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Oświadczam, że niniejsza praca została przygotowana pod moim kierunkiem i stwierdzam, że spełnia
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Abstract

This PhD thesis presents a comprehensive review and a significant extension of the classical Marsden–
Meyer–Weinstein reduction theorem to manifolds endowed with different geometric structures. Moreover,
results are also applied to some relevant physical systems. In particular, this dissertation presents the
k-polysymplectic Marsden–Meyer–Weinstein reduction theory by removing unnecessary technical assump-
tions, such as coadjoint equivariance of momentum maps, via a theory of affine Lie group actions, while
correcting some misconceptions in the previous literature. The geometry of fibred k-polysymplectic mani-
folds is studied in depth, leading to a new k-polycosymplectic reduction theory, which is applied to systems
with field symmetries, including coupled vibrating strings. A geometric reduction from k-cosymplectic
to ℓ-cosymplectic structures is also developed and applied to vibrating membranes, giving one of the
few geometric reduction theories of space-time variables in the literature. A Marsden–Meyer–Weinstein
reduction for k-contact manifolds is also developed, and existing contact reduction results are revisited
and clarified by solving some problems in the previous literature.

This dissertation develops new geometric methods for the analysis of non-autonomous Hamilto-
nian systems with symmetries, focusing on stability, reduction, and generalisations of classical energy-
momentum techniques. A new cosymplectic energy-momentum method is formulated, providing a more
general framework for analysing time-dependent Hamilton equations. Cosymplectic geometry enables the
treatment of broader classes of Lie symmetries like Hamiltonian, gradient, and evolution vector fields.
This also gives rise to the definition of new types of relative equilibria, such as gradient relative equilibria.
These methods are applied to study physical systems like the restricted circular three-body problem. A
cosymplectic-to-symplectic reduction method is introduced, extending results of C. Albert, and eigen-
functions of time-dependent Schrödinger equations are interpreted as relative equilibria in a cosymplectic
setting.

Finally, a k-polysymplectic energy-momentum method is constructed, along with new stability anal-
ysis techniques for Hamiltonian systems on k-polysymplectic manifolds. Applications include integrable
systems, polynomial dynamical systems, and quantum oscillators with dissipation.

Keywords:

symplectic geometry, Marsden–Meyer–Weinstein reduction, cosymplectic geometry, contact geometry,
k-symplectic geometry, k-cosymplectic geometry, momentum maps, energy-momentum methods,

Lyapunov stability, relative equilibrium points, Lie systems.
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Streszczenie

Niniejsza rozprawa doktorska stanowi całościowy przegląd oraz istotne uogólnienie w zakresie klasy-
cznego twierdzenia redukcji Marsdena–Meyera–Weinsteina. W szczególności, praca przedstawia teorię
k-wielosymplektycznej redukcji Marsdena–Meyera–Weinsteina poprzez usunięcie zbędnych założeń tech-
nicznych, takich jak niezmienniczość odwzorowania momentu względem działania dołączonego, przy
wykorzystaniu afinicznych działań grup Liego. Szczegółowo analizuje geometrię rozwłóknionych roz-
maitości k-wielosymplektycznych, co prowadzi do nowej teorii redukcji k-wielokosymplektycznej,
stosowanej następnie do układów z symetriami polowymi, w tym sprzężonych drgających strun. Opracow-
ano również geometryczną redukcję struktur k-kosymplektycznych do ℓ-kosymplektycznych i zastosowano
ją do analizy drgających membran. Rozwinięto także redukcję Marsdena–Meyera–Weinsteina dla struk-
tur k-kontaktowych oraz poddano rewizji i uścísleniu istniejące wyniki dotyczące kontaktowej redukcji
Marsdena–Meyera–Weinsteina.

W rozprawie rozwinięto również nowe metody geometryczne służące analizie nieautonomicznych
układów hamiltonowskich z symetriami Liego, koncentrując się na problematyce stabilności, redukcji oraz
uogólnieniach klasycznych metod energii-pędu. Sformułowano nową metodę energii-pędu w kontekście
geometrii kosymplektycznej, co pozwala na analizę równań Hamiltona z czasowo zależnymi funkcjami
Hamiltona w bardziej ogólnych ramach. Geometria kosymplektyczna umożliwia uwzględnienie szerszych
klas symetrii Liego — w tym wektorów Hamiltonowskich, gradientowych i ewolucyjnych a także definicję
nowych typów punktów równowagi względnej, takich jak równowagi względne gradientowe. Zastosowano
te konstrukcje do badania układów takich jak ograniczony kołowy problem trzech ciał. Wprowadzono
również metodę redukcji kosymplektycznej-symplektycznej oraz zinterpretowano funkcje własne równań
Schrödingera zależnych od czasu jako punkty równowagi względnej w kontekście geometrii kosymplekty-
cznej.

Ostatecznie, skonstruowano metodę energii-pędu dla geometrii k-wielosymplektycznej oraz opracow-
ano nowe techniki analizy stabilności dla układów hamiltonowskich zdefiniowanych na rozmaitościach
k-wielosymplektycznych. Pokazano również przykłady zastosowań k-wielosymplektycznej metody energii-
pędu, obejmujące układy całkowalne, układy dynamiczne opisywane przez wielomiany oraz oscylatory
kwantowe z dysypacją.

Słowa kluczowe

geometria symplektyczna, redukcja Marsdena–Meyera–Weinsteina, geometria kosymplektyczna,
geometria kontaktowa, geometria k-symplektyczna, geometria k-cosymplektyczna, odwzorowania

momentu, metody energii–pędu, stabilność Lyapunova, punkt względnej równowagi, system Liego.

Tytuł pracy w języku polskim

Teorie redukcji Marsdena–Meyera–Weinsteina i ich zastosowania w metodach energii-pędu
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Introduction

The Marsden–Meyer–Weinstein (MMW) reduction theory [4, 103, 109, 111] represents a pivotal result in
the geometric formulation of classical mechanics, building upon foundational developments in symplectic
geometry and Hamiltonian dynamics [128]. The MMW reduction not only clarified the geometric un-
derpinnings of conserved quantities in classical Hamiltonian systems and their reduction to manifolds of
smaller dimension, but also provides the foundation for powerful methods in dynamical systems, stability
theory, and mathematical physics.

The roots of the MMW reduction can be traced back to Lie and Noether [115]. Nevertheless, significant
advances towards our modern understanding can be found in the works by Souriau and Kostant [92, 143],
who introduced the use of momentum maps to encode symmetries of Hamiltonian systems, as well
as the ideas of symplectic quotients in the context of geometric quantisation [115]. After many other
contributions [5, 6], they were Meyer in [120] and Marsden and Weinstein in [109] who unified these earlier
ideas within the modern framework of symplectic geometry, showing that, under suitable regularity and
symmetry conditions, one can construct a reduced phase space—obtained as a quotient of a level set of
the momentum map—which inherits a natural symplectic structure.

Many physical systems of interest today, such as time-dependent mechanics and classical field theories,
demand geometrical formalisms beyond the symplectic setting [128]. This dissertation extends the MMW
reduction to k-polycosymplectic [50] and k-contact [51] frameworks. In addition, it corrects and clarifies
some mistakes from the literature concerning contact [4] and k-polycosymplectic MMW reductions. At the
same time, the already established results in the context of k-polysymplectic geometry are generalised
to a broader class of k-polysymplectic momentum maps. This allows for broadening the applicability
of reduction techniques to systems characterised by non-autonomous dynamics and multiple time-like
parameters.

The core of this work consists of a rigorous development of momentum maps and reduction procedures
within these new geometrical settings. In particular, novel reduction theorems for each of the above
structures are proven and subtle aspects of the existing literature are clarified, especially by addressing
issues such as the lack of equivariance in momentum maps and the role of affine Lie group actions.
These generalisations are not merely of theoretical interest; they provide the mathematical underpinning
necessary to apply energy-momentum methods to a broader class of systems. This is demonstrated
through stability analysis of relative equilibria in reduced systems, incorporating both autonomous and
time-dependent Hamiltonian dynamics. The results contribute to the refinement of modern geometric
mechanics and offer tools applicable in both mathematical physics and engineering contexts.

The content of this Doctoral Dissertation is based on five research papers:

• J. de Lucas, B.M. Zawora, “A time-dependent energy-momentum method”. Journal of Geometry
and Physics 170, 104364, 2021, 21 p.

The article presents a generalisation of the energy-momentum method for studying the stability of
non-autonomous Hamiltonian systems with a Lie group of Hamiltonian symmetries. A generalisa-
tion of the relative equilibrium point notion to a non-autonomous realm is provided and studied.
Relative equilibrium points of a class of non-autonomous Hamiltonian systems are described via

ix
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foliated Lie systems, which opens a new field of application of such systems of differential equations.
Non-autonomous Hamiltonian systems are reduced via the MMW theorem, and conditions ensur-
ing the stability of relative equilibrium points are given. Remarkably, the presented geometrical
approach provides valuable insight, which is not common in the existing literature. As a byproduct,
a geometrical extension of notions and results from Lyapunov stability theory on linear spaces to
manifolds is provided. As an application, a class of mechanical systems, hereafter called almost-rigid
bodies [113, 114, 138], which covers rigid bodies as a particular case, is analysed.

• J. de Lucas, X. Rivas, S. Vilariño, B.M. Zawora, “On k-polycosymplectic Marsden–Weinstein re-
ductions”. Journal of Geometry and Physics 191, 104899, 2023, 36 p.

This work reviews and slightly improves the known k-polysymplectic MMW reduction theory by
removing some technical conditions on k-polysymplectic momentum maps by developing a theory
of affine Lie group actions for k-polysymplectic momentum maps, avoiding the necessity of their
co-adjoint equivariance. Then, a particular case of k-polysymplectic manifolds, the so-called fibred
ones, is analysed, and their k-polysymplectic MMW reductions are studied. Previous results led
to the development of a k-polycosymplectic MMW reduction theory, which is one of the main
results of the article. Results are applied to study k-polycosymplectic Hamiltonian systems with
field symmetries. In particular, two coupled vibrating strings are studied. Then, it is shown that
k-polycosymplectic geometry can be understood as a particular type of k-polysymplectic geometry.
Finally, a k-cosymplectic to ℓ-polycosymplectic geometric reduction theory is presented, which
reduces, geometrically, the space-time variables in a k-cosymplectic framework. An application of
this latter result to a vibrating membrane with symmetries is provided.

• J. de Lucas, A. Maskalaniec, B.M. Zawora, “Cosymplectic geometry, reductions, and energy-
momentum methods with applications”. Journal of Nonlinear Mathematical Physics 31, 64, 2024,
58 p.

This work devises a new cosymplectic energy-momentum method, providing a more general frame-
work to study t-dependent Hamilton equations. Cosymplectic geometry allows for using more
types of distinguished Lie symmetries (given by Hamiltonian, gradient, or evolution vector fields),
relative equilibrium points, and reduction methods than symplectic techniques. Additionally, it
reviews the cosymplectic formalism and the cosymplectic MMW reduction. Known and new types
of relative equilibrium points are characterised and studied. Technical conditions used in previous
energy-momentum methods, like the Ad∗-equivariance of momentum maps, are removed. Eigen-
functions of t-dependent Schrödinger equations are interpreted in terms of relative equilibrium
points in cosymplectic manifolds. A new cosymplectic-to-symplectic reduction is developed, and a
new associated type of relative equilibrium points, the so-called gradient relative equilibrium points,
are introduced and applied to study the Lagrange points and Hill spheres of a restricted circular
three-body system by means of a non-Hamiltonian Lie symmetry of the system.

• L. Colombo, J. de Lucas, X. Rivas and B.M. Zawora, “An energy-momentum method for ordinary
differential equations with an underlying k-polysymplectic manifold”. Journal of Nonlinear Science
35, 42, 2025, 54 p.

This work presents a comprehensive review of the k-polysymplectic MMW reduction theory, ex-
plaining previous errors and inaccuracies in the previous literature [62, 107] while introducing novel
findings. It also emphasises the genuine practical significance of seemingly minor technical details.
On this basis, a novel k-polysymplectic energy-momentum method and new related stability anal-
ysis techniques are introduced and applied to study Hamiltonian systems of ordinary differential
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equations relative to a k-polysymplectic manifold. Detailed and illustrative examples of both phys-
ical and mathematical significance are provided, including the study of complex Schwarz equations
related to the Schwarz derivative, a series of isotropic oscillators, integrable Hamiltonian systems,
quantum oscillators with dissipation, affine systems of differential equations, and polynomial dy-
namical systems.

• J. de Lucas, X. Rivas, S. Vilariño, B.M. Zawora, “Marsden–Meyer–Weinstein reduction for k-contact
field theories”. Preprint: arXiv:2503.03463, 2025, 50 p.

This work devises a Marsden–Meyer–Weinstein k-contact reduction. Our techniques are illustrated
with several examples of mathematical and physical relevance. As a byproduct, we review the
previous contact reduction literature to clarify and to solve some inaccuracies.

These papers address the generalisation of the MMW theorem to the k-polysymplectic, k-cosymplectic,
and k-contact settings, the formulation of energy-momentum methods in the cosymplectic framework,
and applications to non-autonomous systems, including the restricted three-body problem and quantum
quadratic Hamiltonians. The theoretical advances are motivated by significant references such as Ortega
and Ratiu’s foundational work on momentum maps and reduction [128], as well as modern treatments of
polysymplectic and cosymplectic geometry by de León, Salgado, and Vilariño [43].

A primary goal of this research is to unify and extend the applicability of geometric reduction and
stability analysis across different mathematical models of physical systems. This objective is achieved
by systematically developing the theory of momentum maps in generalised geometrical contexts and
establishing conditions under which reduction and stability theorems remain valid. An equally important
aim is the derivation of criteria for Lyapunov and formal stability of equilibrium points in reduced
Hamiltonian systems, particularly in those defined on cosymplectic or k-polysymplectic manifolds. These
criteria are shown to be effective by application to important systems such as the circular restricted
three-body problem and complex extensions of Lie systems such as the Schwarz equations.

There are several possibilities for further research that emerge from this dissertation. One natural
direction involves relaxing some of the global assumptions made for simplicity, such as the existence of
global Reeb vector fields or the connectedness of manifolds, which would make the results applicable to
a wider class of models. Another promising extension is the adaptation of the methods developed in
this PhD thesis to infinite-dimensional settings, such as those encountered in the study of classical field
theories and quantum field theories, and in particular to deal with energy-Casimir methods [71, 84, 113].
The extension of these results to non-smooth or singular spaces is also of high interest, especially in
connection with the reduction of singular Hamiltonian systems or systems with constraints. Finally, the
interplay between generalised reduction and quantisation procedures remains an open field, where the
methods introduced could provide a solid foundation for future explorations.

In summary, this PhD thesis presents geometric frameworks for the reduction and stability analysis of
Hamiltonian systems in several contemporary geometrical settings. It addresses both theoretical founda-
tions and practical applications, offering a substantial contribution to the fields of differential geometry,
geometric mechanics, and mathematical physics.

There are other papers related, but not principal, to this doctoral dissertation:

1. C. Gonera, J. Gonera, J. de Lucas, W. Szczesek, B.M. Zawora, “More on superintegrable models on
spaces of constant curvature”. Regular and Chaotic Dynamics 27, 561–571 (2022).

2. A.M. Grundland, J. de Lucas, B.M. Zawora, “Stability analysis of the (1 + 1)-dimensional Nambu-
Goto action gas models”. J. Phys. A 58, 50LT01 (2025).

3. X. Rivas, N. Román-Roy, B.M. Zawora, “Symmetries and Noether’s theorem for action-dependent
multicontact field theories”. Lett. Math. Phys. 115, 108 (2025).

https://arxiv.org/abs/2505.05462


xii Chapter 0. Introduction

4. J. Lange, B.M. Zawora, “Reduction of exact symplectic manifolds and energy hypersurfaces”. Pro-
ceedings of the 7th International Conference on Geometric Science of Information, LNCS, vol
16035:328- 336, Springer.

A brief description of all the above articles is as follows.
The article entitled “More on superintegrable models on spaces of constant curvature” is devoted to

the previously less studied models characterised by the radial potential of the generalised Kepler type.
Introduces a new two-parameter family of associated angular potentials expressed in terms of elementary
functions. For a specific choice of parameters, this family reduces to the asymmetric spherical Higgs
oscillator.

The main goal of the paper “Stability analysis of the (1 + 1)-dimensional Nambu-Goto action gas
models” is to perform a nonlinear stability analysis of such action gas models. The study employs the
energy-Casimir method, which is an extension of the energy-momentum method one [84], to examine in
detail the Lyapunov stability of the Chaplygin and Born-Infeld models. Moreover, particular solutions
are considered and their stability is studied to demonstrate the application of the obtained results. The
paper deals with the stability of PDEs using infinite-dimensional geometry.

The article “Symmetries and Noether’s theorem for action-dependent multicontact field theories”
studies symmetries in action-dependent Lagrangian and Hamiltonian field theories together with the
corresponding dissipation laws. In particular, the work introduces the notions of conserved and dissipated
quantities, formulates the definitions of general symmetries of both the field equations and the underlying
geometric structures, and studies their fundamental properties. These symmetries, referred to as Noether
symmetries, give rise to a version of Noether’s theorem adapted to this framework, which associates each
such symmetry with the corresponding dissipated quantity and the related conservation law.

Finally, the article “Reduction of exact symplectic manifolds and energy hypersurfaces” presents
two reduction schemes for Hamiltonian systems defined on exact symplectic manifolds endowed with
Lie group symmetries. It is demonstrated that these reduction procedures are equivalent by employing
a modified Marsden–Meyer–Weinstein reduction theorem for exact symplectic manifolds and contact
manifolds arising as energy hypersurfaces. Each approach is illustrated through an example. Moreover,
the Prize Committee recognised the work for its strong mathematical core, which established a connection
between symplectic reduction and contact structures, as well as for the clarity and didactic quality of the
presentation at GSI 2025 (selected among approximately 250 other participants).

This work concerns results previously obtained for this PhD dissertation and other results that ap-
peared as a byproduct of my formation at the University of Warsaw.

The dissertation is divided into three chapters. Chapter 1, titled Fundamentals, establishes the
necessary mathematical background, beginning with a generalisation of Lyapunov stability theory to
differentiable manifolds. It proceeds with a detailed review of symplectic geometry and then introduces
cosymplectic, contact, k-symplectic, and k-cosymplectic structures, focusing on their geometric proper-
ties. These tools are fundamental for the reduction and stability methods developed in the subsequent
chapters.

Chapter 2 is the theoretical heart of this PhD thesis and is devoted to extending the Marsden–Meyer–
Weinstein reduction to a wide range of geometric contexts. It begins by recalling the classical symplectic
case, then moves through cosymplectic, k-polysymplectic, k-polycosymplectic, and k-contact reductions,
providing rigorous proofs of new theorems and developing the theory of momentum maps suitable to each
structure. It also discusses the particular case of k-contact MMW reduction when k = 1, explaining and
correcting mistakes in the literature. The chapter highlights both mathematical and physical motivation,
presenting examples such as the reduction of coupled vibrating strings and quantum systems.

The final chapter, Chapter 3, entitled “Energy-momentum methods”, applies previous general reduc-
tion frameworks to the analysis of Lyapunov stability on reduced manifolds. The chapter is divided into
sections for the symplectic, cosymplectic, and k-polysymplectic settings, each of which develops stability
criteria and applies them to illustrative examples, including the restricted three-body problem, quantum
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Hamiltonians, and affine Lie systems. The PhD thesis concludes by summarising the contributions: a
unified theory of generalised MMW reduction, new criteria for stability of non-autonomous Hamiltonian
systems, and corrections to earlier results in the literature. It also outlines possible directions for future
research.
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Chapter 1

Fundamentals

This chapter introduces concepts and geometric structures essential for this dissertation by establishing
the foundations for the systematic study of reduced dynamics in the subsequent sections. It begins
with an extension of Lyapunov stability theory [79, 90, 124, 147] to non-autonomous dynamical systems
on manifolds, needed for the further analysis of stability of the reduced systems. Then, symplectic and
cosymplectic geometries are briefly discussed [2, 25, 27, 95, 100, 101, 128], including the description of the
properties of Hamiltonian systems. This chapter also reviews some geometric descriptions of field theories,
with particular focus on the k-polysymplectic [7, 39, 41, 67, 78, 89, 117, 126, 134], k-polycosymplectic
[43, 74, 125], and k-contact [130, 131, 132] frameworks. These structures generalise classical symplectic,
cosymplectic, and contact geometries, respectively, and provide the appropriate setting for studying more
general Hamiltonian systems. It presents the necessary mathematical formalism, including the theory of
differential forms, vector fields, and Lie group actions. These tools are systematically developed, focusing
on the application to reduction theory and the stability analysis of Hamiltonian systems.

Unless explicitly stated otherwise, several general assumptions hold throughout this work.
All geometric objects are smooth and real. Manifolds are assumed to be finite-dimensional, connected,

paracompact, and Hausdorff. In particular, this ensures the existence of partitions of unity. Moreover,
all geometric structures are globally defined. Of course, a more detailed treatment without previous
assumptions is possible (especially since it is believed that most results could be extended to the complex
case without much difficulty). These simplifications stress our key ideas and allow us to avoid minor or
unnecessary technical problems. Moreover, Ωk(M) and X(M) stand for the spaces of differential k-forms
and vector fields on a manifold M , respectively.

1.1 Fundamentals on the Lyapunov stability of non-autonomous
systems

This section provides an adaptation of some fundamental results from the Lyapunov stability theory on
Rn [79, 90, 124, 147] to the setting of manifolds. This generalisation enables the application of Lyapunov
theory to study differential equations on manifolds. It is worth noting that there is not much work on
Lyapunov stability on manifolds, and some results were presented in the work [122].

It is worth stressing that the extension of Lyapunov theory to manifolds is quite recent, with only
a few published works on the subject (see [54, 122] and references therein). Remarkably, the presented
generalisation retrieves the standard Lyapunov theory when restricted to problems on a Euclidean space
Rn. The main objective of the introduced techniques is to analyse the stability close to its equilibrium
points of the Hamilton equations of various reduced Hamiltonian systems, including non-autonomous
ones, obtained through the MMW theorems discussed in detail in Chapter 2.

To generalise Lyapunov theory from linear spaces to manifolds, it is necessary to find a substitute for
the norm on linear spaces, which plays a fundamental role in the classical Lyapunov theory. This norm

1
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comes from a Euclidean metric on linear spaces. Its natural extension to manifolds is provided through
Riemannian metrics. In particular, the existence of partitions of unity, which follows from the general
assumptions in this work, ensures that any manifold P admits a Riemannian metric [11]. Assume that
P is endowed with a Riemannian metric g. Then, the distance between two points x1, x2 ∈ P , denoted
by d(x1, x2), is defined as

d(x1, x2) := inf
γ : [0,1]→P

γ(0)=x1,γ(1)=x2

length(γ),

where length(γ) is the length of a smooth curve γ in P relative to the Riemannian metric g (see [94]). Let
Br,xe

be the ball of radius r centred at xe ∈ P with respect to the distance induced by the Riemannian
metric g, namely Br,xe := {x ∈ P | d(x, xe) < r} with r > 0. It can be proved that the topology induced
by a Riemannian metric on P is equivalent to the topology of the manifold P [91, 95]. Consequently, for
any point x ∈ P , every chart on P containing x gives a homomorphism to an open subset of Rn. This
implies that on an open coordinate neighbourhood of x ∈ P , the topology of the manifold is equivalent
to the topology of an open subset in Rn induced by the standard norm in Rn. Therefore, topological
properties on an open coordinate neighbourhood of any x ∈ P can be analysed using the norm on Rn.

Throughout this section, t stands for the physical time. Consider a t-dependent vector field X : (t, x) ∈
R × P 7→ X(t, x) ∈ TP , which is a t-parametric family of vector fields Xt : x ∈ P 7→ X(t, x) ∈ TP on P

with t ∈ R (see [52, 151] for details). Consider the following non-autonomous dynamical system

dx
dt = X(t, x) , ∀t ∈ R , ∀x ∈ P . (1.1.1)

where X is assumed to be smooth and (1.1.1) satisfies the conditions of the Theorem of existence and
uniqueness of solutions [2, Theorem 2.1.2].

Define R̄ := R+ ∪ {0} as the space of non-negative real numbers. Then, It′ := [t′,∞[ for any t′ ∈ R
and I−∞ := R. A point xe ∈ P is an equilibrium point of (1.1.1) if X(t, xe) = 0 for every t ∈ R. An
equilibrium point xe is stable from t0 ∈ R if, for every t0 ∈ It0 and any ball Bϵ,xe for ϵ > 0, there exists
a ball of radius δ(t0, ϵ), namely Bδ(t0,ϵ),xe

, such that every solution x(t) to (1.1.1) with x(t0) ∈ Bδ(t0,ϵ),xe

satisfies that x(t) ∈ Bϵ,xe
for all time t ∈ It0 . If t0 is not hereafter explicitly detailed, it is assumed that

t0 = −∞. An equilibrium point xe ∈ P is uniformly stable from t0 ∈ R if for every ϵ > 0, one can choose
δ(t0, ϵ), with t0 ∈ It0 , to be independent of t0. An equilibrium point is unstable from t0 if it is not stable
from t0.

The equilibrium point xe is asymptotically stable from t0 if xe is stable and for every t0 ∈ It0 there
exists an open neighbourhood Br(t0),xe

of xe such that every solution x(t) to (1.1.1) with x(t0) ∈ Br(t0),xe

converges to xe. Moreover, xe is uniformly asymptotically stable from t0 if it is asymptotically stable and
r(t0) can be chosen to be independent of t0 ∈ It0 and the convergence to xe is uniform relative to x in
Br,xe and t ∈ It0 (see [147, p. 140]).

Definition 1.1.1. A continuous function M : It0 × P → R is a locally positive definite function (lpdf) at
an equilibrium point xe from t0 ∈ R if, for some r > 0 and some continuous, strictly increasing function
α : R̄ → R with α(0) = 0, one has that

M(t, xe) = 0, M(t, x) ≥ α(d(x, xe)), ∀t ∈ It0 , ∀x ∈ Br,xe
.

Definition 1.1.2. A continuous function M : It0 × P → R is decrescent at an equilibrium point xe from
t0 ∈ R if, for some s > 0 and some continuous, strictly increasing function β : R̄ → R with β(0) = 0, is
fulfilled that

M(t, x) ≤ β(d(x, xe)), ∀t ∈ It0 , ∀x ∈ Bs,xe
.

Although Definition 1.1.1 and Definition 1.1.2 concern a continuous function M , as in the literature
[79, 90, 124, 147], for the present analysis, it is sufficient to assume that M(t, x) is a C 1 function. Hence,
from now on, M is assumed to be C 1. Note that Definition 1.1.1 could be reformulated without requiring
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(a) (b)

Figure 1.1: An example of an equilibrium point xe ∈ Rn that is stable (a) and asymptotically stable (b).

xe to be an equilibrium point. Nevertheless, its current form is appropriate for further developments,
which refer to the case for xe being an equilibrium point.

Define Ṁ : It0 × P → R as the function for which Ṁ(t̂, x̂), with (t̂, x̂) ∈ It0 × P , denotes the time
derivative of M(t, x(t)) at t = t̂ along the particular solution x(t) of (1.1.1) with initial condition x(t̂) = x̂.
Explicitly,

Ṁ(t̂, x̂) := d
dt

∣∣∣∣
t=t̂
M(t, x(t)) = ∂M

∂t
(t̂, x̂) +

dimP∑
i=1

∂M

∂xi
(t̂, x̂)Xi(t̂, x̂),

where {x1, . . . , xdimP } is a local coordinate system on P around x̂ andX1, . . . , XdimP are the components
of X in the basis of vector fields associated with the given local coordinates.

The above definitions play a crucial role in understanding Theorem 1.1.6, which characterises the
stability of (1.1.1) by studying the properties of an appropriate associated function.

For completeness and clarity, the following theorems provide an extension to manifolds of several
classical results for linear spaces presented in [147].

Theorem 1.1.3. An equilibrium point xe ∈ P of the system (1.1.1) is stable from t0 if there exists a lpdf
C 1-function M : It0 × P → R from t0 ∈ R and a constant r > 0 such that

Ṁ(t, x) ≤ 0 , ∀t ∈ It0 , ∀x ∈ Br,xe
.

Proof. Since the function M is assumed to be lpdf from t0, Definition 1.1.1 yields that there exists a
continuous strictly increasing function α : R̄ → R from t0 and a constant s > 0 satisfying

α(d(x, xe)) ≤ M(t, x) , ∀t ∈ It0 , ∀x ∈ Bs,xe
.

The proof that xe is stable from t0 boils down to showing that for any ϵ > 0, t0 ∈ It0 , and t ∈ It0 , there
exists δ(t0, ϵ) =: δ such that, if x(t) is the particular solution of (1.1.1) with initial condition x0 := x(t0),
then

d(x0, xe) < δ =⇒ d(x(t), xe) < ϵ , ∀t ∈ It0 .

Fix ϵ, t0, and set µ := min(ϵ, r, s). Then, there exists δ > 0 so that

sup
d(x,xe)<δ

M(t0, x) < α(µ) .

This holds since α(µ) > 0 and limδ→0+ supd(x,xe)<δM(t0, x) = 0. To show that δ guarantees the stability
of xe, suppose that d(x0, xe) < δ. Then, M(t0, x0) ≤ supd(x,xe)<δM(t0, x) < α(µ).
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Assume, for the moment, that x(t) remains in Bµ,xe
for every t ∈ It0 . Then, Bµ,xe

⊂ Br,xe
and since

Ṁ(t, x(t)) ≤ 0, together with the assumption that M(t, x) is a C 1-function, it follows that M(t, x(t)) −
M(t0, x0) ≤ 0. Thus,

M(t, x(t)) ≤ M(t0, x0) < α(µ) , ∀t ∈ It0 .

Moreover, since x(t) ∈ Bµ,xe
⊂ Bs,xe

for t ∈ It0 by assumption, one also obtains

α(d(x(t), xe)) ≤ M(t, x(t)) , ∀t ∈ It0 .

Hence, combining the previous two inequalities yields

α(d(x(t), xe)) < α(µ) , ∀t ∈ It0 .

Since α is strictly increasing, it follows that

d(x(t), xe) < µ ≤ ϵ , ∀t ∈ It0 . (1.1.2)

Consequently, xe is a stable equilibrium point provided that x(t) belongs to Bµ,xe for every t ∈ It0 . It
remains to show that this assumption is indeed satisfied.

Suppose that T := min{t ∈ R | d(x(t), xe) ≥ µ} (it is well defined, since x(t) is continuous). By the
definition of T , one has

d(x(t), xe) < µ , ∀t ∈ [t0, T [ ,

and, by continuity, d(x(T ), xe) = µ. Moreover, since µ ≤ r, it follows that

Ṁ(t, x(t)) ≤ 0 , ∀t ∈ [t0, T [ .

Hence, since M is a C 1-function, one obtains

M(T, x(T )) ≤ M(t0, x0) < α(µ) . (1.1.3)

On the other hand, as µ ≤ s, it follows that

M(T, x(T )) ≥ α(d(x(T ), xe)) = α(µ) . (1.1.4)

However, Equations (1.1.3) and (1.1.4) contradict each other. Consequently, no such T exists, and
therefore (1.1.2) holds.

Theorem 1.1.4. An equilibrium point xe of system (1.1.1) is uniformly stable from t0 if there exists a
C 1, lpdf and also decrescent function M : It0 × P → R from t0 and a constant r > 0 such that

Ṁ(t, x) ≤ 0 , ∀t ∈ It0 , ∀x ∈ Br,xe .

Proof. The proof of this theorem is only sketched, because it is essentially the same as the proof of
Theorem 1.1.3.

As M is assumed to be decrescent from t0, Definition 1.1.2 ensures the existence of a continuous,
strictly increasing function β : R̄ → R satisfying β(0) = 0 and a constant s > 0 such that

M(t, x) ≤ β(d(x, xe)) , ∀t ∈ It0 , ∀x ∈ Bs,xe
.

Define
ω(δ) := sup

d(x,xe)<δ, t∈It0

M(t, x) .

This function is well defined for δ < s, since M(t, x) is decrescent and ω(δ) ≤ β(δ). Moreover, ω(δ) is
non-decreasing and

lim
δ→0+

ω(δ) = lim
δ→0+

sup
d(x,xe)<δ, t∈It0

M(t, x) ≤ lim
δ→0+

β(δ) = 0 .
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Since M is a ldpf function, consider the function α : R̄ → R and the constant s1 > 0 satisfying

α(d(x, xe)) ≤ M(t, x) , ∀t ∈ It0 , ∀x ∈ Bs1,xe
.

Fix ϵ > 0 and define µ := min(ϵ, r, s, s1). Choose δ such that β(δ) < α(µ).
The rest of the proof proceeds exactly as in Theorem 1.1.3, including the argument showing that x(t)

remains in Bµ,xe for all t ≥ t0 ≥ t0 whenever x(t0) ∈ Bµ,xe .

Theorem 1.1.5. The equilibrium point xe of system (1.1.1) is uniformly asymptotically stable from t0 if
there exists a decrescent, lpdf, C 1-function M : It0 × P → R from t0 such that −Ṁ is a lpdf from t0.

Proof. Let x(t) denote a solution of (1.1.1) with initial condition x(t0) = x0 for some t0 ≥ t0. Since
−Ṁ is a lpdf function, Definition 1.1.1 implies the existence of a continuous, strictly increasing function
γ : R̄ → R with γ(0) = 0 and a constant s > 0 such that

Ṁ(t, x) ≤ −γ(d(x, xe)) , ∀t ∈ It0 , ∀x ∈ Bs,xe .

Since γ is a non-negative function, one has

Ṁ(t, x) ≤ 0 , ∀t ∈ It0 , ∀x ∈ Bs,xe . (1.1.5)

Thus, Ṁ satisfies the hypothesis of Theorem 1.1.4 and xe is a uniformly stable equilibrium from t0. Then,
what remains to prove is that, for every ϵ > 0 and t0 ≥ t0, there exists T := T (ϵ) and δ > 0 such that
every solution x(t) with x(t0) ∈ Bδ,xe

satisfies

d(x(t), xe) < ϵ , ∀t ≥ T + t0 .

It is sufficient to show that such a constant δ exists. This condition can be equivalently written as

∀ϵ > 0 , ∃ δ > 0 , ∃T > 0 , d(x0, xe) < δ =⇒ d(x(t), xe) < ϵ , ∀t ≥ T + t0 . (1.1.6)

By the hypothesis, there exist functions α, β : R̄ → R and constants k, l > 0 such that

α(d(x, xe)) ≤ M(t, x) , ∀t ∈ It0 , ∀x ∈ Bk,xe
, (1.1.7)

M(t, x) ≤ β(d(x, xe)) , ∀t ∈ It0 , ∀x ∈ Bl,xe
. (1.1.8)

Set r := min{k, l, s, ϵ} and define positive constants κ1, κ2, T as follows

κ1 < β−1(α(r)) , κ2 < min{β−1(α(ϵ)), κ1} , T := β(κ1)
γ(κ2) .

To prove that fixing δ = κ2 and T satisfies (1.1.6), recall that every particular solution x(t) to (1.1.1)
with x(t0) =: x0 ∈ Bκ2,xe

remains inside the ball Br,xe
for all t ∈ It0 and κ2 small enough. Indeed, the

argument follows from the same reasoning as in the previous theorems. Therefore, one can assume that
(1.1.7) and (1.1.8) apply to Bκ2,xe

.
First, one needs to prove the following

d(x0, xe) < κ1 =⇒ d(x(t1), xe) < κ2 , ∃ t1 ∈ [t0, t0 + T ] . (1.1.9)

The proof proceeds by contradiction. Suppose that

d(x0, xe) < κ1 ∧ d(x(t), xe) ≥ κ2 , ∀t ∈ [t0, t0 + T ] .

From (1.1.7), (1.1.8), and (1.1.5) it follows

β(d(x0, xe)) < β(κ1) , γ(d(x(t), xe)) ≥ γ(κ2) , α(κ2) ≤ α(d(x(t), xe)) ,
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for all t0 < t < t0 + T and x0 ∈ Bκ2,xe
. Consequently,

0 < α(κ2) ≤ M(t0 + T, x(t0 + T )) = M(t0, x0) +
∫ t0+T

t0

Ṁ(τ, x(τ))dτ ≤

β(d(x0, xe)) −
∫ t0+T

t0

γ(d(x(τ), xe))dτ ≤ β(κ1) − Tγ(κ2) = 0 ,

which is a contradiction. Therefore, (1.1.9) holds.
To complete the proof, consider t > t0 + T . Inequality (1.1.7) holds for all t ∈ It0 , and by (1.1.9)

there exists t1 ∈ [t0, t0 + T ] such that β(d(x(t1), xe)) < β(κ2). Then, by (1.1.5), it follows that

α(d(x(t), xe)) ≤ M(t, x(t)) ≤ M(t1, x(t1))

and
M(t1, x(t1)) ≤ β(d(x(t1), xe)) < β(κ2) .

Combining these two inequalities, one gets

α(d(x(t), xe)) < β(κ2) ≤ α(ϵ),

which establishes (1.1.6) for δ = κ2 and finishes the proof.

The following theorem summarises the last three theorems in a single statement, referred to as the
basic Lyapunov theorem on manifolds.

Theorem 1.1.6. (The basic Lyapunov theorem on manifolds [90, 147]) Let M : It0 × P → R be
a non-negative function, let xe ∈ P be an equilibrium point of (1.1.1), and let Ṁ stand for the function
(1.1). Then, one has the following results:

1. If M is C 1 and lpdf from t0 and Ṁ(t, x) ≤ 0 for x locally around xe and for all t ∈ It0 , then xe is
stable.

2. If M is C 1, lpdf and decrescent from t0, and Ṁ(t, x) ≤ 0 locally around xe and for all t ∈ It0 , then
xe is uniformly stable.

3. If M is C 1, lpdf and decrescent from t0, and −Ṁ(t, x) is locally positive definite around xe and
t ∈ It0 , then xe is uniformly asymptotically stable.

1.2 Basics on symplectic geometry
This section presents fundamental notions and results in symplectic geometry while establishing the
notation used hereafter [2, 25, 95, 128].

Definition 1.2.1. A symplectic manifold is a pair (P, ω), where P is a manifold and ω ∈ Ω2(P ) is closed
and non-degenerate, namely the map ω̂ : TP 7→ T∗P , given by ω̂(vp) := ωp(vp, ·) ∈ T∗

pP for every p ∈ P

and each vp ∈ TpP , is a vector bundle isomorphism. The form ω is called a symplectic form.

Hereafter, (P, ω) stands for a symplectic manifold. For any subspace Vp ⊂ TpP , the symplectic
orthogonal is defined as

V ⊥ω
p := {ϑp ∈ TpP | ωp(ϑp, vp) = 0, ∀vp ∈ Vp}.

Theorem 1.2.2. Let (P, ω) be a symplectic manifold of dimension 2n. Then, around any point p ∈ P ,
there exist an open neighbourhood U and a coordinate system {qi, pi}i=1,...,n such that

ω|U =
n∑
i=1

dqi ∧ dpi .

These coordinates are called the symplectic Darboux coordinates.
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It is worth noting that symplectic Darboux coordinates are not unique.
Cotangent manifolds are naturally endowed with a symplectic form to be described next.

Definition 1.2.3. The canonical one-form or Liouville form on T∗Q is θQ ∈ Ω1(T∗Q) on T∗Q defined
by

(θQ)αq
(vαq

) := ⟨αq,Tαq
τ(vαq

)⟩, ∀q ∈ Q, ∀αq ∈ T∗
qQ, ∀vαq

∈ Tαq
T∗
qQ

where Q is any manifold, τ : T∗Q → Q is the canonical cotangent bundle projection and ⟨·, ·⟩ is the
natural pairing between covectors and vectors. The canonical two-form ωQ ∈ Ω2(T∗Q) is the differential
two-form on T∗Q given by

ωQ := −dθQ.

In local adapted coordinates {qi, pi}i=1,...,n to T∗Q, one has θQ =
∑n
i=1 pidqi. Then, ωQ = −dθQ =∑n

i=1 dqi ∧ dpi becomes the canonical symplectic form [2, 25, 128]. The symplectic manifold (T∗Q,ωQ)
plays a significant role in many physical applications [2].

Definition 1.2.4. A vector field X ∈ X(P ) is Hamiltonian if ιXω = df for some f ∈ C ∞(P ). Then, f
is called a Hamiltonian function associated with X.

Since ω is non-degenerate, every f ∈ C ∞(P ) corresponds to a unique Hamiltonian vector field Xf .
The space of Hamiltonian vector fields on P relative to a symplectic form ω is denoted by Ham(P, ω).
Moreover, the Cartan’s magic formula [2, p 194] yields

LXf
ω = ιXf

dω + dιXf
ω = ιXf

dω + d2f = 0, (1.2.1)

where LXf
ω is the Lie derivative of ω with respect to Xf .

Definition 1.2.5. A Poisson bracket is a bilinear map {·, ·} : C ∞(P )×C ∞(P ) → C ∞(P ) satisfying that
(C ∞(P ), {·, ·}) is a Lie algebra and

{f, gh} = {f, g}h+ g{f, h} , ∀f, g, h ∈ C ∞(P ) .

Define a bracket

{·, ·} : C ∞(P ) × C ∞(P ) ∋ (f, g) 7→ ω(Xf , Xg) ∈ C ∞(P ).

This bracket is bilinear, antisymmetric, and, since dω = 0, it satisfies the Jacobi identity [2, 93, 128],
which makes {·, ·} into a Lie bracket. Furthermore, {·, ·} satisfies the Leibniz rule, i.e.

{f, gh} = {f, g}h+ g{f, h} , ∀f, g, h ∈ C ∞(P ) .

Due to all such properties, {·, ·} becomes a Poisson bracket according to Definition 1.2.5. Since ι[Xf ,Xg] =
LXf

ιXg
− ιXg

LXf
for every f, g ∈ C ∞(P ) (see [2, p 121]), and by using (1.2.1), it follows that

ι[Xf ,Xg]ω = LXf
ιXgω − ιXgLXf

ω = LXf
ιXgω = dXfg = d{g, f}

and X{g,f} = [Xf , Xg]. In other words, the mapping f ∈ C ∞(P ) 7→ −Xf ∈ Ham(P, ω) is a Lie algebra
morphism relative to the Lie bracket {·, ·} in C ∞(P ) and the commutation of vector fields in X(P ).

The following definition plays a crucial role in reduction theory, as it serves as a fundamental tool for
describing Lie symmetries. Assume G to be a Lie group with a Lie algebra g.

Definition 1.2.6. The fundamental vector field associated with a Lie group action Φ: G×P → P related
to ξ ∈ g is the vector field on P defined by

(ξP )p := d
dt

∣∣∣∣
t=0

Φ(exp(tξ), p) , ∀p ∈ P ,

where exp: g → G is the exponential map related to the Lie group G.
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If the Lie group action Φ is known from context, the notation gp is used instead of Φ(g, p) for every
g ∈ G and each p ∈ P . The convention used in Definition 1.2.6 gives rise to an anti-morphism of Lie
algebras ξ ∈ g 7→ ξP ∈ X(P ) (see [2, 25, 30]). Define

Φg : p̃ ∈ P 7→ gp̃ ∈ P , Φz : g̃ ∈ G 7→ g̃p ∈ P , ∀g ∈ G, ∀p ∈ P .

Each Φg, for g ∈ G, has an inverse Φg−1 . Thus, Φg is a diffeomorphism for every g ∈ G.

Definition 1.2.7. The isotropy subgroup of Φ at p ∈ P is the Lie subgroup of G defined by

Gp := {g ∈ G | gp = p} ⊂ G.

The orbit of a point p ∈ P relative to Φ is given by

Gp := {gp | g ∈ G} .

The constant rank theorem yields that the orbits of a Lie group action Φ are immersed submanifolds
of P [2, p 48]. Consequently, for each p̃ ∈ Gp one has

Tp̃(Gp) = {(ξP )p̃ | ξ ∈ g} .

Recall that each g ∈ G gives rise to the following diffeomorphisms on G

Lg : G ∋ h 7→ gh ∈ G, Rg : G ∋ h 7→ hg ∈ G,

Ig : G ∋ h 7→ ghg−1 ∈ G.

Then, the adjoint action of G is defined as

Ad: (g, ξ) ∈ G× g 7→ Adgξ ∈ g , (1.2.2)

where Adgξ := (TeIg)(ξ). The fundamental vector field associated with the adjoint action for a given
ξ ∈ g is given by

(ξg)v = d
dt

∣∣∣∣
t=0

Adexp(tξ)v = [ξ, v] =: adξv, ∀v ∈ g,

where [·, ·] denotes the Lie bracket in g. Note that (ξg)v ∈ Tvg and adξv ∈ g. Although both elements
belong to different spaces, (ξg)v and adξv can be identified due to the existence of a natural isomorphism.
Specifically, when dimV < ∞, there exists an isomorphism v ∈ V ≃ Dv ∈ TϑV , at each ϑ ∈ V , identifying
each v ∈ V to the tangent vector at ϑ associated with the derivative at ϑ in the direction v. If Sξ is the
orbit of the adjoint action passing through ξ ∈ g. Then

TνSξ = {(ξg)ν | ξ ∈ g},

for every ν ∈ Sξ.
The group G also acts on g∗ via the co-adjoint action, given by

Ad∗ : (g, µ) ∈ G× g∗ 7→ Ad∗
g−1µ ∈ g∗,

where Ad∗
g is the dual map to Adg, namely ⟨Ad∗

gµ, ξ⟩ = ⟨µ,Adgξ⟩ for all ξ ∈ g and µ ∈ g∗, where ⟨·, ·⟩
denotes the natural pairing between g∗ and g. Then,

(ξg∗)µ = d
dt

∣∣∣∣
t=0

Ad∗
exp(−tξ)µ = −⟨µ, [ξ, ·]⟩ = −ad∗

ξµ, ∀µ ∈ g∗. (1.2.3)

Consequently, ad∗
ξ is defined as ⟨ad∗

ξϑ, v⟩ := ⟨v, adξv⟩ for every ϑ ∈ g∗ and v, ξ ∈ g. The co-adjoint orbit
of µ ∈ g∗ is given by

Oµ := {Ad∗
g−1µ | g ∈ G} , and TϑOµ = {(ξg∗)ϑ | ξ ∈ g},
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at every point ϑ ∈ Oµ. Furthermore, the fundamental vector fields ξg and ξg∗ are related by

⟨(ξg∗)µ, v⟩ = ⟨−ad∗
ξµ, v⟩ = −⟨µ, (ξg)v⟩, ∀v ∈ g ≃ T∗

µg
∗, ∀µ ∈ g∗ ≃ T∗

vg.

Finally, the following definition introduces Lie group actions that preserve the symplectic form. Such
actions play a fundamental role in the symplectic Marsden–Meyer–Weinstein reduction [128].

Definition 1.2.8. A Lie group action Φ: G× P → P is a symplectic Lie group action relative to (P, ω)
if Φ∗

gω = ω for every g ∈ G. Equivalently, in terms of fundamental vector fields associated with Φ, one
has

LξP
ω = 0 ∀ξ ∈ g .

Furthermore, Φ is a Hamiltonian Lie group action if its fundamental vector fields are Hamiltonian relative
to (P, ω).

1.3 Basics on cosymplectic geometry
This subsection establishes fundamental results on cosymplectic geometry [27, 100, 101] to be used here-
after.

Definition 1.3.1. A cosymplectic manifold is a triple (M,ω, τ), where M is a (2n + 1)-dimensional
manifold, ω ∈ Ω2(M) and τ ∈ Ω1(M) are closed forms satisfying that τ ∧ωn does not vanish at any point
of M .

Note that τ ∧ ωn does not vanish at any point of M if and only if τ ∧ ωn is a volume form. Hence,
cosymplectic manifolds are always orientable and odd-dimensional.

The Darboux theorem for cosymplectic manifolds [4] states the following.

Theorem 1.3.2. Let (M,ω, τ) be a cosymplectic manifold. Then, each point x ∈ M admits a local
coordinate system {t, q1, . . . , qn, p1, . . . , pn} on an open neighbourhood U of x so that

ω|U =
n∑
i=1

dqi ∧ dpi, τ |U = dt.

Such local coordinates are referred to as cosymplectic Darboux coordinates.

As in the symplectic setting, cosymplectic Darboux coordinates are not unique. As shown in the
following theorem, each cosymplectic manifold (M,ω, τ) admits a unique vector field R on M satisfying

ιR ω = 0, ιR τ = 1.

This vector field is called the Reeb vector field of (M,ω, τ). In cosymplectic Darboux coordinates
{t, q1, . . . , qn, p1, . . . , pn}, it is given by R = ∂

∂t .

Theorem 1.3.3. Every cosymplectic manifold (M,ω, τ) admits a unique Reeb vector field.

Proof. Since M is odd-dimensional, suppose that dimM = 2n + 1. Since ker τx ∩ kerωx = 0 for every
x ∈ M and kerωx ̸= 0, it follows that τ does not vanish. Consequently, dim ker τx = 2n and dim kerωx =
1. Indeed, if dim kerωx > 1, then dim ker(τx ∧ ωnx ) > 0, which leads to a contradiction. Therefore,
kerωx ⊕ ker τx = TxM for each x ∈ M . Let Dx ∈ kerωx \ {0}. A Reeb vector field is then defined by

Rx = Dx

ιDxτx
, x ∈ M . (1.3.1)

It satisfies ιRx
τx = 1 and ιRx

ωx = 0. Moreover, if R1 and R2 are two Reeb vector fields, then

ιR1(τ ∧ ωn) = ιR2(τ ∧ ωn) ⇒ ιR1−R2(τ ∧ ωn) = 0 ⇒ R1 = R2.

Hence, the Reeb vector field is unique and is given by (1.3.1).
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Definition 1.3.4. A cosymplectomorphism is a map φ : M1 → M2 between cosymplectic manifolds
(M1, ω1, τ1) and (M2, ω2, τ2) such that φ∗ω2 = ω1 and φ∗τ2 = τ1.

Then, in terms of Lie group actions, one has the following definition.

Definition 1.3.5. A cosymplectic Lie group action relative to (M,ω, τ) is a Lie group action Φ: G×M →
M such that, for every g ∈ G, the map Φg : M → M is a cosymplectomorphism. In other words,

Φ∗
g ω = ω, Φ∗

g τ = τ, ∀g ∈ G.

Assuming G is connected, as assumed in this PhD thesis, Φ: G×M → M is a cosymplectomorphism
if and only if

LξM
ω = 0, LξM

τ = 0, ∀ξ ∈ g,

where LξM
denotes the Lie derivative along the fundamental vector field ξM .

Additionally, since dτ = 0, the condition LξM
τ = 0 implies that ιξM

τ is a constant function on M ,
which does not need to be one or zero. This property will be relevant in Section 3.2.7 when studying the
restricted circular three-body problem [2, 60].

Proposition 1.3.6. A triple (M,ω, τ) is a cosymplectic manifold if and only if the vector bundle homo-
morphism

♭ : TM → T∗M, vx ∈ TxM 7→ ♭(vx) = ιvx
ωx + (ιvx

τx)τx, ∀x ∈ M,

is a vector bundle isomorphism.

Proof. Assume that ♭(vx) = 0 for a certain vx ∈ TxM . Then,

ιvx
ωx + (ιvx

τx)τx = 0. (1.3.2)

Contracting both sides of (1.3.2) with the Reeb vector field at x, namely Rx ∈ TxM , one has

ιRx
ιvx
ωx + (ιvx

τx)ιRx
τx = ιvx

τx = 0,

and vx ∈ ker τx. Then,
0 = ♭(vx) = ιvx

ωx

and vx ∈ kerωx. Therefore, vx ∈ ker τx ∩ kerωx = 0. Hence, ♭ is an injective vector bundle morphism
and becomes a vector bundle isomorphism since TM and T∗M are vector bundles of the same rank.

Conversely, by contradiction, if (M,ω, τ) is not a cosymplectic manifold, then there exists a non-zero
vx ∈ ker τx ∩ kerωx, which exists by assumption. Then ♭ is not a vector bundle isomorphism.

Definition 1.3.7. Given a cosymplectic manifold (M,ω, τ). Then, each f ∈ C ∞(M) gives rise to three
vector fields:

• A gradient vector field, namely
∇f := ♭−1(df) , (1.3.3)

which amounts to saying that ι∇fω = df − (Rf)τ and ι∇fτ = Rf .

• A Hamiltonian vector field, Xf , given by

Xf := ♭−1(df − (Rf)τ) , (1.3.4)

which is equivalent to ιXf
ω = df − (Rf)τ and ιXf

τ = 0.

• An evolution vector field
Ef := R+Xf . (1.3.5)
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In cosymplectic Darboux coordinates for (M,ω, τ) around a point x ∈ M , the vector fields (1.3.3),
(1.3.4), and (1.3.5) read

∇f = ∂f

∂t

∂

∂t
+

n∑
i=1

(
∂f

∂pi

∂

∂qi
− ∂f

∂qi
∂

∂pi

)
, Xf =

n∑
i=1

(
∂f

∂pi

∂

∂qi
− ∂f

∂qi
∂

∂pi

)
,

and

Ef = ∂

∂t
+

n∑
i=1

(
∂f

∂pi

∂

∂qi
− ∂f

∂qi
∂

∂pi

)
.

The integral curves of Ef are given, in cosymplectic Darboux coordinates, by the solutions of

dt
ds = 1, dqi

ds = ∂f

∂pi
(t, q, p) , dpi

ds = − ∂f

∂qi
(t, q, p) , i = 1, . . . , n , (1.3.6a)

where (t, q, p) stands for (t, q1, . . . , qn, p1, . . . , pn).

Example 1.3.8. Let T be a one-dimensional manifold, and let (P, ω) be a symplectic manifold. Consider
the product manifold M = T × P and the projection map πT : M → T and πP : M → P . A symplectic
form ω on P induces a closed differential two-form on M given by ωP := π∗

Pω. Similarly, a non-vanishing
differential one-form τ on T gives rise to a closed differential one-form τT = π∗

T τ on M . Consequently,
(T × P, ωP , τT ) becomes a cosymplectic manifold.

Unless otherwise stated, cosymplectic Darboux coordinates on (T × P, ωP , τT ) are assumed to be
of the form {t, q1, . . . , qn, p1, . . . , pn}, where t stands for the pull-back to M of a potential of τ , while
q1, . . . , qn, p1, . . . , pn are the pull-backs to M of symplectic Darboux coordinates for (P, ω). For clarity,
the pull-backs of coordinate functions from T and P to M are denoted identically to their counterparts
in T and P . △

If M = R × T∗Q, with τ = dt and ω =
∑n
i=1 dqi ∧ dpi, then (1.3.6a) can be rewritten as

dqi

dt = ∂f

∂pi
(t, q, p), dpi

dt = − ∂f

∂qi
(t, q, p), i = 1, . . . , n. (1.3.6b)

Thus, (1.3.6b) retrieves the Hamilton equations for a time-dependent symplectic Hamiltonian system on
T∗Q (see Subsection 3.1.1 or [2, 54]).

More generally, one has the following definition.

Definition 1.3.9. Given a cosymplectic manifold (M,ω, τ), the Hamilton equations associated with
h ∈ C ∞(M) are defined as the system of differential equations which, locally on each coordinated open
neighbourhood U ⊂ M with cosymplectic Darboux coordinates {t, q1, . . . , qn, p1, . . . , pn}, is given by

dqi

dt = ∂h

∂pi
(t, q1, . . . , qn, p1, . . . , pn) , dpi

dt = − ∂h

∂qi
(t, q1, . . . , qn, p1, . . . , pn) , i = 1, . . . , n . (1.3.7)

Roughly speaking, Equations (1.3.7) are the system of differential equations for the integral curves of
Eh parametrised by points in T described by the coordinate t in the Darboux coordinates obtained from
coordinates on T and P as indicated previously. Although the coordinate t is defined up to an additive
constant, equations (1.3.7) are equivalent for any admissible choice of variable t within the cosymplectic
Darboux coordinate class. Consequently, the Hamilton equations exhibit a geometrical meaning. This
property remains valid even in the cases where T = S1, provided that the particular solutions are allowed
to match every point of T with several points of P (see Figure 1.2).

The integral curves of Xf in M are given by the solutions of

dt
ds = 0, dqi

ds = ∂f

∂pi
(t, q, p) , dpi

ds = − ∂f

∂qi
(t, q, p) , i = 1, . . . , n .
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Figure 1.2: Example of solutions of Hamilton equations on a cosymplectic manifold (S1 × T∗R, ωT∗R, τS1)
for S1 being the circle of radius one centred at zero. Only the coordinates of solutions in S1 × R are
represented.

It is worth noting that Xh on M = R×P can also be considered as a time-dependent vector field [2, 54].
In this setting, its integral curves are R ∋ t 7→ (t, p(t)) ∈ R × P , where p(t) denotes a solution of (1.3.7).
This provides the geometric interpretations of the solutions.

An analogous construction extends to any cosymplectic manifold of the form (M := T × P, ωP , τT ).
However, in this setting, the solutions of the Hamilton equations can associate each point t ∈ T with
multiple distinct points in P . Nevertheless, locally in a neighbourhood of any point t0 ∈ T , a solution
can be considered as a union of local sections of πT : M → T , whose images do not intersect each other
(see Figure 1.2).

The following result shows a useful property.

Proposition 1.3.10. For any f ∈ C ∞(M), the gradient vector field on (M,ω, τ) is given by ∇ f =
Xf + (Rf)R. Moreover, if Rf = 0, then [R,Xf ] = 0.

Proof. From the definitions of the Hamiltonian and gradient vector fields, one has

ι∇f ω = df − (Rf)τ = ιXf
ω ⇒ ι∇f−Xf

ω = 0 .

Hence, ∇f = Xf + Y for some vector field Y on M such that ιY ω = 0. Furthermore,

ι∇fτ = ιXf
τ + ιY τ = Rf .

Since ιXf
τ = 0 and ker τ ⊕ kerω = TM , then Y = (Rf)R and ∇f = Xf + (Rf)R.

If, in addition, Rf = 0, then

ι[Xf ,R]ω = LXf
ιRω − ιRLXf

ω = −ιRdιXf
ω = ιRd(df − (Rf)τ) = 0,

and similarly
ι[Xf ,R]τ = LXf

ιRτ − ιRLXf
τ = −ιRdιXf

τ = 0.

Since TM = ker τ ⊕ kerω, it follows that [Xf , R] = 0.



Chapter 1. Fundamentals 13

Any cosymplectic manifold (M,ω, τ) naturally induces a Poisson bracket {·, ·}ω,τ : C ∞(M)×C ∞(M)→
C ∞(M) of the form

{f, g}ω,τ := ω(∇ f,∇ g) = ω(Xf , Xg), ∀f, g ∈ C ∞(M), (1.3.8)

where the last equality is a consequence of Proposition 1.3.10 and the condition ιR ω = 0. As in the
symplectic case, the Poisson bracket satisfies

X{f,g}ω,τ
= −[Xf , Xg], ∀f, g ∈ C ∞(M). (1.3.9)

The Poisson bivector Λω,τ associated with the Poisson bracket {·, ·}ω,τ is given by

Λω,τ (x)(αx, βx) = {f, g}ω,τ (x) = ωx(Xf , Xg), ∀x ∈ M,

where df(x) = αx and dg(x) = βx are elements of T∗
xM for certain f, g ∈ C ∞(M). In cosymplectic

Darboux coordinates, the Poisson bivector Λω,τ reads

Λω,τ =
n∑
i=1

∂

∂qi
∧ ∂

∂pi
.

It is worth noting that LRΛω,τ = 0.
The space of Hamiltonian vector fields relative to a cosymplectic manifold (M,ω, τ), denoted by

Ham(M,ω, τ), forms a Lie subalgebra of X(M). Moreover, the map

f ∈ C ∞(M) 7→ −Xf ∈ Ham(M,ω, τ)

is a Lie algebra homomorphism. Note that Xf is a Hamiltonian vector field relative to the Poisson bracket
{·, ·}ω,τ , namely Xf = {·, f}ω,τ , whereas the corresponding evolution vector field Ef is never so and ∇f
is not Hamiltonian in general either (cf. [146]).

1.3.1 Symplectic, cosymplectic, and Poisson geometries

In physical applications, particular attention is given to cosymplectic manifolds of the form (T×P, ωP , τT ),
where T is a one-dimensional manifold representing a certain time interval and P is a symplectic manifold.
Several choices of T and P are interesting in this context.

Let Q be the configuration manifold of a physical system. A standard choice for P is the cotangent
bundle of Q, i.e. P = T∗Q, equipped with its canonical symplectic structure, see Definition 1.2.3.
Alternatively, one may consider P = TQ endowed with the symplectic structure induced by a regular
Lagrangian function (see [112] for details).

Meanwhile, T can be chosen to be R with its natural variable t and the closed non-vanishing one-form
τ = dt, which represents the flow of time over the real line. This choice is appropriate for systems evolving
continuously over an unbounded time interval. Another relevant option is T = S1, the unit circle in R2,
endowed with the closed non-degenerate one-form dθ, where θ denotes the angular coordinate relative to
a reference point in it. This model is suited for the analysis of t-dependent Hamilton equations with a
t-dependent periodic Hamiltonian.

Recall that cosymplectic Darboux coordinates for (T × P, ωP , τT ) are assumed to be of the form
{t, q1, . . . , qn, p1, . . . , pn}, where the functions {q1, . . . , qn, p1, . . . , pn} denote the pull-back to M of sym-
plectic Darboux coordinates for a symplectic manifold P and the function t is the pull-back to M of a
potential of a closed one-form on T .

Although a cosymplectic manifold (M,ω, τ) naturally induces both a symplectic manifold (R×M, ω̂)
and a Poisson manifold (M, {·, ·}ω,τ ), it is shown that neither of these approaches provides an appropriate
framework for extending the energy-momentum method from symplectic to cosymplectic setting.

The following lemma illustrates the natural relationship between symplectic and cosymplectic mani-
folds [44]. A complete proof is provided, as it is often omitted in the existing literature.
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Lemma 1.3.11. Let ω ∈ Ω2(M), τ ∈ Ω1(M) and let pr: R × M → M be the canonical projection onto
M . Let s be the natural coordinate in R understood as a variable in R×M in the natural manner. Then,
(M,ω, τ) is a cosymplectic manifold if and only if (R×M, pr∗ω+ds∧pr∗τ =: ω̂) is a symplectic manifold.
Moreover, pr is a Poisson morphism, i.e.

{f ◦ pr, k ◦ pr}
ω̂

= {f, k}ω,τ ◦ pr, ∀f, k ∈ C ∞(M) .

Proof. Recall that if (M,ω, τ) is a cosymplectic manifold and dimM = 2n+ 1, then ωn ∧ τ is a volume
form. Since ω ∈ Ω2(M) and τ ∈ Ω1(M) are closed, then

dω̂ = d(pr∗ω + ds ∧ pr∗τ) = pr∗dω − ds ∧ pr∗dτ = 0, (1.3.10)

and ω̂ ∈ Ω2(R ×M) is also closed. Since ϑn+1 = 0 for every differential two-form ϑ on M , one has that

ω̂n+1 = (pr∗ω + ds ∧ pr∗τ)n+1 = (n + 1)(pr∗ω)n ∧ ds ∧ pr∗τ = (n + 1)ds ∧ pr∗(ωn ∧ τ), (1.3.11)

is clearly a volume form on R ×M and it is non-zero. Thus, ω̂ is non-degenerate.
Conversely, if (R×M, ω̂) is a symplectic manifold, relation (1.3.11) shows that ωn ∧ τ ̸= 0. Moreover,

(1.3.10) gives that pr∗ω and pr∗τ are closed forms. Since pr is a surjective submersion, dω = 0 and
dτ = 0. Therefore, (M,ω, τ) is a cosymplectic manifold.

Furthermore, if {·, ·}
ω̂

is the Poisson bracket induced by the symplectic form ω̂, then

pr∗{f, k}ω,τ = −pr∗(ιXf
ιXk

ω) = −pr∗(ιXf
dk − (Rk)ιXf

τ)
= −ιXpr∗f

pr∗dk = −ιXpr∗f
dpr∗k = {pr∗f, pr∗k}

ω̂
,

for every f, k ∈ C ∞(M), and pr: R × M → M is a Poisson morphism. Note that Xpr∗f stands for the
Hamiltonian vector field on (R ×M, ω̂) of the function pr∗f ∈ C ∞(R ×M).

This paragraph aims to show that the vector fields ∇f , Xf , and Ef on a cosymplectic manifold
(M,ω, τ) cannot, in general, be considered as Hamiltonian vector fields relative to the symplectic manifold
(R×M, ω̂), where ω̂ is a symplectic form induced by (M,ω, τ). To clarify this point, it is necessary to relate
f , ∇f , Xf , and Ef to natural mathematical structures on R × M . Consider f̃ := pr∗f ∈ C ∞(R × M),
where pr : R × M → M is the canonical projection. Define the vector fields F̃g, X̃f , and Ẽf on R × M

to be the unique vector fields projecting onto ∇f , Xf , and Ef via pr∗, respectively. Then, taking into
account the isomorphism T(s,x)(R ×M) ≃ TsR ⊕ TxM for every s ∈ R and x ∈ M , one gets that

ιF̃g
ds = ιX̃f

ds = ιẼf
ds = 0 .

Furthermore,

dιF̃g
ω̂ = d(ιF̃g

pr∗ω − (ιF̃g
pr∗τ)ds) = d(pr∗(ι∇f ω) − pr∗(Rf)ds)
= pr∗(d(df − (Rf)τ)) − pr∗(d(Rf)) ∧ ds = −pr∗(d(Rf)) ∧ (ds+ pr∗τ) .

Consequently, F̃g is not, in general, a Hamiltonian vector field on R ×M relative to ω̂. Similarly,

dιX̃f
ω̂ = d(ιX̃f

pr∗ω − (ιX̃f
pr∗τ)ds) = d(pr∗(ιXf

ω) − pr∗(ιXf
τ)ds)

= pr∗(dιXf
ω) − pr∗(dιXf

τ) ∧ ds = −pr∗(d(Rf) ∧ τ),

and X̃f is not, neither, a Hamiltonian vector field on R ×M in general. Finally,

dιẼf
ω̂ = d(ιR̃ ω̂ + ιX̃f

ω̂) = dιX̃f
ω̂ = −pr∗(d(Rf) ∧ τ),

where R̃ is the unique vector field on R × M that projects onto the Reeb vector field R on M via pr∗
and satisfies ιR̃ds = 0. Accordingly, Ẽf , in general, fails to be a Hamiltonian vector field with respect to
(R ×M, ω̂).
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Nevertheless, if d(Rf) = 0, then ∇f , Xf , Ef naturally give rise to Hamiltonian vector fields F̃g, X̃f ,
and Ẽf , respectively, relative to the symplectic manifold (R × M, ω̂). However, in general, the latter
is not necessarily satisfied. The condition Rf = 0, which appears in a different form in cosymplectic
theory [4], may be used to define, on cosymplectic manifolds, an analogue of the geometric structures
and techniques appearing in symplectic manifolds [44].

It is worth noting that alternative approaches exist to consider some of the vector fields mentioned
above in M as Hamiltonian vector fields on R×M (see, for instance, [44] or the proof of Lemma 1.3.11).
However, these methods are used to change the intrinsic properties of vector fields on M , potentially
complicating their analysis. For example, certain methods can turn a vector field on M with equilibrium
points into one without them in R × M , which can give rise to problems with studying the stability.
Specifically, the vector field (Rf) ∂∂s +Xf is Hamiltonian on R×M with respect to ω̂ and projecting onto
Xf relative to pr∗. Nevertheless, the stability properties of (Rf) ∂∂s + Xf significantly differ from those
of Xf , e.g. it may admit no equilibrium points at all while Xf does, and thus introduces new difficulties
in the stability analysis of the original dynamics on M .

Note that every cosymplectic Hamiltonian vector field is indeed Hamiltonian relative to the Poisson
bracket associated with its underlying cosymplectic manifold. Nevertheless, gradient vector fields are not,
in general, Hamiltonian, and evolution vector fields are never Hamiltonian with respect to such a Poisson
bracket, as shown before. These facts, along with further results presented in the subsequent sections,
indicate that the Poisson bracket associated with a cosymplectic structure is insufficient, by itself, for
the analysis of the problems to be studied hereafter. Moreover, neither the classical energy-momentum
method [113] nor the energy-Casimir method, developed for studying the stability of relative equilibrium
points of Hamiltonian systems on Poisson manifolds [113], is applicable in the forthcoming analysis. In
particular, the restricted circular three-body problem examined in Subsection 3.2.7 demonstrates the
necessity of the new techniques introduced within this PhD thesis. It also highlights the limitations of
existing techniques, such as the time-dependent energy-momentum method [54], which proves to be not
enough to analyse certain types of problems addressed through the new methods proposed in Chapter 3.

1.4 Fundamentals on geometric field theory
This section reviews the geometric preliminaries required for the development of the geometric formulation
of Hamiltonian field theories (see [7, 37, 38, 75, 78, 106, 107] for details on k-polysymplectic and k-
polycosymplectic formalisms). Throughout this work, it is assumed that Rk has a fixed basis {e1, . . . , ek}
giving rise to a dual basis {e1, . . . , ek} in Rk∗. Let θ = θα ⊗ eα ∈ Ωℓ(M,Rk) be an Rk-valued differential
ℓ-form. The contraction of θ with a vector field X ∈ X(M) is defined as

ιXθ =
k∑

α=1
(ιXθα) ⊗ eα ∈ Ωℓ−1(M,Rk) .

The contraction of θ with a k-vector field X = (X1, . . . , Xk) ∈ Xk(M) is defined as

ιXθ =
k∑

α=1
ιXαθ

α ∈ Ωℓ−1(M) .

The exterior product of two Rk-valued differential forms ϑ = ϑα ⊗ eα ∈ Ωℓ1(M,Rk) and µ = µα ⊗ eα ∈
Ωℓ2(M,Rk) is defined by

ϑ ⊼ µ =
k∑

α=1
(ϑα ∧ µα) ⊗ eα ∈ Ωℓ1+ℓ2(M,Rk) .

The above definitions are useful for simplifying the notation of the theory. Note that a point-wise
analogue can be defined similarly. In particular, these definitions apply to the contraction of elements of
E or E ⊗ Rk with E∗ ⊗ Rk for a vector space E.
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1.4.1 k-Vector fields and integral sections

This subsection reviews the theory of k-vector fields, which plays a crucial role in the geometric analysis
of systems of partial differential equations [43].

First, the following fundamental definition is introduced.

Definition 1.4.1. The Whitney sum of k copies of the tangent bundle to M is defined as 1

k⊕
TM = TM ⊕M

(k)
· · · ⊕M TM ,

where the fibre product is taken over M . This construction admits the natural projections

prα :
k⊕

TM → TM , pr1
M :

k⊕
TM → M, α = 1, . . . , k.

Definition 1.4.2. A k-vector field onM is a section X : M →
⊕kTM of the vector bundle prM :

⊕k TM →
M . The space of k-vector fields on M is denoted by Xk(M).

Each k-vector field X ∈ Xk(M) is equivalent to a family of vector fields X1, . . . , Xk ∈ X(M) defined
by Xα = prαM ◦X for α = 1, . . . , k. This fact justifies the notation X := (X1, . . . , Xk).

Definition 1.4.3. Given a map ϕ : U ⊂ Rk → M , its first prolongation is the map ϕ′ : U ⊂ Rk →
⊕kTM

defined as follows

ϕ′(t) :=
(
ϕ(t); Ttϕ

(
∂

∂t1

∣∣∣∣
t

)
, . . . ,Ttϕ

(
∂

∂tk

∣∣∣∣
t

))
=: (ϕ(t);ϕ′

α(t)) , t = (t1, . . . , tk) ∈ Rk .

The integral sections of a k-vector field are defined in the following definition.

Definition 1.4.4. Let X = (X1, . . . , Xk) ∈ Xk(M) be a k-vector field. An integral section of X is a map
ϕ : U ⊂ Rk → M such that ϕ′ = X ◦ ϕ , namely Tϕ

(
∂
∂tα

)
= Xα ◦ ϕ for α = 1, . . . , k. A k-vector field

X ∈ Xk(M) is integrable if [Xα, Xβ ] = 0 for 1 ≤ α < β ≤ k.

Let X = (X1, . . . , Xk) be a k-vector field on M with local expression Xα = Xi
α

∂
∂xi for α = 1, . . . , k.

Then, ϕ : U ⊂ Rk → M is an integral section of X if and only if its coordinates satisfy the following
system of PDEs

∂ϕi

∂tα
= Xi

α ◦ ϕ , i = 1, . . . , n, α = 1, . . . , k . (1.4.1)

Indeed, (1.4.1) is integrable if and only if [Xα, Xβ ] = 0 for 1 ≤ α < β ≤ k.

1.4.2 k-Polysymplectic geometry

Geometric covariant descriptions of first-order classical field theories can be performed by appropriate
generalisations of some of the structures mentioned in the previous sections. One of the simplest among
them is k-symplectic geometry (also known as k-polysymplectic), originally introduced by A. Awane [7, 8]
and subsequently used by M. de León et al. [39, 41, 42], and L.K. Norris [117, 126] to describe first-order
classical field theories. This formalism coincides with the polysymplectic structures developed by G.C.
Günther [78], although it differs from the polysymplectic frameworks introduced by G. Sardanashvily
et al. [67, 134] and I.V. Kanatchikov [89]. As there are many k-symplectic-like definitions with related
but mainly different and even contradictory meanings, it is relevant to fix the terminology properly, as
accomplished in Definition 1.4.5.

k-Polysymplectic manifolds have been widely used in the analysis of physical systems described by
partial differential equations. In particular, they provide a geometric framework for the Euler-Lagrange
and Hamilton-de Donder-Weyl field equations, together with the dynamical systems described by them,

1The subindex of the Whitney sum will be skipped if it is understood from context
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notably including first-order regular autonomous field theories [37, 43, 46, 57]. Moreover, k-polysymplectic
geometry offers a natural setting for the study of symmetries, conservation laws, and reduction procedures
in field theories [7, 78, 107, 133]. Remarkably, k-polysymplectic geometry has also proved to be effective in
the study of systems of ordinary differential equations, and their superposition rules [53]. It is also worth
stressing that the analysis of ordinary differential equations within the framework of k-polysymplectic
geometry differs significantly from the standard approach, which primarily addresses systems of partial
differential equations, and therefore gives rise to new lines of research.

This subsection provides an overview of the theory of k-polysymplectic, polysymplectic, k-symplectic
structures, and related concepts that appear in the literature. It clarifies the terminology adopted in this
PhD thesis, as well as introduces the definitions to be used. Such clarification is particularly necessary
due to the lack of terminological consistency in the literature, where the same term can refer to different,
not equivalent, geometric concepts. Certain examples of this ambiguity can be found in the foundational
works by Günther [78] and Awane [7].

Definition 1.4.5. A k-polysymplectic form on P is a closed non-degenerate Rk-valued differential two-
form

ω =
k∑

α=1
ωα ⊗ eα ∈ Ω2(P,Rk) .

The pair (P,ω) is called a k-polysymplectic manifold. In addition, if ω = dθ for some θ ∈ Ω1(P,Rk),
then (P,θ) is an exact k-polysymplectic manifold.

In the literature, k-polysymplectic manifolds are often called, for simplicity, polysymplectic manifolds
(see [107] for instance). However, the term ‘polysymplectic’ also refers to a different notion that is
explained below. To prevent ambiguity, the terminology ‘k-polysymplectic manifold’ and other related
ones in our work are not simplified, unless otherwise stated.

A manifold P admits a k-polysymplectic form ω if and only if there exists a family of k closed
two-forms ω1, . . . , ωk ∈ Ω2(P ) satisfying the non-degeneracy condition

kerω = ker(
k∑

α=1
ωα ⊗ eα) =

k⋂
α=1

kerωα = 0 .

Hereafter, Rk-valued differential forms are written in bold. Now, one can proceed to define polysymplectic
manifolds as follows.

Definition 1.4.6. Let P be an n(k + 1)-dimensional manifold. Then,

• A polysymplectic form on P is a differential Rk-valued two-form of the form

ω =
k∑

α=1
ωα ⊗ eα ∈ Ω2(P,Rk) ,

where ω1, . . . , ωk ∈ Ω2(P ) are closed two-forms such that the non-degeneracy condition

kerω =
k⋂

α=1
kerωα = 0 .

holds. A manifold P equipped with a polysymplectic form ω is referred to as a polysymplectic
manifold and is denoted as a pair (P,ω).

• A k-symplectic structure on P is a pair (ω, V ), where (P,ω) is a polysymplectic manifold and
V ⊂ TP is an integrable distribution on P of rank nk such that

ω|V×V = 0 .

In this case, (P,ω, V ) is a k-symplectic manifold and the distribution V is called the polarisation
of the k-symplectic manifold.
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If the two-form ω is exact, namely ω = dθ for some θ ∈ Ω1(P,Rk), then the corresponding structure,
whether polysymplectic or k-symplectic as introduced in Definition 1.4.6, is said to be exact.

The definition of a k-symplectic manifold coincides with the one introduced by A. Awane [7, 9].
Additionally, it is locally equivalent to the concept of the standard polysymplectic structure introduced
by C. Günther [78] (they are globally equivalent provided there exist compatible Darboux charts2) and
globally equivalent to the integrable p-almost cotangent structure introduced by M. de León et al [41, 42].
In the special case when k = 1, Awane’s definition reduces to the well-known notion of a polarised
symplectic manifold, namely a symplectic manifold with a Lagrangian distribution [46].

In Günther’s works, polysymplectic manifolds refer to the differential geometric structures obtained
from the definition of a k-symplectic manifold by removing the existence of the distribution V . On
the other hand, a standard polysymplectic manifold in Günther’s terminology [78] is a polysymplectic
manifold admitting local Darboux coordinates, which is equivalent to the definition of a k-symplectic
manifold. The existence of the polarisation V in the definition of a k-symplectic structure is necessary
to guarantee the existence of an atlas of compatible k-symplectic Darboux coordinates (see [7, 73] and
[130, p 57]) and vice versa.

Theorem 1.4.7 (Darboux theorem for k-symplectic manifolds). Let (P,ω, V ) be a k-symplectic manifold.
Then, on a neighbourhood U of any point p ∈ P , there exist local coordinates {qi, pαi }, with i = 1, . . . , n
and α = 1, . . . , k, such that

ω =
k∑

α=1

n∑
i=1

dqi ∧ dpαi ⊗ eα , V =
〈

∂

∂pαi

〉
.

Such coordinates are called k-symplectic Darboux coordinates.

Before presenting the canonical example of a k-symplectic manifold, it is useful to recall the following
example, which will be used extensively throughout this PhD thesis.

Example 1.4.8 (Canonical model for k-symplectic manifolds). Let Q be an n-dimensional manifold and
consider the Whitney sum

k⊕
T∗Q = T∗Q⊕Q

(k)
· · · ⊕Q T∗Q ,

with natural projections πα :
⊕k T∗Q → T∗Q, from the α-th component of

⊕k T∗Q onto T∗Q, with
α = 1, . . . , k, and πQ :

⊕k T∗Q → Q. A coordinate system {qi} in Q induces a natural coordinate system
{qi, pαi } in

⊕k T∗Q, where α = 1, . . . , k. Consider the canonical forms in the cotangent bundle T∗Q of
Q given by θ ∈ Ω1(T∗Q) and ω = −dθ ∈ Ω2(T∗Q). Hence, the Whitney sum

⊕k T∗Q has the canonical
forms taking values in Rk given by

θk =
k∑

α=1
(πα)∗θ ⊗ eα , ωk = −dθk ,

which, in natural coordinates {qi, pαi } in
⊕k T∗Q, read

θk =
k∑

α=1

n∑
i=1

pαi dqi ⊗ eα , ωk =
k∑

α=1

n∑
i=1

dqi ∧ dpαi ⊗ eα .

Taking all this into account, the triple (
⊕k T∗Q,ωk, Vk), with Vk = ker TπQ, is a k-symplectic mani-

fold. Notice that the natural coordinates {qi, pαi } in
⊕k T∗Q are the canonical example of k-symplectic

Darboux coordinates. △
2Note that it is not clear what Günther means by an atlas of canonical charts, namely, which is the equivalence between

different pairs of Darboux charts.
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Given a k-polysymplectic manifold (P,ω), the vector bundle morphism

♭ : (v1, . . . , vk) ∈
k⊕

TP 7−→
k∑

α=1
ιvα⟨ω, eα⟩ ∈ T∗P ,

induces a morphism of C ∞(P )-modules ♭ : Xk(P ) → Ω1(P ). The morphism ♭ is surjective because the
annihilator of its image belongs to

⋂k
α=1 kerωα = kerω = 0.

1.4.3 ω-Hamiltonian functions and vector fields

This subsection surveys the basic theory of k-polysymplectic vector fields and functions. These structures
play a fundamental role in the k-polysymplectic energy-momentum method introduced in Section 3.3.

