
Problems in Quantum Field Theory of Fundamental Interactions II.

Problem II.1
Show that the function ∆+(x,m) defined by the integral

∆+(x,m) =

∫

dΓk e
−ik·x ≡

∫

d3k

(2π)32E(k, m)
e−ikµx

µ

,

in which E(k, m) =
√
k2 +m2 is, for x2 < 0, an even function of xµ.

Hint: Use the Lorentz invariance of the integral defining ∆+(x) ≡ ∆+(x,m).

Problem II.2
The functions ul(p, σ) and vl(p, σ) corresponding to definite spin projections on the
z-axis in the rest frame of a massive particle which enter the free field (interaction
picture) operators

φ
(+)
l (x) =

∫

dΓp

∑

σ

ul(p, σ) e
−ip·x a(p, σ) ,

φ
(−)
l (x) =

∫

dΓp

∑

σ

vl(p, σ) e
+ip·x a†(p, σ) ,

(whose indices l transform according to some regular representation Dlk(Λ) of the
Lorentz group) and appear in Feynman rules for initial and and final state of the
particle are given in the general case by the formulae

ul(p, σ) =
∑

k

Dlk(Lp)uk(0, σ) ,

vl(p, σ) =
∑

k

Dlk(Lp) vk(0, σ) ,

in which Lp is the standard Lorentz transformation. Using the results of Problem
I.21 give the analogous general formulae for functions ul(p, λ) and vl(p, λ) corre-
sponding to a massive particle of definite helicity (spin projection onto their mo-
mentum).

Problem II.3
Construct explicitly the “wave functions” ul(p, σ) and vl(p, σ) corresponding to a
definite spin projection σ onto the z-axis (in the particle’s rest frame) for a massive
spin 1 particle described by a (free) field operator V µ(x) transforming as a Lorentz
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vector. Construct also the functions ul(p, λ) and vl(p, λ) corresponding to a definite
helicity λ. (For spin 1 particles all these ul and vl functions are commonly denoted
ǫµ and ǫµ∗). Decomposing the free field operator V µ(x) in the helicity basis show
also that PV µ(x)P−1 = −η∗P µ

ν V
ν(P ·x) and T V µ(x)T −1 = −ζ∗T µ

ν V
ν(T ·x).

Problem II.4
Using the explicit zero momentum forms of the u and v functions (spinors) corre-
sponding to massive spin 1/2 particles with the spin projection σ onto the z-axis
show that

ū(p, σ) · u(p, σ′) = 2mδσσ′ ,

v̄(p, σ) · v(p, σ′) = −2mδσσ′ ,

ū(p, σ) · v(p, σ′) = v̄(p, σ′) · u(p, σ′) = 0 ,

and that

u†(p, σ) · u(p, σ′) = 2Ep δσσ′ ,

v†(p, σ) · v(p, σ′) = 2Ep δσσ′ ,

u†(p, σ) · v(−p, σ′) = v†(−p, σ) · u(p, σ′) = 0 .

Consider both, Dirac and chiral (Weyl) representations. Prove similar relations for
the helicity spinors u(p, λ) and v(p, λ).

Problem II.5
Construct explicitly the spinors u(p, σ = ±1

2
), and v(p, σ = ±1

2
) using the appro-

priate Lorentz transformation. Give the formulae for both, Dirac and Weyl (chiral),
representations of the gamma matrices. Check that up to a phase factor

u(p, σ) =
6p+m

√

2m(E +m)
u(0, σ) ,

v(p, σ) =
6p−m

√

2m(E +m)
v(0, σ) .

Problem II.6
Construct explicitly the spinors u(p, λ = ±1

2
), and v(p, λ = ±1

2
), corresponding to

fermions of definite helicity, using the appropriate Lorentz transformation. Give the
formulae for both, Dirac and Weyl (chiral), representations of the gamma matrices.
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Problem II.7
Consider the field operator ψ(x) = κ+ψ

(+)(x) + κ−ψ
(−)(x) of a spin 1/2 Majorana

particle (which is its own antiparticle) with

ψ(+)(x) =

∫

dΓp

∑

σ

u(p, σ) e−ip·x b(p, σ) ,

ψ(−)(x) =

∫

dΓp

∑

σ

v(p, σ) e+ip·x b†(p, σ) .

