
Problems in Quantum Field Theory

Problem 0.1
Prove the following expansion

eAB e−A = B + [A, B] +
1

2!
[A, [A, B]] +

1

3!
[A, [A, [A, B]]] + . . .

Prove also the Baker-Hausdorff operator identity

eA+B = eA eB e−
1

2
[A, B] = e−

1

2
[A, B] eA eB ,

holding for operators A and B commuting with [A, B]. Finally, prove the general for-
mula,1

et(A+B) = etA Texp

(
∫ t

0

dτ e−τAB eτA
)

,

valid for any two operators A and B, in which T denotes the “time” ordered product.
Hints: To prove the expansion solve iteratively the differential equation satisfied by the
operator function C(λ) = eλAB e−λA. Similarly, to prove the Baker-Hausdorff formula
consider the function F (λ) = e−λBe−λAeλ(A+B) and simplify the differential equation sat-
isfied by it using the fact that owing to the assumption, in the expansion of eBA e−B in
powers of the operator B only two first terms are nonvanishing.

Problem 0.2
Let |Ψ(t)〉S be an eigenvector with the eigenvalue a(t) of the Schrödinger picture operator
AS. Show that |Ψ〉H representing the same state in the Heisenberg picture (defined with
respect to t = 0) is the eigenvector of AH(t) with the same eigenvalue a(t). Prove also
that if [AH(t0), B

H(t0)] = CH(t0), then the same holds for any t.

Problem 0.3
Find the Heisenberg picture operators x̂H(t) and p̂H(t) of a particle of mass M moving
in one dimension if
a) it is a free particle (H = p̂2/2M),
b) H = p̂2/2M − x̂F (t), where F (t) is an external, time dependent force,
c) H = p̂2/2M +Mω2x̂2/2.
In all these cases compute the commutators

[x̂H(t), x̂H(t
′)] , [p̂H(t), p̂H(t

′)] , [x̂H(t), p̂H(t
′)] .

Using the Heisenberg picture operators compute in cases a) and c) the dispersion of
the particle’s position at the instant t expressing it through matrix elements of some
combinations of the position and momentum operators at t = 0.

1The Baker-Hausdorff formula is its special case with t = 1 and [A, [A, B]] = [B, [A, B]] = 0.
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Problem 0.4
Find the Heisenberg picture operators x̂H(t) and p̂H(t) of the one-dimensional harmonic
oscillator the dynamics of which is set by the time dependent Hamiltonian

H(t) =
p̂2

2M
+

1

2
Mω2x̂2 − x̂F (t) ,

using the solution of the corresponding classical equations of motion with the initial
conditions x(0) = x0 and p(0) = p0. To this end, recalling that x0 and p0 are also canonical
variables related to the standard ones, x(t) and p(t), by the canonical transformation
(the generating function of which is just the properly understood action I), promote
them to operators x̂0 and p̂0 on which the standard commutation rules [x̂0, p̂0] = i~,
etc. are imposed and represent them in the standard way in terms of the creation and
annihilation operators. Since the classical Hamiltonian written in terms of the canonical
variables x0 and p0 vanishes (this is precisely what is ensured by solving the Hamilton-
Jacobi equation, but one does not need to do it explicitly here), the operators x̂(t) and
p̂(t) obtained from the classical solution in which the operators x̂0 and p̂0 are substituted
for x0 and p0 (expressed, in turn, through the creation and annihilation operators) are
just the Heisenberg picture operators. The Heisenberg picture operators aH(t) and a

†
H(t)

can be then read off from the form of x̂H(t) and p̂H(t).
A reassuring remark: the description of the problem is long but the steps to do are
entirely trivial. After you do it, you will have, perhaps, a better understanding of what
“quantization” means.

Problem 0.5
A particle of mass m and electric charge q (in units of e > 0) moves in the con-
stant magnetic field B = ezB. Find the Heisenberg picture operators x̂H(t), ŷH(t) and
ẑH(t) and compute the commutators [x̂H(t), x̂H(t

′)], [ŷH(t), ŷH(t
′)], [x̂H(t), ŷH(t

′)] and
[x̂H(t), ẑH(t

′)]. Do these commutators depend on the choice of the potential A (the choice
of the gauge)? Consider also the operators p̂xH(t), p̂

y
H(t), p̂

z
H(t) and their commutators.