Definition 1.4.9. Let (P,ω =
∑k
α=1 ω

α ⊗ eα) be a k-polysymplectic manifold. A vector field Y ∈ X(P )
is ω-Hamiltonian if it is Hamiltonian with respect to all the presymplectic forms ω1, . . . , ωk ∈ Ω2(P ),
namely ιY ωα is closed for α = 1, . . . , k. The space of ω-Hamiltonian vector fields on a k-polysymplectic
manifold (P,ω) is denoted by Xω(P ).

Note that if ιY ωα is closed, it generally admits a potential function only locally. Nevertheless, since
the present PhD thesis is mainly focused on local aspects, the possible lack of a globally defined potential
function does not affect what follows.

For the study of ω-Hamiltonian vector fields, it is useful to introduce a generalisation of the concept
of the Hamiltonian function for presymplectic forms. This generalisation allows for dealing with all
associated functions h1, . . . , hk simultaneously (see [7, 53] for details).

Definition 1.4.10. Let (P,ω =
∑k
α=1 ω

α ⊗ eα) be a k-polysymplectic manifold. An Rk-valued function
h =

∑k
α=1 h

α ⊗ eα is an ω-Hamiltonian function if there exists a vector field Xh on P such that
ιXh

ω = dh, namely ιXh
ωα = dhα for α = 1, . . . , k. In this case, h ∈ C ∞(P,Rk) is an ω-Hamiltonian

function associated with Xh. The space of ω-Hamiltonian functions on (P,ω) is denoted by C ∞
ω (P ).

An ω-Hamiltonian vector field (resp. function) is often called k-Hamiltonian at times if ω is under-
stood from context or its specific expression is not relevant. In [118], the author defined the k-Hamiltonian
system associated with the Rk-valued Hamiltonian function h as the vector field Xh from the previous
definition. Additionally, A. Awane [7] called h a Hamiltonian map of X when X is additionally an in-
finitesimal automorphism of a certain distribution on which it is assumed that the presymplectic forms
of the k-symplectic manifold vanish.

Example 1.4.11. Consider the two-polysymplectic manifold (R3,ω), where {u, v, w} are linear coordi-
nates on R3 and

ω = ω1 ⊗ e1 + ω2 ⊗ e2 ,

with
ω1 = −4w

v2 du ∧ dw + 1
v

dv ∧ dw + 4w2

v3 du ∧ dv , ω2 = − 4
v2 du ∧ dw + 8w

v3 du ∧ dv ,

The vector fields
X1 = 4u2 ∂

∂u
+ 4uv ∂

∂v
+ v2 ∂

∂w
, X2 = ∂

∂u
,

are ω-Hamiltonian with ω-Hamiltonian functions

f =
(

4uw − 8u
2w2

v2 − v2

2

)
⊗ e1 +

(
4u− 16u

2w

v2

)
⊗ e2 , g = −2w

2

v2 ⊗ e1 − 4 w
v2 ⊗ e2 ,

respectively, with respect to the two-polysymplectic form ω. △

The following propositions provide some properties of ω-Hamiltonian functions and vector fields.
More details can be found in [53].
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Proposition 1.4.12. Each ω-Hamiltonian vector field is associated with at least one ω-Hamiltonian
function. Conversely, any ω-Hamiltonian function uniquely determines a ω-Hamiltonian vector field.

Proof. The non-trivial part of the proof is the converse. By the definition, each ω-Hamiltonian function
h = h1⊗e1+· · ·+hk⊗ek is associated with a vector field Xh. Suppose that there exist two ω-Hamiltonian
vector fields X1

h and X2
h related to h. Then,

ιX1
h
ω = ιX2

h
ω = dh =⇒ ιX1

h
−X2

h
ω = 0 .

Hence X1
h −X2

h takes values in kerω yields that X1
h = X2

h.

Proposition 1.4.13. The space C ∞
ω (P ) relative to k-polysymplectic manifold (P,ω) becomes a Lie al-

gebra when endowed with the natural operations

h+ g := (hα + gα) ⊗ eα , λ · h := λhα ⊗ eα ,

where h = hα⊗eα, g = gα⊗eα ∈ C ∞
ω (P ), λ ∈ R, and the Lie bracket {·, ·}ω : C ∞

ω (P )×C ∞
ω (P ) → C ∞

ω (P )
is of the form

{h, g}ω = {h1, g1}ω1 ⊗ e1 + · · · + {hk, gk}ωk ⊗ ek ,

where {·, ·}ωα is the Poisson bracket naturally induced by the presymplectic form ωα, with α = 1, . . . , k.

Proof. Let Xh and Xg be ω-Hamiltonian vector fields associated with h and g, respectively. The linear
combination λh + µg, with λ, µ ∈ R, is also an ω-Hamiltonian function associated to the vector field
λXh + µXg since

ιλXh+µXg = d(λh+ µg) .

Therefore, C ∞
ω (P ) becomes a vector space. Moreover,

ι[Xh,Xg ]ω = d{g,h}ω .

Hence, {g,h}ω is an ω-Hamiltonian function with Hamiltonian vector field [Xh, Xg]. Thus, C ∞
ω (P ) is

closed with respect to this bracket, which is trivially antisymmetric and satisfies the Jacobi identity,
which turns (C ∞

ω (P ), {·, ·}ω) into a Lie algebra.

The product of ω-Hamiltonian functions, defined as

h ⋆ g = (h1g1) ⊗ e1 + · · · + (hkgk) ⊗ ek ,

is not, in general, an ω-Hamiltonian function [53, p. 2239]. Therefore, (C ∞
ω (P ), ⋆, {·, ·}ω) is not, in

general, a Poisson algebra [53, p 2239]. Moreover, the map {h, ·}ω : g ∈ C ∞
ω (P ) 7→ {g,h}ω ∈ C ∞

ω (P ),
with h ∈ C ∞

ω (P ), is not, in general, a derivation with respect to ⋆ either. Thus, k-polysymplectic
geometry significantly differs from Poisson and presymplectic geometry. Nevertheless, {h, g}ω vanishes
for every locally constant function g ∈ C ∞

ω (P ) and any h ∈ C ∞
ω (P ). Additional properties of this Lie

algebra are presented below.

Proposition 1.4.14. Consider a k-polysymplectic manifold (P,ω). Every ω-Hamiltonian vector field
Xh acts as a derivation on the Lie algebra (C ∞

ω (P ), {·, ·}ω) in the form

Xhf = {f ,h}ω , ∀f ∈ C ∞
ω (P ) ,

where h is an ω-Hamiltonian function related to Xh.

Proof. Note that {f ,h}ω does not depend on the chosen ω-Hamiltonian for X. Every two ω-Hamiltonian
functions related to the same ω-Hamiltonian vector field differ by a constant (on each connected com-
ponent of P ). So, if h1 and h2 are ω-Hamiltonian functions for X. Then {f ,h1}ω = {f ,h2}ω and Xf

become well defined. Furthermore,

Xh{f , g}ω = {{f , g}ω,h}ω = {{f ,h}ω, g}ω + {f , {g,h}ω}ω = {Xhf , g}ω + {f , Xhg}ω .

Since Xh acts linearly on C ∞
ω (P ) the results follows.
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1.4.4 k-Polycosymplectic geometry

A natural generalisation of the k-polysymplectic structures is provided by k-polycosymplectic manifolds,
which extends the cosymplectic framework for non-autonomous mechanical systems [2] to regular field the-
ories whose Lagrangian and/or Hamiltonian functions, in the local description, depend on the space-time
coordinates [38, 40]. Non-autonomous field theories can be effectively formulated within the framework
of k-polycosymplectic [119] and k-cosymplectic [38] geometry. For further details on the k-symplectic
and k-cosymplectic formalisms, see [43, 74, 125]. The relationships among k-symplectic, k-cosymplectic,
and multisymplectic structures are systematically discussed in [129]. The basic definitions and properties
associated with these geometric structures are introduced in this subsection.

Definition 1.4.15. A k-polycosymplectic structure on M is a pair (τ ,ω), where τ ∈ Ω1(M,Rk) and
ω ∈ Ω2(M,Rk) are closed differential one- and two-forms taking values in Rk such that

rk kerω = rk
(

k⋂
α=1

kerωα
)

= k , kerω ∩ ker τ =
k⋂

α=1
(ker τα ∩ kerωα) = 0 .

In this case, (M, τ ,ω) is called a k-polycosymplectic manifold. If, in addition, dimM = k + n(k + 1) for
a certain n ∈ N, it is said that (M, τ ,ω) is a polycosymplectic manifold and (τ ,ω) is a polycosymplectic
structure.

Every k-polycosymplectic structure on a manifold M gives rise to two closed Rk-valued differential
forms ω ∈ Ω2(M,Rk) and τ ∈ Ω1(M,Rk) given by

ω =
k∑

α=1
ωα ⊗ eα, τ =

k∑
α=1

τα ⊗ eα,

for a canonical basis {e1, . . . , ek} in Rk and some differential two- and one-forms on M given by ωα and
τα for α = 1, . . . , k, respectively.

Definition 1.4.16. A k-cosymplectic structure on M is a family (τ ,ω, V ), where (τ ,ω) is a polycosym-
plectic structure on M and V ⊂ TM is a distribution of rank nk on M such that

τ |V = 0 and ω|V×V = 0 .

Then, (M, τ ,ω, V ) is k-cosymplectic manifold.

If ω is exact, namely ω = dθ for some θ ∈ Ω1(M,Rk), the k-polycosymplectic (resp. polycosymplectic
or k-cosymplectic) structure is said to be exact. Throughout this work, Mω

τ will be occasionally used to
denote a k-polycosymplectic manifold (M, τ ,ω). This allows for shortening the notation.

Theorem 1.4.17 (Darboux theorem for k-cosymplectic manifolds). Let (Mω
τ , V ) be a k-cosymplectic

manifold. Then, on a neighbourhood U of any point x ∈ M , there exist local coordinates {tα, qi, pαi }, with
i = 1, . . . , n and α = 1, . . . , k, such that

ω =
k∑

α=1

n∑
i=1

dqi ∧ dpαi ⊗ eα , τ =
k∑

α=1
dtα ⊗ eα , V =

〈
∂

∂pαi

〉
.

Such coordinates are called k-cosymplectic Darboux coordinates.

For the sake of clarity, it is convenient to establish the following result. Moreover, it will be necessary
to relate the class of the considered k-polycosymplectic manifolds to a specific type of k-polysymplectic
manifolds. It is a natural extension of Theorem 1.3.3.

Proposition 1.4.18. Let (M, τ ,ω) be a k-polycosymplectic manifold. There exists a unique family of
vector fields R1, . . . , Rk on M , called Reeb vector fields, such that

ιRα
τ = eα , ιRα

ω = 0 , α = 1, . . . , k . (1.4.2)
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Proof. By Definition 1.4.15, one has ker τ ∩ kerω = 0, which means that, if τ =
∑k
α=1 τ

α ⊗ eα, then
τ1 ∧ · · · ∧ τk does not vanish on D = kerω. The distribution D has rank k by the definition of a k-
polycosymplectic manifold. Therefore, τ1

x |Dx , . . . , τ
k
x |Dx are linearly independent at every x ∈ M and the

restrictions of τ1, . . . , τk to D admit a unique dual basis R1, . . . , Rk of vector fields on M taking values
in D. Then, the vector fields R1, . . . , Rk satisfy the conditions (1.4.2).

1.4.5 k-Polycosymplectic Hamiltonian systems

This subsection presents the application of k-polycosymplectic geometry to the description of non-
autonomous field theories.

Definition 1.4.19. Let (M, τ ,ω) be a k-polycosymplectic manifold and let h ∈ C ∞(M). Then,
(M, τ ,ω, h) is said to be a k-polycosymplectic Hamiltonian system. A k-vector field X = (X1, . . . , Xk) ∈
Xk(M) on M is a k-polycosymplectic Hamiltonian k-vector field if it satisfies the system of equations

ιXω = dh−
k∑

α=1
(Rαh)τα ,

ιXβ
τ = eβ ,

β = 1, . . . , k . (1.4.3)

Then, the function h is a Hamiltonian function associated with X. The space of all k-polycosymplectic
Hamiltonian k-vector fields on M is denoted by XkHam(M, τ ,ω).

It is worth noting that every function f ∈ C ∞(M) corresponds to multiple distinct k-polycosymplectic
Hamiltonian k-vector fields. Note that for k = 1, Definition 1.4.19 retrieves the evolution vector field in
the cosymplectic setting from Definition 1.3.7.

Suppose that, in a neighbourhood of a point x ∈ M , there exist k-cosymplectic Darboux coordinates
{tα, qi, pαi }. Consider a k-vector field X = (X1, . . . , Xk) ∈ Xk(M) which, in these k-cosymplectic Darboux
coordinates, reads

Xα = (Xα)β ∂

∂tβ
+ (Xα)i ∂

∂qi
+ (Xα)βi

∂

∂pβi
.

If X is a k-polycosymplectic Hamiltonian k-vector field, then conditions (1.4.3) imply the following

(Xα)β = δβα ,
∂h

∂pβi
= (Xβ)i , ∂h

∂qi
= −

k∑
α=1

(Xα)αi . (1.4.4)

The Equations (1.4.4) imply that, for a given h ∈ C ∞(M), there may exist multiple k-polycosymplectic
Hamiltonian k-vector fields. Let ψ : Rk → M be an integral section of a k-polycosymplectic Hamiltonian
k-vector field X, locally expressed as

ψ(s) = (tα(s), qi(s), pαi (s)) , s ∈ Rk .

Then, ψ satisfies the following system of partial differential equations

∂tβ

∂sα
= δβα ,

∂qi

∂sα
= ∂h

∂pαi
,

k∑
α=1

∂pαi
∂sα

= − ∂h

∂qi
. (1.4.5)

These equations are called k-polycosymplectic Hamilton-De Donder-Weyl equations for a k-vector field
X.

Example 1.4.20 (The vibrating membrane with external force). Consider a horizontal vibrating mem-
brane with coordinates {x, y} subjected to a time-dependent external force given by a function f(t, x, y).
The phase space of this system is M = R3×

⊕3 T∗R and it admits global coordinates {t, x, y, ζ, pt, px, py},
where ζ stands for the distance of every point in the membrane with respect to its equilibrium position,
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and pt, px, py are the corresponding momenta. This system is described by the Hamiltonian function
h ∈ C ∞(M) given by

h(t, x, y, ζ, pt, px, py) = 1
2(pt)2 − 1

2c2 (px)2 − 1
2c2 (py)2 − ζf(t, x, y) ,

where c ∈ R is a constant depending on the physical properties of the membrane, such as its tension. For
a section

ψ : (t, x, y) ∈ R3 7→ (t, x, y, ζ(t, x, y), pt(t, x, y), px(t, x, y), py(t, x, y)) ∈ R3 ×
⊕3

α=1 T∗R ,

Equations (1.4.5) yield

∂pt

∂t
+ ∂px

∂x
+ ∂py

∂y
= f(t, x, y) ,

∂ζ

∂t
= pt ,

∂ζ

∂x
= − 1

c2 p
x ,

∂ζ

∂y
= − 1

c2 p
y .

The choice of {t, x, y} as the coordinates of the domain of a section ψ is a slight abuse of notation that,
however, is standard in the literature [130] and is adopted throughout this work.

Combining the above equations, one obtains the equation of a forced vibrating membrane, namely

∂2ζ

∂t2
− 1
c2

(
∂2ζ

∂x2 + ∂2ζ

∂y2

)
= f(t, x, y) .

To rewrite this system in polar coordinates {r, θ}, consider the Hamiltonian function

h̃(t, r, θ, ζ, pt, pr, pθ) = 1
2r

(
(pt)2 − 1

c2 (pr)2 − r2

c2 (pθ)2
)

− rζf(t, r, θ) .

Then, Equations (1.4.5) for a section

ψ : (t, r, θ) ∈ R3 7→ (t, r, θ, ζ(t, r, θ), pt(t, r, θ), px(t, r, θ), py(t, r, θ)) ∈ R3 ×
⊕3

α=1 T∗R

become

∂pt

∂t
+ ∂pr

∂r
+ ∂pθ

∂θ
= rf(t, r, θ) ,

∂ζ

∂t
= 1
r
pt ,

∂ζ

∂r
= − 1

rc2 p
r ,

∂ζ

∂θ
= − r

c2 p
θ .

Combining the above equations yields the equation of a forced vibrating membrane in polar coordinates

∂2ζ

∂t2
− c2

(
∂2ζ

∂r2 + 1
r

∂ζ

∂r
+ 1
r2
∂2ζ

∂θ2

)
= f(t, r, θ) .

1.4.6 k-Contact geometry

k-Contact geometry arises as a natural generalisation of contact geometry, designed to describe non-
autonomous Hamiltonian field theories [130, 131, 132]. Contact geometry dates back to 1872, when Sophus
Lie introduced contact transformations to study differential equations [102]. Since then, it has evolved into
rich geometric concept with numerous applications, including Gibbs’ thermodynamics [21, 139], Huygens’
geometric optics, non-autonomous Hamiltonian dynamics [45], control theory [144], Lie systems [47], and
many others [22, 36, 59, 64]. The main concept of classical contact geometry is the contact distribution,
defined as a maximally non-integrable distribution C on a manifold M .

The recent decades of growing mathematical and physical interest in contact geometry motivated
its extension to field-theoretic settings [48, 49, 76, 85, 87, 131, 132, 142, 148]. In k-contact geometry,
a manifold M is equipped with an Rk-valued differential one-form η whose kernel is a non-zero regular
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distribution of corank k, satisfying kerη⊕ ker dη = TM [7, 65, 97, 130, 131]. This definition extends the
classical properties of contact forms. From a physical perspective, it provides a framework for studying
Hamilton-De Donder-Weyl equations with dissipation through the use of k-vector fields and k-contact
forms [78, 133]. It should be noted that most works on k-contact geometry focus on the co-orientable
case [130]. More recently, a general formulation was introduced in [48], in which the main object of inves-
tigation is a distribution of corank k that is maximally non-integrable, and locally admits k commuting
Lie symmetries - the k-contact distribution.

This section provides an overview of the theory of k-contact manifolds [63], as well as generalised
subbundles and other related notions crucial for developing Marsden–Meyer–Weinstein reduction for
k-contact manifolds [99].

Definition 1.4.21. Let E → M be a vector bundle over M . Then,

• A generalised subbundle on M is a subset D ⊂ E such that Dx = D ∩ Ex is a vector subspace of
the fibre Ex of the bundle E of every x ∈ M . The rank of D at x ∈ M is the dimension of the
subspace Dx ⊂ Ex.

• A generalised subbundle D ⊂ E is smooth if it is locally spanned by a family of smooth sections
of E → M taking values in D, namely, if for every x ∈ M , there exists a family of sections
e1, . . . , er : U ⊂ M → E|U defined in a neighbourhood U of x such that Dx′ = ⟨e1(x′), . . . , er(x′)⟩
for every x′ ∈ U .

• A generalised subbundle D is regular if it is smooth and has constant rank.

A generalised subbundle in TM is called a generalised distribution. A generalised subbundle in T∗M

is called a codistribution. For simplicity, the word generalised will be skipped.
Consider a differential one-form η ∈ Ω1(M). Then, η spans a smooth co-distribution C = ⟨η⟩ = {⟨ηx⟩ |

x ∈ M} ⊂ T∗M . Then, C has rank one at every point where η does not vanish. The annihilator of C is
the distribution ker η ⊂ TM . The distribution C◦ has corank one at every point where η does not vanish,
and zero otherwise.

Definition 1.4.22. A k-contact form on an open U ⊂ M is a differential Rk-valued one-form η =∑
α η

α ⊗ eα ∈ Ω1(U,Rk) such that

(1) kerη ⊂ TU is a regular non-zero distribution of corank k,

(2) ker dη ⊂ TU is a regular distribution of rank k,

(3) kerη ∩ ker dη = 0.

If η ∈ Ω1(M,Rk) exists globally, the pair (M,η) is a co-oriented k-contact manifold. Moreover, if
dimM = n+ nk+ k for some n, k ∈ N and M is endowed with an integrable distribution V ⊂ kerη with
rk V = nk, then (M,η,V) is a polarised co-oriented k-contact manifold and V is a polarisation of (M,η).

It is worth noting that the case k = 1 recovers the classical notion of a co-oriented contact manifold
[48]. Every co-orientable k-contact manifold admits a set of Reeb vector fields, which play a fundamental
role in the k-contact geometry [43]. Note that Definition 1.4.22 does not cover one-dimensional contact
manifolds to avoid considering ker η to be integrable.

From now on, ψα ∈ Ωs(M) denote the differential components of ψ =
∑k
α=1 ψ

α ⊗ eα ∈ Ωs(M,Rk).

Theorem 1.4.23. Let (M,η) be a k-contact manifold. Then, there exists a unique family of vector fields
R1, . . . , Rk ∈ X(M), called the Reeb vector fields of (M,η), such that

ιRαη
β = δβα , ιRαdη = 0 ,

for α, β = 1, . . . , k. Moreover, [Rα, Rβ ] = 0 with α, β = 1, . . . , k, while ker dη = ⟨R1, . . . , Rk⟩, and
R1 ∧ · · · ∧Rk is non-vanishing.
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Definition 1.4.24. Every (M,η) defines a vector bundle morphism over M

♭η :
⊕kTM −→ T∗M × R

v = (v1, . . . , vk) 7−→ ♭η(v) = (
∑k
α=1 ιvα

dηα,
∑k
α=1 ιvα

ηα).

A η-gauge k-vector field of (M,η) is a k-vector field on M taking values in ker ♭η.

The following example presents the canonical construction of a co-oriented polarised k-contact mani-
fold.

Example 1.4.25. The manifold M = (
⊕kT∗Q) × Rk carries a natural k-contact form given by

ηQ =
k∑

α=1
(dzα − θα) ⊗ eα ,

where {z1, . . . , zk} are the pull-back to M of standard linear coordinates in Rk and each θα is the pull-
back of the Liouville one-form θ on T∗Q via the projection prα : M → T∗Q onto the α-th component of⊕kT∗Q. Furthermore, M admits a natural projection onto Q×Rk and a related vertical distribution V
of rank k ·dimQ contained in kerηQ. Thus,

(
(
⊕kT∗Q) × Rk,ηQ,V

)
is a polarised co-oriented k-contact

manifold.
Local coordinates {q1, . . . , qn} on Q induce natural coordinates {qi, pαi }, for a fixed value of α, on the

α-th component of
⊕kT∗Q and {qi, pαi , zα}, with α = 1, . . . , k, on M . In these coordinates, one has

ηQ =
k∑

α=1

(
dzα −

n∑
i=1

pαi dqi
)

⊗ eα , kerηQ =
〈

∂

∂pαi
,

∂

∂qi
+

k∑
α=1

pαi
∂

∂zα

〉
,

and dηQ =
∑n
i=1
∑k
α=1(dqi ∧ dpαi ) ⊗ eα. The associated Reeb vector fields are Rα = ∂/∂zα for α =

1, . . . , k, and

ker dηQ =
〈

∂

∂z1 , . . . ,
∂

∂zk

〉
.

△

Example 1.4.26 (Contactification of an exact k-symplectic manifold). Let (P,ω = dθ) be an exact k-
symplectic manifold and consider the product manifold M = P ×Rk. Let {z1, . . . , zk} be the pull-back to
M of some Cartesian coordinates in Rk and denote by θαM the pull-back of θα to the product manifold M .
Consider the Rk-valued one-form η =

∑k
α=1(dzα + θαM ) ⊗ eα ∈ Ω1(M,Rk). Then, (M,η) is a co-oriented

k-contact manifold, because kerη ̸= 0 has corank k, while dη = dθM and ker dη = ⟨∂/∂z1, . . . , ∂/∂zk⟩
has rank k since ω is non-degenerate. It follows that η is a globally defined k-contact form.

Note that the so-called canonical k-contact form ηQ described in Example 1.4.25 is essentially a
contactification of the k-symplectic manifold (P =

⊕k T∗Q,ωQ) described in Example 1.4.8. The only
significant difference is that θαM is minus the pull-back to M of the Liouville form to the α-copy of T∗Q

in M . △

Theorem 1.4.27 (k-contact Darboux Theorem [63]). Consider a polarised k-contact manifold (M,η,V).
Then, around every point of M , there exist local coordinates {qi, pαi , zα}, with 1 ≤ α ≤ k and 1 ≤ i ≤
n = dimM , such that

η =
k∑

α=1

(
dzα −

n∑
i=1

pαi dqi
)

⊗ eα , ker dη =
〈

∂

∂zα

〉
, V =

〈
∂

∂pαi

〉
.

These coordinates are called k-contact Darboux coordinates of the polarised k-contact manifold (M,η,V).

Theorem 1.4.27 justifies treating the manifold introduced in Example 1.4.25 as the canonical model
of polarised co-oriented k-contact manifolds. Furthermore, any polarised k-contact manifold arising as
the contactification of a polarised k-symplectic manifold admits Darboux coordinates.
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1.4.7 k-Contact Hamiltonian systems

This section presents the basics of the Hamiltonian formulation of classical field theories with dissipation
in a co-orientable k-contact setting; for more details, see [49, 63, 130, 131].

Definition 1.4.28. A k-contact Hamiltonian system is a triple (M,η, h), where (M,η) is a co-oriented
k-contact manifold and h ∈ C ∞(M) is called a Hamiltonian function. Let ψ : U ⊂ Rk → M , where U is
an open subset of Rk. The k-contact Hamilton–De Donder–Weyl equations associated with (M,η, h) are
of the form

k∑
α=1

ιψ′
α
dηα =

(
dh−

k∑
α=1

(Rαh)ηα
)

◦ ψ ,
k∑

α=1
ιψ′

α
ηα = −h ◦ ψ , (1.4.6)

where ψ′(t) = (ψ′
1(t), . . . , ψ′

k(t)) ∈
⊕kTM denotes the first prolongation (see Definition 1.4.3).

In k-contact Darboux coordinates Equations (1.4.6) take the form

∂qi

∂tα
= ∂h

∂pαi
◦ψ ,

k∑
α=1

∂pαi
∂tα

= −

(
∂h

∂qi
+

k∑
α=1

pαi
∂h

∂zα

)
◦ψ ,

k∑
α=1

∂zα

∂tα
=
(

k∑
α=1

dimM∑
i=1

pαi
∂h

∂pαi
− h

)
◦ψ .

Definition 1.4.29. The k-contact Hamilton–De Donder–Weyl equations, associated with (M,η, h), for
a k-vector field X = (X1, . . . , Xk) ∈ Xk(M) are

k∑
α=1

ιXα
dηα = dh−

k∑
α=1

(Rαh)ηα ,
k∑

α=1
ιXα

ηα = −h . (1.4.7)

Then, a k-vector field X that satisfies equations (1.4.7) is a k-contact Hamiltonian k-vector field.

Note that a k-contact Hamiltonian system admits a family of k-contact Hamiltonian vector fields.
Indeed, if X is a k-contact hamiltonian k-vector field for (M,η, h), then so X + Y for any η-gauge
k-vector field Y of (M,η, h).

Let X = (X1, . . . , Xk) ∈ Xk(M) be a k-vector field expressed in k-contact Darboux coordinates as

Xα =
dimM∑
i=1

(Xα)i ∂
∂qi

+
k∑

β=1

dimM∑
i=1

(Xα)βi
∂

∂pβi
+

k∑
β=1

(Xα)β ∂

∂zβ
, α = 1, . . . , k.

Then, equations (1.4.7) are equivalent to

(Xα)i = ∂h

∂pαi
,

k∑
α=1

(Xα)αi = −

(
∂h

∂qi
+

k∑
α=1

pαi
∂h

∂zα

)
,

k∑
α=1

(Xα)α =
k∑

α=1

dimM∑
i=1

pαi
∂h

∂pαi
− h .

Then, one immediately obtains the following propositions.

Proposition 1.4.30. Let X ∈ Xk(M) be an integrable k-vector field. Then, every integral section
ψ : L ⊂ Rk → M of X satisfies the k-contact Hamilton–De Donder–Weyl equations (1.4.6) if, and only
if, X is a solution to (1.4.7).

It is important to emphasise that the existence of a k-vector field satisfying equations (1.4.7) does
not, in general, guarantee the existence of integral sections.

Corollary 1.4.31. The k-contact Hamilton–De Donder–Weyl equations (1.4.7) are equivalent to the
following conditions 

LXη =
k∑

α=1
LXα

ηα = ιXdη + dιXη = −
k∑

α=1
(Rαh)ηα ,

ιXη =
k∑

α=1
ιXα

ηα = −h ,

where X = (X1, . . . , Xk) ∈ Xk(M).
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Example 1.4.32 (The damped wave equation). The dynamics of a vibrating string can be formulated
within the k-contact Hamiltonian setting [63].

Let {t, x} be coordinates on R2 and consider the configuration space Q = R. The phase space becomes⊕2T∗R × R2, with coordinates (u, pt, px, st, sx), where u denotes the displacement of a point from its
equilibrium point, while pt and px are the momenta associated with u with respect to the independent
variables t and x, respectively. The canonical two-contact on

⊕2 T∗R×R2 is given as in Example 1.4.25,
namely

ηt = dt− ptdu , ηx = dx− pxdu .

A Hamiltonian function h ∈ C ∞(
⊕2 T∗R × R2) describing the damped vibrating string reads

h(u, pt, px, st, sx) = 1
2ρ (pt)2 − 1

2τ (px)2 + kst ,

where ρ is the linear mass density, τ is the tension, and k > 0 is the damping coefficient of the string, all
of which are assumed to be constant.

A corresponding two-contact Hamiltonian two-vector field X = (X1, X2) has the form

X1 = pt

ρ

∂

∂u
+A1

t

∂

∂pt
+A1

x

∂

∂px
+B1

t

∂

∂st
+B1

x

∂

∂sx
,

X2 = −px

τ

∂

∂u
+A2

t

∂

∂pt
− (kpt +A1

t )
∂

∂px
+B2

t

∂

∂st
+
(

(pt)2

2ρ − (px)2

2τ − kst −B1
t

)
∂

∂sx
,

whereA1
t , A

1
x, B

1
t , B

1
x, A

2
t , B

2
t are arbitrary functions onM . For instance, by choosingB1

x = τk(pt)2u/(ρpx)
and B2

t = B2
t (st, px), and setting A2

t , B
1
t , A

1
x = 0 and A1

t = −kpt, it follows that X becomes an integrable
k-vector field. Thus, the Hamilton–De Donder–Weyl equations are

∂u

∂t
= 1
ρ
pt ,

∂u

∂x
= − 1

τ
px ,

∂pt

∂t
+ ∂px

∂x
= −kpt ,

∂st

∂t
+ ∂sx

∂x
= 1

2ρ (pt)2 − 1
2τ (px)2 − kst .

Substituting the first two equations into the third yields the damped wave equation

∂2u

∂t2
− c2 ∂

2u

∂x2 + k
∂u

∂t
= 0 ,

where c2 = τ

ρ
. △
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Chapter 2

Marsden–Meyer–Weinstein
reduction theorems

The reduction problem for systems with symmetry has, for decades, drawn significant attention from both
mathematicians and theoretical physicists, motivated by the objective of reducing the number of equations
describing the behaviour of the dynamics of such systems through the first integrals or conservation laws
[115, 128]. The general procedure of the symplectic reduction can be traced back to E. Cartan, and it
goes as follows (see [2, p 298] or [115, 128] and references therein):

"Suppose that P is a manifold and ω is a closed two-form on P ; let kerω = {v ∈ TP | ιvω = 0}
be the characteristic distribution of ω and call ω regular if kerω is a subbundle of TP . In the
regular case, kerω is an involutive distribution. By the Fröbenius theorem, kerω is integrable
and it defines a foliation F on P . This gives rise to a quotient space P/F by identification of
all points on the same leaf of F . Assume now that P/F is a manifold, the canonical projection
x ∈ P 7→ [x] ∈ P/F being a submersion. Then, the tangent space at a point [x] is isomorphic
to TxP/ kerωx and ω projects onto a well-defined closed, nondegenerate two-form on P/F ;
that is, P/F is a symplectic manifold: a so-called reduced space."

The application of geometric methods has proven to be a particularly powerful tool in the analysis of
this problem. A breakthrough was achieved by Marsden and Weinstein in their work on the reduction
of autonomous Hamiltonian systems on symplectic manifolds admitting the action of a Lie group of
symmetries, under the assumption that the momentum map takes regular values [109]. One year before,
Meyer had obtained related results [120], although not as detailed and comprehensive as those later
presented by Marsden and Weinstein [115]. More generally, the results in [120] and [109] were indeed
the culmination of many other previous achievements by Smale, Sternberg, Kostant, Robbin, and many
others, who had provided partial but significant approaches to the reduction procedure (see [115] for a
more detailed history review of the reduction procedure).

In the famous work [109], Marsden and Weinstein applied a very powerful version of the previous
reduction scheme to submanifolds defined by the level sets of an Ad∗-equivariant symplectic momentum
map JΦ : P → g∗ associated with a certain Lie group action on the dual g∗ of a Lie algebra g and a
Hamiltonian Lie group action Φ on a symplectic manifold P leaving invariant a Hamiltonian function
on P . The resulting reduced space carries a natural symplectic structure and inherits the Hamiltonian
dynamics induced by the original system. Nowadays, this procedure is very well known as the Marsden–
Meyer–Weinstein reduction.

After Marsden and Weinstein’s foundational work, the Marsden–Meyer–Weinstein reduction technique
was subsequently extended and applied to a wide range of different settings. For instance, the reduction of
Hamiltonian systems with singular values of the momentum map was studied in several articles, including
[141] for the autonomous case, where the resulting reduced spaces are stratified manifolds endowed with

29
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symplectic structures [128]. Furthermore, the orbifolds naturally arise in Marsden–Meyer–Weinstein
reductions, leading to separate research topics with both physical and mathematical applications [68,
81, 97]. The reduction of time-dependent regular Hamiltonian systems with regular values is developed
in the framework of cosymplectic geometry in [4, 44], where the corresponding reduced phase spaces
inherit cosymplectic structure. Autonomous systems arising from certain classes of singular Lagrangians
were analysed in [26], where conditions ensuring that the reduced phase space carries an almost-tangent
structure were established.

Moreover, numerous generalisations of the Marsden–Meyer–Weinstein reduction have been proposed
in order to cope with different geometric structures. In particular, Marsden and Ratiu extended the theory
to Poisson manifolds in [111], the case of locally conformally symplectic manifolds was developed in [80],
and the reduction of Dirac structures was devised and further analysed in several papers [23, 24, 34].
Finally, the Marsden–Meyer–Weinstein reduction of Jacobi manifolds was studied in [86].

Almost fifty years after the foundational work [109], the development of the Marsden–Meyer–Weinstein
reduction for various geometric settings and reduction schemes remains an active and evolving research
field. The theory admits numerous modifications and generalisations, for instance, to the singular cases
[44, 88], and has found a wide range of applications, as illustrated by the growing list of literature using
these techniques [10, 12, 19, 68, 81, 97, 135, 136]. It is worth noting that the multisymplectic analogue
of the Marsden–Meyer–Weinstein reduction has persisted as an open problem for decades now [58], and
even partial advances toward this achievement attract attention [13, 14, 35, 121].

One such generalisation is the Marsden–Meyer–Weinstein reduction theorem for k-polysymplectic
manifolds. The first attempt to develop a k-polysymplectic reduction was due to Günther [78]. Un-
fortunately, his approach contained fundamental flaws, arising from an improper analysis of the double
orthogonal relative to a k-polysymplectic form. More precisely, [78, Lemma 7.5 and Theorem 7.7] are
the main source of mistakes in Günther’s work, while [107, Section 2.2] provides an interesting coun-
terexample explicitly demonstrating Günther’s error. Another similarly flawed attempt to develop a
k-polysymplectic reduction was accomplished in [123]. These problems were subsequently corrected in
[107], where sufficient conditions to accomplish a k-polysymplectic reduction were formulated. Neverthe-
less, [107, Lemma 3.4] implicitly suggests that the assumption of the k-polysymplectic momentum map
being a submersion is justified by Sard’s Theorem. While this assumption indeed works very well in the
classical symplectic Marsden–Meyer–Weinstein reduction theory and Sard’s Theorem can be used to jus-
tify it [17], the authors of [50] demonstrate that this condition is very restrictive in the k-polysymplectic
geometry realm and clarifies why Sard’s Theorem cannot be used in this context. Explicit examples
illustrating that it is convenient to assume that the momentum maps in k-polysymplectic geometry are
not submersions are provided. Consequently, it is appropriate to adopt the formalism introduced in
[50], where k-polysymplectic momentum maps admit only weak regular values. This approach offers a
practical generalisation of the k-polysymplectic Marsden–Meyer–Weinstein reduction and completes the
analysis initiated in [12, 62, 78, 107].

Necessary and sufficient conditions for the k-polysymplectic Marsden–Meyer–Weinstein reduction were
formulated implicitly in [107, p 12] and subsequently presented in detail in [12]. Unfortunately, one of
the Blacker’s main results, namely [12, Theorem 3.22], contains a minor but potentially misleading typo
in the statement of the conditions (as observed in [62]). Moreover, the proof of that theorem admits
other minor technical issues concerning the existence of certain submanifold structures. These issues are
clarified and rigorously analysed in [33, 50]. It is also worth noting that Blacker analyses the presence
of orbifolds in k-polysymplectic Marsden–Meyer–Weinstein reductions corresponding to regular values of
k-polysymplectic momentum maps related to pathological Lie group actions.

The requirement for k-polysymplectic momentum maps to be Ad∗k-equivariant in the k-polysymplectic
Marsden–Meyer–Weinstein reductions was removed in [50] by extending the classical theory of affine Lie
group actions on symplectic manifolds [128] to the k-polysymplectic setting. Then, García-Toraño and
Mestdag [62] re-examined the sufficient conditions for the k-polysymplectic Marsden–Meyer–Weinstein
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reduction established in [107], claiming that the single condition, namely [107, Theorem 3.17, condition
(3.6)], suffices to guarantee the existence of a k-polysymplectic Marsden–Meyer–Weinstein reduction.
However, the proof of the main result in [62], used to justify the previous claim, contains a fundamental
mistake. Indeed, [62, Lemma 3.1] is shown to be false by presenting an explicit counterexample, and
the general independence of the conditions in [107, Theorem 3.17] is established in [33]. Furthermore,
additional properties concerning these sufficient conditions are clarified.

Another important generalisation of the Marsden–Meyer–Weinstein reduction is its extension to the
setting of k-polycosymplectic manifolds [10, 43]. The search for a k-polycosymplectic reduction can be
traced back to [15], where a particular case was analysed. Next, certain ideas regarding the possible
scheme of a k-polycosymplectic reduction were outlined in [108], although no proofs were provided. Some
of these ideas led to [106], where no k-polycosymplectic reduction was studied, but the k-polysymplectic
reduction was developed instead. Nowadays, more than a decade after [108], the Marsden–Meyer–
Weinstein k-polycosymplectic reduction has been drawing some attention until the present day and was
finally proven in [50].

(Rk ×M, ω̃ = pr∗
Mω + du ⊼ pr∗

Mτ ) (M, τ ,ω)

(J̃Φ−1(µ) = Rk × JΦ−1(µ), ȷ̃∗µω̃) (JΦ−1(µ), ȷ∗µτ , ȷ∗µω)

(Rk ×M∆
µ , ω̃µ = pr∗

M∆
µ
ωµ + du ⊼ pr∗

M∆
µ
τµ) (M∆

µ = JΦ−1(µ)/G∆
µ , τµ,ωµ)

prM

π̃µ=IdRk ⊗πµ

ȷ̃µ

ι
JΦ−1(µ)
u

πµ

ȷµ

pr
M∆

µ

ι
M∆

µ
u

Figure 2.1: Scheme of the different structures involved in the k-polycosymplectic reduction through
k-polysymplectic fibred manifolds. It is worth noting that k-polysymplectic manifolds in the above
diagram admit a series of vector fields satisfying properties extending the ones for Reeb vector fields in
k-polycosymplectic geometry.

The authors of [50] used the ideas of [108], along with other ones in [107] and new ones to be pre-
sented hereafter in this chapter, to devise a k-polycosymplectic Marsden–Meyer–Weinstein reduction. In
particular, a k-polycosymplectic manifold can be associated with a k-polysymplectic manifold of a larger
dimension and a specific type, referred to as k-polysymplectic fibred manifold. This result is very relevant,
as it shows that k-polycosymplectic geometry is a particular case of k-polysymplectic geometry, and it
allows us to use the techniques of k-polysymplectic geometry to study k-polycosymplectic manifolds.
Such k-polysymplectic fibred manifolds possess, among other properties, a distinguished family of vector
fields called k-polysymplectic Reeb vector fields. Then, a slight generalisation of the k-polysymplectic
Marsden–Meyer–Weinstein reduction developed in [107] is applied to k-polysymplectic fibred manifolds,
constructed from k-polycosymplectic manifolds, thereby producing reduced k-polysymplectic fibred mani-
folds. These reduced manifolds are related to k-polycosymplectic manifolds that arise as Marsden–Meyer–
Weinstein reductions of the original k-polycosymplectic manifolds. The general scheme illustrating the
k-polycosymplectic reduction developed in [50] is presented in Figure 2.1.

It is convenient to stress that Theorem 2.4.7, which establishes the important connection between
a k-polycosymplectic structure on M and a k-polysymplectic structure on Rk × M , may lead to po-
tential complications. For example, Subsection 2.4.3 shows that Hamiltonian k-vector fields in the k-
polycosymplectic setting correspond to k-polysymplectic Hamiltonian k-vector fields with different equi-
librium points, which may potentially introduce difficulties to study certain problems. In particular,
Subsection 1.3.1 shows that the extension from cosymplectic Hamiltonian vector fields with equilibrium
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points may lead to Hamiltonian vector fields in the associated symplectic manifolds without them, which
gives rise to problems, for instance, in the study of relative equilibrium points. In summary, although
these extension techniques provide valuable insights for studying geometric structures, their applicability
to the analysis of the corresponding dynamical systems remains limited.

Chapter 2 presents the theoretical contributions of the PhD thesis by developing the generalisations
of the Marsden–Meyer–Weinstein (MMW) reduction theorems. Beginning with the classical symplectic
setting, the chapter advances through the cosymplectic, k-polysymplectic, k-polycosymplectic, and k-
contact frameworks. For each geometric structure, a suitable notion of a momentum map is introduced
and analysed in detail, including non-Ad∗-equivariant cases.

In addition to formulating new reduction theorems, the chapter compares and corrects certain previous
results in the literature, ensuring that the presented methods are mathematically correct and applicable.
Illustrative examples are included to highlight the geometric intuition and demonstrate the practical
applicability of the theory. These applications range from mechanical systems with time-dependent
symmetries to field-theoretic models, such as the vibrating string.

2.1 Symplectic Marsden–Meyer–Weinstein reduction
This section recalls the basic notions and results required to obtain the classical Marsden–Meyer–
Weinstein reduction necessary for the time-dependent symplectic energy-momentum method presented
in Section 3.1. It begins with the definition of a symplectic momentum map and then presents a proof of
the reduction theorem. In addition, it explains how the Ad∗-equivariance assumption may be omitted.

Definition 2.1.1. Let (P, ω) be a symplectic manifold and let Φ: G× P → P be a Hamiltonian action
of the Lie group G on P . A map JΦ : P → g∗ is a symplectic momentum map for the action Φ if

dJΦ
ξ = ιξP

ω, ∀ξ ∈ g ,

where JΦ
ξ : P → R is defined by

JΦ
ξ (p) := ⟨JΦ(p), ξ⟩, ∀p ∈ P, ∀ξ ∈ g ,

where ⟨·, ·⟩ is the natural pairing between g and g∗.
Additionally, a symplectic momentum map JΦ is said to be Ad∗-equivariant if it satisfies

JΦ(gp) = Ad∗
g−1(JΦ(p)), ∀g ∈ G, ∀p ∈ P,

or, equivalently, if the following diagram commutes

P
Φg //

JΦ

��

P

JΦ

��
g∗

Ad∗
g−1

// g∗

.

In other words, a map JΦ : P → g∗ is a symplectic momentum map associated with the Lie group
action Φ: G× P → P if and only if

XJΦ
ξ

= ξP , ∀ ξ ∈ g ,

where XJΦ
ξ

denotes the Hamiltonian vector field associated with JΦ
ξ : P → R.

Under the assumption of Ad∗-equivariance property of JΦ, the following holds

(ξPJΦ
ν )(p) = d

dt

∣∣∣∣
t=0

⟨JΦ(exp(tξ)p), ν⟩ = d
dt

∣∣∣∣
t=0

⟨Ad∗
exp(−tξ)JΦ(p), ν⟩ = JΦ

[ν,ξ](p), ∀ξ, ν ∈ g, ∀p ∈ P. (2.1.1)
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Consequently, {JΦ
ν , J

Φ
ξ } = JΦ

[ν,ξ], so that JΦ gives rise to a Lie algebra morphism ν ∈ g 7→ JΦ
ν ∈ C ∞(P ),

where the bracket on g is the Lie algebra bracket and the bracket on C ∞(P ) is the Poisson bracket from
Definition 1.2.5.

A Lie group action Ψ: G×Q → Q induces a natural Lie group action

Φ: G× T∗Q ∋ (g, αq) 7→ Φg(αq) ∈ T∗Q

of the form
⟨Φg(αq), vgq⟩ = ⟨αq,TgqΨg−1(vgq)⟩, ∀q ∈ Q, ∀vgq ∈ TgqQ . (2.1.2)

This construction is known as the cotangent lift of the Lie group action Ψ: G × Q → Q. It plays a
fundamental role in geometric mechanics, as it yields canonical momentum maps [2, p 283]. Further
details are provided in Proposition 2.1.3 below (see also [2, p 283]).

Before, however, it is useful to prove the following identity.

Lemma 2.1.2. Let Φ: G× P → P be a Lie group action. Then,

(Adgξ)P = Φg∗ξP , ∀g ∈ G, ∀ξ ∈ g .

Proof. Recall that exp(Adgξ) = Ig exp(ξ) for all g ∈ G and every ξ ∈ g. Therefore,

(Adgξ)P (p) = d
dt

∣∣∣∣
t=0

Φexp(tAdgξ)(p) = d
dt

∣∣∣∣
t=0

ΦIg exp(tξ)(p) = d
dt

∣∣∣∣
t=0

Φg exp(tξ)g−1(p)

= d
dt

∣∣∣∣
t=0

Φg exp(tξ)(Φg−1(p)) = TΦg−1 (p)Φg
(

d
dt

∣∣∣∣
t=0

Φexp(tξ) ◦ Φg−1

)
(p)

= TΦg−1 (p)Φg(ξP )Φg−1 (p) = (Φg∗ξP )(p) .

Thus, (Adgξ)P = Φg∗ξP , for every g ∈ G and ξ ∈ g.

Proposition 2.1.3. Every Lie group action Ψ: G×Q → Q induces a cotangent lift Φ: G× T∗Q → T∗Q

that admits an Ad∗-equivariant symplectic momentum map JΦ : T∗Q → g∗, defined by

JΦ
ξ (αq) := ⟨αq, (ξQ)q⟩ , ∀q ∈ Q , ∀αq ∈ T∗

qQ , ∀ξ ∈ g.

Proof. Recall that the canonical symplectic form on T∗Q is given by ωQ = −dθQ, where θQ is the Liouville
one-form on T∗Q, see Definition 1.2.3. One has to show that for each ξ ∈ g, a function JΦ

ξ corresponds
to the Hamiltonian vector field ξT∗Q, i.e. ιξT∗Q

ωQ = dJΦ
ξ . Using Cartan’s formula, it follows that

−ιY ιξT∗Q
dθQ=−ξT∗QιY θQ + Y ιξT∗Q

θQ + ι[ξT∗Q,Y ]θQ . (2.1.3)

From the definition of θQ, one has

(ιY θQ)(αq) = ⟨αq,Tαq
τ(Yαq

)⟩ , ∀q ∈ Q , ∀αq ∈ T∗
qQ , ∀Yαq

∈ Tαq
T∗Q ,

where τ : T∗Q → Q is the canonical projection onto Q. Let gt := exp(tξ) and define αt := αq ◦TgtqΨg−t
∈

T∗
gtqQ, which gives the integral curve through αq of ξT∗Q.

Then, note that Ψg−t ◦ τ = τ ◦ Φg−t . Furthermore,

(ξT∗QιY θQ)(αq) = d
dt

∣∣∣∣
t=0
(ιY θQ)(αt) = d

dt

∣∣∣∣
t=0
⟨αq,Tαt

(Ψg−t
◦ τ)(Yαt

)⟩

= d
dt

∣∣∣∣
t=0
⟨αq,Tαq

τ ◦ Tαt
Φg−t

(Yαt
)⟩=⟨αq,Tαq

τ(LξT∗Q
Y )αq

⟩= (ι[ξT∗Q,Y ]θQ)(αq).
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Let {exp(tY )}t∈R denote the one-parameter group of diffeomorphisms of Y . Substituting this into (2.1.3)
and using (2.1.2), it follows that

(ιY ιξT∗Q
ω)(αq)=(Y ιξT∗Q

θQ)(αq)= d
dt

∣∣∣∣
t=0

⟨exp(tY )αq,Tτ(ξT∗Q)exp(tY )αq
⟩

= d
dt

∣∣∣∣
t=0

⟨exp(tY )αq, (ξQ)τ(exp(tY )αq)⟩ = d
dt

∣∣∣∣
t=0

JΦ
ξ (exp(tY )αq)=(Y JΦ

ξ )(αq) = (ιY dJΦ
ξ )(αq)

for all Y ∈ X(T∗Q), αq ∈ T∗
qQ and q ∈ Q. Consequently, ιξT∗Q

ω = dJΦ
ξ , as claimed.

To prove Ad∗-equivariance, using 2.1.2, one has

JΦ
ξ (gαq) = JΦ

ξ (αq ◦ TgqΨg−1) = ⟨αq,TgqΨg−1(ξQ)gq⟩ = ⟨αq, ((Adg−1ξ)Q)q⟩ = JΦ
Adg−1ξ(αq).

Thus, JΦ(gαq) = Ad∗
g−1JΦ(αq) for every g ∈ G, αq ∈ T∗

qQ, and q ∈ Q.

The following definition introduces the essential notion of regular values, which plays a fundamental
role in reduction theorems.

Definition 2.1.4. A weak regular value of a map F : → N is a point x0 ∈ N such that F−1(x0) is a
submanifold of M and ker TpF = Tp[F−1(x0)] for every p ∈ F−1(x0). Moreover, if F is a submersion,
then x0 is a regular value of F . In particular, any regular value of F is also a weak regular value.

To clarify the concept of a weak regular value, which is essential in this work, the following elementary
example of a point that is neither a regular value nor a weak regular value is presented.

Example 2.1.5. Let f : R2 → R be defined by f(x, y) = x2. Consider the vector field X = ∂
∂x on R2.

Then, (ιXdf)(x, y) = 0 if x = 0. However, X is not tangent to f−1(0) = {(x, y) ∈ R2 |x = 0}, since
T(0,y)f

−1(0) = ⟨ ∂∂y ⟩ for every y ∈ R. Therefore, as ker T(0,y)f ̸= T(0,y)f
−1(0), it follows that 0 ∈ R is

not a weak regular value of f . Indeed, it is not a regular value either since Tf = 0 at points of f−1(0).
More generally, for any function f : M → N , a point λ ∈ N is not a weak regular value of f if

Tpf(vp) = 0 for some vp ∈ TpM with p ∈ f−1(λ) that is not tangent to the submanifold f−1(λ).

A Lie group action Φ: G×M → M is quotientable [4] if the orbit space M/G is a manifold and the
canonical projection π : M → M/G is a submersion. This condition is automatically satisfied when Φ is
free and proper.

If µ ∈ g∗ is a regular value of JΦ. By the Implicit Function Theorem (see [2, p 29]), JΦ−1(µ) is a
submanifold of P and Tz(JΦ−1(µ)) = ker(TpJΦ) for every p ∈ JΦ−1(µ).

It is hereafter assumed that µ ∈ g∗ is a weak regular value of a symplectic momentum map JΦ : P → g∗.

Theorem 2.1.6. If µ ∈ g∗ is a regular value for the symplectic momentum map JΦ, then every µ′

belonging to the coadjoint orbit, Oµ, of µ is also a regular value. If Gµ acts properly and freely in
JΦ−1(µ), then Gµ′ acts also freely and properly on JΦ−1(µ′) for every µ′ ∈ Oµ. Finally, JΦ−1(Oµ) is a
submanifold of P .

Proof. If µ is a regular point of JΦ, then TJΦ is a surjection at every point of JΦ−1(µ).
Let µ′ := Ad∗

g−1µ. If p ∈ JΦ−1(µ), then gp ∈ JΦ−1(µ′) since JΦ is Ad∗-equivariant. Moreover, from
the fact that Φg is a diffeomorphism, it follows that

JΦ−1(Ad∗
g−1µ) = Φg(JΦ−1(µ)), ∀g ∈ G, ∀µ ∈ JΦ(P ).

Furthermore, TgpJΦ = Ad∗
g−1TpJΦ for every p ∈ JΦ−1(µ) and g ∈ G. Thus, TJΦ is a surjection on

JΦ−1(Ad∗
g−1µ) for every g ∈ G.

Note that GAd∗
g−1µ

= IgGµ for every g ∈ G and µ ∈ JΦ(P ). Moreover, if Φ: Gµ×JΦ−1(µ) → JΦ−1(µ)
is free and proper, by the equivariance of Φ, it follows that Φ: Gµ′ × JΦ−1(µ′) → JΦ−1(µ′) is free and
proper also for µ′ ∈ Oµ.



Chapter 2. Marsden–Meyer–Weinstein reduction theorems 35

To prove that JΦ−1(Oµ) is a submanifold of P , recall that if f : M → N , S ⊂ N is a submanifold of
the manifold N and ImTpf + TsS = TsN for every s ∈ S and p ∈ f−1(s), then f is transversal to S and
hence f−1(S) is a submanifold of M (see [2, p 49]).

Since µ is a regular point of JΦ, one has that Im TpJ = TJΦ(p)g
∗ for every p ∈ JΦ−1(µ). Consequently,

Im TpJΦ + TJΦ(p)Oµ = TJ(p)g
∗

for every p ∈ JΦ−1(Oµ). Therefore, Jϕ is transversal to Oµ and JΦ−1(Oµ) is a submanifold of P .

Lemma 2.1.7. Let p ∈ JΦ−1(µ) and assume that symplectic momentum map JΦ is Ad∗-equivariant. Let
Gµ ⊂ G be the isotropy group at µ ∈ g∗ of the coadjoint action of G. Then

a) Tp(Gµp) = Tp(Gp) ∩ Tp(JΦ−1(µ)),

b) TpJΦ−1(µ) = (Tp(Gp))⊥ω .

Figure 2.2: Symplectically orthogonal spaces Tp(Gp) and TpJΦ−1(µ).

Proof. Recall that

Tp(Gp) = {(ξP )p | ξ ∈ g}, Tp(Gµp) = {(ξP )p | ξ ∈ gµ} ,

where gµ is the Lie algebra of Gµ.
The proof of a) amounts to proving that (ξP )p ∈ Tp(JΦ−1(µ)) if and only if ξ ∈ gµ. Since JΦ is

Ad∗-equivariant and by (1.2.3), it follows

d
dt

∣∣∣∣
t=0
JΦ ◦ Φexp(tξ)(p) = d

dt

∣∣∣∣
t=0
Ad∗

exp(−tξ)JΦ(p) ⇒ TpJΦ((ξP )p) = (ξg∗)µ,

for all ξ ∈ g and p ∈ JΦ−1(µ). Therefore, (ξP )p ∈ TpJΦ−1(µ) = ker(TpJΦ) implies that (ξg∗)µ = 0.
Then, for (ξg∗)µ = 0, one has

d
dt

∣∣∣∣
t=s

Ad∗
exp(−tξ)µ = d

dt

∣∣∣∣
t=s

Ad∗
exp(−sξ)Ad∗

exp(−(t−s)ξ)(µ)

= TµAd∗
exp(−sξ)

(
d

d(t− s)

∣∣∣∣
t=s

Ad∗
exp((s−t)ξ)µ

)
= TµAd∗

exp(−sξ)(ξg∗)µ = 0

and (ξg∗)µ = 0 boils down to exp(tξ) ∈ Gµ for all t ∈ R. Thus, (ξg∗)µ = 0 whenever ξ ∈ gµ. This finishes
the proof of a).
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To prove b), note that the definition of a symplectic momentum map JΦ yields

ωp((ξP )p, vp) = (dJΦ
ξ )p(vp) = ⟨TpJΦ(vp), ξ⟩, ∀vp ∈ TpP, ∀ξ ∈ g, ∀p ∈ P.

Thus, vp ∈ ker TpJΦ = TpJΦ−1(µ) if and only if ⟨TpJΦ(vp), ξ⟩ = 0 for all ξ ∈ g. Therefore,

(TpJΦ−1(µ))⊥ω = Tp(Gp) ,

for all p ∈ JΦ−1(µ).

The following theorem presents the classical symplectic Marsden–Meyer–Weinstein reduction [109].

Theorem 2.1.8. Let Φ: G×P → P be a Hamiltonian Lie group action of G on the symplectic manifold
(P, ω) admitting an Ad∗-equivariant symplectic momentum map JΦ : P → g∗. Assume that µ ∈ g∗

is a weak regular value of JΦ and Gµ acts freely and properly on JΦ−1(µ). Let iµ : JΦ−1(µ) ↪→ P be
the natural embedding of JΦ−1(µ) into P and let πµ : JΦ−1(µ) → JΦ−1(µ)/Gµ =: Pµ be the canonical
projection. Then, there exists a unique symplectic structure ωµ on Pµ such that

π∗
µωµ = i∗µω .

Proof. Since µ is a weak regular value of JΦ, it follows that JΦ−1(µ) ⊂ P is a submanifold of P . Addi-
tionally, as Gµ acts freely and properly on JΦ−1(µ), the quotient Pµ = JΦ−1(µ)/Gµ inherits a manifold
structure. For any vp ∈ TpJΦ−1(µ), the equivalence class of vp within Tπµ(p)Pµ ≃ TpJΦ−1(µ)/Tp(Gµp)
is denoted by [vp] := Tpπµ(vp) ∈ Tπµ(p)Pµ. Then,

π∗
µωµ = i∗µω ⇐⇒ (ωµ)πµ(p)([vp], [ϑp]) = ωp(vp, ϑp), ∀vp, ϑp ∈ TpJΦ−1(µ), ∀p ∈ JΦ−1(µ). (2.1.4)

To verify that ωµ is well-defined, it is necessery to prove that

ωp(vp, ϑp) = ωp(ṽp, ϑ̃p) ,

for all ṽp ∈ [vp], ϑ̃p ∈ [ϑp], and p ∈ JΦ−1(µ). Since πµ is a submersion, π−1
µ (πµ(p)) = Gµp is a submanifold

and Tp(Gµp) = ker Tpπµ. Moreover, ṽp − vp ∈ ker Tpπµ = Tp(Gµp) ⊂ Tp(Gp) and from the part b) of
Lemma 2.1.7, i.e. TpJΦ−1(µ) = Tp(Gp)⊥ω , it follows that ωp(ṽp − vp, ϑp) = 0 for all ϑp ∈ TpJΦ−1(µ).
Therefore,

ωp(ṽp, ϑ̃p) = ωp(ṽp − vp + vp, ϑ̃p − ϑp + ϑp)
= ωp(ṽp − vp, ϑ̃p − ϑp) + ωp(ṽp − vp, ϑp) + ωp(vp, ϑ̃p − ϑp) + ωp(vp, ϑp)
= ωp(vp, ϑp).

Let p′ = Φ(g, p) for some g ∈ Gµ. Now the goal is to prove that (ωµ)πµ(p) = (ωµ)πµ(p′). Since Φg is
symplectic by assumption, one has Φ∗

gω = ω for every g ∈ G. Moreover, TpΦg is an isomorphism and,
if g ∈ Gµ, it follows that TpΦgTpJΦ−1(µ) = Tp′JΦ−1(µ). Consequently, for all vp′ , ϑp′ ∈ Tp′JΦ−1(µ),
there exist vp, ϑp ∈ TpJΦ−1(µ) such that

ωp′(vp′ , ϑp′) = ωp′(TpΦg(vp),TpΦg(ϑp)) = [T∗
p′Φg(ωp′)](vp, ϑp) = ωp(vp, ϑp),

and (ωµ)πµ(x′) becomes a well-defined two-form, namely

(ωµ)πµ(p′)([vp′ ], [ϑp′ ]) = (ωµ)πµ(p)([vp], [ϑp])

for all vp, ϑp ∈ TpJΦ−1(µ), vp′ , ϑp′ ∈ Tp′JΦ−1(µ) and for any p, p′ ∈ JΦ−1(µ) such that πµ(p) = πµ(p′).
Thus, ωµ is well-defined on Im πµ. Since πµ is surjective, it follows that ωµ is well-defined on the entire
Pµ.
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To prove that ωµ is uniquely defined, assume that there exists another two-form ω̃µ ∈ Ω2(Pµ) such
that π∗

µω̃µ = i∗µω. Then,
(ωµ − ω̃µ)πµ(p)(Tpπµ(vp),Tpπµ(ϑp)) = 0

for all vp, ϑp ∈ TpJΦ−1(µ) and p ∈ JΦ−1(µ). Since πµ is a surjective submersion, ω̃µ = ωµ and ωµ is
unique.

To verify that ωµ is smooth, by the fact that πµ is a submersion, the local section theorem [94,
Theorem 4.26] states that there exists a smooth section ς : Pµ → JΦ−1(µ), i.e. πµ ◦ ς = IdPµ

. Then,

ωµ = (πµ ◦ ς)∗ωµ = ς∗(π∗
µωµ) = ς∗(i∗µω) = (iµ ◦ ς)∗ω.

Thus, ωµ is locally the pull-back of a smooth differential form relative to a smooth map. Consequently,
ωµ is smooth.

To establish that ωµ is non-degenerate, consider vp ∈ TpJΦ−1(µ). Then, using (2.1.4), one has

(ωµ)πµ(p)([vp], [ϑp]) = 0, ∀ϑp ∈ TpJΦ−1(µ) =⇒ ωp(vp, ϑp) = 0, ∀ϑp ∈ TpJΦ−1(µ).

Therefore, vp ∈ Tp(Gp). By Lemma 2.1.7 it follows that vp ∈ Tp(Gµp). Thus, [vp] = Tpπµ(vp) = 0, and
therefore ωµ is non-degenerate on Pµ.

To show that ωµ is closed, note that

dω = 0 =⇒ 0 = i∗µdω = d(i∗µω) = d(π∗
µωµ) = π∗

µdωµ =⇒ dωµ = 0,

where the last step stems from the fact that πµ is a surjective submersion following the same argument
given for the uniqueness of ωµ. Therefore, ωµ ∈ Ω2(Pµ) is closed, and thus it is a symplectic form on
Pµ.

Figure 2.3: Scheme of the Marsden–Meyer–Weinstein symplectic reduction.

To simplify the notation, the following definition is introduced.

Definition 2.1.9. The five-tuple (P, ω, h,Φ,JΦ) is called a G-invariant Hamiltonian system, where (P, ω)
is a symplectic manifold, Φ is a symplectic action leaving invariant the Hamiltonian function h ∈ C ∞(P ),
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i.e. h(Φ(g, p)) = h(p) for every g ∈ G and p ∈ P , and JΦ is a symplectic momentum map. An Ad∗-
equivariant G-invariant Hamiltonian system is a G-invariant Hamiltonian system with an Ad∗-equivariant
symplectic momentum map.

Proposition 2.1.10 analyses the evolution of JΦ : P → g∗ under the dynamics of Xh associated with
an Ad∗-equivariant G-invariant Hamiltonian system (P, ω, h,Φ,JΦ).

Proposition 2.1.10. Let (P, ω, h,Φ,JΦ) be an Ad∗-equivariant G-invariant Hamiltonian system. Then,
the symplectic momentum map JΦ : P → g∗ is invariant relative to the evolution of h, i.e. if F : (t, p) ∈
R× P 7→ Ft(p) := F (t, p) ∈ P is the flow of Xh on P , then JΦ(F (t, p)) = JΦ(p) for all p ∈ P and t ∈ R.

Proof. Since h is invariant under the action of Φ by assumption, it follows that ξPh = 0 for every ξ ∈ g.
Additionally,

d
dt

∣∣∣∣
t=0

JΦ
ξ (Ft) = XhJ

Φ
ξ = {JΦ

ξ , h} = −ξPh = 0, ∀ξ ∈ g.

Hence, JΦ
ξ (F (t, p)) = JΦ

ξ (p), for every ξ ∈ g, every t ∈ R, and p ∈ P . Therefore, JΦ(F (t, p)) = JΦ(p) for
every t ∈ R and p ∈ P .

The consequence of Theorem 2.1.8 and Proposition 2.1.10 is the following proposition that ensures
the reduction of the dynamics given by a symplectic Hamiltonian vector field Xh.

Proposition 2.1.11. Assume the assumptions of Theorem 2.1.8 hold. Then, the symplectic Hamiltonian
vector field Xh is projectable onto Pµ = JΦ−1(µ)/Gµ and πµ∗(Xh) = Xkµ

, where kµ is the unique function
on Pµ satisfying π∗

µkµ = i∗µh.

Proof. By Proposition 2.1.10, the vector field Xh is tangent to JΦ−1(µ). Moreover, since Φ is a symplectic
Lie group action that leaves h invariant, it follows that

ι[ξP ,Xh]ω = LξP
ιXh

ω − ιXh
LξP

ω = LξP
dh = 0 .

Consequently, Xh is projectable onto Pµ, i.e. πµ∗Xh = Y for some vector field Y on Pµ. Moreover, there
exists a unique function kµ ∈ C ∞(Pµ) such that π∗

µkµ = i∗µh. Then, Theorem 2.1.8 yields that there
exists ωµ ∈ Ω2(Pµ) satisfying π∗

µωµ = i∗µω. Furthermore,

π∗
µ(ιY ωµ) = π∗

µ ∗ (ιπµ∗(Xh)ωµ) = ιXh
π∗
µωµ = ιXh

i∗µω = i∗µ(ιXh
ω) = i∗µdh = π∗

µdkµ ,

where Xh denotes both the vector field on P and its restriction to JΦ−1(µ). Therefore, Y = πµ∗Xh = Xkµ

is the reduced symplectic Hamiltonian vector field.

2.1.1 General symplectic momentum maps

In this section, it is shown that the Ad∗-equivariance condition imposed in Definition 2.1.1 can be relaxed
in certain cases. In particular, the existence of a non-Ad∗-equivariant symplectic momentum map still
allows for the definition of some equivariance of the symplectic momentum map associated with the same
Lie group action. A general symplectic momentum map JΦ may not induce a Poisson algebra homo-
morphism between P and g∗. The following results provide fundamental properties of such symplectic
momentum maps. More details can be found in [54, 128, 151].

Proposition 2.1.12. Let (P, ω, h,Φ,JΦ) be a G-invariant Hamiltonian system. Define the functions on
P of the form

ψg,ξ : p ∈ P 7−→ Jξ(Φg(p)) − JAdg−1ξ(p) ∈ R , g ∈ G , ξ ∈ g .

Then, ψg,ξ is a constant function on P for every g ∈ G and ξ ∈ g.
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Proof. To verify that ψg,ξ is constant on P , compute the following

dψg,ξ(p) = d[JΦ
ξ ◦ Φg](p) − dJΦ

Adg−1ξ(p) = (Φ∗
g(ιξP

ω))p − (ι(Adg−1ξ)P
ω)p

= (Φ∗
g(ιξP

ω))p − (ιΦg−1∗ξP
ω)p = (ιΦg−1∗ξP

Φ∗
gω)p − (ιΦg−1∗ξP

ω)p
= (ιΦg−1∗ξP

ω)p − (ιΦg−1∗ξP
ω)p = 0,

where the assumption that Φ is a symplectic Lie group action and Lemma 2.1.2 have been used. Hence,
ψg,ξ is constant for every g ∈ G and ξ ∈ g.

To capture all such function ψg,ξ simultaneously with g ∈ G and ξ ∈ g, consider

ψg,ξ(p) = Jξ(Φg(p)) − JΦ
Adg−1ξ(p) = ⟨JΦ(Φg(p)), ξ⟩ − ⟨JΦ(p),Adg−1ξ⟩

= ⟨JΦ(Φg(p)), ξ⟩ − ⟨Ad∗
g−1JΦ(p), ξ⟩ = ⟨JΦ(Φg(p)) − Ad∗

g−1JΦ(p), ξ⟩

and define σ : G ∋ g 7→ JΦ(Φg(p)) − Ad∗
g−1JΦ(p) ∈ g∗. Then, ⟨σ(g), ξ⟩ = ψg,ξ(p) for every g ∈ G and

ξ ∈ g. Moreover,

σ(gh) = J(Φgh(p)) − Ad∗
gh−1J(p) = J(Φg(Φh(p))) − Ad∗

g−1Ad∗
h−1J(p)

= J(Φg(Φh(p))) − Ad∗
g−1J(Φh(p)) + Ad∗

g−1J(Φh(p)) − Ad∗
g−1Ad∗

h−1J(p)
= J(Φg(p)) − Ad∗

g−1J(p) + Ad∗
g−1(J(Φh(p)) − Ad∗

h−1J(p)) = σ(g) + Ad∗
g−1σ(h).

Definition 2.1.13. A map σ : G → g∗ satisfying σ(gh) = σ(g) + Ad∗
g−1σ(h) for every g, h ∈ G is called

a cocycle and a map σ : G → g∗ is the co-adjoint cocycle associated with the symplectic momentum map
JΦ on P , if

σ(g) := JΦ ◦ Φg − Ad∗
g−1JΦ(p) , p ∈ P .

A map σ : G → g∗ is a coboundary if there exists µ ∈ g∗ such that

σ(g) = µ− Ad∗
g−1µ, ∀g ∈ G. (2.1.5)

Then, for a coboundary σ, condition (2.1.5) implies that, for any g, h ∈ G, one has

σ(gh) = µ− Ad∗
(gh)−1µ = µ− Ad∗

g−1µ+ Ad∗
g−1µ− Ad∗

g−1Ad∗
h−1µ = σ(g) + Ad∗

g−1σ(h) .

Consequently, any coboundary is a cocycle.
Note that σ(e) = 0 for the neutral element e ∈ G. Moreover, if JΦ is an Ad∗-equivariant symplectic

momentum map, then σ = 0. In other words, the cocycle σ measures the deviation from the Ad∗-
equivariance of a symplectic momentum map.

The set of cocycles of G, viewed as functions on G taking values in a vector space, in this case, g∗,
forms a vector space relative to the pointwise addition of functions and scalar multiplication. The subset
of coboundaries is a linear subspace of this vector space. Denote by [σ] the equivalence classes of cocycles
differing from a cocycle σ by a coboundary. Explicitly, for two cocycles σ1 and σ2, one has [σ1] = [σ2] if
and only if there exists µ ∈ g∗ such that

σ1 − σ2 = µ− Ad∗
g−1µ.

The following proposition establishes the existence of a well-defined cohomology class, [σ], associated
with any symplectic action that admits a symplectic momentum map.

Proposition 2.1.14. Let Φ: G × P → P be a symplectic Lie group action and let JΦ
1 ,JΦ

2 : P → g∗ be
two symplectic momentum maps corresponding to the same Lie group action, with associated co-adjoint
cocycles σ1 and σ2, respectively. Then [σ1] = [σ2].
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Proof. By the definition of the cocycles associated with the symplectic momentum maps JΦ
1 ,JΦ

2 , one
obtains

⟨σ1(g) − σ2(g), ξ⟩ = ⟨JΦ
1 (Φg(p)) − JΦ

2 (Φg(p)), ξ⟩ − ⟨Ad∗
g−1(JΦ

1 (p) − JΦ
2 (p)), ξ⟩, ∀g ∈ G, ∀ξ ∈ g.

Then,
d⟨JΦ

1 − JΦ
2 , ξ⟩ = dJΦ

1,ξ − dJΦ
2,ξ = ιξP

ω − ιξP
ω = 0

and it follows that JΦ
1 − JΦ

2 has a constant value in g∗, say µ. Hence, (JΦ
1 − JΦ

2 ) ◦ Φg = JΦ
1 − JΦ

2 for every
g ∈ G. Consequently,

σ1(g) − σ2(g) = µ− Ad∗
g−1µ , ∀g ∈ G,

which implies [σ1] = [σ2].

The above proposition implies that a necessary condition for the existence of an Ad∗-equivariant
symplectic momentum map is that the associated cocycle must be a coboundary. Indeed, if a Hamiltonian
Lie group action admits an Ad∗-equivariant symplectic momentum map JΦ

2 , then σ2 = 0 and hence any
other symplectic momentum map JΦ

1 for the same action must satisfy [σ1] = [σ2] = 0, making the cocycle
of JΦ

1 a coboundary. Conversely, if σ1 is a coboundary, then the symplectic momentum map

JΦ(p) := JΦ
1 (p) − µ, ∀p ∈ P,

is an Ad∗-equivariant symplectic momentum map for the same Hamiltonian Lie group action of JΦ
1 , where

µ ∈ g∗ satisfies that σ1(g) = µ− Ad∗
g−1µ for every g ∈ G. In fact,

⟨JΦ, ξ⟩ = ⟨JΦ
1 , ξ⟩ − ⟨µ, ξ⟩ = JΦ

1,ξ − ⟨µ, ξ⟩, ∀ξ ∈ g

and

JΦ(Φ(g, p)) = JΦ
1 (Φ(g, p)) − µ = σ1(g) + Ad∗

g−1JΦ
1 (p) − µ = σ1(g) + Ad∗

g−1JΦ(p) + Ad∗
g−1µ− µ ,

for any p ∈ P and g ∈ G. Therefore,

JΦ(Φ(g, p)) − Ad∗
g−1JΦ(p) = σ1(g) + Ad∗

g−1µ− µ = 0 , ∀p ∈ P, ∀g ∈ G .

Proposition 2.1.15. Let JΦ : P → g∗ be a symplectic momentum map for the symplectic Lie group
action Φ: G× P → P with associated cocycle σ : G → g∗. Then

1. the map ∆: G×g∗ → g∗ | (g, µ) 7→ Ad∗
g−1µ+σ(g) is an action of G on g∗, the so-called symplectic

affine Lie group action,

2. the symplectic momentum map JΦ is equivariant with respect to ∆, in other words, the following
diagram commutes

P
Φg //

JΦ

��

P

JΦ

��
g∗ ∆g // g∗

where ∆g(µ) : p ∈ P 7→ ∆(g, µ) ∈ g∗.

Proof. First, it is verified that ∆(e, µ) = µ and ∆(g,∆(h, µ)) = ∆(gh, µ) for the neutral element e ∈ G,
every g, h ∈ G, and all µ ∈ g∗. Indeed,

∆(e, µ) = Ad∗
e−1µ+ σ(e) = µ
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and

∆(g,∆(h, µ)) = Ad∗
g−1(Ad∗

h−1µ+ σ(h)) + σ(g) = Ad∗
g−1Ad∗

h−1µ+ Ad∗
g−1σ(h) + σ(g)

= Ad∗
(gh)−1µ+ Ad∗

g−1σ(h) + σ(g) = Ad∗
(gh)−1µ+ σ(gh) = ∆(gh, µ).

Thus, ∆ is a Lie group action on g∗.
Second, from the definition of ∆ and σ, one gets

∆g(JΦ(p)) = Ad∗
g−1JΦ(p) + σ(g) = JΦ(Φg(p)), ∀g ∈ G, ∀p ∈ P.

This result implies that even when a symplectic momentum map is not Ad∗-equivariant, it becomes
an equivariant relative to the symplectic affine Lie group action on g∗ given by ∆. The following theorem
studies the commutation relations associated with a symplectic momentum map JΦ.

Theorem 2.1.16. Let Φ: G × P → P be a symplectic Lie group action with a symplectic momentum
map JΦ : P → g∗ and let σ : G → g∗ be an associated cocycle of JΦ. Define

ση : g ∈ G 7→ ⟨σ(g), η⟩ ∈ R, Σ: (ξ, η) ∈ g × g 7→ Teση(ξ) ∈ R.

Then:

1. Σ is a skew-symmetric bilinear form on g satisfying the Jacobi identity,

2. Σ(ξ, ν) = {JΦ
ν , J

Φ
ξ } − JΦ

[ν,ξ], for all ξ, ν ∈ g.

Proof. The derivative of ση(g) at g = e, is given by

Σ(ξ, ν) = Teσν(ξ) = d
ds

∣∣∣∣
s=0

(
⟨JΦ(Φexp(sξ)p), ν⟩ − ⟨Ad∗

exp(−sξ)JΦ(p), ν⟩
)

= dJΦ
ν (ξP )p − d

ds

∣∣∣∣
s=0

⟨JΦ(p),Adexp(−sξ)ν⟩ = (ινιξP
ω)p − ⟨JΦ(p), [ν, ξ]⟩ = {JΦ

ν , J
Φ
ξ }(p) − JΦ

[ν,ξ](p),

which establishes point 2.
Point 1. follows from the fact that {·, ·} and [·, ·] both are skew-symmetric, bilinear, and satisfy the

Jacobi identity.

Recall that if the symplectic momentum map JΦ is Ad∗-equivariant, then the associated cocycle
vanishes, i.e. σ(g) = 0 for any g ∈ G. Consequently, Σ(ξ, η) = 0 for all ξ, η ∈ g. Therefore, the following
corollary is an immediate consequence of the previous theorem.

Corollary 2.1.17. Assume that JΦ : P → g∗ is an Ad∗-equivariant symplectic momentum map. Then,

{JΦ
ξ , J

Φ
ν } = J[ξ,ν], ∀ξ, ν ∈ g.

In other words, λ : ξ ∈ g 7→ JΦ
ξ ∈ C ∞(P ) is a Lie algebra homomorphism.

This result recovers, as a special case, the general identity for Ad∗-equivariant symplectic momentum
maps that there exists a Lie algebra morphism g ∋ ξ 7→ JΦ

ξ ∈ C ∞(P ). It was previously obtained in
(2.1.1) through direct computation.

The following lemma provides the generalisation of Lemma 2.1.7 for a general symplectic momentum
map.

Lemma 2.1.18. Let JΦ : P → g∗ be a symplectic momentum map associated with a Lie group action
Φ: G×P → P and cocycle σ : G → g∗. Let G∆

µ be the isotropy group at µ ∈ g∗ of the action ∆: G×P → P
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• a) Tp(G∆
µ p) = Tp(Gp) ∩ TpJΦ−1(µ),

• b) TpJΦ−1(µ) = Tp(Gp)⊥ω .

Proof. As in the proof of Lemma 2.1.7, part a) follows by showing that (ξP )p ∈ TpJΦ−1(µ) if and only if
ξ ∈ g∆

µ , where g∆
µ denotes the Lie algebra of G∆

µ . By Proposition 2.1.15, the symplectic momentum map
JΦ is equivariant with respect to the symplectic affine action ∆. Hence,

d
dt

∣∣∣∣
t=0
JΦ ◦ Φexp(tξ)(p) = d

dt

∣∣∣∣
t=0
∆exp(tξ)JΦ(p) ⇒ TpJΦ((ξP )p) = (ξ∆

g∗)µ,

where ξ∆
g∗ is the fundamental vector field on g∗ induced by the symplectic affine Lie group action ∆

corresponding to ξ ∈ g, for all ξ ∈ g and p ∈ JΦ−1(µ). Therefore, (ξP )p ∈ TpJΦ−1(µ) = ker(TpJ) if and
only if (ξ∆

g∗)µ = 0. Suppose that (ξ∆
g∗)µ = 0, then

d
dt

∣∣∣∣
t=s

∆exp(tξ)(µ) = d
dt

∣∣∣∣
t=s

∆exp(sξ)∆exp((t−s)ξ)(µ)

= Tµ∆exp(sξ)

(
d

d(t− s)

∣∣∣∣
t=s

∆exp((t−s)ξ)µ

)
= Tµ∆exp(sξ)(ξ∆

g∗)µ = 0

and thus (ξ∆
g∗)µ = 0 yields that exp(tξ) ∈ G∆

µ for all t ∈ R. Therefore, (ξ∆
g∗)µ = 0 implies that ξ ∈ g∆

µ .
This completes the proof of a).

Part b) follows identically to the corresponding statement in Lemma 2.1.7.

Note that the previous lemma establishes the conditions necessary to formulate the Marsden–Meyer–
Weinstein reduction for a Hamiltonian system (P, ω,Φ, h,JΦ) in the case where the symplectic momentum
map JΦ is not Ad∗-equivariant. Consequently, the following generalisation of Theorem 2.1.8 is immediate.

Theorem 2.1.19. Let Φ: G × P → P be a Hamiltonian Lie group action of G on the symplectic
manifold (P, ω) admitting a (not necessarily Ad∗-equivariant) symplectic momentum map JΦ : P → g∗.
Assume that µ ∈ g∗ is a weak regular value of JΦ and G∆

µ acts freely and properly on JΦ−1(µ). Let
iµ : JΦ−1(µ) ↪→ P be the natural embedding of JΦ−1(µ) into P and let πµ : JΦ−1(µ) → JΦ−1(µ)/G∆

µ =: P∆
µ

be the canonical projection. Then, there exists a unique symplectic structure ωµ on P∆
µ such that

π∗
µωµ = i∗µω .

