

. . .
∑

σ1

|pNσN , . . . ,p1σ1〉〈p1σ1, . . . ,pNσN | . (5.19)

If the system is enclosed in a box of volume V = L3 and periodic boundary conditions
are imposed, the integrals over d3pi/(2π)

3 are replaced by discrete sums
∑

pi
- see the

footnote below the formula (5.40).

It is important to stress that any two bases like (5.15) (like (5.16)) of the Hilbert
space H(N) of N bosons (N fermions) formed out of two different bases |l〉 and |l̃〉 of
the one-particle space H(1) are unitarily equivalent. This means that any vector of the
basis (5.15) (of the basis (5.16)) can be written as a linear combination of the vectors
|l̃N , . . . , l̃2, l̃1〉/

√
ñ1!ñ2! . . . (of the vectors |l̃N , . . . , l̃2, l̃1〉). In other words, any vector of the
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basis (5.15) (of the basis (5.16)) has nonzero scalar products (in H(N)) with at least a
finite number of the vectors |l̃N , . . . , l̃2, l̃1〉/

√
ñ1!ñ2! . . . (of the vectors |l̃N , . . . , l̃2, l̃1〉).

All this works in the same way with arbitrary N ≥ 1. It proves convenient to formally
include the N = 0 case, by adopting the convention that the H(0) Hilbert space is spanned
by a single (normalized to unity) vector |void〉 in most texts misleadingly called the “vac-
uum”, or, less misleadingly, the Fock vacuum vector.11 That is, the zero-particles Hilbert
space H(0) is one-dimensional (all other Hilbert spaces with N ≥ 1 are all countably
infinite dimensional). One then formally introduces the “big” Hilbert space H

H = ⊕∞
N=0H(N) , (5.20)

the vectors of which have the form

H ∋ |Ψ〉 = |Ψ(0)〉+ |Ψ(1)〉+ |Ψ(2)〉+ . . . (5.21)

with |Ψ(N)〉 belonging to H(N) and |Ψ(0)〉 = a|void〉. This construction is not so unnatural
as it might seem at first sight. In a typical accelerator experiment a well defined two-
particle state is prepared, say |e+e−〉 in an electron-positon (e+e−) collision, and, after the
interaction (collision), the state of the system is represented by a vector which in fact is a
superposition of vectors belonging to different multi-particle spaces H(N), corresponding
to all possible many-particle states that can be created in this collision (of course selection
rules following from e.g the electric charge conservation, impose here some constraints).
Therefore the final state is a (in general infinite) superposition of vectors corresponding
to different numbers of particles12

|Ψ〉 = a |e+e−〉+ b |e+e−γ〉+ c |qq̄〉+ d |qq̄g〉+ e |qq̄qq̄〉+ . . .

where a, b, c, d, e are some complex numbers. Registration of a concrete final state by
the detector has the effect of reducing this state-vector of the system. Thus, at least in
physics of relativistic particles in which (as will be seen) particle number conservation
is impossible, the big Hilbert space (5.20) is the proper arena in which to formulate a
theory of physical processes. The possibility of treating systems with variable number

11We denote this vector |void〉 in order to distinguish this “technical” “no particle” vector from the
state-vectors |Ω0〉 and |Ω〉, commonly called “vacua”, which will be the true ground-state vectors, that
is the lowest energy eigenvectors, of the free H0 and interacting H = H0 + Vint Hamiltonians of systems
of free or interacting particles (or fields), respectively.

12This argument is heuristic and may be somewhat misleading. As a matter of facts, the vector |e+e−〉
representing the real initial state is an in state (analogous to the ones defined at the end of Section 1.3)
while the vectors onto which one projects it to find the probability of registering a particular final state
are all out vectors also representing definite sets of detectable particles. In general both, the in and out

vectors, are related in a complicated way to the basis states formed as tensor products of one-particle
state-vectors (representing states of individual underlying “fundamental” particles which should not, at
least in the relativistic theory, be identified whith ones prepared and detected in high-energy physics
experiments). Nevertheless, an in vector like |e+e−〉, still is a superposition of infinitely many out vectors
representing definite sets of particles in the final state. This will become more clear in Section 7.3.
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of particles is useful also in nonrelativistic physics. Investigating statistical properties of
physical systems one usually prefers to work with the Grand Canonical Ensemble, corre-
sponding to the system the number of particles of which is allowed to fluctuate;13 the big
Hilbert space (5.20) is then the proper space in which acts the statistical operator ρ̂ of the
ensemble. Finally, the possibility of forming superpositions of state-vectors correspond-
ing to different numbers of particles is crucial for theories of various phenomena like e.g.
superconductivity in which, if the thermodynamic limit N →∞, V →∞ with ρ = N/V
kept fixed is to be taken, some symmetries must become spontaneously broken.

In the “big” Hilbert space (5.20) the scalar product is defined as

〈Φ|Ψ〉 =
∞
∑

N=0

〈Φ(N)|Ψ(N)〉 , (5.22)

that is, vectors belonging entirely to H(N) and H(M) are declared to be orthogonal if
N 6= M . The formal (for reasons which we explain below) completeness relation in H
reads

1̂ = |void〉〈void|+
∞
∑

N=1

1

N !

∑

lN ,...,l1

|lN , . . . , l1〉〈l1, . . . , lN | . (5.23)

For example, in the position basis it takes the form (we again make the spin labels α
- which at least in nonrelativistic mechanics can be given a meaning in terms of a one-
particle spin operator - explicit here)

1̂ = |void〉〈void|+
∞
∑

N=1

1

N !

∫

dxN . . .

∫

dx1

∑

σN ,...,σ1

|xNσN , . . . ,x1σ1〉〈x1σ1, . . . ,xNσN |, (5.24)

and formally the most general form of a state belonging to H has the form

|Ψ〉 = a|void〉+
∞
∑

N=1

1

N !

∫

dxN . . .

∫

dx1

∑

σN ,...,σ1

|xNσN , . . . ,x1σ1〉Ψ(N)
σN ,...,σ1

(xN , . . . ,x1) ,

in which Ψ
(N)
σN ,...,σ1(xN , . . . ,x1) ≡ 〈xNσN , . . . ,x1σ1|Ψ(N)〉 is the wave function of the N -

particle component of the state |Ψ〉. The function Ψ
(N)
σN ,...,σ1(xN , . . . ,x1) of a system of N

bosons is totally symmetric while a similar function of a system of N fermions is totally
antisymmetric in all groups of its arguments corresponding to individual particles. If
|Ψ(N)〉 is of the form (5.12) then

Ψ(N)
σN ,...,σ1

(xN , . . . ,x1) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

〈xNσN |ψN〉 . . . 〈xNσN |ψ1〉
· . . . ·
· . . . ·
· . . . ·

〈x1σ1|ψN〉 . . . 〈x1σ1|ψ1〉

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ζ

, (5.25)

13To be clear: it is the number of particles of the real physical system that can fluctuate due to its
contact with the surrounding; the number of particles of each of the systems forming the corresponding
Grand Canonical Ensemble is fixed (but it is different in different members of the ensemble).
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where the symbol ζ means the determinant in the case of fermions (called the Slater deter-
minant) and for bosons the so-called permanent of the matrix which is computed similarly
as the determinant except for taking everywhere positive signs (the precise definition is
given by (5.14) with ϕi replaced by xi, σi).

The seemingly innocuous formal step of forming the Hilbert space H as the direct
sum of infinitely many Hilbert spaces H(N) has a profound mathematical consequence:
the constructed space is not separable14 that is, it has no countable basis - as can be
shown, the power of the set of basis vectors (5.15) or (5.16) with arbitrarily large N is
equal to the power of the continuum. Infinitely many different separable Hilbert subspaces
(which all can be given the structure of the so-called Fock space which will be introduced
shortly), with countable bases can be chosen in H (5.20), all of which, if no cutoff of some
sort (effectively reducing the number of degrees of freedom being taken into account) is
imposed that is, when the number of degrees of freedom involved becomes infinite, are
orthogonal to one another. In view of this, the unit operator 1̂ defined in (5.23) is in such
a case only the unit operator in a particular Fock space singled out by the choice of the
one-particle space basis |l〉 of H(1).

This can be illustrated most simply on the example of N spins15 s = 1
2
(forming e.g.

a D-dimensional lattice). The natural basis of states of such a system is represented by
the vectors (we assume spins are numbered from 1 to N) |σN , . . . , σ1〉 = |σN〉 ⊗ . . .⊗ |σ1〉
which are tensor products of the state-vectors |σi〉 = |±〉 forming a basis of the one-spin
space. In the space of a single spin one can, however, equally well take as the basis the
vectors |σi〉θ: |+〉θ = cos(θ/2)|+〉 + sin(θ/2)|−〉 and |−〉θ = − sin(θ/2)|+〉 + cos(θ/2)|−〉
with an arbitrary angle θ. If the vectors |σN , . . . , σ1〉θ = |σN 〉θ⊗. . .⊗|σ1〉θ are taken as the
basis of the N -spin Hilbert space, in the limit N =∞ all vectors of the basis |σN , . . . σ1〉θ
will have zero scalar products with all vectors of the basis |σN , . . . , σ1〉. For instance

θ〈+, . . . ,+|+, . . . ,+〉 = lim
N→∞

(cos θ/2)N = 0 ,

etc., if θ 6= 0. Therefore in the limit N = ∞ no one vector of the first basis can be
expressed as a linear combination of vectors of the second one.

To explain the implications of this, it is instructive to consider a system of N spins
(magnetic moments) interacting with one another which at low temperatures exhibits
(because of the interactions of spins) spontaneous polarization, i.e. a nonzero mean value
Sz of the z component Sz =

∑N
i=1 Ŝ

z
i of the total spin, which formally should be obtained

14The reader should be warned that mathematicians see this differently: they always work with
⊕Nmax

N=0H(N) and only at the end consider the limit Nmax → ∞. For this reason they maintain that
the Hilbert space constructed in this way is separable. But for forming a mental picture of the working
of many physical systems it is better to see things as presented here.

15The spins are distinguishable; nevertheless, their Hilbert space in the limit N →∞ becomes identical
with the one of indistinguishable fermions (see the occupation number representation below) and, hence,
nonseparable.
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as

Sz = Tr
(

ρ̂ Ŝz
)

, (5.26)

with ρ̂ = Z−1
stat exp(−Ĥ/kBT ) and Ŝz = ŝz1 + . . . + szN , where Ĥ is an invariant (by

assumption) with respect to simultaneous rotation of all spins Hamiltonian and Zstat =
Tr exp(−Ĥ/kBT ). However, as long as N is finite the value of Sz/N given by formula
(5.26) is exactly zero because of the assumed rotational invariance. Of course, in Nature
N is also finite, but the residual interactions with the surrounding, not accounted (by the
very definition of the ensemble - recall my statistical physics lectures) in the Hamiltonian
Ĥ used for statististical physics computations, always break this invariance. Thermal
fluctuations, necessarily present, do tend to erase the mean value of the total spin but
because the system is large (macroscopic), the probability that they flip simultaneously
(almost) all spins (so that the change of the total spin of the system is done at the least
energy cost - successive fliping of individual spins would cost a large amount of energy
which the system, if not (absolutely) adiathermally isolated in the macroscopic sense,
would have to absorb from the environment) from a configuration determined by a first
random external perturbation (or rather by the way the real system has been prepared)
grows with N ; therefore the flip of the total spin is extremely improbable and never
happens during the measurement of the magnetization of a real specimen. This is the
reason why the magnetization of the real system is nonzero.

To reflect this state of affairs in the statistical approach, one takes the thermodynamic
limit selecting first a particular basis |σN , . . . σ1〉θ; in the limit N =∞ this has the effect
that the formula (5.26) gives a nonzero magnetization precisely owing to the orthogonality
of all states |σN , . . . σ1〉θ

′

with θ′ 6= θ. This means that the trace in this formula effectively
gets restricted to only one of infinitely many orthogonal Fock spaces which in the limit
N =∞ are spanned by the bases |σN , . . . σ1〉θ with different angles θ. The direction of the
mean magnetization is in this way selected “by hands”, just by taking the thermodynamic
limit using one particular out of many possible bases (but since as a result of the underlying
symmetry all directions are equivalent this is not a problem). This can be improved by
placing the system in a constant magnetic field which singles out a direction in space and
therefore makes the energy cost of configurations with the total spin not aligned with the
magnetic field very high, infinite in the limit N =∞; this suppresses their contributions
to the trace in (5.26). In this way the applied field automatically selects one particular
base |σN , . . . σ1〉θ. In this approach the magnetization is nonzero even at finite N because
the external field explicitly breaks the rotational invariance and the limit of zero external
magnetic field is to be taken after the thermodynamic limit N →∞.

5.2 Creation and annihilation operators

The construction (5.20) of the big Hilbert space H enables the introduction of the creation
and annihilation operators. Let |ϕ〉 be a one-particle state. With any such state it is

185



possible to associate the corresponding creation operator a†(ϕ) acting in H and mapping
H(N) into H(N+1). On vectors |ψ1, . . . , ψN 〉 of the form (5.12) its action is defined by the
formula

a†(ϕ)|ψN , . . . , ψ1〉 = |ϕ, ψN , . . . , ψ1〉 , (5.27)

and is extended to the entire H by linearity. The annihilation operator a(ϕ) is defined as
the Hermitian conjugate of a†(ϕ) through the equality (cf. the definition (4.1))

〈χ1, . . . , χN−1|a(ϕ)|ψN , . . . , ψ1〉 =
(

〈ψ1, . . . , ψN |a†(ϕ)|χN−1, . . . , χ1〉
)∗

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

〈ψN |ϕ〉 〈ψN |χN−1〉 . . . 〈ψN |χ1〉
· · . . . ·
· · . . . ·
· · . . . ·

〈ψ1|ϕ〉 〈ψ1|χN−1〉 . . . 〈ψ1|χ1〉

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∗

ζ

.

The Laplace expansion (valid for determinants and permanents alike) gives

〈χ1, . . . , χN−1|a(ϕ)|ψN , . . . , ψ1〉 =
N
∑

k=1

ζk−1〈ψk|ϕ〉∗
∣

∣

∣

∣

without the k−th row
and the first column

∣

∣

∣

∣

∗

ζ

.

From this formula it is easy to read-off the following rule:

a(ϕ)|ψN , . . . , ψ1〉 =
N
∑

k=1

ζk−1〈ϕ|ψk〉|ψN , . . . (no ψk) . . . , ψ1〉 , (5.28)

which shows that a(ϕ) acting on a state -vector |Ψ(N)〉 of the form (5.12) gives zero if |ϕ〉
is orthogonal to all one-particle states |ψi〉 building |Ψ(N)〉. The factor ζk−1 appearing in
(5.28) can be understood as a sign factor arising when ψk is moved from its k-th position
in the ket to the last position, at which a(ϕ) can annihilate it.

Using the definitions (5.27) and (5.28) it is easy to show that

a†(ϕ1) a
†(ϕ2) = ζ a†(ϕ2) a

†(ϕ1) ,

a(ϕ1) a(ϕ2) = ζ a(ϕ2) a(ϕ1) , (5.29)

that is, the creation operators associated with one-particle states of bosons commute
(ζ = +1) and those associated with fermion states anticommute (ζ = −1) and the same
holds true for the annihilation operators. It follows, that the fermionic operators are
nilpotent:

a2(ϕ) = (a†(ϕ))2 = 0 . (5.30)

It is also easy to prove that
[

a(ϕ1), a
†(ϕ2)

]

−ζ
= 〈ϕ1|ϕ2〉 , (5.31)

186



where the subscript −ζ denotes the commutator if the particles are bosons and the anti-
commutator if they are fermions (the scalar product on the right hand side is that of the
one-particle space H(1)).

Creation and annihilation operators can be associated with any complete set of one-
particle states |l〉. If the vectors |l〉 form a countable orthonormal basis of H(1), then

[al′, a
†
l ]−ζ = δl′l , [al′, al]−ζ = [a†l′ , a

†
l ]−ζ = 0 . (5.32)

(If, instead, the |l〉’s are generalized vectors, then [al′ , a
†
l ]−ζ = cl δ(l

′ − l) with the factor
cl depening on the character of the label l and the adopted convention - cf. Section 2.5).
For future use note also that if the particles are fermions, the rule (5.32) is symmetric
with respect to the interchange al ↔ a†l , i.e. the algebraic properties of the fermionic
annihilation and creation operators are the same. This property will be exploited in
Section 5.4. The action of the fermionic operators al′ and a

†
l on the basis vectors (5.16) is

al |lN , . . . , l2, l1〉 =
N
∑

k=1

(−1)N−kδllk |lN , . . . (no lk) . . . , l1〉 ,

a†l |lN , . . . , l2, l1〉 = |l, lN , . . . , l2, l1〉 = ±|lN , . . . , l, . . . , l1〉 . (5.33)

The sign ± depends on the number of interchanges needed to move l to the appropriate
position (in agreement with the ordering specified in (5.16)); if l is equal to one of the l’s
in the ket the action of a†l gives zero. The action of the bosonic operators is similar (in
this case no extra signs are involved). It is useful to note that the state-vectors |l1, . . . , lN〉
which span H(N) and are used in (5.15) and (5.16) can be in both cases represented as

|lN , . . . , l1〉 = a†lN . . . a
†
l1
|void〉 . (5.34)

The order of the creation operators in this formula (important if the particles are fermions)
should of course follow the conventions adopted in (5.15) and (5.16) as follows from
the definition (5.27). The formula (5.34) also provides the justification for writing the
element ofH(N)∗ conjugated to |lN , . . . , l1〉 as 〈l1, . . . , lN |. The Hilbert (sub)space spanned
by all vectors of the form (5.34) with N arbitrarily large, but finite (as required by
mathematicians) is called the Fock space built on the vector |void〉. In the limit N →∞
the “location” of this subspace in the “big” Hilbert space H (5.20) depends of course (as
argued) on the choice of the basis |l〉 of the one-particle space H(1). It is possible, however,
to construct in H (5.20) also other Fock spaces built on other “void” vectors (specified
by some conditions - see e.g. Section 5.5).