Show that the local causality requires such particles to be fermions i.e. that it is
the anticommutators: {ψ(x), ψ†(y)}, {ψ(x), ψ(y)} and {ψ†(x), ψ†(y)} which can
be made to vanish for (x − y)2 < 0, provided |κ+| = |κ−| and bu = −bv (recall
that bu = ±1 and bv = ±1 are the eigenvalues of the β = γ0 matrix on the spinors
u(0, σ) and v(0, σ), respectively). Show that the intrinsic parity of a Majorana
fermion must be ±i.

Problem II.8
Show that the operators

ψα(x) (C
−1)αβ ψβ(x) , and ψ̄α(x)Cαβ ψ̄β(x) ,

constructed out of the Majorana spinor field operators associated with a neutral
massive spin 1

2
particle are Lorentz scalars.

Problem II.9 Let us introduce the Feynman’s notation: 6 a ≡ γµaµ, where aµ is
an arbitrary four-vector. Using the trace property tr(AB)=tr(BA) and the defining
relation {γµ, γν} = 2gµν show that the following relations hold:

tr( 6a) = 0 ,

tr( 6a 6b) = 4aµb
µ ,

tr( 6a1 6a2 . . . 6a2k+1) = 0 ,

tr( 6a 6b 6c 6d) = 4 [(a·b)(c·d) + (a·d)(c·b)− (a·c)(b·d)] ,
tr(γ5) = 0 ,

tr( 6a γ5) = 0 ,

tr( 6a 6b γ5) = 0 ,

tr( 6a 6b 6c γ5) = 0 ,

tr( 6a 6b 6c 6d γ5) = −4i ǫµνλρaµbνcλdρ .
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The conventions are: ǫ0123 = −1 and γ5 ≡ iγ0γ1γ2γ3 = −(i/4!) ǫµνλρ γ
µγνγλγρ.

Problem II.10
Show that

ū(p2, σ2) [(p2 + p1)
µP+ iσµν(p2 − p1)νP]u(p1, σ1)

= ū(p2, σ2) (m2γ
µP+m1Pγ

µ)u(p1, σ1) ,

where p21 = p22 = m2
2, σ

µν = (i/2)[γµ, γν ] and P can be 1, γ5 or one of the projectors
PL, PR defined as

PL =
1

2
(1− γ5) , PR =

1

2
(1 + γ5) .

Use these results to obtain the standard Gordon’s identity

ū(p2, σ2)γ
µu(p1, σ1) = ū(p2, σ2)

[

(p2 + p1)
µ

2m
+

i

2m
σµν(p2 − p1)ν

]

u(p1, σ1) ,

in which p21 = m2, p22 = m2.
Hint: Use the fact that

ū2A(6p1 −m1) u1 + ū2 ( 6p2 −m2)Bu1 = 0 + 0 = 0 ,

for any two matrices A and B in the spinor space.

Problem II.11
Express ǫµνλργρ through the gamma matrices (without the epsilon tensor). Find also
a corresponding representation of ǫµνλργλγρ. Use the second result to prove that

σµνγ5 ⊗ σµνγ
5 = σµν ⊗ σµν ,

σµνγ5 ⊗ σµν = σµν ⊗ σµνγ
5 ,

i.e. that (σµνγ5)αβ(σµνγ
5)α′β′ = (σµν)αβ(σµν)α′β′ , etc.