2.2 Cosymplectic Marsden–Meyer–Weinstein reduction
The main objective of this section is to present the cosymplectic Marsden–Meyer–Weinstein reduction
[4]. This reduction plays a fundamental role in the cosymplectic energy-momentum method, devised
in Subsection 3.2, since the associated relative equilibrium points, introduced in Subsection 3.2.1, are,
roughly speaking, points projecting onto equilibrium points of a reduced Hamiltonian obtained through
the cosymplectic Marsden–Meyer–Weinstein reduction.

Although some of the following results can be found in the literature, full proofs are included here
to maintain a self-contained exposition, as such proofs are generally not available. In particular, the
classical works [4, 101] are written in French, and the online versions of [4] are partially illegible in
essential sections. Furthermore, several results presented in this section constitute natural generalisations
of well-known theorems in symplectic geometry to the cosymplectic setting. The discussion begins by
introducing momentum maps for cosymplectic structures.

2.2.1 Cosymplectic momentum maps

This subsection introduces the notion of Ad∗-equivariant momentum maps in a framework of cosymplectic
geometry.
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Definition 2.2.1. Let Φ: G×M → M be a Lie group action on a cosymplectic manifold (M,ω, η) such
that ιξM

η = 0. A cosymplectic momentum map associated with a Lie group action Φ: G×M → M is a
map JΦ : M → g∗ defined by

ιξM
ω = d⟨JΦ, ξ⟩ := dJΦ

ξ , RJΦ
ξ = 0, ∀ξ ∈ g, (2.2.1)

where R denotes the Reeb vector field associated with (M,ω, η).

In the existing literature, it is often assumed that the cosymplectic momentum map is Ad∗-equivariant.
Hence, one has the following definition that is analogous to Definition 2.1.1 in a symplectic setting.

Definition 2.2.2. A momentum map JΦ : M → g∗ is Ad∗-equivariant if

JΦ ◦ Φg = Ad∗
g−1 ◦ JΦ, ∀g ∈ G.

In other words, the following diagram commutes

M g∗

M g∗

JΦ

Φg Ad∗
g−1

JΦ

,

for every g ∈ G and Ad∗
g−1 being the transpose of Adg−1 .

The condition RJΦ
ξ = 0 in (2.2.1) is necessary in order to apply the cosymplectic Marsden–Meyer–

Weinstein reduction theorem to be introduced in Section 2.2.3. Although this condition may appear
restrictive, it is satisfied by many physically relevant systems, including certain classes of time-dependent
or dissipative Hamiltonian systems. These cases will be studied in detail using the cosymplectic energy-
momentum method developed in Section 3.2.

Let Φ: G × M → M be a cosymplectic Lie group action, see Definition 1.3.5. Since dτ = 0, the
condition LξM

τ = 0 implies that ιξM
τ takes a constant value, not necessarily zero, on M . This apparently

minor detail has relevant applications in the reduction of cosymplectic manifolds to symplectic manifolds
and its applications to circular restricted three-body problems (cf. [4, 105]). As shown in Section 2.4.6,
the fact that ιξM

τ may not be zero will play a relevant role in the description of radically new types of
reductions.

Note that if a Lie group action Φ: G × M → M admits a cosymplectic momentum map relative to
(M,ω, η), then Φ is a cosymplectic Lie group action. However, not every cosymplectic Lie group action
on M admits a momentum map. A counterexample is provided by the flow of the Reeb vector field R,
which is a cosymplectic Lie group action, but it does not admit a cosymplectic momentum map relative
to its associated cosymplectic manifold since ιRη = 1 ̸= 0.

In view of (2.2.1), the Reeb vector field R is always tangent to the level sets of a momentum map JΦ

relative to (M,ω, η). Nonetheless, R can not be tangent to the orbits of Φ, as that would imply ιR η = 0,
contradicting the definition of R.

The following example introduces the canonical cosymplectic structure on T ×T∗Q, where T is a one-
dimensional manifold. It also shows the construction of a cosymplectic momentum map and cosymplectic
Lie group action.

Example 2.2.3. Let θT∗Q be the canonical Liouville one-form and ωT∗Q = −dθT∗Q the associated
symplectic form on T∗Q. One can define canonical one- and two-forms on T × T∗Q in the following way

θT×T∗Q := π∗
T∗QθT∗Q, ωT×T∗Q := π∗

T∗QωT∗Q,

where πT∗Q : T×T∗Q → T∗Q is the canonical projection onto T∗Q. Then, ωT×T∗Q = −dθT×T∗Q is closed
and satisfies that kerωT×T∗Q is a distribution of rank 1. Consequently, one has a canonical cosymplectic
manifold

(T × T∗Q,ωT×T∗Q, ηT×T∗Q) , (2.2.2)
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where ηT×T∗Q is the pull-back to T × T∗Q of a closed non-vanishing one-form η on T . In the particular
case when T = R, it is natural to take η = dt, where t is the standard coordinate on R.

Recall that according to Proposition 2.1.3 every Lie group action Φ: G×Q → Q induces a canonical
lift Φ̂ : G× T∗Q → T∗Q given by

⟨Φ̂g(αq), vΦg(q)⟩ := ⟨αq,TΦg(q)Φg−1(vΦg(q))⟩, ∀g ∈ G, ∀q ∈ Q, ∀αq ∈ T∗
qQ, ∀vΦg(q) ∈ TΦg(q)Q.

This construction allows one to define a natural Lie group action Ψ: G × T × Q → T × Q and Ψ̂: G ×
T × T∗Q → T × T∗Q in the following manner

Ψ: G× T ×Q ∋ (g, t, q) 7→ (t,Φg(q)) ∈ T ×Q

and
Ψ̂: G× T × T∗Q ∋ (g, t, αq) 7→ (t, Φ̂g(αq)) ∈ T × T∗Q . (2.2.3)

If the lifted Lie group action Φ̂ is symplectic relative to the canonical symplectic structure on T∗Q, then
the lifted Lie group action Ψ̂ is a cosymplectic Lie group action relative to the cosymplectic manifold
(2.2.2).

The following proposition is equivalent to Proposition 2.1.3 but in a cosymplectic setting.

Proposition 2.2.4. Let Φ: G × Q → Q be a Lie group action. Then, the lifted Lie group action
Ψ̂ : G×T ×T∗Q → T ×T∗Q, defined in (2.2.3), admits an Ad∗-equivariant cosymplectic momentum map
JΨ̂ : T × T∗Q → g∗ satisfying

⟨JΨ̂, ξ⟩ = ιξT ×T∗Q
θT×T∗Q, ∀ξ ∈ g, (2.2.4)

with respect to the canonical cosymplectic structure (T × T∗Q,ωT×T∗Q, ηT×T∗Q).

Proof. Since JΨ̂, ξT×T∗Q, and θT×T∗Q are invariant relative to the Lie derivative with respect to the
Reeb vector field R, it follows that (2.2.4) amounts to the pull-back via πT∗Q : T × T∗Q → T∗Q of

⟨JΦ̂, ξ⟩ = ιξT∗Q
θT∗Q, ∀ξ ∈ g,

which is a well-defined Ad∗-equivariant momentum map on T∗Q (see [2]).

To simplify the notation, the cosymplectic manifold (M,ω, η) is frequently denoted by Mω
η .

Definition 2.2.5. A triple (Mω
η , h,JΦ) is said to be a G-invariant cosymplectic Hamiltonian system if it

consists of a cosymplectic manifold (M,ω, η), an associated cosymplectic Lie group action Φ: G×M → M

such that Φ∗
gh = h for every g ∈ G, and a cosymplectic momentum map JΦ : M → g∗ related to Φ. If,

additionally, the cosymplectic momentum map JΦ is Ad∗-equivariant, a G-invariant cosymplectic Hamil-
tonian system (Mω

η , h,JΦ) is referred to as an Ad∗-equivariant G-invariant cosymplectic Hamiltonian
system.

2.2.2 General cosymplectic momentum maps

This section develops the theory of non-Ad∗-equivariant cosymplectic momentum maps. The results
presented in this subsection constitute a straightforward extension of the corresponding theory for general
momentum maps on symplectic manifolds, as detailed in Subsection 2.1.1. It also presents a slight
adaptation of the results by Albert in [4].

Proposition 2.2.6. Let (Mω
η , h,JΦ) be a G-invariant cosymplectic Hamiltonian system. Define the

functions
ψg,ξ : M ∋ x 7→ JΦ

ξ (Φg(x)) − JΦ
Adg−1ξ(x) ∈ R, ∀g ∈ G, ∀ξ ∈ g.

Then, for every g ∈ G and ξ ∈ g, the function ψg,ξ is constant on M . Moreover, σ : G ∋ g 7→ σ(g) ∈ g∗,
defined by ⟨σ(g), ξ⟩ := ψg,ξ for all ξ ∈ g satisfies the cocycle condition

σ(gg′) = σ(g) + Ad∗
g−1σ(g′), ∀g, g′ ∈ G. (2.2.5)
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Proof. To show that each ψg,ξ is constant on M , note that

dψg,ξ = d[JΦ
ξ ◦ Φg] − dJΦ

Adg−1ξ = Φ∗
g(ιξM

ω) − ι(Adg−1ξ)M
ω

= Φ∗
g(ιξM

ω) − ιΦg−1∗ξM
ω = ιΦg−1∗ξM

Φ∗
gω − ιΦg−1∗ξM

ω = ιΦg−1∗ξM
ω − ιΦg−1∗ξM

ω = 0,

where the fact that Φ is a cosymplectic Lie group action and (Adgξ)M = Φg∗ξM for every g ∈ G and
every ξ ∈ g were used, see Lemma 2.1.2. Since each ψg,ξ is constant on every connected component of
M . Since M is connected by assumption, it follows that ψg,ξ is constant on M for all g ∈ G and ξ ∈ g.

Similarly to the symplectic setting, to analyse the family of mappings {ψg,ξ}g∈G,ξ∈g, note that each
ψg,ξ can be rewritten as

ψg,ξ(x) = JΦ
ξ (Φg(x)) − JΦ

Adg−1ξ(x) = ⟨JΦ(Φg(x)), ξ⟩ − ⟨JΦ(x),Adg−1ξ⟩

= ⟨JΦ(Φg(x)), ξ⟩ − ⟨Ad∗
g−1JΦ(x), ξ⟩ = ⟨JΦ(Φg(x)) − Ad∗

g−1JΦ(x), ξ⟩,

for all x ∈ M . Since ⟨σ(g), ξ⟩ = ψg,ξ is constant on M for every g ∈ G and ξ ∈ g, the map σ can be
expressed as

σ : G ∋ g 7→ JΦ ◦ Φg − Ad∗
g−1JΦ ∈ g∗,

and each σ(g), with g ∈ G, is constant on M .
A straightforward computation, using that ψg,ξ are constant, yields that

σ(gg′) =JΦ ◦ Φgg′ − Ad∗
(gg′)−1JΦ = JΦ ◦ Φg ◦ Φg′ − Ad∗

g−1Ad∗
g′−1JΦ

=JΦ ◦ Φg ◦ Φg′ − Ad∗
g−1JΦ ◦ Φg′ + Ad∗

g−1JΦ ◦ Φg′ − Ad∗
g−1Ad∗

g′−1JΦ

=JΦ ◦ Φg−Ad∗
g−1JΦ+Ad∗

g−1(JΦ ◦ Φg′ −Ad∗
g′−1JΦ) =σ(g)+Ad∗

g−1σ(g′)

for every g, g′ ∈ G, which proves (2.2.5).

As in the symplectic case, the map (2.2.2) is called the co-adjoint cocycle associated with the cosym-
plectic momentum map JΦ : M → g∗. Again, analogously to the symplectic setting, a cosymplectic
momentum map JΦ is Ad∗-equivariant if and only if σ = 0. Therefore, σ measures the lack of Ad∗-
equivariance of a cosymplectic momentum map.

The following terminology is the same as in the symplectic setting. A map σ : G → g∗ is a coboundary
if there exists µ ∈ g∗ such that

σ(g) = µ− Ad∗
g−1µ, ∀g ∈ G .

Every coboundary satisfies (2.2.5) and is therefore a co-adjoint cocycle. The space of co-adjoint
cocycles admits an equivalence relation, whose equivalence classes are called cohomology classes, given
by setting that two co-adjoint cocycles belong to the same cohomology class if their difference is a
coboundary. The following proposition shows that any two cosymplectic momentum maps associated
with a given cosymplectic Lie group action induce a well-defined cohomology class [σ].

Proposition 2.2.7. Let Φ: G×M → M be a cosymplectic Lie group action relative to (M,ω, η). If JΦ
1

and JΦ
2 are two cosymplectic momentum maps related to Φ with co-adjoint cocycles σ1 and σ2, respectively,

then [σ1] = [σ2].

Proof. From the definition of the co-adjoint cocycles corresponding to JΦ
1 and JΦ

2 , one has

⟨σ1(g) − σ2(g), ξ⟩ = ⟨JΦ
1 ◦ Φg − JΦ

2 ◦ Φg, ξ⟩ − ⟨Ad∗
g−1(JΦ

1 − JΦ
2 ), ξ⟩,

for all g ∈ G and ξ ∈ g. Since JΦ
1 and JΦ

2 are both momentum maps related to the same cosymplectic
Lie group action Φ, the difference JΦ

1 − JΦ
2 is a constant map with value µ ∈ g∗. Indeed,

d⟨JΦ
1 − JΦ

2 , ξ⟩ = dJΦ
1,ξ − dJΦ

2,ξ = ιξM
ω − ιξM

ω = 0, ∀ξ ∈ g.
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Consequently, (JΦ
1 − JΦ

2 ) ◦ Φg = JΦ
1 − JΦ

2 for every g ∈ G and then

σ1(g) − σ2(g) = µ− Ad∗
g−1µ, ∀g ∈ G .

Proposition 2.2.7 implies that a cosymplectic Lie group action admits an Ad∗-equivariant momentum
map JΦ if and only if its associated coadjoint cocycle is a coboundary. Indeed, if a cosymplectic Lie group
action has an Ad∗-equivariant momentum map JΦ

2 relative to (M,ω, η), then its associated co-adjoint
cocycle satisfies σ2 = 0, and any other momentum map JΦ

1 for the same action is such that its co-adjoint
cocycle, σ1, satisfies [σ1] = [σ2] = 0, and σ1 becomes a coboundary.

Conversely, if a momentum map JΦ
1 admits a coboundary σ1 associated with µ ∈ g∗, then the

momentum map
JΦ := JΦ

1 − µ,

is an Ad∗-equivariant momentum map for the same cosymplectic Lie group action of JΦ
1 , where µ ∈ g∗

satisfies that σ1(g) = µ− Ad∗
g−1µ for every g ∈ G. Indeed,

⟨JΦ, ξ⟩ = ⟨JΦ
1 , ξ⟩ − ⟨µ, ξ⟩ = JΦ

1,ξ − ⟨µ, ξ⟩, ∀ξ ∈ g,

and
σ(g) = JΦ ◦ Φg − Ad∗

g−1JΦ = σ1(g) + Ad∗
g−1µ− µ = 0,

for every g ∈ G.
To summarise, if a co-adjoint cocycle associated with a given momentum map is a coboundary, then

it is possible to construct an Ad∗-equivariant cosymplectic momentum map. The following proposition
shows, however, that for any momentum map, there exists a Lie group action ∆: G × g∗ → g∗ such
that the momentum map becomes ∆-equivariant. That is, for every g ∈ G, the following diagram is
commutative

M M

g∗ g∗.

Φg

JΦ JΦ

∆g

One sees that the result is analogous to Proposition 2.1.15 and follows from the same techniques.

Proposition 2.2.8. Let JΦ : M → g∗ be a cosymplectic momentum map for a cosymplectic Lie group
action Φ: G×M → M with associated co-adjoint cocycle σ. Then,

1. the map ∆: G× g∗ ∋ (g, µ) 7→ ∆g(µ) := Ad∗
g−1µ+ σ(g) ∈ g∗ is a Lie group action,

2. the momentum map JΦ is ∆-equivariant .

Proof. First, since σ(e) = 0, one has ∆(e, µ) = Ad∗
e−1µ+ σ(e) = µ and,

∆(g,∆(g′, µ)) = Ad∗
g−1(Ad∗

g′−1µ+ σ(g′)) + σ(g) = Ad∗
g−1Ad∗

g′−1µ+ Ad∗
g−1σ(g′) + σ(g)

= Ad∗
(gg′)−1µ+ Ad∗

g−1σ(g′) + σ(g) = Ad∗
(gg′)−1µ+ σ(gg′) = ∆(gg′, µ).

Thus, ∆ is a Lie group action on g∗, which proves 1. Second, from the definition of ∆ and σ, one gets

∆g ◦ JΦ = Ad∗
g−1JΦ + σ(g) = JΦ ◦ Φg, ∀g ∈ G,

which shows that JΦ is ∆-equivariant.
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Proposition 2.2.8 ensures that a general cosymplectic momentum map JΦ gives rise to an equivariant
momentum map relative to a new action ∆: G × g∗ → g∗, called a cosymplectic affine action. In a
particular case where JΦ is Ad∗-invariant, it follows that σ = 0 and ∆ = Ad∗ reduces the co-adjoint
action of G.

The next result, which is a generalisation of Theorem 2.1.16 to a cosymplectic setting, characterises
the Poisson bracket of functions {Jξ}Φ

ξ∈g associated with a cosymplectic momentum map JΦ.

Theorem 2.2.9. Let Φ: G×M → M be a cosymplectic Lie group action on (M,ω, η), and let JΦ : M →
g∗ be a corresponding cosymplectic momentum map with coadjoint cocycle σ : G → g∗. Define

σν : G ∋ g 7→ ⟨σ(g), ν⟩ ∈ R, Σ: g × g ∋ (ξ1, ξ2) 7→ Teσξ2(ξ1) ∈ R, ∀ν ∈ g.

Then,

1. the map Σ is a skew-symmetric bilinear form on g satisfying the following identity

Σ(ξ, [ζ, ν]) + Σ(ν, [ξ, ζ]) + Σ(ζ, [ν, ξ]) = 0, ∀ξ, ζ, ν ∈ g,

2. For all ξ, ν ∈ g the relation Σ(ξ, ν) = {Jν , Jξ}ω,η − J[ν,ξ] holds.

Proof. To establish 2, consider the tangent map of σν at e. Then,

Σ(ξ, ν) = Teσν(ξ) = d
ds

∣∣∣∣
s=0

(
⟨JΦ(Φexp(sξ)(x)), ν⟩ − ⟨Ad∗

exp(−sξ)JΦ(x), ν⟩
)

= dJν(ξM )x − d
ds

∣∣∣∣
s=0

⟨JΦ(x),Adexp(−sξ)ν⟩

= −(ινM
ιξM

ω)x − ⟨JΦ(x), [ν, ξ]⟩ = {Jν , Jξ}ω,η(x) − J[ν,ξ](x),

where the last equality stems from (1.3.8).
Since X{JΦ

ν ,J
Φ
ξ

}ω,η
= −[XJΦ

ν
, XJΦ

ξ
] = −[νM , ξM ] = [ν, ξ]M . Hence, X{JΦ

ν ,J
Φ
ξ

}ω,η
coincides with XJΦ

[ν,ξ]
,

implying that the functions {JΦ
ν , J

Φ
ξ }ω,η and JΦ

[ν,ξ] differ by a constant. Consequently, Σ does not depend
on x ∈ M , which proves 2.

To prove 1., consider

−Σ(ξ, [ζ, ν]) ={Jξ, J[ζ,ν]}ω,η − J[ξ,[ζ,ν]] = {Jξ, {Jζ , Jν}ω,η − Σ(ν, ζ)}ω,η − J[ξ,[ζ,ν]] .

The desired identity follows from the fact that {·, ·}ω,η and [·, ·] are anti-symmetric, bilinear, and satisfy
the Jacobi identity.

If a cosymplectic momentum map JΦ is Ad∗-equivariant, then σ(g) = 0 for every g ∈ G, which in
turn implies that Σ(ξ, ν) = 0 for all ξ, ν ∈ g. In this case, part 2. of Theorem 2.2.9 recovers the standard
result that there exists a Lie algebra homomorphism g ∋ ξ 7→ JΦ

ξ ∈ C ∞(M).

2.2.3 Cosymplectic Marsden–Meyer–Weinstein reduction theorem

This subsection is devoted to the formulation of the Marsden–Meyer–Weinstein reduction theorem in
the cosymplectic setting [4]. Although the results were originally established by C. Albert in [4], the
present exposition broadens its applicability by incorporating cosymplectic momentum maps that are
not necessarily Ad∗-equivariant. This generalisation extends the range of potential applications beyond
those considered in the original paper [4]. Moreover, since [4] is written in French, and the only online
version that is accessible is scanned in poor quality, a complete and self-contained presentation is provided
here. The result presented in this subsection also plays a fundamental role in the cosymplectic energy-
momentum method developed in Section 3.2.
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The following results are natural extensions to the cosymplectic setting of their symplectic analogues
presented in Section 2.1. Although some Proofs of the following results are available in [4], that refer-
ence is not widely accessible (some of them contain typographical issues). For the sake of clarity and
completeness, full proofs are included below.

The next proposition shows that the cosymplectic momentum map JΦ : M → g∗ associated with
(Mω

τ , h,JΦ) is preserved under the flows generated by the vector fields ∇h, Xh, and Eh. It is worth
noting that Proposition 2.2.10 appears as a novel contribution, although it extends a partial result
presented in [82].

Proposition 2.2.10. Let (Mω
τ , h,JΦ) be a G-invariant cosymplectic Hamiltonian system and let a map

F : (s, x) ∈ R × M 7→ Fs(x) = F (s, x) ∈ M denote the flow of ∇h. Then, JΦ ◦ Fs = JΦ for all s ∈ R.
Analogous statement holds for the flows of Eh and Xh.

Proof. The G-invariance of h implies that ξMh = 0 for every ξ ∈ g. Consequently,

d
ds

∣∣∣∣
s=0

JΦ
ξ ◦ Fs = ι∇hdJΦ

ξ = ιXh+(Rh)RdJΦ
ξ = ιXh

dJΦ
ξ = ιXh

ιξM
ω = ιξM

((Rh)η − dh) = 0,

for every ξ ∈ g. Thus, JΦ
ξ ◦ Fs = JΦ

ξ , for every ξ ∈ g and every s ∈ R, which yields JΦ ◦ Fs = JΦ for all
s ∈ R.

Similarly, let L be the flow of Eh. Then,

d
ds

∣∣∣∣
s=0

JΦ
ξ ◦ Ls = ιEh

dJΦ
ξ = ιXh+R dJΦ

ξ = ιXh
dJΦ

ξ = ιXh
ιξM

ω = ιξM
((Rh)η − dh) = 0,

for every ξ ∈ g and thus JΦ ◦ Ls = JΦ for every s ∈ R. Since ιXh+RdJΦ
ξ = ιXh

dJΦ
ξ , it follows that

JΦ ◦Ks = JΦ for the diffeomorphisms Ks of the one-parametric group of diffeomorphisms of Xh.

Remark 2.2.11. Recall that, for (M := R × P, ωP , τ), the vector field Xh on M may be viewed as a
time-dependent vector field on P . The integral curves of Xh, considered in this context, coincide with
the integral curves of Eh of the form t 7→ (t, x(t)). Consequently, Proposition 2.2.10 also applies to the
time-dependent vector field Xh, a fact already established in [54].

The next lemma generalises a standard result in symplectic geometry and is fundamental in formu-
lating the cosymplectic version of the Marsden–Meyer–Weinstein reduction theorem.

Recall that according to Definition 2.1.4 a weak regular value of JΦ : M → g∗ is a point µ ∈ g∗ such
that JΦ−1(µ) is a submanifold in M and TxJΦ−1(µ) = ker TxJΦ for every x ∈ JΦ−1(µ). It is hereafter
assumed that µ ∈ g∗ is a weak regular value of a cosymplectic momentum map JΦ. Additionally, it is
also assumed that the isotropy subgroup G∆

µ of µ ∈ g∗ relative to the cosymplectic affine Lie group action
∆: G× g∗ → g∗ acts via Φ on JΦ−1(µ) in a quotientable manner, namely JΦ−1(µ)/G∆

µ is a manifold and
the projection πµ : JΦ−1(µ) → JΦ−1(µ)/G∆

µ is a submersion. A sufficient condition for JΦ−1(µ)/G∆
µ to

be a manifold is that G∆
µ acts freely and properly on JΦ−1(µ) (see [2, 4, 105] for details).

Lemma 2.2.12. Let µ ∈ g∗ be a weak regular value of a cosymplectic momentum map JΦ : M → g∗ and
let G∆

µ be the isotropy group at µ ∈ g∗ of the cosymplectic affine Lie group action ∆: G×g∗ → g∗ relative
to the co-adjoint cocycle σ : G → g∗ of JΦ. Then, for any x ∈ JΦ−1(µ), the following hold

1. Tx(G∆
µ x) = Tx(Gx) ∩ TxJΦ−1(µ),

2. TxJΦ−1(µ) = Tx (Gx)⊥ω ,

3.
(
TxJΦ−1(µ)

)⊥ω = Tx(Gx) ⊕ ⟨Rx⟩.

Proof. To prove 1., let (ξM )x ∈ TxJΦ−1(µ). Since TxJΦ−1(µ) = ker TxJΦ, then,

(ιξM
dJΦ

ν )x= d
du

∣∣∣∣
u=0
JΦ
ν (Φ(exp(uξ), x)) =

〈
d

du

∣∣∣∣
u=0

JΦ(Φ(exp(uξ), x)), ν
〉

=
〈

d
du

∣∣∣∣
u=0

∆exp(uξ)JΦ(x), ν
〉

= 0,



Chapter 2. Marsden–Meyer–Weinstein reduction theorems 49

for every ν ∈ g if and only if ξ ∈ g∆
µ , where g∆

µ is the Lie algebra of G∆
µ .

To prove 2., recall that

ωx((ξM )x, vx) = (dJΦ
ξ )x(vx) =

〈
TxJΦ(vx), ξ

〉
, ∀x ∈ M, ∀vx ∈ TxM, ∀ξ ∈ g.

Therefore, vx ∈ ker TxJΦ = TxJΦ−1(µ) if and only if ⟨TxJΦ(vx), ξ⟩ = 0 for all ξ ∈ g, and consequently
TxJΦ−1(µ) = (Tx(Gx))⊥ω for all x ∈ JΦ−1(µ), as claimed.

For 3., let X = ξM + λR for any λ ∈ R. Then, for any vx ∈ kerTxJΦ, it follows that

ωx(Xx, vx) = (dJΦ
ξ )x(vx) = 0, ∀ξ ∈ g,

and Tx(Gx)⊕⟨Rx⟩ ⊂
(
TxJΦ−1(µ)

)⊥ω . On the other hand, for every x ∈ JΦ−1(µ), since Rx ∈ TxJΦ−1(µ)
but is not tangent to Gx, it follows that(

TxJΦ−1(µ)
)⊥ω = (Tx(Gx))⊥ω⊥ω = Tx(Gx) ⊕ ⟨Rx⟩, ∀x ∈ JΦ−1(µ) .

This completes the proof.

The following theorem extends the classical Marsden–Meyer–Weinstein reduction theorem to the
cosymplectic framework. It follows the ideas of the proof given in [4].

Theorem 2.2.13. Let Φ: G × M → M be a cosymplectic Lie group action on a cosymplectic man-
ifold (M,ω, τ) associated with a cosymplectic momentum map JΦ : M → g∗. Assume that µ ∈ g∗ is
a weak regular value of JΦ and let JΦ−1(µ) be quotientable, i.e. M∆

µ := JΦ−1(µ)/G∆
µ is a manifold

and πµ : JΦ−1(µ) → M∆
µ is a submersion. Let iµ : JΦ−1(µ) ↪→ M be the natural immersion and let

πµ : JΦ−1(µ) → M∆
µ be the canonical projection. Then, there exists a unique cosymplectic manifold

(M∆
µ , ωµ, τµ) such that

i∗µω = π∗
µωµ , i∗µτ = π∗

µτµ . (2.2.6)

Proof. The quotient spaceM∆
µ = JΦ−1(µ)/G∆

µ is a manifold, since JΦ−1(µ) is assumed to be quotientable.
Meanwhile, πµ : JΦ−1(µ) → M∆

µ is a surjective submersion by assumption. Consequently, ker Tπµ is a
subbundle of TJΦ−1(µ).

Given that Φg is a cosymplectic Lie group action for every g ∈ G, it follows that LξM
ω = 0 and

LξM
τ = 0 for every ξ ∈ g. Thus, LξJΦ−1(µ)

i∗µω = 0 and LξJΦ−1(µ)
i∗µτ = 0 for every ξ ∈ g∆

µ , where g∆
µ is

the Lie algebra of G∆
µ and ξJΦ−1(µ) is the fundamental vector field of the restriction of the action of G∆

µ

to JΦ−1(µ) via Φ.
Moreover, for any vector field YJΦ−1(µ) on JΦ−1(µ) and tangent to JΦ−1(µ), one can consider some

vector field Y on M coinciding with YJΦ−1(µ) on JΦ−1(µ). Then,

ιYJΦ−1(µ)
ιξJΦ−1(µ)

i∗µω = i∗µ(ιY ιξM
ω) = i∗µ(ιY dJξ) = 0 ,

and
ιξJΦ−1(µ)

i∗µτ = i∗µ(ιξM
τ) = 0 .

These conditions guarantee the existence of ωµ ∈ Ω2(M∆
µ ) and τµ ∈ Ω1(M∆

µ ) satisfying (2.2.6). Since π∗
µ

is injective, the forms ωµ and τµ are uniquely determined. The fact that both ω and τ are closed ensures
that ωµ and τµ are also closed.

By Definition 2.2.1, one has ιRdJΦ
ξ = 0 for every ξ ∈ g, implying that the Reeb vector field R is

tangent to JΦ−1(µ). Consequently, there exists a vector field R̃ on JΦ−1(µ) such that R̃ = R|JΦ−1(µ).
Since Φg∗R̃ = R̃ and LξJΦ−1(µ)

R̃ = 0 for every g ∈ G∆
µ and ξ ∈ g∆

µ , it follows that there exists a
well-defined vector field Rµ on M∆

µ such that Rµ = πµ∗R̃. Moreover,

π∗
µ(ιRµ

τµ) = ι
R̃
π∗
µτµ = i∗µ(ιRτ) = 1 ,
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and
π∗
µ(ιRµ

ωµ) = ι
R̃
π∗
µωµ = i∗µ(ιRω) = 0 .

Thus, ιRµτµ = 1 and ιRµωµ = 0. To prove that kerωµ ⊕ ker τµ = TM∆
µ , it is sufficient to show that the

map
♭µ : Xµ ∈ TM∆

µ 7→ ιXµ
ωµ + (ιXµ

τµ)τµ ∈ T∗M∆
µ

is an isomorphism. To prove injectivity, suppose that Xµ takes values in ker ♭µ. Since ιRµ
♭µ(Xµ) = 0,

then ιXµτµ = 0 and ιXµωµ = 0. Consequently, there exist X̃ ∈ X(JΦ−1(µ)) and X ∈ X(M), such
that πµ∗X̃ = Xµ and X̃ = X|JΦ−1(µ). Then, π∗

µ(ιXµ
ωµ) = ιXω|JΦ−1(µ) = 0 implies that X takes

values in
(
Tx(JΦ−1(µ))

)⊥ω = Tx(Gx) ⊕ ⟨Rx⟩ for all x ∈ JΦ−1(µ). Therefore, Xx = (ξM )x + λRx for
some ξ ∈ g∆

µ and λ ∈ R depending on x ∈ JΦ−1(µ). Since τµ(TxπµXx) = 0, one gets λ = 0. Then,
(Xµ)πµ(x) = TxπµXx = Txπµ(ξM )x = 0. Thus, ker ♭µ = 0, proving that ♭µ is injective. Moreover,
♭µ as an injective bundle morphism between vector bundles of equal rank, it must also be surjective.
Consequently, (M∆

µ , ωµ, τµ) is a cosymplectic manifold.

The following result is of particular relevance for the physical applications of the cosymplectic energy-
momentum method to be developed in the following chapter. Note that the existence of a cosymplectic
momentum map associated with Φ: G×M → M relative to (M := T ×P, ωP , τT ) implies that Φ can be
restricted to a well-defined Lie group action of G on P . This follows from the fact that the fundamental
vector fields of Φ are required to take values in ker τ .

Corollary 2.2.14. Assume the hypothesis of Theorem 2.2.13 hold. Furthermore, suppose that the cosym-
plectic manifold is given by (T × P, ωP , τT ). Then,

JΦ−1(µ) ≃ T × πP (JΦ−1(µ)), M∆
µ ≃ T × P∆

µ ,

where P∆
µ := πP (JΦ−1(µ))/G∆

µ .

Proof. By Definition 2.2.1, one has ιRdJΦ
ξ = 0 and LRdJΦ

ξ = 0 for every ξ ∈ g. Hence, dJΦ
ξ is a basic

one-form with respect to the projection πP : JΦ−1(µ) → P∆
µ . Therefore, for each ξ ∈ g, there exists

J̃ξ ∈ C ∞(P ) such that π∗
P J̃

Φ
ξ = JΦ

ξ . Consequently, there exists J̃Φ : P → g∗ satisfying JΦ = J̃Φ ◦πP , and
hence JΦ−1(µ) = T × J̃Φ−1(µ) = T × πP (JΦ−1(µ)).

Let R̃ denote the restriction of R to JΦ−1(µ). Note that Φµ : G∆
µ × T × JΦ−1(µ) → T × JΦ−1(µ) is

a well-defined Lie group action obtained by restricting the action Φ of G∆
µ on T × P to T × JΦ−1(µ).

Since ιξJΦ−1(µ)
i∗µτT = 0 for every ξ ∈ g∆

µ , there exists a Lie group action Φ̃µ : G∆
µ × J̃Φ−1(µ) → J̃Φ−1(µ)

such that Φ̃µg ◦ πP = πP ◦ Φµg for every g ∈ G∆
µ . Therefore, Φµg (t, p) = (t, Φ̃µg (p)) for every t ∈ T and

p ∈ J̃Φ−1(µ). Thus, JΦ−1(µ)/G∆
µ = (T × J̃Φ−1(µ))/G∆

µ = T × (J̃Φ−1(µ)/G∆
µ ).

Proposition 2.2.15. Let the assumptions of Theorem 2.2.13 hold for (Mω
τ , h,JΦ). Then, the restriction

of Eh to JΦ−1(µ) is projectable onto M∆
µ = JΦ−1(µ)/G∆

µ and πµ∗(Eh|JΦ−1(µ)) = Ekµ , where kµ is the
only function on M∆

µ such that π∗
µkµ = ι∗µh.

Proof. By Proposition 2.2.10, the vector field Eh is tangent to JΦ−1(µ). Moreover, for every ξ ∈ g∆
µ , one

has ξM = XJΦ
ξ
. Since RJΦ

ξ = 0, Proposition 1.3.10 yields that [ξM , R] = 0. Therefore,

[ξM , Eh] = [ξM , R+Xh] = [ξM , Xh] , ∀ξ ∈ g .

Using (1.3.9), one gets
[ξM , Xh] = X{h,JΦ

ξ
} = XξMh = 0 .

Hence, Eh|JΦ−1(µ) is projectable onto M∆
µ . By Theorem 2.2.13, the differential forms i∗µω and i∗µτ are

also projectable, and from the proof of that theorem, it follows

ιπµ∗ (Eh|JΦ−1(µ))ωµ = dkµ − (Rµkµ)τµ , ιπµ∗ (Eh|JΦ−1 (µ))τµ = 1 ,
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where the Hamiltonian function kµ ∈ C ∞(M∆
µ ) is determined uniquely by the condition π∗

µkµ = i∗µh,
which holds since h is invariant relative to G∆

µ . It follows that πµ∗Eh|JΦ−1(µ) is an evolutionary vector
field with respect to the reduced cosymplectic manifold (M∆

µ , ωµ, τµ).

2.2.4 Relation between cosymplectic and symplectic Marsden–Meyer–Weinstein
reductions

This subsection presents how the cosymplectic Marsden–Meyer–Weinstein reduction may be reformulated
by using the classical symplectic Marsden–Meyer–Weinstein reduction theorem (see [44]). Recall that
Lemma 1.3.11 establishes that every cosymplectic manifold naturally induces a symplectic form on a
manifold of a larger dimension [105]. The following construction will be generalised to devise a k-
polycosymplectic Marsden–Meyer–Weinstein reduction derived from a k-polysymplectic one in Subsection
2.4.3.

Let Ψ: G×M → M be a cosymplectic Lie group action with an associated cosymplectic momentum
map JΨ : M → g∗ relative to (M, τ, ω). Then, Ψ and JΨ naturally extend to R×M in the following way,
respectively,

Ψ̃ : (g, u, x) ∈ G× R ×M 7→ (u,Ψg(x)) ∈ R ×M

and
JΨ̃ : (u, x) ∈ R ×M 7→ JΨ(x) ∈ g∗ .

The fundamental vector fields ξM , with ξ ∈ g corresponding to Ψ are understood as vector fields on
R × M via the isomorphisms T(u,x)(R × M) ≃ TuR × TxM for every (u, x) ∈ R × M . These vector
fields are locally Hamiltonian with respect to ω̃ if and only if d(RJΦ

ξ ) = 0 (see discussion in Subsection
1.3.1). Thus, condition RJΦ

ξ = 0 ensures that Ψ̃ admits a momentum map JΨ̃ relative to the symplectic
manifold (R ×M, ω̃), namely

ιξR×M
ω̃ = d⟨JΨ̃, ξ⟩ , ∀ξ ∈ g .

Moreover, if JΨ is ∆-equivariant with respect to Ψ, then JΨ̃ is also ∆-equivariant with respect to Ψ̃.
Further, by Corollary 2.2.14, since JΨ̃−1(µ) ≃ R × JΨ−1(µ) for every µ ∈ g∗ and pr ◦ Ψ̃g = Ψg ◦ pr for
every g ∈ G, i.e. Ψ̃ does not change the first component of R ×M , then JΨ̃−1(µ) is quotientable by G∆

µ

if and only if JΨ−1(µ) is so. Moreover, µ ∈ g∗ is a (resp. weak) regular value of JΨ if and only if µ is a
(resp. weak) regular value of JΨ̃.

Consequently, the classical symplectic Marsden–Meyer–Weinstein Reduction Theorem 2.1.8 can be ap-
plied to the symplectic manifold (R×M, ω̃) to obtain the reduced symplectic manifold M̃∆

µ = JΨ̃−1(µ)/G∆
µ

endowed with the reduced symplectic form, ω̃µ, determined univocally by the condition

ȷ̃ ∗
µ ω̃ = π̃∗

µω̃µ ,

where ȷ̃µ : JΨ̃−1(µ) ↪→ R×M is the natural immersion and π̃µ : JΨ̃−1(µ) → JΨ̃−1(µ)/G∆
µ is the canonical

projection [2]. Since M̃∆
µ ≃ (R × JΨ−1(µ))/G∆

µ ≃ R ×M∆
µ , where M∆

µ = JΨ−1(µ)/G∆
µ , one can retrieve

the reduced cosymplectic manifold (M∆
µ , ωµ, τµ) from ω̃µ, in the following way

τµ = i∗u
(
ι∂/∂uω̃µ

)
, ωµ = i∗uω̃µ ,

where iu : M∆
µ ∋ [x] 7→ (u, [x]) ∈ R ×M∆

µ and [x] stands for the orbit of x ∈ JΨ−1(µ) relative to G∆
µ . In

particular,
dωµ = di∗uω̃µ = i∗udω̃µ = 0 , dτµ = di∗u

(
ι∂/∂uω̃µ

)
= i∗u

(
L∂/∂uω̃µ

)
= 0 ,

where the last equality follows from L∂/∂uω̃µ = 0. Moreover, if X ∈ X(M∆
µ ), then iu∗X takes values in

ker du. If, in addition, ιXωµ = 0 and ιXτµ = 0, then ιiu∗X ω̃µ = 0 and X = 0 because ω̃µ is symplectic.
Therefore, kerωµ ∩ ker τµ = 0.
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A Reeb vector field R on M gives rise to a unique vector field R̃ on R × M projecting onto M via
pr and taking values in ker du. Since R̃ is tangent to JΨ̃−1(µ) and projectable onto a vector field R̃µ on
M̃∆
µ , one has

ιRµ
τµ = ι

R̃µ
ι∂/∂uω̃µ = ιRι∂/∂uω = 1 .

Hence, τµ is different from zero, and (M∆
µ , ωµ, τµ) becomes a cosymplectic manifold.

The above approach demonstrates that the cosymplectic Marsden–Meyer–Weinstein Reduction The-
orem 2.2.13 arises as a particular case of a symplectic reduction of (R × M, ω̃). Although the above
construction uses T = R, one may similarly consider T = S1, equipped with dθ, where θ is a locally
defined angular coordinate on S1 giving rise to a global closed differential one-form. The entire procedure
is analogous in the latter case.

It is worth noting that, and it has not been stressed so far in the literature, the above discussion
also implies that cosymplectic geometry can be understood as a particular type of symplectic geometry
in a larger manifold. Although conceptually appealing, such a perspective can introduce additional
complexity. In fact, the extension of mathematical entities on a cosymplectic manifold to a symplectic
one of a larger dimension may change the properties of such entities in such a way that it complicates their
analysis, as observed, for example, in the study of cosymplectic energy-momentum methods in Section
3.2.

2.3 k-Polysymplectic Marsden–Meyer–Weinstein reduction

This section reviews existing results in the literature on the k-polysymplectic Marsden–Meyer–Weinstein
reduction in order to address and correct certain inaccuracies and errors previously presented in the liter-
ature. Furthermore, it introduces the reduction of the dynamical system governed by an ω-Hamiltonian
vector field. This concept was studied for the first time in [33], as prior research has primarily focused on
dynamical systems given by Hamiltonian k-vector fields [12, 107]. In particular, this section first reviews
the previous k-polysymplectic Marsden–Meyer–Weinstein reduction theory and explains some minor, yet
conceptually relevant, inaccuracies. After that, a mistake in one of the main results in [62] regarding the
conditions for the existence of a k-polysymplectic reduction is addressed. Finally, in Subsection 2.3.6,
the assumptions required for the k-polysymplectic reduction as formulated in [107] are analysed and
compared.

It is important to emphasise that the k-polysymplectic reduction outlined in [107] does not rely on
any relationship between the dimension of the manifold and the number k of the k-polysymplectic form
ω on it. Furthermore, the term polysymplectic manifold in [107] is just a simplification of the term k-
polysymplectic manifold, which is defined in this work. Additionally, Definition 1.4.6 leads to a linear
analogue definition by assuming ω to be restricted to a point x ∈ M . This allows us to define k-
polysymplectic structures on linear spaces, k-polysymplectic spaces, and so on. In such cases, one assumes
ω ∈ Λ2E∗ ⊗ Rk, where E is a vector space and Λ2E∗ stands for the space of two-covectors on E.

2.3.1 k-Polysymplectic momentum maps

This subsection introduces the notion of momentum maps on k-polysymplectic manifolds, with particular
attention given to the case of Ad∗k-equivariant momentum maps.

The following definition introduces a natural class of Lie group actions preserving a k-polysymplectic
structure. As presented in the following, such actions are fundamental to the formulation of the k-
polysymplectic Marsden–Meyer–Weinstein reduction.

Definition 2.3.1. Let (P,ω) be a k-polysymplectic manifold. A Lie group action Φ: G × P → P of a
Lie group G is a k-polysymplectic Lie group action if Φ∗

gω = ω for each g ∈ G.
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Definition 2.3.2. A k-polysymplectic momentum map for a Lie group action Φ: G× P → P relative to
a k-polysymplectic manifold (P,ω) is a map JΦ : P → g∗k such that

ιξP
ω = (ιξP

ωα) ⊗ eα = d
〈
JΦ, ξ

〉
, ∀ξ ∈ g , (2.3.1)

where g∗k = g∗ ×
(k)
· · · × g∗.

From (2.3.1), it follows that JΦ : P → g∗k satisfies

ιξP
ω = d

〈
JΦ, ξ

〉
=: dJΦ

ξ , ∀ξ ∈ gk , (2.3.2)

where ξP is the k-vector field on P whose k vector field components are the fundamental vector fields of

Φ related to the k-components of ξ ∈ gk and JΦ
ξ : P → R. Writing ξ = (0, . . . ,

(α)
ξ , . . . , 0) ∈ gk for any

ξ ∈ g and α = 1, . . . , k and impose (2.3.2) to hold for a basis {ξ1, . . . , ξr} for g yields kr conditions, which
uniquely determine the value of the kr coordinates of JΦ. Conversely, the equation (2.3.1) evaluated on
the basis of g imposes r conditions for each one of the k components of JΦ, giving rise to kr conditions
and showing that both formulations are equivalent.

The following definition, while standard in the literature [107], adopts the more concise notation Ad∗k

instead of Coadk. Nevertheless, it is later demonstrated that the Ad∗k-equivariance condition is not
essential and can be omitted.

Definition 2.3.3. A k-polysymplectic momentum map JΦ : P → g∗k is Ad∗k-equivariant if

JΦ ◦ Φg = Ad∗k
g−1 ◦ JΦ , ∀g ∈ G ,

where Ad∗k
g−1 = Ad∗

g−1 ⊗
(k)
· · · ⊗ Ad∗

g−1 and

Ad∗k : G× g∗k −→ g∗k

(g,µ) 7−→ Ad∗k
g−1µ .

That is, for every g ∈ G, the following diagram commutes

P g∗k

P g∗k.

JΦ

Φg Ad∗k

g−1

JΦ

To simplify the notation, the following definition is introduced.

Definition 2.3.4. The four-tuple (P,ω, h,JΦ) is a G-invariant k-polysymplectic Hamiltonian system
if it consists of a k-polysymplectic manifold (P,ω), a k-polysymplectic Lie group action Φ: G × P →
P such that Φ∗

gh = h for every g ∈ G, and a k-polysymplectic momentum map JΦ related to Φ.
An Ad∗k-equivariant G-invariant k-polysymplectic Hamiltonian system is a G-invariant k-polysymplectic
Hamiltonian system whose k-polysymplectic momentum map is Ad∗k-equivariant.

2.3.2 General k-polysymplectic momentum maps

This subsection develops the theory of k-polysymplectic momentum maps that are not necessarily Ad∗k-
equivariant. In particular, it is shown that every k-polysymplectic momentum map JΦ : P → g∗k de-
termines a Lie group action on g∗k with respect to which it is equivariant. The techniques introduced
here, although technically more intricate, are analogous to those used in previous sections devoted to
non-Ad∗-equivariant symplectic momentum maps in Subsection 2.1.1.
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Proposition 2.3.5. Let (P,ω, h,JΦ) be a G-invariant k-polysymplectic Hamiltonian system. Define

ψg,ξ : x ∈ P 7−→ JΦ
ξ (Φg(x)) − JΦ

Adk

g−1 ξ(x) ∈ R , ∀g ∈ G , ∀ξ ∈ gk .

Then, ψg,ξ is constant on P for every g ∈ G and ξ ∈ gk. Moreover, the map σ : G ∋ g 7→ σ(g) ∈ g∗k

determined by the condition ⟨σ(g), ξ⟩ = ψg,ξ satisfies the cocycle property

σ(g1g2) = σ(g1) + Ad∗k
g−1

1
σ(g2) , ∀g1, g2 ∈ G .

Proof. Note that

dψg,ξ = d(JΦ
ξ ◦ Φg) − dJΦ

Adk

g−1
ξ = Φ∗

g(ιξP
ω) − ι(Adk

g−1 ξ)P
ω

= ιΦg−1∗ξP
Φ∗
gω − ιΦg−1∗ξP

ω = ιΦg−1∗ξP
ω − ιΦg−1∗ξP

ω = 0 ,

where it was used that Φ is a k-polysymplectic Lie group action and Lemma 2.1.2, i.e. (Adgξ)P = Φg∗ξP

for every g ∈ G and each ξ ∈ g. Therefore, (Adkg−1ξ)P = Φg−1∗ξP for every ξ ∈ gk, so that ψg,ξ is
constant on P for all g ∈ G and any ξ ∈ gk.

Notice that ψg,ξ can be rewritten in the following way

ψg,ξ = JΦ
ξ ◦ Φg − JΦ

Adk

g−1 ξ =
〈
JΦ ◦ Φg, ξ

〉
−
〈

JΦ,Adkg−1ξ
〉

=
〈
JΦ ◦ Φg, ξ

〉
−
〈

Ad∗k
g−1JΦ, ξ

〉
=
〈

JΦ ◦ Φg − Ad∗k
g−1JΦ, ξ

〉
,

where Adkg−1 : gk → gk is the transpose to Ad∗k
g−1 . Hence,

σ : G ∋ g 7−→ JΦ ◦ Φg − Ad∗k
g−1JΦ = σ(g) ∈ g∗k .

Thus, σ(g) is constant on P for every g ∈ G and ⟨σ(g), ξ⟩ = ψg,ξ, for every g ∈ G and ξ ∈ gk. To prove
the cocycle identity, one has

σ(g1g2) =
(

JΦ ◦ Φg1g2 − Ad∗k
(g1g2)−1JΦ

)
=
(

JΦ ◦ Φg1 ◦ Φg2 − Ad∗k
g1−1Ad∗k

g2−1JΦ
)

=
(

JΦ ◦ Φg1 ◦ Φg2 − Ad∗k
g1−1(JΦ ◦ Φg2) + Ad∗k

g−1
1

(JΦ ◦ Φg2) − Ad∗k
g1−1Ad∗k

g2−1JΦ
)

=
(

JΦ ◦ Φg1 −Ad∗k
g1−1JΦ+Ad∗k

g1−1(JΦ ◦ Φg2 −Ad∗k
g2−1JΦ)

)
= σ(g1)+Ad∗k

g1−1σ(g2)

for any g1, g2 ∈ G.

The map σ : G → g∗k of the form

σ(g) = JΦ ◦ Φg − Ad∗k
g−1JΦ, g ∈ G,

is called the co-adjoint cocycle associated with the k-polysymplectic momentum map JΦ : P → g∗k. A
map σ : G → g∗k is a coboundary if there exists µ ∈ g∗k such that

σ(g) = µ− Ad∗k
g−1µ, ∀g ∈ G .

In particular, if JΦ is an Ad∗k-equivariant k-polysymplectic momentum map, then σ = 0.
The next result shows that the cohomology class [σ] associated with the cocycle σ depends only on

the k-polysymplectic Lie group action and not on the particular choice of a momentum map. The proof
is analogous to the corresponding result for symplectic momentum maps introduced in Section 2.1.1.

Proposition 2.3.6. Let Φ: G × P → P be a k-polysymplectic Lie group action. If J1Φ and J2Φ are
two associated k-polysymplectic momentum maps with co-adjoint cocycles σ1 and σ2, respectively, then
[σ1] = [σ2].
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Proposition 2.3.7. Let JΦ : P → g∗k be a k-polysymplectic momentum map associated with a k-
polysymplectic Lie group action Φ: G× P → P with co-adjoint cocycle σ. Then,

(1) the map
∆ : G× g∗k ∋ (g,µ) 7→ σ(g) + Ad∗k

g−1µ = ∆g(µ) ∈ g∗k,

is a Lie group action of G on g∗k,

(2) the k-polysymplectic momentum map JΦ is equivariant with respect to ∆, in other words, for every
g ∈ G, the following diagram commutes

P g∗k

P g∗k.

JΦ

Φg ∆g

JΦ

Proof. First, since σ(e) = 0, it follows that

∆(e,µ) = µ+ σ(e) = µ ,

Thus, ∆(e,µ) = µ. Then, Proposition 2.3.5 yields

∆(g1,∆(g2,µ)) = Ad∗k
g−1

1
(Ad∗k

g−1
2
µ+ σ(g2)) + σ(g1) = Ad∗k

g−1
1

Ad∗k
g−1

2
µ+ Ad∗k

g−1
1
σ(g2) + σ(g1)

= Ad∗k
(g1g2)−1µ+ Ad∗k

g−1
1
σ(g2) + σ(g1) = Ad∗k

(g1g2)−1µ+ σ(g1g2) = ∆(g1g2,µ) ,

for every g1, g2 ∈ G and µ ∈ g∗k. Hence, ∆ is a Lie group action of G on g∗k.
Second, by the definition of ∆ and σ, one has

∆g ◦ JΦ = Ad∗k
g−1JΦ + σ(g) = JΦ ◦ Φg , ∀g ∈ G ,

which shows that JΦ is ∆-equivariant, as required.

Proposition 2.3.7 implies that any (not necessarily Ad∗k-equivariant) k-polysymplectic momentum
map JΦ becomes equivariant with respect to a new Lie group action ∆ : G × g∗k → g∗k, called a k-
polysymplectic affine Lie group action.

A k-polysymplectic affine Lie group action can be equivalently described component-wise. Let µ =
(µ1, . . . , µk) ∈ g∗k, then ∆(g,µ) = (∆1

gµ
1, . . . ,∆k

gµ
k) ∈ g∗k, where the maps ∆1, . . . ,∆k take the form

∆α : G × g∗ ∋ (g, ϑ) 7→ Ad∗
g−1ϑ + σα(g) = ∆α

g (ϑ) ∈ g∗ and σ(g) = (σ1(g), . . . , σk(g)), where σα(g) =
JΦ
α ◦ Φg − Ad∗

g−1JΦ
α for α = 1, . . . , k.

2.3.3 k-Polysymplectic reduction by a submanifold

This section surveys the well-known k-polysymplectic reduction by a submanifold [107]. To study k-
polysymplectic reduction by a submanifold, it is important to consider the notion of k-polysymplectic
orthogonal complement (see [46] for details).

Definition 2.3.8. Let (E,ω) be a k-polysymplectic vector space and let W be a linear subspace of E.
Then, the k-polysymplectic orthogonal complement of W relative to (E,ω) is the linear subspace defined
by

W⊥,k = {v ∈ E | ιwιvω = 0 ,∀w ∈ W} .

In the k-polysymplectic framework, attention is restricted to a weak regular value µ ∈ g∗k of a k-
polysymplectic momentum map JΦ : P → g∗k. Nevertheless, the assumption that µ ∈ g∗k is a weak
regular value is insufficient, since it is essential that, for each component of the k-polysymplectic momen-
tum map, the level set JΦ−1

α (µα) is a submanifold of P . This motivates the introduction of the following
definition.
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Definition 2.3.9. A weak regular k-value of JΦ is µ ∈ g∗k such that each µα ∈ g∗ is a weak regular
value of JΦ

α : P → g∗ for α = 1, . . . , k. This implies that JΦ−1(µ) is a submanifold of P

However, it should be noted that the converse does not necessarily hold, since in general, one has the
inclusion

JΦ−1
α (µα) ⊃ JΦ−1(µ), α = 1, . . . , k .

The following theorem plays an important role in the reduction theory (see [46, 107] for a proof).

Theorem 2.3.10. (k-Polysymplectic reduction by a submanifold.) Let (P,ω) be a k-polysymplectic man-
ifold and let S be a submanifold of P with an injective immersion ȷ : S ↪→ P . Assume that ker ȷ∗ω has a
constant rank for (P,ω), the quotient space S/FS is a manifold, where FS is a foliation on S given by
ker ȷ∗ω, and assume that the canonical projection π : S → S/FS is a submersion. Then, (S/FS ,ωS) is a
k-polysymplectic manifold defined univocally by

ȷ∗ω = π∗ωS ,

and ker ȷ∗ωp = TpS ∩ (TpS)⊥k for any p ∈ S.

Recall the following lemma, the proof of which can be found in [107].

Lemma 2.3.11. Let µ = (µ1, . . . , µk) ∈ g∗k. Then,

G∆
µ =

k⋂
α=1

G∆α

µα , g∆
µ =

k⋂
α=1

g∆α

µα ,

where G∆
µ is the isotropy group of µ ∈ g∗k under the k-polysymplectic affine Lie group action ∆ and g∆

µ

is its Lie algebra.

2.3.4 k-Polysymplectic Marsden–Meyer–Weinstein reduction theorem

This subsection extends the k-polysymplectic reduction theory to the setting where the associated k-
polysymplectic momentum map JΦ : P → g∗k is not necessarily Ad∗k-equivariant. As Proposition 2.3.7
shows, every k-polysymplectic momentum map JΦ admits a k-polysymplectic affine Lie group action
∆ : G× g∗k → g∗k with respect to which JΦ is ∆-equivariant. It is important to note that the isotropy
subgroup, G∆

µ , of µ ∈ g∗k relative to ∆ may differ from the isotropy group of µ with respect to Ad∗k

since the it is not necessarily the same (cf. [128, Theorem 6.1.1]). This distinction plays a crucial role
in generalising the k-polysymplectic Marsden–Meyer–Weinstein reduction theorem [107] to the case of
non-Ad∗k-equivariant momentum maps. This subsection also presents a generalisation of the reduction
theorems from [107] to this broader class of k-polysymplectic momentum maps.

The following results provide a slight generalisation of some foundational constructions in the frame-
work of k-polysymplectic geometry as originally developed in [107]. Specifically, the extension addresses
the case in which the k-polysymplectic momentum map JΦ : P → g∗k is not required to be Ad∗k-
equivariant. In fact, the whole work [107] may be reformulated by replacing the use of the coadjoint
representation with that of k-polysymplectic affine Lie group actions. The necessary changes involve
substituting Gµα by G∆α

µα , gµα by g∆α

µα , Gµ by G∆
µ , along with other minor modifications of this type.

Although these substitutions are conceptually straightforward, identifying all instances in which such
corrections must be applied requires considerable effort and attention to detail.

The following lemma is a slight generalisation of a standard result in a k-polysymplectic Marsden–
Meyer–Weinstein reduction.

Lemma 2.3.12. Let (P,ω, h,JΦ) be a G-invariant k-polysymplectic Hamiltonian system and let µ ∈ g∗k

be a weak regular k-value of a k-polysymplectic momentum map JΦ : P → g∗k associated with Φ. Then,
for every p ∈ JΦ−1(µ), one has
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(1) Tp(G∆
µ p) = Tp(Gp) ∩ TpJΦ−1(µ),

(2) TpJΦ−1(µ) = Tp(Gp)⊥,k.

Proof. Let ξP (p) ∈ Tp(Gp) for some ξ ∈ g. Then, ξP (p) ∈ Tp(G∆
µ p) if and only if ξP (p) ∈ TpJΦ−1(µ),

or equivalently ξ ∈ g∆
µ if and only if ξP (p) ∈ TpJΦ−1(µ), where g∆

µ is the Lie algebra of G∆
µ .

The proof of (2) follows essentially the same as in [107] and is analogous to the symplectic case in
Lemma 2.1.18.

A non-necessarily Ad∗k-equivariant analogue of the essential technical results from [107, Lemmas 3.15
and 3.16] is provided below. These results constitute a foundation for the generalised k-polysymplectic
Marsden–Meyer–Weinstein reduction theory.

Lemma 2.3.13. The linear map

π̃αp : TpJΦ−1(µ)
Tp(G∆

µ p)
−→

(
TpJΦ

α

kerωα
p

)
{Tpπµ(ξP )p | ξ ∈ g∆α

µα }
, p ∈ JΦ−1(µ) ⊂ P ,

for some α belonging to {1, . . . , k} is a surjection if and only if

ker TpJΦ
α = Tp(JΦ−1µ) + kerωαp + Tp(G∆α

µα p) .

Furthermore,
⋂k
α=1 ker π̃αp = 0 holds, if and only if

Tp(G∆
µ p) =

k⋂
α=1

(
kerωαp + Tp(G∆α

µα p)
)

∩ TpJΦ−1(µ) .

The following results establish the main statements in the slightly generalised k-polysymplectic
Marsden–Meyer–Weinstein reduction theory. It must be emphasised that there is no restriction on the
dimension of the manifold P for Theorem 2.3.14 and Theorem 2.3.15 to remain valid.

Theorem 2.3.14 (The general k-polysymplectic Marsden–Meyer–Weinstein reduction theorem). Let
(P,ω, h,JΦ) be a G-invariant k-polysymplectic Hamiltonian system. Suppose that µ ∈ g∗k is a weak
regular k-value of a k-polysymplectic momentum map JΦ and G∆

µ acts in a quotientable manner on
JΦ−1(µ). Let G∆α

µα denote the isotropy group at µα of the Lie group action ∆α : (g, ϑ) ∈ G × g∗ 7→
∆α(g, ϑ) ∈ g∗ for α = 1, . . . , k. Moreover, assume that the following conditions hold

ker(TpJΦ
α) = TpJΦ−1(µ) + kerωαp + Tp(G∆α

µα p) , (2.3.3)

Tp(G∆
µ p) =

k⋂
α=1

(
kerωαp + Tp(G∆α

µα p)
)

∩ TpJΦ−1(µ) , (2.3.4)

for every p ∈ JΦ−1(µ) and all α = 1, . . . , k. Then, (JΦ−1(µ)/G∆
µ ,ωµ) is a k-polysymplectic manifold,

where ωµ is univocally determined by
π∗

µωµ = ȷ∗µω ,

where ȷµ : JΦ−1(µ) ↪→ P is the natural immersion and πµ : JΦ−1(µ) → JΦ−1(µ)/G∆
µ is the canonical

projection.

This theorem presents several improvements over the original k-polysymplectic Marsden–Meyer–
Weinstein reduction theorem developed in [107]. In particular, the requirement that the k-polysymplectic
momentum map JΦ be Ad∗k-equivariant is eliminated. This generalisation is achieved by employing the
k-polysymplectic affine Lie group action ∆.

The next result characterises the conditions under which a k-polysymplectic Hamiltonian system
(P,ω, h,JΦ) induces a reduced k-polysymplectic Hamiltonian system on the quotient JΦ−1(µ)/G∆

µ ob-
tained by Theorem 2.3.14.
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Theorem 2.3.15. Let the assumptions of Theorem 2.3.14 hold. Let h ∈ C ∞(P ) be a Hamiltonian
function that is G-invariant relative to Φ and let Xh = (Xh

1 , . . . , X
h
k ) be a k-vector field associated with

h. Assume that Φg∗Xh = Xh for every g ∈ G and Xh is tangent to JΦ−1(µ). Then, the flows Fαt of Xh
α

leave JΦ−1(µ) invariant and induce unique flows Fα
t on JΦ−1(µ)/G∆

µ such that πµ ◦ Fαt = Fα
t ◦ πµ for

every α = 1, . . . , k.

The proof of Theorem 2.3.15 follows directly from Theorem 2.3.14 and is essentially the same as in
[107]. It should be noted that the k-polysymplectic Hamiltonian k-vector field Xh need not be invariant
under the G-action, even in cases where its corresponding Hamilton-de Donder-Weyl (HDW) equations
are. In addition, Xh is not tangent to JΦ−1(µ) in general. This is illustrated by the examples in Section
2.4.

2.3.5 Comments on the k-polysymplectic Marsden–Meyer–Weinstein reduc-
tion

To improve the applicability of the k-polysymplectic Marsden–Meyer–Weinstein reductions, this subsec-
tion comments on some technical conditions imposed in the literature [107, 62]. The notion of a regular
value is particularly subtle in the context of k-polysymplectic momentum maps. The codomain of a
k-polysymplectic momentum map JΦ : P → g∗k often has a dimension larger than that of P , especially
for large k, due to the k-fold product of g∗. As a result, JΦ may fail to be a submersion. While being a
submersion is a standard assumption in many classical Marsden–Meyer–Weinstein reduction frameworks
(see, e.g., [62, 107]), this property becomes very restrictive in the k-polysymplectic setting. It is some-
times assumed in the literature that Sard’s Theorem ensures that JΦ is frequently a submersion because
the set of singular points in P of JΦ, i.e. the set of points where JΦ is not a submersion, has an image
with zero measure (see [108, Lemma 3.4] or [17, p 212]). Nevertheless, the whole image of JΦ may also
be a zero measure subset and, in this case, it may happen that JΦ is not a submersion at points in a
dense subset of P . Indeed, JΦ is not a submersion at any point in P whenever k dim g∗ > dimP . In such
a case, JΦ does not admit regular values in g∗k. This fact highlights the importance of the analysis of
weak regular values for k-polysymplectic momentum maps in [50]. It also explains why, in the symplectic
case, when k = 1, the assumption of JΦ being a submersion is not so problematic and justifies the notion
of weak regular k-values introduced in Definition 2.3.9.

It is also worth stressing that Blacker, in [12, Theorem 3.22], does not provide any explicit assumptions
regarding the structure of JΦ−1(µ), although it is implicitly assumed that JΦ−1(µ) is a manifold. In
general, Blacker’s work [12] does not study in detail the technical conditions required to guarantee that
JΦ−1(µ) is a submanifold. Nevertheless, the structure of the quotient space JΦ−1(µ)/Gµ is studied.

Lemma 2.3.12 plays a significant role in characterising the so-called k-polysymplectic relative equilib-
rium points of G-invariant ω-Hamiltonian systems studied in Section 3.3. More importantly, it is essential
for establishing the k-polysymplectic Marsden–Meyer–Weinstein reduction theorem.

Interestingly, the incorrect formulation of Lemma 2.3.12 in Günther’s article [78, Lemma 7.5] implies
that the main reduction result presented is not valid. In particular, [78, Lemma 7.5] contains an incorrect
expression for item (1) in Lemma 2.3.12. In this work, the claim is made that, similarly to the symplectic
setting, the following identity holds

ker ȷ∗µω = Tp
(
JΦ−1(µ)

)⊥,k ∩ TpJΦ−1(µ) = Tp(Gp) ∩ TpJΦ−1(µ) = Tp(G∆
µ p),

However, the identification between the second and third expressions is, in general, only an inclusion ⊃,
rather than an equality, as clarified in [107, p 12]. Moreover, the justification presented for Lemma 7.5
in [78, p 48] is limited to a brief remark indicating that the proof is analogous to that in the symplectic
setting, which is insufficient in the k-polysymplectic context.

Additionally, a related mistake appears in [123], where similar reasoning is applied without appropriate
justification. Further discussion of these issues and their implications may be found in [107, Sections 1
and 2.2].
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The conditions for the k-polysymplectic Marsden–Meyer–Weinstein reduction theorem are now re-
viewed, as they are crucial in the formulation of the k-polysymplectic energy-momentum method, par-
ticularly in addressing a mistake present in one of the principal results of [62], namely [62, Proposition
1], giving the name to the paper.

The first correct version of the k-polysymplectic Marsden–Meyer–Weinstein reduction theorem was
formulated in [107]. Subsequently, necessary and sufficient conditions for the reduction procedure were
established by C. Blacker in [12], although a typographical error in the statement of the main theorem is
noted and discussed in [62]. In [107], the k-polysymplectic Marsden–Meyer–Weinstein reduction theorem
was proved under the assumption that the k-polysymplectic momentum map JΦ : P → g∗k is Ad∗k-
equivariant. A more general version, which removes the assumption of Ad∗k-equivariance, was devised in
[50, Theorem 5.10] and is presented in the most modern form in Theorem 2.3.14.

The next theorem presents the reduction of the dynamics given by ω-Hamiltonian vector field Xh on
P , as a consequence of Theorem 2.3.14. This result is crucial in the construction of the k-polysymplectic
energy-momentum method introduced in Section 3.3. In previous formulations of the k-polysymplectic
Marsden–Meyer–Weinstein reduction theorem, the reduction was applied to the dynamics generated by
a k-polysymplectic Hamiltonian k-vector field; see, for instance, [107, Theorem 4.4]. In contrast, the
version of the theorem stated above applies directly to ω-Hamiltonian vector fields, thereby simplifying
the required assumptions.

Theorem 2.3.16. Let (P,ω,h,JΦ) be a G-invariant ω-Hamiltonian system and let Φg∗h = h for each
g ∈ G. Then, the one-parametric group of diffeomorphisms Ft of the vector field Xh induces the one-
parametric group of diffeomorphisms Ft of the vector field Xfµ on JΦ−1(µ)/G∆

µ such that

ιXfµ
ωµ = dfµ and ȷ∗µh = π∗

µfµ .

Proof. The G-invariance of h, together with the assumption Φ∗
gω = ω, yields ΦgXh = Xh for each g ∈ G.

Consequently,
ιXh

d⟨JΦ, ξ⟩ = −ιξP
ιXh

ω = −ιξP
dh = 0 , ∀ξ ∈ g ,

which implies that Xh is tangent to JΦ−1(µ).
Furthermore, for every ξ ∈ g, one has

ι[ξP ,Xh]ω = LξP
ιXh

ω − ιξP
LXh

ω = 0 ,

and since kerω = 0, it follows that [ξP , Xh] = 0. Hence, Xh projects onto a vector field Y on the reduced
space JΦ−1(µ)/G∆

µ . The one-parameter group of diffeomorphisms Ft generated by Xh then descends to
a one-parameter group Ft of diffeomorphisms of Y such that πµ ◦ Ft = Ft ◦ πµ for every t ∈ R.

Then, by Theorem 2.3.14, one obtains

ȷ∗µdh = ȷ∗µ(ιXh
ω) = ιXh

ȷ∗µω = ιXh
π∗

µωµ,= π∗
µ(ιY ωµ) , (2.3.5)

where Xh denotes both the vector field on P and its restriction to JΦ−1(µ). The same slight abuse of
notation is used hereafter to simplify the notation.

Since h is G∆
µ -invariant, there exists a reduced Rk-valued function fµ on JΦ−1(µ)/G∆

µ such that

ȷ∗µh = π∗
µfµ .

Substituting this into (2.3.5) yields

π∗
µdfµ = ȷ∗µdh = π∗

µιY ωµ

which shows that Y = Xfµ is an ωµ-Hamiltonian vector field and fµ is an ωµ-Hamiltonian function
associated with Xfµ .
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The sufficient and necessary conditions for k-polysymplectic reduction given by Blacker in equation
(2.3.6) are now recalled. The main result is reformulated in Theorem 2.3.17 using the present notation.
The formulation also corrects a typographical error in [12, Theorem 3.22], which appears both in the
statement and the proof, as revealed by application of [12, Theorem 2.14] to ωx. Although these assump-
tions were remarked by Blacker, they appear to have been overlooked by Mestdag and García-Toraño in
[62]. Furthermore, condition (2.3.6) had already appeared implicitly in [107, p 12]. For related results,
see also [116], which discusses the reduction of poly-Poisson structures.

Theorem 2.3.17. Let (P,ω,h,JΦ) be an Ad∗k-equivariant G-invariant k-polysymplectic Hamiltonian
system and let µ ∈ g∗k be a fixed regular k-value of JΦ. If the stabiliser subgroup Gµ of µ under the
Ad∗k action is connected, and Pµ = JΦ−1(µ)/Gµ is a smooth manifold, then there is a unique Rk-
valued two-form ωµ ∈ Ω2(Pµ,Rk) such that π∗

µωµ = ȷ∗µω where ȷµ : JΦ−1(µ) ↪→ P is the inclusion and
πµ : JΦ−1(µ) → Pµ is the canonical projection. The form ωµ is closed and nondegenerate if and only if

Tp(Gµp) = (Tp(Gp)⊥,k)⊥,k ∩ Tp(Gp)⊥,k , ∀p ∈ JΦ−1(µ) . (2.3.6)

For the sake of completeness, the reason why assuming µ ∈ g∗k to be a regular value of a k-
polysymplectic momentum map is a very restrictive condition is now presented. Consider an example
of a k-polysymplectic Marsden–Meyer–Weinstein reduction associated with a non-regular k-value of a
k-polysymplectic momentum map. Further examples with potential applications are presented in Section
3.4. Consider the completely integrable and separable system on R2k given by

dIα
dt = 0 , dθα

dt = Fα(Iα) , α = 1, . . . , k > 1 , (2.3.7)

for some arbitrary functions F1, . . . , Fk : R → R.
This system defines a k-polysymplectic Hamiltonian system on R2k with respect to the k-polysymplectic

form ω = ωα ⊗ eα, where
ωα = dθα ∧ dIα , α = 1, . . . , k ,

where it is important to stress that the right-hand side is not summed over the indices α = 1, . . . , k.
The Lie group action

Φ: (λ1, . . . , λk−1; θ1, . . . , θk, I) ∈ Rk−1 × R2k 7→ (λ1 + θ1, . . . , λk−1 + θk−1, θk, I) ∈ R2k ,

induces fundamental vector fields ∂/∂θ1, . . . , ∂/∂θk−1, with I = (I1, . . . , Ik) ∈ Rk.
Note that the functions F1, . . . , Fk are chosen to be of the form Fα = Fα(Iα), with α = 1, . . . , k, to

ensure that (2.3.7) is ω-Hamiltonian and separable.
Consider a k-polysymplectic momentum map

JΦ : (θ, I) ∈ R2k 7−→ (I1, . . . , 0) ⊗ e1 + · · · + (0, . . . , Ik−1) ⊗ ek−1 + (0, . . . , 0) ⊗ ek ∈
(
R(k−1)∗

)k
,

which is Ad∗k-equivariant and has no regular values, as its codomain has dimension greater than its
domain for k > 3. Note that (2.3.7) gives rise to an Rk−1-invariant ω-Hamiltonian system.

The reduction of ω and (2.3.7) may be considered for any value of the form

µ = (µ1, . . . , 0) ⊗ e1 + · · · + (0, . . . , µk−1) ⊗ ek−1 ∈
(
R(k−1)∗

)k
.

Then,

JΦ−1(µ) = {(θα, Iα) ∈ R2k | I1 = µ1, . . . , Ik−1 = µk−1, θ1, . . . , θk, Ik ∈ R} ≃ Rk × R .

The isotropy subgroup Rk−1
µ ≃ Rk−1 acts on JΦ−1(µ) via Φ, and the reduced manifold is diffeomorphic to

R2. The presymplectic forms ω1, . . . , ωk−1 vanish, whereas the reduction of ωk gives a symplectic form.
Consequently, ωµ is a k-polysymplectic form in which only one component is non-zero and symplectic.
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Since the ω-Hamiltonian function of the original system is a first integral of θ1, . . . , θk−1, one can
project the initial system onto

dIk
dt = 0 , dθk

dt = Fk(Ik) ,

which is Hamiltonian with respect to the symplectic form dθk∧dIk, where θk, Ik are treated as coordinates
on R2 in the natural manner.

2.3.6 On the conditions for the k-polysymplectic Marsden–Meyer–Weinstein
reduction

This subsection focuses on the conditions established in [107] and stated in Theorem 2.3.14 that guarantee
the existence of the k-polysymplectic Marsden–Meyer–Weinstein reduction theorem. It was asserted
in [62, Proposition 1] that condition (2.3.4) suffices to guarantee the existence of a k-polysymplectic
Marsden–Meyer–Weinstein reduction. This subsection demonstrates that such a claim is incorrect. The
error is first identified in the proof of [62, Proposition 1], and a counterexample is subsequently provided in
which condition (2.3.4) is satisfied, yet no k-polysymplectic Marsden–Meyer–Weinstein reduction exists,
and, in fact, condition (2.3.3) fails to hold. Finally, an example of a possible k-polysymplectic reduction
is provided where (2.3.3) and (2.3.4) are not simultaneously satisfied. To keep the exposition simple
and highlight the main ideas, in this subsection all k-polysymplectic momentum maps are assumed to
be Ad∗k-equivariant, as in [62, 107]. Furthermore, an example is presented where condition (2.3.3) is
satisfied, but (2.3.4) is not. Finally, a case is given in which a k-polysymplectic reduction is possible,
even though neither condition (2.3.3) nor (2.3.4) is simultaneously satisfied.

The proof of [62, Proposition 1] contains a crucial error: an inclusion is written in the opposite
direction. Specifically, since TpJΦ−1(µ) ⊂ TpJΦ−1

α (µα) for α = 1, . . . , k and every p ∈ JΦ−1(µ) for a
regular k-value µ ∈ g∗k, one has

{
v ∈ TpP | ω1(v,TpJΦ−1

1 (µ1)) = · · · = ωk(v,TpJΦ−1
k (µk)) = 0

}
⊂
{
v ∈ TpP | ω1(v,TpJΦ−1(µ)) = · · · = ωk(v,TpJΦ−1(µ)) = 0

}
,

contrary to what is stated at the end of page 8 in the proof of [62, Proposition 1], where the opposite
inclusion is claimed

{
v ∈ TpP | ω1(v,TpJΦ−1

1 (µ1)) = · · · = ωk(v,TpJΦ−1
k (µk)) = 0

}
⊃
{
v ∈ TpP | ω1(v,TpJΦ−1(µ)) = · · · = ωk(v,TpJΦ−1(µ)) = 0

}
.

In other words, if v is perpendicular to TpJΦ−1(µ) relative to each ωα, it does not imply that v is
perpendicular to each TpJΦ−1

α (µα) relative to ωα for α = 1, . . . , k, since the latter conditions impose a
stronger constraint. Consequently, the proof of [62, Proposition 1] yields only the inclusion

k⋂
α=1

(ker ȷ∗µαωα|p) ∩ TpJΦ−1(µ) ⊂ (Tp(Gp)⊥,k)⊥,k ∩ Tp(Gp)⊥,k , ∀p ∈ JΦ−1(µ) ,

instead of the claimed
k⋂

α=1
(ker ȷ∗µαωα|p) ∩ TpJΦ−1(µ) ⊃ (Tp(Gp)⊥,k)⊥,k ∩ Tp(Gp)⊥,k , ∀p ∈ JΦ−1(µ) .

As a result, the proof of Proposition 1 fails to establish the validity of condition (2.3.6), which is the
necessary and sufficient condition for the existence of a k-polysymplectic Marsden–Meyer–Weinstein
reduction theorem. Therefore, the statement of [62, Proposition 1] cannot be considered correct. The
origin of this failure lies in the incorrectness of [62, Proposition 1] itself. Moreover, several of the related
remarks following that proposition in [62] also contain inaccuracies.
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A counterexample is now presented to demonstrate the invalidity of [62, Proposition 1]. Specifically, an
R-invariant k-polysymplectic Hamiltonian system associated with a two-symplectic form is constructed,
which satisfies condition (2.3.4), yet does not yield a k-polysymplectic Marsden–Meyer–Weinstein reduc-
tion. Before that, it is convenient to recall some results from [107].

It was proved in [107] that kerωαp ⊂ ker TpJΦ
α on JΦ−1(µ), which allows one to define the following

commutative diagram (see [107, p 12])

TpJΦ−1(µ) ker TpJΦ
α

ker TpJΦ
α

kerωαp
ȷ

πα
p

π

for all p ∈ JΦ−1(µ), where ȷ and π are the canonical immersion and projection, respectively. For simplicity,
the equivalence class of an element v in a quotient is denoted by [v]. To avoid making the notation too
complicated, the specific meaning of [v] is understood from the context.

According to Proposition 3.12 in [107], the above diagram induces the maps

π̃αp : TpJΦ−1(µ)
Tp(Gµp)

−→
ker TpJΦ

α

kerωα
p

{[(ξP )p] | ξ ∈ gµα}
, α = 1, . . . , k , ∀p ∈ JΦ−1(µ) ,

where gµα is the Lie algebra of Gµα and {[(ξP )p] | ξ ∈ gµα} = prPα ({(ξP )p | ξ ∈ gµα}) and prPα : TpP →
TpP/ kerωαp is the canonical projection onto the quotient.

The conditions (2.3.3) at p ∈ P are equivalent to each π̃αp being surjective, respectively [107, Lemma
3.15], while (2.3.4) amounts to

⋂k
α=1 ker π̃αp = 0 (see [107, Lemma 3.16]).

Consider P = R4 with linear coordinates {x, y, z, t} and the presymplectic forms

ω1 = dx ∧ dy , ω2 = dx ∧ dt+ dy ∧ dz ,

which give rise to a two-polysymplectic form ω = ω1 ⊗ e1 +ω2 ⊗ e2, because ω2 is a symplectic form and
kerω1 ∩ kerω2 = 0. Consider the Lie group action

Φ: (λ;x, y, z, t) ∈ R × R4 7→ (x+ λ, y, z, t) ∈ R4 .

The Lie algebra of fundamental vector fields of Φ is V = ⟨∂x⟩ ≃ R. Moreover, Φ admits a two-
polysymplectic momentum map relative to (R4,ω) given by

JΦ : (x, y, z, t) ∈ R4 7−→ µ = (y, t) ∈ R∗2,

which is clearly Ad∗2-equivariant. Additionally, any µ ∈ R∗2 is a regular k-value of JΦ. Consequently,

JΦ−1(y, t) = {(x, y, z, t) ∈ R4 | x, z ∈ R} ≃ R2

is a submanifold for every (y, t) ∈ R∗2 and

TpJΦ−1(y, t) = ⟨∂x, ∂z⟩ , ∀p ∈ JΦ−1(y, t) .