To represent the action of the operators al′ and a†l on the basis vectors (5.15) in a
different way which, in the case of bosons is particularily convenient, one introduces first
the so-called occupation number representation by changing the notation used for the
vectors (5.15) or (5.16) forming countable bases of the Hilbert spaces H(N) of N bosons
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or fermions, respectively. To this ends one defines16

|n1, n2, . . .〉 ≡
1√

n1!n2! . . .
| . . . , 2, . . . , 2, 1, . . . , 1〉 , (5.35)

In this notation the numbers n1, n2, etc. simply indicate how many particles occupy
a given (discrete) one-particle state |l〉 (if the particles are fermions, only nl = 0 or
1 are possible). Of course, vectors belonging to H(N) are restricted by the condition
n1+n2+ . . . = N . Removing this restriction one obtains a set of vectors belonging to the
“big” Hilbert space H defined by (5.20). The set of such vectors is uncountable - its power
is equal to the power of the continuum.17 This shows that the Hilbert space H constructed
as in (5.20) is not separable and the state-vectors |n1, n2, . . .〉 with N = n1 + n2 + . . .
arbitrarily large but finite span in fact only a separable subspace (a Fock space) of the
entire big Hilbert space. In the occupation number representation the action of the bosonic
creation and annihilation operators looks familiar:

al |n1, n2, . . . , nl, . . .〉 =
√
nl |n1, n2, . . . , nl − 1, . . .〉 ,

a†l |n1, n2, . . . , nl, . . .〉 =
√
nl + 1 |n1, n2, . . . , nl + 1, . . .〉 . (5.36)

For completeness we give also the action of the fermionic operators on the basis vectors
(5.16) written in this notation:

al |n1, n2, . . . , nl, . . .〉 =
{

0 if nl = 0
η|n1, n2, . . . , nl − 1, . . .〉 if nl = 1

,

a†l |n1, n2, . . . , nl, . . .〉 =
{

0 if nl = 1
η|n1, n2, . . . , nl + 1, . . .〉 if nl = 0

, (5.37)

where η = (−1)p, p =
∑

l′<l nl′ . In both cases, the operator a†lal counts therefore the
number of particles occupying the (one-particle) state |l〉.

In many applications of the developed formalism to systems of many particles, partic-
ularily in its applications to statistical physics problems, it is most convenient to associate
the creation and annihilation operators with the basis of H(1) formed by the plane waves
|p〉 (in the case of spin zero bosons) or |p, σ〉 in general, with periodic boundary condi-
tions imposed in the finite a box of volume V = L3; the one-particle basis state-vectors
are then normalized by the condition

〈p′σ′|pσ〉 = δp′p δσ′σ , (5.38)

16Since the state-vectors |n1, n2, . . .〉 usually are not represented as in (5.34), we will not write them as
| . . . , n2, n1〉, which could seem more in line with the notation adopted for the state-vectors |lN , . . . , l2, l1〉.

17This is particularly easy to demonstrate in the case of fermions: it suffices to notice that any infinite
sequence of numbers n1n2n3 . . ., in which each nl = 0, or 1, treated as the binary coding of an integer,
can be uniquely mapped onto the infinite sequence of integer numbers p1p2p3 . . . , 0 ≤ pl < 9 and the
decimal fractions 0.p1p2p3 . . . fill the entire segment [0, 1) - a set the power of which is equal to the power
of the continuum.
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and the corresponding wave functions are18 (ψpσ)α(x) = (1/
√
V ) δασ e

ip·x. In the limit
V → ∞, i.e. when the individual particles can move in the infinite space, the basis of
the momentum states normalized in the box gets replaced by the basis formed by the
generalized momentum state-vectors normalized to the delta function19

〈p′, σ′|p, σ〉 = (2π)3δ(3)(p′ − p)δσ′σ ,

with the corresponding wave functions (ψpσ)α(x) ≡ 〈x, α|p, σ〉 = δασe
ip·x. The creation

and annihilation operators associated with these bases satisfy the (anti)commutation rules

[apσ, a
†
p′σ′ ]−ζ = δp′p δσ′σ , or [aσ(p), a

†
σ′(p

′)]−ζ = (2π)3δ(3)(p′ − p) δσ′σ , (5.39)

and the N -particle Hilbert spaces H(N) are spanned by the (generalized if the particles
are not confined to a finite volume) vectors20

|pNσN , . . . ,p2σ2,p1σ1〉 = a†pNσN
. . . a†p2σ2

a†p1σ1
|void〉 , (5.40)

or = a†σN
(pN ) . . . a

†
σ2
(p2) a

†
σ1
(p1)|void〉 .

In nonrelativistic physics one also uses as the basis of H(1) the position generalized
vectors |x, α〉. The associated creation and annihilation operators satify then the rules

[aα(x), a
†
α′(x

′)]−ζ = δ(x′ − x) δα′α , (5.41)

and the N -particle Hilbert spaces H(N) are spanned by the vectors

|xNαN , . . . ,x2α2,x1α1〉 = a†αN
(xN) . . . a

†
α2
(x2) a

†
α1
(x1)|void〉 . (5.42)

The operators aα(x) and a
†
α(x) in this case denoted usually by ψ̂α(x) and ψ̂

†
α(x) (or φ̂(x)

and φ̂†(x) if the particles are spinless bosons) and are called field operators.

18This is a somewhat stupid notation for α, strictly speaking, is also a spin label like σ - simply
(ψpσ)α(x) = 〈x, α|p, σ〉, where |x, α〉 represent the particle as x with the spin projection on the chosen
axis equal α - but one commonly treats it as a label of the “floor” of a 2s+1-component “wave function”
of the state |p, σ〉. The only justification of writing α on ψ instead of σ is perhaps that in the relativistic
case the index carried by the field operator will not have the meaning of the spin label.

19In the relativistic case it will be convenient to slightly modify this normalization.
20Recall that if the particles are bosons, these state-vectors are not properly normalized if two or more

momenta and spins coincide; in practical computations this is taken care of by usig the unit operator
decomposition in the form

1̂(N) =
1

N !

∑

pNσN

. . .
∑

p1σ1

|pNσN , . . . ,p1σ1〉〈p1σ1, . . . ,pNσN |,

in the case of the normalization in the box or in the form (5.19) in the case of the normalization in
the infinite space. Note also that the rule (5.47) and the prescription (5.34) imply that in making the
transition from the normalization in the box to the one in the infinite space, the vectors (5.40) normalized
in the box should be replaced by those normalized in the infinite space multiplied by the factor V −N/2

(the vectors |void〉 are normalized in the same way in both cases); together with the rule (5.48) this
ensures that the unit operator decomposition given here is consistent with the one given in (5.19).
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In order to write down the relations between the creation and annihilation operators
associated with different bases of the one-particle Hilbert space, it is sufficient to observe
that if a one-particle state-vector |ψ〉 is a linear superposition of some other vectors, e.g.
if

|ψ〉 = c1 |ψ1〉+ c2 |ψ2〉 , (5.43)

then from the definition (5.27) it immediately follows that

a†(ψ) = c1 a
†(ψ1) + c2 a

†(ψ2) ,

a(ψ) = c∗1 a(ψ1) + c∗2 a(ψ2) . (5.44)

Therefore, since

|x, α〉 =
∑

p,σ

|p, σ〉
(

1√
V
δσα e

ip·x

)∗

, |p, σ〉 =
∫

V

d3x
∑

α

|x, α〉 1√
V
δσα e

ip·x,

in the finite volume (with periodic boundary conditions imposed) and

|x, α〉 =
∫

d3p

(2π)3

∑

σ

|p, σ〉
(

δσα e
ip·x
)∗
, |p, σ〉 =

∫

d3x
∑

α

|x, α〉 δσα eip·x ,

in the infinite space, the creation and annihilation operators associated with these bases
are related by

ψ̂†
α(x) =

∑

p,σ

a†p,σ
1√
V
δσα e

−ip·x , a†p,σ =

∫

V

d3x
∑

α

ψ̂†
α(x)

1√
V
δασ e

ip·x ,

ψ̂α(x) =
∑

p,σ

ap,σ
1√
V
δσα e

ip·x , ap,σ =

∫

V

d3x
∑

α

ψ̂α(x)
1√
V
δασ e

−ip·x , (5.45)

in the finite volume (with periodic boundary conditions) and by

ψ̂†
α(x) =

∫

d3p

(2π)3

∑

σ

a†σ(p) δσα e
−ip·x , a†σ(p) =

∫

d3x
∑

α

ψ̂†
α(x) δασ e

ip·x ,

ψ̂α(x) =

∫

d3p

(2π)3

∑

σ

aσ(p) δσα e
ip·x , aσ(p) =

∫

d3x
∑

α

ψ̂α(x) δασ e
−ip·x , (5.46)

in the infinite space. The rules allowing to perform the transition from expressions in-
volving creation and annihilation operators associated with the momentum basis in the
discrete and in the continuous normalizations are as follows:

a†p,σ ↔
1√
V
a†σ(p) , ap,σ ↔

1√
V
aσ(p) . (5.47)
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and

∑

p

≡
∑

nx,ny,nz

←→ V

(2π)3

∫

d3p . (5.48)

The second one readily follows from the fact that if periodic boundary conditions are
imposed in the box of volume L× L× L, the factor (L/2π)3 = V/(2π)3, as explained in
Section 2.5, plays the role of the density of allowed states in the space of wave vectors.21

With these rules one has
∫

V

d3x
∑

α

ψ̂†
α(x)ψ̂α(x) =

∑

p,σ

a†p,σap,σ ↔
∫

d3p

(2π)3

∑

σ

a†σ(p)aσ(p) =

∫

d3x
∑

α

ψ̂†
α(x)ψ̂α(x) ,

etc.

More generally, if the functions (ulσ)α(x) ≡ 〈x, α|l, σ〉 form a complete orthonormal
set (the spin label σ is here singled out from the general one-particle state label l), such
that

|x, α〉 =
∑

l,σ

|l, σ〉〈l, σ|x, α〉 =
∑

l,σ

|l, σ〉 (ul,σ)∗α(x) , (5.49)

then

ψ̂†
α(x) =

∑

l,σ

a†l,σ (ulσ)
∗
α(x) , ψ̂α(x) =

∑

l,σ

al,σ (ulσ)α(x) , (5.50)

a†l,σ =

∫

d3x
∑

α

(ulσ)α(x) ψ̂
†
α(x) , al,σ =

∫

d3x
∑

α

(u∗lσ)α(x) ψ̂α(x) . (5.51)

The use of the functions (ulσ)α(x) in place of the plane waves may be more convenient
if particles of the considered system all move in an external spatially inhomogeneous
potential. Using the general formulae (5.51) and exploiting the completeness of the set of
functions (ulσ)α(x) as well as the commutation rules (5.32) one can check that the field
operators (bosonic and fermionic alike) always satisfy the (anti)commutation relations

[ψ̂α(x), ψ̂
†
β(y)]−ζ = δαβδ

(3)(x− y) , (5.52)

[ψ̂α(x), ψ̂β(y)]−ζ = [ψ̂†
α(x), ψ̂

†
β(y)]−ζ = 0 .

5.3 Hamiltonian and other operators

The main advantage of introducing the annihilation and creation operators is that es-
sentially all operators acting in the “big” Hilbert space (5.20) of many indistinguishable

21It should be also noted that both
∑

p and V/(2π)3d3p are dimensionless (p is the wave vector of

dimension length−1).
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particles can be represented in terms of them in a simple and very convenient for practi-
cal computations form. Here we consider in some details only the so-called one-particle
operators which like the kinetic energy operator, the total momentum operator, etc. have
additive character with respect to individual particles of the system and operators which
represent binary interactions (these are additive with respect to pairs of particles). Other
operators, e.g. ones representing three-body interactions can be constructed along the
same lines.

In general an operator of the form O = O
(1)
N ⊗. . .⊗O

(1)
2 ⊗O

(1)
1 acts on a state-vector |Ψ〉

of the form (5.1) of a system of N -particles (not necessarily indistinguishable) according
to the rule

O|Ψ〉 = O
(1)
N |ψN 〉 ⊗ . . .⊗O(1)

2 |ψ2〉 ⊗ O(1)
1 |ψ1〉 . (5.53)

The operators O
(1)
i act here in separate Hilbert spaces of individual particles and are

therefore formally “different”. The above rule extends by linearity to (anti)symmetrized
vectors (5.12) representing states of identical indistinguishable particles. To preserve
the subspaces of completely symmetrized or antisymmetrized state-vectors, admitted can
only be the operators O = O

(1)
N ⊗ . . .⊗ O

(1)
2 ⊗ O

(1)
1 which are symmetric with respect to

interchanges of O
(1)
l ↔ O

(1)
k , 1 ≤ l, k ≤ N . In this case distinguished is a class of operators

of the form

O(N) =

N
∑

i=1

1̂(1) ⊗ . . .⊗O(1)
i ⊗ . . .⊗ 1̂(1) , (5.54)

(the lower index i labels here only the position of the same one-particle operator O(1) in
the tensor product) which have additive character with respect to individual particles.
An example of the operator of this type is e.g. the N -particle kinetic energy operator

T̂ (N) =
N
∑

i=1

1̂(1) ⊗ . . .⊗ P̂
(1)2
i

2m
⊗ . . .⊗ 1̂(1) , (5.55)

acting in H(N) which in many cases plays the role of the free Hamiltonian H0 of the
system of N indistinguishable particles. The state-vectors (5.40), normalized either in
the finite-volume or in the infinite space, are its eigenvectors with the eigenvalue ~2(p2

1 +
. . .+ p2

N)/2m. Another operator of this class is the particle number operator

N̂ (N) = N 1̂(1) ⊗ . . .⊗ 1̂(1) , (5.56)

which is proportional to the unit operator on H(N).

Operators of this class can be easily expressed in terms of the creation and annihilation
operators. This also promotes them to operators defined on the whole big Hilbert space
(5.20). In order to represent operators of the form (5.54) in terms of the annihilation
and creation operators it is convenient to consider first a particular operator of this sort,
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namely O(1) = |l〉〈l′| (the spin label is now included in the general labels l and l′). Its
action

O|ψN , . . . , ψ2, ψ1〉 = 〈l′|ψN〉 |l, ψN−1, . . . , ψ1〉+ 〈l′|ψN−1〉 |ψN , l, . . . , ψ1〉+ . . .

on a state-vector of the form (5.12) is readily seen to be identical with the action of the
operator a†lal′ (c.f. the formulae (5.28) and (5.27)). Since any one-particle operator O(1)

can be written in the form

Ô(1) =
∑

l

∑

l′

|l〉〈l|O(1)|l′〉〈l′| ≡
∑

l

∑

l′

Ô
(1)
ll′ |l〉〈l′| , (5.57)

one concludes that

O =
∑

l

∑

l′

O
(1)
ll′ a

†
l al′ . (5.58)

Taking for example O(1) = 1̂(1) (the one-particle unit operator), the matrix elements

of which are O
(1)
ll′ = 〈l|1̂(1)|l′〉 = δll′, one gets the operator N̂ counting the number of

particles of the system (for definiteness we consider here the system in the infinite space):

N̂ =
∑

l

a†lal =

∫

d3x
∑

α

ψ̂†
α(x) ψ̂α(x) =

∫

d3p

(2π)3

∑

σ

a†σ(p) aσ(p) . (5.59)

Similarly, taking for O(1) the one-particle momentum operator P̂(1) we obtain the operator
P̂ of the total momentum of the system:22

P̂ =

∫

d3p

(2π)3

∑

σ

~p a†σ(p)aσ(p) =

∫

d3x
∑

α

ψ̂†
α(x)(−i~∇x)ψ̂α(x) , (5.60)

(recall that p is the wave vector, not the momentum). In the similar way it is possible
to construct also the total angular momentum Ĵ and boost K̂ operators of the system of
free particles.23 Each of these operators is originally a one-particle operator of the general

22The second form of this operator follows from the matrix element

〈x|P̂(1)|y〉 = i~
∂

∂y
δ(3)(y − x) ,

of the one-particle momentum operator P̂(1) which correctly gives

〈x|P(1)|ψ〉 =
∫

d3y 〈x|P̂(1)|y〉 〈y|ψ〉 = −i~ ∂

∂x
ψ(x) .

23The operators P̂ and Ĵ constructed in this way retain their role also in the presence of interactions;
the concrete form of the boost operator K̂ may in principle depend on the form of the interaction as a
result of the last commutation relation (4.50).
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form (5.54). The corresponding exponentialized symmetry operators (see Chapter 4), e.g.
the rotation operator U (N)(θ) = exp(−iθ · Ĵ(N)), are then operators of the form U (N) =
U (1)⊗ . . .⊗U (1) (i.e. they have the form of tensor products of operators acting on states of
individual particles) and act on N -particle state-vectors according to the rule (5.53). This
rule becomes automatically implemented (and simultaneously the symmetry operators get
promoted to ones acting in the entire Hilbert space (5.20)) when the symmetry generators
are written in terms of the creation and annihilation operators and get exponentialized.

If (indistinguishable) particles are not interacting with one another but all move in
some external (spin independent) potential Vpot(x), their nonrelativistic Hamiltonian is

the sum (over particles) of the one-particle operators H(1) = T̂ (1) + V̂ (1) = P̂(1)2/2m +

V
(1)
pot (x̂) the matrix elements of which between the position operator eigenstates are

〈x|H(1)|y〉 = − ~2

2m
∇2

y δ
(3)(y− x) + Vpot(x) δ

(3)(y − x) . (5.61)

In the second quantization formalism it takes, therefore, the form

H =

∫

d3x
∑

α

ψ̂†
α(x)

[

− ~2

2m
∇2

x + Vpot(x)

]

ψ̂α(x) . (5.62)

To rewrite it in the momentum representation (in the normalization in the infinite space)
we use the formulae

〈p, σ|T (1)|p′, σ′〉 = ~2p2

2m
(2π)3δ(3)(p− p′) δσσ′ ,

and

〈p, σ|V (1)|p′, σ′〉 = δσσ′

∫

d3x

∫

d3y 〈p|x〉〈x|Vpot|y〉〈y|p′〉 = Ṽpot(p− p′) δσσ′ ,

where Ṽpot(q) is the Fourier transform of the potential Vpot(x):

Ṽpot(q) =

∫

d3xVpot(x) e
−iq·x , Vpot(x) =

∫

d3q

(2π)3
Ṽpot(q) e

iq·x . (5.63)

Thus, in the momentum representation we get

H =

∫

d3p

(2π)3
~2p2

2m

∑

σ

a†σ(p) aσ(p) +

∫

d3p

(2π)3

∫

d3p′

(2π)3

∑

σ

a†σ(p
′) Ṽpot(p

′ − p) aσ(p)

=

∫

d3p

(2π)3
~2p2

2m

∑

σ

a†σ(p) aσ(p) +

∫

d3q

(2π)3
Ṽpot(q)

∫

d3p

(2π)3

∑

σ

a†σ(p+ q) aσ(p) . (5.64)

The same Hamiltonian in the momentum representation but with the normalization in
the finite volume V (and periodic boundary conditions) is then obtained with the help of
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the rules24 (5.47) and (5.48) and reads:

H =
∑

p,σ

~2p2

2m
a†p,σap,σ +

1

V

∑

q

Ṽpot(q)
∑

p,σ

a†p+q,σap,σ . (5.65)

Of course, if instead of the one-particle bases formed by the generalized vectors |x〉
or |p〉 one uses as the complete set the eigenvectors |l〉 corresponding to the eigenvalues
εl of the full one-particle Hamiltonian H(1) = P̂2/2m + Vpot(x̂), the “second-quantized”
Hamiltonian H will take the simple form

H =
∑

l

εl a
†
lal , (5.66)

(the range of the label l may in this case consist of a discrete and a continuous part).
Note also that the operator

n̂(x) =
∑

α

ψ̂†
α(x)ψ̂α(x) , (5.67)

has the natural interpretation of the operator of the particle number density at the point
x (the number of particles per unit volume). The operator (5.59) counting the number of
particles is given by N̂ =

∫

d3x n̂(x).