Problem II.12
Show that in d dimensions

γµγµ = d ,

γµ 6a γµ = (2− d) 6a ,
γµ 6a 6b γµ = 4 aµb

µ + (d− 4) 6a 6b ,
γµ 6a 6b 6c γµ = −2 6c 6b 6a + (4− d) 6a 6b 6c ,
γµ 6a 6b 6c 6d γµ = 2 6d 6a 6b 6c+ 2 6c 6b 6a 6d+ (d− 4) 6a 6b 6c 6d .
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Problem II.13 (Fierz rearrangement)
Derive the general formula allowing to decompose products of four spinors u1, ū2,
u3, ū4 of the generic form

[ū4Γu3] [ū2Γ
′u1] ,

in which Γ and Γ′ are two arbitrary matrices, into the sum of products
[

ū4Γ
Mu1

] [

ū2Γ
Nu3

]

,

where ΓM form a complete basis of matrices in the spinor space. Write down ex-
plicitly rearrangements of the five basic structures

[ū4u3] [ū2u1] , [ū4γ
µu3] [ū2γµu1] , [ū4σ

µνu3] [ū2σµνu1] ,
[

ū4γ
µγ5u3

] [

ū2γµγ
5u1

]

,
[

ū4γ
5u3

] [

ū2γ
5u1

]

.

Hint: Take for the basis ΓM the following sixteen linearly independent matrices

1 , γµ , σλρ , γνγ5 , iγ5 .

Problem II.14
Using the general formulae derived in Problem II.13 write down the Fierz rearrange-
ments of the following structures:

[ū4γ
µPLu3][ū2γµPLu1] , [ū4γ

µPRu3][ū2γµPRu1] , [ū4γ
µPLu3][ū2γµPRu1] ,

and

[ū4PLu3][ū2PLu1] , [ū4PRu3][ū2PRu1] , [ū4PRu3][ū2PLu1] .

Write down also the corresponding identities for matrix elements (i.e. the identities
written without spinors). Using these result express [ū4σ

µνu3][ū2σµνPLu1] through
[ū4σ

µνu1][ū2σµνPLu3] and [ū4PLu1][ū2PLu3] (and similarly [ū4σ
µνu3][ū2σµνPRu1]).

Problem II.15
Check that if λα transforms as λ′α = M β

α λβ under Lorentz (or, more precisely,
SL(2,C)) transformations, then λα = ǫαβλβ transforms with the matrix MT−1, i.e.

λ′α = (MT−1)αβλ
β. Similarly, show that if χ̄′

α̇ = (M∗) β̇
α̇ χ̄β̇ then χ̄α̇ = χ̄β̇ ǭ

β̇α̇

transforms as χ̄′α̇ = (M †−1)α̇
β̇
χ̄β̇. Use the convention

ǫ12 = −ǫ21 = −1 , ǭ1̇2̇ = −ǭ2̇1̇ = 1 ,

ǫ12 = −ǫ21 = −1 , ǭ1̇2̇ = −ǭ2̇1̇ = 1 .
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Problem II.16
Prove by direct calculation the following identities

(σµ)αβ̇ (σ̄µ)
γ̇σ = 2 δσαδ

γ̇

β̇
,

(σµ)αβ̇ (σµ)γσ̇ = −2 ǫαγ ǭβ̇σ̇ ,

(σµ)σδ̇ = ǭδ̇α̇ (σ̄
µ)α̇β ǫβσ ,

(σ̄µ)α̇β = ǫβσ (σµ)σδ̇ ǭ
δ̇α̇ .

Show then that for two anticommuting spinors (field operators or Grassmann vari-
ables)

χ̄σ̄µλ = −λσµχ̄ ,

(χσµλ̄)† = (λσµχ̄) ,

and finally that

χ̄iσ̄
µT a

ijλj = λiσ
µ(−T a∗)ijχ̄j ,

where T a
ij are some Hermitian matrices (e.g. generators of an internal symmetry

group).