Moreover, Gµ = R for each µ = (y, t) ∈ R∗2 and Gµ acts freely and properly on JΦ−1(µ).
It is now shown that condition (2.3.4) does not imply either the reduction condition (2.3.6) for the

two-polysymplectic form ω nor (2.3.3).
In this example, µ = (y, t) with µ1 = y and µ2 = t, while

ker TpJΦ
1 = ⟨∂x, ∂z, ∂t⟩ , kerω1 = ⟨∂t, ∂z⟩ , ker TpJΦ

2 = ⟨∂x, ∂y, ∂z⟩ , kerω2 = 0 ,

and
{[(ξP )p] | ξ ∈ gµ1} = ⟨[∂x]⟩ , {[(ξP )p] | ξ ∈ gµ2} = ⟨[∂x]⟩ ,
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for any p ∈ JΦ−1(µ). The associated maps read

π̃1
p : ⟨[∂z]⟩ = TpJΦ−1(µ)/Tp(Gµp) 7−→ ⟨0⟩ = (ker TpJΦ

1 / kerω1
p)/⟨[∂x]⟩

and
π̃2
p : ⟨[∂z]⟩ = TpJΦ−1(µ)/Tp(Gµp) 7−→ ⟨[∂y], [∂z]⟩ = (ker TpJΦ

2 / kerω2
p)/⟨[∂x]⟩ .

Since π̃2
p([∂z]) = [∂z], one obtain

ker π̃1
p = ⟨[∂z]⟩ , ker π̃2

p = ⟨0⟩ .

Thus, ker π̃1
p ∩ ker π̃2

p = 0, so that condition (2.3.4) is satisfied. However, Im π̃2
p = ⟨[∂z]⟩ and π̃2

p is not
surjective. Therefore, condition (2.3.3) does not hold for α = 2.

Furthermore, both forms ω1 and ω2 become isotropic when restricted to JΦ−1(µ), and their induce
the zero two-forms on the reduced manifold JΦ−1(µ)/Gµ, which is one-dimensional. Hence, no two-
polysymplectic form is induced on JΦ−1(µ)/Gµ, despite the fact that condition (2.3.4) holds.

An explicit computation confirms that condition (2.3.4) is satisfied in the above example, while con-
dition (2.3.3) is not. This directly shows that Proposition 1 from [62] fails and that condition (2.3.4) does
not imply condition (2.3.3). The construction also illustrates the method by which the counterexample
was obtained.

The failure of condition (2.3.3) in this setting is due to the non-surjectivity of the map π̃2
p. Recall

that
ker TpJΦ

2 = ⟨∂x, ∂y, ∂z⟩ , ∀p ∈ JΦ−1(µ) ,

while

TpJΦ−1(µ) + kerω2
p + Tp(Gµ2p) = ⟨∂x, ∂z⟩ + {0} + ⟨∂x⟩ = ⟨∂x, ∂z⟩ , ∀p ∈ JΦ−1(µ) .

On the other hand, condition (2.3.4) is satisfied since

Tp(Gµp) = ⟨∂x⟩

and
(kerω1

p + Tp(Gµ1p)) ∩ (kerω2
p + Tp(Gµ2p)) ∩ TpJΦ−1(µ) = ⟨∂x⟩ ,

reads
(⟨∂t, ∂z⟩ + ⟨∂x⟩) ∩ (⟨0⟩ + ⟨∂x⟩) ∩ ⟨∂x, ∂z⟩ = ⟨∂x⟩ .

The example is constructed so that the reduced space JΦ−1(µ)/Gµ is one-dimensional. Therefore, the
reduction of ω does not give a two-polysymplectic form on the quotient manifold.

The following examples illustrate some relations between the conditions (2.3.3), (2.3.4) and the exis-
tence of k-polysymplectic Marsden–Meyer–Weinstein reductions.

Example 2.3.18. This example shows that if condition (2.3.3) is satisfied, then condition (2.3.4) does
not need to hold. Consider a two-polysymplectic manifold (R6,ω). Let {x1, x2, x3, x4, x5, x6} be global
linear coordinates on R6 and define

ω = ω1 ⊗ e1 + ω2 ⊗ e2 = (dx1 ∧ dx2 + dx5 ∧ dx6) ⊗ e1 + (dx3 ∧ dx4 + dx5 ∧ dx6) ⊗ e2 .

Then, kerω1
p = ⟨∂3, ∂4⟩, kerω2

p = ⟨∂1, ∂2⟩, and kerω1
p ∩ kerω2

p = 0 for every p ∈ R6. This guarantees that
ω is a two-polysymplectic form.

Consider the Lie group action

Φ: (λ;x1, x2, x3, x4, x5, x6) ∈ R × R6 7→ (x1 + λ, x2, x3 + λ, x4, x5, x6) ∈ R6 ,
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whose the fundamental vector field reads ⟨∂1 + ∂3⟩. The associated two-polysymplectic momentum map
is given by

JΦ : (x1, x2, x3, x4, x5, x6) ∈ R6 7−→ (x2, x4) = µ ∈ R∗2,

which is Ad∗2-equivariant and every µ = (x2, x4) ∈ R∗2 is a regular two-value of JΦ. Therefore,

JΦ−1(µ) = {(x1, x2, x3, x4, x5, x6) ∈ R6 | x1, x3, x5, x6 ∈ R} ≃ R4

is a submanifold of R6 for every µ ∈ R∗2. Furthermore,

TpJΦ−1(µ) = ⟨∂1, ∂3, ∂5, ∂6⟩ , ∀p ∈ JΦ−1(µ) .

Hence,
ker TpJΦ

1 = ⟨∂1, ∂3, ∂4, ∂5, ∂6⟩, ker TpJΦ
2 = ⟨∂1, ∂2, ∂3, ∂5, ∂6⟩ .

Condition (2.3.3) is satisfied since both sides of the condition are equal to

⟨∂1, ∂3, ∂4, ∂5, ∂6⟩ = ⟨∂1, ∂3, ∂5, ∂6⟩ + ⟨∂3, ∂4⟩ + ⟨∂1 + ∂3⟩ ,
⟨∂1, ∂2, ∂3, ∂5, ∂6⟩ = ⟨∂1, ∂3, ∂5, ∂6⟩ + ⟨∂1, ∂2⟩ + ⟨∂1 + ∂3⟩ ,

for JΦ
1 and JΦ

2 , respectively. However, condition (2.3.4) is not fulfilled. In particular,

2⋂
α=1

(
kerωαp + Tp(Gµαp)

)
∩ TpJΦ−1(µ)

= (⟨∂3, ∂4⟩ + ⟨∂1 + ∂3⟩) ∩ (⟨∂1, ∂2⟩ + ⟨∂1 + ∂3⟩) ∩ ⟨∂1, ∂3, ∂5, ∂6⟩
= ⟨∂1, ∂3⟩ ≠ ⟨∂1 + ∂3⟩ = Tp(Gµp) ,

for any p ∈ JΦ−1(µ). By [107, Lemmas 3.15 and 3.16], the maps π̃1
p and π̃2

p are surjective but ker π̃1
p ∩

ker π̃2
p ̸= 0.

This can be explicitly verified by computing π̃αp for α = 1, 2. Indeed, for each p ∈ JΦ−1(µ), one has

π̃1
p : ⟨[∂1], [∂5], [∂6]⟩ ∈ TpJΦ−1(µ)/Tp(Gµp) 7−→ ⟨[∂5], [∂6]⟩ = (ker TpJΦ

1 / kerω1
p)/⟨[∂1 + ∂3]⟩ .

π̃2
p : ⟨[∂1], [∂5], [∂6]⟩ ∈ TpJΦ−1(µ)/Tp(Gµp) 7−→ ⟨[∂5], [∂6]⟩ = (ker TpJΦ

2 / kerω2
p)/⟨[∂1 + ∂3]⟩ .

Note that [∂1 + ∂3] = [∂1] in the first line, while in the second [∂1 + ∂3] = [∂3]. △

Example 2.3.19. This example illustrates that the conditions stated in [107] for the k-polysymplectic
Marsden–Meyer–Weinstein reduction are sufficient but not necessary. In this respect, there are cases
where reduction is possible, condition (2.3.4) holds, while condition (2.3.3) does not. Consider a two-
polysymplectic manifold (R7,ω), where {x1, . . . , x7} are global linear coordinates and

ω = ω1 ⊗ e1 + ω2 ⊗ e2

= (dx1 ∧ dx2 + dx5 ∧ dx7 + dx3 ∧ dx6) ⊗ e1 + (dx3 ∧ dx4 + dx5 ∧ dx6) ⊗ e2 .

This give rise to a two-polysymplectic structure on R7 since kerω1 = ⟨∂4⟩, kerω2 = ⟨∂1, ∂2, ∂7⟩ and
kerω1 ∩ kerω2 = 0.

Consider the Lie group action Φ: R×R7 → R7 corresponding to translations along the x5 coordinate.
The associated Lie algebra of the fundamental vector fields is ⟨∂5⟩. A two-polysymplectic momentum
map corresponding to this action is given by

JΦ : (x1, x2, x3, x4, x5, x6, x7) ∈ R7 7−→ (x7, x6) = µ ∈ R2∗ .

This momentum map is Ad∗2-equivariant, and every µ ∈ R2∗ is a regular two-value. Therefore,

JΦ−1(µ) = {(x1, x2, x3, x4, x5, x6, x7) ∈ R7 | x1, x2, x3, x4, x5 ∈ R} ≃ R5
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is a submanifold of R7 for every µ = (x7, x6) ∈ R2, and

TpJΦ−1(µ) = ⟨∂1, ∂2, ∂3, ∂4, ∂5⟩ , ∀p ∈ JΦ−1(µ) .

Condition (2.3.4) is satisfied, while (2.3.3) for JΦ
1 is not since

π̃1
p : ⟨[∂1], [∂2], [∂3], [∂4]⟩ ∈ TpJΦ−1(µ)/Tp(Gµp) 7→ ⟨[∂1], [∂2], [∂3], [∂6]⟩ = (ker TpJΦ

1 / kerω1
p)/⟨[∂5]⟩ .

Therefore, π̃1
p is not surjective. Nevertheless, the reduced manifold Pµ = TpJΦ−1(µ)/Tp(Gµp) ≃ R4

inherits a two-polysymplectic structure given by

ωµ = dx1 ∧ dx2 ⊗ e1 + dx3 ∧ dx4 ⊗ e2 ,

in the variables x1, x2, x3, x4 naturally defined in Pµ.
In summary, this example shows that although both conditions (2.3.3) and (2.3.4) suffice to ensure

the validity of a k-polysymplectic Marsden–Meyer–Weinstein reduction, they are not necessary. △

2.3.7 Example: The product of k symplectic manifolds

An illustrative example of a k-polysymplectic manifold is now presented, along with the application of
Theorem 2.3.14, as discussed in [107]. This construction demonstrates the k-polysymplectic Marsden–
Meyer–Weinstein reduction. Numerous applications are formulated in this k-polysymplectic framework,
including one of the physical examples analysed in Section 3.4.

Let P = P1 × · · · × Pk for some symplectic manifolds (Pα, ωα) with α = 1, . . . , k. If prα : P → Pα

is the canonical projection onto the α-th component, Pα, in P . Then (P,ω =
∑k
α=1 pr∗

α ω
α ⊗ eα) is a

k-polysymplectic manifold. To simplify the notation, pr∗
α ω

α is simply denoted as ωα. Assume that a Lie
group action Φα : Gα × Pα → Pα admits a symplectic momentum map JΦα : Pα → g∗

α and each Φα acts
in a quotientable manner on the level sets given by weak regular values of JΦα for each α = 1, . . . , k.

Define the Lie group action

Φ: (g1, . . . , gk, x1, . . . , xk) ∈ G× P 7−→ (Φ1
g1

(x1), . . . ,Φkgk
(xk)) ∈ P , (2.3.8)

where G = G1 × · · · × Gk. Then, g = g1 × · · · × gk is the Lie algebra of G. The k-polysymplectic
momentum map associated with Φ reads

J : (x1, . . . , xk) ∈ P 7−→ (0, . . . ,Jα, . . . , 0) ⊗ eα ∈ g∗k ,

where Jα(x1, . . . , xk) = JΦα(xα) for α = 1, . . . , k and g∗ = g∗
1 × · · · × g∗

k is the dual space to g.
Let µα ∈ g∗

α be a weak regular value of JΦα : Pα → g∗
α for each α = 1, . . . , k. Then, µ =

(0, . . . , µα, . . . , 0) ⊗ eα ∈ g∗k is a weak regular k-value of J, and Φ acts in a quotientable on the level sets
of J.

Therefore, if p = (x1, . . . , xk) ∈ J−1(µ), it follows that

ker TpJΦα

= Tx1P1 ⊕ · · · ⊕ ker TxαJΦα

⊕ · · · ⊕ Txk
Pk ,

TpJ−1(µ) = ker Tx1JΦ1
⊕ · · · ⊕ ker Txk

JΦk

,

kerωαp = Tx1P1 ⊕ · · · ⊕ Txα−1Pα−1 ⊕ {0} ⊕ Txα+1Pα+1 ⊕ · · · ⊕ Txk
Pk ,

Tp
(
G∆α

µα p
)

= Tx1 (G1x1) ⊕ · · · ⊕ Txα

(
G∆α

αµαxα

)
⊕ · · · ⊕ Txk

(Gkxk) ,

Tp
(
G∆

µ p
)

= Tx1

(
G∆1

1µ1x1

)
⊕ · · · ⊕ Txk

(
G∆k

kµkxk

)
.

Then, it follows immediately that

ker TpJΦα

= TpJ−1(µ) + kerωαp + Tp
(
G∆α

µα p
)
, α = 1, . . . , k ,
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and

Tp
(
G∆

µ p
)

=
k⋂

β=1

(
kerωβp + Tp

(
G∆β

µβ p
))

∩ TpJ−1(µ ,

for every weak regular k-value µ ∈ g∗k and p ∈ J−1(µ).
According to Theorem 2.3.14, these conditions guarantee that the reduced space J−1(µ)/G∆

µ carries
a natural k-polysymplectic structure. Furthermore,

J−1(µ)/G∆
µ ≃ JΦ1−1(µ1)/G∆1

1µ1 × · · · × JΦk−1(µk)/G∆k

kµk .

△

2.4 k-Polycosymplectic Marsden–Meyer–Weinstein reduction
This section presents several fundamental results, including a k-polycosymplectic Marsden–Meyer–Weinstein
reduction theorem that does not require the Ad∗k-equivariance of the corresponding k-polycosymplectic
momentum map. As a consequence, k-polycosymplectic geometry arises as a particular case of k-
polysymplectic geometry. It is established by constructing a k-polysymplectic structure on a manifold
of higher dimension derived from a given k-polycosymplectic structure. Finally, a new Marsden–Meyer–
Weinstein reduction is introduced, namely the reduction from a k-polycosymplectic structure to an ℓ-
polysymplectic structure for k ≥ ℓ. All of the techniques presented are illustrated through an example.

2.4.1 k-Polycosymplectic momentum maps

The aim of this section is to develop the notion of a k-polycosymplectic momentum map by extending
the construction used in the cosymplectic setting to the k-polycosymplectic framework introduced in
Subsection 2.2.2. The definition of a k-polycosymplectic momentum map that is Ad∗k-equivariant is
provided.

Definition 2.4.1. A Lie group action Φ: G×M → M is said to be a k-polycosymplectic Lie group action
relative to the k-polycosymplectic manifold (M, τ ,ω) if, for each g ∈ G, the diffeomorphism Φg : M → M

satisfies Φ∗
gω = ω and Φ∗

gτ = τ .

Definition 2.4.2. A k-polycosymplectic momentum map for a Lie group action Φ: G×M →M relative
to a k-polycosymplectic manifold (M, τ ,ω) such that ξM takes values in ker τ for every ξ ∈ g, is a map
JΦ : M → g∗k satisfying that

ιξM
ω = d

〈
JΦ, ξ

〉
= dJΦ

ξ , ιξM
τ = 0 , LRα

JΦ
ξ = 0 , ∀ξ ∈ g , α = 1, . . . , k .

In this context, similarly to k-polysymplectic setting, for each fixed ξ ∈ g, the function JΦ
ξ takes

values in Rk. In terms of the notation introduced in Definition 2.3.2, the first and second conditions can
be rewritten as

ιξM
ω = d

〈
JΦ, ξ

〉
and ιξM

τ = 0, ∀ξ ∈ gk,

where ξ = (0, . . . ,
(α)
ξ , . . . , 0) ∈ gk for any ξ ∈ g and α = 1, . . . , k. The Reeb vector fields R1, . . . , Rk

corresponding to (M, τ ,ω) are tangent to the level sets of JΦ. However, R1, . . . , Rk are not tangent to
the orbits of Φ since τ is required to vanish when restricted to the tangent space to the orbits of Φ.

The following definition introduces the standard notion of Ad∗k-equivariance of a k-polycosymplectic
momentum map, which is common in the literature. However, it showed in the next subsection that this
assumption is not essential for the reduction theory developed later on.

Definition 2.4.3. A k-polycosymplectic momentum map JΦ : M → g∗k is Ad∗k-equivariant if it satisfies

JΦ ◦ Φg = Ad∗k
g−1 ◦ JΦ, ∀g ∈ G ,
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where
Ad∗k : G× g∗k −→ g∗k

(g,µ) 7−→
k−times︷ ︸︸ ︷

(Ad∗
g−1 ⊗ · · · ⊗ Ad∗

g−1) (µ).

In other words, for every g ∈ G, the following diagram commutes

M g∗k

M g∗k

JΦ

Φg Ad∗k

g−1

JΦ

.

Note that k-polycosymplectic Lie group actions are the analogue of the k-polysymplectic Lie group
actions in the k-polycosymplectic setting.

To simplify the notation, the following definition is introduced.

Definition 2.4.4. The four-tuple (Mω
τ , h,JΦ) is called a G-invariant k-polycosymplectic Hamiltonian

system if it consists of a k-polycosymplectic manifold (M, τ ,ω), a k-polycosymplectic Lie group action
Φ: G × M → M such that Φ∗

gh = h for every g ∈ G, and the k-polycosymplectic momentum map
JΦ : M → g∗k related to Φ. An Ad∗k-equivariant G-invariant k-polycosymplectic Hamiltonian system
is a G-invariant k-polycosymplectic Hamiltonian whose k-polycosymplectic momentum map is Ad∗k-
equivariant.

2.4.2 General k-polycosymplectic momentum maps

This section establishes that the standard requirement of Ad∗k-equivariance for a k-polycosymplectic
momentum map JΦ : M → g∗k can be replaced by a more general form of equivariance, similar to in
the k-polysymplectic setting introduced in Subsection 2.3.2. Analogously, it is demonstrated that the
momentum map JΦ is ∆-equivariant with respect to a k-polycosymplectic affine Lie group action on g∗k.
The proofs of the statements presented in this section follow analogously to their counterparts in the
k-polysymplectic setting in Subsection 2.3.2 and are therefore omitted. The underlying techniques are
analogous to those presented in Subsection 2.2.4, where the concept of momentum maps on symplectic
manifolds was extended to the cosymplectic manifolds. However, the k-polycosymplectic case is much
more technically involved.

Proposition 2.4.5. Let (Mω
τ , h,JΦ) be a G-invariant k-polycosymplectic Hamiltonian system. Consider

the functions on M of the form

ψg,ξ = JΦ
ξ ◦ Φg − JΦ

Adk

g−1 ξ : M → R , ∀g ∈ G , ∀ξ ∈ gk .

Then, each function ψg,ξ is constant on M for all g ∈ G and ξ ∈ gk. Furthermore, the map σ : G ∋ g 7→
σ(g) ∈ g∗k, defined by the relation

⟨σ(g), ξ⟩ = ψg,ξ

satisfies the cocycle condition

σ(g1g2) = σ(g1) + Ad∗k
g−1

1
σ(g2) , ∀g1, g2 ∈ G .

The proof of Proposition 2.4.5 is essentially the same as the proof of Proposition 2.3.5.
Note that the map σ introduced in Proposition 2.4.5 also can be brought into the form

σ(g) = JΦ ◦ Φg − Ad∗k
g−1JΦ = (σ1(g), . . . , σk(g)) ∈ g∗k ,
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where σα(g) = JΦ
α ◦ Φg − Ad∗

g−1JΦ
α for each α = 1, . . . , k. This map σ is called the co-adjoint cocycle

associated with JΦ. The vanishing of σ characterises the Ad∗k-equivariance of JΦ, that is, JΦ is Adk-
equivariant if and only if σ = 0. Furthermore, any k-polycosymplectic Lie group action that admits a
k-polycosymplectic momentum map induces a well-defined cohomology class [σ].

An analogue of Proposition 2.3.7 is now introduced to show that a k-polycosymplectic momentum
map JΦ determines a k-polycosymplectic affine Lie group action ∆ of G on g∗k satisfying the relation

JΦ ◦ Φg = ∆g ◦ JΦ ∀g ∈ G.

Proposition 2.4.6. Let JΦ : M → g∗k be a k-polycosymplectic momentum map associated with a k-
polycosymplectic Lie group action Φ, and let σ denote the corresponding coadjoint cocycle. Then,

(1) the map
∆ : G× g∗k ∋ (g,µ) 7−→ Ad∗k

g−1µ+ σ(g) = ∆gµ ∈ g∗k ,

is a Lie group action of G on g∗k,

(2) the k-polycosymplectic momentum map JΦ is equivariant with respect to ∆, in other words, every
g ∈ G gives rise to a commutative diagram

M g∗k

M g∗k

JΦ

Φg ∆g

JΦ

As in the k-polysymplectic case (cf. Proposition 2.3.7), the proof of Proposition 2.4.6 follows analo-
gously and is therefore omitted.

The action ∆ can be equivalently written in componentwise form as

∆(g, µ1, . . . , µk) = (Ad∗
g−1(µ1) + σ1(g), . . . ,Ad∗

g−1(µk) + σk(g))
= (∆1(g, µ1), . . . ,∆k(g, µk)) ∈ g∗k ,

which gives rise to defining k affine Lie group actions

∆α : (g, ϑ) ∈ G× g∗ 7→ Ad∗
g−1(ϑ) + σα(g) ∈ g∗ , α = 1, . . . , k .

2.4.3 k-Polycosymplectic Marsden–Meyer–Weinstein reduction theorem

This section presents a k-polycosymplectic Marsden–Meyer–Weinstein reduction procedure by means of a
particular type of k-polysymplectic Marsden–Meyer–Weinstein reduction. Analogously to the cosymplec-
tic case discussed in Section 2.2.4, any k-polycosymplectic manifold can be extended to a k-polysymplectic
manifold of a particular kind, referred to as a fibred k-polysymplectic manifold [50]. Furthermore, the k-
polycosymplectic momentum map JΦ : M → g∗k associated with a Lie group action Φ: G×M → M deter-
mines an extended momentum map for an extended Lie group action on the product manifold Rk×M , en-
dowed with a fibred k-polysymplectic structure. Consequently, the k-polycosymplectic Marsden–Meyer–
Weinstein reduction boils down to the Marsden–Meyer–Weinstein reduction for fibred k-polysymplectic
manifolds, developed within this subsection.

Theorem 2.4.7 shows how a k-polycosymplectic manifold (M, τ ,ω) induces a fibred k-polysymplectic
manifold (Rk ×M, ω̃) equipped with certain vector fields, called k-polysymplectic Reeb vector fields, and
vice versa. In particular, the fibred k-polysymplectic manifold admits a global symmetry structure.

Recall that the exterior product of two Rk-valued differential forms ϑ = ϑα ⊗ eα ∈ Ωℓ1(M,Rk) and
µ = µα ⊗ eα ∈ Ωℓ2(M,Rk) is given by

ϑ ⊼ µ =
k∑

α=1
(ϑα ∧ µα) ⊗ eα ∈ Ωℓ1+ℓ2(M,Rk) .
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Theorem 2.4.7. Let ω ∈ Ω2(M,Rk), τ ∈ Ω1(M,Rk), and let prM : Rk × M → M be the canonical
projection onto M . Let u = (u1, . . . , uk) be a natural global coordinate system in Rk. Then, (M, τ ,ω)
is a k-polycosymplectic manifold if and only if (Rk × M, pr∗

Mω + du ⊼ pr∗
Mτ = ω̃) is a k-polysymplectic

manifold, where du =
∑n
α=1 duα ⊗ eα, admitting some vector fields R̃1, . . . , R̃k on Rk × M , so-called

k-polysymplectic Reeb vector fields, such that ι
R̃α
ω̃β = −δβαduα and R̃αuβ = 0 for α, β = 1, . . . , k.

Proof. Note that the form ω̃ decomposes into k components. By the argument presented in the proof of
Lemma 1.3.11, it follows that ω̃ is closed if and only if both ω and τ are closed.

First aim is to show that if (M, τ ,ω) is a k-polycosymplectic manifold, then ω̃ is non-degenerate and
it possesses k-polysymplectic Reeb vector fields.

By Proposition 1.4.18, there exists a family of Reeb vector fields R1, . . . , Rk on M associated with
(M, τ ,ω). These vector fields can be uniquely lifted to vector fields R̃1, . . . , R̃k ∈ X(Rk ×M) satisfying
R̃βu

α = 0 for α, β = 1, . . . , k and they project onto R1, . . . , Rk via prM . By the construction of ω̃, the vec-
tor fields R̃1, . . . , R̃k satisfy ι

R̃α
ω̃β = −δβ̂αduβ̂ for α, β = 1, . . . , k and therefore become k-polysymplectic

Reeb vector fields related to ω̃. Note that in ι
R̃α
ω̃β = −δβ̂αduβ̂ there is no summation over β.

Suppose that X ∈ X(Rk ×M) takes values in ker(pr∗
Mω + du ⊼ pr∗

Mτ ) at some point. Then, at that
point

ι∂/∂uαιXω̃ = 0 =⇒ ιXpr∗
Mτ

α = 0 , α = 1, . . . , k .

Consequently, X takes values in ker pr∗
Mτ . Moreover,

ι
R̃α
ιXω̃ = 0 =⇒ Xuα = 0 , α = 1, . . . , k .

Therefore,
ιXpr∗

Mω = 0

and hence X = 0, since ker du ∩ ker pr∗
Mτ ∩ ker pr∗

Mω = 0. Thus, ω̃ is non-degenerate.
Conversely, assume that (Rk ×M, ω̃) is a k-polysymplectic manifold endowed with k-polysymplectic

Reeb vector fields. If a vector field X takes values in kerω ∩ ker τ , then X uniquely lifts to a vector field
X̃ on Rk × M so that prM∗X̃ = X and ι

X̃
du = 0. Since ω̃ is assumed to be non-degenerate, it follows

that
ι
X̃
ω̃ = 0 =⇒ X̃ = 0 .

Therefore, X = 0, and consequently kerω ∩ ker τ = 0.
To prove that the k-polysymplectic Reeb vector fields R̃1, . . . , R̃k project onto vector fields on M

spanning a distribution of rank k equal to the kernel of ω, observe that ι
R̃α
ω̃β = −δβ

α̂
duα̂ for α, β =

1, . . . , k. Since ω̃ is a k-polysymplectic form invariant relative to the Lie derivatives with respect to
∂/∂u1, . . . , ∂/∂uk, the definition of R̃1, . . . , R̃k implies that

L∂/∂uαι
R̃β
ω̃ = 0 .

Consequently, ι[∂/∂uα,R̃β ]ω̃ = 0 for every α, β = 1, . . . , k yields that R̃1, . . . , R̃k project onto M .
Moreover, for every α, β = 1, . . . , k, one has that

ι
R̃α
ω̃β = ι

R̃α
pr∗
Mω

β + (ι
R̃α

duβ̂)pr∗
Mτ

β̂ − (ι
R̃α

pr∗
Mτ

β̂)duβ̂ = −duα̂δβ
α̂
,

where there is no sum over the possible values of β or α as indicated by the hatted indices. Hence, again
without summing over β,

ι
∂/∂uβ̂

ι
R̃α
ω̃β̂ = −ι

R̃α
pr∗
Mτ

β = −δαβ =⇒ ⟨τβ ,prM∗R̃α⟩ = δαβ , ∀α, β = 1, . . . , k , (2.4.1)

and
ι
R̃α

pr∗
Mω = 0 .
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Condition (2.4.1) yields that the vector fields prM∗R̃α = Rα with α = 1, . . . , k, span a distribution on M
of rank k taking values in kerω. The rank of D = kerω cannot exceed k. Otherwise, there would exist
a non-zero tangent vector vx ∈ kerωx ∩ ker τx, for some x ∈ M , since the annihilator of ⟨τ1|D, . . . , τk|D⟩
in D would be non-zero which contradicts already established fact that kerω ∩ ker τ = 0.

Definition 2.4.8. A k-polysymplectic manifold satisfying the conditions of Theorem 2.4.7 is referred to
as a k-polysymplectic fibred manifold. In particular, the manifold (Rk ×M, ω̃) with

ω̃ := pr∗
Mω + du ⊼ pr∗

Mτ ,

is called the k-polysymplectic fibred manifold associated with the k-polycosymplectic manifold (M, τ ,ω).

Remark 2.4.9. The condition on the existence of the k-polysymplectic Reeb vector fields R̃α in Theorem
2.4.7 is essential to ensure that a k-polysymplectic structure on Rk×M gives rise to a k-polycosymplectic
one on M . The necessity of this condition is illustrated by the following example.

Example 2.4.10. Consider M = R4 equipped with standard linear coordinates {x, y, w, v}, and define
the closed differential forms

τ1 = dy , τ2 = dx , ω1 = dx ∧ dw , ω2 = dy ∧ dv .

These differential forms give rise to

τ = τ1 ⊗ e1 + τ2 ⊗ e2, ω = ω1 ⊗ e1 + ω2 ⊗ e2 .

Consider now the closed two-forms ω̃1, ω̃2 ∈ Ω2(R2 ×M) given by

ω̃1 = ω1 + du1 ∧ τ1 = dx ∧ dw + du1 ∧ dy ,

ω̃2 = ω2 + du2 ∧ τ2 = dy ∧ dv + du2 ∧ dx .

These define the R2-valued two-form ω̃ = ω̃1 ⊗ e1 + ω̃2 ⊗ e2 ∈ ω2(R2 ×M,R2). Then,

ker ω̃1 =
〈
∂/∂u2, ∂/∂v

〉
, ker ω̃2 =

〈
∂/∂u1, ∂/∂w

〉
.

Consequently,
ker ω̃ = ker

(
ω̃1 ⊗ e1 + ω̃2 ⊗ e2

)
= ker ω̃1 ∩ ker ω̃2 = 0 ,

which implies that (R2 ×M, ω̃) is a two-polysymplectic manifold.
However, a direct computation shows that ω̃ has no two-polysymplectic Reeb vector fields. Although

ker τ ∩ kerω = ker τ1 ∩ ker τ2 ∩ kerω1 ∩ kerω2 = 0 ,

the rank of kerω1 ∩ kerω2 is not 2, and thus (τ ,ω) cannot be a two-polycosymplectic structure on M .
△

Let (Mω
τ , h,JΦ) be a G-invariant k-polycosymplectic Hamiltonian system. Then, a Lie group action

Φ: G × M → M and a k-polycosymplectic momentum map JΦ : M → g∗k associated with Φ admit the
following extensions to the product manifold Rk ×M as follows

Φ̃ : G× Rk ×M ∋ (g,u, x) 7−→ (u,Φ(g, x)) ∈ Rk ×M , (2.4.2)

and
JΦ̃ : Rk ×M ∋ (u, x) 7−→ JΦ(x) ∈ g∗k , (2.4.3)

for every (u, x) ∈ Rk ×M and every g ∈ G. In particular, k = 1 recovers the extension of a cosymplectic
manifold to a symplectic manifold of the form R ×M presented in Lemma 1.3.11.
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The map JΦ̃ gives rise to a k-polysymplectic momentum map associated with a Lie group action Φ̃
with respect to the fibred k-polysymplectic manifold (Rk × M, ω̃), which arises as an extension of the
k-polycosymplectic manifold (M, τ ,ω).

Lemma 2.4.11 and Lemma 2.4.12 follow immediately as a straightforward consequence of previous
facts and the relation prRk ◦ Φ̃g = prRk for every g ∈ G, where prRk : Rk × M → Rk, is the natural
projection onto Rk.

Lemma 2.4.11. Let (Rk ×M, ω̃) be a k-polysymplectic fibred manifold. Then,

JΦ̃−1(µ) ≃ Rk × prM
(
JΦ̃−1(µ)

)
≃ Rk × JΦ−1(µ) , JΦ̃−1(µ)/G∆

µ ≃ Rk ×
(
JΦ−1(µ)/G∆

µ

)
for every weak regular k-value µ ∈ g∗k, where the quotients JΦ̃−1(µ)/G∆

µ and JΦ−1(µ)/G∆
µ are relative

to the actions of G∆
µ on JΦ̃−1(µ) and JΦ−1(µ), respectively.

Lemma 2.4.12. A k-polycosymplectic momentum map JΦ : M → g∗k is ∆-equivariant with respect
to a Lie group action Φ: G × M → M if and only if the associated k-polysymplectic momentum map
JΦ̃ : Rk ×M → g∗k is ∆-equivariant relative to Φ̃ : G× Rk ×M → Rk ×M . Additionally, µ ∈ g∗k is a
(resp. weak) regular k-value of JΦ if and only if µ is a (resp. weak) regular k-value of JΦ̃. Moreover,
JΦ̃−1(µ) = Rk × JΦ−1(µ) and JΦ̃−1(µ) is quotientable by G∆

µ if and only if JΦ−1(µ) is so.

The k-polysymplectic Marsden–Meyer–Weinstein reduction Theorem 2.3.14, provides the conditions
(2.3.3) and (2.3.4) ensuring the existence of a k-polysymplectic structure on the reduced manifold
JΦ̃−1(µ)/G∆

µ .
Lemmas 2.4.11, 2.4.12, and 2.4.13 imply that the k-polysymplectic fibred manifold induced from a

k-polycosymplectic one satisfies the hypotheses required for applying the reduction procedure.
Moreover, recall that the k-polysymplectic Reeb vector fields on Rk × M are tangent to the level

set JΦ̃−1(µ), as the original Reeb vector fields R1, . . . , Rk are tangent to JΦ−1(µ) and remain invariant
under the extended group action Φ̃. Consequently, they project to the reduced manifold.

Theorem 2.4.14 further analyses the structure of the reduced space, asserting that the reduced k-
polysymplectic form defined on JΦ̃−1(µ)/G∆

µ ≃ Rk × M∆
µ is fibred, and thus corresponds to a k-

polycosymplectic structure on M∆
µ . This completes the geometric construction of a k-polycosymplectic

reduction manifold. The reduction of Hamiltonian dynamics on such structures is addressed subsequently.

Lemma 2.4.13. Let (M, τ ,ω) be a k-polycosymplectic manifold and let (Rk × M, ω̃) be its associated
k-polysymplectic fibred manifold. Then,

Tx(G∆
µx) =

k⋂
α=1

(
(kerωαx ∩ ker ταx ) + Tx(G∆α

µα x)
)

∩ TxJΦ−1(µ) (2.4.4)

and
ker TxJΦ

α = kerωαx ∩ ker ταx + TxJΦ−1(µ) + Tx(G∆α

µα x) (2.4.5)

hold for every x ∈ JΦ−1(µ) and α = 1, . . . , k if and only if the expressions (2.3.3) and (2.3.4) concerning
the extensions JΦ̃ and Φ̃ to Rk ×M of JΦ and Φ, namely

Tp(G∆
µ p) =

k⋂
α=1

(
ker ω̃αp + Tp(G∆α

µα p)
)

∩ TpJΦ̃−1(µ) , (2.4.6)

and
ker(TpJΦ̃

α) = TpJΦ̃−1(µ) + ker ω̃αp + Tp(G∆α

µα p) (2.4.7)

are satisfied for every p = (u, x) ∈ JΦ̃−1(µ) and all α = 1, . . . , k.
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Proof. Given the canonical projection prM : Rk×M → M and the natural isomorphisms T(u,x)(Rk×M) ≃
TuRk ⊕ TxM for every (u, x) ∈ Rk ×M , it yields that, for α = 1, . . . , k, the following hold

(ker pr∗
Mω

α)(u,x) = TuRk ⊕ kerωαx , (ker pr∗
Mτ

α)(u,x) = TuRk ⊕ ker ταx ,
(ker duα)(u,x) = Aαu ⊕ TxM ,

(2.4.8)

where Aαu = TuRk ∩ (ker duα)(u,x) and kerωx, ker τx ⊂ TxM for every (u, x) ∈ Rk ×M . The contraction
of ω̃α with ∂/∂uα and the extended Reeb vector fields R̃1, . . . , R̃k on Rk × M yield, along with (2.4.8),
that

(ker ω̃α)(u,x) = (ker pr∗
Mω

α ∩ ker duα ∩ ker pr∗
Mτ

α)(u,x)

=
(
TuRk ⊕ kerωαx

)
∩ (Aαu ⊕ TxM) ∩

(
TuRk ⊕ ker ταx

)
= Aαu ⊕ (kerωαx ∩ ker ταx ) , (2.4.9)

for every (u, x) ∈ Rk ×M .
Moreover, from (2.4.2) and (2.4.3), it follows that L ∂

∂uα
JΦ̃ = 0 and ιξRk×M

du = 0 hold for every ξ ∈ g

and α = 1, . . . , k. Therefore,

T(u,x)(G∆
µ (u, x)) = {0} ⊕ Tx(G∆

µ x) , T(u,x)JΦ̃−1(µ) = TuRk ⊕ TxJΦ−1(µ) ,

T(u,x)(G∆α

µα (u, x)) = {0} ⊕ Tx(G∆α

µα x) , ker(T(u,x)JΦ̃
α) = TuRk ⊕ ker TxJΦ

α ,
(2.4.10)

for α = 1, . . . , k and arbitrary u ∈ Rk and x ∈ JΦ−1(µ). Suppose that (2.4.4) and (2.4.5) hold. Conse-
quently, the condition (2.4.4) gives

T(u,x)
(
G∆

µ (u, x)
)

= {0} ⊕ Tx(G∆
µ x) = {0} ⊕

k⋂
α=1

(
kerωαx ∩ ker ταx + Tx(G∆α

µα x)
)

∩ TxJΦ−1(µ)

=
k⋂

α=1

(
Aαu ⊕ (kerωαx ∩ ker ταx ) + {0} ⊕ Tx(G∆α

µα x)
)

∩
(
TuRk ⊕ TxJΦ−1(µ)

)
=

k⋂
α=1

(
(ker ω̃α)(u,x) + T(u,x)(G∆α

µα (u, x))
)

∩ T(u,x)JΦ̃−1(µ) ,

and (2.3.3) amounts to

ker T(u,x)JΦ̃
α = TuRk ⊕ ker TxJΦ

α = TuRk ⊕
(

kerωαx ∩ ker ταx + TxJΦ−1(µ) + Tx(G∆α

µα x)
)

= Aαu ⊕ (kerωαx ∩ ker ταx ) + TuRk ⊕ TxJΦ−1(µ) + {0} ⊕ Tx
(
G∆α

µα x
)

= T(u,x)JΦ̃−1(µ) + ker ω̃α(u,x) + T(u,x)

(
G∆α

µα (u, x)
)
,

where (2.4.8), (2.4.9), and (2.4.10) have been used, for every (u, x) ∈ Rk × JΦ−1(µ), every µ ∈ g∗k, and
α = 1, . . . , k. Thus, (2.4.4) and (2.4.5) imply the conditions (2.4.6) and (2.4.7), respectively.

Conversely, assume that (2.4.6) and (2.4.7) are satisfied. Then, condition (2.4.6) implies

TuRk ⊕ ker TxJΦ
α = ker T(u,x)JΦ̃

α = T(u,x)JΦ̃−1(µ) + ker ω̃α(u,x) + T(u,x)

(
G∆α

µα (u, x)
)

= TuRk ⊕ TxJΦ−1(µ) +Aαu ⊕ (kerωαx ∩ ker ταx ) + {0} ⊕ Tx
(
G∆α

µα x
)

= TuRk ⊕
(

kerωαx ∩ ker ταx + TxJΦ−1(µ) + Tx(G∆α

µα x)
)
,
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and (2.4.6) boils down to

{0} ⊕ Tx(G∆
µ x) = T(u,x)

(
G∆

µ (u, x)
)

=
k⋂

α=1

(
(ker ω̃α)(u,x) + {0} ⊕ Tx

(
G∆α

µα x
))

∩ T(u,x)JΦ̃−1(µ)

=
k⋂

α=1

(
Aαu ⊕ (kerωαx ∩ ker ταx ) + Tx(G∆α

µα x)
)

∩
(
TuRk ⊕ TxJΦ−1(µ)

)
= {0} ⊕

k⋂
α=1

[
(kerωαx ⊕ ker ταx ) + Tx(G∆α

µα x)
]

∩ TxJΦ−1(µ) ,

where, again the identities (2.4.8), (2.4.9), and (2.4.10) have been used, for every (u, x) ∈ Rk × JΦ−1(µ),
every µ ∈ g∗k, and α = 1, . . . , k. Therefore, conditions (2.4.4) and (2.4.5) are equivalent with (2.4.6) and
(2.4.7), respectively. This completes the proof.

Note that, according to Lemma 2.4.13, if conditions (2.4.4) and (2.4.5) are satisfied, then Theorem
2.3.14 implies that the k-polycosymplectic manifold (M, τ ,ω) gives rise to a reduced k-polysymplectic
manifold (JΦ̃−1(µ)/G∆

µ , ω̃µ) associated with the extended fibred structure (Rk ×M, ω̃).
It remains to verify that the latter structure corresponds, via Theorem 2.4.7, to the reduced k-

polycosymplectic manifold (JΦ−1(µ)/G∆
µ , τµ,ωµ) obtained by applying k-polycosymplectic Marsden–

Meyer–Weinstein reduction, introduced below, to the initial k-polycosymplectic manifold (M, τ ,ω).

Theorem 2.4.14. Let (M, τ ,ω) be a k-polycosymplectic manifold and let JΦ : M → g∗k be a
k-polycosymplectic momentum map associated with a k-polycosymplectic Lie group action Φ: G×M → M .
Let µ ∈ g∗k be a weak regular k-value of JΦ and let JΦ−1(µ) be quotientable by G∆

µ . In addition, assume
that

Tx(G∆
µ x) =

k⋂
α=1

(
kerωαx ∩ ker ταx + Tx(G∆α

µα x)
)

∩ TxJΦ−1(µ) , (2.4.11)

and
ker TxJΦ

α = kerωαx ∩ ker ταx + TxJΦ−1(µ) + Tx(G∆α
µα x) , (2.4.12)

for every x ∈ JΦ−1(µ) and α = 1, . . . , k. Then, (JΦ−1(µ)/G∆
µ , τµ,ωµ) is a k-polycosymplectic manifold

such that τµ and ωµ are defined univocally by

π∗
µτµ = ȷ∗µτ , π∗

µωµ = ȷ∗µω ,

where ȷµ : JΦ−1(µ) ↪→ M is the natural immersion and πµ : JΦ−1(µ) → JΦ−1(µ)/G∆
µ is the canonical

projection.

Proof. Consider the fibred k-polysymplectic manifold (Rk×M, ω̃) associated with (M, τ ,ω), the extended
action Φ̃ : G× Rk ×M → Rk ×M , and extended k-polysymplectic momentum map JΦ̃ : Rk ×M → g∗k.
Denote by {u1, . . . , uk} the standard coordinate system on Rk which gives rise, in the standard way, to
k coordinates on Rk ×M that, for simplicity, will be denoted in the same manner.

According to Lemma 2.4.12, if µ is a weak regular k-value for JΦ, then µ is also a weak regular k-value
for JΦ̃. Furthermore, JΦ̃−1(µ) is quotientable by the restriction of Φ̃ to G∆

µ if and only if JΦ−1(µ) is so
relative to the restriction of Φ to G∆

µ .
Moreover, Lemma 2.4.13 ensures that the conditions (2.4.11) and (2.4.12) imply that the conditions

(2.3.3) and (2.3.4) for the k-polysymplectic Marsden–Meyer–Weinstein reduction on JΦ̃−1(µ) hold. As a
consequence, a k-polysymplectic Marsden–Meyer–Weinstein reduction can be performed on Rk×JΦ−1(µ).

The k-polysymplectic manifold (Rk × M, ω̃) admits, under the assumptions of the present theorem
and Theorem 2.4.7, a collection of k-polysymplectic Reeb vector fields R̃1, . . . , R̃k that are tangent to
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the level set JΦ̃−1(µ). This follows from the fact that the Reeb vector fields R1, . . . , Rk of the k-
polycosymplectic manifold (M, τ ,ω) are tangent to JΦ−1(µ) and that prM∗R̃α = Rα for α = 1, . . . , k.
Furthermore, the Reeb vector fields R1, . . . , Rk are invariant under the action of G∆

µ via Φ. Consequently,
the extensions R̃1, . . . , R̃k are invariant under the extended action Φ̃ of G∆

µ and satisfy R̃αuβ = 0 for all
α, β = 1, . . . , k. The projections of the restrictions of these vector fields to JΦ̃−1(µ) onto the quotient
JΦ̃−1(µ)/G∆

µ define k-polysymplectic Reeb vector fields R̃1µ, . . . , R̃kµ on the reduced k-polysymplectic
manifold (JΦ̃−1(µ)/G∆

µ , ω̃µ).
In addition, the vector fields ∂/∂u1, . . . , ∂/∂uk project onto the quotient JΦ̃−1(µ)/G∆

µ , which is dif-
feomorphic to Rk × (JΦ−1(µ)/G∆

µ ) by Lemma 2.4.11, and the corresponding projections are linearly
independent. The contractions ι∂/∂uβ ι

R̃α
ω̃ are projectable from JΦ̃−1(µ) to JΦ̃−1(µ)/G∆

µ and are pro-
portional, up to a non-zero constant, to δβα

It is left to show how the reduced k-polysymplectic manifold
(
M̃∆

µ = JΦ̃−1(µ)/G∆
µ , ω̃µ

)
gives rise to

a k-polycosymplectic structure on M∆
µ = JΦ−1(µ)/G∆

µ .
Consider the embedding iu : x ∈ JΦ−1(µ) ∋ x 7→ (u, x) ∈ Rk × JΦ−1(µ) for any u ∈ Rk. Using

Lemma 2.4.11, one defines the k-polycosymplectic structure on M∆
µ as follows

ωµ = i∗uω̃µ , τµ =
k∑

α=1
i∗u

(
ι ∂

∂uα
ω̃µ

)
. (2.4.13)

Since the reduced k-polysymplectic form ω̃µ is closed and L∂/∂uαω̃µ = 0 for α = 1, . . . , k, it follows that
both ωµ and τµ are closed.

Let prM∆
µ

: Rk × M∆
µ 7→ M∆

µ and π̃µ : JΦ̃−1(µ) → M̃∆
µ be the canonical projections. Then, the

reduced k-polysymplectic form can be expressed as

ω̃µ = pr∗
M∆

µ
ωµ + du ⊼ pr∗

M∆
µ
τµ.

Indeed, this satisfies the relations defining ωµ and τµ, and, more importantly,

π̃∗
µ(pr∗

M∆
µ
ωµ + du ⊼ pr∗

M∆
µ
τµ) = ȷ̃ ∗

µω̃ , (2.4.14)

which determines uniquely the reduced k-polycosymplectic structure on M∆
µ . To prove (2.4.14), note

that both sides vanish on pairs of tangent vectors belonging to TuRk understood as a subspace of
T(u,x)JΦ̃−1(µ) ≃ TuRk ⊕ TxJΦ−1(µ). Furthermore, due to the first expression in (2.4.13), both sides of
equality (2.4.14) take the same values on pairs of tangent vectors of the space TxJΦ−1(µ). Finally, for
any pair of tangent vectors belonging to TuRk and TxJΦ−1(µ), respectively, a direct computation shows
that both sides of (2.4.14) coincide. This, along with previous facts, yields that (2.4.14) holds.

Since (Rk×JΦ−1(µ)/G∆
µ ,pr∗

M∆
µ
ωµ+du⊼pr∗

M∆
µ
τµ) is a k-polysymplectic manifold, by Theorem 2.3.14,

and admits k-polysymplectic Reeb vector fields, then (M̃∆
µ , ω̃µ) is a k-polysymplectic fibred manifold and

Theorem 2.4.7 yields that (M∆
µ , τµ,ωµ) is a k-polycosymplectic manifold. To prove the following

ȷ∗µω = π∗
µωµ , ȷ∗µτ = π∗

µτµ . (2.4.15)

observe that (2.4.14) yields

π̃∗
µ

(
pr∗
M∆

µ
ωµ + du ⊼ pr∗

M∆
µ
τµ

)
= ȷ̃∗µ (pr∗

Mω + du ⊼ pr∗
Mτ ) ,

which amounts to

(prM∆
µ

◦ π̃µ)∗ωµ + du ⊼ (prM∆
µ

◦ π̃µ)∗τµ = (prM ◦ ȷ̃µ)∗ω + du ⊼ (prM ◦ ȷ̃µ)∗τ . (2.4.16)

Composing on both sides of the last equality by i∗u, one gets

(prM∆
µ

◦ π̃µ ◦ iu)∗ωµ = (prM ◦ ȷ̃µ ◦ iu)∗ω .
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Since ȷµ = prM ◦ ȷ̃µ ◦ iu and prM∆
µ

◦ π̃µ ◦ iu = πµ, it follows that

π∗
µωµ = ȷ∗µω,

which proves the first equality in (2.4.15). By contracting both sides of (2.4.16) with ∂/∂u1, . . . , ∂/∂uk

and repeating the above procedure, the second equality in (2.4.15) follows.

Theorem 2.4.15. Let the assumptions of Theorem 2.4.14 be satisfied. Let Xh = (Xh
1 , . . . , X

h
k ) be a

k-polycosymplectic Hamiltonian k-vector field associated with a G-invariant Hamiltonian function h ∈
C ∞(M) relative to the Lie group action Φ. Assume that Φg∗Xh = Xh for every g ∈ G and Xh is tangent
to JΦ−1(µ). Then, for every α = 1, . . . , k, the flow Fαs of Xh

α leave JΦ−1(µ) invariant and induces a
unique flow Kα

s on JΦ−1(µ)/G∆
µ satisfying πµ ◦ Fαs = Kα

s ◦ πµ.

Proof. Given the assumption that a k-polycosymplectic Hamiltonian k-vector field Xh is tangent to
JΦ−1(µ), it follows that each integral curve Fαs of Xh

α with initial condition within JΦ−1(µ) is contained
in JΦ−1(µ) for all the values of its parameter s ∈ R and α = 1, . . . , k. Since Φg∗Xh = Xh for every g ∈ G,
one has that LξM

Xh
α = 0 for α = 1, . . . , k. This gives rise to a reduced k-vector field Y = (Y1, . . . , Yk)

defined on the quotient manifold JΦ−1(µ)/G∆
µ , such that πµ ◦ Fαs = Kα

s ◦ πµ, where Kα
s is the flow of

Yα, for α = 1, . . . , k. Furthermore, the G-invariance of h ∈ C ∞(M) implies that there exists a reduced
Hamiltonian function hµ ∈ C ∞(JΦ−1(µ)/G∆

µ ) such that π∗
µhµ = ȷ∗µh.

It remains to verify that Y is a reduced k-polycosymplectic Hamiltonian k-vector field associated
with hµ. Indeed, the Reeb vector fields R1, . . . , Rk are tangent to JΦ−1(µ) and give rise to linearly
independent vector fields RJΦ

1 , . . . , RJΦ

k on JΦ−1(µ). Due to this fact and Theorem 2.4.14, it follows that

dπ∗
µhµ = dȷ∗µh = ȷ∗µ(ιXhω +

k∑
α=1

(Rαh)τα) = ιXhȷ∗µω +
k∑

α=1
(RJΦ

α ȷ∗µh)ȷ∗µτα)

= ιXhπ∗
µωµ +

k∑
α=1

(RJΦ

α π∗
µhµ)π∗

µτ
α
µ ) = π∗

µ(ιY ωµ +
k∑

α=1
(Rαµhµ)ταµ ),

where Xh denotes both a k-polycosymplectic Hamiltonian k-vector field on M and its restriction to
JΦ−1(µ). Moreover,

π∗
µ(ιYα

τβµ) = ιXh
α

(π∗
µτ

β
µ) = ȷ∗µ(ιXh

α
τβ) = δβα.

Therefore, Y is a reduced k-polycosymplectic Hamiltonian k-vector field such that πµ∗Xh = Y = Xhµ

and πµ ◦ Fαs = Kα
s ◦ πµ holds for α = 1, . . . , k and s ∈ R.

Additionally, Theorem 2.4.15 could be established via k-polysymplectic reduction, as stated in Theo-
rem 2.3.14, by extending the Hamiltonian function h ∈ C ∞(M) to Rk ×M . This approach is examined
in detail below.

Define the extended Hamiltonian function h̃ ∈ C ∞(Rk ×M) as

h̃(u, x) = h(x) −
k∑

α=1
uα , ∀x ∈ M , ∀u = (u1, . . . , uk) ∈ Rk .

Recall that a k-polycosymplectic Hamiltonian k-vector field Xh associated with h satisfies the following
equations

ιXhω = dh−
k∑

β=1
(Rβh)τβ , ιXα

h
τ = eα , α = 1, . . . , k .

The aim is to extend Xh to a k-polysymplectic Hamiltonian k-vector field Xh̃ associated with h̃. It can
be checked that Xh̃ of the form

Xh̃ = Xh +
k∑

α=1
(Rαh) ∂

∂uα
,
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satisfies the required conditions for a k-polysymplectic Hamiltonian k-vector field on Rk ×M relative to
ω̃, namely

ι
Xh̃
ω̃ = ιXhω + (Rβh)τβ −

k∑
α=1

(ιXα
h
τα)duα = dh−

k∑
α=1

duα = dh̃ .

Therefore, Xh̃ is a k-polysymplectic Hamiltonian k-vector field on Rk ×M corresponding to the Hamil-
tonian function h̃ ∈ C ∞(Rk ×M) with respect to ω̃. From Theorem 2.3.15 and Lemma 2.4.12, it follows
that the reduced k-polysymplectic Hamiltonian k-vector field Xhµ is given by

Xh̃µ = Xhµ +
k∑

α=1
(Rαµ hµ) ∂

∂uα
.

Consequently, Xh̃µ projects onto JΦ−1(µ)/G∆
µ and its projection is Xhµ . This construction yields the

desired reduction.
It is also worth stressing that the discussion regarding conditions 2.4.11 and 2.4.12 that guarantee the

k-polycosymplectic Marsden–Meyer–Weinstein reduction in the context of k-polycosymplectic geometry
is essentially identical. In fact, these conditions are sufficient, but not necessary. Indeed, analogous
examples to those presented in Subsection 2.3.6 can be constructed.

2.4.4 Example: The product of k cosymplectic manifolds

This section presents an illustrative example of the k-polycosymplectic reduction of a product of k cosym-
plectic manifolds. Let

M =
k×

α=1
Mα

for some k cosymplectic manifolds (Mα, τ
α
M , ω

α
M ) for α = 1, . . . , k. If prα : M → Mα is the canonical

projection onto the α-component, then

(M,

k∑
α=1

pr∗
ατ

α
M ⊗ eα,

k∑
α=1

pr∗
αω

α
M ⊗ eα)

is a k-polycosymplectic manifold. Assume further that the Lie group action Φα : Gα ×Mα → Mα admits
a cosymplectic momentum map JΦα : Mα → g∗

α for each α = 1, . . . , k, and each Φα acts in a quotientable
manner on the level sets given by regular values of JΦα .

Define the Lie group action of G = G1 × · · · ×Gk on M as

Φ: G×M ∋ (g1, . . . , gk, x1, . . . , xk) 7−→ (Φ1
g1

(x1), . . . ,Φkgk
(xk)) ∈ M .

Let g = g1 × · · · × gk be the Lie algebra of G. Then, the corresponding k-polycosymplectic momentum
map is given by

J : M ∋ (x1, . . . , xk) 7−→ (JΦ1(x1), . . . ,JΦk (xk)) ∈ g∗k ,

where g∗ = g∗
1 × · · · × g∗

k is dual space to g.
If µα ∈ g∗

α is a regular value of JΦα : Mα → g∗
α for each α = 1, . . . , k, then µ = (µ1, . . . , µk) ∈ g∗k is a

regular k-value of J. Consequently, Φ acts in a quotientable manner on the associated level sets of J.
Therefore, for x = (x1, . . . , xk) ∈ J−1(µ), it follows that

ker TxJα = Tx1M1 ⊕ · · · ⊕ ker Txα
JΦα ⊕ · · · ⊕ Txk

Mk,

TxJ−1(µ) = ker Tx1JΦ1 ⊕ · · · ⊕ ker Txk
JΦk ,

kerωαx ∩ ker ταx = Tx1M1 ⊕ · · · ⊕ Txα−1Mα−1 ⊕ {0} ⊕ Txα+1Mα+1 ⊕ · · · ⊕ Txk
Mk ,

Tx
(
G∆α

µα x
)

= Tx1 (G1x1) ⊕ · · · ⊕ Txα

(
G∆α

αµαxα

)
⊕ · · · ⊕ Txk

(Gkxk) ,

Tx
(
G∆

µ x
)

= Tx1

(
G∆1

1µ1x1

)
⊕ · · · ⊕ Txk

(
G∆k

kµkxk

)
.
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Then,

ker TxJα = TxJ−1(µ) + kerωαx ∩ ker ταx ,

Tx
(
G∆

µ x
)

=
k⋂

β=1

(
kerωβx ∩ ker τβx + Tx

(
G∆β

µβ x
))

,

for α = 1, . . . , k and any x ∈ J−1(µ). Recall that, by Theorem 2.4.14, these equations guarantee that
the reduced space J−1(µ)/G∆

µ can be endowed with a k-polycosymplectic structure, while

J−1(µ)/G∆
µ ≃ JΦ1−1(µ1)/G∆1

1µ1 × · · · × JΦk−1(µk)/G∆k

kµk .

2.4.5 Example: Two coupled vibrating strings

This subsection presents an example of a two-polycosymplectic reduction of two coupled vibrating strings.
Moreover, the dynamics of the considered system is also reduced via Theorem 2.4.15.

Consider the manifold M = R2 ×
⊕2 T∗R2 with adapted coordinates {t, x; q1, q2, pt1, p

x
1 , p

t
2, p

x
2} and

the standard associated two-polycosymplectic structure

τ = dt⊗ e1 + dx⊗ e2, ω = (dq1 ∧ dpt1 + dq2 ∧ dpt2) ⊗ e1 + (dq1 ∧ dpx1 + dq2 ∧ dpx2) ⊗ e2.

Consider the Hamiltonian function h ∈ C ∞(M) of the form

h(t, x, q1, q2, pt1, p
t
2, p

x
1 , p

x
2) = 1

2
(
(pt1)2 + (pt2)2 − (px1)2 − (px2)2)+ C(t, x, q1 − q2) ,

where C(t, x, q1 − q2) is a coupling function between the two strings. This system admits a Lie symmetry
given by

ξM = ∂

∂q1 + ∂

∂q2 ,

that is associated with the Lie group action Φ: R × M → M acting by translations along the q1 + q2

direction, namely

Φ: (λ; t, x, q1, q2, pt1, p
t
2, p

x
1 , p

x
2) ∋ R ×M 7→ (t, x, q1 + λ, q2 + λ, pt1, p

t
2, p

x
1 , p

x
2) ∈ M .

The Lie group action Φ gives rise to a two-polycosymplectic momentum map JΦ given by

JΦ : (t, x, q1, q2, pt1, p
t
2, p

x
1 , p

x
2) ∈ R2 ×

⊕2 T∗R2 7−→ (pt1 + pt2, p
x
1 + px2) =: (µ1, µ2) = µ ∈ R∗2 .

Consequently, the level set of the two-polycosymplectic momentum map JΦ is as follows

JΦ−1(µ) = {(t, x, q1, q2, pt1, µ
1 − pt1, p

x
1 , µ

2 − px1) ∈ M | (t, x, q1, q2, pt1, p
x
1) ∈ R6}.

It is immediate that µ = (µ1, µ2) is a weak regular k-value of JΦ and JΦ is Ad∗2-equivariant. Note that
JΦ−1(µ) ≃ R6 and R = Gµ = Gµα for α = 1, 2. Then, for any m ∈ JΦ−1(µ), one has

Tm (Gµm) = Tm (Gµαm) =
〈

∂

∂q1 + ∂

∂q2

〉
m

,

(kerω1 ∩ ker τ1)m =
〈
∂

∂x
,
∂

∂px1
,
∂

∂px2

〉
m

, (kerω2 ∩ ker τ2)m =
〈
∂

∂t
,
∂

∂pt1
,
∂

∂pt2

〉
m

,

TmJΦ−1(µ) =
〈
∂

∂t
,
∂

∂x
,
∂

∂q1 ,
∂

∂q2 ,
∂

∂pt1
− ∂

∂pt2
,
∂

∂px1
− ∂

∂px2

〉
m

,

ker TmJΦ
1 =

〈
∂

∂t
,
∂

∂x
,
∂

∂q1 ,
∂

∂q2 ,
∂

∂px1
,
∂

∂pt1
− ∂

∂pt2
,
∂

∂px2

〉
m

,

ker TmJΦ
2 =

〈
∂

∂t
,
∂

∂x
,
∂

∂q1 ,
∂

∂q2 ,
∂

∂px1
− ∂

∂px2
,
∂

∂pt1
,
∂

∂pt2

〉
m
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and, indeed, the conditions (2.4.11) and (2.4.12) hold.
Recall that the dynamics on M is given by a two-polycosymplectic Hamiltonian two-vector field.

Therefore, a general two-vector field Xh = (Xh
1 , X

h
2 ) ∈ X2(M) with local expression reads

Xh
α = Atα

∂

∂t
+Axα

∂

∂x
+B1

α

∂

∂q1 +B2
α

∂

∂q2 + Ctα1
∂

∂pt1
+ Cxα1

∂

∂px1
+ Ctα2

∂

∂pt2
+ Cxα2

∂

∂px2
.

Imposing the two-polycosymplectic Hamiltonian equations (1.4.3), the previous two-polycosymplectic
Hamiltonian two-vector field Xh = (Xh

1 , X
h
2 ) must be of the form

Xh
1 = ∂

∂t
+ pt1

∂

∂q1 + pt2
∂

∂q2 + Ct11
∂

∂pt1
+ Cx11

∂

∂px1
+ Ct12

∂

∂pt2
+ Cx12

∂

∂px2
,

Xh
2 = ∂

∂x
− px1

∂

∂q1 − px2
∂

∂q2 + Ct21
∂

∂pt1
−
(
Ct11 + ∂C

∂q

)
∂

∂px1
+ Ct22

∂

∂pt2
+
(
∂C

∂q
− Ct12

)
∂

∂px2
,

where q = q1 − q2 and Ct11, C
x
11, C

t
12, C

x
12, C

t
21, C

t
22 ∈ C ∞(M) are, in principle, arbitrary functions.

Its integral sections, with t, x being the coordinates in its domain, satisfy

Ct11 = ∂pt1
∂t

, Cx11 = ∂px1
∂t

, Cx12 = ∂px2
∂t

, Ct21 = ∂pt1
∂x

, Ct22 = ∂pt2
∂x

,

−Ct11 − ∂C

∂q
= ∂px1

∂x
,

∂C

∂q
− Ct12 = ∂px2

∂x
.

This system of PDEs is integrable when [Xh
1 , X

h
2 ] = 0, for instance, if C = qF (x) + F̂ (t, x) for arbitrary

functions F̂ (t, x), F (x), while Ct11, C
x
11, C

t
12, C

x
12, C

t
21, C

t
22 vanish. Then, to apply Theorem 2.4.15, we

require Xh to be tangent to JΦ−1(µ) and LξM
Xα = 0 for α = 1, 2. Thus, Ct12 +Ct11 = 0, Cx11 +Cx12 = 0,

and Ct21 + Ct22 = 0 and Ctij , C
x
ij must be first-integrals of ξM for i, j = 1, 2. A two-polycosymplectic

Hamiltonian two-vector field gives rise to the following Hamilton–De Donder–Weyl equations

∂q1

∂t
= pt1 ,

∂q1

∂x
= −px1 ,

∂q2

∂t
= pt2 ,

∂q2

∂x
= −px2 ,

∂pt1
∂t

+ ∂px1
∂x

= −∂C

∂q
,

∂pt2
∂t

+ ∂px2
∂x

= ∂C

∂q
.

Since G = R acts on JΦ−1(µ) by translations along the q1 + q2 direction, the Lie group action Φ is
free and proper. Therefore, JΦ−1(µ)/Gµ is a smooth manifold and

JΦ−1(µ)/Gµ ≃ R2 × T∗R2/R ≃ R2 × R2/R × R ≃ R2 × R × R2.

Then, on the reduced manifold JΦ−1(µ)/R, the reduced two-polycosymplectic structure reads

τµ = dt⊗ e1 + dx⊗ e2 , ωµ = dq ∧ dpt1 ⊗ e1 + dq ∧ dpx1 ⊗ e2 .

Indeed, it becomes a two-cosymplectic structure since

kerωµ =
〈
∂

∂t
,
∂

∂x

〉
, ker τµ ∩ kerωµ = 0 .

The reduced dynamics on JΦ−1(µ)/R is given by the reduced two-polycosymplectic Hamiltonian two-
vector field Xhµ = (Xhµ

1 , X
hµ

2 ) of the form

X
hµ

1 = ∂

∂t
+ pt

∂

∂q
+ 2Ct11

∂

∂pt
+ 2Cx11

∂

∂px
,

X
hµ

2 = ∂

∂x
− px

∂

∂q
− 2Ct22

∂

∂pt
− 2

(
Ct11 + ∂C

∂q

)
∂

∂px
,
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where hµ = 1
4
(
(pt)2 + (px)2 + (µ1)2 − (µ2)2) + C(t, x, q) is the reduced Hamiltonian function, where

pt = pt1 − pt2 and px = px1 − px2 . A reduced two-polycosymplectic Hamiltonian two-vector field induces the
following Hamilton–De Donder–Weyl equations

∂q

∂x
= −px , ∂q

∂t
= pt ,

∂pt

∂t
+ ∂px

∂x
= −2∂C

∂q
.

It is relevant to stress that this procedure does not allow for a reduction involving the variables of
Rk. From a physical perspective, the reduction acts on the variables in

⊕k
α=1 T∗Q, corresponding to

fields and their associated momenta. In contrast, the variables in Rk, which are typically interpreted as
space-time coordinates or parameters on the base manifold where the physical system is defined, remain
unaffected by this reduction process. To do so, a new method is introduced in the next section to address
the reduction of these Rk-variables.

2.4.6 A k-cosymplectic to ℓ-cosymplectic reduction

This section presents a Marsden–Meyer–Weinstein type reduction from a k-cosymplectic manifold to an ℓ-
cosymplectic one. Under additional conditions, this procedure may be followed by further reduction steps
using the methods previously established, yielding a reduced ℓ-polycosymplectic manifold. To simplify
the exposition and avoid the discussion of trivial cases, only the situation in which ℓ < k is considered.

From the perspective of physical applications, this approach provides a method for reducing field
theories by eliminating space-time variables. Such a reduction is not possible within the framework of
earlier sections, since the fundamental vector fields of the considered k-polycosymplectic Lie group actions
were required to take values in ker τ . The reduction method introduced in this subsection is of particular
interest, as it constitutes a relatively novel and non-standard approach in the existing literature, which
is frequently based on other methods involving principal bundles or Lie group actions that preserve the
base manifold [31, 32].

Furthermore, the conditions are provided to enable the reduction of the Hamilton-De Donder-Weyl
equations from the original k-cosymplectic setting to the resulting ℓ-cosymplectic manifold, and possibly
to a further ℓ-polycosymplectic reduction.

The setting is restricted to the canonical k-cosymplectic manifold (Mk = Rk ×
⊕k

α=1 T∗Q, τk,ωk),
equipped with its natural polarisation Vk. According to the Darboux theorem for k-cosymplectic mani-
folds, see Theorem 1.4.17, every k-cosymplectic manifold is locally diffeomorphic to (Mk, τk,ωk). There-
fore, the results obtained here apply locally to an arbitrary k-cosymplectic manifold.

As in previous sections, the basis e1, . . . , ek of Rk is used to define the k-cosymplectic structure through
τk = τα ⊗ eα ∈ Ω1(Mk,Rk) and ωk = ωα ⊗ eα ∈ Ω2(Mk,Rk). Summation conventions are employed
throughout repeated crossed indices over their natural ranges, e.g. α = 1, . . . , k, unless otherwise specified.

Theorem 2.4.16. Let (Mk, τk,ωk, Vk) be a canonical k-cosymplectic manifold, let Φ: G×Mk → Mk be
an associated k-cosymplectic Lie group action, and let {τ1, . . . , τ ℓ} be a basis of the linear subspace (over
the real numbers) of ⟨τ1, . . . , τk⟩ vanishing on the space W of fundamental vector fields of Φ. Without
loss of generality, it may be assumed that the last k− ℓ forms in the original basis τ1, . . . , τk are linearly
independent when restricted to W . e.g. set τβ = cβα τ

α for certain unique constants cβα with α = 1, . . . , k
and β = 1, . . . , ℓ. Define τ =

∑ℓ
β=1 c

β
α τ

α ⊗ eβ and ω =
∑ℓ
β=1 c

β
α ω

α ⊗ eβ. If the map

π : (x̄1, . . . , x̄k, q, p̄1, . . . , p̄k) ∈ Rk ×
k⊕

α=1
T∗Q 7−→ (x̄1, . . . , x̄ℓ, q, p̄1, . . . , p̄ℓ) ∈ Rℓ ×

ℓ⊕
α=1

T∗Q

is the canonical projection, then (Mℓ = Rℓ ×
⊕ℓ

α=1 T∗Q, τℓ,ωℓ) is an ℓ-cosymplectic manifold with

π∗ωℓ = ω , π∗τℓ = τ .
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Furthermore, there exists a Lie group action Φℓ : G×Mℓ → Mℓ that is equivariant relative to π.

Proof. Let {xα, yj , pαj } denote locally adapted coordinates to (Mk, τk,ωk), namely

ωk = dyj ∧ dpαj ⊗ eα , τk = dxα ⊗ eα , Vk =
〈

∂

∂pαj

〉
α=1,...,k, j=1,...,dimQ

.

The condition Φ∗
gωk = ωk for every g ∈ G implies that kerωk =

〈
∂/∂x1, . . . , ∂/∂xk

〉
is G-invariant with

respect to the lifted Lie group action of Φ to TMk. Furthermore, since Φ∗
gτk = τk for every g ∈ G, there

exists a local linear Lie group action Φk : G× Rk → Rk whose space of orbits, around a point of Rk, is a
quotient space, Rk/E, for some linear subspace E ⊂ Rk. Consequently, Rk/E inherits a natural structure
of ℓ-dimensional linear space.

Since τk is closed and satisfies LξMk
τk = 0 for every ξ ∈ g, it follows that ιξMk

τk is constant for each
ξ ∈ g. This implies that the subspace W = ⟨τ1, . . . , τk⟩ can be considered as a linear subspace of the dual,
W ∗, to the linear (over the reals) space W of fundamental vector fields of the Lie group action Φ. Hence,
there exists a linear subspace A ⊂ W consisting of the elements of W vanishing on W . Let {τ1, . . . , τ ℓ}
be a basis of A. Then, one can define τβ = cβα τ

α and ωβ = cβαω
α for some unique constants cβα, where

α = 1, . . . , k and β = 1, . . . , ℓ. Note that τ ∈ Ω1(Rk ×
⊕k

α=1 T∗Q,Rℓ) and ω ∈ Ω2(Rk ×
⊕k

α=1 T∗Q,Rℓ).
It follows that τ and ω are closed, since τk and ωk are closed and the coefficients cβα, with α = 1, . . . , k
and β = 1, . . . ℓ, are constants. There exist new local adapted coordinates to Mk obtained linearly from
the previous ones, namely {x̄α = Aαβx

β , yj , p̄αj = Aαβp
β
j } for a certain constant (k × k)-matrix Aαβ , such

that

ω =
ℓ∑

β=1
dyj ∧ dp̄βj ⊗ eβ , τ =

ℓ∑
β=1

dx̄β ⊗ eβ .

Note that ker τ ∩ kerω is an integrable regular distribution on Mk given by

ker τ ∩ kerω =
〈

∂

∂p̄αj
,
∂

∂x̄α

〉
α=ℓ+1,...,k,
j=1,...,dimQ

.

The pair (τ ,ω) is not a k-cosymplectic structure on Mk, but a k-precosymplectic one (see [75] for details).
The space TxMk/ (ker τ ∩ kerω)x is diffeomorphic to Tπ(x)Mℓ for x ∈ Mk, where Mℓ = Rℓ ×⊕ℓ
α=1 T∗Q. Since τ and ω vanish on the fundamental vector field in kerω ∩ ker τ and are closed,

they are projectable via the canonical projection π : Mk → Mℓ onto Mℓ giving rise to an ℓ-cosymplectic
manifold (Mℓ, τℓ,ωℓ), where τℓ and ωℓ are the unique Rk-valued differential forms on Mℓ so that

π∗τℓ = τ , π∗ωℓ = ω .

Moreover, ιξMk
τ = 0 for every ξ ∈ g. Then, for every vector field X on Mk taking values in ker τ ∩ kerω,

one has
ι[ξMk

,X]ω = LξMk
ιXω − ιXLξMk

ω = 0

and, similarly, ι[ξMk
,X]τ = 0. This implies that the fundamental vector fields of Φ project onto Mℓ and

give rise to a new Lie group action Φℓ : G×Mℓ → Mℓ equivariant to Φ relative to the canonical projection
π : Mk → Mℓ.

The previous procedure can, in principle, be continued by using an ℓ-polycosymplectic momentum
map Jℓ to perform an ℓ-polycosymplectic Marsden–Meyer–Weinstein reduction according to Theorem
2.4.14. Note that the fundamental vector fields of Φℓ leave invariant ωℓ and ιξMℓ

ωℓ = dhξ for each ξ ∈ g

and certain hξ. Furthermore, by construction, it follows that ιξMℓ
τℓ = 0. Nevertheless, it is necessary

to impose the additional condition that Rℓαhξ = 0 for α = 1, . . . , ℓ. Note that this condition is not
automatically satisfied. Indeed, since the initial Φ is assumed to be k-polycosymplectic, the existence of
a corresponding k-polycosymplectic momentum map is not guaranteed.
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The aim is now to establish that Theorem 2.4.16 induces a well-defined dynamics on the reduced
space Mℓ, starting from a dynamical system on Mk which satisfies certain conditions. Recall that, in the
reductions of k-polycosymplectic structures considered in this section, the final ℓ components of τ are,
without loss of generality, assumed to form a linearly independent set when evaluated on the fundamental
vector fields associated with the Lie group action Φ.

Before continuing, it is convenient to introduce and recall certain notational conventions that are used
hereafter.

Original k-cosymplectic manifold and Hamiltonian k-cosymplectic k-
vector field.

(
(Mk, τk,ωk), Xh

)

New k-cosymplectic manifold and Hamiltonian k-vector field obtained
by making linear combinations of the components in Rk of ω and τ to
ensure that the first ℓ components of τ̂ vanish on the fundamental vector
fields of a k-cosymplectic Lie group action.

(
(Mk, τ̂ , ω̂), X̂h

)

An ℓ-precosymplectic manifold and its k-vector field obtained by cutting
the last k − ℓ components of the previous k-cosymplectic manifold and
k-cosymplectic Hamiltonian k-vector field.

(
(Mk, τ ,ω), Xh)

Projected ℓ-cosymplectic manifold and its ℓ-cosymplectic Hamiltonian
ℓ-vector field.

(
(Mℓ, τℓ,ωℓ), Xhℓ

)
π

Theorem 2.4.17. Let (Mk, τk,ωk, Vk) be a k-cosymplectic manifold and let Φ: G×Mk → Mk be an asso-
ciated k-cosymplectic Lie group action. Assume that h ∈ C ∞(Mk) and Xh, its associated k-cosymplectic
Hamiltonian k-vector field, are invariant relative to Φ. Suppose that h is also invariant relative to the
vector fields taking values in ker τ ∩ TRk, and that the Lie bracket of any component of Xh with any
vector field taking values in ker τ ∩ kerω takes values in the kernel of Tπ. Additionally, assume that

k∑
α=ℓ+1

[X̂h
α]αi = 0, i = 1, . . . ,dimQ .

Then, there exists a function hℓ ∈ C ∞(Mℓ) such that Xhℓ is the projection of (X̂h
1 , . . . , X̂

h
ℓ ) onto Mℓ

and π∗hℓ = h on a submanifold of constant values of the momenta pαi with α = ℓ + 1, . . . , k and i =
1, . . . ,dimQ. The ℓ-vector field Xhℓ is Hamiltonian relative to (Mℓ, τℓ,ωℓ) and the solutions for the
HDW equations of hℓ are solutions of the original HDW equations for constant associated momenta with
α = ℓ+ 1, . . . , k for τ ,ω.

Proof. Let ĉβα be the matrix of the change of bases mapping {τ1, . . . , τk} into the new basis

τ̂1 = τ̄1, . . . , τ̂ ℓ = τ̄ ℓ, τ̂ ℓ+1 = τ ℓ+1, . . . , τ̂k = τk ,

and let d̂βα be the inverse matrix, namely τα = d̂αβ τ̂
β , for α, β = 1, . . . , k. Define a new Hamiltonian

k-cosymplectic k-vector field X̂h on Mk relative to (Mk, τ̂ = ĉβατ
α ⊗ eβ , ω̂ = ĉβαω

α ⊗ eβ) of the form

X̂h
α = d̂βαX

h
β , α, β = 1, . . . , k .

Since ĉβα is such that ĉβα = δβα for β = ℓ+ 1, . . . , k and α = 1, . . . , k by construction of τ̂ , then d̂βα = δβα for
β = ℓ+1, . . . , k and α = 1, . . . , k. The relations between the new canonical coordinates in Rk×

⊕k
α=1 T∗Q
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and the previous ones are given by

x̂β = ĉβαx
α , p̂βi = ĉβαp

α
i , α, β = 1, . . . , k , i = 1, . . . ,dimQ ,

while q1, . . . , qdimQ are the same in the new and the old coordinate systems.
If R̂α = d̂βαRβ , it follows that

ι
X̂h

α

ω̂α = dh− (R̂αh)τ̂α, ι
X̂h

α

τ̂β = δβα. (2.4.17)

It is worth noting that if ψ : s = (s1, . . . , sk) ∈ Rk 7→ (xα(s), qi(s), pαi (s)) ∈ Rk ×
⊕k

α=1 T∗Q is a
solution to the HDW equations of the original Xh, then the same ψ is a solution for the HDW equations
for X̂h in the new coordinates ψ : ŝ = (ŝ1, . . . , ŝk) ∈ Rk 7→ (x̂α(ŝ), qi(ŝ), p̂αi (ŝ)) ∈ Rk ×

⊕k
α=1 T∗Q with

ŝβ = ĉβαs
α for α, β = 1, . . . , k, namely

∂x̂β

∂ŝα
= δβα ,

∂qi

∂ŝα
= ∂h

∂p̂αi
,

k∑
α=1

∂p̂αi
∂ŝα

= − ∂h

∂qi
, α, β = 1, . . . , k , i = 1, . . . ,dimQ . (2.4.18)

Then, the aim is to show that there is a new ℓ-vector field Xh on Rk ×
⊕k

α=1 T∗Q related to (Rk ×⊕k
α=1 T∗Q, τ ,ω) of the form

Xh =
ℓ∑

α=1
X̂h
α ⊗ eα ,

satisfying

ιXhω = dℓh−
ℓ∑

α=1
(Rαh)τ̄α , Rα = R̂α , α = 1, . . . , ℓ ,

where dℓ is the differential taking into account all canonical coordinates apart from x̂α and p̂αi for
α = ℓ+ 1, . . . , k and i = 1, . . . ,dimQ. From (2.4.17) it follows that

ℓ∑
β=1

ι
X

h

β

ωβ +
k∑

β=ℓ+1

∂h

∂p̂βi
dp̂βi −

k∑
β=ℓ+1

[X̂h
β ]βi dqi = ∂h

∂qi
dqi +

ℓ∑
α=1

∂h

∂p̂αi
dp̂αi +

k∑
α=ℓ+1

∂h

∂p̂αi
dp̂αi .