Another class of operators which can be straightforwardly expressed through the cre-
ation and annihilation operators form the operators of binary interactions acting in the
spaces H(N) with N ≥ 2. Such operators can be written in the general form

V̂int =
1

2

N
∑

i 6=j

Vint(1̂⊗ . . .⊗ Ô(1)
i ⊗ . . .⊗ 1̂, 1̂⊗ . . .⊗ Ô(1)

j ⊗ . . .⊗ 1̂) , (5.68)

where Vint(x, y) is a real-valued symmetric, Vint(x, y) = Vint(y, x), function of two argu-

ments; correspondingly to the character of the operators O
(1)
i , the arguments x, y may be

of the vector character. To express such operators, promoting them thereby to operators
acting in the big Hilbert space (5.20), in terms of the creation and annihilation operators
it is necessary25 to take as the basis of the H(N) space the state-vectors a†l1 . . . a

†
lN
|void〉 in

which a†l are the creation operators associated with the orthonormal basis of H(1) formed
out of eigenvectors |l〉 of the operator O(1): 〈l′|O(1)|l〉 = ol δl′l. It is then easy to check
that the matrix elements of (5.68)

〈l′1, . . . , l′N |V̂int|lN , . . . , l1〉 =
1

2

∑

i 6=j

Vint(oli, olj)〈l′1, . . . , l′N |lN , . . . , l1〉 ,

24Direct transition from (5.62) to the momentum representation in the finite volume using the expres-
sions (5.45) encounters the problem that the function Vpot(x) is usually not periodic in the volume V , so
its Fourier transform must be taken in the infiite space.

25For the function Vint(x, y) may not be expandable in the Taylor series around the point (0, 0).

195



are identical with the corresponding matrix elements of the operator26

1

2

∑

l′,l

Vint(ol′, ol) a
†
la

†
l′al′al , (5.69)

defined on the entire big Hilbert space (5.20).

The simplest operator of this kind is the potential energy operator of the binary spin-
independent interactions which in the ordinary formulation (in terms of the wave functions
Ψσ1,...,σN

(x1, . . . ,xN ) with imposed symmetry requirements) in the N -body quantum me-
chanics has the form

V̂int =
1

2

∑

i 6=j

V
(2)
int (1̂⊗ . . .⊗ x̂i ⊗ . . .⊗ 1̂, 1̂⊗ . . .⊗ x̂j ⊗ . . .⊗ 1̂) . (5.70)

Its action in the big Hilbert space (5.20) of indistinguishable particles is represented by
the operator

V̂int =
1

2

∫

d3x

∫

d3y
∑

αβ

ψ̂†
α(x) ψ̂

†
β(y)V (x,y) ψ̂β(y) ψ̂α(x) , (5.71)

One can easily include also spin-dependent binary interactions by writing

V̂int =
1

2

∫

d3x

∫

d3y
∑

α′α

∑

β′β

ψ̂†
α′(x) ψ̂

†
β′(y)Vα′β′,βα(x,y) ψ̂β(y) ψ̂α(x) . (5.72)

In both these formulae the integrals are either over a finite volume V in which the inter-
acting particles are enclosed or over the entire infinite sppace.

The operators (5.71) and (5.72) are said to be normally ordered with respect to the
vector |void〉, because the operators ψ̂ which annihilate this vector stand to the right of
the operators ψ̂†. In this respect (5.71) differs from the operator

V̂ ′
int =

1

2

∫

d3x

∫

d3y n̂(x)n̂(y)V (x,y) ,

with n̂(x) given by (5.67) by a local term (1/2)
∫

d3xV (x,x) n̂(x) which usually is infinite.
Normal ordering is a necessary condition for the equivalence of the second-quantized form
of the nonrelativistic many-body theory with its ordinary formulation based on the N -
body Schrödinger equation. Since such an equivalence of the relativistic theory is not
possible, normal ordering of interaction operators V̂int ceases to be in this case a necessary
requirement. It is also to be noted that the interaction operators (5.71) or (5.72) are
spatially nonlocal (they involve two integrals over the space) - in this respect they differ
from the interaction operators used in relativistic theories which are always assumed

26The ordering of the operators al′ and al (and of a†l and a†l′) is crucial if they are fermionic!
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to be local; nonlocality of the operators (5.71) or (5.72) is another consequence of their
direct relation to operators used in the traditional formulation of the many-body quantum
mechanics in terms of the multi-particle wave functions and ensures that no infinites27

(of the sort which are typical of relativistic theories) are encountered in computations of
quantities characterizing many-body systems.28

In their most general forms the interactions (5.71) and (5.72) are neither translationally
nor rotationally invariant that is, the total momentum P̂ and the total angular momentum
Ĵ operators would not commute with the complete Hamiltonian

H = − ~2

2m

∫

d3x
∑

α

ψ̂†
α(x)∇

2ψ̂α(x) + V̂int , (5.73)

and, therefore, would not generate symmetries of the system. The interaction V̂int of the
form (5.71) or (5.72) commutes with the total momentum operator P̂ (in all cases given
by (5.60)) only if the function V (x,y), or the function Vα′β′,βα(x,y), depends only on
the difference x − y. Rotational invariance of the spin-independent interaction (5.71)
is in turn ensured if V (x − y) depends on |x − y|: the operators Ĵ, the precise form
of which depends on the spin s of the particles, constructed out of the creation and
annihilation operators following the general prescription (5.58) and the formula (4.78)
commute then with the Hamiltonian. Spin-dependent interaction operators (5.72), to
lead to the rotational invariance, must depend in a specific way (depending on the spin s
of the interacting particles) on the spin indices α, β, ... ; for instance, if the interacting
particles are spin 1/2 fermions, the binary interaction must be of the form

Vα′β′,βα(x,y) = Vpot1(|x− y|) δα′αδβ′β + Vpot2(|x− y|)σα′α · σβ′β .

with only two independent functions Vpot1(|x|) and Vpot2(|x|) and the spin indices of
the spin dependent term carried by the Pauli matrices σα′α. In the case of the theory
formulated in the infinite space out of the creation and annihilation operators one can
also explicitly construct the boost operators K̂ which together the operators P̂ and Ĵ and
the Hamiltonian (5.73) satisfy the necessary commutation rules (4.50). The whole Galileo
group discussed in Section 4.3 is then the symmetry group of the considered system of
interacting particles and is realized by the symmetry operators in the Hilbert space.

Using now the rules (5.46) pertaining to the theory formulated in the infinite space
it is straightforward to write the operators (5.71) or (5.72) in terms of the creation and
annihilation operators associated with the momentum basis. If the interaction (5.70) is
translationally invariant (the theory is formulated in the in the infinite spce), the spin

27Except for those - the so called infrared divergences - which are related to the long range character
of the assumed potential Vpot(x− y).

28Infinities in nonrelativistic theories appear, however, if nonlocal interactions are replaced by effective
local ones (see Section 5.5).
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dependent interaction (5.72) takes the form

V̂int =
1

2

∫

d3q

(2π)3

∫

d3p

(2π)3

∫

d3k

(2π)3

∑

α′α,β′β

a†α′(p+ q) a†β′(k− q) Ṽα′β′,βα(q) aβ(k) aα(p) , (5.74)

in which Ṽα′β′,βα(q) is the Fourier transform of Vα′β′,βα(x− y):

Vα′β′,βα(x− y) =

∫

d3q

(2π)3
Ṽα′β′,βα(q) e

iq·(x−y) . (5.75)

Rotational invariance further restricts its dependence on the spin indices and restricts
the dependence of the Fourier transforms of the independent functions like Vpot1(|x|) and
Vpot2(|x|) in the case of spin 1/2 fermions, on q to the dependence on |q|.

The momentum space form of the operator (5.72) in the case of particles confined
to a box of volume V (with periodic boundary conditions imposed) can be obtained by
applying to (5.74) the rules (5.48) and (5.47):

V̂int =
1

2V

∑

q

∑

p,α′α

∑

k,β′β

a†p+q,α′a
†
k−q,β′ Ṽα′β′,βα(q) ak,β ap,α . (5.76)

(Notice the inverse volume factor in front) The action of V̂int in the momentum basis
(5.40) of H(N) in both cases: of the theory formulated in the infinite space and in the
finite volume, can be graphically represented as in Figure 5.1.

It is also easy to check that every operator V̂int of the form (5.72), and more generally,
of the form (5.69), commutes, as could be expected, with the particle number operator
(5.59):

[V̂int, N̂ ] = 0 . (5.77)

As a result, the complete Hamiltonians of the form (c.f. (5.66))

H =
∑

l

εla
†
lal + V̂int , (5.78)

with V̂int of the general form (5.69) have separate vacua - the ground states - |Ω〉 (which
should be rather denoted |Ω(N)〉) in each subspace H(N) of the bg Hilbert space (5.20).

We have discussed here only two classes of operators which are most typical in appli-
cations of the second quantization formalism to many-body problems. More generally, it
can be easily shown (essentially by using the mathematical induction) that any operator
Ô defined on the entire Hilbert space (5.20) by giving its matrix elements between all
possible states |l1, . . . , lN〉 and 〈l′N , . . . , l′N ′ | of some basis (of a Fock space) with arbitrary
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p, α k, β

p+ q, α′ k− q, β ′

Ṽα′β′,βα(q)

Figure 5.1: Graphical representation of the two-particle interaction (5.74) or (5.76) which
conserves the total momentum in the momentum representation.

N and N ′ (the operator Ô need not commute with the particle number operator (5.59))
can be written in the form (ordered normally with respect to the |void〉 vector)

Ô =
∞
∑

N=0

∞
∑

N ′=0

∑

lN ,...,l1

∑

l′
N′

,...,l′
1

cN,N ′

lN ,...,l1;l′N′
,...,l′

1

a†lN . . . a
†
l1
al′

N′
. . . al′

1
, (5.79)

by appropriately adjusting the coefficients cN,N ′

l1,...,lN ;l′
1
,...,l′

N′

. In particular, the creation and

annihilation operators allow to construct various forms of interactions, also of the nonlocal
type, like (omitting the spin labels)

∫

d3p′
2

(2π)3

∫

d3p2

(2π)3

∫

d3p′
1

(2π)3

∫

d3p1

(2π)3
Ṽ (p′

1 − p1,p
′
2 − p2) a

†(p′
1) a

†(p′
2)a(p2) a(p1) , (5.80)

corresponding to the general form (5.70) of the binary interaction (with V (2)(x,y) be-
ing a symmetric function of two independent spatial arguments) and similar ones having
more integrals over independent wave vectors and/or more creation and annihilation op-
erators. Such interactions of systems of N nonrelativistic particles are constrained only
by the requirement that they commute with the operator N̂ (5.59) that is, must involve
equal numbers of the creation and annihilation operators. It will be seen (Section 7.8),
however, that the requirement that the scattering amplitudes satisfy the cluster decompo-
sition principle (Section 7.8) enforces the presence of one delta function (which effectively
reduces the number of independent wave vectors) in the kernel Ṽ (p1, . . . ,p2M) (in fact
the reasons for which the formalism of the creation and annihilation operators is so useful
in nonrelativistic quantum mechanics of many particle systems is that is allows to easily
satisfy the cluster decomposition principle). We will also see, that the requirement of
relativistic covariance of transition amplitudes (S-matrix elements) imposes much more
stringent constraints on possible forms of interactions and makes it impossible to maintain
the particle number conservation.

It should be clear (this has been already stressed) that as long as the (ordered normally
with respect to the |void〉 vector) Hamiltonian operator H commutes with the particle
number operator N̂ (5.59) and the admitted states of the system are superpositions of only
state-vectors with the same (finite) number N of particles, the formalism developed here
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is equivalent to the one based of the multi-particle Schrödinger equation (again omitting
spin labels)

i~
∂

∂t
Ψ(x1, . . . ,xN , t) = H(x1, . . . ,xN )Ψ(x1, . . . ,xN , t) , (5.81)

in which the Hamiltonian is symmetric with respect to permutations of the variables of
the N particles and the wave-fuctions Ψ(x1, . . . ,xN , t) are either totally symmetric or
totally antisymmetric. More precisely, the equation

i~
d

dt
|Ψ(t)〉 = H|Ψ(t)〉 , (5.82)

which in the formalism of second quantization determines the time evolution in the big
Hilbert space H = ⊕∞

N=0H(N) of state-vectors |Ψ(t)〉 having components belonging to each
of the subspaces H(N)

a|void〉, |Ψ(1)〉, |Ψ(2)〉 , . . .

breaks up into an infinite set of uncoupled, independent Schrödinger equations (5.81) cor-
responding toN = 1, 2, . . . particles. This is easily seen by closing (5.82) with 〈xN , . . . ,x1|,
N = 1, 2, . . . from the left and using the orthogonality of vectors belonging to different
H(N)’s, and the fact that H commutes with N̂ (it has vanishing matrix elements between
vectors belonging to different H(N)’s). The N = 0 component of the equation (5.82) is
trivial (0 = 0) because for consistency with ȧ = 0 Hamiltonians of systems of nonrela-
tivistic particles should always be constructed so that H|void〉 = 0 that is, with terms
involving (equal numbers of) creation and annihilation operators ordered normally with
respect to the vector |void〉. Normally ordered (with respect to the |void〉 vector) form of
such Hamiltonians is crucial for the equivalence also because it eliminates certain contri-
butions to amplitudes which are absent in the conventional formulation in terms of the
many-body Schrödinger equation. Hamiltonians of interacting relativistic particles cannot
commute with the operators of particle numbers and, as a result, in the relativistic case
the equation (5.82) would lead to infinitely many coupled equations. It has been already
remarked that in this case normal ordering of interaction operators is not a necessary
requirement.

The formalism of second quantization is exceptionally flexible and allows also to go
far beyond the quantum mechanics based on the N -body Schrödinger equation (5.81).
Owing to the fact that the creation and annihilation operators can be associated with
quantum states of individual elements of physical systems it allows to easily build (effec-
tive) Hamiltonians of emergent phenomena without taking into account the (complicated)
underlying dynamics of the more fundamental particles constituting the system. The sim-
plest example are interactions of electrons with phonons which are quantum excitations
of lattices consisting of molecules (which themselves are composed of electrons and nu-
clei): once the states of the lattice are represented as in Section 5.6 in terms of phonons
and the associated creation and annihilation operators introduced, it is possible to write
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Hamiltonians coupling directly free electrons of a solid with phonons treated as particles
(such effective Hamiltonians do not, however, preserve the number of phonons and in this
respect resemble Hamiltonians of relativistic particles; phonons are rather quasi-particles
than particles). Many other models of similar kind, for instance of particles on lattices
capable of hopping from one lattice site to others (generically called Hubbard models)
can be costructed using this formalism and find their applications in condensed matter
physics in building effective models of a huge variety of phenomena.

The final remark is that the second quantized version of the nonrelativistic quantum
theory of many-particle systems as well as all models formulated using this formalism are
obviously models of the usual quantum mechanics in which the central role is played by
the Hamiltonian operator and its spectrum. The fact that the formalism of second quan-
tization is especially useful in investigating many-body problems, or statistical physics
problems in which the statistical operators ρ̂ = Z−1

stat exp(−Ĥ/kBT ) of the Canonical En-
semble or ρ̂ = Z−1

stat exp(−(Ĥ − µN̂)/kBT ) of the Grand Canonical Ensemble play the
most important roles, does not preclude applying it also to few-body probems of quan-
tum mechanics, like e.g. the scattering problems (this requires only that the relevant
theories be formulated in the infinite space rather than in the finite volume). It is also
useful to keep in mind that in the formalism of second quantization all standard rules of
quantum mechanics which are formulated in terms of state-vectors and matrix elements
of operators, such as e.g. perturbative expansions (stationary and time-dependent ones
- see Section 2.1), for computing energy spectra and transition probabilities remain valid
and can be used to analyse properties of interacting many particle systems. New is only
the method of computing the requisite matrix elements.

5.4 Ground state of a system of fermions. Holes

The formalism of the second quantization applied to systems composed of fermions and
to systems composed of bosons is superficially very similar. The only difference seems
to be that the creation and annihilation operators associated with bosons satisfy the
commutation rules while those associated with fermions - the anticommutation rules.
(In addition fermionic operators necessarily carry a spin label). This is indeed so if
this formalism is applied to few-body problems, like the mentioned scattering problems.
What makes the behaviour of (nonrelativistic) bosonic and fermionic systems really very
different is the structure of their respective ground states when the numbers of particles
in the system are very large (the systems are macroscopic). Of course, the true system’s
ground state (ground states in different H(N) subspaces, in the case of nonrelativistic
systems) |Ω〉 depends on the precise form of the system’s complete Hamiltonian that
is, on the particle’s interactions, but the essential difference can be seen already in the
absence of any interaction (especially if one considers thermodynamic properties of the
system).

Consider first a system of N identical indistinguishable fermions the unperturbed
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Hamiltonian H0 of which is obtained by neglecting their mutual interactions (it can
therefore correspond to a system of fermions confined in some external potential). It
is therefore essentially the sum of the form (5.54) of one-particle operators H(1). Let |l〉
be the eigenvectors of H(1):

H(1)|l〉 = εl|l〉 , (5.83)

where l = 1, 2, . . . (we assume that the spectrum of H(1) is discrete either because the
system is enclosed in a finite volume or because the particles are effectively confined by an
external potential). Written in terms of the creation and annihilation operators associated
with the states |l〉 the free Hamiltonian H0 of the system takes the simple form (5.66) and
as a basis of the N -particle Hilbert space H(N) it is convenient to take the state-vectors

|lN , . . . , l2, l1〉 = a†lN . . . a
†
l2
a†l1 |void〉 , (5.84)

with l1 < l2 < . . . < lN corresponding to the ordering εl1 ≤ εl2 . . . ≤ εlN of the energies.

