
Problems in Quantum Field Theory of Fundamental Interactions IV.

Problem IV.1
Derive the vacuum functional ΨΩ0

[ϕ] ≡ 〈ϕ(x)|Ω0〉 of the free real scalar field ϕ of mass
M described by the action

I[ϕ] =

∫

dt

∫

d3x

(

c2

2
∂µϕ∂

µϕ− M2c4

2~2
ϕ2

)

,

quantized in the three-dimensional spatial box of volume V with periodic boundary con-
ditions. Estimate vacuum fluctuations of each field Fourier mode. Take the continuum
limit V → ∞ of ΨΩ0

[ϕ]. Show that the vacuum |Ω0〉 carries zero momentum.

Problem IV.2
Let ϕ be a free real scalar field of massM quantized the in ordinary infinite flat Minkowski
space-time and governed by the same action as in Problem IV.1. Consider a measurement
of ϕ averaged over a cube of volume V = L3, to which corresponds the operator

ϕV =
1

V

∫ +L/2

−L/2

dx

∫ +L/2

−L/2

dy

∫ +L/2

−L/2

dz ϕ(x) .

Justify the order of magnitude estimate of vacuum fluctuations of the field ϕV

∆ϕV ≡
√

〈ϕ2
V 〉 ∼

(

(∆ϕk)
2 |k|3

)1/2
,

where |k| ∼ L−1 and ∆ϕk ∼ E
−1/2
k

(Ek =
√
k2 +M2). Generalize the result to the case

of the field quantized in a nontrivial (but spatially flat) gravitational background with
the line element (ds)2 = (dt)2 − f(t)(dx)2 = a(η)[(dη)2− (dx)2], where η is the conformal
time (see also Problem IV.4)
Hint: Use the decomposition of ϕ(x) into the creation and annihilation operators to
perform the integral over d3x in the definition of ϕV . Then, approximate the integral over
d3k by the contribution of that domain of k which dominates it.

Problem IV.3
Consider the Lagrangian density

L =
1

2
∂µϕ∂

µϕ− 1

2
M2ϕ2 + ϕJ ,

describing interaction of a real scalar field ϕ with an external source J(x) ≡ J(t,x) which
is assumed to vanish for t→ ±∞. Formulate the perturbative expansion of the S matrix
along the standard lines (going over to the interaction picture and introducing the in and
out states which for t → ±∞ look the same as the free particle states) and compute the
S matrix elements 〈Ωout|Ωin〉 and 〈(k1, . . . ,kn)out|Ωin〉 applying the Wick theorem. Check
that the exact results (obtained by quantizing the field ϕ using the full set of solutions to
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the classical equation of motion) can be recovered after resummation of the perturbation
series.

Problem IV.4
Consider a real scalar field χ whose classical dynamics is described by the Lagrangian
density

L =
1

2
∂µχ∂

µχ− 1

2
m2(η)χ2 ,

with the mass squared parameter m2(η) depending on time1 η. Quantize the field χ(η,x)
directly in the Heisenberg picture assuming that the complete set of real solutions v1(η,k),
v2(η,k), of the equation v′′ + [k2 + m2(η)]v = 0 is known. Introduce the creation
and annihilation operators a†v(k), av(k) associated with the complex solutions v(η,k)
formed out of v1(η,k) and v2(η,k) and establish their commutation relations. Express
the (conformal)time-dependent Hamiltonian

H =
1

2

∫

d3x
[

Π2 + (∇χ)2 +m2(η)χ2
]

.

in terms of the operators av(k) and a†v(k). Find the instantaneous values v(η0,k) and
v′(η0,k) of the functions v(η,k) and their (conformal)time derivatives which at η0 mini-
mize the expectation value 〈0(v)|H(η0)|0(v)〉 of the Hamiltonian in the state |0(v)〉 annihi-
lated by all av(k).

Problem IV.5
Consider the same theory of the field χ as in Problem IV.4. Let v(η, |k|) and u(η, |k|)
be two complete sets of complex solutions v(η, |k|) (for each value of k) of the equation
v′′+ [k2+m2(η)]v = 0, normalized so that v∗v′− v v∗′ = i and u∗u′−uu∗′ = i. Show that
in the decomposition

v∗(η,k) = α(k)u∗(η,k) + β(k)u(η,k) ,

the coefficients α(k) and β(k) are η-independent. Give the explicit expressions for these
coefficients and show that they satisfy the relation |α(k)|2−|β(k)|2 = 1. Find the relation
between the creation and annihiation operators a†v(k), av(k) associated with the v modes
and a†u(k), au(k) associated with the u modes.