The assumption
∑k
β=ℓ+1[X̂h

β ]βi = 0 for i = 1, . . . ,dimQ, yields

ℓ∑
β=1

ι
X

h

β

ωβ = ∂h

∂qi
dqi +

ℓ∑
α=1

∂h

∂p̂αi
dp̂αi = dℓh−

ℓ∑
α=1

(Rαh)τα . (2.4.19)

In particular, the previous expression holds on the submanifold Sλ for p̂αi = λαi for certain constants
λαi , with α = ℓ+1, . . . , k and i = 1, . . . ,dimQ. The projection of this submanifold relative to π : Mk → Mℓ

is surjective and open. By the given assumptions, the restriction of h to Sλ is projectable onto a function
hℓ on Mℓ. Since the Lie bracket of Xh with any vector field in ker τ ∩ kerω belongs to the kernel of Tπ,
it follows that the same applies to X̂h and (Xh

1 , . . . , X
h

ℓ ) is projectable onto Mℓ, which implies that the
Lie derivatives of the Xh

1 , . . . , X
h

ℓ with ∂/∂x̄ℓ+1, . . . , ∂/∂x̄k and their associated momenta belong to the
kernel of Tπ. Then, (2.4.19) projects onto Mℓ. In addition, ιXα

τβ = δβα for α, β = 1, . . . , ℓ. These facts
show that the projection of (Xh

1 , . . . , X
h

ℓ ) is Hamiltonian relative to the induced ℓ-cosymplectic manifold
(Mℓ, τℓ,ωℓ). The new local canonical variables are given by

x̄α = x̂α , p̄αi = p̂αi i = 1, . . . ,dimQ , α = 1, . . . , ℓ .

The HDW equations for the ℓ-cosymplectic structure take the form

∂x̄β

∂s̄α
= δβα ,

∂qi

∂sα
= ∂hℓ
∂p̄αi

,

ℓ∑
α=1

∂p̄αi
∂s̄α

= −∂hℓ
∂qi

, α, β = 1, . . . , ℓ , i = 1, . . . ,dimQ .

These are indeed the equations for the solutions to (2.4.18) with constant p̄αi with α = ℓ + 1, . . . , k and
such that h does not depend on x̄ℓ+1, . . . , x̄k.
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It is worth noting that if the fundamental vector fields associated with Φ are tangent to the sub-
manifolds Sλ, then the function hℓ remains invariant relative to Φ and a standard ℓ-polycosymplectic
reduction can be applied, provided that the reduced action satisfies certain additional requirements, such
as the existence of a ℓ-polycosymplectic momentum map.

Theorem 2.4.17 gives sufficient conditions under which the k-cosymplectic Hamiltonian k-vector field
X̂h admits a projection onto the manifold Mℓ. However, these conditions are not necessary. The theorem
holds under weaker assumptions. For instance, it is sufficient to require that only the first ℓ components
of the k-vector field X̂h are projectable.

The general framework described above may be applied to a concrete physical example, such as a
vibrating membrane subject to an external force depending only on the radial distance.

Example 2.4.18. The system is given by the Hamiltonian function h̃ ∈ C ∞(R3 ×
⊕3

α=1 T∗R) of the
form

h̃(t, r, θ, ζ, pt, pr, pθ) = 1
2r

(
(pt)2 − 1

c2 (pr)2 − r2

c2 (pθ)2
)

− rζf(r) ,

and the canonical three-cosymplectic structure on R3 ×
⊕3

α=1 T∗R given by

τ = dt⊗ e1 + dr ⊗ e2 + dθ ⊗ e3 , ω = dζ ∧ dpt ⊗ e1 + dζ ∧ dpr ⊗ e2 + dζ ∧ dpθ ⊗ e3 .

A section

ψ : (t, r, θ) ∈ R3 7→ (t, r, θ, ζ(t, r, θ), pt(t, r, θ), px(t, r, θ), py(t, r, θ)) ∈ R3 ×
⊕3

α=1 T∗R =: Mv
3 ,

is a solution of the HDW equations of the three-cosymplectic Hamiltonian three-vector field Xh̃ =
(X h̃

1 , X
h̃
2 , X

h̃
3 ) on Mv

3 , where

X h̃
1 = ∂

∂t
+ pt

r

∂

∂ζ
, X h̃

2 = ∂

∂r
− pr

c2r

∂

∂ζ
+ rf(r) ∂

∂pr
, X h̃

3 = ∂

∂θ
− rpθ

c2
∂

∂ζ

if the following conditions are satisfied

∂pt

∂t
+ ∂pr

∂r
+ ∂pθ

∂θ
= rf(r) ,

∂ζ

∂t
= 1
r
pt ,

∂ζ

∂r
= − 1

rc2 p
r ,

∂ζ

∂θ
= − r

c2 p
θ .

Combining the above equations yields the standard wave equation in polar coordinates with a radially
forced vibrating membrane

∂2ζ

∂t2
− c2

(
∂2ζ

∂r2 + 1
r

∂ζ

∂r
+ 1
r2
∂2ζ

∂θ2

)
= f(r) .

Define the Lie group action

Φ: R2 ×Mv
3 ∋ (λ1, λ2; t, r, θ, ζ, pt, pr, pθ) 7→ (t+ λ1, r, (θ + λ2) mod 2π, ζ, pt, pr, pθ) ∈ Mv

3 ,

which describes symmetries of h̃ and defines a three-cosymplectic Lie group action, as it leaves invariant
τ , ω, and their polarisation V . The restriction of Φ to R3 reads

Φ3 : R2 × R3 ∋ (λ1, λ2; t, r, θ) 7→ (λ1 + t, r, (θ + λ2) mod 2π) ∈ R3 .

Note that the space of orbits of Φ is diffeomorphic to R × S1. In fact, the existence of such a Lie group
action is guaranteed by Theorem 2.4.17. The space of fundamental vector fields is

D =
〈
∂

∂t
,
∂

∂θ

〉
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and the one-forms of ⟨dr, dt, dθ⟩ vanishing on D are ⟨dr⟩. Therefore,

τ = dr, ω = dζ ∧ dpr.

Note that X̂h̃ = (Xh̃
2 ,Xh̃

1 ,Xh̃
3 ) and the HDW equations for X̂h̃ are the same as before (up to a

reparametrization of the indexes of the variables in R3).
Consider the submanifold Sλ in R3 ×

⊕3
α=1 T∗R given by

pt = λt, pθ = λθ, λ = (λt, λθ) ∈ R2 , λt, λθ ∈ R ,

which projects onto R6 diffeomorphically. Note that there exists a function

k(r, ζ, pr) = 1
2r

(
λ2
t − 1

c2 (pr)2 − r2

c2 λ
2
θ

)
− rζf(r) ,

whose pull-back to R3 ×
⊕3

α=1 T∗R coincides the value of h̃ on Sλ.
The distribution D spanned by the fundamental vector fields of Φ, and

ker τ ∩ kerω = ⟨∂/∂t, ∂/∂θ, ∂/∂pt, ∂/∂pθ⟩

are integrable. Moreover, h̃ is a first integral of any vector field taking value in ker τ ∩TRk. Additionally,
one has

X h̃2
2 +X h̃3

3 = X̂ h̃2
2 + X̂ h̃

3 = 0.

Then, the space of orbits of Φ3 is diffeomorphic to R × T∗R and one has the canonical projection

π : (t, r, θ, ζ, pt, pr, pθ) ∈ R3 ×
3⊕

α=1
T∗R 7−→ (r, ζ, pr) ∈ R × T∗R .

The Lie brackets of each of the components of Xh with vector fields of ker τ ∩ kerω also belong to the
kernel of Tπ, ensuring that there exists induced one-cosymplectic manifold

(R × T∗R,dr, dζ ∧ dpr).

In fact, this is the canonical cosymplectic structure in the reduced manifold. Consequently, the Hamilto-
nian three-vector field with components

X h̃
1 = ∂

∂t
+ λt

r

∂

∂ζ
, X h̃

2 = ∂

∂r
− pr

c2r

∂

∂ζ
+ rf(r) ∂

∂pr
, X h̃

3 = ∂

∂θ
− rλθ

c2
∂

∂ζ
,

projects onto the quotient. The resulting HDW equations read
∂pr

∂r
= rf(r) , ∂ζ

∂r
= − pr

rc2 ,

which, when combined, yield the reduced wave equation

c2
(
∂2ζ

∂r2 + 1
r

∂ζ

∂r

)
= −f(r) .

These are the HDW equations obtained by assuming pθ and pt to be constant in the initial HDW
equations.

2.5 k-Contact Marsden–Meyer–Weinstein reduction
This Section presents the modified k-polysymplectic Marsden–Meyer–Weinstein reduction for exact k-
polysymplectic manifolds. As demonstrated in subsequent subsections, the reduction is adjusted to
retrieve the reduced k-contact geometric structure from the reduced exact k-polysymplectic one. The
section focuses on exact k-polysymplectic manifolds, which are a specific case of k-polysymplectic man-
ifolds. Hence, the standard definitions are recalled in a form adapted to the exact setting. However,
since several of the subsequent results remain valid in a broader context, the definitions for general
k-polysymplectic manifolds are also included.
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2.5.1 Exact k-polysymplectic momentum maps

This subsection introduces the definition of an exact k-polysymplectic momentum map. First, recall that,
as previously, gk = g× k· · · ×g, and analogously, g∗k = g∗× k· · · ×g∗, where g∗ is the dual space to the
Lie algebra g. Moreover, recall that (P,θ) stands for an exact k-polysymplectic manifold, see Definition
1.4.5.

Definition 2.5.1. A Lie group action Φ: G × P → P is an exact k-polysymplectic Lie group action
relative to (P,θ) if Φ∗

gθ = θ for each g ∈ G, where Φg : P ∋ p 7→ Φg(p) := Φ(g, p) ∈ P . In other words,

LξP
θ = 0 , ∀ξ ∈ g .

A k-polysymplectic momentum map for an exact k-polysymplectic manifold (P,θ) is naturally defined
using the property of exactness.

Definition 2.5.2. An exact k-polysymplectic momentum map associated with (P,θ) and a Lie group
action Φ: G× P → P is a map JΦ

θ : P → g∗k such that

ιξP
θ = ⟨JΦ

θ , ξ⟩, ∀ξ ∈ g .

If Φ: G× P → P is an exact k-polysymplectic Lie group action, then

dιξP
θ = −ιξP

ω, ∀ξ ∈ g.

Thus, one can retrieve a k-polysymplectic momentum map defined in the standard way, as in the following
definition.

Proposition 2.5.3. An exact k-polysymplectic momentum map JΦ
θ : P → g∗k associated with a Lie group

action Φ: G× P → P related to an exact k-polysymplectic manifold (P,θ) is Ad∗k-equivariant.

The proof amounts to showing that JΦ
θ (Φg(p)) = Ad∗k

g−1JΦ
θ (p) for each p ∈ P and every g ∈ G, and it

follows from Lemma 2.1.2.

2.5.2 Marsden–Meyer–Weinstein reduction theorem for exact k-polysymplectic
manifolds

This subsection is devoted to the proof of the modified k-polysymplectic Marsden–Meyer–Weinstein
reduction (Theorem 2.3.14) via an extension of Lemma 2.3.12 in the symplectic setting [2, Lemma 4.3.2].

The idea to prove the k-contact Marsden–Meyer–Weinstein repeats the procedure devised in [107] and
presented in Subsection 2.3.6, which leads to Theorem 2.3.14 but is carried out in a slightly different set-
ting. Specifically, the construction is performed with Ñ = JΦ−1(R×kµ) instead of taking N = JΦ−1(µ),
where R× = R \ {0} and R×kµ is an invariant set with respect to dilations in each component of µα ∈ g∗

for α = 1, . . . , k, namely

JΦ−1(R×kµ) = {p ∈ P | ∃λ1, . . . , λk ∈ R×, JΦ
α(p) = λαµ

α, α = 1, . . . , k} .

Equivalently, JΦ−1(R×kµ) is the pre-image of the orbit of µ ∈ g∗k relative to the natural action defined
by

R×k × g∗k ∋ (λ1, . . . , λk;µ1, . . . , µk) 7−→ (λ1µ
1, . . . , λkµ

k) ∈ g∗k .

Note that if µ is a weak regular k-value, the spaces JΦ−1(R×kµ) and JΦ−1
α (R×µα) are submanifolds of

P .
The following proposition is a starting point for the modified k-polysymplectic Marsden–Meyer–

Weinstein reduction.
It is natural to expect that the Lie subgroup of G acting on JΦ−1(R×kµ) may be required to satisfy

some additional conditions compared to the subgroup appearing in the k-polysymplectic case of Theorem
2.3.14. It arises from dimensional considerations, as explained later in Subsection 2.6.2. In this context,
the following proposition is introduced.
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Proposition 2.5.4. Let k[µ] := kerµ ∩ g[µ], where kerµ = ⟨µ⟩◦ and g[µ] = {ξ ∈ g | ad∗
ξµ ∧ µ = 0} for

some µ ∈ g∗. Then, k[µ] is a Lie subalgebra of g.

Proof. Note that k[µ] is a linear space. If ξ, ν ∈ k[µ], then ad∗
ξµ = λµ and ad∗

νµ = κµ for some λ, κ ∈ R.
Thus,

ad∗
[ξ,ν]µ = ad∗

νad∗
ξµ− ad∗

νad∗
ξµ = (λκ− κλ)µ = 0, ⟨ad∗

ξµ, ν⟩ = ⟨µ, [ξ, ν]⟩ = ⟨λµ, ν⟩ = 0.

The first equality shows that [ξ, ν] ∈ g[µ] and the second that [ξ, ν] belongs to kerµ. Therefore, [ξ, ν] ∈ k[µ]

and k[µ] is a Lie subalgebra of g.

Proposition 2.5.4 implies that there exists a unique and simply connected Lie subgroup of G, denoted
as K[µ], whose Lie algebra is k[µ]. The following lemma presents the properties of k[µ] and K[µ] in the
k-polysymplectic setting, where kerµ = ∩kα=1 kerµα and k[µ] = kerµ ∩ g[µ].

Lemma 2.5.5. Let (P,ω) be a k-polysymplectic manifold and let µ ∈ g∗k be a weak regular k-value of a
k-polysymplectic momentum map JΦ : P → g∗k associated with a Lie group action Φ: G×P → P . Then,

K[µ] =
k⋂

α=1
K[µα], k[µ] =

k⋂
α=1

k[µα]. (2.5.1)

Moreover, T(K[µ]p) ⊆ ker ȷ∗[µ]ω for the natural embedding ȷ[µ] : JΦ−1(R×kµ) ↪→ P .

Proof. The first statement in (2.5.1) follows from Definition 2.5.2 and the fact that if g ∈ K[µ], then
g ∈ K[µα] for α = 1, . . . , k. The identity for the Lie algebra then follows. Second, for any ξ ∈ k[µ], one
has

TJΦ(ξP ) = d
dt

∣∣∣∣
t=0

JΦ ◦ Φexp(tξ) = d
dt

∣∣∣∣
t=0

Ad∗k
exp(−tξ)JΦ = −ad∗k

ξ JΦ = −λJΦ,

for some λ ∈ R. This yields that Tp(K[µ]p) ⊆ TpJΦ−1(R×kµ) for any p ∈ JΦ−1(R×kµ). Next, for any
vp ∈ TpJΦ−1(R×kµ), one has

(ȷ∗[µ]ω)(p)(vp, ξJΦ−1(R×kµ)(p)) = ω(p)(Tpȷ[µ]vp, ξP (p)) = −⟨TpJΦ(vp), ξ⟩ = −⟨λαµα ⊕ eα, ξ⟩ = 0,

for any ξ ∈ k[µ] and p ∈ JΦ−1(R×kµ), where we denoted by vp both a vector vp ∈ TpJΦ−1(R×µ) and its
induced vp ∈ TpP . Therefore, Tp(K[µ]p) ⊆ ker(ȷ∗[µ]ω)(p) for every p ∈ JΦ−1(R×µ).

Therefore, Lemma 2.5.5 and Theorem 2.3.10 show that

Tp(K[µ]p) ⊆ ker(ȷ∗[µ]ω)(p) = TpJΦ−1(R×kµ) ∩
(
TpJΦ−1(R×kµ)

)⊥k
, ∀p ∈ JΦ−1(R×kµ) .

In general, the converse does not hold, as detailed in [107]. Consequently, analogously to [107], one may
ask under which conditions Tp(K[µ]p) = ker(ȷ∗[µ]ω)(p) holds for any p ∈ JΦ−1(R×µ). The answer follows
essentially as in [107] but with a significant difference given in Lemma 2.5.6.

Recall that, if k = 1, then (P, ω) is a symplectic manifold. Now, assume that (P, ω = dθ) is an exact
symplectic manifold.

Lemma 2.5.6. Let (P, θ) be an exact symplectic manifold and let G[µ] = {g ∈ G | Ad∗
g−1µ ∧ µ = 0}.

Assume that JΦ(p) = µ ∈ g∗ is a weak regular value of an exact symplectic momentum map JΦ : P → g∗

associated with a Lie group action Φ: G× P → P . Then, for any p ∈ JΦ−1(R×µ), one has

(1) Tp(G[µ]p) = Tp(Gp) ∩ TpJΦ−1(R×µ),

(2) TpJΦ−1(R×µ) = (Tp(Gp) ∩ ker θp)⊥ω ,

where ⊥ω denotes the symplectic orthogonal and θ is the Liouville one-form.
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Proof.

(1) First, for any ξ ∈ g, one has that

TpJΦ(ξP (p)) = (ιξP
dJΦ)p = d

dt

∣∣∣∣
t=0
JΦ◦Φexp(tξ)(p) = d

dt

∣∣∣∣
t=0

(
Ad∗

exp(−tξ)J
Φ
)

(p) = −ad∗
ξµ. (2.5.2)

To prove that Tp(G[µ]p) ⊂ TpJΦ−1(R×µ). consider ξP (p) ∈ Tp
(
G[µ]p

)
, i.e. ξ ∈ g[µ]. Then, by

(2.5.2) it follows that
0 = µ ∧ ad∗

ξµ = −µ ∧ TpJΦ(ξP (p)),

and hence ξP (p) ∈ TpJΦ−1(R×µ).

To prove reverse inclusion Tp(G[µ]p) ⊃ TpJΦ−1(R×µ) ∩ Tp(Gp), let v ∈ Tp(Gp) ∩ TpJΦ−1(R×µ).
Then, v = ξP (p) ∈ TpJΦ−1(R×µ). Applying (2.5.2), one gets

0 = µ ∧ TpJΦ(ξP (p)) = −µ ∧ ad∗
ξµ.

Therefore, ξP (p) ∈ Tp(G[µ]p). This proves (1).

(2) Recall that, by Definition 2.5.2, if ξP (p) ∈ ker θp for some p ∈ JΦ−1(R×µ), then ξ ∈ kerµ. Let
v ∈ (Tp(Gp) ∩ ker θp)⊥ω . Then,

0 = (ιvιξP
ω)p = −ιvd⟨JΦ, ξ⟩(p) = ⟨TpJΦ(v), ξ⟩, ∀ξ ∈ kerµ .

Hence, v ∈ TpJΦ−1(R×µ).

Conversely, let v ∈ TpJΦ−1(R×µ). Then, for ξ ∈ kerµ, one has

0 = ⟨TpJΦ(v), ξ⟩ = (ιξP
ιvω)p

and v ∈ (Tp(Gp) ∩ ker θp)⊥ω .

Let (P,θ) be an exact k-polysymplectic manifold and let µ ∈ g∗k be a weak regular k-value of an
exact k-symplectic momentum JΦ

θ : P → g∗k associated with an exact k-polysymplectic Lie group action
Φ: G× P → P that acts in a quotientable manner on JΦ−1

θ (R×kµ). In what follows, using Lemma 2.5.6
the conditions under which equality Tp(K[µ]p) = ker(ȷ∗[µ]ω)(p) holds are provided. The proof consists of
two steps.

(1) The vector space

V pα :=

(
Tp(JΦ−1

θα
(R×µα))

kerωα
p

)
{

[ξP (p)] | ξ ∈ k[µα]
} ,

is a symplectic vector space, where prPα : TP → TP
kerωα is the canonical vector bundle projection (over

the base P ) and [ξP (p)] := prPα (ξP (p)).

(2) The linear surjective morphisms

Πα
p : Tπ[µ](p)

(
JΦ−1

θ (R×kµ)/K[µ]
)

−→

(
Tp(JΦ−1

θα
(R×µα))

kerωα
p

)
{

[ξP (p)] | ξ ∈ k[µα]
} , α = 1, . . . , k ,

satisfy
⋂k
α=1 ker Πα

p = 0, where π[µ] : JΦ−1
θ (R×kµ) → JΦ−1

θ (R×kµ)/K[µ] is the canonical projection.

Assuming that the above steps are satisfied, Lemma 2.5.7 implies that ker(ȷ∗[µ]ω)(p) = Tp(K[µ]p) and
that JΦ−1

θ (R×kµ)/K[µ] is a k-polysymplectic manifold.
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(
Tp(JΦ−1

θα (R×µα)), ωJΦ
θα

(p)
)

(TpP, ωα(p))

(
Tp(JΦ−1

θα
(R×µα))

kerωα
p

, ω̃JΦ
θα

(p)
) (

TpP
kerωα

p
, ω̃α(p)

)

(Tp(JΦ−1
θα

(R×µα))
ker ωα

p

)
{[ξP (p)] | ξ∈k[µα]} , ω[µα](p)

 .

prJΦ
θα

ȷα
p

prP
α

p̃rα

ȷ̃α
p

Figure 2.4: Diagram illustrating part of the processes to accomplish a k-polysymplectic MMW reduction.
Note that ωJΦ

θα
(p) := (jαp )∗ωα(p) and ω̃JΦ

θα
(p) = (̃jαp )∗ω̃α(p), while ω̃JΦ

θα
(p) = p̃rα∗

ω[µα](p) and ωJΦ
θα

(p) =

(prJΦ
θα)∗ω̃JΦ

θα
(p)

Lemma 2.5.7. Let πα : Vp → V pα be surjective linear morphisms and let (V pα ,dθα(p)) be symplectic vector
spaces for α = 1, . . . , k. If ∩kα=1 kerπα = 0, then (Vp,dθ(p) =

∑k
α=1(dπ∗

αθ
α)(p)⊗eα) is a k-polysymplectic

vector space.

The proofs of the aforementioned steps are now presented. They essentially follow from the same
techniques as those applied in [107]. To clarify the relations between spaces and morphisms, the diagram
in Figure 2.4 is provided.

The following lemma is immediate.

Lemma 2.5.8. Let (P,θ) be an exact k-polysymplectic manifold, then there exists a unique symplectic
linear form ω̃α(p) = dθ̃α(p) on TpP

kerωα(p) satisfying

(
prPα

)∗
ω̃α(p) =

(
prPα

)∗ d̃θα(p) = dθα(p) = ωα(p), ∀p ∈ P .

Moreover, there exists ω̃JΦ
θα

(p) ∈ Ω2
(

Tp(JΦ−1
θα

(R×µα))
kerωα

p

)
such that(

prJΦ
θα

)∗
ω̃JΦ

θα
(p) = ωJΦ

θα
(p) , ω̃JΦ

θα
(p) =

(
ȷ̃αp
)∗
ω̃α(p) , ∀p ∈ JΦ−1

θ (R×kµ) .

Proof. The first part of the Lemma is immediate. Now, by definition

ωJΦ
θα

(p) := (ȷα∗
p ωα)(p) ∈ Ω2(TpJΦ−1

θα (R×µα)) ,

for p ∈ TpJΦ−1
θα (R×µα). Note that ωJΦ

θα
(p) is exact because ω̃α(p) is exact. Since

kerωα(p) ⊆ TpJΦ−1
θα (R×µα) ,

it follows that kerωα(p) ⊆ kerωJΦ
θα

(p) and there exists, therefore, a unique ω̃JΦ
θα

(p) ∈ Ω2
(

TpJΦ−1
θα

(R×µα)
kerωα

p

)
satisfying (prJΦ

θα)∗ω̃JΦ
θα

(p) = ωJΦ
θα

(p). Additionally,

ωJΦ
θα

(p) = (ȷα∗
p ωα)(p) = ȷα∗

p prP∗
α ω̃α(p) =

(
prPα ◦ ȷαp

)∗
ω̃α(p)

=
(
ȷ̃αp ◦ prJΦ

θα

)∗
ω̃α(p) = prJΦ

θα∗ ȷ̃αp
∗
ω̃α(p) .

Therefore, ω̃JΦ
θα

(p) = (ȷ̃αp )∗ω̃α(p).
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The next lemma is a direct consequence of Lemma 2.5.6, Lemma 2.5.8, and, in the case of (2), (3), (4),
the fact that ωα and JΦ

θ are exact.

Lemma 2.5.9. For α = 1, . . . , k and p ∈ JΦ−1
θα (R×µα), one has

(1)
{

[ξP (p)] | ξ ∈ g[µα]
}

= {[ξP (p)] | ξ ∈ g} ∩ Tp(JΦ−1
θα

(R×µα))
kerωα(p) ,

and if JΦ
θ : P → g∗k is an exact k-symplectic momentum map relative to (P,θ), the following conditions

hold

(2) Tp(JΦ−1
θα

(R×µα))
kerωα(p) =

(
{[ξP (p)] | ξ ∈ g} ∩ ker θ̃α(p)

)⊥α

,

(3)
(

Tp(JΦ−1
θα

(R×µα))
kerωα(p)

)⊥α

= {[ξP (p)] | ξ ∈ g} ∩ ker θ̃α(p),

(4)
{

[ξP (p)] | ξ ∈ g[µα]
}

= Tp(JΦ−1
θα

(R×µα))
kerωα(p) ∩

(
Tp(JΦ−1

θα
(R×µα))

kerωα(p)

)⊥α

,

where ⊥α denotes the symplectic orthogonal in TpP
kerωα

p
with respect to ω̃α(p).

The proof of point (1) in Lemma 2.5.9 does not require (P,θ) to be an exact k-polysymplectic manifold.
The following proposition establishes the first step of the Marsden–Meyer–Weinstein reduction theorem
for exact k-polysymplectic manifolds.

Proposition 2.5.10. The vector space

V pα :=

(
Tp(JΦ−1

θα
(R×µα))

kerωα
p

)
{

[ξP (p)] | ξ ∈ k[µα]
}

is a symplectic vector space for α = 1, . . . , k.

Proof. Since
{

[ξP (p)] | ξ ∈ k[µα]
}

⊆ TpJΦ−1
θα

(R×µα)
kerωα

p
, the quotient space V pα is well-defined and there is the

canonical projection

p̃rα :
TpJΦ−1

θα (R×µα)
kerωαp

−→ V pα .

By Lemma 2.5.9 points (2), (3), (4) and Lemma 2.5.8, {[ξP (p)] | ξ ∈ k[µα]} belongs to ker ω̃JΦ
θα

(p) and

there exists a symplectic form ω[µα](p) ∈ Ω2 (V pα ) satisfying ω̃JΦ
θα

(p) = p̃rα
∗
ω[µα](p) for α = 1, . . . , k.

This concludes the first part of the proof. The second part establishes that the quotient manifold
JΦ−1

θ (R×kµ)/K[µ] admits the structure of an exact k-polysymplectic manifold under certain assumptions.
Furthermore, the technical conditions ensuring the validity of these assumptions are formulated.

Proposition 2.5.11. The map

Πα
p := prJΦ

θα ◦ ȷα : TpJΦ−1
θ (R×kµ) −→

TpJΦ−1
θα (R×µα)
kerωαp

,

where ȷα : TpJΦ−1
θ (R×kµ) ↪→ TpJΦ−1

θα (R×µα) is the natural embedding, induces the map

Π̃α
p : Tπ[µ](p)

(
JΦ−1

θ (R×kµ)/K[µ]
)

−→ V pα , α = 1, . . . , k .

The proof follows from part (4) in Lemma 2.5.9 and is analogous to the one in [107].

Lemma 2.5.12. Let (P,θ) be an exact k-polysymplectic manifold and let µ ∈ g∗k be a weak regular k-
value of an exact k-polysymplectic momentum map JΦ

θ : P → g∗k associated with an exact k-polysymplectic



90 Chapter 2. Marsden–Meyer–Weinstein reduction theorems

Lie group action Φ: G× P → P that acts in a quotientable manner on JΦ−1
θ (R×kµ). Then, there exists

an exact Rk-valued differential two-form ω[µ] ∈ Ω2(JΦ−1
θ (R×kµ)/K[µ],Rk) satisfying

π∗
[µ]ω[µ] = ȷ∗[µ]ω,

and
Π̃α∗
p ω[µα] = ωα[µ], α = 1, . . . , k,

where ȷ[µ] : JΦ−1
θ (R×kµ) ↪→ P and π[µ] : JΦ−1

θ (R×kµ) → JΦ−1
θ (R×kµ)/K[µ] are the canonical embedding

and the canonical projection, respectively.

Proof. First, recall that Tp(K[µ]p) ⊆ ker ȷ∗[µ]ω(p) for every p ∈ JΦ−1
θ (R×kµ) by Lemma 2.5.5. Then,

ιξP
ȷ∗[µ]ω = 0 for any ξ ∈ k[µ]. Since ȷ∗[µ]ω

α is also closed, it gives rise to a unique closed Rk-valued
two-form ω[µ] ∈ Ω2 (JΦ−1

θ (R×kµ)/K[µ],Rk
)

satisfying π∗
[µ]ω[µ] = ȷ∗[µ]ω. According to the following

commutative diagram

(
TpJΦ−1

θ (R×kµ), ȷ∗[µ]ω
α
p

) (
TpJΦ−1

θα (R×µ), ωJΦ
θα

(p)
)

(TpP, ωα(p))

(
TpJΦ−1

θ (R×kµ)/Tp
(
K[µ]p

)
, ωα[µ](p)

) (
TpJΦ−1

θα
(R×µα)

kerωα
p

, ω̃JΦ
θα

(p)
) (

TpP
kerωα

p
, ω̃α(p)

)
(TpJΦ−1

θα
(R×µα)

ker ωα
p

)
{[ξP (p)] | ξ∈k[µα]} , ω[µα](p)



ȷα

JΦ
θ

Tpπ[µ]

ȷ[µ]

Πα
p

ȷα
p

prJΦ
θα

prP
α

Π̃α
p

ȷ̃α
p

p̃rα

and the fact that TpJΦ−1
θ (R×kµ) ⊆ TpJΦ−1

θα (R×µα) for α = 1, . . . , k, it follows Πα∗
p ω̃JΦ

θα
(p) = ȷ∗[µ]ω

α
p and

Π̃α
p ◦ Tpπ[µ] = p̃rα ◦ Πα

p . Then, using Proposition 2.5.10 for any vp, wp ∈ TpJΦ−1
θ (R×kµ), one gets

π∗
[µ]Π̃α∗

p ω[µα](p)(vp, wp) = ω[µα](p)
(

Π̃α
p ◦ Tpπ[µ](vp), Π̃α

p ◦ Tpπ[µ](wp)
)

= ω[µα](p)
(
p̃rα ◦ Πα

p (vp), p̃rα ◦ Πα
p (wp)

)
= p̃rα

∗
ω[µα](p)

(
Πα
p (vp),Πα

p (wp)
)

= ω̃JΦ
θα

(p)
(
Πα
p (vp),Πα

p (wp)
)

= ȷ∗[µ]ω
α(p) (vp, wp) = π∗

[µ]ω
α
[µ](p).

Thus, Π̃α∗
p ω[µα](p) = ωα[µ](p).

The immediate consequence of Lemma 2.5.7 and Lemma 2.5.12 is the following proposition.

Proposition 2.5.13. Assume that
⋂k
α=1 ker Πα

p = 0 and Πα
p is a surjective morphism for every p ∈

JΦ−1
θ (R×kµ) and α = 1, . . . , k. Then, (JΦ−1

θ (R×kµ)/K[µ],θ[µ]) is an exact k-polysymplectic manifold,
where

dπ∗
[µ]θ[µ] = π∗

[µ]ω[µ] = ȷ∗[µ]ω = dȷ∗[µ]θ .

The following lemmas provide the necessary, but not sufficient, conditions to ensure that Πα
p is a

surjective morphism and
⋂k
α=1 ker Πα

p = 0 for every p ∈ JΦ−1
θ (R×kµ) and α = 1, . . . , k. On the discussion

on these conditions, see Subsection 2.3.6.

Lemma 2.5.14. The map

Πα
p : Tπ[µ](p)

(
JΦ−1

θ (R×kµ)/K[µ]
)

−→

(
TpJΦ−1

θα
(R×µα)

kerωα
p

)
{

[ξP (p)] | ξ ∈ k[µα]
}
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is a surjection if and only if

TpJΦ−1
θα (R×µα) = TpJΦ−1

θ (R×kµ) + kerωα(p) + Tp
(
K[µα]p

)
.

Additionally, the condition
⋂k
α=1 ker Πα

p = 0 is satisfied if and only if

Tp
(
K[µ]p

)
=

k⋂
α

(
kerωα(p) + Tp

(
K[µα]p

))
∩ TpJΦ−1

θ (R×kµ) .

The proofs of the previous lemmas are analogous to the standard k-polysymplectic setting described
in [107]. The following theorem summarises the above results.

Theorem 2.5.15. Let (P,θ) be an exact k-polysymplectic manifold, let µ ∈ g∗k be a regular k-value of
an exact k-polysymplectic momentum map JΦ

θ : P → g∗k associated with an exact k-polysymplectic Lie
group action Φ: G× P → P that acts in a quotientable manner on JΦ−1

θ (R×kµ). Assume that for every
p ∈ JΦ−1

θ (R×kµ) the following conditions hold

TpJΦ−1
θα (R×µα) = TpJΦ−1

θ (R×kµ) + kerωα(p) + Tp
(
K[µα]p

)
, ∀α = 1, . . . , k , (2.5.3)

and

Tp
(
K[µ]p

)
=

k⋂
α

(
kerωα(p) + Tp

(
K[µα]p

))
∩ TpJΦ−1

θ (R×kµ) . (2.5.4)

Then, (P[µ] := JΦ−1
θ (R×kµ)/K[µ],θ[µ]) is an exact k-polysymplectic manifold, such that

π∗
[µ]θ[µ] = ȷ∗[µ]θ ,

where π[µ] : JΦ−1
θ (R×kµ) → P[µ] is the canonical projection and ȷ[µ] : JΦ−1

θ (R×kµ) ↪→ P is the canonical
inclusion.

2.5.3 k-Contact momentum maps

This subsection presents the definition of a k-contact momentum map and its properties. Additionally,
it establishes the notation used hereafter.

Definition 2.5.16. Let (M,η) be a k-contact manifold. A Lie group action Φ: G × M → M is a
k-contact Lie group action if Φ∗

gη = η for each g ∈ G. A k-contact momentum map associated with
Φ: G×M → M is a map JΦ

η = (JΦ
1 , . . . ,JΦ

k ) : M → g∗k such that〈
JΦ

η , ξ
〉

:= ιξM
η = (ιξM

ηα) ⊗ eα , ∀ξ ∈ g . (2.5.5)

Note that if Φ: G × M → M is a k-contact Lie group action, then equation (2.5.5) implies that
ιξM

dη = −dιξM
η = −d⟨JΦ

η , ξ⟩ and

d
〈
JΦ

η , ξ
〉

= −ιξM
dη , ∀ξ ∈ g .

Then,
ιRβ

ιξM
dη = −Rβ⟨JΦ

η , ξ⟩ = 0 , ∀β = 1, . . . , k, ∀ξ ∈ g .

Next, the definition of Ad∗k-equivariance in k-contact setting is presented.

Definition 2.5.17. A k-contact momentum map JΦ
η : M → g∗k is Ad∗k-equivariant if

JΦ
η ◦ Φg = Ad∗k

g−1 ◦ JΦ
η , ∀g ∈ G ,

where
Ad∗k : G× g∗k −→ g∗k

(g,µ) 7−→ Ad∗k
g−1µ

.

In other words, the diagram aside commutes for every g ∈ G.

M g∗k

M g∗k.

JΦ
η

Φg Ad∗k

g−1

JΦ
η
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Proposition 2.5.18. A k-contact momentum map JΦ
η : M → g∗k associated with a Lie group action

Φ: G×M → M related to a k-contact manifold (M,η) is Ad∗k-equivariant.

Similarly as in Proposition 2.5.3, it is sufficient to show that JΦ
η (Φg(x)) = Ad∗k

g−1JΦ
η (x) for each x ∈ M

and every g ∈ G, and it follows from the identity Φg∗ξM = (Ad∗
g−1ξ)M in Lemma 2.1.2.

Analogously, the following definition simplifies the notation.

Definition 2.5.19. A k-contact Hamiltonian system is a triple (M,η,JΦ), where (M,η) is a k-contact
manifold and JΦ

η : M → g∗k is a k-contact momentum map associated with a k-contact Lie group action
Φ: G×M → M . A k-contact G-invariant Hamiltonian system is a tuple (M,η,JΦ

η , h), where (M,η,JΦ
η )

is a k-contact Hamiltonian system, h ∈ C ∞(M) is a Hamiltonian function associated with a k-contact
Hamiltonian k-vector field Xh, and the map Φ: G × M → M is a k-contact Lie group action satisfying
Φ∗
gh = h for every g ∈ G.

2.5.4 k-Contact reduction by a submanifold

This subsection establishes a general k-contact reduction theorem by submanifold and provides the nec-
essary and sufficient conditions for performing the reduction.

Definition 2.5.20. The k-contact orthogonal of Wx ⊂ TxM at some x ∈ M with respect to (M,η) is

W
⊥dη
x := {vx ∈ TxM | dη(vx, wx) = 0 , ∀wx ∈ Wx} .

Theorem 2.5.21. (k-contact reduction by a submanifold.) Let N be a submanifold of M with an injective
immersion ȷ : N ↪→ M . Suppose that ker ȷ∗η and ker ȷ∗dη have constant ranks for (M,η). Let N/FN be
a manifold, where FN is a foliation on N given by D := ker ȷ∗η∩ker ȷ∗dη and let the canonical projection
π : N → N/FN be a submersion. Moreover, assume that Reeb vector fields associated with (M,η) are
tangent to N . Then, (N/FN ,ηN ) is a k-contact manifold defined uniquely by

ȷ∗η = π∗ηN ,

and ker ȷ∗ηx ∩ ker ȷ∗dηx = TxN ∩ (TxN)⊥dη ∩ kerηx for any x ∈ N .

Proof. For any X,Y ∈ X(N) taking values in D, one has

ȷ∗(ι[X,Y ]η) = 0 , ȷ∗(ι[X,Y ]dη) = 0 .

Hence, [X,Y ] takes values in D. By the Fröbenius theorem and the fact that ker ȷ∗η ∩ ker ȷ∗dη has
constant rank on N , the distribution D defines a foliation FN on N .

Then, by definition of D, it follows that ȷ∗η is basic with respect to FN . Therefore, there exists a
unique ηN ∈ Ω1(N/FN ,Rk), such that

ȷ∗η = π∗ηN .

Now, it must be verified that kerηN ∩dηN = 0, cork kerηN = k, and rk ker dη = k. Let XN = Tπ(X)
takes values in kerηN ∩ ker dηN . Then,

ιXȷ
∗η = ιXπ

∗ηN = π∗(ιXN
ηN ) = 0

and
ιXιY ȷ

∗dη = ιXιY π
∗dηN = π∗(ιXN

ιYN
dηN ) = 0,

for any YN := Tπ(Y ). Thus, X is tangent to FN and Tπ(X) = 0. Then, kerηN ∩ ker dηN = 0.
Note that R1, . . . , Rk are tangent to N and [Rα, X] takes values in D for every X tangent to FN and

α = 1, . . . , k. Thus, the Reeb vector fields project via π onto ⟨RN1 , . . . , RNk ⟩ ∈ X(N/FN ). Additionally,

π∗(ιRN
α
ηβN ) = ȷ∗(ιRα

ηβ) = δβα, π∗(ιRN
α

dηN ) = ȷ∗(ιRα
dη) = 0, α, β = 1, . . . , k.



Chapter 2. Marsden–Meyer–Weinstein reduction theorems 93

Therefore, RN1 , . . . , RNk are the Reeb vector fields associated with (N/FN ,ηN ) and rk kerηN = k.
Let n := dimN , and let ⟨X1, . . . , Xn⟩ = TxN for any x ∈ N . One can choose a family of vectors

⟨Y1, . . . , Yn−k⟩ ⊂ kerηx such that ⟨Y1, . . . , Yn−k⟩⊕⟨R1, . . . , Rk⟩ = TxN . Moreover, among ⟨Y1, . . . , Yn−k⟩
there are vectors ⟨Z1, . . . , Zℓ⟩ = ker ȷ∗ηx ∩ ker dȷ∗ηx. Thus,

TxN = ⟨Y1, . . . , Yn−k−ℓ⟩ ⊕ ⟨Z1, . . . , Zℓ⟩ ⊕ ⟨R1, . . . , Rk⟩,

for any x ∈ N . Since, Zi projects to zero for α = 1, . . . , ℓ it follows that ker dηN is a corank k distribution
on N/FN and a pair (N/FN ,ηN ) is a k-contact manifold.

Additionally, ker ȷ∗ηx = TxN ∩ kerηx and ker ȷ∗dηx = TxN ∩ (TxN)⊥dη yields that

ker ȷ∗ηx ∩ ker ȷ∗dηx = TxN ∩ (TxN)⊥dη ∩ kerηx,

for any x ∈ N .

The analogue of Lemma 2.3.12 is established next.

Lemma 2.5.22. Let µ ∈ g∗k be a weak regular k-value of a k-contact momentum map JΦ
η : M → g∗k

associated with a Lie group action Φ: G×M → M and (M,η). Then, for any x ∈ JΦ−1
η (R×kµ), one has

(1) Tx(G[µ]x) = Tx(Gx) ∩ TxJΦ−1
η (R×kµ),

(2) TxJΦ−1
η (R×kµ) = (Tx(Gx) ∩ kerηx)⊥dη .

Proof. (1) Note that for any ξ ∈ g, it follows that

TxJΦ
η α(ξM (x)) = d

dt

∣∣∣∣
t=0

(
JΦ

η ◦ Φexp(tξ)
)

(x) = d
dt

∣∣∣∣
t=0

(
Ad∗k

exp(−tξ)JΦ
η

)
(x) = −ad∗k

ξ µ.

First, let ξ ∈ g[µ], then
0 = µ ∧ ad∗k

ξ µ = −µ ∧ TxJΦ
η (ξM (x)),

for any x ∈ JΦ−1
η (R×kµ). Hence, ξM (x) ∈ TxJΦ−1

η (R×kµ).

Conversely, v ∈ Tx(Gx) ∩ TxJΦ−1
η (R×kµ) yields that v = ξM (x) ∈ TxJΦ−1

η (R×kµ) and

0 = µ ∧ TxJΦ
η (ξM (x)) = −µ ∧ ad∗k

ξ µ,

for any x ∈ JΦ−1
η (R×kµ). Therefore, ξM (x) ∈ Tx(G[µ]x). This proves (1).

(2) Definition 2.5.16 yields that if ξM (x) ∈ kerηx for some x ∈ JΦ−1
η (R×kµ), then ξ ∈ kerµ. Let

v ∈ (Tx(Gx) ∩ kerηx)⊥dη . Thus,

0 = (ιvιξM
dη)x = −ιvd

〈
JΦ

η , ξ
〉

=
〈
TxJΦ

η (v), ξ
〉
, ∀ξ ∈ kerµ.

Thus, v ∈ TxJΦ−1
η (R×kµ).

Conversely, let v ∈ TxJΦ−1
η (R×kµ). Then,

0 =
〈
TxJΦ

η (v), ξ
〉

= (ιvιξM
dη)x, ∀ξ ∈ kerµ.

Hence, v ∈ (Tx(Gx) ∩ kerηx)⊥dη . This proves (2).

Blacker, in [12], provides sufficient and necessary conditions for performing the Marsden–Meyer–
Weinstein reduction on k-polysymplectic manifolds, see Theorem 2.3.17. Remarkably, Theorem 2.5.21
yields the analogue theorem in [12, Theorem 2.14] but in k-contact setting. Taking TxN := (TxW )⊥dη

for some W ⊆ M leads to the following theorem.
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Theorem 2.5.23. Let W ⊂ M be a submanifold of (M,η). Then,

(TxW )⊥dη

((TxW )⊥dη )⊥dη ∩ (TxW )⊥dη ∩ kerηx

is a k-contact vector space.

By combining Theorem 2.5.21 and Lemma 2.5.22, the following theorem is obtained by setting
TxW := Tx(Gx) ∩ kerηx in Theorem 2.5.23, which is the k-contact analogue of the k-polysymplectic
result presented in Theorem 2.3.17 in [12, Theorem 3.22].

Theorem 2.5.24. Let (M,η,JΦ
η ) be a k-contact Hamiltonian system and let Φ be a k-contact Lie group

action. Assume that µ ∈ g∗k is a weak regular k-value of k-contact momentum map JΦ
η : M → g∗k and

JΦ−1
η (R×kµ) is a quotientable by K[µ]. Moreover, assume that

Tx(K[µ]x) =
(
(Tx(Gx) ∩ kerηx)⊥dη

)⊥dη ∩ (Tx(Gx) ∩ kerηx)⊥dη ∩ kerηx, (2.5.6)

for any x ∈ JΦ−1
η (R×kµ). Then, (M[µ] = JΦ−1

η (R×kµ)/K[µ],η[µ]) is a k-contact manifold, where η[µ] is
uniquely defined by

π∗
[µ]η[µ] = i∗[µ]η,

where i[µ] : JΦ−1
η (R×kµ) ↪→ M is the natural immersion and π[µ] : JΦ−1

η (R×kµ) → JΦ−1
η (R×kµ)/K[µ] is

the canonical projection.

The following subsections provide conditions that ensure that Equation (2.5.6) is satisfied.

2.5.5 k-Contact Marsden–Meyer–Weinstein reduction theorem

This subsection develops the Marsden–Meyer–Weinstein reduction for k-contact manifolds. The theo-
rem is obtained by extending the framework of k-contact manifolds to the setting of k-polysymplectic
manifolds and by employing the modified k-polysymplectic Marsden–Meyer–Weinstein reduction theorem
introduced in Theorem 2.5.15. A crucial distinction from the k-polysymplectic and k-polycosymplectic
reduction procedures considered in Section 2.4 lies in the fact that the preimage of the momentum map
is taken with respect to R×kµ, where R×k = Rk \ 0, rather than with respect to µ ∈ g∗k. Additionally,
a simple example of a product of k different contact manifolds is provided to illustrate the applicability
of the results.

The following theorem establishes how a k-contact manifold can be extended to a k-polysymplectic
manifold, and vice versa.

Theorem 2.5.25. Let η ∈ Ω1(M,Rk), let prM : R× × M → M be the canonical projection onto M ,
and let s ∈ R× be a natural coordinate on R×. Then, (M,η) is a k-contact manifold if and only if
(R× ×M,d(s ·pr∗

M η) =: ω) is a k-polysymplectic manifold with some vector fields R̃1, . . . , R̃k on R× ×M

such that ι
R̃α
ωβ = −δβαds and R̃αs = 0 for α, β = 1, . . . , k.

Proof. Assume that (M,η) is a k-contact manifold and let X ∈ X(R× × M). Note that dω = d2(s ·
pr∗
M η) = 0 and

ω = d(s · pr∗
M η) = ds ∧ pr∗

M η + sd pr∗
M η .

By Theorem 1.4.23, there exists a family of Reeb vector fields R1, . . . , Rk on M that can be uniquely
lifted to R̃1, . . . , R̃k on R× × M so that R̃αs = 0 and prM∗ R̃α = Rα for α = 1, . . . , k. In addition,
R̃α satisfies that ι

R̃α
ωβ = −δβαds. Thus, R̃1, . . . , R̃k span a rank k distribution on R× × M given by

ker pr∗
M dη ∩ ker ds.

To prove that ω is nondegenerate, suppose that X takes values in kerω = ker(spr∗
M dη+ ds∧ pr∗

M η)
at least at one point x ∈ M . Then,

0 = (ι ∂
∂s
ιXω)x =⇒ (ιX pr∗

M η)x = 0,
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and Xx takes values in ker(pr∗
M η)x. Moreover,

0 = (ι
R̃α
ιXω)x =⇒ (Xs)(x) = 0.

Therefore, (ιXd pr∗
M η)x = 0 and Xx = 0, since ker ds ∩ ker pr∗

M η ∩ ker d pr∗
M η = 0. Consequently,

(R× ×M,ω) is a k-polysymplectic manifold.
Conversely, let (R× ×M,ω = d(spr∗

M η)) be a k-symplectic manifold with vector fields R̃α spanning
a rank k distribution given by ker d pr∗

M η ∩ ker ds.
Suppose that X ∈ X(M) takes values in kerη ∩ ker dη at least at one point x ∈ M . Then, X

can be lifted uniquely to a vector field X̃ such that prM∗ X̃ = X and X̃s = 0. Then, ι
X̃
ω = 0 at

any point (s, x) ∈ R× × {x} yields that X̃ = 0 on such points since ω is nondegenerate. Therefore,
kerηx ∩ ker dηx = 0 and, in general kerη ∩ ker dη = 0.

Next, since R̃αs = 0 and ι
R̃α
ωβ = −δβαds, it follows that

ι
R̃α

pr∗
Mη

β = δβα, ι
R̃α

pr∗
Mdη = 0.

Then,
ι[R̃α,

∂
∂s ]ω = L

R̃α
ι ∂

∂s
ω − ι ∂

∂s
L
R̃α
ω = L

R̃α
pr∗
M η = 0 .

Therefore, R̃1, . . . , R̃k project onto the family of vector fields R1 := prM∗ R̃1, . . . , Rk := prM∗ R̃k on M

satisfying

pr∗
M (ιRαη

β) = pr∗
M (ιprM∗ R̃α

ηβ) = ι
R̃α

pr∗
M ηβ = δβα =⇒ ιRα

ηβ = δβα, α, β = 1, . . . , k ,

and
ιRα

dη = 0 , α = 1, . . . , k .

Hence, prM∗ R̃1 = R1, . . . ,prM∗ R̃1 = Rk span a distribution of rank k given by ker dη. Moreover,
kerη must have corank k, as otherwise there would be a non-zero vector vx ∈ TxM such that vx ∈
kerηx ∩ ker dηx, which leads to a contradiction. Therefore, (M,η) is a k-contact manifold.

From now on, a k-polysymplectic manifold (R× ×M,ω) that comes from the extension of a k-contact
manifold (M,η) is referred to as a k-polysymplectic fibred manifold associated with prM : R× ×M → M ,
or simply a k-polysymplectic fibred manifold. The immediate conclusion from Theorem 2.6.1 is that a
k-polysymplectic fibred manifold (R× ×M, d(spr∗

M η)) is a one-homogeneous k-polysymplectic manifold
related to the natural action ϕ : (λ; s, x) ∈ R× × R× ×M 7→ (λs, x) ∈ R× ×M .

Every k-contact Lie group action Φ: G×M → M that leaves the k-contact form η invariant admits
a k-contact momentum map JΦ

η : M → g∗k. Since LRβ
JΦ

η = 0 for β = 1, . . . , k, the Lie group action Φ
can be lifted to the extended Lie group action

Φ̃ : (g; s, x) ∈ G× R× ×M 7→ (s,Φg(x)) ∈ R× ×M ,

admitting an extended momentum map

JΦ̃
η : (s, x) ∈ R× ×M 7→ sJΦ

η (x) ∈ g∗k

relative to the k-polysymplectic fibred manifold (R××M,ω = d(spr∗
M η)). Moreover, JΦ̃

η : R××M → g∗k

is an exact k-polysymplectic momentum map associated with an exact k-polysymplectic Lie group action
Φ̃ : G× R× ×M → R× ×M .

It is worth noting that the alternative extension of k-contact manifold to k-polysymplectic manifolds
is through R×k [48], similarly as in Theorem 2.4.7 for k-polycosymplectic manifolds [50, 62]. However,
for the k-contact Marsden–Meyer–Weinstein reduction, the extension via R× is considered.
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Example 2.5.26. The assumption of the existence of vector fields R̃1, . . . , R̃k in Theorem 2.5.25 is
necessary as illustrated in this example. Consider a manifold (R× × R4,ω) with

ω = d(spr∗
M η) = ω1 ⊗ e1 + ω2 ⊗ e2 = d(spr∗

M η1) ⊗ e1 + d(spr∗
M η2) ⊗ e2,

where {s;x1, x2, x3, x4} ∈ R× × R4 are local linear coordinates and

pr∗
M η = pr∗

M η1 ⊗ e1 + pr∗
M η2 ⊗ e2 = (dx1 + x3dx4) ⊗ e1 + (dx2 + x2dx1) ⊗ e2.

Then, kerω1 = ⟨ ∂
∂x2

, ⟩ and kerω2 = ⟨ ∂
∂x3

, ∂
∂x4

⟩, leading to kerω = 0. Consequently, (R× × R4,ω) is a
two-polysymplectic manifold. However, ker pr∗

M dη = 0 is not a rank two distribution on R× × R4 and
(R4,η) fails to be a two-contact manifold. △

Lemma 2.5.27. Let JΦ
η : M → g∗k be a k-contact momentum map. Then, µα ∈ g∗ is a weak regular

value of JΦ
η α for α = 1, . . . , k if and only if µα ∈ g∗ is a weak regular value of JΦ̃

η α. Moreover, if µ ∈ g∗k

is a weak regular k-value of JΦ
η , then, for a k-polysymplectic momentum map JΦ̃

η : R× × M ∋ (s, x) 7→
sJΦ

η (x) ∈ g∗k associated with Φ̃ : G× R× ×M → R× ×M , one has

T(s,x)JΦ̃−1
η (R×kµ) =

〈
∂

∂s

〉
⊕ TxJΦ−1

η (R×kµ) , ∀(s, x) ∈ JΦ̃−1
η (R×kµ) .

Proof. The proof of the lemma follows immediately from the construction of JΦ
η and JΦ̃

η and the fact
that JΦ̃−1

η (R×kµ) = R× × JΦ−1
η (R×kµ). However, there is a slight abuse of notation, as JΦ−1

η (R×kµ) is
denoted as a submanifold of P and M at the same time.

Theorem 2.5.15 provides sufficient conditions for the existence of an exact k-polysymplectic form on
the quotient manifold JΦ̃−1

η (R×kµ)/K[µ].
The following lemma translates conditions (2.5.3) and (2.5.4) in Theorem 2.5.15 into the k-contact set-

ting on M . This allows for establishing sufficient conditions for the k-contact Marsden–Meyer–Weinstein
reduction on M . The discussion on conditions (2.5.3) and (2.5.4) to be sufficient is analogous to one
presented in Subsection 2.3.6.

Lemma 2.5.28. Let (M,η) be a k-contact manifold and let (R× × M, s pr∗
M η) be its associated k-

polysymplectic fibred manifold with the canonical projection prM : R× ×M → M . Then,

TxJΦ−1
η α (R×µα) = ker ηαx ∩ ker dηαx + TxJΦ−1

η (R×kµ) + Tx(K[µα]x) (2.5.7)

and

Tx(K[µ]x) =
k⋂

α=1

(
(ker ηαx ∩ ker dηαx ) + Tx(K[µα]x)

)
∩ TxJΦ−1

η (R×kµ) , (2.5.8)

hold for every x ∈ JΦ−1(R×kµ) and α = 1, . . . , k, if and only if

TpJΦ̃−1
η α (R×µα) = TpJΦ̃−1

η (R×kµ) + kerωαp + Tp
(
K[µα]p

)
(2.5.9)

and

Tp(K[µ]p) =
k⋂

α=1

(
kerωαp + Tp(K[µα]p)

)
∩ TpJΦ̃−1

η (R×kµ) , (2.5.10)

hold for every p = (s, x) ∈ JΦ̃−1
η (R×kµ) and α = 1, . . . , k.

Proof. Taking into account the canonical projection prM : R× ×M → M and the natural isomorphisms
T(s,x)(R× ×M) ≃ TxR× ⊕ TxM , for every (s, x) ∈ R× ×M yields

(ker pr∗
M ηα)(s,x) = TsR× ⊕ ker ηαx ,

(ker pr∗
M dηα)(s,x) = TsR× ⊕ ker dηαx ,
(ker ds)(s,x) = {0} ⊕ TxM ,
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for every (s, x) ∈ R× ×M and α = 1, . . . , k. Then,

(kerωα)(s,x) = (ker ds ∩ ker pr∗
M ηα ∩ ker pr∗

M dηα)(s,x)

= ({0} ⊕ TxM) ∩
(
TsR× ⊕ ker ηαx

)
∩
(
TsR× ⊕ ker dηαx

)
= {0} ⊕ (ker ηαx ∩ ker dηαx ) ,

for every (s, x) ∈ R× × M and α = 1, . . . , k. Moreover, the definition of the extended momentum map
and the extended Lie group action imply

T(s,x)
(
K[µ](s, x)

)
= {0} ⊕ Tx

(
K[µ]x

)
, T(s,x)JΦ̃−1

η (R×kµ) = TsR× ⊕ TxJΦ−1
η (R×kµ),

T(s,x)
(
K[µα](s, x)

)
= {0} ⊕ Tx

(
K[µα]x

)
, T(s,x)JΦ̃−1

η α (R×µ) = TsR× ⊕ TxJΦ−1
η α (R×µ) ,

for α = 1, . . . , k and any (s, x) ∈ JΦ̃−1
η (R×kµ). First, suppose that conditions (2.5.7) and (2.5.8) are

satisfied. Then, condition (2.5.7) yields that

TpJΦ̃−1
η α (R×µα) = TsR× ⊕ TxJΦ−1

η α (R×µα)
= TsR× ⊕

(
TxJΦ−1

η (R×kµ) + (ker ηαx ∩ ker dηαx ) + Tx
(
K[µα]x

))
= TsR× ⊕ TxJΦ−1

η (R×kµ) + {0} ⊕ (ker ηαx ∩ ker dηαx ) + {0} ⊕ Tx
(
K[µα]x

)
= TpJΦ̃−1

η (R×kµ) + kerωαp + Tp
(
K[µα]p

)
,

and condition (2.5.8), gives

Tp
(
K[µ]p

)
= {0} ⊕ Tx

(
K[µ]x

)
= {0} ⊕

k⋂
α=1

(
ker ηαx ∩ ker dηαx + Tx(K[µα]x)

)
∩ TxJΦ−1

η (R×kµ)

=
k⋂

α=1

(
{0} ⊕ (ker ηαx ∩ ker dηαx ) + {0} ⊕ Tx(K[µα]x)

)
∩
(
TxR× ⊕ TxJΦ−1

η (R×kµ)
)

=
k⋂

α=1

(
kerωαp + Tp

(
K[µα]p

))
∩ TpJΦ̃−1

η (R×kµ) ,

for every p = (s, x) ∈ R× ×M , every µ ∈ g∗k, and α = 1, . . . , k. Hence, (2.5.9) and (2.5.10) are satisfied.
Conversely, assume that (2.5.9) and (2.5.10) hold. Then, condition (2.5.9) can be rewritten as follows

TsR× ⊕ TxJΦ−1
η α (R×µα) = TpJΦ̃−1

η α (R×µα)

= TpJΦ̃−1
η (R×kµ) + kerωαp + Tp

(
K[µα]p

)
= TsR× ⊕ TxJΦ−1

η (R×kµ) + {0} ⊕ (ker ηαx ∩ ker dηαx ) + {0} ⊕ Tx
(
K[µα]x

)
= TsR× ⊕

(
TxJΦ−1

η (R×kµ) + (ker ηαx ∩ ker dηαx ) + Tx
(
K[µα]x

))
,

and (2.5.10) amounts to

{0}⊕Tx
(
K[µ]x

)
= Tp

(
K[µ]p

)
=

k⋂
α=1

(
kerωαp + Tp

(
K[µα]p

))
∩ TpJΦ̃−1

η (R×kµ)

=
k⋂

α=1

(
{0} ⊕ (ker ηαx ∩ ker dηαx ) + {0} ⊕ Tx(K[µα]x)

)
∩
(
TxR× ⊕ TxJΦ−1

η (R×kµ)
)

= {0} ⊕
k⋂

α=1

(
ker ηαx ∩ ker dηαx + Tx(K[µα]x)

)
∩ TxJΦ−1

η (R×kµ) ,

for every p = (s, x) ∈ R× ×M , every µ ∈ g∗k, and α = 1, . . . , k. Therefore, conditions (2.5.9) and (2.5.10)
are equivalent with the conditions (2.5.7) and (2.5.8), respectively.
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Theorem 2.5.29. Let (M,η,JΦ
η ) be a k-contact Hamiltonian system and let Φ be a k-contact Lie group

action. Assume that µ ∈ g∗k is a weak regular k-value of JΦ
η and JΦ−1

η (R×kµ) is quotientable by K[µ].
Moreover, let the following conditions hold

TxJΦ−1
η α (R×µα) = ker ηαx ∩ ker dηαx + TxJΦ−1

η (R×kµ) + Tx(K[µα]x) (2.5.11)

and

Tx(K[µ]x) =
k⋂

α=1

(
ker ηαx ∩ ker dηαx + Tx(K[µα]x)

)
∩ TxJΦ−1

η (R×kµ) , (2.5.12)

for every x ∈ JΦ−1
η (R×kµ) and α = 1, . . . , k. Then, (M[µ] = JΦ−1

η (R×kµ)/K[µ],η[µ]) is a k-contact
manifold, while η[µ] is uniquely defined by

π∗
[µ]η[µ] = i∗[µ]η ,

where i[µ] : JΦ−1
η (R×kµ) ↪→ M and π[µ] : JΦ−1

η (R×kµ) → JΦ−1
η (R×kµ)/K[µ] are the natural immersion

and the canonical projection, respectively.

Proof. Theorem 2.5.25 guarantees that (R××M, s pr∗
M η) is a k-polysymplectic fibred manifold associated

with (M,η). Consider the extended k-polysymplectic momentum map JΦ̃
η : R× × M → g∗k associated

with the extended k-polysymplectic Lie group action Φ̃ : G × R× × M → R× × M as defined before.
Then, Lemma 2.5.27 implies that µ ∈ g∗k is a weak regular k-value of JΦ̃

η while the conditions (2.5.11)
and (2.5.12) imply that

T(s,x)JΦ̃−1
η α (R×µα) = T(s,x)JΦ̃−1

η (R×kµ) + kerωα(s,x) + T(s,x)
(
K[µα](s, x)

)
and

T(s,x)(K[µ](s, x)) =
k⋂

α=1

(
kerωα(s,x) + T(s,x)(K[µα](s, x))

)
∩ T(s,x)JΦ̃−1

η (R×kµ) ,

for every (s, x) ∈ JΦ̃−1
η (R×kµ). Hence, Theorem 2.5.15 gives that (JΦ̃−1

η (R×kµ)/K[µ],ω[µ]) is an exact
k-polysymplectic manifold, with

ĩ∗[µ]ω = π̃∗
[µ]ω[µ] ,

where ĩ[µ] : JΦ̃−1
η (R×kµ) ↪→ P is the natural immersion and π̃[µ] : JΦ̃−1

η (R×kµ) → JΦ̃−1
η (R×kµ)/K[µ] is

the canonical projection. Additionally, from the definition of Φ̃ : G×P → P and Lemma 2.5.27, it follows
that JΦ̃−1

η (R×kµ)/K[µ] = R× × JΦ−1
η (R×kµ)/K[µ] =: R× × M[µ]. Note that ϑ ∈ Ω1(R× × M[µ],Rk)

defined as ϑ = ι ∂
∂s
ω[µ] is projectable with respect to the natural projection prM[µ]

: R× × M[µ] → M[µ].
Therefore, ϑ = pr∗

M[µ]
η[µ] for some η[µ] ∈ Ω1(M[µ],Rk) and ĩ∗[µ] pr∗

M η = π̃∗
[µ] pr∗

M[µ]
η[µ]. It is worth

noting that the following diagram commutes

(R× ×M,ω) (M,η)

(JΦ̃−1
η (R×kµ), ĩ∗[µ]ω) (JΦ−1

η (R×kµ), i∗[µ]η)

(R× ×M[µ],ω[µ]) (M[µ],η[µ]).

prM

prM

∣∣
JΦ̃−1

η (R×kµ)

ĩ[µ]

π̃[µ] π[µ]

i[µ]

prM[µ]

Figure 2.5: Note that the geometric structures on the left are covers of the structures of the right in the
sense that are of the form Ω = d(spr∗ η).



Chapter 2. Marsden–Meyer–Weinstein reduction theorems 99

Thus,
ĩ∗[µ] pr∗

M η = pr∗
M i∗[µ]η and π̃∗

[µ] pr∗
M[µ]

η[µ] = pr∗
M π∗

[µ]η[µ] ,

and it yields i∗[µ]η = π∗
[µ]η[µ].

Recall that for (M[µ],η[µ]) to be a k-contact manifold, it is required that kerη[µ] ∩ ker dη[µ] = 0.
Additionally, kerη[µ] and ker dη[µ] must be a corank k and rank k distributions, respectively. By Theorem
1.4.23, there exists a unique family of vector fields R1, . . . , Rk ∈ X(M) such that ιRα

ηβ = δβα and
ιRα

dη = 0, for α, β = 1, . . . , k. Moreover,

ιRαd
〈
JΦ

η , ξ
〉

= ιRαdιξM
η = ιξM

ιRαdη = 0 , ∀ξ ∈ g , α = 1, . . . , k ,

yields that R1, . . . , Rk are tangent to JΦ−1
η (R×kµ). Since Φ: G×M → M is a k-contact Lie group action,

one has
ι[ξM ,Rα]η = 0 , and ι[ξM ,Rα]dη = 0 , ∀ξ ∈ g , α = 1, . . . , k .

Therefore, [Rα, ξM ] = 0 for any ξ ∈ g and α = 1, . . . , k. Thus, R1, . . . , Rk project via π[µ] : JΦ−1
η (R×kµ) →

M[µ] onto R[µ] 1, . . . , R[µ] k ∈ X(M[µ]). Additionally,

π∗
[µ](ιR[µ] α

ηβ[µ]) = ιRαi
∗
[µ]η

β = i∗[µ](ιRαη
β) = δβα , α, β = 1, . . . , k ,

and
π∗

[µ](ιR[µ] α
dη[µ]) = ιRα

i∗[µ]dη = i∗[µ](ιRα
dη) = 0 , α = 1, . . . , k ,

where Rα denotes both the vector field Rα on M itself and its restriction to JΦ−1
η (R×kµ). Hence,

R[µ] 1, . . . , R[µ] k ∈ X(M[µ]) are Reeb vector fields related to (M[µ],η[µ]), namely they give rise to a basis
of the distribution given by ker dη[µ].

Let ℓ := dim JΦ−1
η (R×kµ), and let ⟨X1, . . . , Xℓ⟩ = TxJΦ−1

η (R×kµ) for any x ∈ JΦ−1
η (R×kµ). Since

⟨R1, . . . , Rk⟩ ⊂ TxJΦ−1
η (R×kµ), within ⟨X1, . . . , Xℓ⟩, one can always choose a family of vector fields

⟨Y1, . . . , Yℓ−k⟩ ⊂ kerηx such that ⟨Y1, . . . , Yℓ−k⟩ ⊕ ⟨R1, . . . , Rk⟩ = TxJΦ−1
η (R×kµ). Taking into account,

that K[µ]x ⊂ JΦ−1
η (R×kµ), it follows that within ⟨Y1, . . . , Yℓ−k⟩ there are vector fields ξjM (x), where

ξj ∈ k[µ] and j = 1, . . . ,dimK[µ]. Consequently,

TxJΦ−1
η (R×kµ) =

〈
Y1, . . . , Yℓ−dimK[µ]−k

〉
⊕
〈
ξ1
M (x), . . . , ξdimK[µ]

M (x)
〉

⊕ ⟨R1, . . . , Rk⟩ ,

for any x ∈ JΦ−1
η (R×kµ). Moreover,

〈
Y1, . . . , Yℓ−dimK[µ]−k

〉
is a family of vector fields that project onto

M[µ] and take values in kerη[µ]. Since the Reeb vector fields R1, . . . , Rk project onto R[µ]1, . . . , R[µ]k, the
vector fields ξ1

M (x), . . . , ξdimK[µ]
M (x) project to zero, and ker i∗[µ]ηx ∩ ker di∗[µ]ηx = Tx(K[µ]x) by (2.5.11)

and (2.5.12), it follows that the pair (M[µ],η[µ]) is indeed a k-contact manifold.

The following example demonstrates the application of the k-contact Marsden–Meyer–Weinstein re-
duction theorem. Remarkably, numerous practical examples admit a related k-contact structure similar
to the one presented below.

Example 2.5.30. (Product of contact manifolds) Let M = M1 × · · · × Mk for some one-contact man-
ifolds (co-oriented contact manifolds) (Mα, η

α) with α = 1, . . . , k. Let prα : M → Mα be the canonical
projection onto the α-th component Mα in M . Then, (M,η =

∑k
α=1 pr∗

α η
α⊗eα) is a k-contact manifold

since rk(ker dη) = k, corank(kerη) = k, and kerη ∩ ker dη = 0.
For simplicity, denote pr∗

α η
α as ηα. Additionally, suppose that a contact Lie group action Φα : Gα ×

Mα → Mα admits a contact momentum map JΦα

ηα : Mα → g∗
α and each Φα acts in a quotientable manner

on JΦα−1
ηα (R×µα) for each α = 1, . . . , k.

Define the k-contact Lie group action G = G1 × · · · ×Gk on M in the following way

Φ: G×M ∋ (g1, . . . , gk, x1, . . . , xk) 7−→ (Φ1
g1

(x1), . . . ,Φkgk
(xk)) ∈ M .
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Then, g = g1 × · · · × gk is the Lie algebra of G and the associated k-contact momentum mapis given by

JΦ
η : M ∋ (x1, . . . , xk) 7−→

k∑
α=1

(0, . . . ,Jα, . . . , 0) ⊗ eα ∈ g∗k ,

where Jα(x1, . . . , xk) = JΦα

ηα (xα) for α = 1, . . . , k and g∗ = g∗
1 × · · · × g∗

k is the dual space to g.
Assume that µα ∈ g∗

α is a weak regular value of JΦα

ηα : Mα → g∗
α for each α = 1, . . . , k. Hence,

µ =
∑k
α=1(0, . . . , µα, . . . , 0) ⊗ eα ∈ g∗k is a weak regular k-value of JΦ

η and Φ acts in a quotientable
manner on JΦ

η (R×kµ). Therefore, JΦ−1
η (R×kµ) is a submanifold of M , where R×kµ = (R×µ1, 0, . . . , 0) ⊗

e1 + · · · + (0, . . . , 0,R×µk) ⊗ ek ⊂ g∗k.
By Theorem 2.5.4 there exists a unique and simply connected Lie group K[µ] ⊂ G, whose Lie algebra

is k[µ] = kerµ∩g[µ], where k[µ] = k[µ1] ∩· · ·∩k[µk], kerµ = kerµ1 ∩· · ·∩kerµk, and g[µ] = g[µ1] ∩· · ·∩g[µk].
Therefore, for x = (x1, . . . , xk) ∈ JΦ−1

η (R×kµ), the following relations hold

TxJα−1(R×µα) = Tx1M1 ⊕ · · · ⊕ Txα
JΦα−1
ηα (R×µα) ⊕ · · · ⊕ Txk

Mk ,

TxJΦ−1
η (R×kµ) = Tx1JΦ1−1

η1 (R×µ1) ⊕ · · · ⊕ Txk
JΦk−1
ηk (R×µk) ,

ker ηαx ∩ ker dηαx = Tx1M1 ⊕ · · · ⊕ Txα−1Mα−1 ⊕ {0} ⊕ Txα+1Mα+1 ⊕ · · · ⊕ Txk
Mk ,

Tx
(
K[µα]x

)
= Tx1 (G1x1) ⊕ · · · ⊕ Txα

(
Kα[µα]xα

)
⊕ · · · ⊕ Txk

(Gkxk) ,
Tx
(
K[µ]x

)
= Tx1

(
K1[µ1]x1

)
⊕ · · · ⊕ Txk

(
Kk[µk]xk

)
.

Then, immediately follows that

TxJΦα

ηα (R×µα) = TxJΦ−1
η (R×kµ) + ker ηαx ∩ ker dηαx + Tx

(
K[µα]x

)
, α = 1, . . . , k ,

and

Tx
(
K[µ]x

)
=

k⋂
β=1

(
ker ηβx ∩ ker dηβx + Tx

(
K[µβ ]x

))
∩ TxJΦ−1

η (R×µ) ,

for every weak regular k-value µ ∈ g∗k and x ∈ JΦ−1
η (R×kµ). Recall that, according to Theorem 2.5.29,

these equations guarantee that the reduced space JΦ−1
η (R×kµ)/K[µ] inherits a k-contact structure, while

JΦ−1
η (R×kµ)/K[µ] ≃ JΦ1−1

η1 (R×µ1)/K1[µ1] × · · · × JΦk−1
ηk (R×µk)/Kk[µk] .

△

Based on Theorem 2.5.29, the following theorem presents the reduction of the dynamics given by
k-contact Hamiltonian k-vector fields.

Theorem 2.5.31. Let assumptions of the Theorem 2.5.29 hold. Let (M,η,JΦ
η , h) be a G-invariant

k-contact Hamiltonian system. Assume that Φg∗Xh = Xh for every g ∈ K[µ], and Xh is tangent to
JΦ−1

η (R×kµ). Then, the flow Fα
t of Xh

α leave JΦ−1
η (R×kµ) invariant and induces a unique flow Kα

t on
JΦ−1

η (R×kµ)/K[µ] satisfying
π[µ] ◦ Fα

t = Kα
t ◦ π[µ] ,

for α = 1, . . . , k.

Proof. Since Xh is tangent to JΦ−1
η (R×kµ) it follows that each integral curve Fα

t ofXh
α is contained within

JΦ−1
η (R×kµ) for all t ∈ R and α = 1, . . . , k. The assumption that Φg∗Xh = Xh, for every g ∈ K[µ],

implies that Xh = (Xh
1 , . . . , X

h
k ) projects onto a k-vector field Y = (Y1, . . . , Yk) on JΦ−1

η (R×kµ)/K[µ],
namely π[µ]∗X

h
α = Yα for α = 1, . . . , k. Since h ∈ C ∞(M) is G-invariant, it gives rise to a function

h[µ] ∈ C ∞(JΦ−1
η (R×kµ)/K[µ]) satisfying π∗

[µ]h[µ] = i∗[µ]h. By Theorem 2.5.29, it follows that (M[µ],η[µ])
is a k-contact manifold, while π∗

[µ]η[µ] = i∗[µ]η. The Reeb vector fields, R1, . . . , Rk, are tangent to
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JΦ−1
η (R×kµ) and they project onto Reeb vector fields, R[µ]1, . . . , R[µ]k, on M[µ]. Then, for α = 1, . . . , k,

one has

π∗
[µ]dh[µ] = di∗[µ]h = i∗[µ]

(
ιXhdη +

k∑
α=1

(Rαh)ηα
)

= ιXhi∗[µ]dη +
k∑

α=1

(
Rα

(
i∗[µ]h

))
i∗[µ]η

α

= ιXhπ∗
[µ]dη[µ] +

k∑
α=1

(
Rα

(
π∗

[µ]h[µ]

))
π∗

[µ]η
α
[µ]

= π∗
[µ]

(
ιπ[µ]∗Xhdη[µ]

)
+ π∗

[µ]

(
k∑

α=1

((
π[µ]∗Rα

)
h[µ]

)
ηα[µ]

)

= π∗
[µ]
(
ιYdη[µ]

)
+ π∗

[µ]

(
k∑

α=1

(
R[µ]αh[µ]

)
ηα[µ]

)
= π∗

[µ]

(
ιYdη[µ] +

k∑
α=1

(R[µ]αh[µ])ηα[µ]

)
,

and

−π∗
[µ]h[µ] = −i∗[µ]h = i∗[µ] (ιXhη) = ιXhi∗[µ]η = ιXhπ∗

[µ]η[µ] = π∗
[µ]

(
ιπ[µ]∗Xhη[µ]

)
= π∗

[µ]
(
ιYη[µ]

)
.

Therefore, Y is a k-contact Hamiltonian k-vector field with respect to h[µ] ∈ C ∞(M[µ]), namely Y =
Xh[µ] . This completes the proof.

Example 2.5.32 (Coupled strings with damping). Consider the manifold M = ⊕2T∗R2 × R2 with
coordinates (q1, q2, pt1, p

t
2, p

x
1 , p

x
2 , s

t, sx). The pair (M,η) is a two-contact manifold, where the two-contact
form is defined as

η = ηt ⊗ e1 + ηx ⊗ e2 = (dst − pt1dq1 − pt2dq2) ⊗ e1 + (dsx − px1dq1 − px2dq2) ⊗ e2 .

The Reeb vector fields associated with ηt and ηx are Rt = ∂/∂st and Rx = ∂/∂sx, respectively. Define
the Lie group action

Φ: R2 ×M ∋ (λ1, λ2; q1, q2, pt1, p
t
2, p

x
1 , p

x
2 , s

t, sx) 7−→ (q1 + λ2, q
2 + λ2, p

t
1, p

t
2, p

x
1 , p

x
2 , s

t, sx + λ1) ∈ M .

This action is a two-contact, free, and proper Lie group action. Its fundamental vector fields are

ξ1
M = ∂

∂sx
, ξ2

M = ∂

∂q1 + ∂

∂q2 .

The two-contact momentum map JΦ
η : ⊕2 T∗R × R2 → (R2)∗2 is then

JΦ
η : M ∋ y 7−→ µ = µ1 ⊗ e1 + µ2 ⊗ e2 = (0,−pt1 − pt2) ⊗ e1 + (1,−px1 − px2) ⊗ e2 ∈ (R2)∗2 .

Recall that for any y ∈ JΦ−1
η (R×2µ), one has

TyJΦ−1
η (R×2µ) = {vy ∈ TyM | TyJΦ

η α(vy) = λαµ
α, λα ∈ R×, α = 1, . . . , k} .

Fixing µ = (0, 0) ⊗ e1 + (1, 0) ⊗ e2 ∈ g∗2, it follows that JΦ−1
η (R×2µ) is a submanifold of M given by

JΦ−1
η (R×2µ) = {y ∈ M | pt1 = −pt2 , px1 = −px2}

with
TyJΦ−1

η (R×2µ) =
〈

∂

∂sx
,
∂

∂st
,
∂

∂q1 ,
∂

∂q2 ,
∂

∂px1
− ∂

∂px2
,
∂

∂pt1
− ∂

∂pt2

〉
.

The element µ ∈ (R2)∗2 is a weak regular 2-value of JΦ
η but not a regular 2-value. Since kerµ = ⟨ξ2⟩ and

g[µ] = ⟨ξ1, ξ2⟩, it follows that k[µ] = kerµ ∩ g[µ] = ⟨ξ2⟩, and thus

Ty(K[µ]y) =
〈

∂

∂q1 + ∂

∂q2

〉
.
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Moreover, one has
kµ1 = kerµ1 ∩ gµ1 = ⟨ξ1, ξ2⟩ kµ2 = kerµ2 ∩ gµ2 = ⟨ξ2⟩

and
TyJΦ−1

η 1 (R×µ1) =
〈

∂

∂sx
,
∂

∂st
,
∂

∂q1 ,
∂

∂q2 ,
∂

∂px1
,
∂

∂px2
,
∂

∂pt1
− ∂

∂pt2

〉
,

TyJΦ−1
η 2 (R×µ2) =

〈
∂

∂sx
,
∂

∂st
,
∂

∂q1 ,
∂

∂q2 ,
∂

∂px1
− ∂

∂px2
,
∂

∂pt1
,
∂

∂pt2

〉
,

Ty
(
K[µ1]y

)
=
〈

∂

∂sx
,
∂

∂q1 + ∂

∂q2

〉
, Ty

(
K[µ2]y

)
=
〈

∂

∂q1 + ∂

∂q2

〉
,

ker ηty ∩ ker dηty =
〈

∂

∂sx
,
∂

∂px1
,
∂

∂px2

〉
, ker ηxy ∩ ker dηxy =

〈
∂

∂st
,
∂

∂pt1
,
∂

∂pt2

〉
.

Finally, for each y ∈ JΦ−1
η (R×2µ), condition (2.5.11) holds since

ker ηty ∩ ker dηty + TyJΦ−1
η (R×2µ) + Ty

(
K[µ1]y)

)
=
〈

∂

∂sx
,
∂

∂px1
,
∂

∂px2

〉
+
〈

∂

∂sx
,
∂

∂st
,
∂

∂q1 ,
∂

∂q2 ,
∂

∂px1
− ∂

∂px2
,
∂

∂pt1
− ∂

∂pt2

〉
+
〈

∂

∂sx
,
∂

∂q1 + ∂

∂q2

〉
=
〈

∂

∂sx
,
∂

∂st
,
∂

∂q1 ,
∂

∂q2 ,
∂

∂px1
,
∂

∂px2
,
∂

∂pt1
− ∂

∂pt2

〉
= TyJΦ−1

η 1 (R×µ1),

and

ker ηxy ∩ ker dηxy + TyJΦ−1
η (R×2µ) + Ty

(
K[µ2]y)

)
=
〈
∂

∂st
,
∂

∂pt1
,
∂

∂pt2

〉
+
〈

∂

∂sx
,
∂

∂st
,
∂

∂q1 ,
∂

∂q2 ,
∂

∂px1
− ∂

∂px2
,
∂

∂pt1
− ∂

∂pt2

〉
+
〈

∂

∂q1 + ∂

∂q2

〉
=
〈

∂

∂sx
,
∂

∂st
,
∂

∂q1 ,
∂

∂q2 ,
∂

∂px1
− ∂

∂px2
,
∂

∂pt1
,
∂

∂pt2

〉
= TyJΦ−1

η 2 (R×2µ2).