Problem II.17
Check that the matrices M and (M †)−1

M ≡ exp

(

− i

2
σk(ηk − iξk)

)

,

(M †)−1 ≡ exp

(

− i

2
σk(ηk + iξk)

)

,

of the two inequivalent SL(2, C) representations of the lowest dimension can be
written in the following covariant forms

M = exp

(

− i

2
ωµν

1

2
σµν
2×2

)

,

(M †)−1 = exp

(

− i

2
ωµν

1

2
σ̄µν
2×2

)

,

where

(σµν
2×2)

β
α =

i

2
(σµσ̄ν − σν σ̄µ) β

α ,

(σ̄µν
2×2)

α̇

β̇
=
i

2
(σ̄µσν − σ̄νσµ)α̇

β̇
.
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Find how the parameters ηi and ξi are related to the parameters ωµν . Considering
infinitesimal transformations, check by explicit calculation that for ωµν related to
the Lorentz transformation Λ by Λµ

ν = δµν+ω
µ
ν the following relations (“canonical”

definitions of the twofold covering of the Lorentz group)

M(Vµσ
µ)M † = σµ V ′

µ ,

(M †)−1(Vµσ̄
µ)M−1 = σ̄µ V ′

µ ,

where V ′µ = Λµ
νV

ν , which equivalently can be written in the form

Λµ
νMσνM † = σµ ,

Λµ
ν(M

†)−1σ̄νM−1 = σ̄µ ,

are satisfied.1 These relations imply that if V µ is a Lorentz four-vector and λ and
χ̄ transform as (1

2
, 0) and (0, 1

2
) representations of SL(2, C), the quantities

V µ(λσµχ̄) , and V µ(χ̄σ̄µλ) ,

transform as scalars.

Problem II.18
Check the following identities

tr(σµσ̄νσλσ̄κ) = 2
(

gµνgλκ + gµκgνλ − gµλgνκ
)

+ 2i ǫµνλκ ,

tr(σ̄µσν σ̄λσκ) = 2
(

gµνgλκ + gµκgνλ − gµλgνκ
)

− 2i ǫµνλκ ,

and

tr
(

σµν
2×2 σ

λκ
2×2

)

= 2
(

gµλgνκ − gµκgνλ
)

− 2i ǫµνλκ ,

tr
(

σ̄µν
2×2 σ̄

λκ
2×2

)

= 2
(

gµλgνκ − gµκgνλ
)

+ 2i ǫµνλκ ,

(σµν
2×2 and σ̄µν

2×2 are defined in Problem II.17) and

σµσ̄κσλ + σλσ̄κσµ = 2
(

gµκσλ + gλκσµ − gµλσκ
)

,

σ̄µσκσ̄λ + σ̄λσκσ̄µ = 2
(

gµκσ̄λ + gλκσ̄µ − gµλσ̄κ
)

,

and, finally, that

σµσ̄κσλ − σλσ̄κσµ = 2i ǫµκλνσν ,

σ̄µσκσ̄λ − σ̄λσκσ̄µ = −2i ǫµκλν σ̄ν .

(Recall that we use ǫ0123 = +1).

1For infinitesimal parameters ωµν there is no ambiguity related to the fact the both M and −M
satisfy the same “canonical” definition.
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Problem II.19
Decomposing four-component Grassman algebra valued (anticommuting) spinors/fe-
rmionic field operators ψi into two-component ones (using the appropriate represen-
tation of the gamma matrices) prove the following relations

(

ψ̄1γ
µPLψ2

) (

ψ̄3γµPLψ4

)

=
(

ψ̄1γ
µPLψ4

) (

ψ̄3γµPLψ2

)

= 2
(

ψ̄1PRψ
c
3

) (

ψ̄c
2PLψ4

)

= 2
(

ψ̄3PRψ
c
1

) (

ψ̄c
2PLψ4

)

= 2
(

ψ̄1PRψ
c
3

) (

ψ̄c
4PLψ2

)

= 2
(

ψ̄3PRψ
c
1

) (

ψ̄c
4PLψ2

)

,

a similar one with PL ↔ PR and

(

ψ̄1γ
µPLψ2

) (

ψ̄3γµPRψ4

)

= −2
(

ψ̄1PRψ4

) (

ψ̄3PLψ2

)

= −2
(

ψ̄1PRψ4

) (

ψ̄c
2PLψ

c
3

)

= −2
(

ψ̄c
4PRψ

c
1

) (

ψ̄3PLψ2

)

= −2
(

ψ̄c
4PRψ

c
1

) (

ψ̄c
2PLψ

c
3

)

.

in which

ψc = Cψ̄ ≡ Cγ0ψ∗ ,

is the charge conjugated spinor. Write down explicitly the corresponding matrix
identities involving the charge conjugation matrix C. Compare these formulae to
the ones obtained in Problem II.14.