Considering the χ field quantized in the spatial box L3 with periodic boundary condi-
tions express the “vacuum” state |0(u)〉 annihilated by all operators au(k) in terms of the
states created by the operators a†v(k) from the “vacuum” |0(v)〉 annihilated by all av(k).

1Time is denoted η (instead of t) because such a Lagrangian density effectively describes the dynamics
of a real scalar field ϕ = χ/a in the gravitational background with the line element (ds)2 = (dt)2 −
a2(t)(dx)2 ≡ a2(η)[(dη)2 − (dx)2], conformally equivalent to the Minkowski space-time; η is then the
conformal time.
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Problem IV.6
Suppose the mode functions v(η,k) of the field χ(η,x) considered in Problems IV.4 and
IV.5 are such that at the moment η1 the Hamiltonian takes the form

H(η1) =

∫

d3k

(2π)3
E(η1,k)

[

a†v(k)av(k) + av(k)a
†
v(k)

]

,

(see Problem IV.4). Suppose also that another set of mode functions, u(η,k) satisfies
the same condition at η2. Assuming that the Bogolyubov coefficients relating u(η,k) to
v(η,k) are known, compute 〈0(v)|H(η2)|0(v)〉.

Problem IV.7
Check that the Schrödinger picture operators V i(x) and Πi(x) of the Proca field

V i(x) =

∫

dΓk

∑

λ=0,±1

[

a(k, λ) ǫi(k, λ) eik·x + a†(k, λ) ǫi∗(k, λ) e−ik·x
]

,

Πi(x) =
1

i

∫

dΓkE(k)
∑

λ=0,±1

[

a(k, λ) ǫ̃i(k, λ) eik·x − a†(k, λ) ǫ̃i∗(k, λ) e−ik·x
]

,

where ǫ̃i(k, λ) = ǫi(k, λ) − (ki/E)ǫ0(k, λ), satisfy the canonical commutation relations
[V i(x), Πj(y) = δijδ(3)((x− y), etc. provided the operators a(k, λ) and a†(k, λ) obey the
standard rules

[

a(k, λ), a†(k′, λ′)
]

= (2π)32E(k) δ(3)(k′ − k) δλ′λ ,

etc. Show also that the free part H0 of the Hamiltonian,

H0 =
1

2

∫

d3x

(

ΠiΠi +
1

M2
(∂iΠi)

2 + (∇×V)2 +M2V iV i

)

,

when expressed in terms of the a(k, λ) and a†(k, λ) operators takes the form

H0 =

∫

dΓkE(k)
∑

λ=0,±1

a†(k, λ)a(k, λ) +∞.

Problem IV.8
Consider a system the classical Lagrangian of which takes the form

L =
1

2
Mij ẋiẋj −

1

2
Vij xixj ,

in which

M = m

(

1 −1
−1 1

)

, V = mω2

(

1 0
0 1

)

.
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Identify all the constraints, check that that they are second class and construct the Hamil-
tonian HT applying the Dirac procedure. Show that the resulting canonical equations give
the same motion of the system as the Euler-Lagrange equations following from the above
Lagrangian. Quantize the system and find the spectrum of its energies.

Problem IV.9
Analyze the constraints arising in the application of the Dirac quantization prescription
to the Proca vector field V µ with the Lagrangian density

L = −1

4
VµνV

µν +
1

2
M2VµV

µ − VµJ
µ + Lmatter ,

in which Vµν = ∂µVν − ∂νVµ and Lmatter is the Lagrangian density of other degrees of
freedom with which the field Vµ interacts through the linear coupling to the current Jµ

which (by assumption adopted for this problem) depends only on the variables of these
other degrees of freedom.

Problem IV.10
Consider the theory defined by the Lagrangian density

L = ψ̄(i6∂ −m)ψ +
1

2
σ2 − g σ(ψ̄Γψ) ,

in which ψ and ψ† are Dirac spinors taking values in the Grassmann algebra and Γ is a
matrix in the spinor space. Using the Dirac method perform its canonical quantization
and show that it is equivalent to the theory of self-interacting Dirac fermions with the
Lagrangian density

L = ψ̄(i6∂ −m)ψ −G(ψ̄Γψ)2 .

Relate G to g.

