
Lecture 1 BEC

Till now only Bose-Einstein condensation of an ideal gas was discussed. Now we are 
going to make a great leap: we are going to include interactions. At the beginning we shall 
restrict our attention to the weakly interacting Bose gas at zero temperature. Thus, we 
want to study the ground state of the multiparticle hamiltonian:
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In most applications the trapping potential is just a more or less a symmetric harmonic 
oscillator potential. The inclusion of only binary interactions is well justified. The 
interatomic potential consists of a very short range repulsive part (present at distances of 
the order of atomic diameter) and of attractive tail coming from the interaction between 
induced electric dipoles. So, it falls-off rapidly (~1 / r6  or if one includes the effects of 

retardation ~1 / r7 ).

Of course the ideal Bose gas consisting of N atoms at zero temperature has all atoms in 
the same single particle state, which is the ground state of the trapping potential. Thus the 
multiparticle wave function has a very simple product form:

 

Ψ(r1,...
rN ) = ϕ(rn )

n=1

N

∏ 

 
 
 
 
 
 (2)

This notion “each atom in the same state” should also apply to a condensate of weakly 
interacting atoms. Thus it makes sense to seek the approximate ground state of the 
hamiltonian (1) still in fully factorized form (2) optimizing the single particle orbital. We 
know the Ritz variational principle, so the optimal orbital should minimize the energy 
expectation value in the set of factorizable functions. It is a Hartree approach. (No need to 
invoke Fock - we deal with bosons, not with fermions).
We compute the energy functional of hamiltonian (1) in the product state (2):

E[ϕ ] = N <ϕ | (T +Vtr )ϕ > + N(N −1)
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variation must be done with constraint fixing the normalization:
<ϕ |ϕ >= 1 
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Using the Lagrange multiplier in the form Nµ  we arrive at the functional:

F[ϕ ] = E[ϕ ]− Nµ <ϕ |ϕ > 
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Postulating vanishing of the linear increment of this functional with respect to δϕ * :
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we get:
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Our equation has a form of time independent, nonlinear Schrödinger equation with 
obvious interpretation of the last term as the action of N-1 atoms on the one for which the 
equation has been written.
There are 2 simplifications usually made at this point: First we shall omit 1 in comparison 
to N (~1000000). Second, in the dilute cold gas typical distances between atoms are huge 
compared to the range of the potential. Therefore one typically approximates the 
interatomic potential by Dirac delta function. Resulting equation is called the Gross-
Pitaevski equation:
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Several remarks:
1. Condensed atoms are typically equipped with the magnetic moment. Dipole-dipole 

forces fall-off as 1 / r3 so they have much longer range. In most cases they are tiny 
compared to the van der Waals forces, but sometimes (chromium!) become relevant. In 
this case delta function approximation is not valid.

2. There is an interesting subtlety with the delta function potential in 3D. See below.
3. Due to the nonlinearity, the total energy of the state obtained is not equal to Nµ :
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Now, back to the delta potential. As we remember from QM lectures, the scattering on the 
interatomic potential at very low velocity is reduced to the s-wave. The scattered part of 

the wave function in 3D is e
ikr

r
and cannot be multiplied by the delta function. In other 

words the standard s-wave solution of the free Schrödinger equation is not in the domain 
of the hamiltonian containing delta potential. Another way of seeing the difficulty is to solve 
first the scattering on a spherical step potential and then take the delta function limit. One 
can easily check that in this limit the scattering amplitude tends to zero. In several books 
the scattering amplitude on the delta potential is calculated approximately in the first Born 
approximation. Accidentally one gets correct result, but the procedure is flowed as the first 
Born approximation applies to high rater than low energy scattering.
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In the 30-ties of the last century the problem with contact potential in 3D was solved by 
Breit and Fermi. They encountered this potential in connection with nuclear physics 
problems.
They proposed to use a minimal extension of a 3D delta (we are using the relative 
coordinate - we are in the center of mass frame of colliding identical particles):
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Acting on function regular at the origin it is just a standard delta:
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but for 1/r type functions it gives:
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which is also an acceptable result. Much later, mathematicians proved that this is the only 
selfadjoint extension of the hamiltonian with zero range interaction in 3D.
All we need is to look at the s-wave radial equation. Its general form outside  of the 
potential is

ψ (r) = sin(kr +δ0 )
r
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where δ0  is the s-wave scattering phase shift. The Schrödinger equation:
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in its singular part, due to a well known formula
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takes a form:
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Thus, in the limit of k→ 0
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Remembering the definition of the s-wave scattering length  a (see my QM10 lecture)
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We are ready now to express the coupling in the GP equation in terms of well defined 
physical parameter a. There is only one small point: As we remember, the equation for the 
relative coordinate contains reduced mass, thus we need additional factor of 2. Finally the 
coupling constant in the GP equation takes a form:
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Why we do not need to worry for the Fermi correction in the GP equation? Easy: It does 
not act on a function which is singular at  

r = r ' . 
Here are the typical values of the s-wave scattering length for the first three condensed 
species:
a = 5.77nm  for 87Rb
a = 2.75nm for 23Na
a = −1.45nmfor 7Li
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The sign of a is very important, as we shall see later. Although the full interatomic potential 
always has both an attractive and a repulsive part, since only the scattering length enters 
the GP equation, people often say that a>0 gas has repulsive and a<0 gas has an 
attractive interaction.
The GP equation and its time dependent extension is the most often solved equation in the 
cold atom physics. 
Every solution of time independent GP equation must satisfy the virial condition. It is easily 
derived. In what follows we assume the harmonic binding, that is a trapping potential which 
is a quadratic function of the coordinate. Suppose a function 

 
ϕ(r ) is a normalized 

eigenstate of the GP hamiltonian. Consider a one parameter family of normalized trial 
functions:
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Letʼs compute the energy functional for (22):
E(λ) = λ2T + λ−2Vtr + λ

3Eint 
 
 
 
 
 
 (23)

The values of a mean kinetic, a  mean potential and a mean interaction energy in the 
eigenstate 

 
ϕ(r )  are the coefficients. Now the function E(λ)  has a stationary point at λ = 1 . 

Hence:
2T − 2Vtr + 3Eint = 0 
 
 
 
 
 
 
 (24)

which is the extension to GP equation of the well known relation for the harmonic 
oscillator: T =Vtr .
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