If the complete Hamiltonian of the system (i.e. H0 plus the interaction term V̂int)
commutes with the particle number operator N̂ (5.59), one is not interested in the state
|void〉 but rather in the state |Ω0〉 which is the lowest energy eigenvector of H0 in the
subspace H(N) of the big Hilbert space H. It is clear that if N > 2s + 1 (s is the
spin the fermions), the eigenvalue of H0 on |Ω0〉 cannot be equal to Nε1 because of the
Pauli exclusion principle reflected in the antisymmetry of N -particle states with respect
to interchanges of particles: each fermion has to occupy a separate one-particle state. If
the energy eigenvalues of the one-particle Hamiltonian H

(1)
0 are, as has been assumed,

ordered so that29 ε1 ≤ ε2 ≤ ε3 ≤ . . ., the state |Ω0〉 of the lowest possible energy - the
(unperturbed) ground state called also the free vacuum state - is

|Ω0〉 = |N, . . . , 3, 2, 1〉 = a†N . . . a
†
3a

†
2a

†
1|void〉 , (5.85)

(i.e. |Ω0〉 corresponds to the basis vector (5.84) with l1 = 1, l2 = 2, etc.) and

EΩ0
= ε1 + ε2 + . . .+ εN > Nε1 . (5.86)

One says that one-particle states which are occupied in the system’s ground-state (in the
absence of mutual particle interactions) all lie below the Fermi energy εF ≡ εN , or below
the Fermi level, whereas those which are unoccupied are above the Fermi level.30

For example, if H(1) = P̂2/2mf , the energy EΩ0
of the ground state of N noninter-

acting spin s (half-integer) fermions of mass mf enclosed in the volume V = L3 (with

29If the particle energy does not depend on the direction of its spin, there are always 2s + 1 distinct
one-particle states with the same energy; the degeneracy of excited energy levels can be even higher if
e.g. energy does not depend on the direction of the particle’s momentum.

30In fact, when the interactions are spin independent and the numbers Nσ (such that
∑s

σ=−sNσ = N)
of fermions with the spin projection σ are fixed the relevant ground state |Ω0〉 is characterized by 2s+ 1
Fermi energies εFσ.
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periodic boundary conditions imposed), Nσ of which have spin projection σ is given by
the expression

EΩ0
=

s
∑

σ=−s

|k|<pFσ
∑

k

~2k2

2mf

, (5.87)

in which the inner sum runs over wave vectors k of the form k = (2π/L)n (here n are
vectors having integer components) and the Fermi wave wectors pFσ are determined by
the numbers Nσ:

Nσ =

|k|<pFσ
∑

k

1 . (5.88)

In the thermodynamic limit, applying the rule (5.48) one gets

EΩ0
=

V

6π2

3

5

~2

2mf

s
∑

σ=−s

p5Fσ , Nσ =
V

6π2
p3Fσ . (5.89)

Since
∑s

σ=−sNσ = N , it is convenient to introduce the overall Fermi vector kF defined by
(gs = 2s+ 1)

N = gsV

∫

d3k

(2π)3
θ(kF − |k|), (5.90)

so that kF = ((6π2/gs)(N/V ))1/3 and to define the fractions xσ ≡ pFσ/kF, satisfying the
sum rule x−s + . . .+ xs = 1. The ground state energy density takes then the form

EΩ0

V
=

k3F
6π2

3

5

~2k2F
2mf

s
∑

σ=−s

x5σ . (5.91)

If s = 1/2 and P = (N+−N−)/N the energy density expressed in terms of the polarization
P of the system reads

EΩ0

V
=

k3F
6π2

3

5

~
2k2F
2mf

[

(1 + P )5/3 + (1− P )5/3
]

. (5.92)

When mutual interactions, represented by V̂int, of the considered fermions are taken
into account, the basis vectors (5.84) will not in general be eigenvectors of the complete
Hamiltonian H = H0 + V̂int. Even if the system is initially prepared in the ground state
(5.85) of H0, the probability of finding it later in a state of a higher H0 energy will
be nonzero - the perturbation V̂int will cause transitions (see Chapter 2 for a discussion
when such transitions can be physically relevant) between the eigenstates of H0. In the
perturbative expansion this can be interpreted as successive actions of V̂int which e.g. in
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the case of a binary interaction of the general form (5.69) removes two particles from
two filled one-particle states and puts them into two available empty ones. In particular,
removing a particle from a one-particle state of energy εl̃ below the Fermi level εF and
putting it into a state of energy εl above it can be viewed as creation of a hole of energy
−εl̃ and of a particle of energy εl > εl̃ (one interprets then the ground state |Ω0〉 as a
state with no particles, or better, with no excitations).

This view can be formalized by redefining the creation and annihilation operators
corresponding to the H0 one-particle eigenstates |l̃〉 with 1 ≤ l̃ ≤ N and to its eigenstates
|l〉 with l > N as follows (notice that the redefinition depends on the number N of
fermions forming the system):

al̃ ≡ d†
l̃

a†
l̃
≡ dl̃

}

if 1 ≤ l̃ ≤ N , and
al ≡ bl
a†l ≡ b†l

}

if N < l . (5.93)

It is obvious that now (l > N , l̃ ≤ N)

bl|Ω0〉 = 0 , dl̃|Ω0〉 = 0 . (5.94)

Because the fermionic creation and annihilation operators satisfy the anticommutation

rules which are symmetric (with respect to interchanging al and a†l ), the redefinition

(5.93) is perfectly possible: d†
l̃
and dl̃ have all the necessary algebraic properties to be

interpreted as fermionic creation and annihilation operators, respectively. Therefore the
vectors (5.84) (which can be created by the successive actions of V̂int on the ground state
|Ω0〉 of H0 in the N -fermion sector) forming the basis of the space H(N) of the system of
N fermions can equivalently be written in the form

|l1, . . . , lm, l̃1, . . . , l̃n〉 ≡ b†l1 . . . b
†
lm
d†
l̃1
. . . d†

l̃n
|Ω0〉 , (5.95)

in which all labels li correspond to one-particle states lying above the Fermi level (un-
occupied in the ground state) and all labels l̃j correspond to one-particle states below
the Fermi level (filled in the ground-state). One interprets such states as consisting of
m “particles” and n “holes” or n +m “excitations” (of course n = m ≤ N because V̂int
conserves the number of particles and there are N fermions).

The form of the particle (fermion) number operator N̂ (5.59) rewritten accordingly
(its last term is a c-number),

N̂ =
∑

l>N

b†l bl −
∑

l̃≤N

d†
l̃
dl̃ +N 1̂ , (5.96)

suggests that a hole should be ascribed the fermionic number −1 (that is, it can be viewed
as −1 particle, or as an “antiparticle”). The free Hamiltonian rewritten in terms of the
new operators takes the form

H0 =

∞
∑

l=1

εl a
†
lal =

∑

l>N

εl b
†
l bl +

∑

l̃≤N

εl̃ dl̃d
†

l̃
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=
∑

l>N

εl b
†
l bl +

∑

l̃≤N

(−εl̃) d
†

l̃
dl̃ + 1̂

∑

l̃≤N

εl̃ . (5.97)

The last c-number term is simply the energy EΩ0
of the ground-state |Ω0〉 of H0 (of the

system of N mutually noninteracting fermions). This means that we consider “particles”
and “holes” as positive and negative energy excitations, respectively over the ground
state of energy EΩ0

. The interpretation of holes as particles carrying negative fermionic
number can be made even more suggestive if the one-particle Hamiltonian H(1) is shifted
by an appropriate negative constant (equal −εF), so that in (5.83) all one-particle states
|l̃〉 with l̃ = 1, 2, . . . , N have negative energies31 (εl̃ → εl̃ − εF < 0). The last sum in
(5.97), which in some problems (when only differences of energy levels are important) can
simply be discarded as physically uninteresting,32 is then negative while as is clear from
penultimate term in (5.97), each created hole increases energy of the system (because its
creation corresponds to removing from the system of a particle in the negative energy
state). Thus both types of system’s excitations (particles and holes-antiparticles) carry
now positive energies. Finally, the formulae (5.50) rewritten in terms of the new operators
take the forms

ψ̂α(x) =
∑

l>N

bl (ul)α(x) +
∑

l̃≤N

d†
l̃
(vl̃)α(x) ,

ψ̂†
α(x) =

∑

l>N

b†l (ul)
∗
α(x) +

∑

l̃≤N

dl̃ (vl̃)
∗
α(x) , (5.98)

where we have defined (vl̃)α(x) ≡ (ul̃)α when l̃ ≤ N . (The operators ψ̂α(x) and ψ̂†
α(x)

must have as many components as do have the functions (ul)α(x) and (vl̃)α). In this

form the operators ψ̂α(x) and ψ̂
†
α(x) bear close resemblance to relativistic field operators

(which will be introduced in Chapter 8).

Any interaction operator V̂int of a system of many fermions (if the system of many
fermions is enclosed in a box of finite volume the redefinitions (5.93) can be made with
respect to the ground state of H0 consisting of the kinetic energy only and the interaction
of particles with an external potential - if present - can be included in V̂int) written in terms
of the original creation and annihilation operators ap,σ and a†p,σ can be expressed in terms
of the operators of particles and holes defined in (5.93) and its terms can be interpreted as
creating and/or annihilating a number of particles and/or holes. The interaction operator
V̂int, originally normally ordered with respect to the vector |void〉 will then not be normally

31In the similar spirit, it is convenient to change the labeling of the now negative energy one-particle
eigenstates |l̃〉 which are eigenvectors of the one-particle momentum P̂(1) and the one-particle spin Ŝz(1)

operators with the eigenvalues +p and +σ so that they are denoted | −p,−σ〉; an unoccupied negative
energy one-particle state denoted now |p, σ〉 - a hole - contributes then +p and +σ to the total system’s
momentum and the total system’s z-axis spin projection.

32There are, however, problems in which this term or, more precisely, differences of such terms specific
for systems with the same total number N of fermions but different numbers of fermions with different
spin projections, is physically relevant.

205



ordered with respect to the ground state |Ω0〉 but can be brought to such a form by an
appropriate rearrangment (as in (5.96) and (5.97)) of its terms using the anticommutation
relations.

The possibility of defining a set of operators which all annihilate the N -particle ground
state |Ω0〉 (the operators dl̃ and bl) and the possibility of splitting the field operators ψ̂α(x)

and ψ̂†
α(x) as in (5.98) is of great help in applying to Green’s functions (which will be

introduced and briefly discussed in Section 5.7), or to the formula (1.38) allowing to com-
pute corrections to the ground state energy, the standard Dyson perturbative expansion
(presented in Section 5.8): the usefulness of this expansion relies on the possibility of
using the Wick theorem (see Section 5.9) which in turn is most efficient if such a set of
operators annihilating the ground state |Ω0〉 exists. Fermionic systems are in this respect
“easier” than systems consisting mutually interacting bosons because the ground-state of
N mutually noninteracting bosons

|Ω0〉 = |N, 0, 0, . . .〉 , (5.99)

(written here in the occupation number notation) and 〈Ω0| are not annihilated by the
operators al=1, a

†
l=1, respectively (|l = 1〉 is here the lowest energy state of the one-particle

HamiltonianH(1)) or ap=0, a
†
p=0, if the system of bosons is enclosed in a finite volume (with

periodic conditions are imposed) and the kinetic energy operator is taken for H0. A trick
enabling using the Wick theorem in perturbative computations of quantities characterizing
systems of many bosons is illustrated in the next Section in which a correction to the
ground state energy of many bosons is computed using the Bogolyubov transformation.

The interpretation of excitations of a system of fermions in terms of ”holes” and par-
ticles proves extremely useful in applications to solid state physics and condensed matter
physics. Furthermore, the reasoning (the essence of which is the transition from the
quantum mechanics of a single particle to the many-particle theory) put forward by Dirac
to make sense out of the negative energy solutions of his relativistic wave equation for
charged spin 1

2
particles is in fact application of the same idea. The only difference with

the non-relativistic theory of a system of fermions developed in this section is that the
energy spectrum of the one-particle Hamiltonian corresponding to the Dirac equation is
unbounded from below and therefore the c-number constants (treated as unphysical) in
(5.96) and in (5.97) are infinite. While (superficially) successful in solving the problem
of negative energy states associated with relativistic wave equations for fermions, this
reasoning, for obvious reasons, cannot solve the analogous problem of relativistic wave
equations, like the Klein-Gordon one, supposed to apply to bosons. As will be shown,
relativistic quantum mechanics of many particles of arbitrary spins (half-integer as well
as integer) can, nevertheless, be consistently formulated without any reference to rela-
tivistic wave equations. Wave equations are not the basis of the relativistic quantum
field theory (although such an impression can be drawn from older textbooks). It might
therefore seem that in the modern approach to quantum field theory the interpretation of
negative energy states as holes is obsolete and should be regarded purely as a historical
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curiosity were it not for the fact that the picture of a filled sea of negative energy states
comes back (in a somewhat different disguise) in the path integral approach to quantum
field theories involving fermions and seems indispensable to understand highly nontrivial
nonperturbative phenomena like nonconservation of the fermion number or the baryon
number.

5.5 Energy of the ground state of a system of many bosons

To illustrate the difference in the structure of the ground states of systems of N fermions
and bosons we consider here a simple model of the interaction of nonrelativistic bosons.
This will also give the opportunity to demonstrate the trick called the Bogolyubov trans-
formation which will be mentioned also in setting the general framework for relativistic
particles interactions in Chapter 7.

The Hamiltonian of the system of bosons of massM and (for simplicity) spin 0 enclosed
in the box of volume V will be taken in the form

H = H0 + Vint =
∑

p

~2p2

2M
a†pap +

g

2V

∑

q

∑

p1,p2

a†p1+qa
†
p2−qap2

ap1
. (5.100)

The interaction Vint is local here, i.e. the general translationally invariant potential
Vpot(x,y) = Vpot(x− y) of (5.71) of the binary interactions is taken in the singular form
g δ(3)(x− y). As potentials of interaction of nonrelativistic particles forming real systems
is spatially nonlocal (and nonlocal interactions are naturally used in the formulation of
the same problem in the traditional language of the N -body Schrödinger equation), this
requires some explanation. Moreover, such a local interaction will, in general, lead to
infinities when it is used e.g. to compute corrections to the system’s ground-state energy
(computing the gas ground-state energy is equivalent to investigating its zero temperature
properties) or in the Born series (in the formalism of second quantization most efficiently
implemented by using the general formulation of the scattering theory outlined in Chapter
7) to compute the amplitude f(k, θ) of the elastic scattering of two bosons (k = |k| is here
the center of mass momentum of the colliding particles). A realistic nonlocal interaction
of the form (5.72), even if having a hard core character (e.g. infinite for |x − y| smaller
than some distance), certainly leads to a well defined, finite ground-state energy and a
finite scattering amplitude,

If the gas of N bosons is sufficiently diluted, which means that its density N/V is much
smaller than the length scale R characterizing the true interaction potential Vpot(x− y),
one can expect that its properties are mostly determined by (rare) low energy binary
collisions. On the other hand, if energies ~2k2/2M of the colliding particles are low, the
elastic scattering amplitudes can be reliably approximated by a few first terms of their
expansion in powers of kR. It should be therefore possible - and this is in fact one of the
cornerstones of the whole quantum field theory successes in accounting for high energy
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physics phenomena - to capture the properties of the gas using an effective theory with
interactions having strictly local character, provided one takes the point of view that it is
valid only up to momenta (wave vectors) |k| smaller than some cutoff scale Λ. Computing
within such an effective theory, the Hamiltonian of which should in principle include all
possible interaction terms (with arbitrary coupling constants like g - the interaction in
(5.100) should be viewed as a first term of an infinite set of interactions) respecting
symmetries of the considered system, the ground-state energy or the elastic scattering
amplitude one has to cut all integrals over the wave vectors at Λ, thus avoiding infinities
caused by the local character of the interaction. All quantities computed within the
effective theory depend then, in addition to their dependence on the coupling constants like
g, also on the cutoff Λ. Moreover, the couplings themselves should be treated as implicitly
dependent on the cutoff. The correct strategy is then to treat e.g. the computation of
the s-wave scattering length a0 (to obtain the first term −a0 of the expansion of f(k, θ)
in powers of k the effective theory interaction explicitly included in the Hamiltonian
(5.100) is sufficient) as determining the value of the coupling g in (5.100) in terms of the
measurable s-wave scattering length a0 (for a fixed value of the cutoff Λ) and then to
express the computed ground-state energy in terms of a0 (instead of g. The result which
we need here (it will be derived in Section 7.4) reads

g =
4π~2

M
a0

(

1 +
2

π
a0Λ + . . .

)

. (5.101)

Below we will see that infinities (terms growing with the ultraviolet cutoff Λ) present
in the computation of the ground state energy of the system of N bosons using the
Hamiltonian (5.100) will disappear when the result is expressed in terms of the measurable
scattering length a0, instead of the unknown coupling g. This is in fact the essence of
the renormalization procedure which is one of the main issues in relativistic field theories
(which necessarily have a local character) and will in this context be discussed in Chapter
14.

It is clear, that in the absence of any interactions the energy of the system of N bosons
enclosed in the box of volume V is exactly zero, because they all can and will occupy
the k = 0 one-particle state. Therefore the occupation number n0 = N . This is the
well known phenomenon of the Bose-Einstein condensation discussed in all textbooks of
statistical physics (from the point of view of statistical mechanics the system is considered
here at zero temperature T ). It can be expected, that in the presence of interactions (at
T = 0) n0 will still be large, of order N , and that the energy of the ground state can
be reliably computed using the local effective Hamiltonian (5.100). The first assumption
gives rise to the so-called Bogolyoubov trick which essentially consists of replacing the
operators a†0 and a0 by the c-number

a†0 →
√
n0 , a0 →

√
n0 . (5.102)

This can be rigorously shown to be a correct procedure in the thermodynamic limit N →
∞, V →∞, at fixed N/V . One can also expect that in the ground state only one-particle
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states with small |k| are significantly populated, in conjuction with the substitutions
(5.102) leads to the model interaction Hamiltonian33

Vint =
g

2V

[

n2
0 + 2n0

∑

p6=0

(

a†pap + a†−pa−p

)

+ n0

∑

p6=0

(

a†pa
†
−p + apa−p

)

]

+ Ṽint . (5.103)

Ṽint stands here for terms with three and four operators and the terms bilinear in these
operators have been written for convenience in the form symmetric w.r.t. the interchange
p↔ −p. In turn, the particle number operator becomes

N̂ = n0 +
1

2

∑

p6=0

(

a†pap + a†−pa−p

)

. (5.104)

Since the number of particles in the system is fixed, the operator N̂ can be replaced by
the c-number N . Upon using (5.104) to eliminate n0 (moving terms with more than
two operators to Ṽint which gets, therefore, modified), the complete effective Hamiltonian
(5.100) takes the form34

H =
gN2

2V
+

1

2

∑

p6=0

[(

~2p2

2M
+
gN

V

)

(

a†pap + a†−pa−p

)

+
gN

V

(

a†pa
†
−p + apa−p

)

]

+ Ṽint

= H̃0 + Ṽint . (5.105)

In the thermodynamic limit, i.e. when the substitutions (5.102) are exact, this form of
the Hamiltonian is fully equivalent to the original one. It should be, however noticed that
this Hamiltonian does not commute with the the operator N̂ ′ =

∑

p6=0
a†pap counting the

number of particles outside the condensate. The energy of the ground state of bosons can
be now computed by finding the exact spectrum of H̃0 and corrections to it induced by
the interaction Ṽint. The first approximation to the ground state energy of the system of
N bosons is therefore given by the ground state energy of H̃0.