Prove also the following relations involving the C matrix:

(γµPLC)αβ (Cγ
µPL)α′β′ = −2 (PR)αα′ (PL)ββ′ ,

(γµPRC)αβ (Cγ
µPR)α′β′ = −2 (PL)αα′ (PR)ββ′ ,

and

(γµPLC)αβ (CγµPR)α′β′
= − (γµPL)αα′ (γµPR)ββ′

,

(γµPRC)αβ (CγµPL)α′β′ = − (γµPR)αα′ (γµPL)ββ′ .

Hint: Show that if

ψ =

(

λα
χ̄α̇

)

then ψc = Cγ0ψ† =

(

χα

λ̄α̇

)

.
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Problem II.20
Decomposing anticommuting four-component spinors ψi into two-component (Weyl)
spinors show that

(

ψ̄1PLψ2

) (

ψ̄3PLψ4

)

= −1

2

(

ψ̄1PLψ4

) (

ψ̄3PLψ2

)

− 1

8

(

ψ̄1σµνPLψ4

) (

ψ̄3σ
µνPLψ2

)

,

(

ψ̄1PRψ2

) (

ψ̄3PRψ4

)

= −1

2

(

ψ̄1PRψ4

) (

ψ̄3PRψ2

)

− 1

8

(

ψ̄1σµνPRψ4

) (

ψ̄3σ
µνPRψ2

)

,

where σµν ≡ (i/2) [γµ, γν ]. Use the relations (see Problem II.16) (σµ)αβ̇(σµ)ρκ̇ =

−2ǫαρǫβ̇κ̇, (σ̄
µ)α̇β(σ̄µ)

ρ̇κ = −2ǫα̇ρ̇ǫβκ, etc.
Using these results prove also the following identities

(PLC)αβ (CPL)α′β′ =
1

2
(PL)αα′ (PL)ββ′ −

1

8
(σµν)αα′ (σµνPL)ββ′ ,

(PRC)αβ (CPR)α′β′ =
1

2
(PR)αα′ (PR)ββ′ −

1

8
(σµν)αα′ (σµνPR)ββ′

.

Hint: To derive the first two identities start with the last term on the right and use
the summation rules for the sigma matrices derived in Problem II.16. Notice that
for any four left-chiral Weyl spinors ψ, χ, λ and ϕ the following identity

(ψχ) (λϕ) + (ψϕ) (λχ) + (ψλ) (ϕχ) = 0 .

must hold.

Problem II.21
Show that the operator (a “current”)

jµ(x) = ψ̄(x)γµψ(x) ,

is a four-vector with respect to Lorentz transformations. How does jµ(x) transform
under the parity, time reversal and charge conjugation operations, i.e. to what equal
Pjµ(x)P−1, T jµ(x)T −1 and Cjµ(x) C−1 respectively? Assume that with respect to
Lorentz, P, C and T transformations ψ(x) behaves as the free-field operator of a
spin 1/2 particle. Show also that if ψ(x) is a free-field operator, jµ(x) satisfies the
continuity equation (is conserved) ∂µj

µ = 0. Show (formally) that in QED jµ(x) is
conserved also as a Heisenberg picture operator.
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Problem II.22
Knowing that for a massless particle

P|p, λ〉 = ηλ e
±iπλ| −p,−λ〉 ,

T |p, λ〉 = ζλ e
∓iπλ| −p, λ〉 ,

(λ is the particle helicity) find how the free field operator Aµ(x) of massless spin 1
particles transforms under parity and time reversal operations. What must be the
photon intrinsic parity and charge conjugation properties if the photon interaction
Hint(x) = eQAµ(x)jµ(x), with the current jµ(x) which has the transformation prop-
erties established in Problem II.21, is to conserve parity and to be charge conjugation
invariant?

