
Problems in Quantum Field Theory of Fundamental Interactions. I

Problem I.1

Using the definition of the action of the creation and annihilation operators on the state-
vectors |ψ1, . . . , ψN〉, show that a(ϕ1) and a†(ϕ2) associated respectively with the one-
particle states |ϕ1〉 and |ϕ2〉 satisfy the relation

[

a(ϕ1), a
†(ϕ2)

]

∓
= 〈ϕ1|ϕ2〉 .

[ · , · ]∓ denotes here the commutator if the operators are bosonic and the anticommutator
if they are fermionic.

Problem I.2

The Hamiltonian of a system consisting of a fermion interacting with a boson acting in the
many particle Hilbert space H and written in terms of the operators a, a† satisfying the
standard rule, [a, a†] = 1, and the fermionic operators b, b† satisfying the anticommutation
rules

{b, b†} = 1 , {b, b} = {b†, b†} = 0 , [a, b] = 0 ,

etc., takes the form (h̄ = 1, g is a coupling constant having dimension of energy)

H = mb†b+ ω a†a+ g b†b (a + a†) .

Find its spectrum and the corresponding eigenvectors.
Hint: One way of solving this problem is to define the Hermitian operatorO = ib†b(a−a†)
and perform on the Hamiltonian the unitary transformation

H → eiκOH e−iκO ,

chosing appropriately the real parameter κ.

Problem I.3

Check that independently of whether particles are bosons or fermions, two-particle oper-
ators of the general form

O =
∑

k1

∑

k2

∑

k3

∑

k4

f(k1,k2,k3,k4) a
†
k1
a†k2

ak3
ak4

,

commute with the total particle number operator N̂ =
∑

k a
†
kak. (The same can also be

shown in the case of the continuous normalization of the states with the sums replaced
by the appropriate integrals.)

Problem I.4

Show that the operator of the two-particle interaction1

Vint =
1

2

∫

d3x d3y a†(x)a†(y)Vpot(x− y) a(y)a(x) ,

1Spin indices are not displayed because they are irrelevant to this problem.
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commutes (whether particles are bosons or fermions) with the total momentum operator

P̂ =
∫

d3k

(2π)3
h̄k a†(k)a(k) .

Hint: It is better to write Vint in terms of the momentum space creation/annihilation
operators.

Problem I.5

Using the general prescription for expressing one-particle operators through creation and
annihilation operators, construct for the system of many identical spinless particles of
mass m three operators Ĵ = (Jx, Jy, Jz) satisfying the commutation rules

[

J i, J j
]

= ih̄ ǫijkJk ,
[

J i, P j
]

= ih̄ ǫijkP k ,

and show that the operators J i commute with the Hamiltonian

H =
∫

d3p

(2π)3
h̄2p2

2m
a†(p)a(p) +

1

2

∫

d3x
∫

d3y a†(x)a†(y)Vpot(x,y)a(y)a(x) ,

provided Vpot(x,y) = Vpot(|x− y|).

Problem I.5′

Consider a system of N spin 1/2 identical fermions of mass mf interacting with one
another through a spin independent potential Vpot(|xi−xj |). If they are nonrelativistic and
move in an infnite space, the system is invariant with respect to transformations forming
the Galileo group. Using the field operators ψ̂σ(x), ψ̂

†
σ(x) of the second quantization

formalism construct explicitly the ten generators of this group acting in the systems
Hilbert space and check that they satisfy the commutation rules

[Ĵ i, Ĵ j ] = ih̄ ǫijkĴk , [P̂ i, P̂ j] = 0 ,

[Ĵ i, P̂ j] = ih̄ ǫijkP̂ k , [K̂i, K̂j ] = 0 ,

[Ĵ i, K̂j ] = ih̄ ǫijkK̂k , [K̂i, P̂ j] = −ih̄ δijM̂ ,

[Ĵ i, H ] = 0 , [P̂ i, H ] = 0 ,

[K̂i, H ] = −ih̄P̂ i .

in which M̂ is the operator of the total mass of the system, by virtue of the anticommu-
tation rules

{ψ̂α(x), ψ̂
†
β(y)} = δαβδ

(3)(x− y) ,

{ψ̂α(x), ψ̂β(y)} = {ψ̂†
α(x), ψ̂

†
β(y)} = 0 .