The spectrum of H̃0 can be found using the Bogolyubov transformation which is
analogous to the transformation used in Section 1.3 to find the exact spectrum of the

33To obtain its part proportional to n0 it is convenient to write the operators in Vint of (5.100) as the
sum of two terms

∑

p1,p2

a†p1
a†p2

ap2
ap1

+
∑

q 6=0

∑

p1,p2

a†p1+qa
†
p2−qap2

ap1
.

In the first one (in which q = 0) either p1 = 0, p2 6= 0, or the other way around (p1 = p2 = 0 gives the
term proportional to n2

0). In the second term (with q 6= 0) either p1 = p2 = 0, or p1 = 0 and p2 = q, or
p1 = −q and p2 = 0, or p1 = −q and p2 = q. It should be noted that no term linear in the operators
can arise.

34The first its term, gN2/2V , is (in the thermodynamic limit) the same as the order g correction to the
ground state energy which would be obtained by applying the ordinary Raileigh - Schrödinger formula

EΩ = EΩ0
+ 〈Ω(N)

0 |Vint|Ω(N)
0 〉+ . . . (in which EΩ0

= 0) to Vint of (5.100) and |Ω(N)
0 〉 given by (5.99).
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Hamiltonian of the perturbed oscillator. In the present case one defines new operators

ap = upAp − vpA†
−p , a†p = upA

†
p − vpA−p . (5.106)

Assuming that the coefficients up and vp are real and depend only on |p|, it is easy to
see that the requirement that Ap and A†

p satisfy the commutation rules [Ap′ , A†
p] = δp′p,

[Ap′ , Ap] = [A†
p′ , A†

p] = 0, imposes the conditions

u2p − v2p = 1 . (5.107)

Hence, the coefficients can be represented as up = cosh ϑp, vp = sinhϑp. The angles ϑp
can be now adjusted to bring H̃0 into the diagonal form, that is to ensure the absence in
it of terms with A†

pA
†
−p and ApA−p. A short calculation leads to

tanh 2ϑp =
gN/V

(gN/V ) + (~2p2/2M)
. (5.108)

The Hamiltonian H̃0 expressed in terms of the A†
p and Ap operators takes then the form35

H̃0 =
gN2

2V
− 1

2

∑

p6=0





(

~2p2

2M
+
gN

V

)

−

√

(

~2p2

2M
+
gN

V

)2

−
(

gN

V

)2




+
1

2

∑

p6=0

√

(

~2p2

2M
+
gN

V

)2

−
(

gN

V

)2
(

A†
pAp + A†

−pA−p

)

. (5.109)

It is now clear (by the same argument as that used in Section 1.3) that the ground state
of H̃0 is the state |Ω̃0〉 annihilated by all Ap operators and its energy is given by the first
line of the above formula. The sum over p in this expression is divergent, but in line with
the remarks made before it should be cut off at |p| = Λ. It is convenient to rewrite this
ground state energy in the form

EΩ̃0
=
gN2

2V
− g2N2M

2~2V 2

∑

p

1

p2

−1
2

∑

p6=0





(

~2p2

2M
+
gN

V

)

−

√

(

~2p2

2M
+
gN

V

)2

−
(

gN

V

)2

− g2N2M

~2V 2p2



 .

In the thermodynamic limit the sums over p can be replaced by the integrals using the
prescription (5.48); the first line then is

gN2

2V
− g2N2M

2~2V

1

2π2

∫ Λ

0

d|p| = N2

V

(

1

2
g − g2M

4π2~2
Λ

)

, (5.110)

35To arrive at this form of H̃0 one uses the following relations: if tanh 2ϑ = x, then e2ϑ =
√

(1 + x)/(1 − x) = (1+x)/
√
1− x2, e−2ϑ = (1−x)/

√
1− x2, sinh2ϑ = x/

√
1− x2, cosh2ϑ = 1/

√
1− x2

and sinh2ϑ = (−1 + cosh2ϑ)/2, cosh2ϑ = (1 + cosh2ϑ)/2.
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while the integral over |p| obtained in the second line is convergent (the integrand behaves
as 1/|p|4) and the cutoff Λ in it can be sent to infinity. The crucial step is now to
express the ground state energy through the measurable parameter a0 using the relation
(5.101). The expression (5.110) becomes then independent of Λ up to terms of order a20
and simply reads (N2/V )(2π~2/M)a0. Making in the second integral the substitution
x = |p|

√

V ~2/2MgN one obtains the integral which Mathematica does readily36 and the
ground state energy of the system of N interacting bosons can be cast in the form37

EΩ̃0

N
=
N

V

2π~2

M
a0

[

1 +
128

15

(

N

V

a30
π

)1/2

+ . . .

]

. (5.111)

It is finite and is, in the approximation employed here, “universal” in the sense that it
does not depend on all details of the two-body interaction potential Vpot(x−y), but only
on the scattering length a0 this interaction gives rise to. The energy spectrum of the
system of N interacting bosons is in this approximation also universal (depends only on
the s-wave scattering length a0 and not on the detailed form of the two-body potential
Vpot(x− y)).

The developed approach allows also to estimate the number of interacting bosons occu-
pying the p = 0 one-particle state. In the same approximation as (5.111) the occupation
numbers np with p 6= 0 is given by

np = 〈Ω̃0|a†pap|Ω̃0〉 = v2p 〈Ω̃0|A−pA
†
−p|Ω̃0〉 = v2p ,

and (in the thermodynamic limit)

n0 = N −
∑

p6=0

v2p = N − V
∫

d3p

(2π)3
1

2









~2p2

2M
+ gN

V
√

(

~2p2

2M
+ gN

V

)2

−
(

gN
V

)2

− 1









Making again the substitution x = |p|
√

V ~2/2MgN one obtains

n0 = N − V

4π2

2MgN

~2V

(

2MgN

~2V

)1/2 ∫ ∞

0

dxx2
(

x2 + 1√
x4 + 2x2

− 1

)

,

that is (the integral equals
√
2/3)

n0 = N

[

1− 8

3

(

N

V

a30
π

)1/2

+ . . .

]

. (5.112)

36The integral is
∫ ∞

0

dxx2
(

x2 + 1−
√

x4 + 2x2 − 1

2x2

)

= −8
√
2

15
.

37After the integration the second is proportional to g5/2; consistency then requires to replace g in it
by (4π~2/M)a0.
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Thus even at zero temperature not all interacting bosons occupy the p = 0 one-particle
state.

Since in the new formulation all operators Ap annihilate the H̃0 ground state |Ω̃0〉, the
Dyson expansion employing the Wick theorem can be used to compute further corrections
to the energy of the ground state of the system. (Within the effective field theory ap-
proach this requires including in the effective Hamiltonian (5.100) further local terms the
coefficients of which should be determined by matchig onto the higher partial wave scat-
tering lengths and effective ranges parametrizing the low nergy expansion of the scattering
amplitude of two bosons.)

The same effective interaction (5.100) with exactly the same justification as in the
bosonic case can be used to determine corrections to the ground state energy of a diluted
gas of N fermions (corrections to the result (5.91)). The order g corrections can be
computed by applying the standard Rayleigh - Schrödinger perturbative expansion. The
resulting order g correction is finite and the result (5.101) (which, as will be seen, applies
also to fermions) truncated to the term proportional to a0 can be used to express the
ground state energy density EΩ/V = EΩ0

/V + O(g) in terms of the s-wave scattering
length a0. Further corrections (of order g2 and higher) can be also computed (most
easily by exploiting the formula (1.38)). They are UV divergent and must be computed
using some UV regularization like e.g. the cutoff Λ used here. But similarly as here, the
ultraviolet cutoff Λ disappears if the computed energy is systematically expressed using
the complete result (5.101) in terms of the measurable scattering length a0.

5.6 Analogy with coupled harmonic oscillators

In order to provide a link between quantum mechanics of systems of many bosons and
quantization of classical fields we now consider quantization of a system of N coupled
harmonic oscillators to which in the approximation of small departures from the (classical)
equilibrium solution any system of e.g. point masses connected by springs (e.g. playing the
role of a model of a crystall lattice) of classical fields (nonrelativistic as well as relativistic)
can be reduced. The classical Lagrangian of such a system has in general the form

L0 =
1

2

∑

i,j

Tij q̇
iq̇j − 1

2

∑

i,j

Vij q
iqj , (5.113)

in which Vij and Tij are (constant, i.e. q-independent) symmetric and positive definite
N ×N matrices.38 The canonical momenta conjugated to the variables qi are pj = Tjiq̇

i

and the corresponding classical Hamiltonian reads

H0 =
1

2

∑

i,j

(T−1)ijpipj +
1

2

∑

i,j

Vijq
iqj . (5.114)

38Here we are more restrictive than one usually is in classical mechanics and assume that both T and
V matrices have strictly positive eigenvalues.
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Upon quantization qi(t) and pi(t) become Schrödinger picture operators satisfying the
standard relation [q̂i, p̂j ] = i~ δij but the Hamiltonian (5.114) expressed through the

operators ai and a
†
i related in the standard way (1.40) to q̂i and p̂j would not have the

form of the sum of the a†iai terms. To find the spectrum and the Hamiltonian eigenvectors
one can solve first the classical problem by introducing the normal mode coordinates Qa(t)
through the formula

qi(t) = Ai
(a)Q

a(t) , (5.115)

where the vectors Ai
(a) a = 1, . . . , N are solutions of the eigenproblem

(

−ω2
aTij + Vij

)

Aj
(a) = 0 . (5.116)

The vectors Ai
(a) should be chosen orthonormal in the scalar product set by the matrix

Tij : A
i
(a)TijA

j
(b) = δab. The Lagrangian (5.113) expressed through the normal variables is

(working out the potential energy terms one exploits the equation (5.116)) takes the form

L0 =
1

2
TijA

i
(a)Q̇

aAj
(b)Q̇

b − 1

2
VijA

i
(a)Q

aAj
(b)Q

b

=
1

2
δabQ̇

aQ̇b − 1

2
Ai

(a)Q
aω2

bTijA
j
(b)Q

b =
1

2
δabQ̇

aQ̇b − 1

2
ω2
bδabQ

aQb .

To the old momenta pi, the momenta Pa conjugated to the new variables Qa are related
by39 Pa = piA

i
(a) and, since (T−1)ij = Ai

(a)A
j
(a), the corresponding Hamiltonian is

H0 =
1

2
PaPa +

1

2
ω2
aQ

aQa . (5.117)

The system can be now quantized by promoting the variables Qa(t) and Pa(t) to Schrödin-
ger picture (time independent) operators. It can be checked that the commutation rela-
tions of the canonical variables remain unchanged: [Q̂a, P̂b] = i~ δab (because the transfor-
mation (5.115) is a canonical transformation which does not change the Poisson brackets).
Next, one defines the operators

Aa =

√

ωa

2~

(

Q̂a +
i

ωa
P̂a

)

, A†
a =

√

ωa

2~

(

Q̂a − i

ωa
P̂a

)

, (5.118)

which satisfy the relation [Aa, A
†
b] = δab. The Hamiltonian of the system expressed in

terms of these operators is already diagonal:

H0 =

N
∑

a=1

~ωa

(

A†
aAa +

1

2

)

. (5.119)

39As usually,

Pa =
∂L̃(Q, Q̇)

∂Q̇a
=
∂L(q(Q), q̇(Q, Q̇))

∂q̇i
∂q̇i

∂Q̇a
≡ pi

∂qi

∂Qa
,

because ∂q̇i/∂Q̇a = ∂qi/∂Qa.
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The eigenvectors of H0 are therefore of the form

|n1, n2, . . . , nN 〉 =
(

N
∏

a=1

(

A†
a

)na

√
na!

)

|0, 0, . . . , 0〉 , (5.120)

where |0, 0, . . . , 0〉 (with N zeroes) is the system’s ground-state annihilated by all Aa’s. In
this respect it is similar to the vector |void〉 spanning the subspace H(0) of the big Hilbert
space (5.20) but in contrast to it, it represents a real physical state (characterized e.g. by
nonzero fluctuations of the variables Qa) of the system of real oscillators. The energy of
the state (5.120) is

En1,n2,...,nN
=

N
∑

α=1

na~ωa +
1

2

N
∑

a=1

~ωa . (5.121)

The second term - the energy of the ground state can be subtracted if we declare that we
are interested only in the differences of energies of the states.

The operator (5.119) can e.g. be the Hamiltonian of quantized vibrations of a crystal
lattice.40 The same structure, with N =∞ and a replaced by (k, λ) was also obtained in
Section 3.8 as a result of quantizing the free electromagnetic radiation field enclosed in a
box. By analogy with the form of the Hamiltonian

H =
∑

p

εp a
†
pap ,

of a system of N noninteracting spinless particles (with periodic boundary conditions in a
box of volume V = L3), in the second quantization formalism discussed in the preceding
sections, the crystal lattice quantum states |n1, n2, . . . , nN〉 (the states |nk1λ1

, nk2λ2
, . . .〉

of the radiation field quantized in the box) are interpreted as the states consisting of
n1 phonons of type 1 (nk1λ1

photons with the wave vector k1 and the polarization λ1),
n2 phonons of type 2 (nk2λ2

photons of type two), etc. (there are N types of phonons
corresponding to N different lattice vibration modes of frequencies ωα; the number of
the “types” of photons, i.e. photons of different wave vectors k, is not limited). Since
the energy (5.121) of such states is additive (the energy contributed by each phonon or
photon is independent of the presence of other phonons or photons), phonons or photons
which are excitations of the Hamiltonians of the form (5.119) are interpreted as mutually
noninteracting.

The action of the operators Aa and A†
a on the states (5.120) is standard:

A†
a|n1, . . . , na, . . . , nN 〉 =

√
na + 1 |n1, . . . , na + 1, . . . , nN〉

Aa|n1, . . . , na, . . . , nN〉 =
√
na |n1, . . . , na − 1, . . . , nN〉 . (5.122)

40In the case of a crystal lattice one usually neglects boundary effects and considers N = ∞ coupled
oscillators; after a change of the variables, the normal modes are then labeled by a continuous parameter
K, −π/a ≤ Ki ≤ π/a (called quasi-momentum) rather than by a discrete index a. The occupation
number representation (5.120) has then to be replaced by the representation (5.124).
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It corresponds to the action of the bosonic particles creation and annihilation operators in
the occupation number representation (5.35). There is however one difference between the
second-quantized version of nonrelativistic quantum mechanics of particles and phonons:
in the former case the number N of particles is fixed (in nonrelativistic systems it does not
change in time, even if the interactions are taken into account), so that in the occupation
number representation always n1 + n2 + . . . = N . In the latter case, the system can be
excited to an arbitrary state |n1, . . . , na, . . . , nN〉 and the numbers na which are eigenvalues
of the operators A†

aAa (giving the number of phonons of type a) and, therefore, also
eigenvalues of the operator of the total number of phonons

N̂ =

N
∑

a=1

A†
aAa , (5.123)

can be arbitrary integers. In contrast, it is the number N of the phonon types that is
finite. The difference disappears however if one allows for arbitrary numbers of particles
(e.g. by working in the Grand Canonical Ensemble) in the first case and for an infinite
number of vibration modes in the second case.

The basis of states of phonons can be also labeled differently, namely as:

|a1, a2, . . . , an, . . .〉 = A†
a1
A†

a2
. . . A†

an . . . |Ω0〉 , (5.124)

where a1 ≤ a2 ≤ . . . and the state-vector |Ω0〉 ≡ |0, 0, . . . , 0〉 (with N zeroes) is the same
ground state as in (5.120). The state-vectors |a1, a2, . . . , an, . . .〉 are related to the basis
vectors (5.120) by

|1, . . . , 1, 2, . . . , 2, . . . , N, . . . , N〉 =
(

A†
1

)n1
(

A†
2

)n2

. . .
(

A†
N

)nN

|Ω0〉

=
√

n1!n2! . . . nN ! |n1, n2 . . . , nN〉 . (5.125)

For small numbers of phonons this new representation is more convenient. The action of
the creation and annihilation operators on the states (5.124) is given by

A†
a|a1, . . . , an, . . .〉 = |a, a1, . . . , an, . . .〉 ,

Aa|a1, . . . , an, . . .〉 =
N
∑

k=1

δak,a|a1, . . . , (no ak), . . .〉 , (5.126)

and looks the same as the action (5.27) and (5.28) of the creation and annihilation op-
erators corresponding to one-particle states. Thus, barring the difference just explained,
quantized harmonic vibrations of a crystal lattice interpreted in terms of phonons are
formally equivalent to a system of many free bosons.

Consider finally perturbations of the initial Lagrangian (5.113) by polynomial terms
of order higher than second in the variables qi

Vint =
N
∑

i,j,k=1

Vijk q
iqjqk +

N
∑

i,j,k,l=1

Vijkl q
iqjqkql + . . . (5.127)
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When rewritten in terms of the operators Aα, A
†
α they give rise (among others) to terms

of the form (B, Cm D, . . . are in general complex constants)

Vint ∋ BA†
aA

†
bA

†
c + C A†

aA
†
bAc +DA†

aA
†
bA

†
cA

†
d + . . .+H.c. , (5.128)

which contain nonequal numbers of the creation and annihilation operators and, hence,
do not commute with the operator (5.123) of the total number of phonons. The time
evolution will therefore not preserve the number of phonons. In contrast, Hamiltonians
of nonrelativistic particle systems always preserve the number of particles. We will see
however, that the requirement of relativistic covariance of transition amplitudes enforces
nonconservation of the number of particles. Hence, relativistic quantum mechanics of
particles naturally acquires features of phonon systems.

5.7 One-particle (two-point) nonrelativistic Green’s funtions

Very important objects in the second-quantized formulation of quantum mechanics of
many-body systems and of quantum field theory in general are various Green’s func-
tions. The causal (also called Feynmanian) ones are defined as true vacuum (the complete
Hamiltonian H = H0 + Vint, normalized to unity ground state |Ω〉) expectation values of
chronological products of strings of Heisenberg picture operators OH

a (t) (the index a may
stand here, as in (5.129), also for the space argument x of the operator) taken at different
times

iGabc...(ta, tb, tc, . . .) = 〈Ω|TOH
a (ta)O

H
b (tb)O

H
c (tc) . . . |Ω〉 .