Do they depend on the gauge?
Hint: If it is too difficult to work without specifying explicitly a gauge, set e.g. A =
eyξBx−ex(1−ξ)By with an arbitrary parameter ξ in order to follow the gauge (in)depen-
dence at least within a restricted class of gauges. To construct the Heisenberg picture
operators x̂H(t), ŷH(t), p̂

x
H(t), p̂

y
H(t), take the inspiration from Problem 0.4. Remember

that the canonical momenta px and py are not simply given by mẋ and mẏ.

Problem 0.6
A particle of mass M and electric charge q (in units of e > 0) moves in the electric and
magnetic fields represented by the potentials ϕ(t, r) and A(t, r). Find the equation of
motion satisfied by the Heisenberg picture operator r̂H(t), that is compute d2r̂H(t)/dt

2.
Establish how this derivative differs from the classical formula (written here in the Gauss
system of units)

M
d2r(t)

dt2
= qe

[

E(t, r) +
v

c
×B(t, r)

]

.
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Problem 0.7
Express the difference EΩ − EΩ0

of ground state energies of H = H0 + λVint and of H0

through the derivative with respect to λ of the operator2

Sε
0 ≡ U−ε

I (+∞, 0)Uε
I (0, −∞) = [U−ε

I (0, +∞, )]†Uε
I (0, −∞) ,

that is, prove the so-called Sucher formula

EΩ − EΩ0
=

1

2
i~ ε λ

∂

∂λ
ln〈Ω0|Sε

0|Ω0〉 ,

Problem 0.8
By considering the differential equation satisfied by it, find the complete evolution op-
erator Uε(t, 0), including its phase, corresponding to the Gell-Mann - Low modification
Vint −→ eεtVint of the Hamiltonian (∆ω = ~ω/2)

H = H0 + Vint = ~ω a†a+∆ω + λa† + λ∗ a ,

of the linearly perturbed harmonic oscilator. Show then by an explicit computatation
that the expression (in which U±ε

I (t, 0) are the interaction picture evolution operators
corresponding to the interaction term adiabatically switched on and off)

lim
T→∞

(

lim
ε→0+

〈Ω0|U−ε
I (T, 0)[Uε

I (−T, 0)]†|Ω0〉
)

≡ lim
T→∞

〈Ω0|UI(T,−T )|Ω0〉 ,

(i.e. the limit ε→ 0 is taken first) behaves as

exp

{

−i2T
~

(EΩ − EΩ0
)

}

.

Hint: In order to ensure the proper transformation to the Heisenberg picture of the basic
operators a and a†, the sought evolution operator must have the form

Uε(t, 0) = eiϕ(t) e−iH0t/~ eh(t) a
†−h∗(t) a , h(t) = − i

~

∫ t

0

dτ λ e(ε+iω)τ ,

so only the phase ϕ(t) has to be determined.

Problem 0.9 (TRK sum rule)
The Hamiltonian of a set of N identical nonrelativistic spinless particles of mass M has
the general form

H =

N
∑

a=1

p2
a

2M
+ V (r1, . . . , rN) .

2In U−ε
I (+∞, 0) the original time independent interaction is replaced by λVint e

−εt and the limit
ε → 0+ is taken.
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Defining the operators

Or(a) = O†
r(a) =

N
∑

a=1

a·r̂a , Op(a) = O†
p(a) =

N
∑

a=1

a·p̂a ,

in which a can be any (real for Hermiticity) vector, prove that if |s〉 is a normalizable
(and normalized to unity) eigenvector of H , the following sum rules

∑

l

|〈l |Op(a)|s〉|2 =
M2

~2

∑

l

(El − Es)
2 |〈l |Or(a)|s〉|2 ,

∑

l

(El −Es) |〈l |Or(n)|s〉|2 =
N~

2

2M
,

∑

l

(El −Es)
∣

∣〈l |eiOr(q)|s〉
∣

∣

2
= N

~
2q2

2M
,

hold. The second one, in which it is assumed that n2 = 1, is called the Thomas-Reiche-
Kuhn sum rule. The summations over l, where |l〉 are eigenvectors of H , mean also
integrations over the continuous part of the Hamiltonian spectrum.
Hint: Prove first the identity Op(a) = i(M/~)[H, Or(a)]. To prove the TRK rule compute
in two ways the |s〉 state expectation value of the double commutator [[H, Or(n)], Or(n)]
and to prove the last one work out the operator e−iOr(q)HeiOr(q) −H using the expansion
proved in Problem 0.1 and take the expectation value of both sides in the normalized
eigenvector |s〉 of H .