Hint: The operators Ĵ can be constructed using the general prescription for converting
one-particle operators into their second-quantized counterparts. The same prescription
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can be also applied to the operators realizing boosts in quantum mechanics of a single
fermion moving freely in infinite space - check that its second-quantized counterpart sat-
isfies the required commutation rules in spite of the presence of the interaction term in
the Hamiltionian of the considered system. In checking the commutation rules one has to
remember that because ψ̂σ(x), ψ̂

†
σ(x) are in fact operator valued distributions, expressions

having the form of the space integral of the total (space) derivative of a string of field
operators should be treated as zero operators.

Problem I.5′′

Consider the second-quantized version of quantum mechanics of the system of N nonrel-
ativistic spin 1/2 identical fermions of mass mf interacting with one another through a
spin independent potential Vpot(|xi − xj |) (but not with an external potential). Check
that owing to the normal ordering (with respect to the |void〉 vector) of the Hamiltonian,
the state a†σ(p)|void〉 of a single particle is its eigenvector with the eigenvalue h̄2p2/2mf

and that the time dependent state-vector

|ψ(t)〉 = e−iHt/h̄|ψ(0)〉 = e−iHt/h̄
∫

d3xuσ(x) ψ̂
†
σ(x)|void〉 ,

in which the profile uσ(x) satisfies the normalization condition
∫

d3x
∑

σ |uσ(x)|2 = 1,
satisfies the Schrödinger equation

ih̄
d

dt
|ψ(t)〉 = Ĥ|ψ(t)〉 ,

and that it is properly normalized, i.e. that 〈ψ(t)|ψ(t)〉 = 1. Verify by explicit com-
putation that the state-vector exp(−(i/h̄)V · K̂)|ψ(t)〉 where K̂ is the boost generator
constructed in Problem I.5′ also satisfies the same Schrödinger equation. Check also ex-
plicitly that the wave function 〈α,x|e− i

h̄
V·K̂|ψ(t)〉 of the boosted state is related in the

standard textbook way to wave function 〈α,x|ψ(t)〉 of the original state.

Problem I.6

A system of N identical spinless (nonrelativistic) bosons of mass m interacting pairwise
through a regular potential Vpot(xi − xj) are enclosed in a box of volume V = L3. Write
down the expressions for the first and second order corrections to the ground state energy
of this system. Argue that if

∫

d3x Vpot(x) < 0 (and the integral is finite), the system is
intrinsically unstable and should collapse.

Problem I.7

Compute in the first nontrivial order of the perturbative expansion the ground state
energy of a system of N spin 1/2 fermions of which N+ have spin projection +1/2 onto
the z axis and N− have this spin projection −1/2, and express it in terms of the densities
ρ+ = N+/V and ρ− = N−/V of the upwards and downwards polarized particles and
the volume V in which the system is enclosed. The fermions interact with one another
through the potential Vpot(xi − xj) = λ δ(3)(xi − xj).
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Problem I.8

The system consists of N positive ions of charge e > 0 located at fixed positions so that
in the volume V = L3 their density can be approximated by a homogeneous distribution
nio(x) = N/V , and of N (nonrelativistic) electrons (of mass m and charge −e) which can
move in the entire volume V interacting with one another and with the ions through the
Coulomb potential. Find in the first order of the Rayleigh - Schrödinger expansion energy
of the ground state of this system. Express the results through the dimensionless mean
interelectron distance r̄ = [V/(4πa3BN)]1/3 where aB = h̄2/me2 is the Bohr radius.
Hint: Introduce the factor exp(−µ|xi − xj |) regularizing the Coulomb interaction. Take
the thermodynamic limit before setting µ → 0.