Problem II.23
Generalize the results of Problems II.21 and II.22 to operators Aa

µ(x) of nonabelian
gauge theories which couple to fermions through the interaction

Hint = g Aa
µ ψ̄iγ

µT a
ij ψj ,

where T a
ij are Hermitian generators of a compact group like SU(N) or SO(N). How

does then transform the field strength operator

F a
µν = ∂µA

a
ν − ∂νA

a
µ − gfabcAb

µA
c
ν ,

in which fabc are the group structure constants?
Find also the P, C and T transformation properties of the additional interaction

term

H′
int = κ ǫµνλρF b

µνF
b
λρ ,

in which κ is a (real) coupling constant. Although H′
int is a total four-divergence and

does not affect physical predictions of Abelian gauge theories like QED, it becomes
important in nonanbelian gauge theories.2

Problem II.24
Consider the interaction term

Hint = ϕ ψ̄(cPL + c∗PR)ψ ,

2The presence of such an interaction term in the Lagrangian of QCD would lead to violation
of the CP-invariance by the strong interactions; what makes the coefficient κ in H′

int smaller than
∼ 10−9 (as required by the experimental data) is the essence of the so-called strong CP problem.
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in which ϕ and ψ are the field operators of a neutral spin 0 particle and of charged
spin 1/2 fermion and its antiparticle, respectively. Check that Hint is Hermitian.
Using the transformation rules of the field operators ϕ, ψ and ψ̄ under parity, time
reversal and charge conjugation formulate conditions on the coefficient c which en-
sure that P, T, C, CP, CT, PT and CPT, respectively can be3 good symmetries of
the interaction. In particular, check that if the phase factors η, ξ and ζ are chosen
so that

CPT Hint(x)(CPT )−1 = Hint(−x)

(i.e. so that CPT is a good symmetry), the conditions ensuring invariance of Hint

under CP are equivalent to those ensuring its T-invariance.

Problem II.25
Consider the Hamiltonian term describing interactions of spin zero particles which
are not their own antiparticles with fermions and their antifermions:

Hint = φ ψ̄(cLPL + cR PR)ψ +H.c.

Interaction of this form effectively model decays of neutral mesonsK0,K
0
orB0(B0

s ),

B
0
(B

0

s) into a pair ℓ−ℓ+ (see also Problem V.12). Write down the H.c. part. For-
mulate conditions on the coefficients cL and cR which ensure that P, T, C, CP, CT,
PT and CPT, respectively are good symmetries of the interaction Hint. Check that
if CPT is a good symmetry, the conditions ensuring invariance of Hint under CP are
equivalent to those ensuring its invariance under T.

Problem II.26
Do the same for the interaction

Hint = φ ψ̄
(a)
i (cijL PL + cijR PR)ψ

(b)
j +H.c.

in which φ is the operator of spin 0 particles carrying a conserved charge and ψ
(a)
i ,

and ψ
(b)
i with i = 1, . . . , N are field operators of 2N species of fermions. Notice,

that ψ
(a)
i and ψ

(b)
i must carry different charges.

3Whether they really are symmetries depends on other interaction terms involving ψ and ψ̄

which may be present in the complete interaction Hint.
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Problem II.27
Assume the interaction of a massive neutral vector boson (spin 1 particle) with two
fermions in the general form

Hint = Vµ ψ̄1γ
µ (cLPL + cR PR)ψ2 +H.c.

For ψ1 = ψ2 this describes the interactions of the neutral massive Z0 vector boson
with fermions. For ψ1 6= ψ2 this can be considered an effective description of loop-
induced decays of Z0 into bs̄ and sb̄ (etc.) quark pairs. Write down the H.c. part
of Hint. What are the conditions on cL and cR ensuring that Hint respects P, C, T,
CP and CPT symmetries?