In the nonrelativistic many-body theory (and also in the relativistic quantum field theory
- see Section 13.3) a distinguished role play the so-called one-particle causal Green’s
functions (from another point of view classified as two-point Green’s functions of the
elementary field operators of the theory)

iGcau
αβ (t,x; t

′,x′) = 〈Ω|TψH
α (t,x)ψ†H

β (t′,x′)|Ω〉 , (5.129)

in which the field operators ψH
α (t,x), ψ†H

β (t,x) are the Heisenberg picture counterparts of
the Schrödinger picture operators defined by (5.45), if the system is enclosed in the finite
volume V (and periodic boundary conditions are imposed), (5.46) if it is considered in
the infinite space, or, if one associates the creation and annihilation operators with a H(1)

basis other than the momentum one, by (5.50). The ground state |Ω〉 is in this case the
ground state of the complete Hamiltonian in the N -particle subspace H(N). One should
also recall that the chronological product of bosonic operators is defined as in (1.8), and
that of fermionic operators is defined with the minus sign in terms in which the fermionic
operators stand in an odd order with respect to their order under the symbol T of the
chronological product.

In the nonrelativistic many-body theory the distinguished role of the functions (5.129)
stems from the fact that many quantities characterizing the system can be extracted from

216



them. For example, if an single-particle operator Ô(1) is written in the form (5.58) in the
position basis

Ô =

∫

d3x Ô(x) =

∫

d3x
∑

α,β

ψ†
β(x)Oβα(x)ψα(x) , (5.130)

(Oβα(x) ≡ 〈x, β|Ô(1)|x, α〉 can also be a differential operator as in (5.60) or (5.62)), the

ground state expectation value of Ô(x) can be obtained as (the upper sign applies to
bosons; the lower one - to fermions)

〈Ω|Ô(x)|Ω〉 = ± lim
x′→x

∑

α,β

Oβα(x) iG
cau
αβ (t,x; t

+,x′) , (5.131)

where t+ ≡ t + 0 (i.e. t′ → t+). For instance, the total kinetic energy of all particles
constituting the system can be obtained as

〈Ω|T̂ |Ω〉 = ±
∫

d3x lim
x′→x

(

− ~2

2m
∇

2
x

)

iGcau
αβ (t,x; t

+,x′) , (5.132)

and the total number Nσ of particles with the spin projection σ in the system (computed
as the ground state expectation value of the particle number operator (5.59)) as

〈Ω|N̂σ|Ω〉 = ±
∫

d3x lim
x′→x

iGcau
σσ (t,x; t

+,x′) . (5.133)

In the case of the Hamiltonian H = H0 + Vint = T + Vint, where Vint is a binary
interactions of the form (5.72) with Vα′β′,βα(x,y) = Vβ′α′,αβ(y,x) it is easy to show that
the complete ground state expectation value of the Hamiltonian, that is the system’s
ground state energy EΩ, can be extracted from (5.129) in the similar way. To show
this one exploits the fact that the Heisenberg picture field operator ψH

α (t,x) satisfies the
equation (1.15), which here reads (we consider time-independent Hamiltonians H)

i~
∂

∂t
ψH
α (t,x) = [ψH

α (t,x), H ] = eiHt/~ [ψα(x), H ]e−iHt/~ . (5.134)

Computing the commutator on the right-had side using, if ψα(x) is a bosonic operator,
the formula [A, BC] = [A, B]C + B [A, C] or [A, BC] = {A, B}C − B {A, C} if it is
fermionic, and the rules (5.52), one finds

[ψα(x), H ] = − ~2

2m
∇

2
xψα(x) +

∫

d3yψ†
β(y)Vαβ,β′α′(x,y)ψβ′(y)ψα′(x) ,

This inserted into (5.134) leads to the relation

(

i~
∂

∂t
+

~2

2m
∇

2
x

)

ψH
α (t,x) =

∫

d3yψ†H
β (t,y)Vαβ,β′α′(x,y)ψH

β′(t,y)ψH
α′(t,x) ,
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which, when multiplied from the left with ψ†H
α (t′,x), summed over α and integrated over

d3x allows to extract the ground state expectation value of the interaction operator Vint
from the Green’s function (5.129):

〈Ω|Vint|Ω〉 = ±
1

2

∫

d3x lim
x′→x

lim
t′→t+

(

i~
∂

∂t
+

~2

2m
∇

2
x

)

iGcau
αβ (t,x; t

′,x′) . (5.135)

Combining this with the formula (5.132) one gets41

EΩ = 〈Ω|H0 + Vint|Ω〉 = ±
1

2

∫

d3x lim
x′→x

lim
t′→t+

(

i~
∂

∂t
− ~2

2m
∇

2
x

)

iGcau
αβ (t,x; t

′,x′) . (5.136)

The formulae (5.132) and (5.133) can be readily checked by applying them to the
system of free fermions enclosed in the volume V (with periodic boundary conditions
imposed). In this case the total kinetic energy is the total energy of the system and the
Heisenberg picture operators coincide with the interaction picture ones. The splitting
(5.98) of the interaction picture field operator ψI

α(x) in this case reads42 (we assume for
simplicity that pF is independent of the spin projection σ, that is that the system consists
of equal numbers Nσ = N/gs, gs = 2s + 1, of fermions with all possible spin projections
σ = −s, . . . ,+s)

ψI
σ(t,x) =

1√
V

∑

|p|>pF

bp,σ e
−iωpt+ip·x +

1√
V

∑

|p|<pF

d†−p,−σ e
−iωpt+ip·x .

Here ωp = ~p2/2m ≡ εp/~. The Hermitian conjugate operator ψ†I
α (t,x) decomposes

analogously. Since (cf. the formulae (5.93) and (5.94))

bp,σ|Ω0〉 = dp,σ|Ω0〉 = 0 , 〈Ω0|b†p,σ = 〈Ω0|d†p,σ = 0 ,

it is straightforward to evaluate the two vacuum expectation values in the definition of
the fermionic Green’s function (5.129) and to obtain

iG
(0)cau
αβ (t,x; t′,x′) =

δαβ
V

∑

p

e−iωp(t−t′) eip·(x−x′) [θ(t− t′)θ(|p| − pF)− θ(t′ − t)θ(pF − |p)] .

Using now the integral representations of the Heaviside theta functions

±θ(±t) = i

∫ ∞

−∞

dΩ

2π

e−iΩt

Ω± i0 , (5.137)

41The formula (5.136) is, however, not very practical; much more efficient is the the formula (1.38)
which is not restricted to quartic (two-body) interactions and allows to express the difference EΩ − EΩ0

in terms of connected “vacuum” Feynman diagrams.
42Although energies of one-particle states are still ~2p2/2m (εF has not been subtracted), the operators

ap,σ and a†p,σ with |p| < pF are denoted here respectively d†−p,−σ and d−p,−σ, in agreement with the
remark made in the second footnote of Section 5.4.
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this can be cast in the form

iG
(0)cau
αβ (t,x; t′,x′) =

∑

p

∫ ∞

−∞

dω

2π
e−iω(t−t′) eip·(x−x′) iG̃

(0)cau
αβ (ω,p) ,

iG̃
(0)cau
αβ (ω,p) = i

δαβ
V

[

θ(|p| − pF)
ω − ωp + i0

+
θ(pF − |p|)
ω − ωp − i0

]

. (5.138)

The function iG
(0)cau
αβ (t,x; t′,x′) in the limit V →∞ can be obtained applying now the rule

(5.48). Using the result (5.138) the formulae (5.132) and (5.133) can readily be checked.

If Vint 6= 0, the exact Green’s function cannot be found in the closed form and to
apply the formulae (5.133), (5.132) or (5.136) it must be computed e.g. perturbatively
using the Dyson expansion presented in Section 5.8 and the Wick theorem (or approx-
imated by another method). The free Green’s function obtained here and its Fourier

transform iG̃
(0)cau
αβ (ω,p) is then the key element of perturbative computation of causal

Green’s functions of systems of interacting fermions.

However, more important than the possibility of using the Green’s function (5.129) in
the formulae (5.133), (5.132) or (5.136) is the fact - true also in the relativistic theory - that
its Fourier transform G̃cau

αβ , if the system is closed (its Hamiltonian is time independent),
depends on only one frequency variable. This allows to analyze the analytic structure of
G̃cau

αβ as a function of the complex frequency variable ω in general terms and to demonstrate
its relation to the spectrum of excitations of the system. Here we discuss this using the
example of a translationally invariant system of fermions of arbitrary (half-integer) spin s
enclosed in the finite volume (with periodic boundary conditions imposed) and assuming
that the interaction of fermions is spin-independent (and that the numbers Nσ of fermions
of different spin projections σ are all equal). Of particular importance will be the analytic
structure of G̃αβ in the infinite volume limit.

To simplify the notation we will introduce the “four-vectors” x = (t,x) and P̂ = (Ĥ, P̂)
where P̂ is the momentum operator (5.60) and Ĥ is the system’s complete Hamiltonian.
We will also set ~ = 1. Assuming that the system is translationally invariant, that is
that [Ĥ, P̂] = 0, allows to simultaneously diagonalize these operators, introducing the
in each N -particle subspace H(N) eigenvectors |n,N〉 of Ĥ and P̂ corresponding to the
eigenvalues Pn = (En,Pn). If the Heisenberg picture field operators are represented in
the form43

ψH
α (t,x) = eiP̂ ·x ψα(0) e

−iP̂ ·x , ψH†
β (t′,x′) = eiP̂ ·x′

ψ†
β(0) e

−iP̂ ·x′

, (5.139)

one can, inserting the complete set of vectors |n,N ± 1〉 between the field operators

43The operator ψH
α (t,x) (and similarly ψ†H

α (t,x)) can always be written as eiHte−iP̂·xψα(0)e
iP̂·xe−iHt;

the condition [P̂, H ] = 0 allows to write this as in (5.139); of course for the possiblity of factorizing the

dependence of the Green’s function on x and t crucial is rather the fact that the operators H and P̂ have
common eigenvectors.
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in each of the two terms44 of the Green’s function (5.129), represent it in the form45

iGcau
αβ (t,x; 0, 0) ≡ iGcau

αβ (x)

iGcau
αβ (x) = θ(t)

∑

n

e−i(Pn−PΩ)·x〈Ω|ψα(0)|n,N + 1〉〈n,N + 1|ψ†
β(0)|Ω〉

− θ(−t)
∑

n

ei(Pn−PΩ)·x〈Ω|ψ†
β(0)|n,N − 1〉〈n,N − 1|ψα(0)|Ω〉 .

Using again the trick (5.137) to replace the Heaviside theta functions by the integrals and
shifting appropriately the integration variables in both terms one obtains

iGcau
αβ (x) =

∑

n

∫

dω

2π

i

ω − (En −EΩ) + i0
e−iωt eiPn·x 〈. . . n, N + 1 . . .〉

+
∑

n

∫

dω

2π

i

ω + (En − EΩ)− i0
e−iωt e−iPn·x 〈. . . n, N − 1 . . .〉 .

It has been assumed here that PΩ = 0. One has also to keep in mind that the energies En

and total momenta Pn in the first (second) line are the Hamiltonian and P̂ eigenvalues
in the N + 1-particle (N − 1-particle) subspace. In contrast, EΩ is the energy of the H
ground state in the N -particle sector.

Computing the (finite volume) Fourier transform

iG̃cau
αβ (ω,k) =

∫ ∞

−∞

dt

∫

V

d3x eiωt e−ik·x iGcau
αβ (t,x) ,

using the standard relations
∫ ∞

−∞

dt ei(ω−ω′)t = 2πδ(ω − ω′) ,

∫

V

d3x e−i(k−P)·x = V δk,P , (5.140)

one obtains

G̃cau
αβ (ω,k) = V

∑

n

δk,Pn

〈Ω|ψα(0)|n,N + 1〉〈n,N + 1|ψ†
β(0)|Ω〉

ω − (En −EΩ) + i0

+V
∑

n

δk,−Pn

〈Ω|ψ†
β(0)|n,N − 1〉〈n,N − 1|ψα(0)|Ω〉

ω + (En − EΩ)− i0
.

44It should be clear that if [H, N̂ ] = 0, i.e. when the number of particles in the system is conserved, as

is in the case of nonrelativistic systems, the action of ψ†
β (ψα) on the H ground state |Ω〉 in the N -particle

subspace produces a state belonging to the N + 1 (N − 1) particle subspace; this readily follows from
the commutation rules [N̂ , ψ†

α(x)] = +ψ†
α(x), [N̂ , ψα(x)] = −ψα(x) (valid for bosonic and fermionic

field operators alike) which imply N̂ψ†
α(x)|Ω〉 = (N + 1)ψ†

α(x)|Ω〉, N̂ψα(x)|Ω〉 = (N − 1)ψα(x)|Ω〉, if
N̂ |Ω〉 = N |Ω〉.

45This representation makes it clear that in the case of a translationally invariant (homogeneous) system
considered here the Green’s function depends only on the differences t− t′ and x− x′.
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The Kronecker deltas have the effect that the total momenta of the intermediate states
|n,N + 1〉 and |n,N − 1〉 must be equal k and −k, respectively. At this point it is
convenient to rearrange the denominators:

ω − [En(N + 1)− EΩ(N)] + i0 = ω − [En(N + 1)−EΩ(N + 1)]− µ+ i0 ,

ω + [En(N − 1)− EΩ(N)]− i0 = ω + [En(N − 1)− EΩ(N − 1)]− µ− i0 ,

identifying EΩ(N + 1) − EΩ(N) and EΩ(N) − EΩ(N − 1) (these two differences should
coincide in the thermodynamic limit) with the chemical potential µ on account of the
thermodynamical relation µ = (∂U/∂N)S,V (here the temperature T = 0, so dU =
−p dV + µdN and the condition of constancy of S is irrelevant). Thus,

G̃cau
αβ (ω,k) = V

∑

n

δk,Pn

〈Ω|ψα(0)|n,N + 1〉〈n,N + 1|ψ†
β(0)|Ω〉

ω − µ− (En − EΩ)N+1 + i0

+V
∑

n

δk,−Pn

〈Ω|ψ†
β(0)|n,N − 1〉〈n,N − 1|ψα(0)|Ω〉
ω − µ+ (En −EΩ)N−1 − i0

. (5.141)

These formulae show that as long as the volume V is finite, and therefore the Hamiltonian
spectrum is discrete, the causal Green’s function Fourier transform G̃cau

αβ (ω,k), treated as
a function of the complex variable ω, is a meromorphic function which (provided the
corresponding matrix elements in the numerator are nonvanishing) has simple poles at
exact excitation energies of the system with one more particle just below the real ω axis,
starting from ω = µ and at exact excitation energies of the system with one particle less
just above the real ω axis for ω < µ.

Before investigating the analytic structure of G̃cau
αβ (ω,k) in the infinite volume limit,

it is convenient to introduce the retarded and advanced Green’s functions throught the
formulae46

iGret
αβ(t,x; t

′,x′) = θ(t− t′)〈Ω|{ψH
α (t,x), ψH†

β (t′,x′)}|Ω〉 ,
iGadv

αβ (t,x; t
′,x′) = −θ(t′ − t)〈Ω|{ψH

α (t,x), ψH†
β (t′,x′)}|Ω〉 , (5.142)

Proceeding analogously as with the causal funcion, one obtains the following Fourier
transforms of these functions

G̃
ret/adv
αβ (ω,k) = V

∑

n

δk,Pn

〈Ω|ψα(0)|n,N + 1〉〈n,N + 1|ψ†
β(0)|Ω〉

ω − µ− (En − EΩ)N+1 ± i0

+V
∑

n

δk,−Pn

〈Ω|ψ†
β(0)|n,N − 1〉〈n,N − 1|ψα(0)|Ω〉
ω − µ+ (En − EΩ)N−1 ± i0

. (5.143)

46If the operators ψα and ψ†
β are bosonic, the anticommutators are replaced by the commutators and

the minus sign in the formula for iGadv
αβ is absent.
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They are also meromorphic functions of the complex variable ω but G̃ret
αβ(ω,k) is analytic

in the upper half plane (all its simple poles are below the real axis) while G̃adv
αβ (ω,k) is

analytic in the lower half plane (all its simple poles are above the real axis). It is also
clear that for real ω they are related to one another by the relation47

[G̃ret
αβ(ω,k)]

∗ = G̃adv
βα (ω,k) . (5.144)

To simplify the discussion it will be convenient to assume now that the interaction of the
considered fermions are spin independent and therefore G̃x

αβ(ω,k) = δαβG̃
x(ω,k) where

x = cau, ret, adv. Therefore

G̃x(ω,k) =
1

gs

∑

α

G̃x
αα(ω,k) .

One can now take the limit of infinite volume. It is natural to expect that in this
limit the spectrum of the complete Hamiltonian becomes extremely dense and, because
the uncertainty principle constrains the possible energy resolution which can be achieved
in a finite measurement time, individual energy levels can no longer be resolved (from the
practical point of view the system’s spectrum becomes quasicontinuous); the sums over
n in the formulae (5.141) and (5.143) should be therefore replaced by integrals over the
(quasi)continuous spectra ofH eigenvalues. We define therefore the two spectral functions
A(E,k) and B(E,k) by the relations

dE ′A(E ′,k) =
V

gs

∑

n

∑

α

δk,Pn
〈Ω|ψα(0)|n,N + 1〉〈n,N + 1|ψ†

α(0)|Ω〉 ,

dE ′B(E ′,k) =
V

gs

∑

n

∑

α

δ−k,Pn
〈Ω|ψ†

α(0)|n,N − 1〉〈n,N − 1|ψα(0)|Ω〉 , (5.145)

in which the summations (the first over the H spectrum in the H(N+1) subspace and the
second one in H(N−1)) extend to such n’s that E ′ ≤ En − EΩ ≤ E ′ + dE ′. The Fourier
transform of the causal Green’s function G̃cau(ω,k) in the infinite volume limit can be
then represented by the integral

G̃cau(ω,k) =

∫ ∞

0

dE

(

A(E,k)

ω − µ−E + i0
+

B(E,k)

ω − µ+ E − i0

)

, (5.146)

and the retarded and advanced ones by similar integrals but the retarded one with +i0
in both denominators and the advanced one with −i0’s.

The functions A(E,k) and B(E,k) satisfy the sum rule which follows from the an-
ticommutation relation (5.52). Indeed, inserting the complete set of the Hamltonian

47Indeed, the numerator of [G̃ret
αβ(ω,k)]

∗ written in the mathematical notation as (Ω|ψαn)
∗(n|ψ†

βΩ)
∗ =

(ψαn|Ω)(ψ†
βΩ|n) can be, with the help of the rule (4.1), written in the form (n|ψ†

αΩ)(Ω|ψβn) =

(Ω|ψβn)(n|ψ†
αΩ) which is just the numerator of G̃adv

βα (ω,k).
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eigenvectors into the relation 〈Ω|{ψα(x), ψ
†
α(0)}|Ω〉 = δ(3)(x), summing over the spin

label α, multiplying both sides by e−ik·x and integrating over the volume V using the
relation (5.140) one arrives at

V

gs

∑

n

∑

α

δk,Pn
〈. . . n, N + 1 . . .〉+ V

gs

∑

n

∑

α

δ−k,Pn
〈. . . n, N − 1 . . .〉 = 1 .