Problem I.9

Compute in the first nontrivial order of the perturbative expansion the ground state energy
of a system of N spin 1/2 electrons of which N+ have spin projection +1/2 onto the z
axis and N− have this spin projection −1/2, and express it in terms of the total number
N = N+ + N− of electrons and the system’s polarization ζ = (N+ − N−)/N . Electrons
are enclosed in the volume V and interact through the Coulomb force with themselves
and with the neutralizing the system uniform background of positive ions. Compare the
ground state energies of the unpolarized (ζ = 0) and fully polarized (ζ = 1 or −1) systems
as a function of the dimensionless parameter r̄ defined by the relation V = (4π/3)Na3Br̄

3

(aB = h̄2/me2 is the Bohr radius).

Problem I.10

Write down the expressions for the second order corrections to the ground state energy
of the system of N (nonrelativistic) electrons moving in the volume V on a homogeneous
background of N positive ions. Are these corrections finite?

Problem I.11

Use the Gell-Mann - Low formula

EΩ − EΩ0
= lim

ε→0

〈Ω0|VintUε
I (0,−∞)|Ω0〉

〈Ω0|Uε
I (0,−∞)|Ω0〉

,

to compute, up to the second order in λ the ground state energy EΩ of the one dimensional
harmonic oscillator of frequency ω perturbed by the interaction Vint = (λ/4)(a† + a)4 ≡
λ(x̂/l)4, where l = (h̄/mω)1/2. To evaluate the numerator and the denominator use
the Wick theorem. Compare with the result obtained using the standard Rayleigh-
Schrödinger perturbative expansion.

Problem I.12

Treating the term proportional to λ2 in the Hamiltonian

H =
p̂2

2m
+

1

2
m(ω2 + λ2)x̂2 = H0 + Vint ,

as a perturbation compute corrections to the ground state energy up to the third order
in λ2 using the Gell-Mann - Low formula evaluating only the connected contributions
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to its numerator in two ways: applying the Wick theorem to the formula involving the
chronological product (the Dyson way) and alternatively by replacing the chronological
product by the nested integrals over interaction times and inserting the complete sets
of H0 eigenvectors between the operators (the Goldstone way); in this case “connected
contributions” are commonly taken to mean the contributions which do not involve the
ground state as an intemediate state). Which result is correct? Why?

Problem I.13

Prove that the most general solution of the condition

gµν
∂xµ′

∂xλ
∂xν′

∂xκ
= gλκ ,

takes the form xµ′ = Λµ
νx

ν + aµ with constant Λµ
ν and aµ.

Problem I.14

Using the commutation rules of the Poincaré group generators

[P µ, P ν] = 0 ,

[Jλρ, P µ] = i
(

P λgρµ − P ρgλµ
)

,

[Jλρ, Jµν ] = i
(

Jλνgµρ − Jλµgρν − Jρνgλµ + Jρµgλν
)

,

calculate the commutators [Jλρ, W ν ], [P µ, W ν ], [W µ, W ν ] and [W µWµ, W
ν ] of the

Pauli-Lubański operator2 Wµ = −1
2
ǫµνλρJ

νλP ρ. Using the results show that the operators

P 2 = PµP
µ and W 2 = WµW

µ ,

commute with all the generators of the Poincaré group. The conclusion from the results
is that W 2 and P 2 are the two Racah operators of the Poincaré group (P 2 being bilinear
in the group generators is its Casimir operator) and can serve to label its irreducible
representations, while states within a given representation can be labeled by eigenvalues
of the operators P i and one (linear combination) of the components of W µ.
Hint: Use the relation

ǫµνλσ det(Λ) = Λµ
µ′Λν

ν′Λ
λ
λ′Λσ

σ′ ǫµ
′ν′λ′σ′

,

which shows that ǫµνλσ is an invariant tensor with respect to proper ortochronous Lorentz
transformations (which have det(Λ) = 1.