Problem II.28
The same as in preceding Problems but for V µ† 6= V µ and the interaction

Hint = Vµ ψ̄
(a)
i γµ

(

cijL PL + cijR PR

)

ψ
(b)
j +H.c.

where cijL and cijR with i, j = 1, . . . , N , are arbitrary complex matrices, and Vµ carry a

conserved quantum number. Notice that similarly as in Problem II.26 ψ
(a)
i and ψ

(b)
i

must carry different quantum numbers. How does the condition for CP violation
looks like, if one of these matrices vanishes? What if, as in the interactions of the
W± vector bosons, the nonzero coupling (cijL in the W± case) is proportional to a
unitary matrix?

Problem II.29
Consider the interaction

Hint = ψ̄iσ
µν

(

cijL PL + cijR PR

)

ψj fµν ,

in which ψi are N charged (Dirac) fermion spinor fields and fµν = ∂µAν − ∂νAµ

is the electromagnetic field strength tensor. Loop-induced interaction of this type
describes e.g. the celebrated decay of the b-quark into the s-quark and the photon
(see Problems V.32 and V.33). What condition imposes on the matrices cijL and cijR
hermiticity of the interaction? Write down the conditions imposed on this interaction
by P-, C-, T-, CP- and CPT-invariance. Show that CPT-invariance makes the
conditions for CP- and T-invariance equivalent to each other.

Problem II.30
Consider the interaction

Hint = ∂µφ ψ̄1γµ (cLPL + cRPR)ψ2 +H.c.
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generalizing the effective description of the interactions of charged π± pions with
the ℓν pairs (see Problem V.13). Write down the H.c. part explicitly. Investigate
conservation of P , C, T , etc. by this interaction.

Problem II.31
Obtain the explicit form of the Feynman propagator iSF

αβ(x− y) of a massive spin
1/2 particle directly from the defining formula

iSF
αβ(x− y) = θ(x0 − y0)

{

ψ(+)
α (x), ψ̄

(−)
β (y)

}

− θ(y0 − x0)
{

ψ̄
(+)
β (y), ψ(−)

α (x)
}

.

Problem II.32
Write down the most general, consistent with the Poincaré symmetry, form of the
matrix element of an operator Jµ(x) (transforming as a four-vector under proper
changes of the Lorentz frame) between two one-particle states of spinless and be-
tween two states of spin 1

2
particles. Investigate the constraints imposed on the

independent formfactors by hermiticity of the operator Jµ(x) and/or by the P- and
T-invariance of the underlying interaction assuming that the operator Jµ(x) has
well defined transformation properties under P and T. In particular, show that if
the intrinsic parities of the two particles are equal, the matrix element of an axial
vector operator Aµ(x) (i.e. the operator transforming under parity according to the
rule P Aµ(x)P−1 = −P µ

νA
ν(P ·x)) must vanish for spinless particles but does not

need to vanish for spin 1
2
ones.

Problem II.33
Using the results of Problem II.32 discuss in detail matrix elements of the electro-
magnetic current Jµ

EM(x) between two one-particle states of the same particle taking
into account conservation of Jµ

EM(x). Consider the cases of J
µ
EM(x) in a theory which

(like QED+QCD) respects parity and time reversal and in a theory which (like the
Standard Theory) is not invariant with respect to P and T (and, hence, CP). Using
the formula

〈p2, σ2| e
∫

d3xJµ
EM(x)Aµ(x)|p1, σ1〉 = ∆E 〈p2, σ2|p1, σ1〉 ,

(e > 0 is the elementary charge), which should be understood in the limit p2 → p1,
for the correction ∆E to the energy of the particle in an applied static and uniform4

4The applied electric and magnetic fields must be static and uniform in order that the one-
particle states |p, σ〉 remain eigenstates (with shifted energy) of the full Hamiltonian. The formula
is then just the ordinary formula of quantum mechanics (applied here to non-normalizable states
|p, σ〉) for the first order correction induced by the perturbation Hpert = e

∫

d3xJ
µ

EM(0,x)Aµ(x).
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external (c-number) electromagnetic field Aµ(x), relate the values of the formfactors
at zero momentum transfer, qµ = (p2 − p1)