Problem 0.10
Justify the identity3

a†a =
∞
∑

n=0

|n〉n 〈n| ,

in which |n〉 are the normalized eigenvectors of the operator a†a, where a and a† are the
standard annihilation and creation operators.

Problem 0.11
The harmonic oscillator of mass M and frequency ω is acted upon by an external force
F (t). The oscillator state was at t = 0 prepared in the coherent state |z〉 (the eigenvector
of the annihilation operator with the eigenvalue z). Show that the oscillator remains in a
coherent state |z(t)〉 at any instant t and find z(t).

Problem 0.12
The harmonic oscillator of mass M and frequency ω on which acts an external force F (t)
vanishing as t→ ∓∞ (i.e. the Hamiltonian as in Problem 0.4; one can consider concrete

3This is taken from the BMW, but there the problem is formulated with a misprint...
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forces like F (t) = F0/(1+ t
2/τ 2) or F (t) = F0 exp(−t2/τ 2)) was at t = −∞ in the ground

state of H0. Compute the mean oscillator energy E at t = ∞ and the energy dispersion

squared E2−E
2
using the formalism of the in and out operators. Obtain the same result

using the S-matrix elements Skl = 〈k out|l in〉.

Problem 0.13
The work W done on the harmonic oscillator of frequency ω and mass M , the classical
motion of which as t→ −∞ is given by x(t) = A cos(ωt+ δ), by a force F (t) vanishing as
t → ∓∞ can be computed as the difference of the oscillator energies at t = ∞ and and
t = −∞. If F (t) = F0 exp(−t2/τ 2) this work is equal (see Kotkin & Serbo Problem 5.12
or my notes to classical mechanics, Problem 2.13)

W =
πF 2

0

2Mω2
ω2τ 2 e−

1

2
ω2τ2 −

√
π F0Aωτ e

− 1

4
ω2τ2 sin δ .

Find the analogous result in quantum mechanics of the harmonic oscillator, that is
compute the mean value W of the work done by the force F (t) on the oscillator, the
(Schrödinger picture) state-vector |ψ(t)〉 of which was at t→ −∞ such that

〈ψ(t)| x̂ |ψ(t)〉 = A cos(ωt+ δ) .

Hint: Express the matrix elemet 〈ψ(t)| x̂ |ψ(t)〉 in the Heisenberg picture and use the
formalism of the in and out operators.

Problem 0.14
The center of the one-dimensional harmonic oscillator force gets suddenly displaced by
the distance d (the time τ in which the displacement takes place is much shorter than
1/ω), that is the Hamiltonian undergoes the change

H0 ≡
p̂2

2M
+

1

2
Mω2x̂2 −→ Hd ≡

p̂2

2M
+

1

2
Mω2(x̂− d)2.

Compute the probability that after the displacement the oscillator which initially was in
the n-th state of H0 will after the change be found in the m-th state of Hd. Do this using
the relation between the corresponding creation and annihilation operators a, a† ad, a

†
d

(without using explicit wave functions).

Problem 0.15
The frequency ω(t) of a one-dimensional harmonic oscillator of mass M varies with time
according to the formula

ω2(t) = ω2
0 +∆ω2

0 arctg(t/τ) , ω2
0 >

π

2
∆ω2

0 ,

so that H(−∞) = H(−) and H(∞) = H(+). Compute in the lowest order of the pertur-
bative expansion the probability of finding the oscillator in the k-th excited state of H(+)

if at t = −∞ it was in the n-th eigenstate of H(−).
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Problem 0.16
An atom, initially, i.e. in the far past, in the state |i〉, is placed beetween the plates of a
capacitor. The electric field E(t) is switched on and off according to the formula:

E(t) = E0 exp(−t2/τ 2) .