Problem I.15

Check directly that the matrix (Lp)
µ
ν the elements of which read

(Lp)
0
0 = γ , (Lp)

i
j = δi j − (γ − 1)

pipj
|p|2 ,

(Lp)
0
i = − pi

|p|
√

γ2 − 1 , (Lp)
i
0 =

pi

|p|
√

γ2 − 1 ,

2We use ǫ0123 = −ǫ0123 = +1.
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where γ =
√

1 + p2/m2 = Ep/m = 1/
√
1− v2, defines a Lorentz transformation (that is,

Lp satisfies the basic condition LT
p ·g ·Lp = g where g is the Minkowski space-time metric

tensor). Show that Lp is the composition of the following three transformations:

Lp = Rẑ(p̂) · Bz(|p|) · R−1
ẑ (p̂) ,

where Bz(|p|) is the Lorentz boost transforming a particle of mass m at rest (in a system
O) into a particle moving (in a system O′) along the z-axis with velocity |p|/E(p), and
the rotation Rẑ(p̂) = O(φp, ez) ·O(θp, ey) which transforms a vector pointing in the z-
direction into a vector pointing in the direction p̂ specified by the polar angles θp and φp.
Show also that Lp given by this composition is just the boost in the direction opposite to
the direction of p.

Problem I.16

Show by direct calculation that the measure

dΓp ≡ d3p

(2π)32E(p)
,

is invariant with respect to ortochroneous Lorentz transformations that is, that if E ′ and
p′ are related to E and p by a Lorentz transformation, then d3p′/E ′ = d3p/E.

Problem I.17

Check by direct calculation that the matrices
(

Jz
(j)

)

j′σ′,jσ
= σ δσ′σδj′j ,

(

Jx
(j) ± iJy

(j)

)

j′σ′,jσ
= δj′jδσ′σ±1

√

(j ∓ σ)(j ± σ + 1) ,

satisfy the SU(2) algebra commutation rules.

Problem I.18

Using solely the properties (the commutation rules) of the Poincaré group generators show
that the operator U(Lp) corresponding to the transformation Lp of a massive particle
satisfies the relations

PU(Lp)P−1 = U(LP ·p) ,

and

T U(Lp)T −1 = U(LP ·p) ,

.

Problem I.19

Show that the states

|p, σs〉 = U(Lp)|0, σs〉 ,
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of a massive particle of mass m, where |0, σs〉 is such that ŝ · J|0, σs〉 = σs|0, σs〉 for
a three-vector ŝ of unit length, are the eigenstates with the same eigenvalues σs of the
operator −sµp Wµ/m, in which

sµp = (Lp)
µ
ν s

ν
rest , sνrest = (0, ŝ) .

Find the eigenvalues of WµW
µ on the states |p, σs〉. Show also that U(Λ)|p, σs〉 is the

eigenstate of −(Λ·sp)µWµ/m with the same eigenvalue σs.

Problem I.20

In a frame O1 the W
+ boson (a spin 1 particle of mass M = 80.4 GeV/c2) is in the state

|p1, σ〉 with p1 = (0, |p1|, 0), that is, has (in its rest frame) the spin projection onto the z
axis equal σ. In what state will this W+ be seen by an observer O2 moving with respect
to O1 with the velocity v along the z-axis? Does the result mean that while in the frame
of O1 a beam of fully polarized W ’s (assuming for a while they are stable) would not be
split by a Stern-Gerlach device (with appropriately oriented magnetic field), it should be
split by the same device from the point of view of the obsever O2?

Problem I.21

The helicity states |p, λ〉 of a massive particle are defined by the formula

|p, λ〉 = U(Rẑ(p̂))U(Bz(|p|)) |0, λ〉 ,

in which 0 represents the standard four-momentum kµ = (m, 0) and λ is the spin projec-
tion onto the z direction in the particle’s rest frame: Jz|0, λ〉 = λ|0, λ〉 (that is, λ has the
same meaning as σ in the definition of the standard states |p, σ〉). Show that |p, λ〉 are
eigenstates of the operator

W 0 = J·P ,

with the eigenvalues λ|p| and that they are related to the standard states |p, σ〉 =
U(Lp)|0, σ〉 ≡ U(Lp)|0, λ〉, where Lp = Rẑ(p̂)·Bz(|p|)·R−1

ẑ (p̂), by

|p, λ〉 =
∑

σ

|p, σ〉D(s)
σλ(Rẑ(p̂)) ,

where D
(s)
σλ(Rẑ(p̂)) ≡ D

(s)
σλ(φp, θp, 0), with the angles φp, θp specifying the direction p̂.