Similarly, condition (2.5.12) holds because(
ker ηty ∩ ker dηty + Ty

(
K[µ1]y

))
∩
(
ker ηxy ∩ ker dηxy + Ty

(
K[µ2]y

))
∩ TyJΦ−1

η (R×2µ) =

=
〈

∂

∂sx
,
∂

∂px1
,
∂

∂px2
,
∂

∂q1 + ∂

∂q2

〉
∩
〈
∂

∂st
,
∂

∂pt1
,
∂

∂pt2
,
∂

∂q1 + ∂

∂q2

〉
∩
〈

∂

∂sx
,
∂

∂st
,
∂

∂q1 ,
∂

∂q2 ,
∂

∂px1
− ∂

∂px2
,
∂

∂pt1
− ∂

∂pt2

〉
= Ty

(
K[µ]y

)
,

for any y ∈ JΦ−1
η (R×2µ). Consequently, Theorem 2.5.29 ensures that the quotient manifold M[µ] =

(JΦ−1
η (R×2µ)/K[µ],η[µ]) is a two-contact manifold with

η[µ] = ηt[µ] ⊗ e1 + ηx[µ] ⊗ e2 =
(

dst − 1
2p

tdq
)

⊗ e1 +
(

dsx − 1
2p

xdq
)

⊗ e2 ,

where (q := q1 − q2, pt := pt1 − pt2, p
x := px1 − px2 , s

t, sx) are local coordinates on M[µ] ≃ R5.
Consider now a system of coupled damped strings with a Hamiltonian function h : M → R of the

form
h(q1, q2, pt1, p

t
2, p

x
1 , p

x
2 , s

t, sx) = 1
2
(
(pt1)2 + (pt2)2 − (px1)2 − (px1)2)+ C(q1 − q2) + γst ,

where C(q1 − q2) is a coupling function between the two strings. The dynamics on (M,η) is given by the
two-contact Hamiltonian two-vector field Xh = (Xh

t , X
h
s ) ∈ X2(M), whose local expression is

Xh
t = pt1

∂

∂q1 + pt2
∂

∂q2 +
(

−∂C

∂q
− γpt1 −Gxx1

)
∂

∂pt1
+
(
∂C

∂q
− γpt2 −Gxx2

)
∂

∂pt2
+Gxt1

∂

∂px1

+Gxt2
∂

∂px2
+
(

1
2((pt1)2 + (pt2)2 − (px1)2 − (px2)2) − C(q) − γst − gxx

)
∂

∂st
+ gxt

∂

∂sx
,

Xh
x = −px1

∂

∂q1 − px2
∂

∂q2 +Gtx1
∂

∂pt1
+Gtx2

∂

∂pt2
+Gxx1

∂

∂px1
+Gxx2

∂

∂px2
+ gtx

∂

∂st
+ gxx

∂

∂sx
,
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with arbitrary functions Gxx1, G
x
x2, G

t
x1, G

t
x2, G

x
t1, G

x
t2, g

x
x , g

x
t , g

t
x on M .

According to Theorem 2.5.31, reduction onto M[µ] = JΦ−1
η (R×2µ)/K[µ] requires Xh to be tangent

to JΦ−1
η (R×2µ) and G-invariant, i.e. Φg∗Xh = Xh for every g ∈ R2. Therefore, assume that all these

arbitrary functions are R2-invariant and satisfy

Gxx1 = −Gxx2, Gxt1 = −Gxt2, Gtx1 = −Gtx2.

Then, Xh takes the form

Xh
t = pt1

(
∂

∂q1 − ∂

∂q2

)
−
(
∂C

∂q
+ γpt1 +Gxx1

)(
∂

∂pt1
− ∂

∂pt2

)
+Gxt1

(
∂

∂px1
− ∂

∂px2

)
+
(
(pt1)2 − (px1)2 − C(q) − γst − gxx

) ∂

∂st
+ gxt

∂

∂sx
,

Xh
x = −px1

(
∂

∂q1 − ∂

∂q2

)
+Gtx1

(
∂

∂pt1
− ∂

∂pt2

)
+Gxx1

(
∂

∂px1
− ∂

∂px2

)
+ gtx

∂

∂st
+ gxx

∂

∂sx
,

for any point y ∈ JΦ−1
η (R×2µ). Applying Theorem 2.5.31, the reduced two-contact Hamiltonian two-

vector field X[µ] = (Xh[µ]
t , X

h[µ]
x ) on M[µ] reads

X
h[µ]
t = pt

∂

∂q
−
(

2∂C
∂q

+γpt+2G̃xx1

)
∂

∂pt
+
(

1
4(p2

t−p2
x)−C(q)−γst−g̃xx

)
∂

∂st
+2G̃xt1

∂

∂px
+g̃xt

∂

∂sx
,

X
h[µ]
x = −px ∂

∂q
+ 2G̃tx1

∂

∂pt
+ 2G̃xx1

∂

∂px
+ g̃tx

∂

∂st
+ g̃xx

∂

∂sx
,

where G̃xx1, G̃tx1, G̃xt1, g̃xx , g̃xt , and g̃tx are functions on M[µ] coming from the G-invariant functions without
tildes on M and h[µ] is the reduced Hamiltonian function on M[µ] given by

h[µ] = 1
4
(
(pt)2 + (px)2)+ C(q) + γst .

The two-vector field Xh is integrable when [Xh
t , X

h
x ] = 0. To guarantee the integrability, consider the

restriction to the submanifold N := {y ∈ M | px1 = 0 = px2} ⊂ JΦ−1
η (R×2µ). Additionally, assume that

the functions Gxx1, G
x
x2, g

x
x are constant, while Gtx1, G

t
x2, G

x
t1, G

x
t2, g

x
t , g

t
x vanish. Under these assumptions,

the two-contact Hamiltonian two-vector field Xh on N gives rise to the following Hamilton–De Donder–
Weyl equations on N (note that these are not exactly the Hamilton–De Donder–Weyl equations since N
is not a k-contact manifold)

∂q1

∂t
= pt1 ,

∂q2

∂t
= pt2 ,

∂q1

∂x
= −px1 = 0 , ∂q2

∂x
= −px2 = 0 ,

∂pt1
∂t

= −∂C

∂q
− γpt1 −Gxx1 = −∂C

∂q
− γpt1 − ∂px1

∂x
= −∂C

∂q
− γpt1 ,

∂pt2
∂t

= ∂C

∂q
− γpt2 −Gxx2 = ∂C

∂q
− γpt2 − ∂px2

∂x
= ∂C

∂q
− γpt2 .

By combining the above equations, one obtains the following system of PDEs

∂2q1

∂t2
= −γ ∂q

1

∂t
− ∂C

∂q
,

∂2q2

∂t2
= −γ ∂q

2

∂t
+ ∂C

∂q
.

This system describes two coupled, damped, vibrating strings constrained to the submanifold N .
Furthermore, the integral sections of the reduced two-contact Hamiltonian two-vector field Xh[µ] ,

restricted to π[µ](N) = {π[µ](y) ∈ M[µ] | px = 0}, lead to the following system of PDEs

∂q

∂t
= pt ,

∂q

∂x
= −px = 0 ,

∂pt

∂t
= −2∂C

∂q
+ γpt − 2G̃xx1 = −2∂C

∂q
+ γpt − ∂px

∂x
= −2∂C

∂q
+ γpt .
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Consequently, this system reduces to

∂pt

∂t
= γpt − 2∂C

∂q
⇒ ∂2q

∂t2
= γ

∂q

∂t
− 2∂C

∂q
,

which represents the equation of a single damped vibrating string with an external force acting on it,
constrained to π[µ](N). △

Example 2.5.33. Consider the manifold M = R5 × R5 with

η = η1 ⊗ e1 + η2 ⊗ e2 = (ds1 − x2dx1 − x4dx3) ⊗ e1 + (ds2 − y2dy1 − y4dy3) ,

where (x1, . . . , x4, s1, y1, . . . , y4, s2) are linear coordinates on R10. Since, each pair (R5, ηα) is a one-contact
manifold with local coordinates (x1, . . . , x4, s1) and (y1, . . . , y4, s2), it follows from Example 2.5.30 that
(M,η) is a two-contact manifold.

Consider the vector fields on M of the form

ξ1
M = ∂

∂s2
, ξ2

M = ∂

∂x3
, ξ3

M = ∂

∂y1
+ ∂

∂y3
.

These vector fields are generated by an abelian three-dimensional Lie group acting via translations on M
and leaving η invariant. This Lie group action acts in a quotientable manner on M . The corresponding
two-contact momentum map JΦ

η : M → (R3)∗2 reads

JΦ
η : M ∋ (x1, . . . , x4, s1, y1, . . . , y4, s2)

7−→ µ1 ⊗ e1 + µ2 ⊗ e2 = (0,−x4, 0) ⊗ e1 + (1, 0,−y2 − y4) ⊗ e2 ∈ (R3)∗2 .

Choosing µ = (1, 0,−1) ⊗ e2, it follows that

JΦ−1
η (R×2µ) = {x ∈ M | x4 = 0 , y2 + y4 = 1}

and
TxJΦ−1

η (R×2µ) =
〈

∂

∂s1
,
∂

∂x1
,
∂

∂x2
,
∂

∂x3
,
∂

∂s2
,
∂

∂y1
,
∂

∂y2
− ∂

∂y4
,
∂

∂y3

〉
.

Moreover, k[µ] = ⟨ξ2, ξ1 + ξ3⟩. By Example 2.5.30, both reduction conditions (2.5.7) and (2.5.8) hold.
Introducing the following change of coordinates

α = 1
3 (y1 + y3 + s2) , β = 1

3 (y1 + y3 − 2s2) ,

z2 = y2 + y4 , z3 = y1 − y3 , z4 = y2 − y4 ,

while (s1, x2, x2, x3, x4) remain unchanged, one has

JΦ−1
η (R×2µ) = {x ∈ M | x4 = 0, z2 = 1}

and
Tx
(
K[µ]x

)
=
〈

∂

∂x3
,
∂

∂α

〉
for any x ∈ JΦ−1

η (R×2µ). Hence, Theorem 2.5.29 implies that (JΦ−1
η (R×2µ)/K[µ] ≃ R6,η[µ]) is a two-

contact manifold with

η[µ] = η1
[µ] ⊗ e1 + η2

[µ] ⊗ e2 = (ds1 − x2dx1) ⊗ e1 +
(

−3
2dβ − 1

2z4dz3

)
⊕ e2.

The corresponding reduced Reeb vector fields are given by

R[µ] 1 = ∂

∂s1
, R[µ] 2 = −2

3
∂

∂β
.
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Example 2.5.34. The following example presents the one-contact reduction for the spherical cotangent
bundle of a Riemannian manifold. Let (Q, g) be an n-dimensional Riemannian manifold and let 0Q denote
the zero section of the cotangent bundle πQ : T∗Q → Q. Consider the action of R+ = {x ∈ R | x > 0} on
T∗Q− 0Q defined by

ϕ : (s, α) ∈ R+ × (T∗Q− 0Q) 7−→ ϕs(α) := sα ∈ (T∗Q− 0Q) .

This action gives rise to an R+-symplectic principal bundle τ : (T∗Q − 0Q) → (T∗Q − 0Q)/R+. The
canonical symplectic form on (T∗Q − 0Q) is one-homogeneous with respect to ϕ. Hence, the quotient
manifold (T∗Q− 0Q)/R+ is diffeomorphic to the spherical cotangent bundle given by

S(T∗Q) =
{
α ∈ T∗Q |

√
g(α, α) = 1

}
,

where g also denotes the corresponding metric on T∗Q. Furthermore, (S(T∗Q), η = i∗θT∗Q) is a one-
contact (co-orientable contact) manifold, where i : S(T∗Q) ↪→ T∗Q is the inclusion and θT∗Q is the
Liouville form on T∗Q, for more details see [16, 66].

Consider now the case Q = G, where G is a finite-dimensional Lie group. A Riemannian metric on
T∗G can be defined using the Killing form κ on g, which can be extended to a Riemannian metric on G via
left multiplication. Once having the Riemannian metric on G, this metric induces a Riemannian metric
on T∗G through the canonical isomorphism between TG and T∗G. Recall that the left multiplication
L : (g, h) ∈ G × G 7→ Lg(h) = gh ∈ G gives rise to the trivialisation of T∗G in the following manner
λ : αg ∈ T∗G 7→ (g,T∗

eLg(αg)) ∈ G× g∗. Therefore, the lift of the Lie group action L to G× g∗ is given
by

Ψ: (h; g, ϑ) ∈ G× (G× g∗) 7→ (hg, ϑ) ∈ G× g∗ .

Then, ϕ : (s, g, ϑ) ∈ R+ ×G×(g∗ −0g∗) 7→ (g, sϑ) ∈ G×(g∗ −0g∗) and (S(T∗G) ≃ G×Sg∗, η = i∗θT∗G)
is a co-orientable contact manifold. Since Ψg is fibrewise linear, it follows that ϕs ◦ Ψg = Ψg ◦ ϕs for
any s ∈ R+ and g ∈ G. Consequently, Ψ induces the Lie group action Φ: G × (G × Sg∗) → G × Sg∗.
Additionally, Φ∗

gη = η since Ψ∗
gθT∗G = θT∗G for every g ∈ G.

Then, the contact momentum map

JΦ
η : (g, [ϑ]) ∈ G× Sg∗ 7→ Ad∗

g−1 [ϑ] ∈ g∗ ,

induces the map
J̃Φ
η : (g, [ϑ]) ∈ G× Sg∗ 7→ [Ad∗

g−1ϑ] ∈ Sg∗ .

Then, for some µ ∈ (g∗ − 0g∗), one has J̃Φ−1
η ([µ]) = JΦ−1

η (R+µ)1, where

J̃Φ−1
η ([µ]) = {(g, [ϑ]) ∈ G× Sg∗ | [Ad∗

g−1ϑ] = [µ]} .

By Example 2.5.30, conditions (2.5.11) and (2.5.12) hold automatically when k = 1. Consequently, by
Theorem 2.5.29, the pair (J̃Φ−1

η ([µ])/K[µ], η[µ]) becomes a contact manifold, where η[µ] satisfies

i∗[µ]η = π∗
[µ]η[µ] ,

with i[µ] : J̃Φ−1
η ([µ]) ↪→ G× Sg∗ being the natural immersion and π[µ] : J̃Φ−1

η ([µ])→ J̃Φ−1
η ([µ])/K[µ] being

the canonical projection.
It is worth noting that this construction recovers the contact Marsden–Meyer–Weinstein reduction

for spherical cotangent bundles. Previous studies [55, 56] employed Willett’s reduction, which requires
the technical assumption kerµ + gµ = g [150]. In contrast, Theorem 2.5.29, for k = 1, provides a
more general framework for the Marsden–Meyer–Weinstein reduction of co-orientable contact manifolds,
including spherical cotangent bundles.

1Note that it is considered R× instead of R+. However, in the contact co-oriented case, this distinction is irrelevant, for
details see [70]
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2.6 Comparison with previous contact reductions
This section analyses the relations between several previous contact reduction theories [4, 70, 150] and
the one-contact reduction introduced in the previous section. The contact Marsden–Meyer–Weinstein
reduction has been extensively studied for many years [4, 70, 150].

First, the correspondence between line symplectic principal bundles and contact manifolds is recalled
[70]. Then, after commenting on Albert’s contact reduction [4], Willett’s approach is analysed (see
[150] for a comparison between Willett’s and Albert’s reductions). This section focuses on the contact
reductions developed by Willett [150] on the one hand, and K. Grabowska and J. Grabowski [70] on the
other. In particular, the reduction subgroup in the main contact reduction theorem in [70] is revisited
and corrected.

Some fundamental notions from contact geometry are recalled, as they are required to understand the
relationship between contact and symplectic manifolds, as well as the reduction procedure itself.

A contact manifold is a pair (M, C), where M is a (2n+ 1)-dimensional manifold and C is the contact
distribution, i.e. a maximally non-integrable distribution with corank one on M . In other words, a contact
distribution is a distribution C on M defined around any point x ∈ M by C|U = ker η, for some η ∈ Ω1(U)
and an open neighbourhood U ∋ x so that η ∧ (dη)n is a volume form on U . Then, η is called a (local)
contact form. A contact manifold (M, C) is co-oriented if it admits an associated contact form η ∈ Ω1(M)
defined globally on M . A co-oriented contact manifold is denoted as (M,η). According to Definition
1.4.22, a k-contact manifold retrieves a co-oriented contact manifold for k = 1. A diffeomorphism on
M that preserves C is called a contactomorphism. A symplectic R×-principal bundle is a triple (P, ϕ, ω),
where P is an R×-principle bundle τ : P → M relative to the Lie group action ϕ : R× × P → P and
ω ∈ Ω2(P ) is a one-homogeneous symplectic form.

Within this section, pairs (P, ω) and (M,η) denote a symplectic and contact manifold, respectively.
The following theorem (see [69, Theorem 3.8]) shows the relation between contact distributions C and
symplectic R×-principal bundles.

Theorem 2.6.1. There is a one-to-one correspondence between contact distributions C on M and sym-
plectic R×-principal bundles over M . In this correspondence, the symplectic R×-principal bundle associ-
ated with C is (C◦)× ⊂ T∗M , where C◦ denotes the annihilator of C.

2.6.1 Previous contact reductions

The first contact Marsden–Meyer–Weinstein reduction, restricted to only co-oriented contact manifolds,
was introduced by C. Albert in [4]. In his construction, the reduced manifold depends on the choice of
a contact form within its conformal class. Indeed, the contact distribution C = ker η remains unchanged
when η is multiplied by a non-vanishing function. The problem of the dependence on η was solved by
C. Willett in [150]. However, Willett’s reduction requires the assumption kerµ+ gµ = g, where gµ is the
Lie algebra of Gµ = {g ∈ G | Ad∗

g−1µ = µ}. The condition is not always satisfied, and there exist many
cases when it fails (see [150] and the example in forthcoming Subsection 2.6.2).

More recently, a contact Marsden–Meyer–Weinstein reduction for general contact manifolds was de-
vised in [70]. The new approach relies on the one-to-one correspondence between contact manifolds and
one-homogeneous symplectic line bundles, while the contact quotient remains essentially the same as in
[150]. Indeed, both contact reductions [70, 150] rely on the same Lie subgroup Kµ ⊂ G with Lie algebra
kµ := kerµ∩gµ and the reduced contact manifold is of the form JΦ−1

η (R×µ)/Kµ. However, the approach
in [70] is claimed to work when kerµ + gµ ̸= g. As explained in Subsection 2.6.2, the contact reduction
theorem presented in [70] requires the modification of the reduction group. This necessity becomes evi-
dent in the case kerµ+gµ ̸= g and arises from a common mistake in Marsden–Meyer–Weinstein reduction
theories, namely, the incorrect determination of the orthogonal complement.

Willett’s results originally concerned rather reduced contact orbifolds, where an orbifold is a gener-
alisation of manifolds obtained as a quotient by discrete groups [3, 145]. In the present setting, atten-
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tion is restricted to manifolds by assuming that JΦ−1
η (R×µ) is a submanifold and the Lie group action

Φ: Kµ ×M → M acts in a quotientable manner on JΦ−1
η (R×µ) ensuring that JΦ−1

η (R×µ)/Kµ is a man-
ifold. In particular, Willett guarantees that JΦ−1

η (R×µ) is a submanifold of M by assuming that JΦ
η is

transverse to R×µ [150]. However, it is sufficient to assume that µ ∈ g∗ is a weak regular value of JΦ
η .

The proof of the following theorem can be found in [150, Theorem 1].

Theorem 2.6.2. Let (M,η, JΦ
η ) be a co-oriented contact Hamiltonian system, let µ ∈ g∗ be a weak

regular value of JΦ
η , and assume that Φ: G×M → M acts in a quotientable manner on JΦ−1

η (R×µ) with
kerµ + gµ = g. Then, (JΦ−1

η (R×µ)/Kµ, ηµ) such that π∗
µηµ = i∗µη, is a co-oriented contact manifold,

where iµ : JΦ−1
η (R×µ) ↪→ M is the natural immersion and πµ : JΦ−1

η (R×µ) → JΦ−1
η (R×µ)/Kµ is the

canonical projection by the Lie group Kµ with Lie algebra kµ.

Meanwhile, the contact Marsden–Meyer–Weinstein reduction introduced in [70] allows one to reduce
every contact manifold. Theorem 2.6.3 presents the Marsden–Meyer–Weinstein contact reduction from
[70, Theorem 1.1]. The definition of transversality of a submanifold N to a contact distribution C used
in [70] amounts to TxN ̸⊂ Cx for every x ∈ N .

Theorem 2.6.3. Let (M, C) be a contact manifold with a symplectic cover τ : P → M , let Φ: G×M → M

be a contact Lie group, and let J Φ̃ : P → g∗ be an exact symplectic momentum map associated with the
lifted Lie group action Φ̃ : G × P → P . Let µ ∈ g∗ be a weak regular value of J Φ̃ so that the simply
connected Lie subgroup Kµ of G, corresponding to the Lie subalgebra

kµ = {ξ ∈ kerµ | ad∗
ξµ = 0}

of g, acts in a quotientable manner on the submanifold τ(J Φ̃−1(R×µ)) of M . Additionally, suppose that
T
(
τ(J Φ̃−1(R×µ))

)
is transversal to C. Then, one has a canonical submersion

π : τ(J Φ̃−1(R×µ)) −→ τ(J Φ̃−1(R×µ))/Kµ ,

where
(
τ(J Φ̃−1(R×µ))/Kµ, Cµ

)
is canonically a contact manifold equipped with the contact distribution

Cµ := Tπ
(

C ∩ T
(
τ(J Φ̃−1(R×µ))/Kµ

))
.

2.6.2 Correcting previous literature

Theorem 1.1 in [70] does not require the condition kerµ+ gµ = g. However, as shown in [150, Example
3.7], if kerµ + gµ ̸= g, the reduced manifold JΦ−1

η (R×µ)/Kµ may fail to be a contact manifold, which
indicates a potential mistake in [70, Theorem 1.1]. The problem in [70, Theorem 1.1] is that the Lie
group performing the reduction is not properly calculated, and should coincide with the expression (2) in
Lemma 2.5.6. More precisely, in the proof of [70, Theorem 1.1], the expression for the kernel of the reduced
homogeneous symplectic form ω on the submanifold JΦ−1

θ (R×µ) contains a mistake in the calculation
of the symplectic orthogonal. The issue is clarified in detail through a relevant example adapted from
Willett’s construction in [150].

Consider the contact manifold (M := T∗SL2 × R, η = dt− θ), where t is the canonical variable on R
and θ is the pull-back of the Liouville form on T∗SL2 to M .

The canonical identification is of the form

ϑg ∈ T∗SL2 7→ (g, L∗
gϑg) ∈ SL2 × sl∗2 ,

where Lg is the left multiplication in SL2 by g. The Lie group action R : (g, h) ∈ SL2 ×SL2 7→ hg−1 ∈ SL2

lifts naturally to a Lie group action of SL2 on T∗SL2 × R ≃ SL2 × sl∗2 × R given by

Φ: SL2 × (SL2 × sl∗2 × R) ∋ (g;h, ϑ, t) 7−→ (hg−1,Ad∗
g−1ϑ, t) ∈ SL2 × sl∗2 × R .
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Since R is a free Lie group action, the fundamental vector fields associated with Φ span a distribution
of rank three on SL2 × sl∗2 × R. Moreover, since Φ is a lift of R, it leaves invariant both the tautological
one-form and the canonical symplectic forms on T∗SL2, as well as their lifts to M . Consequently, Φ is a
contact Lie group action of (M,η). The canonical isomorphisms of sl∗2 ≃ Tµsl∗2 for every µ ∈ sl∗2, together
with the trivialisations T∗SL2 ≃ SL2 × sl∗2 and TSL2 ≃ SL2 × sl2 via left group multiplications give the
following decompositions

T(g,µ)T∗SL2 ≃ TgSL2 ⊕ Tµsl∗2 ≃ sl2 ⊕ sl∗2, T∗
(g,µ)T∗SL2 ≃ T∗

gSL2 ⊕ T∗
µsl

∗
2 ≃ sl∗2 ⊕ sl2 .

Then, the tautological one-form is of the form θ(g,µ)(v, ϑ) = ⟨µ, v⟩, for (g, µ) ∈ SL2 × sl∗2 and every
(v, ϑ) ∈ T(g,µ)T∗SL2. Alternatively, θ =

∑3
i=1 λiη̃

i
L, where λ1, λ2, λ3 are the coordinates of sl∗2 lifted to

T∗SL2 according to the diffeomorphism T∗SL2 ≃ SL2 × sl∗2, while η̃iL are the pull-back to T∗SL2 of the
left-invariant one-forms ηiL on SL2 whose values at Id ∈ SL2 coincide with the corresponding coordinates
of sl∗2. This yields an Ad∗-equivariant contact momentum map associated with Φ given by

JΦ
η : M ≃ SL2 × sl∗2 × R ∋ (g, ϑ, t) 7−→ ϑ ∈ sl∗2 .

Consider the standard basis of sl2 of the form

sl2 =
〈
ξ1 =

(
1 0
0 −1

)
, ξ2 =

(
0 1
0 0

)
, ξ3 =

(
0 0
1 0

)〉
,

with commutation relations

[ξ1, ξ2] = 2ξ2 , [ξ1, ξ3] = −2ξ3 , [ξ2, ξ3] = ξ1 .

Let sl∗2 = ⟨µ1, µ2, µ3⟩ be the dual basis to {ξ1, ξ2, ξ3}. Then,

JΦ−1
η (R×µ3) = {(g, ϑ, t) ∈ M | JΦ

η (g, ϑ, t) = λµ3, λ ∈ R×} ≃ SL2 × R×µ3 × R

is a five-dimensional submanifold of M . Since the vector field ∂t is tangent to JΦ−1
η (R×µ3) but it

does not takes values in C at any point, it follows that JΦ−1
η (R×µ3) is transverse to C(g,µ,t) for any

(g, µ, t) ∈ JΦ−1
η (R×µ3). Furthermore, one has

ad∗
ξ1
µ1 = 0 , ad∗

ξ1
µ2 = 2µ2 , ad∗

ξ1
µ3 = −2µ3 ,

ad∗
ξ2
µ1 = µ3 , ad∗

ξ2
µ2 = −2µ1 , ad∗

ξ2
µ3 = 0 ,

ad∗
ξ3
µ1 = −µ2 , ad∗

ξ3
µ2 = 0 , ad∗

ξ3
µ3 = 2µ1 .

Then, the above relations yield

kerµ3 = ⟨ξ1, ξ2⟩ , gµ3 = ⟨ξ2⟩ , kµ3 = gµ3 ∩ kerµ3 = ⟨ξ2⟩ .

The restriction of Φ to the action of Kµ3 on JΦ−1
η (R×µ3) is free. To verify that Φ is proper, consider

the Bourbaki definition of properness using the shear map. Let A ⊂ JΦ−1
η (R×µ3) × JΦ−1

η (R×µ3) be a
compact subset. Since JΦ−1

η (R×µ3) is metrizable (every smooth manifold is), A is sequentially compact.
The idea is to prove that Φ̂−1(A) is sequentially compact relative to the induced shear map Φ̂ : Kµ3 ×

JΦ−1
η (R×µ3) → JΦ−1

η (R×µ3) × JΦ−1
η (R×µ3).

Take a sequence (ki, xi) in Φ̂−1(A). Then, the sequence (xi,Φ(ki, xi)), which lies in A, admits a
subsequence of points (xα,Φ(kα, xα)) that is convergent in A. Therefore, (xα) and (Φ(kα, xα)) converge
to some x, y ∈ JΦ−1

η (R×µ3), respectively. Moreover, (x, y) ∈ A ⊂ JΦ−1
η (R×µ3) ×JΦ−1

η (R×µ3). Using the
diffeomorphism M = T∗SL2 × R ≃ SL2 × sl∗2 × R, it follows that (xα) = (gα, ϑα, tα), y = (gy, ϑy, ty) and
x = (gx, ϑx, tx) in a unique manner. Then, (gαk−1

α ) and (gxk−1
α ) tend to gy. Since Kµ3 is of the form

Kµ3 =
{
kα =

(
1 λα
0 1

)
: λα ∈ R

}
,
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and acts freely, it yields that (kα) must tend to an element δ = g−1
x gy in Kµ3 . Thus, (x,Φ(δ, x)) ∈ A and

(kα, xα) converges to a point in Φ̂−1(A), which makes the restriction of Φ to Kµ3 × JΦ−1
η (R×µ3) to be

proper.
To be in a setting of Theorem 2.6.3, consider the trivial symplectic R×-principal bundle τ : R× ×M →

M with P = R× ×M . Then, ω ∈ Ω2(P ) is of the form ω = d(sτ∗η) = dθ, with s ∈ R×. By construction,
ω is a one-homogeneous symplectic form relative to

ϕ : R× × P ∋ (λ; s, x) 7−→ (λs, x) ∈ P .

Since the Lie group action Φ: SL2 × M → M leaves the contact form η invariant, its lifted Lie group
action Φ̃ : (g; s, x) ∈ SL2 × P 7→ (s,Φ(g, x)) ∈ P , leaves the s coordinate invariant, is free, proper, and
exact symplectic relative to θ = sτ∗η. Moreover, Φ̃ gives rise to an Ad∗-equivariant exact symplectic
momentum map J Φ̃

θ : P → sl∗2, defined as in Definition 2.5.2 for k = 1, of the form

J Φ̃
θ : P ∋ (s, g, ϑ, t) 7−→ −sϑ ∈ sl∗2 .

Then,

J Φ̃−1
θ (R×µ3) = {(s, g, ϑ, t) ∈ P | J Φ̃

θ (s, g, ϑ, t) = κµ3, κ ∈ R×} ≃ R× × SL2 × R×µ3 × R ,

is a six-dimensional submanifold of P . Therefore, all the assumptions of Theorem 2.6.3 are satis-
fied. However, JΦ−1

η (R×µ3)/Kµ3 can not be a contact manifold since it is four-dimensional. Likewise,
J Φ̃−1
θ (R×µ3)/Kµ3 can not be a symplectic manifold since it is a five-dimensional manifold. Consequently,

Theorem 2.6.3 fails.
One of the problems of the Marsden–Meyer–Weinstein contact reduction in [70] is the expression

χ(ω[µ]) = ĝ0
µ + χ(ω) [70, p 2831]. In the present notation, this expression boils down to

ker ȷ∗[µ]ω = Tp(Kµp) , ∀p ∈ J Φ̃−1
θ (R×µ) , (2.6.1)

where ȷ[µ] : J Φ̃−1
θ (R×µ) ↪→ P is the natural embedding, J Φ̃

θ is the exact symplectic momentum map
associated with the Lie group action Φ̃ : G × P → P induced by the initial contact Lie group action
Φ: G × M → M on the contact manifold (M, C), and Kµ is the Lie subgroup of G with Lie algebra
g0
µ = kerµ ∩ gµ, where gµ is the Lie algebra of the isotropy subgroup of the coadjoint action of G on g∗

at µ ∈ g∗. Note also that ĝ0
µ represents the fundamental vector fields on P related to the Lie algebra g0

µ,
which is denoted by kµ in the introduced notation. It is worth recalling now that since the R×-bundle
action commutes with J Φ̃

θ , one has that Kµ′ is the same for every µ′ ∈ R×µ.
To justify why (2.6.1) does not hold in general, observe that

ker ȷ∗[µ]ω = TJ Φ̃−1
θ (R×µ) ∩

(
TJ Φ̃−1

θ (R×µ)
)⊥ω

.

Assume for simplicity that µ′ = J Φ̃
θ (p) ̸= 0. Then,

TpJ Φ̃−1
θ (R×µ) = TpJ Φ̃−1

θ (µ′) ⊕ ⟨∇p⟩ ,

where ∇ denotes the Euler vector field of the R×-principal bundle τ : R× × M → M . Since ι∇ω = θ, it
follows that

TpJ Φ̃−1
θ (R×µ) ∩

(
TpJ Φ̃−1

θ (R×µ)
)⊥ω

= (TpJ Φ̃−1
θ (µ′) ⊕ ⟨∇p⟩) ∩

(
TpJ Φ̃−1

θ (µ′)
)⊥ω

∩ ker θp .

From standard Marsden–Meyer–Weinstein symplectic reduction theory presented in Section 2.1, one has

TpJ Φ̃−1
θ (R×µ) ∩

(
TpJ Φ̃−1

θ (R×µ)
)⊥ω

=
(

TpJ Φ̃−1
θ (µ′) ⊕ ⟨∇p⟩

)
∩ Tp(Gp) ∩ ker θp . (2.6.2)
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Assuming that T(τ(J Φ̃−1
θ (µ′))) is transversal to the contact distribution C, as done in [70], essentially

ensures that ∇p /∈ ker ȷ∗[µ]ωp. Indeed, if ∇p ∈ ker ȷ∗[µ]ωp, it follows that ι∇ω = θ vanishes on the tangent

bundle to J Φ̃−1
θ (R×µ), and hence Tτ(J Φ̃−1

θ (µ′)) ⊂ C, contradicting transversality.
This observation, however, does not justify the identity χ(ωµ) = ĝ0

µ as in [70], where χ(ωµ) represents
the kernel of the restriction of ω to J Φ̃−1

θ (R×µ). In other words, according to [70], it follows that

TpJ Φ̃−1
θ (R×µ) ∩

(
TpJ Φ̃−1

θ (R×µ)
)⊥ω

= TpJ Φ̃−1
θ (µ′) ∩ Tp(Gp) ∩ ker θp = Tp(Kµ′p) ,

which is not correct in general. The intersection with a direct sum is not the direct sum of the intersec-
tions in general, and the transversality condition on τ(J Φ̃−1

θ (µ′)) assumed in [70] does not change that
fact. Moreover, the Lemma 2.5.6 shows that there may be fundamental vector fields of Φ̃ tangent to
TpJ Φ̃−1

θ (R×µ) that are symplectically orthogonal to it, but are not tangent to any TpJ Φ̃−1
θ (µ′), e.g. the

fundamental vector fields related to kerµ ∩ g[µ] not belonging to kerµ ∩ gµ.
To clarify the above arguments and illustrate the mistake, consider the following counterexample.
Note that both ∂s and ∂t are tangent to J Φ̃−1

θ (R×µ3). Taking into account the form of ω, it turns
out that

TpJ Φ̃−1
θ (R×µ3) ∩

(
TpJ Φ̃−1

θ (R×µ3)
)⊥ω

⊂ ker τ∗η ∩ ker ds .

The fundamental vector fields ξ1P and ξ2P are tangent to J Φ̃−1
θ (R×µ3), satisfy ξ1P ∧ ξ2P ̸= 0, and

ω(ξ1P , ξ2P ) = 0. Hence, in view of (2.6.2), it follows that

TpJ Φ̃−1
θ (R×µ3) ∩

(
TpJ Φ̃−1

θ (R×µ3)
)⊥ω

⊃ ⟨ξ1P (p), ξ2P (p)⟩ ≠ Tp(Kµ3p) = ⟨ξ2P (p)⟩ ,

for any p ∈ J Φ̃−1
θ (R×µ3). Therefore, the claim (2.6.1) is incorrect, and Theorem 2.6.3 from [70] fails in

this case. In contrast, Lemma 2.5.22 implies that

TpJ Φ̃−1
θ (R×µ3) ∩

(
TpJ Φ̃−1

θ (R×µ3)
)⊥ω

= ⟨ξ1P (p), ξ2P (p)⟩ = Tp(K[µ3]p) ,

for any p ∈ J Φ̃−1
θ (R×µ3), where K[µ3] as defined in Proposition 2.5.4. Since [70] assumes that the

symplectic orthogonal to TJ Φ̃−1
θ (R×µ3) must be included in the isotropy group Gµ3 , the authors did not

notice that ξ1P is missing in (2.6.1).
A corrected version of Theorem 2.6.3 could be stated as follows, and the proof is analogous to the

original provided in [70] once the required symplectic orthogonal is corrected.

Theorem 2.6.4. Let (M, C) be a contact manifold with a symplectic cover (P, θ) and τ : P → M , let
Φ: G × M → M be a contact Lie group action, and let J Φ̃

θ : P → g∗ be an exact symplectic momentum
map associated with the lifted Lie group action Φ̃ : G× P → P . Let µ ∈ g∗ be a weak regular value of J Φ̃

θ

so that the connected Lie subgroup K[µ] of G, corresponding to the Lie subalgebra of g given by

k[µ] = {ξ ∈ kerµ | ad∗
ξµ ∧ µ = 0},

acts in a quotientable manner on the submanifold τ(J Φ̃−1
θ (R×µ)) of M . Additionally, suppose that

T[τ(J Φ̃−1
θ (R×µ))] is transversal to C. Then, one has a canonical submersion π : τ(J Φ̃−1

θ (R×µ)) →
τ(J Φ̃−1

θ (R×µ))/K[µ], where
(
τ(J Φ̃−1

θ (R×µ))/K[µ], C[µ]

)
is a contact manifold with

C[µ] := Tπ
(

C ∩ T
(
τ(J Φ̃−1

θ (R×µ))/K[µ]

))
.

The authors of [70] also distinguish the specific case when µ = 0. This case is included as a special
case of the present framework. If µ = 0 then kerµ = g and K[µ] = G, so the reduced manifold is
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τ(J Φ̃−1(0))/G. In the co-oriented setting, this was already known to be a reduced co-orientable contact
manifold as shown in [98, 104].

There is another reason that illustrates that the reduction Lie group in [70] should be changed.
Suppose that µ ∈ g∗ is a regular value of JΦ

η . If kerµ + gµ ̸= g, then gµ ⊂ kerµ and dimGµ = dimKµ.
If Gµ acts in a free and proper manner on J Φ̃−1

θ (µ), one has that dim J Φ̃−1
θ (µ)/Gµ = dim J Φ̃−1

θ (µ) −
dimGµ = 2ℓ for some ℓ ∈ N due to the symplectic reduction theorem 2.1.8. For µ ̸= 0 and assuming the
transversality of J Φ̃

θ relative to R×µ and dim J Φ̃−1
θ (R×µ) = dim J Φ̃−1

θ (µ) + 1, one gets

dim J Φ̃−1
θ (R×µ)/Kµ = dim J Φ̃−1

θ (µ) + 1 − dimGµ = 2ℓ+ 1 ,

This is a contradiction, as J Φ̃−1
θ (R×µ)/Kµ must be even-dimensional for (τ(J Φ̃−1

θ (R×µ))/Kµ, ηµ) to be
a contact manifold.

2.6.3 Comparisons to previous contact reductions

This section demonstrates through simple examples that the one-contact Marsden–Meyer–Weinstein re-
duction Theorem 2.5.29 method applies, where the contact Marsden–Meyer–Weinstein reduction ap-
proaches from [4, 150] do not. The method is also more general than the one in [70], since some of the
technical assumptions required there fail in the examples below, as explained in the previous Subsection
2.6.2. Furthermore, the examples clearly illustrate that the Lie group used in the reduction in [70] must
be modified.

Example 2.6.5. Consider the contact manifold (R7, η) with

η = dt− x2dx1 + x1dx2 − x4dx3 + x6dx5 .

Define a contact Lie group action of G = GL2 ≃ SL2 × R on R7 of the form

Φ: G× R7 ∋ ((g, λ); t, x1, x2, x3, x4, x5, x6) 7→ (t, (x1, x2)gT , x3, x4, x5 + λ, x6) ∈ R7,

where gT is transpose of the matrix g ∈ SL2. A direct calculation shows that Φ∗
(g,λ)η = η for every

(g, λ) ∈ SL2 × R. A basis of the fundamental vector fields related to Φ reads

ϑ1M = x2
∂

∂x1
, ϑ2M = x1

∂

∂x2
, ϑ3M = x1

∂

∂x1
− x2

∂

∂x2
, ϑ4M = ∂

∂x5
.

Let gl∗2 = ⟨µ̃1, µ̃2, µ̃3, µ̃4⟩, where {µ̃1, µ̃2, µ̃3, µ̃4} is the dual basis to the basis {ϑ1, ϑ2, ϑ3, ϑ4} of gl2 ≃
sl2 ⊕ R with non-vanishing commutation relations given by

[ϑ1, ϑ2] = ϑ3, [ϑ1, ϑ3] = −2ϑ1, [ϑ2, ϑ3] = 2ϑ2.

Then, the contact momentum map JΦ
η : R7 → gl∗2 in the basis {µ̃1, µ̃2, µ̃3, µ̃4} reads

JΦ
η (x) = (ιϑ1M

η(x), ιϑ2M
η(x), ιϑ3M

η(x)) = (−x2
2, x

2
1,−2x1x2, x6) ∈ gl∗2 .

Fix µ = µ̃2 ∈ gl∗2. Then,

JΦ−1
η (R×µ̃2) = {x = (t, x1, x2, x3, x4, x5, x6) ∈ R7 | x2 = x6 = 0, x1 ̸= 0}

and
TxJΦ−1

η (R×µ̃2) =
〈
∂

∂t
,
∂

∂x1
,
∂

∂x3
,
∂

∂x4
,
∂

∂x5

〉
.

Moreover, ker µ̃2 = ⟨ϑ1, ϑ3, ϑ4⟩, g
µ̃2 = ⟨ϑ1, ϑ4⟩, and g[µ̃2] = ⟨ϑ1, ϑ3, ϑ4⟩ since ad∗

ϑ4ϑ = 0 for every ϑ ∈ gl∗2
and

ad∗
ϑ1
µ̃1 = −2µ̃3 , ad∗

ϑ2
µ̃1 = 0 , ad∗

ϑ3
µ̃1 = 2µ̃1 ,

ad∗
ϑ1
µ̃2 = 0 , ad∗

ϑ2
µ̃2 = 2µ̃3 , ad∗

ϑ3
µ̃2 = −2µ̃2 ,

ad∗
ϑ1
µ̃3 = µ̃2 , ad∗

ϑ2
µ̃3 = −µ̃1 , ad∗

ϑ3
µ̃3 = 0 .
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Consequently, k
µ̃2 = ker µ̃2 ∩ g

µ̃2 = ⟨ϑ1, ϑ4⟩ and k[µ̃2] = ⟨ϑ1, ϑ3, ϑ4⟩ yield the following

Tx(K
µ̃2x) = ⟨ϑ1M (x), ϑ4M (x)⟩ and Tx(K[µ̃2]x) = ⟨ϑ1M (x), ϑ3M (x), ϑ4M (x)⟩ .

The condition required by Willett’s contact reduction [150], namely ker µ̃2 + g
µ̃2 = gl2 is not satisfied,

making his results inapplicable. Attempting the contact reduction introduced in [70], one gets that the
assumptions of Theorem 2.6.3 are not satisfied, since ϑ1M restricted to JΦ−1

η (R×µ̃2) vanishes and the
associated action of K

µ̃2 is not free on it. Nevertheless, the remaining assumptions are indeed satisfied.
In particular, JΦ−1

η (R×µ̃2) is transversal to the contact distribution and µ̃2 ∈ gl∗2 is a weak regular value
of the exact symplectic momentum map obtained by lifting JΦ

η to R× × R7.
Applying Theorem 2.6.4 shows that the quotient with respect to K[µ̃2] yields

Tπ
[̃µ2]

(x)[JΦ−1
η (R×µ̃2)/(K[µ̃2]x)] ≃ TxJΦ−1

η (R×µ̃2)/Tx(K[µ̃2]x) =
〈
∂

∂t
,
∂

∂x3
,
∂

∂x4

〉
,

and (JΦ−1
η (R×µ̃2)/K[µ̃2], η[µ̃2]) becomes a three-dimensional contact manifold with

η[µ̃2] = dt− x4dx3 .

△

This example can be slightly modified to illustrate that the reduction group in [70] is incorrect.

Example 2.6.6. Consider the restriction, Φ′, of Φ to the action of the Lie subgroup

H2 × R =
{((

λ1 0
λ2 1/λ1

)
, λ

)
| λ1 ∈ R+ , λ2 ∈ R , λ ∈ R

}
on R7. Then, Φ′ is Hamiltonian with respect to the contact form given above, and the new contact
momentum map JΦ′

η : M → (h2 ⊕ R)∗ is

JΦ′

η (x) = (ιϑ2M
η(x), ιϑ3M

η(x), ιϑ4M
η(x)) = (x2

1,−2x1x2, x6) ∈ (h2 ⊕ R)∗ .

Consider (h2 ⊕ R)∗ = ⟨µ̂2, µ̂3, µ̂4⟩, where {µ̂2, µ̂3, µ̂4} is the dual basis to the basis {ϑ2, ϑ3, ϑ4} of h2 ⊕ R
with a non-vanishing commutation relation

[ϑ2, ϑ3] = 2ϑ2 .

Fix µ = µ̂2 ∈ (h2 ⊕ R)∗. Then,

JΦ′−1
η (R×µ̂2) = {x = (t, x1, x2, x3, x4, x5, x6) ∈ R7 | x2 = x6 = 0, x1 ̸= 0}

and
TxJΦ′−1

η (R×µ̂2) =
〈
∂

∂t
,
∂

∂x1
,
∂

∂x3
,
∂

∂x4
,
∂

∂x5

〉
.

Moreover, ker µ̂2 = ⟨ϑ3, ϑ4⟩, g
µ̂2 = ⟨ϑ4⟩, and g[µ̂2] = ⟨ϑ3, ϑ4⟩ since

ad∗
ϑ2
µ̂2 = 2µ̂3 , ad∗

ϑ3
µ̂2 = −2µ̂2 .

Thus, k
µ̂2 = ker µ̂2 ∩ g

µ̂2 = ⟨ϑ4⟩, k[µ̂2] = ⟨ϑ3, ϑ4⟩ yields

Tx(K[µ̂2]x) = ⟨ϑ3M (x), ϑ4M (x)⟩ .

The condition ker µ̂2 + g
µ̂2 = h2 ⊕ R does not hold, making Willett’s results inapplicable. Then, the

reduction introduced in [70] gives JΦ′−1
η (R×µ̂2)/K

µ̂2 which is even dimensional. Assumptions in Theorem
2.6.3 are indeed satisfied. In particular, JΦ′−1

η (R×µ̂2) is transversal to the contact distribution and
µ̂2 ∈ (h2 ⊕ R)∗ is a weak regular value of an exact symplectic momentum map. △
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The final example revisits the previous one, but is reformulated using the framework and notation
introduced in [70]. To address non-co-oriented contact manifolds, the authors in [70] focus on one-
homogeneous symplectic R×-principal bundles over a contact manifold M . Consequently, the example
below is the symplectic extension of a particular case of the earlier example, illustrating that the theory
in [70] requires modifications to remain valid.

Example 2.6.7. Consider the exact symplectic manifold (P = R× ×R7, s τ∗η), where τ : P → R7 is the
canonical projection, s is the fibre variable on R×, and the contact form is defined as

η = dt− x2dx1 + x1dx2 − x4dx3 + x6dx5

for the linear coordinates t, x1, . . . , x6 on R7. Then, θ = sτ∗η and denote by H2 the Lie group consisting
of 2 × 2 lower triangular unimodular matrices with real entries and a positive diagonal. The positive
diagonal ensures that H2 is connected, thus preventing subsequent technical complications. The Lie
group action Φ′ : (H2 × R) × R7 → R7 is given by

Φ′
((

h =
(
λ3 0
λ2 1/λ3

)
, λ4

)
, (t, x1, . . . , x6)

)
= (t, λ3x1, λ2x1 + x2/λ3, x3, x4, x5 + λ4, x6) ,

where λ3 > 0 and λ2, λ4 ∈ R. This action leaves η invariant and admits a lift to a Hamiltonian Lie group
action Φ̃′ : (H2 × R) × P → P of the form

Φ̃′ : (H2 × R) × P → P, Φ̃′((h, λ4), (s, t, x1, . . . , x6)) = (s,Φ′((h, λ4), (t, x1, . . . , x6))) ,

where s, t, x1, . . . , x6 naturally form a coordinate system on P . Indeed, the lifted action Φ̃′ is Hamiltonian
with respect to the symplectic form dθ on P and τ ◦ Φ̃′

(h,λ4) = Φ′
(h,λ4) ◦ τ for every (h, λ4) ∈ H2 × R. A

basis of fundamental vector fields of Φ̃′ reads

ν2P = x1
∂

∂x2
, ν3P = x2

∂

∂x2
− x1

∂

∂x1
, ν4P = ∂

∂x5
.

Each vector field νiP is the unique Hamiltonian vector field on P projecting onto a contact Hamiltonian
vector field ϑiM = τ∗νiP on R7 for i = 2, 3, 4. Moreover, each νiP admits one-homogeneous Hamiltonian
function −ινiP

θ with i = 2, 3, 4.
The exact symplectic momentum map J Φ̃′

θ : P → (h2 ⊕ R)∗ associated with Φ̃′, where h2 is the Lie
algebra of H2, is given by

J Φ̃′

θ (p) = (ιν2P
θ(p), ιν3P

θ(p), ιν4P
θ(p)) = (sx2

1, 2sx1x2, sx6) ∈ (h2 ⊕ R)∗ , ∀p ∈ P ,

in a basis {e1, e2, e3} of h∗
2 ⊕ R∗ dual to a basis {e1, e2, e3} adapted to the decomposition h2 ⊕ R and

closing opposite commutation relations to ν2P , ν3P , ν4P , respectively2. Note that the exact symplectic
momentum map J Φ̃′

θ is Ad∗-equivariant. For fixed element µ = e1 ∈ h∗
2 ⊕ R∗, it follows

J Φ̃′−1
θ (R×e1) = {p = (s, t, x1, x2, x3, x4, x5, x6) ∈ R× × R7 | x2 = x6 = 0, s ̸= 0, x1 ̸= 0}

and
TpJ Φ̃′−1

θ (R×e1) =
〈

∇ = s
∂

∂s
,
∂

∂t
,
∂

∂x1
,
∂

∂x3
,
∂

∂x4
,
∂

∂x5

〉
p

,

for any p ∈ J Φ̃′−1
θ (R×e1). Additionally,

J Φ̃′−1
θ (λe1) = {p ∈ P | sx2

1 = λ, x2 = 0, x6 = 0}, λ ∈ R×

and
TpJ Φ̃′−1

θ (λe1) =
〈
∂

∂t
,
∂

∂x3
,
∂

∂x4
,
∂

∂x5
, 2∇ − x1

∂

∂x1

〉
p

, λ ∈ R× ,

2Recall that the definition of fundamental vector fields induces a Lie algebra anti-homomorphism ξ ∈ h2 ⊕R ≃ g 7→ ξP ∈
X(P ).
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for any p ∈ J Φ̃′−1
θ (λe1). Then, ν4P (p) ∈ TpJ Φ̃′−1

θ (λe1) for every p ∈ J Φ̃′−1
θ (λe1) and

TpJ Φ̃′−1
θ (R×e1) = ⟨∇p⟩ ⊕ TpJ Φ̃′−1

θ (λe1) ,

for any p ∈ J Φ̃′−1
θ (R×e1) and J Φ̃′

θ (p) = λe1 for some λ ∈ R×. Recall that

ω = ds ∧ (dt+ x1dx2 − x4dx3) + s(2dx1 ∧ dx2 + dx3 ∧ dx4 − dx5 ∧ dx6)

and then (
TpJ Φ̃′−1

θ (R×e1)
)⊥ω

= ⟨ν3P (p), ν4P (p)⟩ , ∀p ∈ J Φ̃′−1
θ (R×e1) .

Since [e1, e2] = −2e1 and [e3, ei] = 0, it follows that ad∗
e3
e1 = 0 and ad∗

e2
e1 = 2e1. Consequently, the

connected Lie subgroups of H2 × R whose Lie algebras are ker e1 ∩ g[e1] and ker e1 ∩ ge1 are

K[e1] =
{((

λ3 0
0 1/λ3

)
, λ4

)
| λ3 > 0, λ4 ∈ R

}
, Ke1 =

{((
1 0
0 1

)
, λ4

)
| λ4 ∈ R

}
.

Hence,(
TpJ Φ̃′−1

θ (R×e1
)⊥ω

∩ TpJ Φ̃′−1
θ (R×e1) = ⟨ν3P (p), ν4P (p)⟩ = Tp(K[e1]p) ̸= Tp(Ke1p), (2.6.3)

for any p ∈ J Φ̃′−1
θ (R×e1). Therefore (J Φ̃′−1

θ (R×e1)/K[e1], θ[e1]) is an exact symplectic manifold that is a
symplectic cover of the co-oriented contact manifold (τ(J Φ̃′−1

θ (R×e1)/K[e1], η[e1]), where

θ[e1] = s(dt− x4dx3) , η[e1] = dt− x4dx3 .

One can verify that the assumptions of Theorem 2.6.3 are satisfied in this example, namely the tangent
space to τ(J Φ̃′−1

θ (R×e1)) is transversal to the contact distribution, e1 ∈ h∗
2 ⊕ R∗ is a weak regular value

of an exact symplectic momentum map J Φ̃′

θ : P → h∗
2 ⊕R∗, and the restriction of the Lie group action of

Ke1 on J Φ̃′−1
θ (R×e1) is free and proper. However, by (2.6.3) the quotient manifold obtained in [70] is not

a symplectic manifold, so the formula in [70] for the symplectic orthogonal to TJ Φ̃′−1
θ (R×µ) is incorrect.

Furthermore, τ(J Φ̃′−1
θ (R×e1))/Ke1 is even-dimensional and can not be a contact manifold. Instead of

taking the quotient by the Lie subgroup Kµ, the correct approach requires using K[µ] under previously
considered regularity conditions on the Lie group actions and the momentum maps. △



Chapter 3

Energy-momentum methods

The classical energy-momentum method is a technique for analysing Hamiltonian systems on symplectic
manifolds, particularly in the neighbourhood near solutions whose evolution is induced by the Lie symme-
tries of the Hamiltonian system (see [18] for a historical introduction and [113] for one of its foundational
works). More specifically, it studies whether solutions approach or diverge from the solutions associated
with the Lie symmetries of the Hamiltonian system. The classical energy-momentum method is based
on the symplectic Marsden–Meyer–Weinstein reduction theory and stability analysis techniques.

The main ideas behind the energy-momentum method can be traced back to Routh, Poincaré, Lya-
punov, Arnold, Lewis, and Smale, among others (see [18, Section 3.14]). Then, the classical energy-
momentum method, devised and developed mainly by J.C. Simo and J.E. Marsden [113], was successfully
applied to a wide range of problems by numerous researchers [1, 84, 110, 112, 114, 127, 137, 152]. Over the
years, the energy-momentum method has been extended to deal with more general differential equations,
e.g. discrete systems [112, 138].

Recall that the symplectic Marsden–Meyer–Weinstein reduction theorem uses a symplectic Lie group
action Φ: G×P → P and a symplectic form ω ∈ Ω2(P ) to define a symplectic momentum map JΦ : P → g∗

[109], see Chapter 2. The momentum map allows for reducing the Hamiltonian system h on P to a
Hamiltonian system kµ on the manifold Pµ := JΦ−1(µ)/Gµ of smaller dimension for a weak regular value
µ ∈ g∗ of JΦ and an appropriate Lie subgroup Gµ ⊂ G acting freely and properly on JΦ−1(µ). Then,
there exists a canonical symplectic form, ωµ ∈ Ω2(Pµ) induced by ω, while kµ is univocally defined by
the relation kµ ◦ πµ := h on JΦ−1(µ), where πµ : JΦ−1(µ) → Pµ is the canonical projection. The reduced
Hamiltonian system admits the equilibrium points, i.e. stable points relative to the evolution given by
the Hamilton equations for kµ, that are the projection of not necessarily equilibrium points of the initial
Hamiltonian system generated by h. Such points in P are referred to as relative equilibrium points [113].
The geometric situation is illustrated schematically in Figure 3.1.

This final chapter presents applications of the previously established Marsden–Meyer–Weinstein re-
duction theorems to the study of stability through energy-momentum methods. These methods are for-
mulated in symplectic, cosymplectic, and k-polysymplectic frameworks, with emphasis on time-dependent
and non-autonomous systems. The analysis focuses on the characterisation and analysis of the so-called
relative equilibrium points via Lyapunov stability theory in reduced spaces introduced in Section 1.1.

Several physical systems are studied, including quantum models, the circular restricted three-body
problem, and systems of coupled vibrating strings. These examples illustrate the effectiveness of the
geometric approach in simplifying stability analysis and determining relative equilibrium points. The
results confirm the relevance of the extended Marsden–Meyer–Weinstein reduction theory in addressing
problems arising in mathematical physics.
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Figure 3.1: The visualisation of the main idea of the energy-momentum method. An example of a relative
equilibrium point that, after the reduction via πµ gives an unstable equilibrium point.

3.1 Symplectic time–dependent energy-momentum method

This section presents some generalisations of results concerning autonomous Hamiltonian systems to the
t-dependent realm. Then, it defines and analyses relative equilibrium points for t-dependent Hamiltonian
systems. Moreover, it establishes the relation between the manifold of relative equilibrium points and
foliated Lie systems. In particular, it is proven that Hamiltonian vector fields Xht are tangent to the
manifold of relative equilibrium points and give rise to a foliated Lie system [30]. Finally, the stability
of trajectories around an equilibrium point on the reduced space is analysed. It also gives the necessary
conditions on the function Hze

to obtain stability or asymptotic stability. Next, it links the properties
of stable points in Pµe and their associated relative equilibrium points in JΦ−1(µe) and P . Finally, an
example of an almost-rigid body is examined.

3.1.1 Symplectic geometry in a time-dependent setting

This subsection extends the notions introduced in Section 1.2 to a non-autonomous setting. The Hamil-
tonian function h, previously defined h : P → R, is now considered to be time-dependent, namely

h : (t, p) ∈ R × P 7→ h(t, p) =: ht(p) ∈ R .

Definition 3.1.1. A non-autonomous Ad∗-equivariant G-invariant symplectic Hamiltonian system is a
5-tuple (P, ω, h,Φ,JΦ), where Φ: G × P → P is a symplectic Lie group action with an Ad∗-equivariant
symplectic momentum map JΦ : P → g∗, and h is a time-dependent Hamiltonian function on R × P

satisfying h(t,Φ(g, p)) = h(t, p) for every g ∈ G, t ∈ R, and p ∈ P .

In this section, to simplify the notation, a 5-tuple (P, ω, h,Φ,JΦ) is hereafter assumed to be a non-
autonomous Ad∗-equivariant symplectic Hamiltonian system. The time-dependent Hamiltonian function
h : R × P → R gives rise to a t-dependent vector field on P of the form Xh : R × P → TP such that each
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vector field
Xht

: p ∈ P 7→ Xh(t, p) ∈ TP ,

with t ∈ R, is the Hamiltonian vector field associated with the Hamiltonian function ht : p ∈ P 7→
h(t, p) ∈ R. Then, a particular solution, p(t), to (P, ω, h,Φ,JΦ) is then defined as a solution of the
non-autonomous system of differential equations

dp
dt = Xht

(p) = Xh(t, p) , ∀t ∈ R .

Proposition 3.1.2 analyses the evolution of JΦ : P → g∗ under the dynamics given by Xht
. In par-

ticular, it shows that even in the time-dependent setting JΦ : P → g∗ is conserved along the flow of
Xht

.

Proposition 3.1.2. Let (P, ω, h,Φ,JΦ) be a non-autonomous G-invariant symplectic Hamiltonian sys-
tem. Then, JΦ is invariant relative to the evolution of h, i.e. if F : R × P → P is the flow of the
t-dependent vector field Xh : (t, p) ∈ R × P 7→ Xh(t, p) ∈ TP , then

JΦ(F (t, p)) = JΦ(p), ∀p ∈ P, ∀t ∈ R .

Proof. Define Ft : p ∈ P 7→ F (t, p) ∈ P for every t ∈ R. Then,

d
dtJ

Φ
ξ (Ft) = (Xht

JΦ
ξ ) ◦ Ft = {JΦ

ξ , ht} ◦ Ft = (−XJΦ
ξ
ht) ◦ Ft = −(ξPht) ◦ Ft = 0,∀ξ ∈ g,∀t ∈ R .

The final equality follows from the fact that each ht, for t ∈ R, is assumed to be G-invariant. Conse-
quently, JΦ is invariant under the evolution in time of the time-dependent symplectic Hamiltonian system
determined by h.

The G-invariance property of h under the symplectic Lie group action Φ: G × P → P also yields,
by Theorem 2.1.8 and Proposition 2.1.11, that F induces canonically a Hamiltonian flow on the reduced
phase space Pµ = JΦ−1(µ)/Gµ associated with a Hamiltonian function kµ : R × Pµ → R defined in a
unique way via the equation kµ(t, πµ(p)) = h(t, p) for every p ∈ JΦ−1(µ) and t ∈ R.

3.1.2 Relative equilibrium points

This subsection extends Poincaré’s terminology of a relative equilibrium point (see [2, p 306]) for a time-
independent Hamiltonian function to the realm of time-dependent Hamiltonian systems on symplectic
manifolds [54].

Definition 3.1.3. A point ze ∈ P is a relative equilibrium point of a symplectic time-dependent Hamil-
tonian system (P, ω, h,Φ,JΦ) if there exists a curve ξ(t) in g such that

(Xht
)ze

= (ξ(t)P )ze
, ∀t ∈ R.

Definition 3.1.3 recovers the classical notion of relative equilibrium in the autonomous case. The
following proposition justifies the terminology in the time-dependent setting.

Proposition 3.1.4. Let ze ∈ P be a relative equilibrium point of (P, ω, h,Φ,JΦ) and let µe := JΦ(ze).
Then, any solution p(t), to (P, ω, h,Φ,JΦ) passing through a relative equilibrium point ze ∈ P , namely
p(t0) = ze for some t0 ∈ R, projects onto the point πµe

(ze), that is

πµe
(p(t)) = πµe

(ze) ∀t ∈ R .

Proof. According to Proposition 3.1.2, each solution p(t) to the Hamilton equations of h is fully contained
within JΦ−1(µe) and projects, under πµe

, to a curve in the reduced manifold Pµe
= JΦ−1(µe)/Gµe

, where,
recall, Gµe

denotes the isotropy subgroup of µe under the coadjoint action. Such a curve is a solution to
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the Hamiltonian system (Pµe
, ωµe

, kµe
), where kµe

: R × Pµe
→ R is the unique time-dependent function

satisfying
kµe(t, πµe(p)) = h(t, p) , ∀p ∈ JΦ−1(µe) , ∀t ∈ R .

Since ze is a relative equilibrium point, one has

0 = TJΦ(Xht)ze = TJΦ(ξ(t)P )ze = (ξ(t))g∗(µe), ∀t ∈ R,

for some curve ξ(t) in g. Consequently, ξ(t) ∈ gµe
for every t ∈ R.

Note that πµe
(p(t)) is the integral curve of the t-dependent vector field Yµe

on Pµe
given by the

t-parametric family of vector fields on Pµe
of the form (Yµe

)t := πµe∗(Xht
) for every t ∈ R. Since

Xht
= ξ(t)P , for a certain curve ξ(t) contained in gµe

, then ((Yµe
)t)πµe (ze) = Tze

πµe
(ξ(t)P )ze

= 0 for
every t ∈ R. As a consequence, πµe(ze) is an equilibrium point of Yµe and the integral curve of the
t-dependent vector field Yµe

passing through πµe
(ze) is just πµe

(ze). Hence, πµe
(p(t)) = πµe

(ze) for every
t ∈ R and p(t) ∈ π−1

µe
(ze) for every t ∈ R. Then, the projection of every solution passing through ze is

the equilibrium point πµe(ze) of the reduced Hamiltonian system related to Yµe on Pµe .

Proposition 3.1.4 implies that every solution passing through a relative equilibrium ze with JΦ(ze) =
µe is of the form p(t) = g(t)ze for some curve g(t) in Gµe

. The converse also holds, as the following
proposition shows.

Proposition 3.1.5. If every solution p(t) to (P, ω, h,Φ,JΦ) passing through a point ze ∈ P , with µe :=
JΦ(ze), projects onto πµe

(ze), then ze is a relative equilibrium point.

Proof. Let p(t) be the solution to (P, ω, h,Φ,JΦ) passing through ze at t = t0. By assumption, πµe(p(t))
projects onto πµe

(ze). Consequently, there exists a curve g(t) in Gµe
such that p(t) = Φ(g(t), p(t0)) and

g(t0) = e. Therefore,

(Xht0
)ze

= dp
dt (t0) = d

dt

∣∣∣∣
t=t0

(Φ(g(t), ze)) = TeΦze

(
dg
dt (t0)

)
= (ν(t0))P (ze),

for a certain ν(t0) ∈ gµe . As this holds for all t0 ∈ R, the point ze is thus a relative equilibrium point.

Note that if a solution p(t) to (P, ω, h,Φ,JΦ) satisfies p(t) = g(t)p for some curve g(t) in G and p ∈ P ,
then Proposition 3.1.2 ensures that JΦ(p(t)) = JΦ(p). Hence, by Lemma 2.1.7, g(t) must belong to the
isotropy subgroup Gµe

of µe = JΦ(p).
The equivalence established above is summarised in the following corollary.

Corollary 3.1.6. The following two conditions are equivalent:

• The point ze ∈ P is a relative equilibrium point of (P, ω, h,Φ,JΦ),

• Every particular solution to (P, ω, h,Φ,JΦ) passing through ze ∈ P is of the form p(t) = g(t)ze for
a curve g(t) in Gµe .

In time-dependent Hamiltonian systems, the Hamiltonian function is not generally conserved along
solutions. In fact,

dh
dt = ∂h

∂t
+ {h, h} = ∂h

∂t
.

However, Corollary 3.1.6 implies that for solutions of the form p(t) = g(t)ze through a relative equilibrium
point ze, one has h(t, p(t)) = h(t, ze), although h does not need to be conserved. This complicates the
stability analysis of solutions to the reduced Hamiltonian system (Pµe , ωµe , kµe), since kµe is not, in
general, autonomous, and classical stability methods must be replaced by more general techniques (cf.
[113]).

The following result provides a more practical criterion for identifying relative equilibria.
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Theorem 3.1.7. (Time-Dependent Relative Equilibrium Theorem) A point ze ∈ P is a relative
equilibrium point of (P, ω, h,Φ,JΦ) if and only if there exists a curve ξ(t) in g such that ze is a critical
point of hξ,t : P → R given by

hξ,t := ht − [JΦ
ξ(t) − ⟨µe, ξ(t)⟩] = ht − ⟨JΦ − µe, ξ(t)⟩ ,

for every t ∈ R and µe := JΦ(ze).

Proof. Assume first that ze ∈ P is a relative equilibrium point. The definition of the momentum map
and Corollary 3.1.6 yield

(Xht
)ze

− (XJΦ
ξ(t)

)ze
= 0 , ∀t ∈ R .

Since (P, ω) is symplectic, the latter is equivalent to ze being a critical point of ht − JΦ
ξ(t) for every t ∈ R,

which implies that ze is a critical point of hξ,t for every t ∈ R, i.e. (dhξ,t)ze = 0.
Conversely, assume that ze ∈ P is a critical point of hξ,t. Then ze is a stationary point of the

dynamical system Xht−Jξ(t) for every t ∈ R. Hence, the evolution of every particular solution of Xh

passing through ze at time t0 is of the form g(t)ze for a certain curve in G with g(t0) = e and, in view of
Corollary 3.1.6, one has that ze is a relative equilibrium point.

In view of Theorem 3.1.7, to find relative equilibrium points, one can consider the family of functions
het : (p, ξ) ∈ P × g 7→ ht − ⟨JΦ − µe, ξ⟩ ∈ R, for every t ∈ R, and look for ze ∈ P such that (ze, ξ(t))
is a critical point of het for each t ∈ R and a certain curve ξ(t) in g. Evidently, ξ(t) plays the role of a
Lagrange multiplier depending on t. Note that the term ⟨JΦ − µe, ξ⟩ in het ensures that the described
relative equilibrium points belong to JΦ−1(µe).

3.1.3 Foliated Lie systems and relative equilibrium submanifolds

This subsection presents that the set of relative equilibrium points for a G-invariant time-dependent
Hamiltonian system (P, ω, h,Φ,JΦ) is given by a union of immersed submanifolds. Furthermore, assuming
a certain condition on the Lie algebra of fundamental vector fields of the action of G on P , it is proven
that the restriction of the original t-dependent Hamiltonian system to such immersed submanifolds can
be described via a foliated Lie system [30].

Proposition 3.1.8. Let ze be a relative equilibrium point of a G-invariant time-dependent Hamilto-
nian system (P, ω, h,Φ,JΦ). Then, Oze

:= Gze is an immersed submanifold of P consisting of relative
equilibrium points.

Proof. Since ze is a relative equilibrium point, every solution passing through ze is of the form z(t) = g(t)ze
for a certain curve g(t) in G. Since h(t,Φg(p)) = h(t, p) for every t ∈ R and p ∈ P , and also Φ∗

gω = ω for
every g ∈ G, one gets

ιXht
ω = dht ⇒ (ιY ιΦg∗Xht

ω)(gp) = [(Φ∗
gω)(Xht ,Φg−1∗Y )](p)

= ω(Xht
,Φg−1∗Y )(p) = ⟨dht,Φg−1∗Y ⟩(p) = ⟨dΦ∗

g−1ht, Y ⟩(gp) = ⟨dht, Y ⟩(gp),

for every Y ∈ X(P ), g ∈ G, p ∈ P and t ∈ R. Therefore, Φg∗Xht
= Xht

for every t ∈ R. Hence, every
solution z′(t) passing through gze is such that z(t) := g−1z′(t) is a solution to Xht

passing through ze.
Thus, z′(t) = gz(t) = gg(t)g−1gze. In other words, gze is a relative equilibrium point for (P, ω, h,Φ,JΦ).
Since Gze is the orbit of a Lie group action, it is an immersed submanifold of P (see [2, 95, 128]). Then,
the proposition follows.

Definition 3.1.9. A foliated Lie system [30] on a manifold P is a first-order system of differential
equations of the form

dp
dt = X(t, p), ∀t ∈ R, ∀p ∈ P ,
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such that

X(t, p) =
r∑

α=1
fα(t, p)Xα(p), ∀t ∈ R, ∀p ∈ P , (3.1.1)

where X1, . . . , Xr span an r-dimensional Lie algebra of vector fields, that is

[Xα, Xβ ] =
r∑

γ=1
cγαβXγ , α, β = 1, . . . , r ,

for certain structure constants cγαβ . The functions fα,t : p ∈ P 7→ fα(t, p) ∈ R, for every t ∈ R and
α = 1, . . . , r, are first integrals of X1, . . . , Xr. The Lie algebra ⟨X1, . . . , Xr⟩ is called a Vessiot–Guldberg
Lie algebra of the foliated Lie system X [52].

Foliated Lie systems naturally arise in the analysis of relative equilibrium points for G-invariant time-
dependent Hamiltonian systems when the dynamics is restricted to the union of group orbits through
such points, as the following theorem shows.

Theorem 3.1.10. Let ze be a relative equilibrium point of (P, ω, h,Φ,JΦ) and denote µe := JΦ(ze).
Suppose that Gµe

is abelian. Then, Xht
is tangent to Oze

:= Gze for every fixed t ∈ R, Furthermore, Xh

gives rise, by restriction, to a t-dependent vector field Xh|Oze
on Oze and Xh|Oze

becomes a foliated Lie
system with an abelian Vessiot–Guldberg Lie algebra of dimension equal to dim gµe

.

Proof. Assume that z′
e ∈ Oze

and denote µ′
e := JΦ(z′

e). The aim is to prove that Xh|Oze
exists and

can be written as (3.1.1) for certain functions gα, with α = 1, . . . , r, that depend only on time on the
submanifolds of the form Gµ′

e
z′
e, with Gµ′

e
denoting the isotropy subgroup of the coadjoint action of G

at µ′
e, and certain vector fields tangent to Oze

closing on a finite-dimensional Lie algebra of vector fields.
This establishes that Xh|Oze

defines a foliated Lie system.
By Proposition 3.1.8, a point z′

e is a relative equilibrium point. Then, every integral curve of Xh

passing through z′
e takes the form z(t) = g(t)z′

e for a certain curve g(t) in G. Hence, Xh is tangent to
Oze and thus restricts to it. Proposition 3.1.2 yields that JΦ is constant along integral curves of Xh.
Consequently, the integral curves of Xh passing through z′

e are contained in JΦ−1(µ′
e). Assuming that

z(t0) = z′
e, one has z(t) = g(t)z′

e for a curve g(t) in G with g(t0) = e. Then,

0 = d
dt

∣∣∣∣
t=t0

JΦ(z(t)) = d
dt

∣∣∣∣
t=t0

JΦ(g(t)z′
e) = d

dt

∣∣∣∣
t=t0

Ad∗
g(t)−1(JΦ(z′

e)) = [ξ(t0)]g∗(µ′
e) ,

where dg(t)/dt|t=t0 = ξ(t0). Therefore, ξ(t0) ∈ gµ′
e
.

Let {ξµe

1 , . . . , ξµe
r } be a basis for gµe . Since Gµe is abelian, it follows that gµe is abelian as well. Define

the vector fields on Oze
of the form

Yα(gze) := [Tze
Φg(ξµe

α )P ](ze) ,

for α = 1, . . . , r. Each Yα is well defined because Gze is a subgroup of Gµe , which acts freely on
JΦ−1(µe), so gze = g′ze implies g−1g′ ∈ Gze

= {e} and g′ = g. Since the action of Gµe
is assumed

to be free on JΦ−1(µe), the tangent vectors Y1(ze), . . . , Yr(ze) are linearly independent. Furthermore,
Yα(gze) = TzeΦg[Yα(ze)] for every g ∈ G, implies that Y1 ∧ . . . ∧ Yr ̸= 0 on Oze . As gµe is abelian, for
every gµe

∈ Gµe
, one gets

Yα(ggµe
ze) = Tgµeze

Φg ◦ Tze
Φgµe

[(ξµe
α )P (ze)] = Tgµeze

Φg(ξµe
α )P (gµe

ze) = (Adg(ξµe
α ))P (ggµe

ze) , (3.1.2)

for α = 1, . . . , r. Moreover, Adg(ξµe
α ), with α = 1, . . . , r, is a basis of the Lie algebra gJΦ(ggµeze). Thus,

Xh(t, z) =
r∑

α=1
fα(t, z)Yα(z) ,
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for every z ∈ Gµ′
e
z′
e for a unique set of functions f1(t, z), . . . , fr(t, z). If z′

e := gze and, since Gµe
is

abelian, it follows that Gµ′
e

= gGµe
g−1 is abelian too. Then,

Tz′
e
Φgµ′

e
(Adg(ξµe

α ))P (z′
e) = (Adgµ′

e
g(ξµe

α ))P (gµ′
e
z′
e) = (Adgg′

µe
(ξµe
α ))P (gµ′

e
z′
e) = (Adg(ξµe

α ))P (gµ′
e
z′
e) .

The last equality stems from g−1Gµ′
e
g = Gµe

and g−1gµ′
e
g = g′

µe
for some g′

µe
∈ Gµe

. Equation (3.1.2)
yields

Xh(t, gµ′
e
z′
e) = Tz′

e
Φgµ′

e
Xh(t, z′

e) =
r∑

α=1
fα(t, z′

e)Tz′
e
Φgµ′

e
(Adg(ξµe

α ))P (z′
e)

=
r∑

α=1
fα(t, z′

e)(Adg(ξµe
α ))P (gµ′

e
z′
e) =

r∑
α=1

fα(t, z′
e)Yα(gµ′

e
z′
e) ,

for every gµ′
e

∈ Gµ′
e
. Then,

Yα(gµ′
e
z′
e) = Y (gµ′

e
gze) = Y (gg−1gµ′

e
gze) = Y (gg′

µe
ze) = (Adg(ξµe

α ))P (gg′
µe
ze)

= (Adg(ξµe
α ))P (gµ′

e
gze) = (Adg(ξµe

α ))P (gµ′
e
z′
e) .

From (3.1.3) and the fact that Xh(t, gµ′
e
z′) =

∑r
α=1 fα(t, gµ′

e
z′)Yα(gµ′

e
z′), one has that fα(t, z′

e) =
fα(t, gµ′

e
z′
e) for every gµ′

e
∈ Gµ′

e
and α = 1, . . . , r. Consequently,

Xh(t, z) =
r∑

α=1
fα(t, z)Yα(z), ∀z ∈ Oze

, ∀t ∈ R ,

for some functions f1, . . . , fr on R×Oze
that depend only on t when restricted to Gµ′

e
z′
e. The vector fields

Y1, . . . , Yr are tangent to the submanifolds Gµ′
e
z′
e and span an abelian Lie algebra. Since the functions

f1, . . . , fr are just t-dependent on the submanifolds Gµ′
e
z′
e, they become first integrals of the vector fields

in ⟨Y1, . . . , Yr⟩. Therefore, Xh|Oz
becomes a foliated Lie system with an abelian Vessiot–Guldberg Lie

algebra isomorphic to gµe
.

3.1.4 Stability on the reduced symplectic manifold

Theorem 3.1.7 characterises the relative equilibrium points of G-invariant time-dependent Hamiltonian
systems as the extrema of the Hamiltonian function constrained to level sets of the symplectic momentum
map. Accordingly, the function

hξ,t := ht − ⟨JΦ − µe, ξ(t)⟩

has to be optimised and ξ(t) ∈ g is a t-dependent Lagrange multiplier.
The study of the stability of equilibrium points in JΦ−1(µe)/Gµe

for non-autonomous Hamiltonian
systems requires the use of a t-dependent Lyapunov stability analysis. This is more complicated than
studying the stability of autonomous Hamiltonian systems, which frequently relies on searching for a
minimum of the Hamiltonian [113], although such a condition is not always necessary [2, p 207]. To address
the non-autonomous Hamiltonians, Theorem 1.1.6 is applied along with a more general approach, which
easily retrieves the standard results used in the energy-momentum method for autonomous Hamiltonian
systems.

Let ze be a relative equilibrium point of (P, ω, h,Φ,JΦ). Define the function hze
: R × P → R as

hze(t, z) := h(t, z) − h(t, ze), ∀(t, z) ∈ R × P .

Then, hze
(t, ze) = 0 for every t ∈ R. Let z(t) denote a solution to the Hamiltonian system passing

through some z ∈ P at time t0. Then,

d
dt

∣∣∣∣
t=t0

hze
(t, z(t)) := d

dt

∣∣∣∣
t=t0

h(t, z(t)) − d
dt

∣∣∣∣
t=t0

h(t, ze) .
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Figure 3.2: A visualisation of a foliated Lie system Xh|Oze
.

Recall that the time derivative of a Hamiltonian function h along the solutions of its Hamilton equations
is given by

dh
dt = ∂h

∂t
+ {ht, ht} = ∂h

∂t
.

Consequently,
d
dt

∣∣∣∣
t=t0

hze(t, z(t)) := ∂h

∂t
(t0, z) − ∂h

∂t
(t0, ze) = ∂hze

∂t
(t0, z) .

Note that hze
(t, gz) = hze

(t, z) for every g ∈ G and every (t, z) ∈ R × P , which shows that hze
(t, z) is

G-invariant. Then, one can define a function Hze
: R × Pµe

→ R of the form

Hze
(t, [z]) := hze

(t, z), ∀z ∈ JΦ−1(µe), ∀t ∈ R ,

where [z] stands for the equivalence class of z ∈ JΦ−1(µe) in JΦ−1(µe)/Gµe . Since Hze(t, [z]) − kµe(t, [z])
depends only on time, the point [ze] is an equilibrium point of Hze

. Furthermore,

d
dt

∣∣∣∣
t=t0

Hze
(t, [z(t)]) = ∂hze

∂t
(t0, z), ∀t0 ∈ R, ∀[z] ∈ JΦ−1(µe)/Gµe

.

The function Hze is used to study the stability of the point [ze] in the reduced space Pµe . In particular,
the conditions on h to ensure when Hze

gives rise to different types of stable equilibrium points at [ze]
are provided. With this aim, consider a coordinate system {x1, . . . , xn} on an open neighbourhood U of
[ze] ∈ Pµe

such that xi([ze]) = 0 for i = 1, . . . , n. Let α = (α1, . . . , αn), with α1, . . . , αn ∈ N ∪ {0}, be a
multi-index with n := dim JΦ−1(µe)/Gµe and let |α| :=

∑n
i=1 αi and Dα := ∂α1

x1
· · · ∂αn

xn
.

Lemma 3.1.11. Let M(t) denote the t-dependent parametric family of n× n matrices defined by

[M(t)]ji := 1
2
∂2Hze

∂xi∂xj
(t, [ze]), ∀t ∈ R, i, j = 1, . . . , n,

and let spec(M(t)) denote the spectrum of M(t) at t ∈ R. Suppose that there exists a constant λ such
that

0 < λ < inf
t∈It0

min spec(M(t)) ,
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for some t0 ∈ R. Moreover, assume that there exists a constant c ∈ R satisfying

c ≥ 1
6 sup
t∈It0

max
|α|=3

max
[y]∈B

|DαHze
(t, [y])|

for a certain compact neighbourhood B of [ze]. Then, there exists an open neighbourhood U of [ze] where
the function Hze

: R × U → R is lpdf from t0. If, in addition, there exists a constant Λ ∈ R such that

sup
t∈It0

max spec(M(t)) < Λ ,

then Hze
: R × U → R is a decrescent function from t0.