Recalling now the definitions of the spectral functions A(E,k) and B(E,k) one concludes
that

∫ ∞

0

dE [A(E,k) +B(E,k)] = 1 . (5.147)

It follows then from (5.146) that in the limit |ω| → ∞, when the factors µ ± E in
the denominators in (5.146) can be neglected, all the three Green’s functions G̃x(ω,k)
(x = cau, ret, adv) vanish as 1/ω.

The well-known Sochocki formula (C.2) allows now to obtain the real and imaginary
parts of G̃cau(ω,k), G̃ret(ω,k) and G̃adv(ω,k) treated as functions of the real variable ω:

Re G̃cau(ω,k) = Re G̃ret(ω,k)

= Re G̃adv(ω,k) = P

∫ ∞

0

dE

(

A(E,k)

ω − µ−E +
B(E,k)

ω − µ+ E

)

, (5.148)

(P stands for the principal value) and

Im G̃cau(ω,k) =

{

−πA(ω − µ,k) , ω > µ,
πB(µ− ω,k) , ω < µ,

(5.149)

Im G̃ret/adv(ω,k) =

{

∓πA(ω − µ,k) , ω > µ,
∓πB(µ− ω,k) , ω < µ,

. (5.150)

The comparison of these formulae leads to the conclusion that for real ω

G̃cau(ω,k) = G̃adv(ω,k) , for ω < µ ,

G̃cau(ω,k) = G̃ret(ω,k) , for ω > µ , (5.151)

(the same is also true before taking the infinite volume limit).

Making now in the expression (5.148) for Re G̃ret(ω,k) the changes of the variables:
ω′ = E + µ in the A-term and ω′ = −E + µ in the B-term, one obtains

Re G̃ret(ω,k) = P

∫ ∞

µ

dω′ A(ω
′ − µ,k)
ω − ω′

+ P

∫ µ

−∞

dω′ B(µ− ω′,k)

ω − ω′
,

and then using the relations (5.150) one arrives at

Re G̃ret(ω,k) = −P
π

∫ ∞

−∞

dω′ Im G̃ret(ω′,k)

ω − ω′
. (5.152)
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This relation between the real and imaginary parts of G̃ret(ω,k) holding for the real
variable ω means - c.f. Appendix C - that G̃ret(ω,k) can be analytically continued from
the real axis into complex values of ω and the resulting function will be analytic in the
upper half-plane of the complex variable ω. Analogous reasoning shows that the real and
imaginary parts of G̃adv(ω,k), treated as functions of real ω, satisfy the relation which
guarantees that G̃adv(ω,k) continued into the complex ω plane will be analytic in the
lower half-plane. These results are consistent with the observation that because Gret(t,x)
is in (5.142) defined to be zero for t < 0, in the integral

G̃ret(ω,k) =

∫ ∞

−∞

dt eiωt
∫

d3x e−ik·xGret(t,x) =

∫ ∞

0

dt eiωt
∫

d3x e−ik·xGret(t,x) ,

defining its Fourier transform, the analytic continuation of ω into the upper half-plane:
ω → x+iy with y > 0, produces the damping factor e−ty which, if Gret(t,x) does not itself
grow exponentially as t → ∞, certainly makes the integrand convergent and, therefore,
finite. The integral defining the Fourier transform of Gadv(t,x) acquires a similar damping
factor when ω is continued into the lower half-plane.

As a matter of facts, the functions G̃ret(ω,k) and G̃adv(ω,k) can be obtained from the
single function G̃(z,k) of the complex variable z defined as

G̃(z,k) =

∫ ∞

0

dE

(

A(E,k)

z − µ− E +
B(E,k)

z − µ+ E

)

. (5.153)

G̃ret(ω,k) is the limiting value of G̃(z,k) for z = ω+ i0 and G̃adv(ω,k) for z = ω−i0. The
function G̃(z,k) defined by the integral (5.153) has a branch cut with a finite discontinuity
along the entire real axis but is otherwise analytic both in the lower and upper half-planes
of complex z. However, G̃(z,k) given in the upper half-plane (lower half-plane) of the z
variable by the integral (5.153) can be continued across the branch cut: the continuation
gives in the lower (upper) half-plane another branch of G̃(z,k) which is not analytic: it
can have there poles.48

48This can be illustrated by a simple example (the real constant a is assumed to be positive; the integral
can be easily evaluated by the residue method)

g(z) =

∫ ∞

−∞

dy
1

z − y
a

y2 + a2
=

{

π/(z + ia) Imz > 0
π/(z − ia) Imz < 0

.

The function g(z) is thus analytic in the upper and lower half-planes of complex z and along the real axis
z = x it has the discontinuity g(x+ i0)− g(x− i0) = −2iπa/(x2 + a2) which can be also computed using
the formula (C.2)

g(x± i0) =
∫ ∞

−∞

dy
a

y2 + a2

{

P
1

x− y ∓ iπδ(x− y)
}

.

It is also clear that the function π/(z+ ia) (g(z) in the upper half-plane) can be continued across the cut
but the continuation has in the lower half plane a simple pole at z = −ia.
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Thus the analytic structure of the functions G̃cau(ω,k) and G̃ret/adv(ω,k) changes
dramatically with taking the limit of infinite volume: simple poles which at the finite
volume are located just above and just below the real axis after taking the limit coalesce
into the branch cut covering the whole real axis49 while new poles may emerge on the
branches of G̃ret/adv(ω,k) obtained by continuing these functions across the branch cut
from the half-planes at which they are analytic.

Since for ω > µ (ω < µ) G̃cau(ω,k) coincides with G̃ret(ω,k) (coincides with G̃adv(ω,k))
it too can be continued from the upper (lower) half-plane, where it is analytic, across the
branch cut into the lower (upper) half-plane, where it can have poles.

The physical interpretation of the possible poles of the Fourier transform of the causal
Green’s function can be clarified by the following reasoning. Let the system of N interact-
ing fermions be at time t′ in its ground state. Its Schrödinger picture state vector |Ω(t′)〉
at t′ is therefore given by U(t′, 0)|Ω(0)〉 = U(t′, 0)|Ω〉, where |Ω〉 is the system’s ground
state vector in the Heisenberg Picture (see Section 1.1). Adding to the system a particle
(with the spin projection β) at the point x′ at t′ is represented by the action on |Ω(t′)〉 of
the Schrödinger picture operator ψ†

β(x
′). The state of the system with the added particle

at a later instant t > t′ is then represented by the state-vector U(t, t′)ψ†
β(x

′)|Ω(t′)〉. One
can then ask, what is the overlap of this state with the state of the system obtained by
adding to the ground state a particle (with the spin projection α) at x at the moment
t, that is, the overlap with the state represented by ψ†

α(x)|Ω(t)〉? The scalar product of
these two states is easily seen - c.f. the formulae (1.4) and (1.12) - to be given by

θ(t− t′)〈Ω(t)|ψα(x)U(t, t
′)ψ†

β(x
′)|Ω(t′)〉 = θ(t− t′)〈Ω|ψH

α (t,x)ψ†H
β (t′,x′)|Ω〉 .

Analogously, removing a particle (in the spin state α) at the point x from the system
which is in its (N -particle) ground state |Ω(t)〉 at the moment t and finding the overlap at
a later moment t′ of the state of the system perturbed in this way with its state obtained
by removing a particle at x′ (and the spin state β) from the ground state at t′ > t is
represented by

θ(t′ − t)〈Ω(t′)|ψ†
β(x

′)U(t′, t)ψα(x)|Ω(t)〉 = θ(t′ − t)〈Ω|ψ†H
β (t′,x′)ψH

α (t,x)|Ω〉 .
Thus the answers to both questions are directly given by the causal Green’s function
(5.129). It should also be clear that the answers to the analogous questions but when to
or from the system true ground state a particle not at a definite space points but in a
one-particle state with a definite momentum k (we have here in mind a translationally
invariant system) is added or removed is given by the spatial Fourier transform

Gcau
αβ (t− t′,k) =

∫ ∞

−∞

dω

2π
e−iω(t−t′) G̃cau

αβ (ω,k) . (5.154)

49Due to a different dispersion relation - the dependence on the momentum p of energies of one-particle
states - of “fundamental” constituents of relativistic systems, the branch cuts of Green’s functions of some
operators in relativistic theories are expected to extend to ∓∞ only from some threshold values ∓ωthr;
and to have in the “gap” (at real values of the frequency variable) poles corresponding to states of a
stable “physical” particles.
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Figure 5.2: Integration contours used to compute Gcau
αβ (t,k).

To see what consequences for the answers have possible poles of the Fourier transform
G̃cau

αβ (ω,k), let us assume that it has a simple pole at ω = (Er−iΓr)/~ with Er > µ, Γr > 0
and the residue Zr (which for simplicity will be assumed here to be real) and consider
(5.154) for t − t′ ≡ t > 0. We will assume that the interactions are spin independent
and, therefore, G̃x

αβ(ω,k) = δαβG̃
x(ω,k). To evaluate the integral over all real values of

ω in (5.154) one can split it into two domains: (−∞, µ) and (µ,∞). In the first domain
- c.f. (5.151) - G̃cau(ω,k) = G̃adv(ω,k) and since the latter function has no poles in
the lower half-plane, the integral over the closed contour C1 shown in Figure 5.2 is zero.
In the second domain G̃cau(ω,k) = G̃ret(ω,k) and the result of the integration over the
closed contour C2 (which lies on the continuation of G̃ret(ω,k) into the lower half-plane)
in Figure 5.2 is determined by the assumed single simple pole at ωr = (Er− iΓr)/~. Since
we consider the case t > 0, the integrals over the two arcs of C1 and C2 are likely to vanish
(and we assume they do) in the limit of the arcs radii R tending to infinity, owing to the
Jordan lemma. One can therefore write

Gcau
αβ (t,k) = δαβ

∫ µ/~

−i∞+µ/~

dω

2π
e−iωt

[

Gadv(ω,k)−Gret(ω,k)
]

− iZr e
−(iEr+Γr)t/~ .

If Er − µ ≫ Γr and the time t is such that t(Er − µ) ≫ ~ but tΓr
<
∼ ~, the integral

in the above formula can be neglected: indeed, the contribution to the integral arising
from the parts of the integration path far removed from the point ω = µ are strongly
suppressed by the exponential factor; the contribution of the part of the path close to
the real axis can be estimated by approximating there the G̃ret(ω,k) by its behaviour
≈ Zr/(ω − (Er − iΓr)/~) near the pole; owing to the relation (5.144)

G̃adv(ω,k)− G̃ret(ω,k) ≈ 2iZrΓr/~

(ω −Er/~)2 + Γ2
r/~

2
,

and after substituting u = i(ω − µ/~) the integral becomes

−2ZrΓr

~

∫ ∞

0

du

2π

e−iµt/~ e−ut

(µ/~− Er/~− iu)2 + Γ2
r/~

2
,
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and can be estimated to be50 approximately equal−(Zr/π)[Γr/(Er−µ)][~/t(Er−µ)]e−iµt/~,
that is, it is suppressed by both factors in the last two brackets.

Thus, the overlap of the two states corresponding to adding to the system an ex-
tra particle (creating in it a particle-like exitation) at two different times is given by
Gcau(t,k) ≈ −iZr exp(−(iEr + Γr)t/~) and vanishes exponentially with the time separa-
tion t. Γr can be then interpreted as the width (inverse lifetime) of the created particle
excitation.

If t < 0 (i.e. t′ > t) analogous role play possible poles of the function G̃adv(ω,k)
(of G̃ret(ω,k)) in the upper half-plane at ωr = Er + iΓr with Er − µ < 0, Γr > 0 which
correspond to dissipating hole-type (quasi-hole) excitations.

5.8 Dyson perturbative expansions

Ground state expectation values of chronological products of Heisenberg picture operators
contain a lot of interesting information about physical systems. In view of this it is
important to have a systematic method of their computation using an expansion in the
interaction term Vint of the system’s HamiltonianH = H0+Vint. Such an expansion, called
Dyson expansion, can be formulated and relies on the Gell-Mann - Low construction of
the ground state vector of H presented in Section 1.2. It is fairly general and applies
to ordinary quantum mechanics, quantum theory of many-particle systems as well as to
relativistic quantum field theories.

Let OH
1 (t), O

H
2 (t), etc. be some Heisenberg picture operators obtained51 in the stan-

dard way (Section 1.1) from their Schrödinger picture counterparts. In order to compute
the Green’s function

iG(t1, t2, . . .) = 〈Ω|T[OH
1 (t1)O

H
2 (t2) . . .]|Ω〉 =

〈Ω|T [OH
1 (t1)O

H
2 (t2) . . .]|Ω〉

〈Ω|Ω〉 , (5.155)

one represents the normalized to unity ground state vectors |Ω〉 and 〈Ω| of the system
(〈Ω|Ω〉 = 1) using the result of Section 1.2 in the forms52

〈Ω| = 〈Ω0|UI(∞, 0)
〈Ω0|UI(∞, 0)|Ω0〉

1

C
, |Ω〉 = 1

C

UI(0,−∞)|Ω0〉
〈Ω0|UI(0,−∞)|Ω0〉

. (5.156)

In the formula (5.155) the factors C and 〈Ω0|Uε
I (0,−∞)|Ω0〉, which are left undetermined

50The integral receives the main contribution from the domain 0 ≤ u <
∼ 1/t in which e−ut ≈ 1; since

it is assumed that Er − µ ≫ ~/t >
∼ ~u, and Er − µ ≫ Γr, the denominator of the integrand can be

approximated by (Er − µ)2/~2.
51In applications to many-body problems and to quantum field theory the operators O depend usually

also on position variables x. This dependence will be not displayed, as it plays no role here.
52The interaction picture evolution operators UI(∞, 0) and UI(0,−∞) should be understood as the

ε→ 0+ limits of the operators U−ε
I (∞, 0) and Uε

I (0,−∞), respectively.
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by the Gell-Mann - Low construction, cancel out and one obtains

G(t1, t2, . . .) =
〈Ω0|UI(∞, 0)T[OH

1 (t1)O
H
2 (t2) . . .]UI(0,−∞)|Ω0〉

〈Ω0|UI(∞, 0)UI(0,−∞)|Ω0〉
. (5.157)

The denominator (in the limit ε → 0+) is simply 〈Ω0|UI(∞,−∞)|Ω0〉. To bring the
numerator to a more manageable form one writes (cf. the formulae (1.12) and (1.24))

OH(t) = U †(t, 0)OSU(t, 0) = U †(t, 0)e−iH0tOI(t)eiH0tU(t, 0)

= U †
I (t, 0)O

I(t)UI(t, 0) = UI(0, t)O
I(t)UI(t, 0) ,

which allows, using the composition rules satisfied by the evolution operators, to write
the string of operators in the numerator in the form

UI(∞, 0)T[UI(0, t1)O
I
1(t1)UI(t1, t2)O

I
2(t2) . . .O

I
n(tn)UI(tn, 0)]UI(0,−∞) .

The last step is to show that this can be written as

T

(

OI
1(t1)O

I
2(t2) · · · exp

{

−i
∫ ∞

−∞

dt V I
int(t)

})

. (5.158)

To see this one expands the expression (5.158) into the power series in the interaction
V I
int:

∞
∑

N=0

(−i)N
N !

∫ ∞

−∞

dτ1 . . .

∫ ∞

−∞

dτN T[OI
1(t1)O

I
2(t2) · · ·V I

int(τ1) · · ·V I
int(τN)] , (5.159)

and for each fixed ordering of times t1 > . . . > tn splits the N -dimensional integration
domain into subdomains in which the times are ordered as follows:

τ01, . . . , τ0N0
> t1 > τ11, . . . , τ1N1

> t2 . . . > tn > τnN1
, . . . , τnNn

,

summing over all different possible assignements of N integration times τi into groups of
N0, N1, . . . elements (times) subjected to the condition N0 +N1 + . . . +Nn = N . Since
all interaction terms V I

int(τ) are identical, the assignement of the times τi into groups
specified by the above inequality can be done in N !/N0!N1! . . . Nn! equivalent ways giving
each the same contribution. One then sees that the original expression (5.159) written as

∞
∑

N=0

(−i)N
N !

∑

N0,...,Nn

N !

N0! . . . Nn!
δN,N0+...+Nn

∫ ∞

t1

dτ01 . . . dτ0N0

∫ t1

t2

dτ11 . . . dτ1N1
. . .

∫ tn

−∞

dτn1 . . . dτnNn
T[. . .] ,

breaks up into n independent sums giving the evolution operators UI(∞, t1), UI(t1, t2),
etc. sandwitched between the operators OI

1(t1), O
I
1(t2) etc. because it is now clear that
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for a fixed ordering of times t1 > t2 > . . . > tn the chronological product in (5.159) can
be written as

T[V I
int(τ01) · · ·V I

int(τ0N0
)]OI(t1)T[V

I
int(τ11) · · ·V I

int(τ1N1
)]OI(t2) . . .T[V

I
int(τn1) · · ·V I

int(τnNn
)] .

In this way the Green’s function (5.155) gets represented as the ratio of the free ground
states |Ω0〉 expectation values of two operator expressions: (5.158) and

UI(∞,−∞) = T exp

{

−i
∫ ∞

−∞

dt V I
int(t)

}

,

involving only interaction picture operators. Each term of the expansion of the numerator
and of the denominator can be, therefore, worked out using the Wick theorem formulated
in Section 5.9 which allows to write chronologically ordered strings of the interaction
picture operators OI and V I

int (each of which is built out of some elementary operators
of the theory) as products of the free ground state |Ω0〉 expectation values of all possible
pairings (to be defined in Section 5.9) of elementary operators. This leads to Feynman
diagrams which represent different contributions to the successive terms of the Dyson
expansion and allow to easily, by appealing to the so-called Feynman rules, write down
the corresponding analytical expressions. This will be discussed in due course (and in
more detail in the relativistic case when theories of interacting relativistic particles will
have been formulated).

It should finally be stressed that the validity of the Dyson expansion requires, in
agreement with the remarks made at the end of Section 1.2, that the state-vector |Ω0〉 be
adiabatically connected to the true ground state |Ω〉 of the complete Hamiltonian. If it is
not, one has to reformulate the theory so that the vector |Ω̃0〉 of a new free Hamiltonian
H̃0 satisfies this requirement.

It is instructive to consider at this point the analogous perturbative expansions of
quantities of interest in statistical physics. Working in the Grand Canonical Ensemble
one is interested in the statistical sum Ξstat(T, V, µ) and

Ξstat(T, V, µ) = TrH

(

e−K̂/kBT
)

, (5.160)

in which53

K̂ = Ĥ − µN̂ = Ĥ0 + V̂int − µN̂ ≡ K̂0 + V̂int , (5.161)

and various thermal Greens functions defined as

−G(τa, τb, . . .) = TrH
(

ρ̂Tτ [O
K
1 (τa)O

K
2 (τb) . . .]