Give the transformation properties of the helicity states |p, λ〉 under arbitrary Lorentz
transformations. In particular, show how they transform under pure rotations and com-
pare the result with the corresponding transformation properties of the helicity states of
massless particles.

Problem I.22

The “canonical” helicity state | − ẑ|p|, λ〉 of a massive (or massless) particle is obtained
as the limit p → ẑ|p| (i.e. θp → 0, φp → 0) of the state | −p, λ〉 (the polar angles
corresponding to −p are π − θp, φp ± π). Show that if the spin s particle is massive

| −ẑ|p|, λ〉 = eiπs U(B−z(|p|)) |0,−λ〉 .
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where the boost B−z(|p|) produces the particle moving with the momentum −ẑ|p| out of
the particle at rest.

Problem I.23

Show that the helicity states of a massless particle

|p, λ〉 = U(Lp)|k, λ〉 ,

where kµ = (κ, 0, 0, κ) and Lp = Rẑ(p̂)·Bz(|p|/κ) are the eigenstates of the operator W 0

with the eigenvalue λ|p|. Find the value of the operator W µWµ on these states.

Problem I.24

Write explicitly the formulae for transformations of the helicity state |p, λ〉, where p =
(0, |p|, 0), under rotations of the reference frame by the angle ϕ around the z, x and y
axes. Consider the cases of a massive and massless particle and different ranges of the
angle ϕ.

Problem I.25

In the frame O1 a massless particle has momentum p1 = (0, |p1|, 0) and helicity λ. Show
by direct calculation that under the action of pure boosts Λ along the z, x or y axes the
helicity state |p1, λ〉 of the particle transforms according to the rule

U(Λ)|p1, λ〉 = |Λp1, λ〉 ,

i.e. that the state is unchanged (apart from the trivial change of its momentum).

Problem I.26

In the frame O1 a massive spin s particle has momentum p1 = (0, |p1|, 0) and helicity λ.
What is its helicity state in the frame O2 moving with respect to O1 with velocity v along
the z-axis? Check the limit of vanishing mass of the particle.

Problem I.27

A massive spin s particle has in the frame O1 momentum p1 = (0, |p1|, 0) and helicity
λ. What is its helicity state in the frame O2 moving with respect to O1 with velocity v
along the y-axis? Consider the cases v < |p1|/E1 and v > |p1|/E1.

Problem I.28

Find the action of the parity and time reversal operators P and T on the helicity states
|p, λ〉 of a massive particle (defined in Problem I.21).

Problem I.29

Using the operators J i constructed in Problem I.6 show by explicit calculation that the
states

|E, l,ml〉 =
√

2l + 1

4π

∫ 2π

0
dφp

∫ π

0
dθp sin θp |p〉D(l)∗

ml0
(φp, θp, 0) ,
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of a massive spinless particle, where the angles φp, θp characterize the direction of the
vector p, are eigenstates of Jz = Lz and J2 = L2. Find the action of the P and T
operators on these states.

Problem I.30

Generalize the result of Problem I.29 to particles with arbitrary spin and mass, showing
that the states

|E, λ, j,mj〉 =
√

2j + 1

4π

∫ 2π

0
dφp

∫ π

0
dθp sin θp |p, λ〉D(j)∗

mjλ
(φp, θp, 0) ,

are common eigenstates of the following operators: the Hamiltonian Ĥ = P 0, total angular
momentum J2, Jz (and of W 0 and W µWµ). Find also the expansion of |p, λ〉 in terms of
the states |E, λ, j,mj〉.
Hint: Show that the states |E, λ, j,mj〉 transform properly when acted upon by the
rotation operator U(O(α, β, γ)) ≡ U(O(α, ez) ·O(β, ey) ·O(γ, ez)). To this end introduce
a dummy angular variable χ to write the integral over dφp d(cos θp) in the form dÕ ≡
dφp d(cos θp)dχ which will allow to exploit the property of left-invariance, dÕ = d(O ·Õ),
of the measure on the rotation group (Problems 0.44 & 0.45).