Using the first order of the time-dependent perturbative expansion express the probability
of finding the atom in the far future in the state |f〉 through the matrix element of the
electric dipole operator. Using the obtained formula, compute explicitly the probabilities
of finding the Hydrogen atom in the far future in the |2P 〉 states, if it was initially in the
|1S〉 state.

Problem 0.17
Compute approximately the probability that an atom, initially in a state |i〉, will get
excited to a state |f〉 (belonging to the discrete or continuous part of the spectrum of the
free atom Hamiltonian) by the variable electric field produced by a heavy charged particle
of charge Qe (treated classically and without taking into account its small deflection due
to the interaction - making this approximation is possible owing to the neutrality of the
atom as a whole) passing near the atom with the impact parameter b≫ aB (b is counted
with respect to the atom’s nucleus; aB is the Bohr radius) with a constant velocity v. The
approximation should consist of truncating the formula suggested below to the lowest l.
Hint: Use the formula

1

|r−R| =
∞
∑

l=0

|r|l
|R|l+1

Pl(cosϑ) ,

where ϑ is the angle between the vectors r andR and Pl(z)’s are the Legendre polynomials.
The formula is written assuming that |r| < |R|.

Problem 0.18
Combine the result of the preceding Problem with the Thomas-Reiche-Kuhn sum rule
(Problem TRK) to estimate the mean energy loss per unit length of the trajectory of a
heavy charged (classical) particle which passes through a medium in which there are N
identical atoms (each having Z electrons) per unit volume.

Problem 0.19
The Hilbert space of a system is two-dimensional. The Hamiltonian is H = H0 + Vint.
The two normalized eigenvectors |1〉 and |2〉 of H0 (corresponding to its eigenvalues E1

and E2) can be taken for the basis of the Hilbert space. At t = 0 the system was prepared
in the state |1〉. Assuming that the matrix elements of Vint between the H0 eigenstates
are known, compute the probability of finding the system in the states |1〉 and |2〉 at
any instant t. Compare the exact result with the one obtained in the lowest order of the
time-dependent perturbative expansion.
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Problem 0.20
As in the preceding Problem the Hilbert space of a system is two-dimensional. The
unperturbed Hamiltonian H0 has two degenerate (normalized to unity) eigenvectors |1〉
and |2〉, both corresponding to the same energy E0. The perturbation has the form
Vint = f(t)O, where O is some Hermitian operator and f(t) is a c-number function. What
is the probability of finding the system at the instant t > 0 in the the state |2〉, if it
was prepared at t = 0 in the state |1〉? Establish the conditions in which the transition
probability obtained using the first order of the time-dependent perturbative expansion is
a good approximation to the one computed exactly. As in the preceding Problem assume
that the matrix elements of the operator O between the H0 eigenstates are known.

Problem 0.21
Consider the evolution of the magnetic moment represented by the operator

µ̂ = µ
1

2
σ ,

of a spin 1
2
particle4 remaining at rest (this reduces the the system to a two-state one) in

a variable magnetic field

B(t) = B0 ez +B1 (ex cosΩt + ey sin Ωt) .

Find the exact evolution of the state which at t = 0 is the lower energy eigenstate of the
system’s Hamiltonian at that instant. Find the state-vector ψ(t) of the spin (magnetic
moment) after the complete rotation of the direction of the magnetic field (Ωt = 2π) and
taking the adiabatic limit Ω → 0, t→ ∞ with Ωt = 2π, identify the Berry’s phase.
Hint: Find first the evolution of the state-vector ψ′(t) related to ψ(t) by the time-
dependent unitary transformation S(t) = exp( i

2
σzΩt): ψ′(t) = S(t)ψ(t).

Problem 0.22
Applying the Fermi’s Golden Rule calculate the probability of the Hydrogen atom ioniza-
tion by the spatially constant and uniform electric field E(t) = 2E0 sinωt (produced e.g.
in a capacitor). Use the plane waves as the final states of the electron (to avoid technical
complications).