Proof. Since ze is a relative equilibrium point of (P, ω, h,Φ,JΦ), it follows that Hze
(t, ·) admits a critical

point at [ze] for every t ∈ R. By the Taylor expansion of Hze
(t, ·) around [ze] and the fact that ze is a

relative equilibrium point of each hze(t, ·) for t ∈ R, one gets

Hze
(t, [z]) = 1

2

n∑
i,j=1

∂2Hze

∂xi∂xj
(t, [ze])xixj +Rt([z]), [z] ∈ U, t ∈ R,

where Rt([z]) denotes the third-order remainder function of the Taylor expansion for Hze
(t, [z]) at a

fixed t ∈ R around [ze]. The coefficients of the quadratic part coincide with the entries of the matrix
M(t) in coordinates {x1, . . . , xn}. Since M(t) is symmetric, it can be diagonalised via an orthogonal
transformation Ot for each t ∈ R. Let λ1(t), . . . , λn(t) be the (possibly repeated) n eigenvalues of
M(t) and let w = (w1, . . . , wn)T be the coordinate vector corresponding to z = (x1, . . . , xn)T in the
diagonalising basis induced by Ot, namely w = Otz. Although the explicit construction of Ot is not
required, it can be obtained by forming orthogonal bases of eigenvectors of M(t) at each time t. Then,
zTM(t)z = wTD(t)w, where D(t) = diag(λ1(t), . . . , λn(t)). Thus, wTD(t)w =

∑n
i=1 λi(t)w2

i and

1
2

n∑
i,j=1

∂2Hze

∂xi∂xj
(t, [ze])xixj = zTM(t)z = wTD(t)w ≥ λ(t)∥w∥2,

where λ(t) := mini=1,...,nλi(t) for each t ∈ R. Using the assumption on the existence of λ > 0 and the
fact that Ot is orthogonal, it follows that

1
2

n∑
i,j=1

∂2Hze

∂xi∂xj
(t, [ze])xixj ≥ λ(t)∥z∥2 ≥ λ∥z∥2

on the neighbourhood U .
The third-order Taylor remainder Rt([z]) around [ze] can be expressed as

Rt([z]) =
∑

|β|=3

Bβ(t, [z])zβ , zβ := xβ1
1 · · ·xβn

n ,

at points [z] of the open coordinate subset U , t ∈ R, and for certain functions Bβ : R × U → R.
Note that Rt([z]) is not a third-degree polynomial in general, due to the fact that the functions

Bβ(t, [z]) depend on the coordinates of [z]. Although Rt([z]) can be bounded by a third-order polynomial
in the coordinates of [z] for each fixed time t, Ot, the open subsets Ut, and, in addition, the coefficients
of the polynomials used to bound Rt([z]) depend on t. This may potentially lead to problems since, for
example, to bound Rt([z]) for every t ∈ R, one has to restrict to

⋂
t∈It0

Ut, which may give rise to a single
point. An alternative approach is presented, more appropriate but complicated, to bound all Rt([z]) for
t ∈ It0 .

The coefficients Bβ satisfy

|Bβ(t, [z])| ≤ 1
3! max

|α|=3
max
[y]∈C

|DαHze(t, [y])|, ∀[z] ∈ C ,
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on any compact neighbourhood C of [ze] for each t ∈ R. By the assumption, there exists a constant c > 0
such that

c ≥ 1
3! max

|α|=3
max
y∈B

|DαHze(t, [y])|, ∀t ∈ It0 ,

for some compact neighbourhood B of [ze]. The aim now is to prove that

1
2

n∑
i,j=1

∂2Hze

∂xi∂xj
(t, [ze])xixj +Rt([z]) − 1

2λ∥z∥2

is bigger or equal to zero for every t ∈ It0 and every [z] ∈ U for a certain open neighbourhood U of [ze].
Recall that there exists λ < inft∈It0 λ(t) and note that λi(t) − λ ≥ λ(t) − λ and λ(t) − λ is larger than a
certain properly chosen λ′ > 0 for every t ∈ It0 . Then,

1
2

n∑
i,j=1

∂2Hze

∂xi∂xj
(t, [ze])xixj − λ∥z∥2 = wTdiag(λ1(t) − λ, . . . , λn(t) − λ)w ≥ λ′∥w∥2 = λ′∥z∥2 .

Then, the first bracket in the following expression1
2

n∑
i,j=1

∂2Hze

∂xi∂xj
(t, [ze])xixj − λ∥z∥2 − λ′∥z∥2

+
(
λ′∥z∥2 +Rt([z])

)
,

is larger than or equal to zero on U . To prove the same for the second bracket on a neighbourhood of
[ze], note that

|Rt([z])| ≤
∑

|β|=3

|Bβ(t, [z])||x1|β1 · · · |xn|βn ≤ c
∑

|β|=3

|x1|β1 · · · |xn|βn , ∀t ∈ It0 ,

on B. The function
λ′∥z∥2 − c

∑
|β|=3

λβzβ ,

where the {λβ} is any set of constants such that λβ ∈ {±1} for every multi-index β with |β| = 3, admits
a minimum at [ze] as follows from standard differential calculus arguments. Consequently, the above
function is bigger than or equal to zero on a neighbourhood U{λβ} of zero. Considering the intersection
of all the possible open subsets U{λβ} for every set of constants λβ , one obtains an open neighbourhood
U of [ze]. Assume that [z] ∈ U satisfies

0 > λ′∥z∥2 − c
∑

|β|=3

|x1|β1 · · · |xn|βn .

Then,

0 > λ′∥z∥2 − c
∑

|β|=3

sgn
(

n∏
i=1

xβi

i

)
zβ ,

where sgn(a) is the sign of the constant a. Then, [z] cannot belong to U . In other words,

λ′∥z∥2 − c
∑

|β|=3

|x1|β1 · · · |xn|βn ≥ 0 , (3.1.3)

on U . Since |Rt([z])| ≤ c
∑

|β|=3 |x1|β1 · · · |xn|βn on U and t ∈ It0 , then

λ′∥z∥2 +Rt([z]) ≥ 0

for every [z] ∈ U and t ∈ It0 . Finally, one gets that

Hze
(t, [z]) ≥ λ∥z∥2, ∀[z] ∈ U , ∀t ∈ It0 .
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Hence, the restriction of Hze
: R × Pµe

→ R to It0 × U is a lpdf function.
Now, the orthogonal change of variables Ot allows for writing

1
2

n∑
i,j=1

∂2Hze

∂xi∂xj
(t, [ze])xixj = zTM(t)z = wTD(t)w ≤ Λ(t)∥w∥2 = Λ(t)∥z∥2 ,

for Λ(t) := maxi=1,...,nλi(t) and every t ∈ R. By assumption, Λ > Λ(t) for every t ∈ It0 . Hence,

1
2

n∑
i,j=1

∂2Hze

∂xi∂xj
(t, [ze])xixj ≤ Λ∥z∥2, ∀t ∈ It0 .

Recall the expression (3.1.3) for every t ∈ It0 and [z] ∈ U . Then,

Hze
(t, [z]) ≤ Λ∥z∥2 + λ′∥z∥2 ,

and Hze
is decrescent on It0 × U .

The eigenvalues of the matrix M(t) depend on the choice of coordinates in a neighbourhood of [ze]. By
choosing a suitable coordinate system, the matrix M(t) may be simplified at certain values of t ∈ R, for
example, by expressing M(t) in a canonical form. However, it is generally not possible to simplify M(t)
simultaneously at all times t ∈ It0 . Although a time-dependent change of coordinates may allow one to
achieve such a simplification for all t, constructing such a transformation is typically difficult and may not
be compatible with the symplectic framework, which is formulated in terms of time-independent changes
of variables. Therefore, attention is restricted to determining conditions relative to a fixed coordinate
system.

The above lemma implies the following.

Theorem 3.1.12. Suppose that there exist λ, c > 0 and an open neighbourhood U of [ze] ∈ Pµe
so that

the following hold

λ < min(spec(M(t))), c ≥ 1
3! max

|α|=3
sup

[x]∈U
|DαHze(t, [x])|, ∂Hze

∂t

∣∣∣∣
U

≤ 0,

for every t ∈ It0 . Then, [ze] is a stable equilibrium point of the Hamiltonian system kµe on JΦ−1(µe)/Gµe

from t0. Furthermore, if there exists Λ such that max(spec(M(t))) < Λ for every t ∈ It0 , then [ze] is
uniformly stable from t0.

Proof. Lemma 3.1.11 ensures that Hze
(t, [z]) is a locally positive definite C 1-function. Since ∂Hze

/∂t ≤ 0,
Theorem 1.1.6, point 1., implies that [ze] is stable from t0. If additionally Λ exists, then again Theorem
1.1.6, point 2., yields that [ze] is uniformly stable from t0.

For geometric purposes, the following corollary is stated as a consequence of Theorem 3.1.12, assuming
a stronger condition on the derivatives of Hze

. In particular, Corollary 3.1.13 establishes coordinate-
independent criteria ensuring the stability of [ze].

Corollary 3.1.13. If there exist λ, c > 0 and an open neighbourhood U of [ze] ∈ Pµe
satisfying

λ < min (spec (M(t))) , c ≥ 1
3! max

1≤|α|≤3
sup

[x]∈U
|DαHze

(t, [x])| , ∂Hze

∂t

∣∣∣∣
U

≤ 0 ,

for every t ∈ It0 , then [ze] is a uniformly stable equilibrium point of the Hamiltonian system kµe on
JΦ−1(µe)/Gµe

from t0.

The existence of c in Corollary 3.1.13 implies that max(spec(M(t))) for every t ∈ It0 is bounded from
above, namely

vTM(t)v ≤
n∑

i,j=1
|vivjM j

i (t)| ≤
n∑

i,j=1
|vi||vj ||M i

j(t)| ≤ 6c
n∑

i,j=1
∥v∥2 = 6cn2∥v∥2, ∀v ∈ Rn .
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Hence, vTM(t)v < ΛvT v for v ∈ Rn\{0} and Λ > 6cn2.
Note that previous results use a distance defined on an open neighbourhood of [ze], induced by a

standard norm on Rn. Since the topology induced by this norm on the open neighbourhood of [ze]
coincides with the one induced by any other Riemannian metric on the neighbourhood, the presented
results concerning the stability of [ze] are independent of the used metric.

The conditions formulated in Corollary 3.1.13 admit a geometric interpretation. Specifically, if these
conditions are satisfied within a given coordinate chart on a neighbourhood of [ze], then they remain
valid under any other such coordinate chart, possibly with modified values of the constants λ and c.
Furthermore, the same observations partially extend to the setting of Theorem 3.1.12. In particular,
the requirement involving the time derivative of Hze is intrinsically defined and thus independent of the
choice of coordinates on Pµe

. In contrast, the remaining conditions in Corollary 3.1.13 require a more
detailed analysis.

Lemma 3.1.14. If the t-dependent matrix M(t), which is defined in a local coordinate system {x1, . . . , xn}
on an open neighbourhood of an equilibrium point [ze] ∈ Pµe

, satisfies that 0 < λ < inft∈It0 min specM(t)
for some λ (resp. supt∈It0 max specM(t) < Λ for some Λ), then MB′(t), defined as M(t) but in
another coordinate system B′ := {x̃1, . . . , x̃n} on another neighbourhood in Pµe

of [ze], satisfies that
0 < λ′ < inft∈It0 min specMB′(t) for some λ′ (resp. supt∈It0 max specMB′(t) < Λ′ for some Λ′).

Proof. Since every symmetric matrix can be orthogonally diagonalised via a t-dependent orthogonal
matrix Ot, the condition for M(t) amounts to the fact that

vTM(t)v = vTOTt D(t)Otv > λvTOTt Otv = λvT v, ∀v ∈ Rn\{0}, ∀t ∈ It0 ,

where D(t) is a diagonal matrix consisting the eigenvalues of M(t).
Since [ze] is an equilibrium point of Hze , there exists an invertible n× n time-independent matrix A

such that
MB′(t) = ATM(t)A, ∀t ∈ R .

Hence,
vTMB′(t)v = (Av)TM(t)Av > λ(Av)TAv, ∀v ∈ Rn\{0}, ∀t ∈ It0 .

Since A is invertible, the positive function f : v ∈ Sn−1 7→ (Av)T (Av) ∈ R on the ball Sn−1 = {v ∈ Rn |
∥v∥ :=

√
vT v = 1}, which is compact, admits a maximum and a minimum MS ,mS > 0, respectively.

Then, (Av)T (Av) ≥ mSv
T v for every v ∈ Rn. Thus,

vTMB′(t)v > λmSv
T v, ∀v ∈ Rn\{0}, ∀t ∈ It0 .

Similarly, since (Av)T (Av) ≤ MSv
T v for every v ∈ Rn, then, the existence of Λ implies

vTMB′(t)v < ΛMSv
T v, ∀v ∈ Rn\{0}, ∀t ∈ It0 .

Therefore, choosing λ′ = λmS and Λ′ = ΛMS , the lemma follows.

Note that the condition for c in Corollary 3.1.13 is independent of the particular choice of a coordinate
system. The same condition holds after possibly modifying the constant to some c′ > 0 and restricting
attention to a smaller open neighbourhood of [ze] where both the original and the new coordinate systems
are defined.

3.1.5 Stability, reduced symplectic manifold, and relative equilibrium points

The energy-momentum method aims to determine conditions on the Hamiltonian function h in a neigh-
bourhood of a relative equilibrium point ze ∈ P that ensure a particular type of stability for the cor-
responding equilibrium point in the reduced phase space Pµe

, associated with the reduced Hamiltonian
system kµe

. In particular, the conditions are provided on the family of functions

htµe
: z ∈ JΦ−1(µe) 7→ h(t, z) ∈ R ,
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and ∂htµe
/∂t with t ∈ It0 , such that the hypothesis of Theorem 3.1.12 and/or Corollary 3.1.13 are satisfied.

Rather than examining the family of matrices M(t), the analysis is based on conditions formulated in
terms of the functions hξ,t for t ∈ It0 , which is more practical since these functions are defined on the
original manifold P rather than on a quotient space.

The ideas used in the proofs of Proposition 3.1.15 and Corollary 3.1.16 below are a generalisation of
the t-independent formulation of the classical energy-momentum method developed in [113]. First, define

(δ2f)(X,Y ) := ιY d(ιXdf) , (3.1.4)

for every X,Y ∈ X(P ) and f ∈ C ∞(P ). If dfp = 0 for a certain p ∈ P , then [δ2f(X,Y )](p) depends only
on the values of X,Y at p and gives rise to a well-defined bilinear map on TpP of the form

(δ2f)p(v, w) := (ιY d(ιXdf))(p), ∀v, w ∈ TpP,

for X,Y ∈ X(P ) such that X(p) = v and Y (p) = w. Moreover, (δ2f)p becomes a symmetric bilinear
form.

Proposition 3.1.15. Let ze ∈ P be a relative equilibrium point for (P, ω, h,Φ,JΦ). Then,

(δ2hξ,t)ze((ηP )ze , vze) = 0, ∀η ∈ g, ∀vze ∈ TzeJΦ−1(µe), ∀t ∈ R .

Proof. The G-invariance of h : R×P → R, together with the Ad∗-equivariance of the symplectic momen-
tum map JΦ : P → g∗, imply

hξ,t(gp) = h(t, gp) − ⟨JΦ(gp), ξ(t)⟩ + ⟨µe, ξ(t)⟩ = h(t, p) − ⟨Ad∗
g−1(JΦ(p)), ξ(t)⟩ + ⟨µe, ξ(t)⟩

and
hξ,t(gp) = h(t, p) − ⟨JΦ(p),Adg−1(ξ(t))⟩ + ⟨µe, ξ(t)⟩,

for any g ∈ G and p ∈ P . Substituting g := exp(sη), for some η ∈ g, and differentiating with respect to
the parameter s, one obtains

(ιηP
dhξ,t)(p) = −

〈
JΦ(p), d

ds

∣∣∣∣
s=0

Adexp(−sη)(ξ(t))
〉

= ⟨JΦ(p), [η, ξ(t)]⟩.

Taking variations relative to p ∈ P , evaluating at ze, and using that (dhξ,t)ze
= 0 since ze ∈ P is a critical

point of hξ,t, it follows that

(δ2hξ,t)ze
((ηP )ze

, vze
) = ⟨Tze

JΦ(vze
), [η, ξ(t)]⟩ .

This vanishes if Tze
JΦ(vze

) = 0, i.e. when vze
∈ ker Tze

JΦ = Tze
JΦ−1(µe).

Proposition 3.1.15 and Lemma 2.1.7 yield the following.

Corollary 3.1.16. The mapping (δ2hξ,t)ze vanishes identically on Tze(Gµeze) for every t ∈ R.

Proof. By Lemma 2.1.7 one has that Tze(Gµeze) = Tze(Gze) ∩ TzeJΦ−1(µe). Since Tze(Gµeze) ⊂
Tze

(Gze), the result follows from (3.1.15) by taking vze
:= (ξP )ze

for some ξ ∈ gµe
.

Consider the particular case of the presented theory, where there is no time dependence. Then hξ,t

becomes just hξ. By Corollary 3.1.16, the formal stability of a symplectic relative equilibrium point
requires positive definiteness of the second variation (δ2hξ)ze

on Tze
JΦ−1(µe) modulo the so-called gauge

directions
Tze(Gµeze) = {(ηP )ze | η ∈ gµe} .

In summary, the formal stability of a symplectic relative equilibrium point in an autonomous setting is
equivalent to

(δ2hξ)ze
(v, v) > 0, ∀v ∈ S\{0} ,
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for some subspace S ⊂ Tze
JΦ−1(µe) supplementary to Tze

(Gµe
ze).

The fact that the definiteness of the second variation is to be examined restricted to the quotient
space S is an essential aspect of the energy-momentum method. This is justified by the standard test
for constrained optimisation problems together with Corollary 3.1.16. The type of stability one gets in
Pµe

is time-independent Lyapunov stability, while in P it is orbital stability of the symplectic relative
equilibrium orbit Φ(exp(tξ), ze), see [113] for more details. The step-by-step verification of a relative
equilibrium point ze ∈ P together with its formal stability, proceeds as follows:

1. Momentum map - Compute a symplectic momentum map JΦ : P → g∗ associated with a symplectic
Lie group action Φ: G× P → P .

2. First variation - Define hξ := h− [JΦ
ξ − ⟨µe, ξ⟩] and determine ze ∈ P and ξ ∈ g such that

⟨(dhξ)ze
, vze

⟩ = 0 , JΦ(ze) − µe = 0 , ∀vze
∈ Tze

P .

3. Admissible variations for second variation test - Choose a linear subspace S ⊂ Tze
P such that

Tze
JΦ(vze

) = 0, ∀vze
∈ S, S ⊕ Tze

(Gµe
ze) = Tze

JΦ−1(µe) .

4. Check δ2hξ for definiteness on S, namely

(δ2hξ)ze
(v, v) > 0 ,

for all v ∈ S \ {0}. The positivity of the second variation on S implies the formal stability of the
relative equilibrium point ze ∈ P .

The above procedure summarises the classical energy–momentum method originally established in [113].
In particular, the time-independent case of the presented time-dependent energy-momentum method
recovers these classical results as a direct consequence.

Now, continuing with the non-autonomous symplectic Hamiltonian systems, recall that it is assumed
that Gµe

acts freely and properly on JΦ−1(µe). Consider a set of coordinates {z1, . . . , zq} on an open
subset A ⊂ JΦ−1(µe) containing ze. Let {π∗

µe
x1, . . . , π

∗
µe
xn} be the coordinates on A given by the

pullback to A of certain coordinates {x1 . . . , xn} on O := πµe
(A) 1 and let {y1, . . . , ys} be additional

coordinates giving rise to a coordinate system {z1, . . . , zq} on A. Due to the Gµe
-invariance of hµe

:=
h ◦ iµe : JΦ−1(µe) → R, where iµe : JΦ−1(µe) → JΦ−1(µe)/Gµe is the natural embedding, one has that
there exists a constant c > 0 such that

c ≥ 1
3! max

3=|ϑ|
sup
z∈A

|Dϑhµe
(t, y)|, ∀t ∈ It0 ,

where ϑ is a multi-index ϑ := (ϑ1, . . . , ϑq), if and only if

c ≥ 1
3! max

3=|α|
sup
x∈O

|DαHze(t, x)|, ∀t ∈ It0 , (3.1.5)

for O, which is an open neighbourhood of [ze] since πµe
is an open map. Indeed, since hµe

is constant on the
submanifolds where x1, . . . , xn take constant values, it follows that hµe(t, x1, . . . , xn, y1, . . . , ys)−h(t, ze) =
Hze

(t, x1, . . . , xn). Consequently, Equation (3.1.5) holds.
Consider again the coordinate system {z1, . . . , zq} on JΦ−1(µe). Define [M̂(t)] as the t-dependent

q × q matrix of the form

[M̂(t)]ji := ∂2hµe

∂zi∂zj
(t, ze), i, j = 1, . . . , q .

1To simplify the notation, {x1, . . . , xn} denotes a set of coordinates on a certain neighbourhood of [ze] and their pull-
backs to JΦ−1(µe) via πµe .
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By Lemma 3.1.14, the existence of constants λ > 0 and Λ > 0 is equivalent, geometrically, to the condition
that the t-dependent bilinear symmetric form K(t) : T[ze]Pµe

× T[ze]Pµe
→ R defined as

K(t) = 1
2

n∑
i,j=1

∂2Hze

∂xi∂xj
(t, [ze])dxi|[ze] ⊗ dxj |[ze] ,

satisfies that
K(t)(w,w) > λ(w|w)B, ∀w ∈ T[ze]Pµe\{0}, ∀t ∈ It0 , (3.1.6)

where (·|·)B is the Euclidean inner product on T[ze]Pµe , for which the basis {∂x1 , . . . , ∂xn} is orthonormal.
Indeed, if v is the column vector describing the coordinates of w ∈ T[ze]Pµe

in the chosen orthonormal
basis, then condition (3.1.6) can be rewritten as

K(t)(w,w) = vTM(t)v > λvT v = λ(w|w)B, ∀w ∈ T[ze]Pµe
\{0}, ∀t ∈ It0 .

Note that this condition is independent of the choice of inner product. Namely, for any other inner
product (·|·)B′ on T[ze]Pµe

, there exists mi,ms > 0 such that ms(w|w)B′ ≥ (w|w)B ≥ mi(w|w)B′ for all
w ∈ T[ze]Pµe

. Consequently, if condition (3.1.6) is satisfied for some inner product in T[ze]Pµe
, then it

is also satisfied for any other inner product in T[ze]Pµe with another positive λ. An analogous argument
applies to the relation Λ(w|w)B > K(t)(w,w) for some Λ > 0, for all t ∈ It0 and every w ∈ T[ze]Pµe

\{0}.
The introduction of the inner product (·|·)B is motivated both theoretically and practically. From a

computational perspective, in order to verify whether the eigenvalues of the t-dependent matrix M(t) can
be bounded from below simultaneously for every time t ∈ It0 , it is convenient to use the eigenvalues of the
matrix representation of K(t) and (·|·)B, which are geometric objects. Since the choice of inner product
on the finite-dimensional vector space T[ze]Pµe

is arbitrary, choosing (·|·)B simplifies the verification of
the condition.

Condition (3.1.6) can be verified through an object defined directly on the level set JΦ−1(µe). Since
hµe

admits a critical point at each relative equilibrium point ze ∈ JΦ−1(µe), one can define a t-dependent
symmetric bilinear form M̂(t) : TzeJΦ−1(µe) × TzeJΦ−1(µe) → R, as follows

M̂(t) := 1
2

q∑
i,j=1

∂2hµe

∂zi∂zj
(t, ze)dzi|ze ⊗ dzj |ze , ∀t ∈ It0 ,

where B = {z1, . . . , zq} is any coordinate system in an open neighbourhood of ze ∈ JΦ−1(µe).
Consider the coordinate system {x1, . . . , xn, y1, . . . , ys} on the open neighbourhood ze in JΦ−1(µe)

defined above. In this coordinate system, one has

∂2hµe

∂xk∂yj
(t, ze) = ∂2hµe

∂yi∂yj
(t, ze) = 0, i, j = 1, . . . , s, k = 1, . . . , n, ∀t ∈ R.

In the chosen coordinate system, one has π∗
µe
K(t) = M̂(t) and

Tze
(Gµe

ze) ⊂ ker M̂(t) ∀t ∈ R .

This inclusion holds for any other coordinate system as well. Consequently, the bilinear form K(t) can
be considered as the induced bilinear form by M̂(t) on the quotient space

Sze := TzeJΦ−1(µe)/Tze(Gµeze) ≃ T[ze]Pµe .

Therefore, the conditions imposed on M(t) can be equivalently verified through the bilinear form M̂(t)
defined on JΦ−1(µe). Furthermore, note that if the dimension of ker M̂(t) is greater than dim Tze(Gµe ·ze),
then the hypothesis of Lemma 3.1.11 do not hold.

Corollary 3.1.13 together with the previous remarks yield the following theorem.



130 Chapter 3. Energy-momentum methods

Theorem 3.1.17. Assume that there exist λ, c > 0 and an open coordinate neighbourhood A ⊂ JΦ−1(µe)
of ze so that

λ < min(spec([M̂(t)]|Sze
), c ≥ 1

3! max
1≤|ϑ|≤3

sup
y∈A

|Dϑhµe
(t, y)|, ∂hµe

∂t

∣∣∣∣
A

≤ 0, (3.1.7)

for every t ∈ It0 . Then, [ze] ∈ Pµe
is a uniformly stable equilibrium point of the Hamiltonian system kµe

on JΦ−1(µe)/Gµe from t0.

Recall that in the case of an autonomous Hamiltonian, the third condition in (3.1.7) is immediately
satisfied. Moreover, still in the case of autonomous systems, if h is sufficiently smooth, there always exists
a constant c and a suitable open neighbourhood A of ze such that the second condition in (3.1.7) holds.
Finally, the condition on λ reduces to the standard requirement on the positiveness of the eigenvalues
of the matrix M̂ , which is time-independent by assumption, up to the subspaces on which it vanishes
identically due to Corollary 3.1.16 (cf. [113]).

In the non-autonomous case, the second condition in (3.1.7) can also be readily verified for suffi-
ciently smooth functions h whose spatial partial derivatives remain uniformly bounded in time; thus, this
requirement is generally easy to satisfy.

To relate the properties of hξ,t withHµe
for the study of relative equilibrium points and their associated

equilibria in Pµe
, observe that hξ,t has a critical point at each relative equilibrium point ze ∈ P for every

t ∈ R. Hence, one can define the t-dependent bilinear symmetric form on TzeP given by

Tze(t) := 1
2

χ∑
i,j=1

∂2hξ,t
∂ui∂uj

(t, ze)dui|ze ⊗ duj |ze , ∀t ∈ R,

where u1, . . . , uχ, with χ = dimP , is a coordinate system on an open neighbourhood of ze in P . The
objective is to determine the relation between Tze

(t) and the matrix M̂(t), so that M̂(t) can be studied
via Tze(t). Importantly, Tze(t) is a geometric object that is straightforward to construct, being defined
directly on Tze

P and depending only on h and JΦ.
Suppose that JΦ(ze) = µe is a regular value of a symplectic momentum map JΦ : P → g∗. Then

its coordinate functions µ1, . . . , µr form dim g functionally independent functions on P . Consider a
coordinate system (x1, . . . , xn, y1, . . . , ys) on a neighbourhood of ze in JΦ−1(µe), as previously defined.
These functions can be smoothly extended to an open neighbourhood of ze in P . By regularity of JΦ, the
differentials dµ1, . . . ,dµr are linearly independent at ze, so that (x1, . . . , xn, y1, . . . , ys, µ1, . . . , µr) forms
a local coordinate system on P around ze.

Taking this into account, one obtains that

∂ht
∂yi

∣∣∣∣
JΦ−1(µe)

= 0, ∂⟨JΦ − µe, ξ(t)⟩
∂yi

= 0, ∀t ∈ R, i = 1, . . . , s .

It is relevant to recall that the derivatives ∂ht/∂yi, with i = 1, . . . , s, do not need to vanish away from
JΦ−1(µe), since y1, . . . , ys were defined as a smooth extension beyond JΦ−1(µe) without imposing any
specific properties away of JΦ−1(µe). Furthermore,(

∂

∂yj

∂ht
∂yi

) ∣∣∣∣
JΦ−1(µe)

= 0,
(

∂

∂xk

∂ht
∂yi

) ∣∣∣∣
JΦ−1(µe)

= 0 ,

∂

∂yj

∂⟨JΦ − µe, ξ(t)⟩
∂yi

= 0, ∂

∂xk

∂⟨JΦ − µe, ξ(t)⟩
∂yi

= 0 ,

for all t ∈ R, i, j = 1, . . . , s, and k = 1, . . . , n. Note that the first and second identities above hold
because, at points of JΦ−1(µe), the derivative on the left depends only on the values of ∂ht/∂yi restricted
to JΦ−1(µe).

Consequently, in this chosen coordinate system, the Hessian of hξ,t at ze, denoted Hhξ,t, coincides
with M̂(t) when restricted to Tze

JΦ−1(µe). This is the crucial point: the function hξ,t can be used to
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study the matrices M̂(t) and M(t). Note that, in general, h does not have a critical point at ze, so
its Hessian at ze does not directly define a bilinear symmetric form; however, in the chosen coordinate
system, it reproduces the matrix of Tze

(t).
The reasoning presented above serves as a conceptual template for the subsequent sections, which

adapt these ideas to other geometric structures such as cosymplectic and k-polysymplectic. The con-
struction becomes significantly more technical, but the core idea remains the same.

3.1.6 Example: The almost-rigid body

In this subsection, the symplectic time-dependent energy-momentum method is illustrated via a gener-
alisation of the classical freely spinning rigid body studied in [113]. The goal is to determine relative
equilibrium points and analyse the second-order variation of the extended Hamiltonian hξ,t, generalising
the autonomous results in [113]. The main results are expressed in (3.1.12) and (3.1.13).

Let t0 = 0 and let SO3 denote the Lie group of orthogonal unimodular linear automorphisms of R3,
with the Lie algebra so3 identified with R3 via the standard isomorphism

ϕ : R3 → so3, ω 7→ ω̂ :=

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 ,
where ω := (ω1, ω2, ω3)T .

With the vector product "×" in R3, one has ω̂r = ω × r, [ω̂, Θ̂] = ω̂ × Θ, and ΛΘ̂ΛT = Λ̂Θ for every
Λ ∈ SO3, and every Θ, ω ∈ R3. Thus, ϕ is a Lie algebra isomorphism between R3, which is a Lie algebra
relative to the vector product and so3 with the commutator of matrices.

The adjoint action Ad: SO3 × so3 → so3, defined geometrically in (1.2.2), reduces to the expression
AdΛΘ̂ = ΛΘ̂ΛT , as Λ−1 = ΛT , for all Λ ∈ SO3 and Θ ∈ R3. Moreover,

Λ̂(r×s) = Λr̂×sΛT = Λ[r̂, ŝ]ΛT = [Λr̂ΛT ,ΛŝΛT ] = [Λ̂r, Λ̂s] = Λ̂r×Λs, ∀r, s ∈ R3.

One can identify TΛSO3 with so3 via two isomorphisms. Recall that LΛ : Θ ∈ SO3 7→ ΛΘ ∈ SO3 and
RΛ : Θ ∈ SO3 7→ ΘΛ ∈ SO3 are diffeomorphisms for every Λ ∈ SO3. Then, TId3LΛ : TId3SO3 ≃ so3 7→
TΛSO3 and TId3RΛ : TId3SO3 ≃ so3 7→ TΛSO3 are isomorphisms, where Id3 is 3 × 3 identity matrix.

Then, for every Θ ∈ R3, the left-invariant extension of Θ̂ is defined by (TId3LΛ)Θ̂ =: (Λ,ΛΘ̂), for
every Θ ∈ R3. Meanwhile, the right-invariant extension of θ̂ is defined as (TId3RΛ)θ̂ := (Λ, θ̂Λ), for every
θ ∈ R3. When the base point Λ is clear from the context, the notation ΛΘ̂ and θ̂Λ is used instead of
(Λ,ΛΘ̂) and (Λ, θ̂Λ), respectively. Since so3 is a simple Lie algebra, its Killing metric, κ, is non-degenerate
and induces an isomorphism

Θ̂ ∈ so3 7→ κ(Θ̂, ·) ∈ so∗
3 .

The Killing form, up to a non-zero constant factor, is given by

κ(Θ̂, ω̂) = 1
2tr(Θ̂T ω̂) , ∀Θ, ω ∈ R3 .

Moreover, one has
Π · Υ = κ(Π̂, Υ̂) , Π,Υ ∈ R3 .

where "·" denotes the standard Euclidean scalar product in R3. Thus,

⟨ΛΠ̂,ΛΘ̂⟩ := 1
2tr((ΛΠ̂)TΛΘ̂) = 1

2tr(Π̂T Θ̂) = Π · Θ, ∀Θ, Π ∈ R3 ,

and analogously

⟨Π̂Λ, Θ̂Λ⟩ := 1
2tr((Π̂Λ)T Θ̂Λ) = 1

2tr(Π̂T Θ̂) = Π · Θ, ∀Θ, Π ∈ R3 .
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To simplify the notation, Π̂ ∈ so∗
3 denotes κ(Π̂, ·) ∈ so∗

3 and elements of T∗
ΛSO3 are written either as

(Λ, π̂Λ) or (Λ,ΛΠ̂). If (Λ, π̂Λ) = (Λ,ΛΠ̂), then π̂ = ΛΠ̂ΛT , which matches the coadjoint action. Indeed,

⟨Ad∗
ΛT Π̂, ·⟩ = 1

2tr(Π̂TAdΛT (·)) = 1
2tr(Π̂TΛT (·)Λ)

= 1
2tr(ΛΠ̂TΛT (·)) = 1

2tr((ΛΠ̂ΛT )T (·)) = ⟨π̂, ·⟩ .

The mechanical framework is defined as follows. The configuration manifold is the Lie group SO3,
and the phase space is its cotangent bundle T∗SO3, endowed with the canonical symplectic structure.
Remarkably, this framework recovers, as a particular autonomous case, the classical dynamics of a rigid
body in the absence of external forces.

Consider a time-dependent Hamiltonian h : R × T∗SO3 → R of the form

h(t,Λ, π̂) := 1
2π · I−1

t π , It := ΛJtΛT , (3.1.8)

where It is the time-dependent inertia tensor (in spatial coordinates) and Jt is the inertia dyadic given
by

Jt =
∫
R3
ϱν(t,X)[∥X∥211 −X ⊗X]d3X .

Here, ϱν : R × B → R denotes the time-dependent reference density. The inertia dyadic Jt is thus a
matrix depending only on time, which at each t ∈ R yields the natural inertia tensor corresponding to
the mass distribution. Indeed, it gives rise to a natural generalisation of its time-independent analogue,
as introduced in [113]. The formalism for almost rigid bodies developed here is independent of the explicit
form of Jt.

The Hamiltonian function h given by (3.1.8) is interpreted as a function

h : R × SO3 × so∗
3 → R ,

with so∗
3 ≃ R3∗ since it is more convenient for calculations. The Hamiltonian has the interpretation of

the kinetic energy of the mechanical system, which is later on referred to as a quasi-rigid body (cf. [113]).
To study the invariance properties of the Hamiltonian function, recall that π̂ = ΛΠ̂ΛT , then

h(t,Λ, π̂) = 1
4tr(π̂TΛJ−1

t ΛT π̂) = 1
4tr((ΛT π̂)T J−1

t ΛT π̂) =
1
4tr((Π̂ΛT )T J−1

t Π̂ΛT ) = 1
4tr(Π̂T J−1

t Π̂) = 1
2Π · J−1

t Π,

which shows that h is left invariant under the action of SO3. Consequently, the left reduction by SO3

induces a function on the quotient R × T∗SO3/SO3 ≃ R × so∗
3.

As a result, each ht is a quadratic function of the momenta π̂. Choosing an appropriate coordinate
system adapted to the JΦ−1(µ)/SO3 and an appropriate t-dependent dependence, the second condition
in (3.1.7) is satisfied.

Consider the action of G = SO3 on Q = SO3 by left translations given by

Ψ: (A,Λ) ∈ G×Q 7−→ AΛ ∈ Q .

The induced cotangent lift of Ψ, denoted Ψ̂, also acts by left translations. Explicitly,

Ψ̂(Λ′, (Λ, π̂Λ)) = (Λ′Λ, Λ̂′πΛ′Λ) , ∀Λ′,Λ ∈ SO3 , ∀π ∈ (R3)∗

The momentum map associated with this action is defined as a map

JΨ̂ : SO3 × so∗
3 → so∗

3 ,
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where the identification of T∗SO3 with SO3 × so∗
3 was used via the right-translations RΛ, with Λ ∈ SO3.

Since
(ξ̂so3)Λ = d

dt

∣∣∣∣
t=0

exp(tξ̂)Λ = ξ̂Λ ,

for every ξ ∈ so3, Proposition 2.1.3 yields

J Ψ̂
ξ̂

(π̂Λ)= 1
2tr[(Λπ̂)T ξ̂so3 ]= 1

2tr[ΛT π̂T ξ̂Λ]= 1
2tr[π̂T ξ̂]=π · ξ.

Thus,
JΨ̂(Λ, π̂) = π̂ , and J Ψ̂

ξ̂
(π̂Λ) = π · ξ .

It follows that every π̂ ∈ so∗
3 is a regular value of a symplectic momentum map JΨ̂. Moreover, Gπ consists

of those elements of SO3 that leave π invariant. Hence, Gπ ≃ SO2 for π ̸= 0 and G0 = SO3. Furthermore,

JΨ̂−1(π̂) = SO3 × {π̂} , ∀π̂ ∈ so∗
3 .

Since each Gπ is always compact, it acts properly on JΨ̂−1(π̂). Moreover, the action of Gπ on JΨ̂−1(π̂)
is always free. Therefore, the quotient JΨ̂−1(π̂)/Gπ is always a well-defined two-dimensional manifold, a
sphere, for π̂ ̸= 0 and a zero-dimensional manifold for π̂ = 0.

Consider the modified Hamiltonian function of the form

hξ,t = ht − [J Ψ̂
ξ − πe · ξt] = 1

2π · I−1
t π − ξt · (π − πe),

and study its critical points. To derive the first variation, it is appropriate to regard hξ,t as a function of
(Λ, π) ∈ SO3 × so∗

3. Assume that (Λe, π̂eΛe) ∈ T∗SO3 is a relative equilibrium point. Then, for arbitrary
δθ ∈ R3, define a curve in SO3 given by

ϵ 7→ Λϵ := exp[ϵδ̂θ]Λe .

Similarly, for δ̂π ∈ so∗
3 define a curve in so∗

3 as

ϵ 7→ π̂ϵ := π̂e + ϵδ̂π ∈ so∗
3 .

These constructions induce a curve

ϵ 7→ (Λϵ, π̂ϵΛϵ) ∈ T∗SO3 .

Consider δhξ,t := dhξ,t(δ̂θ, δ̂π). By applying the chain rule and introducing It,ϵ := ΛϵJtΛTϵ , one gets

0 = δhξ,t
∣∣
e

= d
dϵ

∣∣∣∣
ϵ=0

(
1
2πϵ · I−1

t,ϵ πϵ − ξt · (πϵ − πe)
)
, (3.1.9)

where I−1
t,ϵ := ΛϵJ−1

t ΛTϵ . Interpreting hξ,t as a function on T∗SO3 × so3, at the equilibrium point, the
condition arising from the variation with respect to the Lagrange multiplier takes the form

(π − πe) · η = 0 , ∀η ∈ R3 .

Moreover,

1
2πe · d

dϵ

∣∣∣∣
ϵ=0

I−1
t,ϵ πe = 1

2πe · [δ̂θI−1
t,e − I−1

t,e δ̂θ]πe

= 1
2[πe · (δθ × I−1

t,eπe) − I−1
t,eπe · (δθ × πe)] = δθ · (I−1

t,eπe × πe) , (3.1.10)

where elementary vector product identities are used. By (3.1.10), expression (3.1.9) yields the following

δhξ,t
∣∣
e

= δπ · [I−1
t,eπe − ξt] + δθ · [I−1

t,eπe × πe] = 0 . (3.1.11)
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At critical points, expression (3.1.11) must vanish for every δπ and δθ. Consequently, the following
conditions are obtained

I−1
t,eπe = ξt , I−1

t,eπe × πe = 0 .

Substituting the first condition into the second yields ξt × πe = 0, which implies that ξt and πe are
proportional. Thus, ξt = σtπt for a certain t-dependent function σt. Hence,

ξt × πe = 0 , I−1
t,e ξt = λtξt , (3.1.12)

where λt > 0 due to the positive definiteness of It,e. These conditions imply that πe lies along a principal
axis, that is, in the subspace spanned by an eigenvector of It. Consequently, the rotation of the almost
rigid body is around this axis.

To determine the stability, one has to study the second variation of hξ,t. By (3.1.11), at equilibrium
point, one gets

(δ2hξ,t)
∣∣
e

:= d
dϵ

∣∣∣∣
ϵ=0

[δπ · (I−1
t,ϵ πϵ − ξt) + δθ · (I−1

t,ϵ πϵ × πϵ)] .

Note that the matrix of second-order derivatives is determined by its evaluation on pairs of equal tangent
vectors. Proceeding analogously to the derivation of (3.1.11) and using (3.1.12), it follows that

(δ2hξ,t)
∣∣
e
((δπ, δθ), (δπ, δθ)) = [δπT δθT ]

[
I−1
t,e (I−1

t,e − λt11)π̂e
−π̂e(I−1

t,e − λt11) −π̂e(I−1
t,e − λt11)π̂e

] [
δπ
δθ

]
. (3.1.13)

Consider (δπ, δθ) ∈ R3∗ × R3. Since JΨ̂(π̂Λ) = π̂, it follows that µe = π̂e, and therefore Tze
(Gµe

ze)
coincides with the infinitesimal generators of rotations about the axis determined by πe. Consequently,
distinct forms of It,e may be chosen such that the application of the above results guarantees stability of
the reduced system at the projection of a relative equilibrium.

As a basic case, if It,e is independent of t, the stability criterion reduces to the classical analysis carried
out in [113]. In this situation, the conditions involving third-order spatial derivatives of hµe , as well as
their partial time derivatives, are satisfied identically. More involved examples concern diagonal matrices
It,e with positive nonincreasing eigenvalues which are properly bounded from below and, in some cases,
also from above.

3.2 Cosymplectic energy-momentum method
This section develops the energy-momentum method in the setting of cosymplectic geometry, providing
an alternative framework for the analysis of time-dependent Hamiltonian systems. The cosymplectic
formulation significantly extends the scope of the classical energy-momentum method by allowing for a
broader class of symmetries than those in the time-dependent symplectic approach. The applicability of
this extension is demonstrated through certain important physical examples.

3.2.1 Cosymplectic relative equilibrium points

Assume that µ ∈ g∗ is a weak regular value of a cosymplectic momentum map JΦ. Furthermore, assume
that the isotropy subgroup G∆

µ of µ relative to the cosymplectic affine Lie group action introduced in
Proposition 2.2.8, acts on JΦ−1(µ) through Φ in a quotientable manner, that is, the quotient P∆

µ =
JΦ−1(µ)/G∆

µ is a manifold and the canonical projection πµ : JΦ−1(µ) → P∆
µ is a submersion. Recall that

the sufficient condition for JΦ−1(µ)/G∆
µ to be a manifold is that G∆

µ acts freely and properly on JΦ−1(µ),
although weaker assumptions are admissible (cf. [2]). In the subsequent discussion, attention is restricted
to cosymplectic manifolds of the form (T × P, ωP , τT ). For notational simplicity, the subscripts on the
differential forms ωP and τT are omitted.

Poincaré’s notion of a relative equilibrium point for time-independent Hamiltonian systems (cf. [2,
p 306]) is now extended to cosymplectic Hamiltonian systems. Multiple extensions of this concept are
possible; an alternative formulation is introduced in Section 3.2.7.
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Definition 3.2.1. A point ze ∈ P is a cosymplectic relative equilibrium point of ((T ×P )ωτ , h,JΦ) if there
exists a curve ξ(t) ∈ g so that

(Xh)(t,ze) = (ξ(t)M )(t,ze), ∀t ∈ T .

If T = R, Definition 3.2.1 can be reformulated in terms of an integral curve of an evolution vector
field. In fact, a point ze ∈ P is a cosymplectic relative equilibrium point of ((R × P )ωτ , h,JΦ) if, for each
t0 ∈ R, there exists some curve ξt0(s) in g such that

s ∈ R 7→ Φ(exp(ξt0(s)), (t0 + s, ze)) ∈ R × P, (3.2.1)

is the integral curve of Eh with initial condition (t0, ze). Equivalently, the trajectory Φ(exp(ξt0(t), ze)) is a
solution of the Hamilton equations related to h, with initial condition ze at t = t0. This characterisation
shows that the evolution for the Hamilton equations of h is given by the symmetries of the problem
encoded in Φ.

An analogous statement holds for general T , although a local version of (3.2.1) must be used, since T
may not admit a global coordinate system, for example, when T = S1. In what follows, unless otherwise
stated, it is assumed that t0 = 0, and the notation ξt0=0(t) will be abbreviated as ξ(t).

Cosymplectic relative equilibrium points ze ∈ P giving rise to equilibria (t, ze) of the Hamilton equa-
tions of ((T × P )ωτ , h,JΦ) for all t ∈ T are particular cases of relative equilibria. Indeed, in this case
(Xh)(t,ze) = 0 for every t ∈ T , so (t, ze) remains fixed under the dynamics generated by Xh, and conse-
quently ξ(t) in (3.2.1) can be taken to be identically zero.

Proposition 3.2.2. Every integral curve, m(t) = (t, z(t)) of Eh with respect to ((T × P )ωτ , h,JΦ) such
that z(t0) = ze for a cosymplectic relative equilibrium point ze ∈ P with µe = JΦ(t0, ze) and t0 ∈ T ,
projects onto the single point (πP∆

µe
◦ πµe

)(t0, ze), i.e.

(πP∆
µe

◦ πµe
)(m(t)) = (πP∆

µe
◦ πµe

)(t0, ze) ,

for every t ∈ T , where πµe
: JΦ−1(µe) → JΦ−1(µe)/G∆

µe
and πP∆

µe
: T × P∆

µe
→ P∆

µe
are the canonical

projections, see Corollary 2.2.14.

Proof. Proposition 2.2.10 ensures that every integral curve m(t) of Eh is entirely contained within the
the level set JΦ−1(µe). By Proposition 2.2.15, such curve projects, via πµe

, onto a curve in M∆
µe

:=
JΦ−1(µe)/G∆

µe
≃ T×P∆

µe
, where G∆

µe
denotes the isotropy subgroup of µe ∈ g∗ relative to the cosymplectic

affine Lie group action ∆.
Since ze ∈ P is a cosymplectic relative equilibrium point and JΦ is ∆-equivariant, it follows that

0 = T(t,ze)JΦ(Eh)(t,ze) = T(t,ze)JΦ(R+ ξ(t)M )(t,ze) = (ξ(t)∆
g∗)µe

, ∀t ∈ T,

for some curve ξ(t) in g. Consequently, the curve ξ(t) is contained in g∆
µe

.
Note that the curve πµe

(m(t)) is the integral curve of the reduced vector field on T ×P∆
µe

of the form

Rµe
+ Yµe

:= πµe∗(Eh) ,

where Rµe
is the Reeb vector field associated with the reduced cosymplectic manifold (M∆

µe
, ωµe

, τµe
).

Since (Xh)(t,ze) = (ξ(t)M )(t,ze), for a certain curve ξ(t) in g∆
µe

and πµe∗R|JΦ−1(µe) = Rµe , then

(Yµe)πµe (m(t)) = (T(t,ze)πµe
)(ξ(t)M )(t,ze) = 0 .

Hence, πµe
(m(t)) consists of equilibrium points of Yµe

. The integral curve of the vector field Yµe
passing

through (πP∆
µe

◦ πµe)(t0, ze) is just that point. Hence,

(πP∆
µe

◦ πµe)(m(t)) = (πP∆
µe

◦ πµe)(t0, ze) ,

for every t ∈ T . Then, the projection of every solution passing through ze is just the equilibrium point
(πP∆

µe
◦ πµe

)(t0, ze) of the Hamilton vector field Yµe
on P∆

µe
. Equivalently, this point is an equilibrium

point of the reduced Hamilton equations in M∆
µe

.
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From Proposition 3.2.2 follows that ze ∈ πP (JΦ−1(µe)) is a cosymplectic relative equilibrium point
of ((T × P )ωτ , h,JΦ) if and only if every solution to the Hamilton equations associated with h passing
through ze projects onto an equilibrium point in P∆

µe
of a reduced Hamiltonian system.

Cosymplectic relative equilibrium points of ((T ×P )ωτ , h,JΦ) can be characterised via Lagrange multi-
pliers as critical points of h restricted to JΦ−1(µe), as done in Theorem 3.1.7 and initially for the classical
energy-momentum method in [2, p 307] and [140].

Theorem 3.2.3. A point ze ∈ P is a cosymplectic relative equilibrium point of ((T × P )ωτ , h,JΦ) if and
only if there exists a curve ξ(t) in g such that, for every t ∈ T , the point ze is a critical point of the
restriction to {t} × P of the function hξ(t) : T × P → R of the form

hξ(t)(t′, z) := h(t′, z) − ⟨JΦ(t′, z) − JΦ(t′, ze), ξ(t)⟩ .

Proof. Suppose ze ∈ P is a cosymplectic relative equilibrium point. Then, there exists a curve ξ(t) in g

such that (ξ(t)M )(t,ze) = (Xh)(t,ze) for every t ∈ T . Due to the definition of the cosymplectic momentum
map JΦ, it turns out that

(ξ(t)M )(t,ze) = (XJΦ
ξ(t)

) (t,ze) , and (Xh−JΦ
ξ(t)

)(t,ze) = 0 ,

for every t ∈ T . Since JΦ
ξ(t)(t′, ze) is independent on t′, it follows that

0 = [♭(Xh−JΦ
ξ(t)

)](t,ze) = (dhξ(t))(t,ze) − (Rhξ(t))(t,ze)τ(t,ze), ∀t ∈ T.

Hence, (dhξ(t))(t,ze) ↾ker τ(t,ze)= 0, and therefore (t, ze) is a critical point of hξ(t) ↾{t}×P for every t ∈ T .
Conversely, assume that (t, ze) ∈ T × P is a critical point of hξ(t) ↾{t}×P for every t ∈ T . Then,

(dhξ(t))(t,ze) ↾ker τ(t,ze)= d(h− JΦ
ξ(t))(t,ze) ↾ker τ(t,ze)= (ιX

h−JΦ
ξ(t)

ω)(t,ze) ↾ker τ(t,ze)= 0, ∀t ∈ T .

SinceXh−JΦ
ξ(t)

(t, ze) takes values in ker τ , it follows that (Xh−JΦ
ξ(t)

)(t,ze) = 0 for every t ∈ T . Consequently,
(Xh)(t,ze) = (XJΦ

ξ(t)
)(t,ze) = (ξ(t)M )(t,ze) for every t ∈ T , proving that ze is a cosymplectic relative

equilibrium point.

The above theorem can be equivalently rewritten as follows.

Corollary 3.2.4. A point ze ∈ P is a cosymplectic relative equilibrium point of ((T × P )ωτ , h,JΦ) if and
only if there exists a curve ξ(t) in g such that (ze, ξ(t)) ∈ P × g, for every t ∈ T , are critical points of
the functions ĥt : P × g → R of the form

ĥt(z, ν) := h(t, z) − ⟨JΦ(t, z) − JΦ(t, ze), ν⟩.

Note that ξ(t) plays the role of a t-dependent Lagrange multiplier in Corollary 3.2.4.
Let ze be a cosymplectic relative equilibrium point of ((T ×P )ωτ , h,JΦ). The second variation of hξ(te)

at (te, ze), for any te ∈ T is defined as the mapping

(δ2hξ(te))(te,ze) : ker τ(te,ze) × ker τ(te,ze) → R ,

of the form
(δ2hξ(t))(te,ze)(v1, v2) := ιY (d(ιXdhξ(te)))(te,ze) , (3.2.2)

for some vector fields X,Y on M defined on a neighbourhood of (te, ze) taking values in ker τ and such
that v1 = X(te,ze), v2 = Y(te,ze). Note that, for each pair v1, v2, it is always possible to find some X,Y
satisfying the given conditions.

In cosymplectic Darboux coordinates {t, x1, . . . , x2n} in an open neighbourhood U of (te, ze), one can
write

X =
2n∑
i=1

fi
∂

∂xi
, Y =

2n∑
i=1

gi
∂

∂xi
,
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where ι ∂
∂xi

τ = 0 for i = 1, . . . , 2n, and f1, . . . , f2n, g1, . . . , g2n ∈ C ∞(U) may depend on t.
Notice that the definition of the second variation is analogous to that used in the time-dependent

energy-momentum method, see Equation (3.1.4). The key distinction here is that the variable t ∈ R is
treated not as a parameter but as a coordinate of the associated cosymplectic manifold.

Proposition 3.2.5. Let ze ∈ P be a cosymplectic relative equilibrium point of ((T × P )ωτ , h,JΦ). If
{t, x1, . . . , x2n} are cosymplectic Darboux coordinates on a neighbourhood of (te, ze) ∈ T × P , then

(δ2hξ(te))(te,ze)(w, v) =
2n∑
i,j=1

∂2hξ(te)

∂xi∂xj
(te, ze)wivj , ∀v, w ∈ ker τ(te,ze), (3.2.3)

where w =
∑2n
i=1 wi∂/∂xi and v =

∑2n
i=1 vi∂/∂xi.

Proof. From (3.2.2) and the fact that the vector fields X,Y associated with the tangent vectors w, v take
values in ker τ , one gets

(δ2hξ(te))(te,ze)(w, v) = ιY (dιXdhξ(te))(te,ze) =
2n∑
i,j=1

∂2hξ(te)

∂xi∂xj
(te, ze)wivj

+
2n∑
i,j=1

∂hξ(te)

∂xi
(te, ze)

∂Xi

∂xj
(te, ze)vj =

2n∑
i,j=1

∂2hξ(te)

∂xi∂xj
(te, ze)wivj ,

where X =
∑2n
i=1 X

i∂/∂xi, X(te, ze) = w. The second equality uses the fact that ze is a cosymplectic
relative equilibrium point.

It follows from (3.2.3) that, for each t ∈ T , the maps (δ2hξ(te))(t,ze) are symmetric.

Proposition 3.2.6. Let ze ∈ P be a cosymplectic relative equilibrium point for ((T ×P )ωτ , h,JΦ). Then,
for every t ∈ T , one has

(δ2hξ(t))(t,ze)((ζM )(t,ze), v(t,ze)) = 0, ∀ζ ∈ g, ∀v(t,ze) ∈ T(t,ze)JΦ−1(µe) ∩ ker τ(t,ze) .

Proof. TheG-invariance of a Hamiltonian function h : T×P → R together with the equivariance condition
for JΦ relative to the cosymplectic affine Lie group action, ∆, imply that for every g ∈ G and all
(t′, z) ∈ T × P , with µe = JΦ(t′, ze), one has

hξ(t)(Φg(t′, z)) = h(Φg(t′, z)) −
〈
∆gJΦ(t′, z), ξ(t)

〉
+ ⟨µe, ξ(t)⟩

= h(t′, z) −
〈
JΦ(t′, z),∆T

g ξ(t)
〉

+ ⟨µe, ξ(t)⟩ ,

where ∆T
g : g → g is the transpose of ∆g for every g ∈ G.

Fix any t ∈ T and let g = exp(sζ), with ζ ∈ g. Differentiating with respect to s at s = 0 yields

(ιζM
dhξ(t))(t′, z) = −

〈
JΦ(t′, z), d

ds

∣∣∣∣
s=0

∆T
exp(sζ)ξ(t)

〉
=
〈
JΦ(t′, z), (ζ∆

g )ξ(t)
〉
,

where (ζ∆
g )ξ(t) is the fundamental vector field associated with a Lie group action ∆T : G× g → g related

to ζ ∈ g at ξ(t) ∈ g, for a fixed t ∈ T , namely

ζ∆
g (v) := d

ds

∣∣∣∣
s=0

∆T
exp(−sζ)v, ∀v ∈ g .

Since (ζM )(t,ze) and v(t,ze) take values in ker τ(t,ze), taking variations with respect to z ∈ P and evaluating
at (t, ze) gives

(δ2hξ(t))(t,ze)((ζM )(t,ze), v(t,ze)) =
〈
T(t,ze)JΦ(v(t,ze)), (ζ∆

g )ξ(t)
〉
.

This vanishes whenever T(t,ze)JΦ(v(t,ze)) = 0, that is, if v(t,ze) ∈ ker T(t,ze)JΦ = T(t,ze)JΦ−1(µe), which
proves the claim.
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The next corollary is an immediate consequence of Proposition 3.2.6.

Corollary 3.2.7. Let ze be a cosymplectic relative equilibrium point of ((T × P )ωτ , h,JΦ). Then, for
every t ∈ T , the subspace T(t,ze)(G∆

µe
(t, ze)) is contained in the kernel of the restriction of (δ2hξ(t))(t,ze)

to T(t,ze)JΦ−1(µe) ∩ ker τ(t,ze).

3.2.2 Stability on the reduced cosymplectic manifold

Subsection 3.2.1 introduced the fundamental results of a cosymplectic energy-momentum method, which
provides a systematic approach to finding cosymplectic relative equilibrium points of ((T × P )ωτ , h,JΦ).

In this section, the stability of these points on the reduced space is analysed by applying and inter-
preting the results similarly as in Section 3.1.4 within the cosymplectic framework. From now on, it is
assumed that T = R in order to employ Definition 1.1.1, which serves as the foundation for establishing
conditions that ensure various types of stability on manifolds.

Recall that the cosymplectic Marsden–Meyer–Weinstein reduction for ((R × P )ωτ , h,JΦ) consists of
reducing the cosymplectic manifold (R × P, ω, τ) to a cosymplectic manifold (R × P∆

µ , ωµ, τµ), where ωµ
and τµ are defined by

i∗µω = π∗
µωµ , i∗µτ = π∗

µτµ ,

where iµ : JΦ−1(µ) ↪→ R×P is the natural immersion, πµ : JΦ−1(µ) → M∆
µ = JΦ−1(µ)/G∆

µ and πT : T ×
P → P are the canonical projections. Recall that M∆

µ ≃ R × P∆
µ for a certain manifold P∆

µ introduced
in Corollary 2.2.14. The following analysis relies on the ideas developed in Subsection 3.1.4.

Consider the function hze
: R × P → R given by

hze
(t, z) := h(t, z) − h(t, ze) .

Then, hze
(t, ze) = 0 for every t ∈ R. This is done to study hze

(t, z) with lpdf functions and other functions
of the sort, analogously as in Subsection 3.1.4. If (t, z(t)) is the particular solution to the G-invariant
cosymplectic Hamiltonian system ((R × P )ωτ , h,JΦ) with the initial condition (0, ze), then

d
dt

∣∣∣∣
t=0

hze
(t, z(t)) = d

dt

∣∣∣∣
t=0

h(t, z(t)) − d
dt

∣∣∣∣
t=0

h(t, ze) .

Since the integral curves of Eh for (R × P, ω, τ) are given by (1.3.6a), the derivative with respect to t of
a function hze

along the solutions of the Hamilton equations for h reads

dhze

dt = Ehhze = Rhze + {hze , h}ω,τ = Rhze = ∂hze

∂t
.

Note that this relation is independent of the particular choice of the variable t in cosymplectic Darboux
coordinates on R × P . Furthermore, one has that hze is G-invariant, namely hze ◦ Φg = hze for every
g ∈ G. Since, by assumption, πT ◦ Φg = πT , there exists a reduced function Hze

: R × P∆
µe

→ R of the
form

Hze
(t, [z]) := hze

(t, z), ∀(t, z) ∈ JΦ−1(µe),

where (t, [z]) stands for the equivalence class of (t, z) ∈ JΦ−1(µe) in JΦ−1(µe)/G∆
µe

. Similarly as in Subsec-
tion 3.1.4, the functionHze

(t, [z])−kµe
(t, [z]) depends only on t, because kµe

(t, [z]) satisfies π∗
µe
kµe

= i∗µe
h.

Since R × P∆
µe

is a cosymplectic manifold, the relation πµe∗(R+Xh) = Rµe +Xkµe
holds. Consequently,

[ze] is an equilibrium point of Xkµe
and thus Hze

|{t}×P∆
µe

has an equilibrium point at [ze]. Additionally,

d
dt

∣∣∣∣
t=0

Hze
(t, [z(t)]) = (Rhze

)(0, z(0)), ∀(0, [z(0)]) ∈ JΦ−1(µe)/G∆
µe

≃ R × P∆
µe
,

where z(t) is any solution to the initial Hamiltonian equations of h within JΦ−1(µe) with initial condition
z(0).
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Now, the function Hze
is used to study the stability of [ze] in P∆

µe
. In particular, conditions on h

are derived to guarantee that Hze
induces different types of stable equilibrium points at [ze]. Therefore,

following Subsection 3.1.4, consider a coordinate system {x1, . . . , xn} on an open neighbourhood U of
[ze] ∈ P∆

µe
such that xi([ze]) = 0 for i = 1, . . . , n. Let α = (α1, . . . , αn), with α1, . . . , αn ∈ N ∪ {0}, be a

multi-index with n = dim JΦ−1(µe)/G∆
µe

− 1. To understand this, recall that M∆
µe

≃ R × P∆
µe

. However,
in the stability analysis, the t-dependence is treated as a parameter, not a variable. Let |α| =

∑n
i=1 αi

and Dα = ∂α1
x1

· · · ∂αn
xn

for every α. The proof of the following lemma follows the same way as Lemma
3.1.11.

Lemma 3.2.8. Consider the t-dependent parametric family of n× n matrices M(t) with entries

[M(t)]ji = 1
2
∂2Hze

∂xi∂xj
(t, [ze]), ∀t ∈ R, i, j = 1, . . . , n,

and let spec(M(t)) be the spectrum of the matrix M(t) at t ∈ R. Assume that there exists a λ ∈ R such
that 0 < λ < inft∈It0 min spec(M(t)) for some t0 ∈ R. Suppose also that there exists a real constant c
such that

c ≥ 1
6 sup
t∈It0

max
|α|=3

max
[y]∈B

|DαHze
(t, [y])|

for a certain compact neighbourhood B of [ze]. Then, there exists an open neighbourhood U of [ze], where
the function Hze : R × U → R is lpdf from t0. If there exists additionally a constant Λ such that

sup
t∈It0

max spec(M(t)) < Λ,

then, Hze
: R × U → R is a decrescent function from t0.

Recall that the eigenvalues of M(t) depend on the chosen coordinate system around [ze]. However,
as shown later on, the stability analysis does not depend on the choice of the coordinate system.

Similarly to Section 3.1.4, an appropriate coordinate system may simplify M(t) at certain values of t,
e.g. by writing M(t) in a canonical form. Nevertheless, the simplification of M(t) at every time t ∈ It0

for a certain coordinate system in P∆
µe

around [ze] is impossible, in general. Consequently, the analysis
must be restricted to a specific coordinate system.

Lemma 3.2.8 yields the following theorem.

Theorem 3.2.9. Suppose that there exist λ, c > 0 and an open neighbourhood U of [ze] so that

λ < min(spec(M(t))), c ≥ 1
3! max

|α|=3
sup

[x]∈U
|DαHze

(t, [x])|, ∂Hze

∂t

∣∣∣∣
U

≤ 0,

for every t ∈ It0 . Then [ze] is a stable point of the Hamiltonian vector field related to kµe on JΦ−1(µe)/G∆
µe

from t0. If there exists Λ such that max(spec(M(t))) < Λ for every t ∈ It0 , then [ze] is uniformly stable
from t0.

Under stronger hypotheses on the higher-order derivatives of Hze
than those appearing in Theorem

3.2.9, one obtains Corollary 3.2.10, whose conditions can be shown to hold independently of the chosen
coordinate system, analogously to Lemma 3.1.14, which gives them an intrinsic geometric character.

Corollary 3.2.10. If there exist λ, c > 0 and an open neighbourhood U of [ze] such that

λ < min (spec (M(t))) , c ≥ 1
3! max

1≤|α|≤3
sup

[x]∈U
|DαHze(t, [x])| , ∂Hze

∂t

∣∣∣∣
U

≤ 0 , (3.2.4)

for every t ∈ It0 , then [ze] is a uniformly stable point of the Hamiltonian system kµe
on JΦ−1(µe)/G∆

µe

from t0.
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The existence of a constant c as required in Corollary 3.2.10, together with the first and second
inequalities in (3.2.4), implies that max(spec(M(t))) ≤ 6cn2 for every t ∈ It0 . Indeed,

vTM(t)v ≤
n∑

i,j=1
|vi||vj ||M i

j(t)| ≤ 6c
n∑

i,j=1
∥v∥2 = 6cn2∥v∥2, ∀v ∈ Rn .

Consequently, vTM(t)v < ΛvT v for every non-zero v ∈ Rn and Λ > 6cn2.
The results established above employ a distance on an open coordinate neighbourhood of [ze] that

was induced by a standard norm on Rn. Since the topology induced by this norm coincides with the one
induced by any Riemannian metric on the neighbourhood of [ze], the stability properties obtained are
independent of the chosen Riemannian metric.

The following lemma, whose proof is the same as Lemma 3.1.14, confirms that Corollary 3.2.10 is of
the geometric nature, i.e. the conditions remain valid regardless of the choice of coordinates. The values
of the constants λ and c may vary with the coordinates, but their existence is preserved, which is the
essential property in the stability analysis.

Lemma 3.2.11. If M(t), which is defined in a local coordinate system {x1, . . . , xn} on an open neigh-
bourhood of an equilibrium point [ze] ∈ P∆

µe
, is such that 0 < λ < inft0≤t min specM(t) for some λ (resp.

supt0≤t max specM(t) < Λ for some Λ), then MB′(t), which is determined like M(t) but in another coor-
dinate system B′ = {x̃1,. . ., x̃n} around [ze] ∈ P∆

µe
, holds that 0 < λ′ < inft0≤t min specMB′(t) for some

λ′ (resp. supt0≤t max specMB′(t) < Λ′ for some Λ′).

3.2.3 Stability, reduced cosymplectic manifold, and cosymplectic relative
equilibrium points

The cosymplectic energy-momentum method determines properties of a Hamiltonian function h on a
neighbourhood of a cosymplectic relative equilibrium point me = (t, ze) ∈ R×P that guarantee a certain
type of stability around an associated equilibrium point of the Hamilton equations related to kµe

in
R × P∆

µe
. Similarly as in Subsection 3.1.5, conditions on hµe

: (t, x) ∈ JΦ−1(µe) 7→ h(t, x) ∈ R, and
∂hµe/∂t with t ∈ R are derived to ensure that the hypotheses of Theorem 3.2.9 and/or Corollary 3.2.10
are satisfied. Instead of investigating M(t), one is focused on the conditions on the functions hξ(t) ↾{t}×P

for t ∈ R, which is more practical, since these functions are defined directly on P , rather than on the
reduced manifold.

Consider a coordinate system {t, z1, . . . , zq} on an open subset R × Aµe
⊂ JΦ−1(µe) containing

me = (te, ze) for some te ∈ R. Let {t, π∗
µe
x1, . . . , π

∗
µe
xn} be the coordinates on R × Aµe

obtained by
pull-back to R× Aµe some coordinates {t, x1 . . . , xn} on R× O = πµe(R× Aµe) 2, since the cosymplectic
Marsden–Meyer–Weinstein reduction does not “reduce" the space component R (see Corollary 2.2.14),
and let {y1, . . . , ys} be additional coordinates giving rise to a coordinate system {t, z1, . . . , zq} on R×Aµe

.
Due to the G∆

µe
-invariance of hµe

= h ◦ iµe
: JΦ−1(µe) → R there exists c such that

c ≥ 1
3! max

3≥|ϑ|≥1
sup
z∈Aµe

|Dϑhµe(t, y)| , ∀t ∈ It0 ,

where ϑ is a multi-index ϑ = (ϑ1, . . . , ϑq) if and only if

c ≥ 1
3! max

3≥|α|≥1
sup

[x]∈O
|DαHze

(t, x)|, ∀t ∈ It0 , (3.2.5)

where R× O is an open neighbourhood of [me] = (te, [ze]) because πµe is an open mapping. Indeed, since
hµe

is constant on the submanifolds where t, x1, . . . , xn take constant values, hµe
(t, x1, . . . , xn, y1, . . . , ys)−

h(t, ze) = Hze
(t, x1, . . . , xn) and (3.2.5) follows.

2To simplify the notation, {x1, . . . , xn} stands for a set of coordinates on a neighbourhood of [ze] and their pull-backs
to JΦ−1(µe) via πµe simultaneously, the same as in Subsection 3.1.5.
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Consider again the local coordinate system {t, z1, . . . , zq} on JΦ−1(µe). Let [M̂(t)] stands for the
t-dependent q × q matrix given by the t-dependent coefficients of the form

[M̂(t)]ji := ∂2hµe

∂zi∂zj
(t, ze), i, j = 1, . . . , q.

The coordinate system is constructed in accordance with the natural local decomposition JΦ−1(µe)
of the form R × Aµe

. Moreover, for (t, z) ∈ JΦ−1(µ) the equality hµe
(t, z) = hξ(t)(t, z) holds.

According to Lemma 3.2.11, the existence of constants λ and Λ is equivalent to the fact that the
t-dependent symmetric bilinear form K(t) : T[ze]P

∆
µe

× T[ze]P
∆
µe

→ R of the form

K(t) := 1
2

n∑
i,j=1

∂2Hze

∂xi∂xj
(t, [ze])dxi|[ze] ⊗ dxj |[ze]

satisfies the following inequality

K(t)(w,w) > λ(w|w)B , ∀w ∈ T[ze]P
∆
µe

\{0}, ∀t ∈ It0 , (3.2.6)

where (·|·)B is the Euclidean product in T[ze]P
∆
µe

for which {∂x1 , . . . , ∂xn
} is an orthonormal basis. Indeed,

if v stands for the column vector of the coordinates of w ∈ T[ze]P
∆
µe

in {∂x1 , . . . , ∂xn
}, then

K(t)(w,w) = vTM(t)v > λvT v = λ(w|w)B , ∀w ∈ T[ze]P
∆
µe

\{0} , ∀t ∈ It0 .

Moreover, for any another inner product (·|·)B′ on T[ze]P
∆
µe

there exist constants ml,ms > 0 such that 3

ms(w|w)B′ > (w|w)B > ml(w|w)B′ , ∀w ∈ T[ze]P
∆
µe

\ {0} .

Consequently, if (3.2.6) holds for a given inner product on T[ze]P
∆
µe

, then it also holds for any other choice
of inner product, possibly after a change of the value of λ. The same reasoning applies to the upper bound

Λ(w|w)B > K(t)(w,w) ,

for a Λ > 0, for all t ∈ It0 , and every w ∈ T[ze]P
∆
µe

\{0}.
It is worth noting that the inner product (·|·)B is introduced to effectively characterise whether the

t-dependent matrix M(t) has eigenvalues that can be bounded from below simultaneously for every time
t ∈ It0 .

A geometric approach to the verification of condition (3.2.6) can be formulated as follows. Since each
hµe

|{t}×Aµe
, with t ∈ R, admits a critical point at the cosymplectic relative equilibrium ze ∈ Aµe

, there
exists a t-dependent symmetric bilinear form

M̂(t) : TzeAµe × TzeAµe → R ,

of the form

M̂(t) := 1
2

q∑
i,j=1

∂2hµe

∂zi∂zj
(t, ze)dzi|ze ⊗ dzj |ze , ∀t ∈ It0 ,

where B = {t, z1, . . . , zq} is any coordinate system in an open neighbourhood of (te, ze) ∈ JΦ−1(µe)
adapted to R × Aµe

.
Let {t, x1, . . . , xn, y1, . . . , ys} be the coordinate system on the open neighbourhood of (te, ze) in

JΦ−1(µe) introduced above. Then,

∂2hµe

∂xk∂yj
(t, ze) = ∂2hµe

∂yi∂yj
(t, ze) = 0 , i, j = 1, . . . , s, k = 1, . . . , n , ∀t ∈ R .

3Recall that in finite-dimensional spaces all metrics induced by norms are strong equivalent [2, 95].
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Furthermore, π∗
µe
K(t) = M̂(t) and Tze

(G∆
µe
ze) ⊂ ker M̂(t) for every t ∈ R. Since these objects are

geometric, the bilinear form K(t) can be considered as the induced bilinear form by M̂(t) on Sze ≃
Tze

Aµe
/Tze

(G∆
µe
ze) ≃ T[ze]P

∆
µe

. Thus, the conditions for M(t) can be equivalently verified via M̂(t).
Corollary 3.2.10 together with the previous remarks lead to the following theorem that serves as an

analogue of Theorem 3.1.17 from Subsection 3.1.5.

Theorem 3.2.12. Suppose that there exist λ, c > 0 and an open coordinate neighbourhood Aµe
of ze so

that R × Aµe ⊂ JΦ−1(µe) and

λ < min(spec([M̂(t)]|Sze
), c ≥ 1

3! max
1≤|ϑ|≤3

sup
y∈Aµe

|Dϑhµe
(t, y)|, ∂hµe

∂t

∣∣∣∣
Aµe

≤ 0,

for every t ∈ It0 and a subspace Sze ⊂ TzeAµe suplementary to Tze(G∆
µe
ze), then [ze] is a uniformly

stable point of the Hamiltonian system kµe
on JΦ−1(µe)/G∆

µe
from t0.

Finally, the properties of hξ(t)|{t}×P can be related to Hµe in order to analyse cosymplectic relative
equilibrium points in P together with their associated equilibrium points in P∆

µe
. Since hξ(t) ↾{t}×P

admits a critical point at each cosymplectic relative equilibrium point ze ∈ P for every t ∈ R, one may
introduce the t-dependent bilinear symmetric form on TzeP defined by

Tze
(t) := 1

2

χ∑
i,j=1

∂2hξ(t)

∂ui∂uj
(t, ze)dui|ze ⊗ duj |ze , ∀t ∈ R ,

where {t, u1, . . . , uχ}, with χ = dimP , is a coordinate system on an open neighbourhood of me = (t, ze)
in R × P . The relation of Tze(t) and M̂(t) is crucial, since the latter can be studied through the former.
Furthermore, Tze

(t) is a geometric object naturally constructed on Tze
P essentially depending only on h

and JΦ.
Following the reasoning from Section 3.1.5, for a regular value JΦ(ze) = µe ∈ g∗, one gets the following.

Since µe is a regular value, the coordinates of JΦ around JΦ−1(µe), e.g. µ1, . . . , µr, give rise to dim g

functionally independent functions on P . Consider now the coordinate system on a neighbourhood Aµe

of ze so that R× Aµe ⊂ JΦ−1(µe) given by {t, x1, . . . , xn, y1, . . . , ys}. Extend these coordinates smoothly
to an open neighbourhood in M containing R × {ze}. Since JΦ is regular at each (t, ze) for t ∈ R, the
functions µ1, . . . , µr, which are constant on the level sets of JΦ, satisfy

dµ1 ∧ · · · ∧ dµr ̸= 0 ,

on each (t, ze) for every t ∈ R. This yields a coordinate system {t, x1, . . . , xn, y1, . . . , ys, µ1, . . . , µr} on
an open neighbourhood in R × P containing R × {ze}. Consequently,

∂h

∂yi

∣∣∣∣
JΦ−1(µe)

= 0 , ∂⟨JΦ − µe, ξ(t)⟩
∂yi

= 0 , ∀t ∈ R , i = 1, . . . , s .

It is worth noting that these identities are not required to hold away from JΦ−1(µe) since y1, . . . , ys were
extended smoothly from JΦ−1(µe). Furthermore,(

∂

∂yj

∂h

∂yi

) ∣∣∣∣
JΦ−1(µe)

= 0,
(

∂

∂xk

∂h

∂yi

) ∣∣∣∣
JΦ−1(µe)

= 0 ,

and
∂

∂yj

∂⟨JΦ − µe, ξ(t)⟩
∂yi

= 0 , ∂

∂xk

∂⟨JΦ − µe , ξ(t)⟩
∂yi

= 0 ,

for all t ∈ R with i, j = 1, . . . , s and k = 1, . . . , n.
The first two relations follow because the derivatives on the left depend only on ∂h/∂yi within

JΦ−1(µe). In the chosen coordinate system, the Hessian of hξ(t) restricted to t× P on T(t,ze)JΦ−1(µe) ∩
ker τ(t,ze) coincides with M̂(t). Hence, the functions hξ(t) can be used to study both M̂(t) and M(t).
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3.2.4 Example: Two-state quantum system

Consider a quantum mechanical system defined by a time-dependent Schrödinger equation on a finite-
dimensional Hilbert space, to study its cosymplectic relative equilibrium points with respect to the group
of symmetries of the time-dependent Schrödinger equation given by multiplication by non-zero complex
numbers.

In this section, attention is restricted to a two-level quantum system subjected to a time-dependent
Hermitian Hamiltonian operator Ĥ(t), which may arise, for instance, from a spin-magnetic interaction
with an additional drift term. In particular, the techniques introduced previously in this section are
applied to this system.

The states of the two-level system are represented by elements of the Hilbert space C2, where only non-
zero vectors are physically relevant. Since Cn admits a real differential structure globally homeomorphic
to R2n, the Hilbert space describing the two-level system is two-dimensional as a complex manifold or,
equivalently a four-dimensional as a real manifold. The evolution of the system is determined by the
action of the Lie group U2 of unitary automorphisms on C2. More precisely, the solution of the time-
dependent Schrödinger equation generated by Ĥ(t), with an initial state Ψ0 ∈ C2 at t = 0, is given
by Ψ(t) = UtΨ0 for a curve R ∋ t 7→ Ut ∈ U2. Recall that the time-dependent Schrödinger equation
associated with Ĥ(t) reads

i
dΨ(t)

dt = Ĥ(t)Ψ(t), (3.2.7)

where Ĥ(t), for every t ∈ R, is assumed to be a Hermitian Hamiltonian operator on C2.
Consider the real vector space of Hermitian operators on C2, denoted by u∗

2. A convenient basis of
this space is given by {Ŝj := 1

2σj}j=1,2,3, where σ1, σ2, σ3 are the Pauli matrices, and the 2 × 2 identity
matrix Î. To simplify computations, introduce a Lie bracket on u∗

2 defined by

[[A,B]] := −i[A,B] , ∀A,B ∈ u∗
2 ,

where [·, ·] is the operator commutator for endomorphisms on C2. In this basis, the commutation relations
are

[[Î , Ŝj ]] = 0, [[Ŝj , Ŝk]] =
3∑
l=1

ϵjklŜl, k, j = 1, 2, 3,

where ϵjkl, with j, k, l = 1, 2, 3, are the Levi-Civita symbols.
In the presence of an external magnetic field B⃗(t) := B(t)(B1, B2, B3), where B(t) is an arbitrary

t-dependent function, applied to a spin 1/2 particle and under the additional drift term of the form
B(t)B0Î, the time-dependent Hamiltonian operator reads

Ĥ(t) = B(t)B0Î + B⃗(t) · S⃗ ,

where S⃗ := (Ŝ1, Ŝ2, Ŝ3). By construction, Ĥ(t) is Hermitian for every t ∈ R. Recall that each operator
Ĥ(t) is Hermitian and therefore admits only real eigenvalues.

Since C2 is diffeomorphic to R4 as a manifold, a point (z1, z2) ∈ C2 can be represented by Ψ :=
(q1, p1, q2, p2) ∈ R4, where qi = Re(zi) and pi = Im(zi) for i = 1, 2. Thus, the time-dependent Schrödinger
equation (3.2.7) takes the form

d
dt


q1
p1
q2
p2

 = 1
2B(t)


0 2B0 +B3 −B2 B1

−2B0 −B3 0 −B1 −B2
B2 B1 0 2B0−B3

−B1 B2 −2B0+B3 0



q1
p1
q2
p2

 . (3.2.8)

The manifold R×C2 ≃ R5 is a natural cosymplectic manifold (R×R2, ωS := dq1∧dp1+dq2∧dp2, τS := dt),
where t is the natural coordinate on R understood as a coordinate on R × R4. The solutions of system
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(3.2.8) can be geometrically described as the integral curves, parametrised by t, of the evolution vector
field on R × R4 given by

R+B(t) (B0X0 +B1X1 +B2X2 +B3X3) ,

where R = ∂/∂t denotes the Reeb vector field associated with (R × R4, ωS , τS) and X0, . . . , X3 are the
vector fields on R × R4 of the form

X0 := p1
∂

∂q1
− q1

∂

∂p1
+ p2

∂

∂q2
− q2

∂

∂p2
, X1 := 1

2

(
p2

∂

∂q1
− q2

∂

∂p1
+ p1

∂

∂q2
− q1

∂

∂p2

)
,

X2 := 1
2

(
−q2

∂

∂q1
− p2

∂

∂p1
+ q1

∂

∂q2
+ p1

∂

∂p2

)
, X3 := 1

2

(
p1

∂

∂q1
− q1

∂

∂p1
− p2

∂

∂q2
+ q2

∂

∂p2

)
.