Problem I.31

Find the action of the parity and time reversal operators P and T on the states |E, λ, j,mj〉
(of massive and massless particles).

Problem I.32

Using the operators J i constructed in Problem I.5 show explicitly that the states of two
spinless particles in their CMS given by the formula (0 stands for vanishing total three-
momentum of the system of two particles)

|0,
√
s, l,ml〉 ≡

∫ 2π

0
dφp

∫ π

0
dθp sin θp |0,

√
s, p̂〉Ylml

(θp, φp) ,

in which
√
s =

√

p2 +m2
1 +

√

p2 +m2
2, the angles θp, φp characterize the direction of the

vector p and

|0,
√
s, p̂〉 ≡ |p,−p〉 = a†(p)a†(−p)|Ω0〉 ,

are eigenstates of the angular momentum operators Jz and J2 with the eigenvalues ml

and l (l + 1), respectively.

Problem I.33

Generalize the result of Problem I.32 to particles with arbitrary spins s1 and s2 and masses
by showing that the states

|0,
√
s, λ1, λ2, j,mj〉

≡
√

2j + 1

4π

∫ 2π

0
dϕp

∫ π

0
dϑp sinϑp |0,

√
s, p̂, λ1, λ2〉D(j)∗

mj ,λ1−λ2
(ϕp, ϑp, 0) ,
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in which for distinct particles3

|0,
√
s, p̂, λ1, λ2〉 ≡ e−iπs2U(Rẑ(p̂))

(

| ẑ|p|, λ1〉 ⊗ | − ẑ|p|, λ2〉
)

,

(| ± ẑ|p|, λi〉 are the “canonical” one-particle states; the extra phase factor e−iπs2 ensures
symmetrical treatment of both particles) are eigenstates of the operators J2 (the total
angular momentum) and Jz with the respective eigenvalues j(j + 1) and mj . (Show that
they transform properly when acted upon by the operator U(Õ) realizing a rotation O -
see the Hint to Problem I.30).

Argue also that the states

|0,
√
s, σ1, σ2, l, ml〉 ≡

∫ 2π

0
dϕp

∫ π

0
dϑp sinϑp |p, σ1〉 ⊗ | − p, σ2〉Ylml

(ϑp, ϕp) ,

represent two particles (in their CMS) with the spin projections σ1 and σ2 in the state
with relative orbital angular momentum l and its projection onto the z-axis equal ml.

Problem I.34

Show that for two identical (massive or massless) particles of spin4 s

|0,
√
s, λ2, λ1, j,mj〉 = (−1)j|0,

√
s, λ1, λ2, j,mj〉 .

Prove also that for both cases, of distinct and identical particles,

|0,
√
s, p̂, λ1, λ2〉 =

∑

j

∑

mj

√

2j + 1

4π
|0,

√
s, λ1, λ2, j,mj〉D(j)

mj ,λ1−λ2
(Ωp̂) .

where D
(j)
mj ,λ1−λ2

(Ωp̂) ≡ D
(j)
mj ,λ1−λ2

(ϕp, ϑp, 0).

Problem I.35

Prove that (for distinct particles)

〈P′,p′, λ′1, λ
′
2|P,p, λ1, λ2〉 ≡ 〈P′,

√
s′, p̂′, λ′1, λ

′
2|P,

√
s, p̂, λ1, λ2〉

= (2π)4δ(4)(P ′ − P ) 16π2

√
s

|p| δ
(2)(Ωp̂′ − Ωp̂) δλ′

1
,λ1
δλ′

2
,λ2
,

where p is the momentum of the first particle in the center of mass frame,
√
s =

√

p2 +m2
1 +

√

p2 +m2
2 and P µ = pµ1 + pµ2 is the total four-momentum of the two-

particle system; the Laboratory frame four momenta pµ1,2 are defined by the formula

pµi = [Rẑ(P̂) · Bz(|P|)]µνpνi,CM. Find also the scalar product of two |P,√s, λ1, λ2, j,mj〉
states constructed in Problem I.33.