Problem 0.23
Consider the electron bound in the Coulomb potential −Ze2/r (a Hydrogen-like atom)
interacting with the electromagnetic plane wave represented by the vector potential

A(t, r) = A0 ǫ(k, λ) e
−i(ωt−k·r) + c.c. ,

of frequency ω such that ~ω is higher than the atom’s ionization energy (ǫ(k, λ) is the
unit polarization vector). Approximating the electron asymptotic states by plane waves,

4If the particle has a nonzero electric charge Qe (e > 0 is the elementary charge) one usually writes
µ = Q(e~/2mc)g = QgµB, where µB is the Bohr magneton and g some numerical factor (g = 2 plus
pennies, if the particle is electron); if the particle is neutral (e.g. neutron), one can always write µ = gµB

admitting either sign of g.
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compute the differential cross section of the atom ionization process as a result of which
the electron is found with the momentum in the element dΩk of the solid angle.
Hint: The cross section is given by the transition probability per unit time divided by
the flux of incident photons. If the calculation is done within the semiclassical radiation
theory, the “flux of photons” should be identified with the energy flux (averaged over
the period) carried by the electromagnetic wave divided by the energy ~ω od a single
quantum.

Problem 0.24
Solve the preceding problem using the quantum theory of radiation, i.e. compute the cross
section of the process in which the atom gets ionized as a result of absorbing one photon
(the initial state consists of the atom in the ground state and one photon of momentum
~k and polarization λ = ±1). Average the cross section over polarizations of the initial
photon.

Problem 0.25
Consider the quantum three dimensional isotropic harmonic oscillator of mass M and
frequency ω carrying the electric charge q (in units of e > 0). Compute the width (or
the lifetime) of the oscillator |nx, ny, nz〉 states using the electric dipole approximation.
When is this approximation reliable?

Problem 0.26
Estimate the probability per unit time of the spontaneous electric dipole transition (with
the emission of one photon) between the Hydrogen atom 2S1/2 and 2P1/2 states. The
difference of energies of these two energy levels is ∆E = 4.4 × 10−6 eV or 1057 MHz
(the conversion factor is 2π~ = h - why the oldfashioned h ? “Because such is the power
of tradition!”). This splitting, called the Lamb shift, is due to higher order corrections
to the Hydrogen atom energy spectrum which are calculable only within full Quantum
Electrodynamics (details of this calculation are, however, entirely irrelevant for the present
Problem).

Problem 0.27
Derive the general formula giving in the dipole approximation the probability per unit time
that the Hydrogen atom excited to the atomic level characterized by the quantum numbers
(n, l) makes a spontaneous transition (with the emission of one photon) to another level
characterized by the numbers (n′, l′). Average the transition probability over the ml and
sum it over the m′

l quantum numbers. Give the lifetime of the 2P Hydrogen atom states.

Problem 0.28
A neutron at rest is placed in the constant uniform magnetic field B. This results in
splitting its spin up and spin down states. The difference of energies of these split states
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is ∆E = 2|µ||B|, where |µ| is the neutron magnetic moment equal5 (e~/2Mnc)κn with
the appropriate dimensionless factor κn = −1.91. Assuming that the neutron is initially
in the higher energy state and using

Vint = −µ·B̂(0) ,

as the interaction, compute the probability per unit time wfi of the spontaneous transi-
tion to the lower energy level. Give the answer in the form wfi = (. . .)× [|B|/Gauss]a or
wfi = (. . .)× [|B|/Tesla]a (if you are a legalist) with the appropriate power a.

Remark: Setting to zero the space argument of the B̂ field operator results from approx-
imating the wave function of the neutron at rest by a Gaussian packet strongly peaked at
r = 0.

Problem 0.29
Compute the probability per unit time of the spontaneous transition with the emission of
one photon between the triplet and singlet Hydrogen atom 1S states. The triplet state
has energy higher than the singlet one by ∆E = 1420 MHz (that is - notice again the
old-fashioned conversion factor - ∆E = 1420MHz · h ≡ 1420 · 2π~ ≈ 6 × 10−6 eV). This
so-called hyperfine splitting is due to the interaction between the electron and nucleus
(proton) spins.
Remark: Write the wave functions of the singlet atomic state in the form

Ψsinglet =
1√
2

[

(

1
0

)

e

⊗
(

0
1

)

p

−
(

0
1

)

e

⊗
(

1
0

)

p

]

2

a
3/2
B

e−r/aBY00 ,

and analogously the functions of the triplet state and take for the interaction

Vint =
e

2Mec
ge

~

2
(σe ⊗ Ip)·B̂(r̂) ,

(Ip is a unit 2 × 2 matrix acting on the proton spinors; the proton magnetic moment

coupling to the magnetic field operator B̂ can be neglected because the proton magnetic
moment is much smaller than that of the electron.