)

, (5.162)

53If the interaction V̂int preserves spin of individual particles it is appropriate to associate separate chem-
ical potentials µσ with fermions having different spin projections σ, that is to replace µN̂ by

∑

σ µσN̂σ.
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where Tτ is the chronological ordering with respect to the (imaginary) “time” τ , ρ̂ =

Ξ−1
state

−βK̂ is the statistical operator of the Grand Canonical Ensemble and the operators
OK(τ) in the so called K-picture are defined as

OK(τ) = eτK O e−τK . (5.163)

In particular the two-point (single-particle) thermal Green’s function reads

−Gαβ(τ,x, τ
′,x′) ≡ TrH

(

ρ̂Tτ [ψ̂
K
α (τ,x)ψ̂†K

β (τ,′ x′)]
)

. (5.164)

Notice that (except at τ = 0) ψ̂†K
β (τ,x) 6= [ψ̂K

β (τ,x)]†.

As in the zero-temperature formalism, by which term one means computing expec-
tation values of operators in the system’s ground state |Ω〉, instead of averages over the
statistical ensemble, one is interested in converting the problem of computing the Green’s
functions (5.162) into a problem of computing the chronological averages of I-picture

operators defined by OI(τ) = eτK̂0O e−τK̂0 and related to the K-picture ones by

OK(τ) = UI(0, τ)O
I(τ)UI(τ, 0) , (5.165)

where the thermal I-picture “imaginary time” evolution operator UI(τ, τ
′) is given by

UI(τ, τ
′) = eτK̂0 e−(τ−τ ′)K̂ e−τ ′K̂0 , (5.166)

and satisfies the equation

d

dτ
UI(τ, τ

′) = −V I
int(τ)UI(τ, τ

′) , (5.167)

in which V I
int(τ) = eτK̂0Vinte

−τK̂0, with the initial condition UI(τ, τ) = 1̂. Although not
unitary, it too satisfies the composition rule

UI(τ, τ
′)UI(τ

′, τ ′′) = UI(τ, τ
′′) . (5.168)

Similarly as the analogous equation discussed in Section 1.1, the equation (5.167) can be
converted into an integral equation and solved iteratively; the result is the formula

UI(τ, τ
′) =

∞
∑

n=0

(−1)n
n!

∫ τ

τ ′
dτ1 . . .

∫ τ

τ ′
dτnTτ [V

I
int(τ1) . . . V

I
int(τn)] . (5.169)

Since the definition (5.166) can be rewritten as e−τK̂ = e−τK̂0UI(τ, 0), the formula (5.169)
evaluated at τ = β = 1/kBT immediately gives the expansion of the statistical sum of
the interacting system (whose Hamiltonian is H = H0 + Vint) in terms of the correlation
functions of the noninteracting system

Ξstat = Tr
(

e−βK̂
)

= Tr
(

e−βK̂0 UI(β, 0)
)

=

∞
∑

n=0

(−1)n
n!

∫ β

0

dτ1 . . .

∫ β

0

dτnTr
(

e−βK̂0 Tτ [V
I
int(τ1) . . . V

I
int(τn)]

)

. (5.170)
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The thermal Green’s functions (5.162) can be expressed similarly. Let τ1 > τ2 > . . .
Then

−G(τa, τb, . . .) =
Tr
(

e−βK̂0 UI(β, 0)UI(0, τa)O
I
1(τa)UI(τa, τb)O

I
1(τb) . . . UI(τd, 0)]

)

Tr
(

e−βK̂0 UI(β, 0)
) .

Similar expressions can be also written for other orderings of the imaginary times τ1, τ2,
. . . It follows that one can write the following perturbative expansion of the numerator

∞
∑

n=0

(−1)n
n!

∫ β

0

dτ1 . . .

∫ β

0

dτnTr
(

e−βK̂0 Tτ [V
I
int(τ1) . . . V

I
int(τn)O

I(τa) . . . O
I(τd)]

)

. (5.171)

Together with the expansion (5.170) this gives the perturbative expansion of the thermal
Green’s functions. Successive terms of these expansions can be, with the help of the
thermal analog of the Wick theorem, represented by Feynman diagrams and evaluated
using the appropriate modification of the usual Feynman rules.

It is striking to realize that the expansion obtained here, relying essentially on alge-
braic relations between operators, seems to be valid independently of whether the ground
state |Ω〉 of the interacting system can be reached adiabatically starting from the ground
state |Ω0〉, as requires the expansion of the zero temeprature Green’s functions. Thus it
superficially seems not to be subjected to the restrictions imposed by the validity of the
Gell-Mann - Low construction which exclude in particular interesting cases of symme-
try breaking as discussed at the end od Section 1.2. As a matter of facts, however, all
complications with the use of the Gell-Mann - Low construction are in the present case
hidden in the symbol Tr of the trace: in view of the discussed nonseparability of the big
Hilbert space (5.20) one has to decide over which of its separable subspaces the trace is
to be taken and this, in the cases of symmetry breaking (phase transitions), is precisely
equivalent to the problem with the use of the Gell-Mann - Low construction in the zero
temperature case.

5.9 Wick theorem

An efficient tool for computing matrix elements of strings of operators arising in problems
of many-body quantum mechanics as well as of relativistic quantum field theory (and
sometimes even in ordinary quantum mechanics e.g. of the harmonic oscillator(s)) is the
Wick theorem. It will be formulated here in the most general form54 in order to allow an
easy adaptation to the case of current interest. We assume therefore that there is a set
of operators Ai with the label i belonging to a (finite or countably or even uncountably
infinite) set of indices which are decomposable (according to some rule which depends on

54L.G. Molinari, ArXiv:1710.09248 [math-phys].
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the situation - see below for illustrating examples) into two parts

Ai = A
(+)
i + A

(−)
i , (5.172)

so that55

[A
(+)
i , A

(+)
j ]∓ = [A

(−)
i , A

(−)
j ]∓ = 0 , [A

(+)
i , A

(−)
j ]∓ = 1̂ · aij , (5.173)

where the factors aij are c-numbers. This is the crucial assumption on which the theorem
rests: if the last commutator is not a c-number, the Wick theorem is invalid. It is
important to stress that (A

(±)
i )† is not necessarily equal to A

(∓)
i (although in some specific

cases this may be so): if (A
(±)
i )† 6= A

(∓)
i (i.e. when A† 6= A) then Ai and A†

i are both
included in the set of the Ai operators and are simply distinguished by different values
of the index i. In some cases one of the two parts, either A

(+)
i or A

(−)
i , of an operator Ai

may vanish (be a zero operator). Finally, although the main results of the Wick theorem
can be stated in the operator form (independent of the structure of the Hilbert space in
which the operators act), it is most useful if there is a state-vector |vac〉 such that for all
values of the index56 i

A
(+)
i |vac〉 = 0 , 〈vac|A(−)

i = 0 . (5.174)

A product (a string) of n operators A
(+)
i and A

(−)
j is normally ordered (with respect

to the state |vac〉, if such a state-vector exists) if it has the form

A
(−)
1 · · ·A

(−)
k A

(+)
k+1 · · ·A(+)

n . (5.175)

Usefullness of the Wick theorem follows from the fact that the |vac〉 state expectation
values of normally ordered products of operators vanish (unless the product is the unit
operator). By decomposing individual operators Ai as in (5.172) and performing a series
of appropriate algebraic operations (involving commuting/anticommuting the operators

A
(±)
i ) every product A1 · · ·An (and every time ordered product T(A1 · · ·An) - see below)

of n operators Ai can be brough (in the case of time ordered product only if the time
dependence of operators is of a particular form) into the form of a sum of (in general 2n)
strings of normally ordered operators. This is automatized by the Wick theorem.

Define first the operation, denoted : :, of normal ordering which amounts to replacing
the product of n operators A

(±)
i by its normal form

:A
(±)
1 · · ·A(±)

n : ≡ (−1)PA(−)
i1
· · ·A(−)

ik
A

(+)
ik+1
· · ·A(+)

in
, (5.176)

55The symbol [· , ·]∓ means the anticommutator, if both operators are fermionic and the commutator
in other cases.

56It might seem more logical to call A
(−)
i that part of the operator Ai that annihilates |vac〉; yet this is

not the convention adopted is standard textbooks on relativistic quantum field theory (another example
of a lasting stupid tradition).
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where P is the number of transpositions of fermionic operators in the overall permutation
needed to convert the original string of operators (in which some of the opertators may
be fermionic and others bosonic) into the ordering on the right hand side. The action of
the normal ordering operation is extended to the complete operators Ai by linearity. For
instance

:A1A2 : = :(A
(+)
1 + A

(−)
1 )(A

(+)
2 + A

(−)
2 ) :

= :A
(+)
1 A

(+)
2 + A

(−)
1 A

(−)
2 + A

(−)
1 A

(+)
2 + A

(+)
1 A

(−)
2 : (5.177)

= A
(+)
1 A

(+)
2 + A

(−)
1 A

(−)
2 + A

(−)
1 A

(+)
2 ±A(−)

2 A
(+)
1 .

(The sign of the last term in the last line is negative only if both operators, A1 and A2, are
fermionic). From the rule (5.176) and the extension of the normal ordering by linearity
it follows that

:A1 · · ·An : = (−1)P :Ai1 · · ·Ain : , (5.178)

where again P is the number of interchanges of fermionic operators.

A product A1 · · ·An of n operators Ai having the structure (5.172) can always be
written as a sum of normally ordered products. If n = 2 this is trivial

A1A2 = :A1A2 : + [A
(+)
1 , A

(−)
2 ]∓ , (5.179)

as can be straightforwardly seen from (5.177). Here by virtue of the basic assumption
underlying the Wick theorem the second term is a c-number. To write the statement in
the general case one defines the contraction (or the pairing) of two operators A1 and A2

by

[A1A2] ≡ A1A2 ≡ A1A2 − :A1A2 : . (5.180)

From (5.177) or from (5.179) one then gets that

A1A2 = [A
(+)
1 , A

(−)
2 ]∓ = 〈vac|A1A2|vac〉 , (5.181)

where the last form of the contraction requires that there be a state-vector |vac〉 anni-
hilated by all A

(+)
i (which in application usually is the case). With the help of the rule

(5.178) the contraction operation of two operators A and A′ is now extended to the case
of a product of an arbitrary number of operators:

A(A1 . . . An)A
′ ≡ (ζA′)PAA′ (A1 . . . An) . (5.182)

Here ζA′ = −1 if A′ is fermionic and +1 otherwise; P is the number of fermionic operators
in the string A1 . . . An. The formula (5.182) defines operationally the meaning of the
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symbol on the left hand side. TheWick theorem (applied to ordinary products of operators
Ai) can be now written in the form

A1 . . . An= :A1 . . . An :

+
∑

(i,j)

:A1 . . . Ai . . . Aj . . . An : (5.183)

+
∑

(i,j),(k,l)

:A1 . . . Ai . . . Ak · · ·Aj · · ·Al . . . An :

+ . . .

If the contraction of a pair of operators is defined by the first equality57 (5.181), it is an
operator relation and does not rely on whether there is the state-vector |vac〉 annihilated
by all A−

i . If, however, such a vector exists, (5.183) implies that 〉vac|A1 . . . An|vac〉
vanishes, if the number n of operators is odd, while if it is even, it is given by the sum
over all possible pairings of all n operators in the string. The purely algebraic proof
(based on mathematical induction) is not very exciting, so the reader is referred to the
cited paper of L.G. Molinari.

The simplest (somewhat trivial) example of the operatorsAi is provided by the position
and momentum operators A2i−1 = x̂i ∝ ai + a†i , and A2i = p̂i ∝ i(ai − a†i ), where
i = 1, . . . , N , of a system of N (identical or not identical, uncoupled or coupled) harmonic

oscillators. In this case case (A
(±)
i )† = A

(∓)
i and the role of the state-vector |vac〉 is played

by the ground state-vector |0, 0 . . .〉 of the system of mutually uncoupled oscillators. Most
naturally the operators Ai appear in the second quantization formalism. Their set is then
formed by the field operators ψα(x) and ψ

†
α(x) of identical bosons or fermions given either

by (5.45), (5.46) or, in general, by (5.50). Each of the operators Ai has in this case only

one part A
(+)
i or A

(−)
i (the second part of each operator Ai vanishes) and the vector |vac〉

is just the vector |void〉. However if the system consists of N fermions, the field operators
ψ̂α(x) and ψ̂

†
α(x) playing the roles of the operators Ai can (and in applications this is more

convenient) be decomposed as in (5.98). In this case each operator Ai has both parts,

A
(+)
i and A

(−)
i , nonvanishing and (A

(+)
i )† 6= A

(−)
i . The role of the state |vac〉 is then played

by the state |Ω0〉 in the chosen N -fermion sector of the Hilbert space (one is interested in
normal ordering with respect to the vector |Ω0〉). As already remarked, the nonrelativistic
field operators decomposed as in (5.98) have the structure very similar to relativistic field
operators which will be constructed in Chapter 8. Relativistic field opertors provide,
therefore, another example of the operators Ai decomposable into A

(+)
i and A

(−)
i the role

of which play, respectively, the parts of these operators involving the annihilation and
creation operators of the particle (if the particle with which a given field operator is

associated is neutral - in this case (A
(±)
i )† = A

(∓)
i , A†

i = Ai) or involving the annihilation
operators of the particle and creation operators of its atiparticle (if the particle with

which the field operator is associated is not neutral - in this case (A
(±)
i )† 6= A

(∓)
i and

57Recall again that the commutator in it must be a c-number!
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A†
i 6= Ai). The role of the state |vac〉 is then played by the ground state vector |Ω0〉 of

the Hamiltonian H0 of noninteracting particles which (in virtually all cases) is identical
with the vector |void〉 of the big Hilbert space (5.20). Finally, if the system consists of N
nonrelativistic bosons it is impossible to decompose the field operators φ̂α(x) and φ̂

†
α(x)

in such a way that their parts A
(+)
i annihilate the the H0 ground state |Ω0〉 = |N, 0, 0, . . .〉

that is, normal ordering with respect to |Ω0〉 cannot be defined.58 This becomes possible
only after the momentum space operators ap=0 and a†p=0 are replaced by c-numbers -
as suggested by Bogolyubov and an appropriate transformation analogous to the one
considered in Section 5.5 is effected.

The Wick theorem applies also to chronological products of time-dependent operators
Ai(ti) provided the time dependence of the operators aa(t) and a

†
a(t) out of which A

(+)
i and

A
(−)
i , respectively, are constructed as their linear combinations, is of the form of c-number

phase factors (as is the case when aa(t) = exp(−iωat)aa and a†a = exp(iωat)a
†
a; the Wick

theorem does not apply to Heisenbeg picture operators!). In the case of two operators it
takes the form (although the meaning of the contraction is different here, we continue to
use the same symbol)

T[A1(t1)A1(t2)] = :A1(t1)A1(t2) : + A(t1)A(t2) . (5.184)

The contraction is defined here by

A1(t1)A2(t2) ≡ T[A1(t1)A2(t2)]− :A1(t1)A2(t2) : . (5.185)

Assuming that the state |vac〉 annihilated by all A
(+)
i exists, it can be evaluated as

A(t1)A(t2) = 〈vac|T[A1(t1)A1(t2)]|vac〉 . (5.186)

The right hand side of the generalization of the above result to chronological product of
n operators T [A1(t1) . . .An(tn)] takes exactly the form as in (5.183) with the contractions
on the right hand side now given by (5.185). In applications of this version of the Wick
theorem it happens, as when it is applied to work out successive terms (5.159) of the Dyson
expansion, especially in nonrelativistic many-body problems, that under the symbol of
the chronological ordering stand groups of operators depending on the same time variable
and ordered normally within the groups (they come from the same interaction operator
V I
int(t)); in such cases in (5.183) one should omit the contractions of operators belonging

to one and the same such group.

5.10 Summary

We have constructed the second quantized version of quantum mechanics of nonrelativis-
tic many-particle systems starting from its standard version based on the multiparticle
Schrödinger equation and multiparticle wave functions Ψ(x1σ1, . . . ,xNσN ).

58But of course with respect to the |void〉 vector this is possible as discussed above.
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An alternative approach would be to start from symmetry principles and to assume
that the Galileo group is realized (projectively) in some Hilbert space (playing the role
of the “big” Hilbert space H) by unitary operators. One could then classify possible
eigenvectors |p, σ〉 of the commuting Galileo group generatorsH , P and identify them with
particles. Operators aσ(p) and a

†
σ(p) could be then associated with these states. Finally

interactions Vint could be constructed from the operators aσ(p) and a
†
σ(p) respecting the

assumed symmetry principles.

We will follow such an approach in the next chapters to construct the Hilbert space
of relativistic quantum theory of particles.
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Figure C.1: Deformation of the integration contour Γ leading to the dispersion relations
(C.3) satisfied by f(ζ) analytic in the upper half-plane of the complex variable ζ .

C Dispersion relations

Let f(z) be a function analytic in the upper half-plane of its complex variable z. Then if
the integration contour Γ encircling the point z lies entirely in the upper half plane - see
the left Figure C.1 - the function f(z) satusfies the well-known Cauchy relation

f(z) =
1

2πi

∮

Γ

dζ
f(ζ)

ζ − z . (C.1)

As the integrand f(ζ)/(ζ−z) has in the upper plane no other poles than the one at ζ = z,
the integration contour Γ can be deformed as in the right Figure C.1. Assuming that the
integral over the large semicircle vanishes in the limit of the semicircle radius R going to
infinity, setting z = x+ iε1 and ζ = y + iε2 with 0 < ε2 < ε1 (to keep the pole above the
path of the integration, as is clear from the right Figure C.1) one gets

f(x+ i0) =
1

2πi

∫ ∞

−∞

dy
f(y)

y − x− i0 ,

where the integral is taken over y lying at the upper side of the real axis in the complex ζ
plane. Splitting now f(x) and f(y) into their real and imaginary parts: f(x) = Ref(x) +
iImf(x), etc., and employing the Sochocki formula

1

x± i0 = P
1

x
∓ iπ δ(x) , (C.2)

one obtains

Ref(x) + iImf(x) =
1

2πi

∫ ∞

−∞

dy (Ref(y) + iImf(y))

{

P
1

y − x + iπ δ(y − x)
}

.

Finally, equating the real and imaginary parts of both sides, one arrives at the dispersion
relations

Re f(x) = P

∫ ∞

−∞

dy

π

Im f(y)

y − x ,

Im f(x) = −P
∫ ∞

−∞

dy

π

Re f(y)

y − x . (C.3)
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If the function f(z) is analytic in the lower half-plane of the complex variable z, a reasoning
analogous to the one presented here leads to the relations

Re f(x) = −P
∫ ∞

−∞

dy

π

Im f(y)

y − x ,

Im f(x) = P

∫ ∞

−∞

dy

π

Re f(y)

y − x , (C.4)

in which the integrals are taken over the lower side of the real axis.
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