3For the case of identical particles and for the inverse formula expressing the state |0,√s, p̂, λ1, λ2〉
(for distinct and identical particles) through the states |0,√s, λ1, λ2, j,mj〉 - see Problem I.34.

4s denoting spin of both identical particles should not be confused with their center of mass energy√
s.
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Give also modifications of these formulae for states of two identical particles.
Hint: Show that

d3p1

E1(p1)

d3p2

E2(p2)
=

|p|√
s
d4P dΩp̂ .

Problem I.36

Show that the states |0,√s, λ1, λ2, j,mj〉 constructed in Problem I.33 are eigenstates of
the following operators: P µPµ, W

µWµ and W 3 with the eigenvalues s, −s j(j + 1) and√
smj , respectively. Show also that the states |P,√s, p̂, λ1, λ2〉 defined as

|P,
√
s, λ1, λ2, j,mj〉 ≡ U(Rẑ(P̂))U(Bz(|P|))|0,

√
s, λ1, λ2, j,mj〉 ,

are the eigenstates of the operators P µPµ,W
µWµ andW 0 with the eigenvalues s, −sj(j+

1) and |P|mj, respectively. For P = 0 (i.e. if the laboratory frame coincides with the
center of mass frame) j is therefore the total angular momentum of the two-particle system
and mj the total angular momentum projection onto the z axis. For P 6= 0 the quantum
number j is called the total spin S of the system and mj acquires the interpretation of
the system’s total helicity (it is denoted Λ).

Problem I.37

Show that

P|0,
√
s, λ1, λ2, j,mj〉 = η1 η2 (−1)j−s1−s2|0,

√
s,−λ1,−λ2, j,mj〉 ,

T |0,
√
s, λ1, λ2, j,mj〉 = ζ1 ζ2 (−1)j−mj |0,

√
s, λ1, λ2, j,−mj〉 .

where η1, η2 and ζ1, ζ2 are the intrinsic parities and phase factors related to time reversal5

of the two particles in the state. Find also the action of the P and T operators on the
states |P,√s, p̂, λ1, λ2〉.

Problem I.38

Using the transformation properties of the states with respect to rotations and the spatial
reflection formulate the selection rules for the decay of a massive particle of spin s = 0 into
two photons (two massless particles of spin 1). Consider different internal partities of the
decaying particle. Show also that a massive spin 1 particle cannot decay (irrespectively
of whether parity is conserved or not by the underlying dynamics) into two photons (the
Landau - Yang theorem).6

Hint: Take the momenta of the two photons along the y-axis. To prove the Landau-Yang
theorem consider an arbitrary rotation around the y-axis by an angle ϕ and the rotation
around the z axis by π.

5As usually with the action of the antihermitian operator T , the phase factor in the second formula
is unphysical and depends crucially on the precise definition of the |0,√s, λ1, λ2, j,mj〉 states specified
in Problem I.33.

6L.D. Landau, Dok l. Akad. Nauk USSR 60 (1948) 207. C.N. Yang, Phys. Rev. 77 (1949), 242.
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Problem I.39

Extending Problem I.5 construct explicitly in terms of the creation and annihilation op-
erators all the generators of the Poincaré group acting in the Hilbert space spanned by
tensor products of one-particle states of massive spin 0 particles.

Problem I.40

Construct explicitly in terms of the creation and annihilation operators the rotation group
generators Ĵk acting in the Hilbert space spanned by tensor products of one-particle states
of massive spin 1

2
particles.

Problem I.41

One-particle states |E, λ, j,mj〉 constructed in Problem I.30 are not eigenstates of the
parity operator P (Problem I.31). Composing spin with the orbital angular momentum
in the usual manner construct one-particle states |E, l, j,mj〉 which are eigenstates of the
parity operator P and transform as a regular representation under rotations (that is, are
also eigenstates of the operators W µWµ and W 0). To make the latter property explicit,
express these states as linear combinations of the |E, λ, j,mj〉 states. Find the action of
P and T on the constructed states.
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