5The magnetic moment of a spin 1/2 particle of mass Mp is usually written as

µ =
e

2Mpc
2(Qp + κp)

~

2
σ ≡ e~

2Mpc
(Qp + κp)σ .

The quantity e~/2Mpc where Mp is the proton (or neutron) mass is called the nuclear magneton (in
analogy to the Bohr magneton e~/2Mec of the electron) whereas gp = 2(Qp + κp) is the gyromagnetic
factor. Electron ge equals −(2 + pennies); proton gp = 5.58 (i.e κp = 1.79). “Magnetons” include the
factors of 2 (which are commonly, but not quite correctly, believed to come out from the Dirac equation),
that is, the value of the electron magnetic moment is (almost) |µ| = e~/2Mec. Similarly if proton were
a pointlike particle its magnetic moment would be |µ| = e~/2Mpc; large departure of the proton factor
Qp + κp from unity shows that proton is not elementary. It is the factor κn (i.e. the nonelementary
nature of neutron) which is entirely responsible for the neutron magnetic moment (Qn = 0).
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Problem 0.30
Taking the electron spin into account (i.e. using the Pauli equation instead of the
Schrödinger one) compute the probability per unit time of the (magnetic dipole) transi-
tion between the 2S1/2 and 1S1/2 states in the Hydrogen atom with the emission of one
photon.
Remarks: Approximate the operator e−ik·r̂ by −1

2
(k·r̂)2 - in the relevant matrix element

the first two terms of the expansion give zeros. Sum the transition matrix element squared
over the final state photon polarizations, over the final state electron spin directions and
average it over the initial state electron spin projections.

Problem 0.31
Find the contribution of the interaction term6

V
(2)
int =

e2

2Mc2
Â2(r̂) ,

to the probability per unit time of the spontaneous transition between the 2S and 1S
levels of the Hydrogen atom with the emission of two photons.
Remark: Approximate the matrix element of the operator e−i(k1+k1)·r̂ between the 2S
and 1S atomic states by expanding the exponent up to the second order (the first two
terms of this expansion give vanishing contributions). If the complete calculation is too
complicated, try at least to make the estimate by finding the power of αEM = 1/137 and
of other dimensional factors (like ~, c, Me) to which this rate is proportional.

Problem 0.32
Compute the ratio of the intensities of the two first lines of the Balmer series of spectral
lines emitted by the Hydrogen atom. The first, called Hα, line of this series is due to the
transitions |3S〉 → |2P 〉, |3P 〉 → |2S〉, and |3D〉 → |2P 〉, while the second, Hβ, line is
due to the transitions |4S〉 → |2P 〉, |4P 〉 → |2S〉, and |4D〉 → |2P 〉.

Problem 0.33
Taking the electron spin into account (i.e. using the Pauli equation instead of the
Schrödinger one) compute (in order e4) the differential cross section of the low frequency
(~ωk ≪ Mec

2) photon Compton scattering on free electron at rest. Average the cross
section over the two possible spin projections of the initial electron and sum over the spin
projections of the final electron. Compare the result with the Klein-Nishijina formula.

Problem 0.34
Compute (in order e4) the differential and total cross sections (averaged over the initial
photon polarization and summed over the polarizations of the final photon) of the elastic
low frequency (~ωk ≪ Mc2) photon scattering on a spinless charged particle of mass M
bound in the spherical harmonic oscillator potential V (r) = 1

2
Mω2

0r
2 (elastic i.e. without

6The complete calculation of the rate of the two-photon 2S → 1S transition should take into account

through the second order perturbative expansion the contribution of the term V
(1)
int = (e/Mc)Â(r̂) · p̂)

which is also formally of the same order.
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exciting the oscillator which is assumed to be initially in the ground state). Work in the
dipole approximation, i.e. set equal to unity the r̂ dependent exponential factors in the
photon field operator.