µ → 0, to the static (i.e. for p1 → 0)
characteristics of the particle like charge, magnetic moment, etc. In particular show
that if P- and T- (i.e. CP-) invariance of the underlying dynamics is not assumed,
two additional formfactors are allowed of which one corresponds to a nonzero electric
dipole moment of the particle and the other one to its anapole moment.5

Problem II.34
Find the most general possible form of the matrix element of the electromagnetic
current operator Jµ

EM(x) between two one-particle states of the same spin 1
2
Majorana

particle which is its own CPT conjugate.6

Problem II.35
Consider the second quantized formulation of the theory of relativistic spin 1

2
parti-

cles (and their antiparticles) of mass m and electric charge Q coupled to an external
static electromagnetic field via

Ĥpert = e

∫

d3xJµ
EM(x)Aµ(x) ,

but not interacting with one another. Expanding in powers of 1/c the matrix element
between the one-particle states of the Hamiltonian of this system and treating it as
the matrix element of a nonrelativistic one-particle Hamiltonian, find relativistic
corrections to the ordinary quantum mechanical Hamiltonian describing the motion
of a spin 1

2
particle in an external electromagnetic field. In particular obtain in this

way the well-known Darwin term and the spin-orbit interaction term (as well as the
first correction arising from the expansion of the relativistic kinetic energy) which
usually are derived with the help of the Foldy-Wouthuysen transformation applied

5There is a slight conceptual difference between theories (like pure QCD) with respect to which
the current Jµ

EM is an “external conserved current” and theories (like Standard Theory) whose part
is QED, in which to the current Jµ

EM couples a dynamical photon field. In the first class of theories
the current operator does not need any renormalization and the proposed reasoning is directly
applicable. In the second class of theories the operator Jµ

EM does renormalize and mixes under
renormalization with the operator ∂νf

µν . This renormalization is however to some extent trivial
and can be removed by including it in the renormalization of the electric charge which creates the
external field Aµ. The proposed reasoning becomes then justified as in the first class of theories.

6A C- invariant theory can have essentially neutral particles which are their own conjugates
under the C-operation. True electroweak interactions are not C-invariant but since CPT is always
a good symmetry of relativistically invariant quantum field theories, each particle state must have
its CPT partner.
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to the Dirac equation describing electron in an external (static) electromagnetic
field.

Problem II.36
Using the relativistic corrections to the (nonrelativistic) Pauli Hamiltonian of a spin
1
2
particle in an external electromagnetic field derived in Problem II.35, compute the

first order relativistic corrections to the spectrum of the Hydrogen-like atom.
Hint: Derive first the Kramers recurrence relation

2En(s+ 1)〈r̂s〉+ Z|Q|e2(2s+ 1)〈r̂s−1〉+ ~
2

m

[

s2 − 1

4
− l (l + 1)

]

s 〈r̂s−2〉 = 0 ,

relating expectation values of the operator rs in the unperturbed energy eigenstates
|n, l,ml〉 of the Hydrogen-like atom Hamiltonian

Ĥ =
P̂2

2m
+
ZQe2

r̂
≡ P̂2

2m
− Z|Q|e2

r̂
,

(Q must be negative for bound states to exist). This recurrence relation has a “hole”
which does not allow for immediate calculation of 〈r̂s〉 for s ≤ −2. Find a quick
method of computing 〈r̂−2〉 and use it in the Kramers relation to obtain 〈r̂−3〉.

Problem II.37
Find the explicit form of the function ∆+(x;m) for m 6= 0. Using this result find
the x2 ∼ 0 behaviour of the propagator i∆F (x) = 〈Ω0|T [ϕI(x)ϕI(y)]|Ω0〉 of a free
spinless particle and of the commutator [ϕI(x), ϕI(0)] of the interaction picture
(free) scalar field operators.
Hint: In the Fourier integral representation of ∆+(x;m) substitute |k| = sh θ and
consult Ryzhik-Gradstein for integral and power series representations of the Bessel
functions (reproduced here in the Appendix).
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