Problem IV.11
Consider a set of N classical relativistic charged particles (with electric charges qne and
masses mn, n = 1, . . . , N) interacting through the classical electromagnetic field. Write
down the expression for the electromagnetic four-current Jµ(x) produced by these particles
and check that it is conserved, ∂µJ

µ = 0. Construct also the energy-momentum tensor
T µν
part of the particles. Show that it is symmetric. Find its four-divergence. Show by direct

calculation that conserved is only the total energy-momentum tensor

T µν = T µν
part + T µν

elmg ,

where T µν
elmg is the symmetric Belinfante energy-momentum tensor of the electromagnetic

field constructed in Problem III.14.

4



Problem IV.12
Consider the electromagnetic field interacting with some other (representing “matter”)
degrees of freedom through a linear coupling to the four-current eJµ = (cρ, j); the classical
Lagrangian density of the system (in the Heaviside-Lorentz system of units) reads

L = −1

4
fµνf

µν − 1

c
eJνAν + Lmatter .

In the Hamiltonian formulation the Gauss law ∇ · E = ρ = eJ0/c, which is one of the
Euler-Lagrange equations, arises as the secondary constraint Φ2 = 0, where

Φ2 ≡ c2∂iΠi + eJ0 .

This follows from the requirement that the primary constraint, Φ0 ≡ Π0 = 0, be com-
patible with the dynamics. Check that the Gauss law itself does not lead to any new
constraints, i.e. that the condition {Φ2, HT}PB ≃ 0 (HT is the total Hamiltonian which
includes the primary constraints with arbitrary coefficients) is automatically satisfied if
the current Jµ is conserved. Check explicitly that {Φ2, HT}PB ≃ 0 in the case of the
electromagnetic field coupled to the dynamical set of nonrelativistic charged particles (the
form of the current Jµ is established in Problem IV.11).

Analyse the full set of constraints arising in the Hamiltonian formulation when the
Coulomb gauge condition ∇ ·A = 0 is imposed as an additional primary constraints
Φ1 ≡ ∂iA

i = 0 in addition to the primary costraints Φ0 ≡ Π0 = 0 following from the
Lagrangian. Check also the commutators of the operator A0 obtained by applying the
Dirac quantization condition.

Problem IV.13
Express the Poincaré group generators

P 0 ≡
∫

d3xT 00
symm , P i ≡

∫

d3xT 0i
symm ,

and

J ij ≡
∫

d3xM0ij , Ki ≡
∫

d3xM00i ,

constructed out of the tensors T µν
symm and Mµνλ of the free electromagnetic field found

in Problem III.14 in terms of the canonical variables Ai(x) and Πi(x) in the Coulomb
gauge and check the Poincaré group algebra using the commutation rules satisfied by the
operators Ai(x) and Πi(x) (in the Schrödinger picture). Go next to the Heisenberg picture
and argue that the Heisenberg picture generators are independent of time and satisfy the
same algebra of commutators. Finally, check the transformation rules of the Heisenberg
picture operators Ai(x) and Πi(x).
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Problem IV.14
Express the Poincaré group generators P 0, P i, J ij and Ki of the free electromagnetic field
obtained in Problem IV.13 through the creation and annihilation operators and show that
P 0 is just the Hamiltonian and P i is the momentum operator

P i =

∫

dΓk k
i
∑

λ=±1

a†(k, λ)a(k, λ) .

Find the action of the Poincaré group generators on one-particle (one-photon) states.

Problem IV.15
The Canonical Ensemble statistical operator of the electromagnetic field in equilibrium
with a heat bath of temperature T has the form

ρ̂ =
e−βĤ

Tr
(

e−βĤ
) , where β = 1/kBT .

Considering the electromagnetic field quantized in a box of volume V = L3, find the mean
number of photons with momentum k and polarization λ corresponding to temperature
T . Find also the fluctuation of the number of photons. How many relic photons per cubic
centimeter there are in the Universe at present, if Trelic = 2.73 K?
Hint: Recall that the statistical average value of an observable represented by the oper-
ator Ô is given by 〈Ô〉 = Tr(ρ̂ Ô).

Problem IV.16 (Casimir force)
Quantize the electromagnetic field in the space between two large parallel conducting
plates (perpendicular to the z axis) of area L2 each, separated by the distance d ≪ L.
Impose periodic boundary conditions with the period L in the directions x and y. Find
the Casimir force by which the plates attract each other, computing the difference of
energies of zero point oscillations of the electromagnetic field quantized with the boundary
conditions appropriate for conducting plates and of the field quantized with the periodic
boundary conditions with the period L also in the z direction (but taking for the difference
only the energy of the latter field contained in the box L× L× d).