Problem 0.35
Compute the differential cross sections of the low frequency (~ωk ≪ Mnc

2) photon scat-
tering on a free neutron in a definite spin state and no neutron spin flip (the final neutron
has the same spin direction as the initial one) and with the spin flip. Average these cross
sections over the polarizations of the incoming photon and sum over the polarizations of
the final one. Compute also the total cross sections (i.e. integrate over the directions of
the final photon). The recoil of the neutron can be neglected - use only the spin part of
the neutron wave function and take the photon field operator at r = 0.

Problem 0.36
Check by direct calculation that if the wave function ψ(t, r) of a particle of mass M
satisfies the Schrödinger equation with the potential V (r), then the wave function

ψ′(t, r) = exp

(

− i

~
V·(−Mr+ tP)

)

ψ(t, r)

= exp

(

−iMV2

2~
t

)

exp

(

i

~
MV·r

)

ψ(t, r−Vt) ,

of the (actively) boosted system satisfies the Schrödinger equation with V ′(r−Vt). How
are related the probability density and the probability currents constructed out of ψ′(t, r)
and ψ(t, r)? Repeat the check in the abstract language of state-vectors, that is show that
if i~d|ψ(t)〉/dt = [p̂2/2M + V (r)]|ψ(t)〉, then

|ψ′(t)〉 = e−iMV
2

2~
t e

i
~
MV·r̂ e−

i
~
tV·p̂|ψ(t)〉 ,

satisfies i~d|ψ′(t)〉/dt = H ′|ψ′(t)〉 with H ′ = p̂2/2M + V (r̂− tV).

Problem 0.37
The nucleus of the Hydrogen atom (in the 1S state) gets a sudden kick and starts moving
with the velocity v. Assuming that the time τ of the action of the kicking force is very
short compared to all relevant characteristic times (including aB/|v|, where aB is the Bohr
radius) derive a general formula valid for an N -electron atom of finding the atom in a
concrete stationary state. Applying it to the Hydrogen-like one-electron atom compute
explictly the probability that it will not remain in the initial 1S state.
Hint: Transform the initial wave function of the electron to the frame in which the
nucleus is at rest after having received the kick.

Problem 0.38
Using the commutation rules of the rotation group generators [Jx, Jy] = iJz etc., show
that

e−iφJz

e−iθJy

e+iφJz

= e−iθ(Jy cos φ−Jx sinφ) .
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Write down also other similar relations with the generators Jx, Jy and Jz.

Problem 0.39
Show that if the (active) rotation represented by the 3×3 orthogonal matrix O is generated
through the formula7

M · (σi ri) ·M † = σj(O
j
i r

i) ,

by the 2×2 matrixM belonging to the SU(2) group and if the rotation matrix Õ is related
in the same way to another SU(2) matrix M̃ , then theSU(2) matrix M̃ ·M generates in
this way the rotation matrix Õ ·O.

Problem 0.40
A vector V rotated by the angle φ around the axis n (where |n| = 1) can be written as

V′ = V cosφ+ n (n·V)(1− cosφ) + n×V sinφ

≈ V + φ×V − 1

2
φ2V +

1

2
φ (φ·V) + . . .

where φ ≡ φn. Justify this formula. Find the vector φ corresponding to the composition
of two successive infinitesimal rotations characterized by φ1 and φ2 of a vector V. Using
the result find the structure constants of the rotation group. Show also that the matrix8

[Ovec(φ,n)]
i
j = δij cos φ+ (1− cosφ)ninj + ǫikjnk sinφ ,

such that V ′i = [Ovec(φ,n)]
i
jV

j , is just the matrix exp
(

−iφkJ k
vec

)

, where (J k
vec)

i
j = iǫikj

are the rotation group generators in the defining (vector) representation.

Problem 0.41
Let O(θ,n) with n2 = 1 be the (active) rotation around the direction n by the angle θ.
Show that (k2 = 1)

O(θ,n)·O(ψ,k)·O−1(θ,n) = O(ψ,Ovec(θ,n)·k) ,

where Ovec means the rotation realized on vectors (in this formula O(θ,n) stand for an
abstract rotation which can be realized in any vector space, in particular in a Hilbert
space, by an appropriate symetry operator).

7In view of notation used in the applications of the SL(2, C) group representations to spinors, it is
convenient to operate with two sets of the Pauli matrices σi and σ̄i which can be written in the “co-”
and “contravariant forms: σi = −σi = −σ̄i = σ̄i, where σi are the three “standard” Pauli matrices.

8Since it is desirable to denote differently active rotations (which are linear mappings of the vector
space into itself and, hence, their matrices are written in a fixed basis) and passive rotations (matrices of
which are matrices of changes of bases i.e. matrices of the identity mapping but written in two different
bases - see my famous Algebra notes), we choose to denote the active ones by O (from polish - let proud
Poland getting up from knees contribute also to physics - “obrót”).
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Problem 0.42
Using the result of Problem 0.41 show that the (active) rotation O(α, β, γ) parametrized
by three Euler angles and composed of three successive rotations: first by the angle α
around the axis n1 ≡ ez, then by the angle β around the axis n2 ≡ −ex sinα + ey cosα
and finally by γ around the axis n3 ≡ ex cosα sin β + ey sinα sin β + ez cos β (these are
the famous three moves of the paw - who attended my Classical Mechanics course, knows
what I mean) is equivalent to the composition of three other successive rotations: first by
γ around ez, then by β around ey and finally by α again around ez:

O(γ,n3)·O(β,n2)·O(α,n1) = O(α, ez)·O(β, ey)·O(γ, ez) .

Show also formally, that is treating the matrices O (of the active rotations) as matrices of
the linear mappings of the vector space into itself which are given in the fixed basis ei and
matrices of the passive rotations as matrices of the changes of the bases (that is matrices
of the identity mapings but written in different bases), that (what should be obvious) in
the reference frame rotated by the angles α, β and γ the components of the rotated vector
are the same as the compotents of the original vector in the original reference frame.

Problem 0.43
A left-invariant measure dµ(g) on a group G has the property

∫

dµ(g) f(g) =

∫

dµ(g) f(g′g)

(g denotes an element of G and f(g) is a function defined on the group G). In a concrete
parametrization g = g(θ) of the group elements by some parameters θa with a = 1, . . . , n,
where n is the dimension of the Lie algebra of G the measure is given by dµ(g) = dnθρ(θ).
Using the general formula

ρ(θ) = ρ(0) det−1

(

∂ha(θ, θ̃)

∂θ̃b

)

θ̃b=0

,

in which h(θ, θ̃) is the group composition function appropriate for the chosen parametriza-
tion g = g(θ) of the group elements, find the left-invariant measure (i.e. the density ρ) on
the rotation group SO(3) in the parametrization given by the components of the vector
φ = (φx, φy, φz) defined in Problem 0.40. Compute the rotation group volume adopting
the usual convention according to which ρ(0) = 1.

Problem 0.44
Let the two-parameter group G of transformations of the real axis R be defined by the
formula

x′ = (1 + ξ1)x+ ξ2 ,

Using the general formula quoted in Problem 0.43 and its counterpart appropriate for
right-invariant measures, find both these measures on the group G. Are they identical?
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Problem 0.45
Prove that if the dimension n of the group G is odd, the formula dµ(g) ≡ dnξ ρ(ξ) with

ρ(ξ1, . . . , ξn) ∝ ǫi1i2...in tr

(

O−1 · ∂O
∂ξi1

· O−1 · ∂O
∂ξi2

· . . . · O−1 · ∂O
∂ξin

)

,

where O(ξ) is a matrix representation of the group element parametrized by the param-
eters ξi, defines on G a left-invariant measure (if n is even, the measure defined in this
way vanishes as a result of the antisymmetry of ǫi1i2...in and the cyclicity of the trace).
Use this result to find explicitly the density ρ(α, β, γ) of the left-invariant measure on the
SO(3) and SU(2) groups parametrized by the three Euler angles α, β and γ.

Problem 0.46
Show that the left-invariant measure on a compact group G parametrized by the param-
eters θa, a = 1, . . . , o

g(θ) = exp (−iθaQa) ,

where Qa, a = 1, . . . , o, are the group generators in some representation, takes, infinitesi-
mally close to the identity transformation, the simple form doθ.

Problem 0.47
Show that the operator of the electric quadrupole moment Qij = −e(3r̂ir̂j − r̂2δij) is a
tensor operator corresponding to j = 2. Between which states of the Hydrogen atom are
electric quadrupole transitions possible?
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