Problem IV.17
Using the Dirac prescription for systems subject to constraints perform the canonical
quantization in the Coulomb gauge ∇ ·A = 0 of the spinor electrodynamics defined by
the Lagrangian density

L = −1

4
fµνfµν + ψ̄(i6∂ −m)ψ − eQψ̄γµψA

µ ,

in which ψ and ψ† (ψ̄ ≡ ψ†γ0) are anticommuting (Grassmann algebra valued) “classical”
fields of electric charge Q transforming as spinors under changes of the Lorentz frame.
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Problem IV.18
Consider the electromagnetic field coupled to the complex scalar field φ. The Lagrangian
density L = LEM + Lmat of the system is

L = −1

4
fµνf

µν + (∂µφ
∗ − ieQAµφ

∗)(∂µφ+ ieQAµφ)−M2φ∗φ−Hint(φ
∗φ) ,

where Q is the electric charge of the field φ. Check that the generalized electromagnetic
current Jµ defined by

−eJµ(x) =
δ

δAµ(x)

∫

d4yLmat(y) ,

is conserved and gauge invariant. Construct also the canonical energy-momentum tensor
T µν of this theory and symmetrize it using the result of Problem III.14.

Problem IV.19
Perform the canonical quantization of the scalar electrodynamics (i.e. of the theory of the
electromagnetic field coupled to one complex or two real scalar fields defined in Problem
IV.18) in the Coulomb gauge using the Dirac method. Formulate also the perturbative
expansion by going to the interaction picture. In particular, explain how the usual co-
variant Feynman rules (obtained in the path integral based quantization) are recovered
in this framework.

Problem IV.20
Consider the Gupta-Bleuler quantization of the electromagnetic field coupled to a con-
served current Jµ in the presence of the Nakanishi-Lautrup auxiliary field h. The system’s
Lagrangian density2 is

L = −1

4
fµνfµν +

ξ

2
h2 + αh∂µA

µ − (1− α)Aµ ∂µh− eAµJµ + Lmat ,

in which Lmat depends only (here by assumption) on the variables out of which the current
Jµ is constructed. Show that by using the Dirac’s quantization prescription one ends up
with the same structure of the Schrödinger picture operators and of the Fock space of
states |α0〉 as in the quantization which starts from the Lagrangian density obtained from
the one given above by first eliminating the Nakanishi-Lautrup field h from the Lagrangian
with the help of its classical equations of motion.

Problem IV.21
Consider the Gupta-Bleuler quantization of the electromagnetic field coupled to the com-
plex scalar field φ. The Lagrangian density is

L = −1

4
fµνf

µν − 1

2ξ
(∂µA

µ)2 + (∂µφ
∗ − ieAµφ

∗)(∂µφ+ ieAµφ)− V (φ∗φ) .

2The Lagrangian density L is, up to a total derivative, independent of the arbitrary parameter α. Yet,
the canonical momenta do depend on this parameter. It is the purpose of this exercise to convince onself
that the resulting quantum theory is nevertheless independent of α.
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Show that the Heisenberg picture operator Π0 ∝ ∂µA
µ is free, that is, satisfies the equation

∂µ∂
µΠ0(x) = 0 .

Formulate the perturbative expansion and show that one recovers in this framework the
same results as with the covariant Feynman rules.

Problem IV.22
Write down the canonical equations satisfied by the field operators Aµ and Πν of the free
electromagnetic field in the Gupta-Bleuler formalism (with the idefinite metric Hilbert
space) for the general value of the parameter ξ in the Lagrangian density

L = −1

4
fµνfµν −

1

2ξ
(∂µA

µ)2 .

Show that they are equivalent to the Euler-Lagrange equations derived from L. Postu-
lating the general form of the field operators

Aµ(t,x) =

∫

dΓk e
ik·x aµ(t,k) , Πµ(t,x) = i

∫

dΓk |k| eik·x bµ(t,k) ,

solve the canonical equations for the time dependence of the operators aµ(t,k) and bµ(t,k)
representing them as products of the creation and annihilation operators and the appro-
priate polarization vectors.

Problem IV.23
Using the form of the interaction picture operator Aµ(x) of in the Gupta-Bleuler ap-
proach to the electromagnetic field quantization (found in Problem IV.22) determine the
corresponding free photon propagator.
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