Their commutation relations are given by

[X0, Xj ] = 0 , [X1, X2] = −X3 , [X2, X3] = −X1 , [X3, X1] = −X2 , j = 1, 2, 3 .

On the cosymplectic manifold (R × R4, ωS = dq1 ∧ dp1 + dq2 ∧ dp2, τS = dt) the vector fields X0, . . . , X3

are Hamiltonian with related Hamiltonian functions h0, . . . , h3 given by

h0(Ψ) = 1
2 ⟨Ψ, ÎΨ⟩ = 1

2
(
q2

1 + q2
2 + p2

1 + p2
2
)
, h1(Ψ) = 1

2 ⟨Ψ, Ŝ1Ψ⟩ = 1
2(p1p2 + q1q2) ,

h2(Ψ) = 1
2 ⟨Ψ, Ŝ2Ψ⟩ = 1

2(q1p2 − q2p1) , h3(Ψ) = 1
2 ⟨Ψ, Ŝ3Ψ⟩ = 1

4
(
p2

1 + q2
1 − p2

2 − q2
2
)
.

The functions h1, h2, h3 are functionally independent and h2
0 = 4(h2

1 + h2
2 + h2

3).
Accordingly, the time-dependent Schrödinger equation, in coordinates given by (3.2.8), can be associ-

ated with an evolution vector field, Eh, on R×R4 induced by the Hamiltonian function h ∈ C ∞(R×R4)
given by

h(t,Ψ) := B(t)
3∑

α=0
Bαhα(Ψ), t ∈ R, Ψ ∈ R4 . (3.2.9)

In other words, the solutions (q1(t), p1(t), q2(t), p2(t)) to (3.2.8) correspond to the integral curves

t 7−→ (t, q1(t), p1(t), q2(t), p2(t)) ,

of the evolution vector field Eh. Recall that equivalently Ψ = (z1, z2), with z1, z2 ∈ C. Then define a Lie
group action

Φ: U1 × R × C2 ∋ (eiθ; t, z1, z2) 7→ (t, e−iθz1, e
−iθz2) ∈ R × C2 .

This Lie group action gives rise to a Lie group of symmetries of (3.2.7). Its fundamental vector field is
spanned by X0 (considered as a vector field on C2).

Equivalently, by R × C2 ≃ R × R4, one gets the Lie group action with a fundamental vector field X0

of the form

Φ: SO2 × R × R4 ∋ (θ; t, q1, p1, q2, p2) 7→ (t, (Rθ ⊗Rθ)(q1, p1, q2, p2)) ∈ R × R4 ,

where SO2 is the special orthogonal 2 × 2 matrix group and Rθ satisfies

Rθ =
(

cos θ sin θ
− sin θ cos θ

)
∈ SO2, Rθ

(
qj
pj

)
=
(

cos θ sin θ
− sin θ cos θ

)(
qj
pj

)
, j = 1, 2 .

Note that Φ leaves invariant the Hamiltonian function h given by (3.2.9). Furthermore, Φ is a
cosymplectic Lie group action, that is, Φ∗

gωS = ωS and Φ∗
gτS = τS for every g ∈ SO2. Additionally, it

admits an associated momentum map JΦ : R × R4 → so∗
2 given by

JΦ(t, q1, p1, q2, p2) := h0(q1, p1, q2, p2) ,
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where so∗
2 ≃ R∗. Note that 0 ̸= µ ∈ so∗

2 is a regular value of JΦ and µ = 0 is not even a weak regular
value of JΦ because T(t,0,0,0,0)JΦ = 0 but JΦ−1(0) = {(t, 0, 0, 0, 0) | t ∈ R}. Thus,

T(t,0,0,0,0)JΦ−1(0) ̸= ker T(t,0,0,0,0)JΦ .

Therefore, for µ ̸= 0, the level set JΦ−1(µ) is a submanifold of M , given by

JΦ−1(µ) = {(t, q1, p1, q2, p2) | q2
1 + p2

1 + q2
2 + p2

2 = 2µ, t ∈ R} = R ×Aµ,

where
Aµ = {(q1, p1, q2, p2) ∈ R4 | q2

1 + p2
1 + q2

2 + p2
2 = 2µ},

is a three-dimensional sphere in R4 ≃ C2 centred at the origin and of radius
√

2µ. Hence Aµ ≃ S3. Since
so∗

2 is isomorphic to R∗ and SO2 is abelian, the coadjoint action of SO2 on so∗
2 is trivial (every element

of SO2 acts as the identity in so∗
2). Because h0 is invariant under the action of SO2, the momentum map

JΦ is Ad∗-equivariant. Moreover, the isotropy group of every µ ∈ R∗\{0} is SO2, i.e. Gµ = SO2 for every
µ ̸= 0. Since SO2 is diffeomorphic to the one-dimensional sphere in R2, that is, the circle with radius one
and centre at 0, S1, in R2, it follows

(R ×Aµ)/Gµ ≃ R × (S3/S1).

It is known that S1 acting on S3 gives rise to a space of orbits diffeomorphic to S2. Therefore,

JΦ−1(µ)/Gµ ≃ R × S2 .

In particular, the manifold JΦ−1(µ) admits coordinates {t, φ, θ1, θ2} such that the points in JΦ−1(µ) can
be parametrised by

q1 =
√

2µ sinφ cos θ1 , p1 =
√

2µ sinφ sin θ1 ,

q2 =
√

2µ cosφ cos θ2 , p2 =
√

2µ cosφ sin θ2 ,

with t ∈ R, φ ∈]0, π/2[, θ1 ∈ [0, 2π[ and θ2 ∈ [0, 2π[. In these coordinates, one has

i∗µω = µ sin(2φ)dφ ∧ d(θ1 − θ2) ,

where iµ : JΦ−1(µ) → P is the natural embedding. The form i∗µω becomes degenerate at φ ∈ {0, π/2}.
This degeneracy arises from the fact that the chosen coordinate system is not properly defined at these
values. Then, the Lie group action of SO2 on JΦ−1(µ) is of the form

eiθ(t, φ, θ1, θ2) = (t, φ, θ1 − θ, θ2 − θ) ,

and
πµ : (t, φ, θ1, θ2) ∈ JΦ−1(µ) 7→ (t, φ, θ1 − θ2) ∈ (R ×Aµ) /Gµ .

Hence, {t, φ, θ := θ1 − θ2} are local coordinates on JΦ−1(µ)/Gµ, and the reduced cosymplectic structure
is given by

τµ := dt, ωµ := µ sin(2φ)dφ ∧ dθ .

Indeed, i∗µω = π∗
µωµ.

The function hξ(t) has the following form

hξ(t) = B(t)
[ 3∑
α=0

Bαhα

]
− (h0 − µ)ξ(t),
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for certain B0, B1, B2, B3 ∈ R. The critical points of hξ(t) for a fixed t correspond to the solutions to the
system of equations

q1(2B0 +B3 − 2ξ(t)/B(t)) +B1q2 +B2p2 = 0 ,
q2(2B0 −B3 − 2ξ(t)/B(t)) +B1q1 −B2p1 = 0 ,
p1(2B0 +B3 − 2ξ(t)/B(t)) +B1p2 −B2q2 = 0 ,
B1p1 + 2B0p2 +B2q1 − p2(B3 + 2ξ(t)/B(t)) = 0 ,

(3.2.10)

which is equivalent to

B(t)
(
B0Î +

3∑
α=1

BαŜα

)[
q1 + ip1
q2 + ip2

]
= ξ(t)

[
q1 + ip1
q2 + ip2

]
. (3.2.11)

According to Theorem 3.2.3, Equation (3.2.11) characterises the cosymplectic relative equilibrium points.
Indeed, these are the eigenvectors of the operators

Ĥ(t) = B(t)
(
B0Î +B1Ŝ1 +B2Ŝ2 +B3Ŝ3

)
,

for every t ∈ R. This observation is consistent with the fact that the cosymplectic relative equilibrium
points with respect to Φ are precisely given by the eigenvectors corresponding to real eigenvalues of Ĥ(t)
that remain constant for every t ∈ R.

The reduced Hamiltonian system admits reduced Hamiltonian functions of the form

k0 = µ , k1 = 1
2µ sin(2φ) cos θ , k2 = −1

2µ sin(2φ) sin θ , k3 = −1
2µ cos(2φ) .

Then, the reduced Hamiltonian function on JΦ−1(µ)/Gµ is given by

kµ(t, [Ψ]) := B(t)
3∑

α=0
Bαkα([Ψ]) , [Ψ] ∈ S2 .

Consider now the case where B0 = B1 = B2 = 0 and B3 = 1. In view of (3.2.10) and (3.2.11), the
cosymplectic relative equilibrium points are given by points in C2 of the form

⟨(1, 0)⟩C ∪ ⟨(0, 1)⟩C .

The stability of these equilibrium points in the projected space is determined, within this framework, by
the Hessian of k3. However, the standard criteria [2, 113] do not provide a conclusive result in this case,
since the Hessian of k3 is degenerate as it depends only on the variable φ. From a geometric perspective,
it can be shown that the evolution on S2 preserves a Riemannian metric [28]. This invariance ensures that
the dynamics on the reduced system conserve the distance between any trajectory and the equilibrium
points, thereby ensuring the stability of the reduced cosymplectic relative equilibrium points.

3.2.5 Example: Cosymplectic relative equilibrium points of n-state quantum
system

Consider a more general quantum mechanical system than in the previous subsection, namely a system
given by the time-dependent Schrödinger equation on a finite-dimensional Hilbert space Cn, associated
with a time-dependent Hermitian Hamiltonian operator Ĥ(t) of the form

i
dψ
dt = Ĥ(t)ψ, ∀ψ ∈ Cn, ∀t ∈ R . (3.2.12)

The following analysis focuses on finding the cosymplectic relative equilibrium points of this system.
The states of an n-level quantum system are represented by the elements of the Hilbert space Cn,

and any orthonormal basis in Cn determines a real global chart on Cn. Indeed, let {ej}1,...,n be an



Chapter 3. Energy-momentum methods 147

orthonormal basis of Cn relative to its canonical inner product ⟨·, ·⟩ : Cn × Cn → C. Then, the functions
qj , pj : Cn → R, with j = 1, . . . , n, defined by

⟨ej , ψ⟩ =: qj(ψ) + ipj(ψ) , j = 1, . . . , n , ∀ψ ∈ Cn ,

define a real global chart on Cn. Recall that for every t ∈ R, the operator Ĥ(t) is Hermitian with respect
to the inner product above. Since Cn ≃ R2n, it follows that at each ψ̃ ∈ Cn, there exists a canonical
R-linear isomorphism ψ ∈ R2n ≃ Cn 7→ ψψ̃ ∈ Tψ̃R2n ≃ Tψ̃Cn, where

ψψ̃f := d
dt

∣∣∣∣
t=0

f(ψ̃ + tψ), ∀f ∈ C ∞(Cn) .

Therefore, an antisymmetric and non-degenerate two-form ω can be introduced on Cn and is defined as

ωψ(ψ1ψ̃, ψ2ψ̃) := Im⟨ψ1, ψ2⟩ , ∀ψ,ψ1, ψ2 ∈ Cn .

In the coordinate {qj , pj}j=1,...,n, one has

ω =
n∑
j=1

dqj ∧ dpj .

Since ω is closed, it follows that ω is a symplectic form on Cn with symplectic Darboux coordinates
{q1, . . . , qn, p1, . . . , pn}.

Let u∗
n denote the real vector space of Hermitian operators on Cn. Then, each observable on Cn,

namely Â ∈ u∗
n induces a real smooth function on Cn of the form

f
Â

(ψ) := 1
2 ⟨ψ, Âψ⟩, ∀ψ ∈ Cn ,

giving rise to the Hamiltonian vector field

X
Â

:= {·, f
Â

} ,

where the Poisson bracket {f, g} of two smooth real-valued functions f, g ∈ C ∞(Cn) is given by {f, g} :=
ω(Xf , Xg).

The integral curves of the time-dependent Hamiltonian vector field X
Ĥ(t), associated with f

Ĥ(t),
coincide with the solutions of the time-dependent Schrödinger equation (3.2.12) (see [28] and references
therein for details).

Proceeding to the cosymplectic setting, consider the manifold Cn embedded in (t, z1, . . . , zn) ∈ R ×
Cn ≃ R2n+1 ∋ (t, q1, p1, . . . , qn, pn). Then, (R × R2n,pr∗

R2nω,dt) is a cosymplectic manifold, where
prR2n : R×R2n → R2n is the canonical projection onto the second factor and t is the pull-back to R×R2n

of the natural variable in R. The solutions of (3.2.12) are the curves z(t) such that (t, z(t)) is an integral
curve of the evolution vector field

Ef
Ĥ(t)

= R+Xf
Ĥ(t)

,

where R = ∂
∂t is the Reeb vector field associated with (R × R2n,pr∗

R2nω,dt).
The Lie group action of the form

Φ: SO2 × R × R2n −→ R × R2n ,

(Rθ, t, q1, p1, . . . , qn, pn) 7−→ (t, (Rθ ⊗ · · · ⊗Rθ)(q1, p1, . . . , qn, pn)) ,

gives rise to a Lie group of symmetries of E
Ĥ(t). Moreover, the action of each element of SO2 leaves

invariant the canonical inner product on R2n. Therefore, Φ leaves ω and τ = dt invariant, and Φ becomes
a cosymplectic Lie group action. In addition, Φ leaves invariant the Hamiltonian function f

Ĥ(t).
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A cosymplectic momentum map JΦ associated with Φ is given by

JΦ : R × R2n ∋ (t, q1, p1, . . . , qn, pn) 7→ 1
2

n∑
i=1

(q2
i + p2

i ) ∈ so∗
2,

where so∗
2 ≃ R∗. Similarly, µ ∈ so∗

2 is a regular value of JΦ provided that µ ̸= 0. Otherwise, TJΦ−1(0) ̸=
ker TJΦ|JΦ−1(0) and consequently µ = 0 is not a weak regular value of JΦ. Thus, for µ ̸= 0, one gets

JΦ−1(µ) =
{

(t, q1, p1, . . . , qn, pn) |
n∑
i=1

(q2
i + p2

i ) = 2µ, t ∈ R

}
= R × S2n−1 .

Since the coadjoint action of SO2 on so∗
2 is trivial, a cosymplectic momentum map JΦ is Ad∗-equivariant.

Therefore, the isotropy group of every non-zero µ ∈ so∗
2 is Gµ = SO2. Theorem 2.2.13 and Corollary

2.2.14 yield that the reduced space

(R × S2n−1)/SO2 ≃ R ×
(
S2n−1/S1) ,

is a cosymplectic manifold. It is well known that S1 acting on S2n−1 gives rise to a space of orbits
diffeomorphic to the projective space PCn ≃ Cn×/C×, where C× := C\{0} and Cn× := Cn\{0} [2, 95].
Therefore, by Cn ≃ R2n, one obtains

M∆
µ = JΦ−1(µ)/Gµ ≃ R × PCn ,

for every non-zero µ ∈ so∗
2. From Proposition 3.2.2, it follows that the cosymplectic relative equilibrium

points are of the form
(t, ψ(t)) = Φg(t)(t, ψe), g(t) ∈ Gµe

= U1 ,

where g(t) ∈ SO2 ≃ U1 is the evolution operator of the Schrödinger equation (3.2.12) and Ψe is an
eigenvector for each Ĥ(t). Consequently, analogously to the previous example, the cosymplectic relative
equilibrium points correspond to the constant eigenvalues of a Hamiltonian operator Ĥ(t) for every t ∈ R.

The reduction of (3.2.12) to the projective space PCn is stable at its cosymplectic equilibrium points
as a consequence of the same arguments discussed in the previous example, together with the results
presented in [28].

3.2.6 Cosymplectic-to-symplectic reduction and gradient relative equilibrium
points

This section introduces a novel cosymplectic-to-symplectic reduction together with an associated class of
relative equilibrium points, referred to as gradient relative equilibrium points. The proposed reduction
differs from the standard cosymplectic Marsden–Meyer–Weinstein procedure in that it does not rely
on Lie symmetries taking values in the kernel of the one-form τ of a cosymplectic manifold, thereby
extending the applicability of the method to a broader range of physical systems. Furthermore, the
present construction generalises the cosymplectic-to-symplectic reduction developed by Albert in [4, p
640], which is recovered here as a particular case. Finally, the reduction is a modification of a Poisson
reduction that cannot be entirely described within the framework of standard Poisson theory, for several
reasons that are discussed in detail below.

The cosymplectic-to-symplectic reduction introduced by Albert [4, p 640] is recalled now.

Theorem 3.2.13. Let (M,ω, τ) be a cosymplectic manifold and let Y be a vector field on M satisfying

ιY τ = 1, ιY ω = −df , (3.2.13)

for some f ∈ C ∞(M). Suppose that the space M/Y of orbits of Y in M is a manifold and πY : M → M/Y

is a submersion. Then there exists a symplectic form ωY on M/Y and a unique function fY ∈ C ∞(M/Y )
such that the Reeb vector field R projects onto the Hamiltonian vector field XfY

on M/Y relative to ωY
and π∗

Y fY = f .
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It is worth noting that the conditions (3.2.13) imply that Y = R −Xf , i.e. Y is an evolution vector
field and Rf = 0. Consequently, this reduction is rather restrictive, although it allows for a reduction
relative to a vector field that does not take values in ker τ .

Proposition 3.2.14. Every cosymplectic manifold (M,ω, τ) induces a unique Poisson bivector Λω,τ on
M that is tangent to the leaves of ker τ and coincides with the Poisson bivector associated with ω on each
such a leaf.

Proof. By definition, a cosymplectic manifold (M,ω, τ) is such that the restriction of ω to each leaf of
the integral distribution ker τ is symplectic. Therefore, on each leaf, one can define the Poisson bivector
associated with the restriction of ω, which naturally gives rise to a Poisson bivector on M . Indeed, this
coincides with the Poisson bivector corresponding to the Poisson bracket (1.3.8) canonically defined on
cosymplectic manifolds.

In cosymplectic Darboux coordinates {t, xi, pi} for (M,ω, τ), one obtains

Λω,τ =
n∑
i=1

∂

∂xi
∧ ∂

∂pi
.

In these coordinates, one sees that the Reeb vector field R and any Hamiltonian vector field Xh are Lie
symmetries of Λω,τ . Nevertheless, R and the gradient vector fields ∇h, for h ∈ C ∞(M) with Rh ̸= 0, are
not Hamiltonian vector fields relative to the Poisson bivector Λω,τ . Indeed, they do not lie in the image
of the induced vector bundle morphism

Λ♯ω,τ : ϑp ∈ T∗M 7→ (Λω,τ )p(ϑp, ·) ∈ TM .

This implies that the standard cosymplectic Marsden–Meyer–Weinstein reduction cannot be directly
applied to reduce the dynamics of such vector fields.

Prior to proving the main result of this subsection, the following lemma is established.

Lemma 3.2.15. Let Λω,τ be the Poisson bivector on M associated with (M,ω, τ). Then,

L∇ΥΛω,τ = 0 ,

for Υ ∈ C ∞(M) such that ιd(RΥ)Λω,τ = 0.

Proof. Recall that ∇Υ = (RΥ)R + XΥ. Since ιXΥτ = 0, one has that XΥ is tangent to the leafs of
the integrable distribution ker τ . Moreover, its restriction to any such leaf of the distribution ker τ is a
Hamiltonian vector field with respect to the restriction of Λω,τ to this leaf, which is symplectic. Indeed,
for a vector field X taking values in ker τ , one has ιXιXΥω = XΥ and then, on each integral leaf of ker τ ,
it follows that ιXΥω = dΥτ , where Υτ denotes the restriction of Υ to the particular integral leaf of ker τ .
Therefore, LXΥΛω,τ = 0. The assumption ιd(RΥ)Λω,τ = 0 yields that

L(RΥ)RΛω,τ = (RΥ)LRΛω,τ + (ιd(RΥ)Λω,τ ) ∧R = 0 ,

as claimed.

Lemma 3.2.15 can also be proven using a coordinate-dependent approach via cosymplectic Darboux
coordinates. However, the proof presented above is intrinsic and illustrates the geometric properties of
cosymplectic manifolds.

Proposition 3.2.16. (The cosymplectic-to-symplectic reduction theorem) Let (M,ω, τ) be a
cosymplectic manifold with a Reeb vector field R. Let Υ ∈ C ∞(M) satisfy ιd(RΥ)Λω,τ = 0 and RΥ ̸= 0 at
any point of M . Assume that M/∇Υ is a manifold and πΥ : M → M/∇Υ is a submersion. Then, Λω,τ
projects onto a bivector field ΛΥ on M/∇Υ giving rise to a symplectic manifold.
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Moreover, if h ∈ C ∞(M) is such that [∇Υ, Eh] = 0, then Eh projects via πΥ onto a vector field Yk

on M/∇Υ, which is a Hamiltonian vector field relative to the symplectic form induced by ΛΥ on M/∇Υ.
In this case, RΥ is a constant and Yk admits a uniquely defined Hamiltonian function k ∈ C ∞(M/∇Υ)
given by

π∗
Υk = h− Υ/c−

∫ t

[(∇Υ)(h− Υ/c)]dt .

Proof. Recall that ∇Υ = (RΥ)R + XΥ whenever RΥ ̸= 0. By Lemma 3.2.15, one has L∇ΥΛω,τ = 0,
hence Λω,τ projects onto M/∇Υ via the projection π : M → M/∇Υ to a Poisson bivector ΛΥ.

To prove that ΛΥ gives rise to a symplectic form, suppose, by contradiction, that ΛΥ is degenerate at
some point y ∈ M/∇Υ. Then there exists a nonzero covector ϑy ∈ T∗

y(M/∇Υ) such that (ΛΥ)y(ϑy, ·) = 0.
Hence, for every x ∈ π−1(y) and every ϑ′

y ∈ T∗
y(M/∇Υ), one has

(Λω,τ )x(ϑy ◦ π∗x, ϑ
′
y ◦ π∗x) = 0 .

Thus, ϑy ◦ πx∗ is orthogonal relative to Λω,τ at x to the annihilator of ⟨∇Υ⟩x. Let ⟨∇Υ⟩Λω,τ
x denotes the

orthogonal to annihilator of ⟨∇Υ⟩x relative to Λω,τ . Since ΛΥ is a bivector field on an even-dimensional
manifold, its kernel must be even-dimensional. Therefore, in addition to ϑy ∈ ker ΛΥ, there exists a
linearly independent covector ϑ′

y ∈ T∗
y(M/∇Υ) belonging to ker ΛΥ. Their pullbacks via π∗

x give two
linearly independent elements in ⟨∇Υ⟩Λω,τ

x .
Furthermore, dtx belongs to ⟨∇Υ⟩Λω,τ

x at x, because it belongs to ker(Λω,τ )x. However, dtx cannot
be the pull-back via πx∗ of any element of T∗

y(M/∇Υ), since ι∇Υdt = RΥ ̸= 0. Therefore, ⟨∇Υ⟩Λω,τ
x

has dimension at least three. This contradicts the fact that Λω,τ has rank 2n and that the orthogonal
complement relative to Λω,τ of a codimension k subspace has dimension at most k + 1. Hence, ΛΥ is
nondegenerate and defines a symplectic form on M/∇Υ.

Consider now a vector field Eh. Since [Eh,∇Υ] = 0 by assumption, then Eh projects onto a vector
field Z on M/∇Υ. Hence, LZΛΥ = 0 and Z is locally Hamiltonian with respect to the symplectic form
associated with ΛΥ. Note that ιd(RΥ)Λω,τ = 0 implies that RΥ is, in cosymplectic Darboux coordinates,
a function depending only on time. Then, Xh(RΥ) = 0 and

0 = [Eh,∇Υ] = [R+Xh, (RΥ)R+XΥ] = (R2Υ)R+ [R,XΥ] +RΥ[Xh, R] + [Xh, XΥ] .

Hence, R2Υ = 0 and since RΥ depends only on t in cosymplectic Darboux coordinates, it follows that
RΥ is a nonzero constant c. Thus,

0 = [Eh,∇Υ] = XRΥ − cXRh −X{h,Υ} = Xc − cXRh −X{h,Υ} = −cXRh −X{h,Υ} = X−cRh−{h,Υ}.

(3.2.14)
Consequently, −{h,Υ} − cRh depends only on time in cosymplectic Darboux coordinates.

Since ∇Υ projects onto zero vector field on M/∇Υ, the projection of Eh onto M/∇Υ coincides with
the projection of Eh − ∇Υ/c = Xh−Υ/c. The fact that Xh−Υ/c is a Hamiltonian vector field relative to
Λω,τ and (3.2.14) give

∇Υ(h− Υ/c) = {h,Υ} + cRh− c = g(t) ,

for a certain function g(t) in cosymplectic Darboux coordinates. Hence,

∇Υ
(
h− Υ/c− 1

c

∫ t

g(t′)dt′
)

= 0

and
h− Υ/c−

∫ t

[∇Υ(h− Υ/c)](t′)dt′/c

is the pull-back of a function on M/∇Υ, namely π∗
Υk = h − Υ/c −

∫ t[(∇Υ)(h − Υ/c)]dt for some
k ∈ C ∞(M/∇Υ). Moreover, Λω,η(d(h− Υ/c−

∫ t
g(t′)dt′/c), ·) is projectable onto M/∇Υ giving rise to

a vector field
ΛΥ(dk, ·) = Yk = Z .
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This completes the proof.

Note that the presented reduction allows for studying general evolution vector fields, thus providing
a more general framework than Albert’s cosymplectic-to-symplectic reduction, which applies only to the
case where the Hamiltonian is the first integral of the Reeb vector field [4]. Moreover, the cosymplectic-
to-symplectic reduction developed here makes it possible to reduce an evolution vector field relative
to another vector field, yielding a more general reduction than the one presented by Albert in [4]. In
particular, Albert’s reduction arises as a particular case of this reduction for Eh = R, Y = R − Xf =
∇(t−f), and Υ = t−f , where f is a function such that Rf = 0 and t denotes a cosymplectic Darboux time
coordinate. Since R is a Hamiltonian vector field with zero Hamiltonian function h = 0 and c = RΥ = 1,
it follows that

∇(t− f)(0 − (t− f)) = −1 ⇒ π∗
Y k = −t+ f +

∫ t

dt′ = f .

Consequently, this reduction ensures that R projects onto a vector field on M/Y with a Hamiltonian
function k such that f = π∗

Υk.
Then, the following definition of a gradient relative equilibrium point can be introduced.

Definition 3.2.17. Let (M,ω, τ) be a cosymplectic manifold, let h ∈ C ∞(M) be a Hamiltonian function,
and let Φ: G×M → M be a cosymplectic Lie group action on M whose fundamental vector fields are of
the form ξM = ∇Υ for some Υ ∈ C ∞(M) and ξ ∈ g such that ιd(RΥ)Λω,τ = 0. Then, a gradient relative
equilibrium point of h is a point ze ∈ M such that

∇hze = (ξM )ze ,

for a certain fundamental vector field ∇Υ associated with Φ.

Since the evolution vector field Eh, by definition, satisfies ιEh
τ ̸= 0, it follows that, at gradient

relative equilibrium points and in an open neighbourhood of such points, the fundamental vector field
∇Υ satisfies the condition required for the cosymplectic-to-symplectic reduction described above. After
the reduction, standard symplectic methods can be applied to analyse the stability of the corresponding
projected system.

It is worth observing that the initial step of the cosymplectic-to-symplectic reduction, namely the
projection of the Poisson bivector Λω,τ , can be described as a particular case of the Poisson reduction.
However, the general Poisson reduction framework does not take into account the specific features of
the bivector Λω,τ arising from a cosymplectic structure, nor does it cover the reduction scheme based on
gradient vector fields that are not Hamiltonian with respect to Λω,τ .

3.2.7 Example: Reduced circular three-body problem

This subsection shows that the cosymplectic Marsden–Meyer–Weinstein reduction presented in Subsec-
tion 2.2.3 is not always sufficient for the analysis of certain physically relevant systems, and that the
cosymplectic-to-symplectic reduction developed in the previous subsection becomes necessary.

Consider a planar three-body system consisting of three masses µ, 1 − µ, and m, which are moving
on a plane and interact via Newtonian gravitation. For convenience, the gravitational constant is taken
to be equal to one. Furthermore, assume that µ is much larger than 1 − µ. Without loss of generality,
one may set m = 1, since the extension to arbitrary m follows straightforwardly. In addition, suppose
that the mass 1 − µ moves around µ in a stable circular orbit with constant angular frequency ϖ, and
that the presence of m does not influence the motion of µ and 1 − µ. Physically, this happens when m

is negligible in comparison with µ and 1 − µ. Collisions are excluded from the discussion. The resulting
model corresponds to the circular restricted three-body problem [4, 61], a standard framework in celestial
mechanics (see, for instance, [2, p 663] or [60] and references therein).
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Under these assumptions, the centre of mass of the system lies on the line connecting the bodies of
mass µ and 1 − µ, at distances r1 = 1 − µ and r2 = µ, respectively. This approximation accurately
describes, for example, the Sun-Earth-satellite configuration, where the Earth moves around the Sun on
a circular orbit of radius one, i.e. r1 + r2 = 1, with frequency ϖ, and the satellite is affected by the
gravitational attraction of the Sun and the Earth while having no significant influence on the motion of
the Sun and the Earth. Several other astronomical systems can also be modelled in this manner [60].

Mathematically, this model is described by a time-dependent Hamiltonian function h defined on the
phase space of a particle moving in the plane. Formally, the phase space is R× T∗R2, where the factor R
represents time, and the Hamiltonian is given by a function h : R × T∗R2 → R. In coordinates adapted
to polar variables on R2, namely r, φ, together with the corresponding canonical momenta pr, pφ and the
time variable t, the Hamiltonian takes the form

h(t, r, φ, pr, pφ) = p2
r

2 +
p2
φ

2r2 − µ

[r2 + r2
1 + 2rr1 cos(φ−ϖt)]1/2 − 1 − µ

[r2 + r2
2 − 2rr2 cos(φ−ϖt)]1/2 .

Technical issues related to the lack of differentiability of h at collision points will not be considered, since
they are irrelevant for the subsequent discussion.

The dynamics is described on the cosymplectic manifold (R × T∗R2, ωTB , τTB = dt), where ωTB is
the pull-back to R× T∗R2 of the canonical symplectic form on T∗R2, namely ωTB = dr∧ dpr + dφ∧ dpφ
in the chosen coordinates (see [4] for a different approach using old techniques in cosymplectic geometry).

The evolution vector field associated with h is of the form RTB +Xh, namely

∂

∂t
−
(

µ(r + r1 cos(φ−ϖt))
(r2 + 2rr1 cos(φ−ϖt) + r2

1)3/2 + (1 − µ)(r − r2 cos(φ−ϖt))
(r2 − 2rr2 cos(φ−ϖt) + r2

2)3/2 −
p2
φ

r3

)
∂

∂pr
+ pr

∂

∂r

+ pφ
r2

∂

∂φ
+
(

µrr1 sin(φ−ϖt)
(r2 + 2rr1 cos(φ−ϖt) + r2

1)3/2 − (1 − µ)rr2 sin(φ−ϖt)
(r2 − 2rr2 cos(φ−ϖt) + r2

2)3/2

)
∂

∂pφ
.

The Hamilton equations corresponding to h read

dr
dt = pr,

dφ
dt = pφ

r2 ,

dpr
dt =

p2
φ

r3 − µ(r + r1 cos(φ−ϖt))
(r2 + 2rr1 cos(φ−ϖt) + r2

1)3/2 − (1 − µ)(r − r2 cos(φ−ϖt))
(r2 − 2rr2 cos(φ−ϖt) + r2

2)3/2 ,

dpφ
dt = µrr1 sin(φ−ϖt)

(r2 + 2rr1 cos(φ−ϖt) + r2
1)3/2 − (1 − µ)rr2 sin(φ−ϖt)

(r2 − 2rr2 cos(φ−ϖt) + r2
2)3/2 .

(3.2.15)

Consider the vector field on R × R2 of the form

Y = ∂

∂t
+ϖ

∂

∂φ
.

Denote by Ŷ the fundamental vector field on R×T∗R2 corresponding to the lifted action of the Lie group
R on R × R2 induced by the flow of Y , associated with the same element of the Lie algebra of R (see
Section 2.2.1).

The vector field Ŷ is a cosymplectic vector field, namely L
Ŷ
ωTB = 0 and L

Ŷ
τTB = 0. In fact, Ŷ is

the gradient vector field associated with the function Υ = t+ pφϖ, for which RTBΥ is a constant. Note
that Ŷ is not a Hamiltonian vector field relative to the cosymplectic manifold (R×T∗R2, ωTB , τTB = dt),
since ι

Ŷ
τTB ̸= 0. Moreover, Ŷ is a Lie symmetry of the Hamiltonian function h, which follows from the

fact that Ŷ takes the same form as Y but in the coordinates {t, r, φ, pr, pφ}. At this point, it becomes
clear that Theorem 2.2.13 is not applicable.

It is relevant to find the gradient relative equilibrium points of h. Physically, it corresponds to the
situation where the mass m moves around the centre of mass at a fixed distance r and frequency ϖ.
The standard notion of a cosymplectic relative equilibrium point for (R× T∗R2, ωTB , τTB = dt) does not
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apply in this case, because Ŷ is not a Hamiltonian vector field. Similarly, the techniques developed in
Section 3.1 are not applicable, as Ŷ is not tangent to T∗R2. For this reason, Theorem 3.2.16 is employed.

By Definition 3.2.17, a point ze ∈ R × T∗R2 is a gradient relative equilibrium point if RTB +Xh and
Ŷ are proportional to each other at ze. If this occurs at a point (t, r, φ, pr, pφ), then the last expression
in the Hamilton equations (3.2.15) is equal to zero and φ = ϖt+ kπ, with k ∈ Z, or φ−ϖt is such that
the distance between the mass from m to µ and from m to 1 − µ are the same. In the latter case, one
can prove that φ−ϖt = ∆ and r cos ∆ = µ− 1/2. Note that it is sufficient to restrict to the cases where
k ∈ {0, 1}. The remaining equations for the gradient relative equilibrium points read as follows

p2
φ

r3 − µ(r + r1 cos(φ−ϖt))
(r2 + 2rr1 cos(φ−ϖt) + r2

1)3/2 − (1 − µ)(r − r2 cos(φ−ϖt))
(r2 − 2rr2 cos(φ−ϖt) + r2

2)3/2 = 0,

pr = 0, pφ
r2 = ϖ.

Since the masses 1 − µ and µ spin around their centre of mass, located at r = 0, with constant angular
velocity ϖ due to their gravitational attraction, one gets

µ

(r1 + r2)2 = ϖ2r2 ⇒ ϖ = ±1.

Note that the force is determined by the relative distance between the masses, while the centripetal force
is considered relative to the inertial reference system at the centre of mass of the system of µ and 1 − µ.

Consider then the three cases for the relations between φ and t for gradient relative equilibrium points,
namely

φ = ϖt , φ = ϖt+ π , φ = ϖt+ ∆ .

In the first case, one gets
r = µ

(r + 1 − µ)2 ∓ 1 − µ

(µ− r)2 , (3.2.16)

which correspond precisely to the equations for the centripetal force of a circular motion induced by the
gravitational force of the masses µ and 1 − µ when the three objects move in circles with a frequency ϖ,
while remaining collinear along a line rotating with this frequency about the origin.

Then, Equation (3.2.16) leads to two quintic equations

P±(r, µ) := r5 + (2 − 4µ)r4 +
(
6µ2 − 6µ+ 1

)
r3 +

(
−4µ3 + 6µ2 − (3 ± 1)µ± 1

)
r2

+
(
µ4 − 2µ3 + (3 ± 2)µ2 ∓ (4µ− 2)

)
r − µ3 ± (1 − µ)3 = 0 , (3.2.17)

for the gradient relative equilibrium position of r, which has always a root in ]0,∞[ since the polynomial
has negative value at r = 0; the value of µ is approximately equal to 1 with µ < 1; and the value of the
polynomial (3.2.17) tends to infinity when r does so. Each of the above two equations in (3.2.16) has just
one real solution.

The analysis of the gradient relative equilibrium points can be carried out approximately as follows.
The quintic polynomial has a triple root r = 1 for µ = 1. Write r = 1+

∑
n∈N δ

n/3xn for certain constants
{xn}n∈N and a parameter δ ≥ 0. Then, consider the quintic polynomial as

P±(r, µ) =
∞∑
n=0

P±n(r)δ1+n/3 ,

for δ = 1 − µ, and look for solutions of P±(r(δ), δ) = 0 for every δ in some [0, δmax[. For δ = 0, one gets
that P±(r, 1) has a triple root r = 1 and

0 = P±(r(δ), δ) = (±1 + 3x3)δ + (±2x+ 3x4 + 9x2y)δ4/3 + . . . ,

The convergence of solutions of P±(r(δ), δ) = 0 can be obtained by the implicit function theorem and
writing P±(r(δ), δ) in an appropriate manner. Then, the equilibrium points of order δ1/3 are given by

r = 1 ∓ 3

√
1 − µ

3 .
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This expression agrees with the well-known approximation of the Hill radii of the Hill spheres. Since
r > 0, both solutions are admissible. Therefore, the model reproduces two gradient relative equilibrium
points for k = 0, which, by convention, are denoted by L2 and L1, corresponding to the positive and
negative signs in (3.2.16), respectively.

Meanwhile, for k = 1, the equations determining the gradient relative equilibrium points take the
form

r = ± µ

(r − 1 + µ)2 + 1 − µ

(µ+ r)2 . (3.2.18)

The case of (3.2.18) with the minus sign in ± amounts to one of the equations in (3.2.16) with −r.
Since (3.2.16) admits only one real positive solution for each choice of signs, it follows that (3.2.18) has
no positive solution with the minus sign in ±. Consequently, only the following equation is of physical
interest

r = µ

(r − 1 + µ)2 + 1 − µ

(µ+ r)2 .

It can be written as a polynomial in terms of r and δ = 1 − µ of the form

0 = (1 − r)S(r) + δQ(r, δ) , S(r) = −(1 + r)2(1 + r + r2) ,

Q(r, δ) = 3 + 4r − 2r2 − 6r3 − 4r4 + (−3 + r + 6r2 + 6r3)δ + (−2r − 4r2)δ2 + rδ3 .

For µ = 1, this gives a solution r = 1. Assume now that r = 1 + λδ. Neglecting second and higher-order
terms in δ, one obtains the approximate equation

0 = λδS(1) + δQ(1, 0) = λ12δ − δ5 ,

which yields
r = 1 + (1 − µ) 5

12 .

This expression coincides with the approximated value of the Lagrange point L3. Two additional Lagrange
points appear when considering the case φ − ϖt = ∆. It can be directly verified that these correspond
to the well-known Lagrange points L4 and L5.

The main conclusion is that, at every Lagrange point, the following condition holds

RTB +Xh = ∇Υ ,

where Υ = t+ϖpφ, for every t ∈ R. Recall that ∇Υ is a symmetry of both τTB and ωTB . However, it does
not take values in ker τTB , which makes the standard cosymplectic reduction inapplicable. Consequently,
Theorem 3.2.16 must be used.

The projection from R × T∗R2 onto the quotient space (R × T∗R2)/∇Υ ≃ R2 × R2 corresponding to
the orbit space of the integral curves of ∇Υ, is given by

π : (t, r, φ, pr, pφ) ∈ R × T∗R2 7→ (r, φ− tϖ, pr, pφ) ∈ R2 × R2 ,

where {r, φ′, pr, pφ} is the chosen global coordinate system on R2 × R2.
The manifold R×T∗R2 admits a Poisson bivector on R×T∗R2 induced by its cosymplectic structure.

In the above coordinates, it reads

ΛTB = ∂

∂φ
∧ ∂

∂pφ
+ ∂

∂r
∧ ∂

∂pr
.

By Theorem 3.2.16, the bivector field ΛTB projects onto the quotient space of the orbits of the gradient
vector field ∇Υ under the projection π, and it reads

π∗ΛTB = ∂

∂φ′ ∧ ∂

∂pφ
+ ∂

∂r
∧ ∂

∂pr
, π∗RTB = −ϖ ∂

∂φ′ , π∗∇Υ = 0
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and

π∗(RTB +Xh) = pr
∂

∂r
+
(

−ϖ + pφ
r2

) ∂

∂φ′

−

(
µ(r + r1 cosφ′)

(r2 + 2rr1 cosφ′ + r2
1)3/2 + (1 − µ)(r − r2 cosφ′)

(r2 − 2rr2 cosφ′ + r2
2)3/2 −

p2
φ

r3

)
∂

∂pr

− r1rr2 sinφ′

(
1

(r2 + 2rr1 cosφ′ + r2
1)3/2 + 1

(r2 − 2rr2 cosφ′ + r2
2)3/2

)
∂

∂pφ
.

The vector field π∗(RTB +Xh) vanishes only at the image under π of the gradient relative equilibrium
points. Furthermore, the quotient manifold is a symplectic manifold, and π∗(RTB+Xh) is a Hamiltonian
vector field with a Hamiltonian function

k(r, φ′, pr, pφ) = −ϖpφ + p2
r

2 +
p2
φ

2r2 − µ

[r2 + r2
1 + 2rr1 cosφ′]1/2 − 1 − µ

[r2 + r2
2 − 2rr2 cosφ′]1/2 .

Physically, this system corresponds to an autonomous Hamiltonian system obtained by fixing a coordinate
frame rotating around the centre of mass with angular frequency ϖ. From the mathematical perspective,
the function k is precisely the Hamiltonian function from Theorem 3.2.16.

This example demonstrates that the cosymplectic framework provides a broader reduction scheme,
opening possibilities that extend beyond the scope of the classical theory of the energy-momentum
method. In particular, the cosymplectic-to-symplectic reduction of the Poisson bivector field ΛTB can be
interpreted as a Poisson reduction with respect to the distribution generated by ∇Υ (cf. [111]). However,
the initial dynamical system is determined by the vector field RTB +Xh, which is not Hamiltonian with
respect to the Poisson bivector ΛTB . Consequently, its reduction cannot be described by the standard
cosymplectic Marsden–Meyer–Weinstein reduction scheme.

3.3 k-Polysymplectic energy momentum-method
This section introduces the concept of the k-polysymplectic relative equilibrium points associated with
an ω-Hamiltonian vector field X, see Definition 1.4.10. The notion is devised to investigate the relative
stability of ω-Hamiltonian vector fields, thereby extending the classical notion of relative equilibrium
points from the symplectic setting to the k-polysymplectic framework.

3.3.1 k-Polysymplectic relative equilibrium points

The following definition introduces the notion of a k-polysymplectic relative equilibrium point. It is worth
noting that the idea remains the same as in the classical symplectic setting. That is, a relative equilibrium
point of a dynamical system determined by a vector field is a point whose trajectory is entirely described
by the action of a Lie group of symmetries of that vector field and the geometric structure.

Definition 3.3.1. Let (P,ω,h,JΦ) be a G-invariant ω-Hamiltonian system. A point ze ∈ P is a k-
polysymplectic relative equilibrium point of the ω-Hamiltonian vector field Xh if there exists ξ ∈ g so
that

(Xh)(ze) = (ξP )(ze) .

For k = 1, this definition recovers the classical notion of a relative equilibrium point for symplectic
Hamiltonian systems from Section 3.1, when there is no time-dependence. Moreover, Lemma 2.3.12
together with the fact that Xh is tangent to the level sets of JΦ implies that the element ξ ∈ g appearing
in Definition 3.3.1 necessarily belongs to the Lie subalgebra g∆

µe
, where µe = JΦ(ze).

Note that a k-polysymplectic relative equilibrium point ze ∈ P projects onto πµe
(ze), with µe =

JΦ(ze). This projected point becomes an equilibrium point of the vector fieldXfµe
, obtained by projection
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of Xh onto the reduced space JΦ−1(µe)/G∆
µe

via k-polysymplectic Marsden–Meyer–Weinstein reduction
Theorem 2.3.14. As in the time-dependent symplectic setting, this explains the term relative used in the
definition of relative equilibrium points.

The following theorem characterises k-polysymplectic relative equilibrium points of an ω-Hamiltonian
vector field Xh in terms of the critical points of a modified Rk-valued function hξ on P . Analogously
to the previous sections, this is an application of the Lagrange multiplier theorem, where the role of the
multiplier is played by ξ ∈ g.

Theorem 3.3.2. Let (P,ω,h,JΦ) be a G-invariant ω-Hamiltonian system. Then, ze ∈ P is a k-
polysymplectic relative equilibrium point of Xh if and only if there exists ξ ∈ g such that ze is a critical
point of the following Rk-valued function

hξ := h− ⟨JΦ − µe, ξ⟩ , (3.3.1)

where µe := JΦ(ze) ∈ g∗k.

Proof. Let ze be a k-polysymplectic relative equilibrium point of Xh, i.e. Xh(ze) = ξP (ze) for some
ξ ∈ g. Then,

dhξ(ze) = d(h− ⟨JΦ, ξ⟩)(ze) = (ιXh−ξP
ω)(ze) = 0 .

Hence, ze ∈ P is a critical point of the Rk-valued function hξ.
Conversely, assume that ze is a critical point of some hξ with ξ ∈ g. Then,

0 = dhξ(ze) = (ιXh−ξP
ω)(ze) = 0 ,

and (Xh − ξP )(ze) ∈ kerωze
. Since kerω = 0, it follows that Xh(ze) = ξP (ze). Hence, ze is a k-

polysymplectic relative equilibrium point of Xh.

The following example illustrates the k-polysymplectic energy-momentum method.

Example 3.3.3. Consider a two-polysymplectic manifold (R6,ω) with the two-polysymplectic form

ω = ω1 ⊗ e1 + ω2 ⊗ e2 = (dx1 ∧ dx3 + dx2 ∧ dx4) ⊗ e1 + (dx1 ∧ dx5 + dx2 ∧ dx6) ⊗ e2 .

Note that
kerω1 =

〈
∂

∂x5
,
∂

∂x6

〉
, kerω2 =

〈
∂

∂x3
,
∂

∂x4

〉
,

and kerω1 ∩ kerω2 = 0. Define the Lie group action Φ: R × R6 → R6 by

Φ: (λ;x1, x2, x3, x4, x5, x6) ∈ R × R6 7−→ (x1 + λ, x2 + λ, x3 + λ, x4 + λ, x5 + λ, x6 + λ) ∈ R6 .

The fundamental vector field associated with the Lie group action Φ is spanned by

ξP = ∂

∂x1
+ ∂

∂x2
+ ∂

∂x3
+ ∂

∂x4
+ ∂

∂x5
+ ∂

∂x6
.

This Lie group action is two-polysymplectic since LξP
ω = 0. Then, Φ gives rise to a two-polysymplectic

momentum map JΦ for µ = (µ1, µ2) given by

JΦ : (x1, x2, x3, x4, x5, x6) ∈ R6 7−→ (x3 + x4 − x1 − x2, x5 + x6 − x1 − x2) = µ ∈ R∗2 .

Therefore, the level set of the two-polysymplectic momentum map JΦ is of the form

JΦ−1(µ) =
{

(x1, x2, x3, x4, x5, x6)∈R6 | x3+x4−x1−x2 = µ1, x5+x6−x1−x2 = µ2} . (3.3.2)
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Note that every µ ∈ R∗2 is a regular two-value of a two-polysymplectic momentum map JΦ and
JΦ−1(µ) ≃ R4. In addition, JΦ is an Ad∗2-equivariant. Then,

Tp(Gµp) = Tp(Gµ1p) = Tp(Gµ2p) =
〈

∂

∂x1
+ ∂

∂x2
+ ∂

∂x3
+ ∂

∂x4
+ ∂

∂x5
+ ∂

∂x6

〉
,

ker TpJΦ
1 =

〈
∂

∂x2
− ∂

∂x1
,
∂

∂x1
+ ∂

∂x3
,
∂

∂x1
+ ∂

∂x4
,
∂

∂x5
,
∂

∂x6

〉
,

ker TpJΦ
2 =

〈
∂

∂x2
− ∂

∂x1
,
∂

∂x3
,
∂

∂x4
,
∂

∂x1
+ ∂

∂x5
,
∂

∂x1
+ ∂

∂x6

〉
,

TpJΦ−1(µ) =
〈 6∑
i=1

∂

∂xi
,
∂

∂x3
− ∂

∂x4
,
∂

∂x2
+ ∂

∂x3
+ ∂

∂x5
,
∂

∂x1
− ∂

∂x2

〉
,

and one can verify that conditions (2.3.3) and (2.3.4) are satisfied.
Since the Lie group R act by translations on R6 via Φ, Theorem 2.3.14 implies that the reduced

manifold (JΦ−1(µ)/Gµ ≃ R3,ωµ) is a two-polysymplectic manifold with coordinates (y1, y2, y3) ∈ R3,
satisfying that

y1 = x1 − x2 , y2 = x3 − x1 , y3 = x5 − x1 ,

y4 = x1 + x2 − x3 − x4 , y5 = x1 + x2 − x5 − x6 , y6 = x1 ,

with
ωµ = ω1

µ ⊗ e1 + ω2
µ ⊗ e2 = dy1 ∧ dy2 ⊗ e1 + dy1 ∧ dy3 ⊗ e2 .

Next, consider an ω-Hamiltonian vector field, Xh, on P = R6 whose ω-Hamiltonian function is R-
invariant. Then, Xh is tangent to each level set JΦ−1(µ), and can be expressed as

Xh = F1

6∑
i=1

∂

∂xi
+ F2

(
∂

∂x3
− ∂

∂x4

)
+ F3

(
∂

∂x2
+ ∂

∂x3
+ ∂

∂x5

)
+ F4

(
∂

∂x1
− ∂

∂x2

)
,

for certain uniquely defined G-invariant functions F1, . . . , F4 ∈ C ∞(P ). By definition, a point ze ∈ P

is a two-polysymplectic relative equilibrium point of Xh if and only if Xh(ze) = ξP (ze), which holds, if
and only if, F1(ze) = 1 and F2(ze) = F3(ze) = F4(ze) = 0. The next step is to verify this using Theorem
3.3.2.

First, one has that

dh1 = ιXh
ω1 = − (F1 + F2 + F3) dx1 − (F1 − F2) dx2 + (F1 + F4) dx3 + (F1 + F3 − F4) dx4 ,

dh2 = ιXh
ω2 = − (F1 + F3) dx1 − F1dx2 + (F1 + F4) dx5 + (F1 + F3 − F4) dx6 .

Then, Theorem 3.3.2 yields that ze ∈ P is a two-polysymplectic relative equilibrium point of Xh if and
only if dh1

ξ(ze) = 0 and dh2
ξ(ze) = 0 for some ξ ∈ R. Indeed, using (3.3.2), one has

dh1
ξ = dh1 − dJ1

ξ = − (F1 + F2 + F3 − ξ) dx1 − (F1 − F2 − ξ) dx2

+ (F1 + F4 − ξ) dx3 + (F1 + F3 − F4 − ξ) dx4 , (3.3.3)

dh2
ξ = dh2 − dJ2

ξ = − (F1 + F3 − ξ) dx1 − (F1 − ξ) dx2

+ (F1 + F4 − ξ) dx5 + (F1 + F3 − F4 − ξ) dx6 , (3.3.4)

for ξ ∈ R. Since at ze both (3.3.3) and (3.3.4) must vanish, one gets that this occurs if and only if
F1(ze) = ξ and F2(ze) = F3(ze) = F4(ze) = 0. Therefore, ze ∈ P is a two-polysymplectic relative
equilibrium point of Xh under the above-mentioned conditions.
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To verify that πµe
(ze) is a critical point of the fαµe

∈ C ∞(JΦ−1(µe)/Gµe
), note that the reduced

vector field Xfµe
is of the form

Xfµe
= (2F̃4 − F̃3) ∂

∂y1
+ (F̃2 + F̃3 − F̃4) ∂

∂y2
− F̃4

∂

∂y3
,

where Fi = π∗
µe
F̃i for i = 2, 3, 4. Note that the projection exists because F2, F3, F4 are assumed to be

G-invariant functions on P . Then,

df1
µe

(πµe
(ze)) =

(
ιXfµe

ω1
µe

)
πµe (ze)

=

=
(

2F̃4(πµe(ze)) − F̃3(πµe(ze))
)

dy2 +
(
F̃4(πµe(ze)) − F̃2(πµe(ze)) − F̃3(πµe(ze))

)
dy1 = 0 ,

and

df2
µe

(πµe(ze)) =
(
ιXfµe

ω2
µe

)
πµe (ze)

=
(

2F̃4(πµe(ze)) − F̃3(πµe(ze))
)

dy3 + F̃4(πµe(ze))dy1 = 0 .

Indeed, πµe
(ze) is a critical point of fµe

, hence ze ∈ P is a two-polysymplectic relative equilibrium point
of Xfµe

.

3.3.2 Stability in the k-polysymplectic energy momentum-method

This subsection develops the stability analysis associated with the k-polysymplectic energy-momentum
method relative to a k-polysymplectic manifold (P,ω). Recall that Theorem 3.3.2 characterises k-
polysymplectic relative equilibrium points as the critical points of the Rk-valued function (3.3.1). How-
ever, as in the precious setting, when studying the stability of k-polysymplectic relative equilibrium
points, the presence of symmetry requires to investigate how the second variation of hξ along directions
tangent to the isotropy group G∆

µe
influence the positive definiteness of hξ. Furthermore, the results

presented in this subsection apply exclusively to situations where k-polysymplectic reduction is possible
and conditions (2.3.3) and (2.3.3) are satisfied.

Define the second variation of hξ at a k-polysymplectic relative equilibrium point ze ∈ JΦ−1(µe) as
the mapping (δ2hξ)ze

: Tze
JΦ−1(µe) × Tze

JΦ−1(µe) → R, with µe = JΦ(ze), of the form

(
δ2hξ

)
ze

(v1, v2) =
k∑

α=1
ιY
(
d
(
ιXdhαξ

))
ze

⊗ eα , (3.3.5)

for some vector fields X,Y on P defined on a neighbourhood of ze ∈ P and such that v1 = Xze
, v2 = Yze

.
Note that (3.3.5) serve as a generalisation of (3.1.4) to k-polysymplectic setting. The following proposition
shows that, since ze is a k-polysymplectic relative equilibrium point, the above definition does not depend
on the value of the particular chosen vector fields X and Y out of ze and (δ2hξ)ze

is well-defined.

Proposition 3.3.4. Let ze ∈ P be a k-polysymplectic relative equilibrium point of Xh on a k-polysymplectic
manifold (P,ω). If {x1, . . . , xn} are local coordinates on a neighbourhood of ze ∈ P , then

(δ2hαξ )ze(w, v) =
n∑

i,j=1

∂2hαξ
∂xi∂xj

(ze)wivj , ∀w, v ∈ Tze
JΦ−1(µe) , α = 1, . . . , k ,

where w =
∑n
i=1 wi∂/∂xi and v =

∑n
i=1 vi∂/∂xi.

Proof. From (3.3.5) for α = 1, . . . , k, one has

(δ2hαξ )ze(w, v) = ιY (dιXdhαξ )ze

=
n∑

i,j=1

∂2hαξ
∂xi∂xj

(ze)wivj +
n∑

i,j=1

∂hαξ
∂xi

(ze)
∂Xi

∂xj
(ze)vj

=
n∑

i,j=1

∂2hαξ
∂xi∂xj

(ze)wivj ,
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where X =
∑n
i=1 Xi∂/∂xi with X(ze) = w, and it has been used that ze is a k-polysymplectic relative

equilibrium point and, therefore, hξ admits a critical point at ze, namely (Zhαξ )(ze) = 0 for every vector
field Z on P and α = 1, . . . , k.

Note that each map (δ2hαξ )ze
is symmetric bilinear form for α = 1, . . . , k. Therefore, (δ2hξ)ze

is
symmetric.

Proposition 3.3.5. Let (P,ω,h,JΦ) be a G-invariant ω-Hamiltonian system and let ze ∈ P be a k-
polysymplectic relative equilibrium point of Xh. Then,

(δ2hξ)ze
((ζP )ze

, vze
) = 0 , ∀ζ ∈ g∆

µe
, ∀vze

∈ Tze
JΦ−1(µe) ,

with µe = JΦ(ze). Moreover,

(δ2hαξ )ze
(Yze

, ·) = 0 , ∀Yze
∈ kerωαze

∩ Tze
JΦ−1(µe) , α = 1, . . . , k . (3.3.6)

Proof. First, since h ∈ C ∞(P,Rk) is G-invariant and k-polysymplectic momentum map JΦ is equivariant
with respect to the k-polysymplectic affine Lie group action ∆ : G× g∗k → g∗k, then for every g ∈ G and
p ∈ P , one has

hξ(Φg(p)) = h(Φg(p)) − ⟨JΦ(Φg(p)), ξ⟩ + ⟨µe, ξ⟩

= h(p) − ⟨∆gJΦ(p), ξ⟩ + ⟨µe, ξ⟩ = h(p) −
k∑

α=1
⟨JΦ
α(p),∆T

gαξ⟩ ⊗ eα + ⟨µe, ξ⟩,

where ∆T
g : gk → gk is the transpose of ∆g for g ∈ G and ∆g1, . . . ,∆gk are its components. Substituting

g = exp(tζ), with ζ ∈ g, and differentiating with respect to t, one gets

(ιζP
dhξ)ze

= −
k∑

α=1

〈
JΦ
α(p), d

dt

∣∣∣∣
t=0

∆T
exp (tζ)αξ

〉
⊗ eα = −

k∑
α=1

〈
JΦ
α(p), (ζ∆α

g )ξ
〉

⊗ eα , (3.3.7)

where (ζ∆α
g )ξ is the fundamental vector field of ∆T

α : G × g → g at ξ ∈ g for α = 1, . . . , k. Taking the
second variation of (3.3.7) relative to p ∈ P , evaluating at ze ∈ P , and contracting with vze

gives

(
δ2hξ

)
ze

((ζP )ze
, vze

) = −
k∑

α=1

〈
Tze

JΦ
α (vze

) , (ζ∆α
g )ξ

〉
⊗ eα.

Since vze
∈ Tze

JΦ−1(µe) ⊂ ker Tze
JΦ
α the second variation

(
δ2hξ

)
ze

((ζP )ze
, vze

) vanishes.
The identity (3.3.6) follows from (3.3.5) and the fact that, for every vector field Y on JΦ−1(µe) taking

values in kerωα ∩ TJΦ−1(µe), one obtains

ιY dhα = ωα(Xh, Y ) = 0 , ιY d⟨JΦ
α , ξ⟩ = ωα(ξP , Y ) = 0 ,

for α = 1, . . . , k and every ξ ∈ g on JΦ−1(µe).

Proposition 3.3.5 and Proposition 2.3.12 establish that
(
δ2hξ

)
ze

is degenerate along the directions
tangent to Tze

(
G∆

µe
ze
)
, while each (δ2hαξ )ze

is degenerate in the directions of kerωαze
∩ Tze

JΦ−1(µe).
Moreover, since ker(δ2hξ)ze

contains ker Tze
πµe

, it is possible to define a bilinear two-form on Tπµe (ze)P
∆
µe

,
with P∆

µe
= JΦ−1(µe)/G∆

µe
, by reducing the bilinear two-form (δ2hξ)ze to that space. By using an adapted

coordinate system, one can prove that the reduction of (δ2hξ)ze
to Tπµe (ze)P

∆
µe

yields the the Hessian of
fµe

on Pµe
.

It is worth noting that the reduction fµe
to P∆

µ of hξ on JΦ−1(µe) is independent on ξ, since the
value of hξ on points of JΦ−1(µe) does not actually depend on ξ, being just the restriction of h to
JΦ−1(µe). Furthermore, only the directions transverse to the orbit of G∆

µe
play a role in determining, via

the variation of hξ, the stability properties of fµe
at an equilibrium point.
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There exist several approaches for establishing the stability of a k-polysymplectic reduced Hamiltonian
system. This motivates the following definition of formal stability. In the case of a symplectic manifold,
this definition recovers the standard criterion for stability in reduced symplectic systems as presented
in Section 3.1 when there is no time-dependence. In other words, it retrieves the standard results from
[113].

Definition 3.3.6. Let (P,ω,h,JΦ) be a G-invariant ω-Hamiltonian system and let ze ∈ P be a k-
polysymplectic relative equilibrium point of Xh. Then, ze is a formally stable k-polysymplectic relative
equilibrium point if, for a family of supplementary spaces Sα satisfying

Sα ⊕
(
Tze

(G∆
µe
ze) + kerωαze

∩ Tze
JΦ−1(µe)

)
= Tze

JΦ−1(µe) ,

and
S1 + · · · + Sk + Tze(G∆

µe
ze) = TzeJΦ−1(µe) ,

it follows that (
δ2hαξ

)
ze

(vze , vze) > 0 , ∀vze ∈ Sα\{0} , α = 1, . . . , k . (3.3.8)

It is important to note that if a family of subspacesW1, . . . ,Wk of a vector space E satisfies ∩kα=1Wα =
0, it does not necessarily follow that for any choice of supplementary spaces Vα such that Vα ⊕Wα = E

implies V1 + · · · + Vk = E. This observation underlies the necessity of the condition

S1 + · · · + Sk + Tze
(G∆

µe
ze) .

Indeed, in order to guarantee stability on the reduced manifold, it is necessary to ensure that the projection
of S1 + · · · + Sk onto the tangent space at the equilibrium point in the reduced manifold spans the entire
tangent space at that point.

If a system satisfies the condition of formal stability from Definition 3.3.6, then
∑k
α=1 f

α
µe

admits a
strict minimum at πµe

(ze). Moreover, the function is invariant relative to the evolution of the reduced ωµ-
Hamiltonian system. Consequently, the reduced system is stable at that point. The converse, however,
does not hold, as in the symplectic case.

The proof of the above-mentioned fact relies on using a coordinate system on JΦ−1(µe) adapted to
its fibration over P∆

µe
, together with the fact that the obtained results involve geometric objects that

are independent of the coordinate system. In the adapted coordinate system, the Hessian of fµe
on

the reduced space P∆
µe

at πµe(ze) is recovered from the Hessian of hξ on directions of TzeJΦ−1(µe)
that are transversal to ker Tze

πµe
. The Hessian of the reduced function fµe

can be decomposed into
k components. The vector subspaces S1, . . . ,Sk project onto a family of subspaces whose sum spans
Tπµe (ze)Pµe . Condition (3.3.8) then implies that

∂2fαµe

∂zi∂zj
(πµe(ze))vivj > 0 , ∀v ∈ ImTπµe (ze)πµe(Sα)\{0} ,

∂2fαµe

∂zi∂zj
(πµe

(ze))vivj ≥ 0 , ∀v ∈ Tπµe (ze)P
∆
µe
,

for α = 1, . . . , k. Then,

k∑
α=1

∂2fαµe

∂zi∂zj
(πµe(ze))vivj > 0 , ∀v ∈ Tπµe (ze)P

∆
µe

\{0} .

Consequently, the second-order Taylor part of
∑k
α=1 f

α
µe

is definite-positive, which ensures the existence
of a strict minimum. Since the components fαµe

are first integrals Xfµe
, the flow of Xfµe

, for an initial
condition close enough to πµe(ze) can be restricted to an open neighbourhood of πµe(ze).

It is worth noting that the term formally stable k-polysymplectic relative equilibrium points also refers
to points for which each (3.3.8) is negative-definite, since analogous results can be established in this case.
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It is possible to obtain many other stability criteria. However, a comprehensive analysis of methods for
establishing stability of the reduced k-polysymplectic ω-Hamiltonian systems is not discussed here and
is left for future research.

3.4 Applications and examples

This section demonstrates how the theoretical framework developed in the previous subsections concern-
ing the k-polysymplectic energy-momentum method can be applied to examples of both physical and
mathematical relevance.

3.4.1 Example: Complex Schwarz equations

The first example illustrates how locally automorphic Lie systems [72] can be interpreted as ω-Hamiltonian
systems relative to a k-polysymplectic structure.

Consider the t-dependent complex differential equation given by

dz
dt = v ,

dv
dt = a ,

da
dt = 3

2
a2

v
+ 2b(t)v , z, v, a ∈ C , (3.4.1)

for a certain complex t-dependent function b(t) defined on O = {(z, v, a) ∈ T2C | v ̸= 0}.
The system (3.4.1) can be understood as the complex analogue of the Lie system on OR = {(z, v, a) ∈

T2R | v ̸= 0} studied in [53]. More precisely, (3.4.1) is a first-order representation for the third-order
complex differential equation of the form

d3z

dt3

(
dz
dt

)−1
− 3

2

(
d2z

dt2

)2(dz
dt

)−2
= 2b(t) .

The left-hand side of the above expression coincides, for z ∈ R, with the real version of the Schwarzian
derivative (also known as the Schwarz equation) of a function z(t), commonly denoted by {z(t), t}sc,
which appears in many research problems [77, 83, 96].

The methods developed in this work, together with (3.4.1), provide a potential framework for ex-
tending to the complex setting the results obtained for the real third-order Kummer–Schwarz equation
and Schwarzian derivatives via Lie systems (see [20, 52] and references therein). It is worth noting that
the Schwarzian derivative plays a significant role in the study of linearisation of time-dependent systems,
projective systems, the theory of special functions, and related areas (cf. [77, 83, 96]).

In real coordinates

v1 = Re(z) , v2 = Im(z) , v3 = Re(v) , v4 = Im(v) , v5 = Re(a) , v6 = Im(a) ,

the system (3.4.1) is associated with the t-dependent vector field

X = X1 + 2bR(t)X2 + 2bI(t)X3 ,

where bR(t) = Re(b(t)), bI(t) = Im(b(t)), and

X1 = v3
∂

∂v1
+ v4

∂

∂v2
+ v5

∂

∂v3
+ v6

∂

∂v4
+ 3

2
2v4v5v6 + (v2

5 − v2
6)v3

v2
3 + v2

4

∂

∂v5
+ 3

2
2v3v5v6 − v4(v2

5 − v2
6)

v2
3 + v2

4

∂

∂v6
,

X2 = v3
∂

∂v5
+ v4

∂

∂v6
, X3 = −v4

∂

∂v5
+ v3

∂

∂v6
,

X4 = −v3
∂

∂v3
− v4

∂

∂v4
− 2v5

∂

∂v5
− 2v6

∂

∂v6
, X5 = v4

∂

∂v3
− v3

∂

∂v4
+ 2v6

∂

∂v5
− 2v5

∂

∂v6
,

X6 = −v4
∂

∂v1
+ v3

∂

∂v2
− v6

∂

∂v3
+ v5

∂

∂v4
− 3

2
2v3v5v6 − v4(v2

5 − v2
6)

(v2
3 + v2

4)
∂

∂v5
+ 3

2
2v4v5v6 + v3(v2

5 − v2
6)

(v2
3 + v2

4)
∂

∂v6
.
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These vector fields satisfy the following commutation relations

[X1, X2] = X4 , [X1, X3] = X5 , [X1, X4] = X1 , [X1, X5] = X6 , [X1, X6] = 0 ,
[X2, X3] = 0 , [X2, X4] = −X2 , [X2, X5] = −X3 , [X2, X6] = −X5 ,

[X3, X4] = −X3 , [X3, X5] = X2 , [X3, X6] = X4 ,

[X4, X5] = 0 , [X4, X6] = −X6 ,

[X5, X6] = X1 ,

Hence, the vector fields X1, . . . , Xk give rise to a Lie algebra of vector fields Vsc isomorphic, as a real
vector space, to C ⊗ sl2. Indeed,

⟨X1, X2, X4⟩ ≃ sl(2,R) ≃ ⟨X3, X4, X6⟩ .

Additionally, C ⊗ sl2 admits the decomposition of the form ⟨X1, X4, X2⟩ ⊕ ⟨X6, X5, X3⟩. Then, Vsc is
graded as Vsc = E−1 ⊕ E0 ⊕ E1, where E−1 = ⟨X6, X1⟩, E0 = ⟨X4, X5⟩, and E1 = ⟨X3, X2⟩, with
[Ei, Ej ] = Ei+j , where the sum is in the additive group {−1, 0, 1}.

Furthermore, a direct computation shows that X1 ∧ · · · ∧ X6 ̸= 0 almost everywhere. This linear
independence, together with the fact that X1, . . . , X6 span a Lie algebra of vector fields generating TO,
explains why system (3.4.1) is related to a locally automorphic Lie system (cf. [72]).

Meanwhile, the Lie algebra of Lie symmetries of the system (3.4.1) associated with the Lie algebra
Vsv is generated by

2Y1 = (v2
1 − v2

2) ∂

∂v1
+ 2v1v2

∂

∂v2
+ 2(v1v3 − v2v4) ∂

∂v3
+ 2(v3v2 + v1v4) ∂

∂v4

+2(v2
3 + v1v5 − v2

4 − v2v6) ∂

∂v5
+ 2(v5v2 + 2v3v4 + v2v6) ∂

∂v6
,

Y2 = ∂

∂v1
, Y3 = ∂

∂v2
,

Y4 = −v1
∂

∂v1
− v2

∂

∂v2
− v3

∂

∂v3
− v4

∂

∂v4
− v5

∂

∂v5
− v6

∂

∂v6
,

Y5 = v2
∂

∂v1
− v1

∂

∂v2
+ v4

∂

∂v3
− v3

∂

∂v4
+ v6

∂

∂v5
− v5

∂

∂v6
.

2Y6 = −2v1v2
∂

∂v1
+ (v2

1 − v2
2) ∂

∂v2
− 2(v2v3 + v1v4) ∂

∂v3
+ 2(v1v3 − v2v4) ∂

∂v4

−2(2v3v4 + v2v5 + v1v6) ∂

∂v5
+ 2(v2

3 − v2
4 + v1v5 − v2v6) ∂

∂v6
.

In other words, [Xi, Yj ] = 0 for every i, j = 1, . . . , 6. The commutation relations among the vector fields
Y1, . . . , Y6 are

[Y1, Y2] = Y4 , [Y1, Y3] = Y5 , [Y1, Y4] = Y1 , [Y1, Y5] = Y6 , [Y1, Y6] = 0 ,
[Y2, Y3] = 0 , [Y2, Y4] = −Y2 , [Y2, Y5] = −Y3 , [Y2, Y6] = −Y5 ,

[Y3, Y4] = −Y3 , [Y3, Y5] = Y2 , [Y3, Y6] = Y4 ,

[Y4, Y5] = 0 , [Y4, Y6] = −Y6 ,

[Y5, Y6] = Y1 .

The vector fields Y1, . . . , Y6 admit identical structure constants as X1, . . . , X6. It is possible to choose
one-forms η1, . . . , η6 dual to Y1, . . . , Y6. Their existence is ensured by the condition Y1 ∧ · · · ∧ Y6 ̸= 0 and
the fact that Y1, . . . , Y6 span TO. These dual one-forms remain invariant under the Lie derivatives with
respect to the vector fields X1 . . . , X6, namely LXi

ηj = 0 for i, j = 1, . . . , 6.
Moreover, the differential forms dη1, . . . ,dη6, as well as their linear combinations, are closed differential

forms that are invariant relative to the Lie derivatives along X1, . . . , X6. These properties ensure that the
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vector fields X1, . . . , X6 are Hamiltonian vector fields relative to the presymplectic forms dη1, . . . ,dη6.
The appropriate linear combinations of these forms yield a family of presymplectic forms with the zero
intersection of their kernels. Consequently, the vector fields X1, . . . , X6 become ω-Hamiltonian vector
fields relative to this k-polysymplectic structure.

In particular, if

dη1 = −η5 ∧ η6 − η1 ∧ η4 , dη2 = −η3 ∧ η5 − η4 ∧ η2 ,

dη3 = −η4 ∧ η3 − η5 ∧ η2 , dη4 = −η1 ∧ η2 − η3 ∧ η6 ,

dη5 = −η1 ∧ η3 − η6 ∧ η2 , dη6 = −η1 ∧ η5 − η6 ∧ η4 ,

then every vector field in ⟨X1, . . . , X6⟩ becomes an ω-Hamiltonian vector field relative to the two-
polysymplectic form dη1 ⊗ e1 + dη2 ⊗ e2. The same statement holds for the two-polysymplectic form
dη5 ⊗ e1 + dη6 ⊗ e2, and many other forms. This naturally extends to three-polysymplectic forms, such
as dη1 ⊗ e1 + dη2 ⊗ e2 + dη3 ⊗ e3, provided that the kernels of their presymplectic components have zero
intersection.

Consider the three-polysymplectic form defined by

ω = ω1 ⊗ e1 + ω2 ⊗ e2 + ω3 ⊗ e3 = dη1 ⊗ e1 + dη2 ⊗ e2 + dη4 ⊗ e3 .

A three-polysymplectic Marsden–Meyer–Weinstein reduction, Theorem 2.3.14 and Theorem 2.3.16, can
be performed by taking, for instance, the ω-Hamiltonian vector field X1 and the Lie symmetry X6, which
satisfies [X1, X6] = 0. Then, a three-polysymplectic momentum map JΦ : O → R∗3 takes the form

ιX6dJΦ = ιX6ω
1 ⊗ e1 + ιX6ω

2 ⊗ e2 + ιX6ω
3 ⊗ e3 = dJΦ

1 ⊗ e1 + dJΦ
2 ⊗ e2 + dJΦ

3 ⊗ e3 .

A direct calculation shows that dJΦ
1 ∧ dJΦ

2 ∧ dJΦ
3 ̸= 0 almost everywhere based on the fact that

∂(JΦ
1 , J

Φ
2 , J

Φ
3 )/∂(v1, v2, v3) ̸= 0 almost everywhere. Consequently, JΦ−1(µ) is a three-dimensional sub-

manifold for some weak regular three-value µ ∈ R∗3. Moreover, since ιX6dJΦ = 0, the reduced manifold
JΦ−1(µ)/X6 is two-dimensional.

The vector field X1 is tangent to the level set JΦ−1(µ) since

ιX1ιX6dηα = X1J
Φ
α = 0 , α = 1, 2, 3 .

Therefore, by Theorem 2.3.16 the vector field X1 projects onto the reduced manifold JΦ−1(µ)/X6.
After performing the necessary calculations, condition (2.3.3) is verified. To check condition (2.3.4),

which reads

Tp(G∆
µ p) =

k⋂
α=1

(
kerωαp + Tp(G∆α

µα p)
)

∩ TpJΦ−1(µ) ,

observe that
Tp(G∆

µ p) = ⟨X6⟩ ⊂ TpJΦ−1(µ) ⊂ TpP .

Moreover,
kerω1 = ⟨Y2, Y3⟩ , kerω2 = ⟨Y1, Y6⟩ , kerω3 = ⟨Y4, Y5⟩ .

Then it suffices to show that no element of kerωα belongs to TpJΦ−1(µ). This can be done by computing
three determinants, each of which is non-zero at some generic point, namely

det
(
Y2J2 Y2J3
Y3J2 Y3J3

)
̸= 0 , det

(
Y1J1 Y1J3
Y6J1 Y6J3

)
̸= 0 , det

(
Y4J1 Y4J2
Y5J1 Y5J2

)
̸= 0 .

Consequently, condition (2.3.4) is satisfied, that is(
⟨Y2, Y3⟩ + ⟨X6⟩

)
∩
(
⟨Y1, Y6⟩ + ⟨X6⟩

)
∩
(
⟨Y4, Y5⟩ + ⟨X6⟩

)
∩ TpJΦ−1(µ) = ⟨X6⟩ .

Hence, Theorem 2.3.14 can be applied to perform the three-polysymplectic Marsden–Meyer–Weinstein
reduction.
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3.4.2 k-Polysymplectic manifold given by the product of k symplectic mani-
folds

This subsection presents an illustrative example of the k-polysymplectic Marsden–Meyer–Weinstein re-
duction of a product of k symplectic manifolds (see Subsection 2.3.7). It shows different types of systems of
differential equations that can be understood as Hamiltonian systems relative to a k-polysymplectic man-
ifold and describes their reductions. In particular, the so-called diagonal prolongations of Lie–Hamilton
systems, which appear also in the multidimensional generalisations of certain integral systems, such as
the Winternitz–Smorodinsky oscillator on T∗R (see [52]), can be viewed as Hamiltonian systems relative
to a k-polysymplectic manifold, including higher-dimensional Winternitz–Smorodinsky oscillators.

Recall the formalism introduced in Subsection 2.3.7. Let P = P1 × · · · × Pk for some k symplectic
manifolds (Pα, ωα), where α = 1, . . . , k. This gives rise to a k-polysymplectic manifold (P,pr∗

αω
α ⊗ eα).

Assume that each Lie group action Φα : Gα ×Pα → Pα admits a symplectic momentum map JΦα : Pα →
g∗
α for α = 1, . . . , k. Define the Lie group action of G = G1 × · · · ×Gk on P as (2.3.8). If g =

⊕k
α=1 gα,

then there exists a k-polysymplectic momentum map associated with Φ given by

J : (x1, . . . , xk) ∈ P 7−→ (0, . . . ,Jα, . . . , 0) ⊗ eα =


J1 0 · · · 0
0 J2 · · · 0
...

...
. . .

...
0 0 · · · Jk

 ∈ g∗k ,

where there is a summation over α and Jα(x1, . . . , xk) = JΦα(xα) for α = 1, . . . , k. The above ma-
trix array should be understood as a convenient representation of the image of J. Note that µ =
(0, . . . , µα, . . . , 0) ⊗ eα ∈ g∗k is a weak regular k-value of J if and only if each µα ∈ g∗

α is a weak regular
value of its corresponding JΦα . Assume that some G∆

µ acts in a quotientable manner on the associated
level J−1(µ). This happens if and only if every G∆α

µα acts on a quotientable manner on each JΦα−1(µα)
for α = 1, . . . , k.

Subsection 2.3.7 established that the conditions (2.3.3) and (2.3.4) hold. Thus, by Theorem 2.3.14,
these equations guarantee that, the reduced manifold J−1(µ)/G∆

µ admits a unique k-polysymplectic
structure. Explicitly, one gets(

J−1(µ)/G∆
µ ≃ JΦ1−1(µ1)/G∆1

1µ × · · · × JΦk−1(µk)/G∆k

kµ , ωµ =
k∑

α=1
ωµ

α

⊗ eα

)

where each ωµα denotes the reduced presymplectic form induced on JΦα−1(µα)/G∆α

αµα , for α = 1, . . . , k.
Consider a vector field X on P that is both ω-Hamiltonian and G-invariant. For instance, a vector

field X can be written as

X =
k∑

α=1
Xα ,

where each Xα is a vector field on Pα that is tangent to JΦα−1(µα) for α = 1, . . . , k. Recall that
ιXαω

β = δβαdhα for α, β = 1, . . . , k. This frequently happens in diagonal prolongations of Lie–Hamilton
systems, where a vector field X [m] defined on a manifold of the form Nm is considered as a copy of a
Hamiltonian system on each N relative to a symplectic manifold on that N (cf. [52]). Then,

dh =
k∑

α=1
dhα ⊗ eα =

k∑
α=1

ιXω
α ⊗ eα .

Next, recall that hξ = h − ⟨J − µe, ξ⟩ for ξ ∈ g. By Theorem 3.3.2, a point ze = (z1e, . . . , zke) ∈ P is
a k-polysymplectic relative equilibrium point if and only if each zαe is a symplectic relative equilibrium
point of a Hamiltonian vector field Xα on the symplectic manifold (Pα, ωα) relative to some ξα ∈ gα, see
Definition 3.1.3 where there is no time-dependence.
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Therefore, a k-polysymplectic relative equilibrium point ze ∈ P is formally stable if there exists a series
of supplementary spaces Sα to Tze

(G∆
µe
ze) ⊕

(
kerωαze

∩ Tze
J−1(µe)

)
in Tze

J−1(µe), with α = 1, . . . , k,
such that (

δ2hαξ
)
ze

(vze
, vze

) > 0 , ∀vze
∈ Sα \ {0} , α = 1, . . . , k ,

and S1 + · · · + Sk + Tze
(G∆

µe
ze) = Tze

J−1(µe).

3.4.3 Example: Product of oscillators

A practical application of the above formalism can be illustrated by considering the product of k isotropic
three-dimensional harmonic oscillators. The equations read

d2xiα
dt2 = −b2

αx
i
α , α = 1, . . . , k , i = 1, 2, 3 ,

where each bα > 0 is a constant. The above system of second-order differential equations can be written
as a first-order system of differential equations

dxiα
dt = piα ,

dpiα
dt = −b2

αx
i
α ,

α = 1, . . . , k , i = 1, 2, 3 , (3.4.2)

defined on the product manifold P = (T∗R3)k. The α-th factor T∗R3 in P is a symplectic manifold
equipped with the canonical symplectic form

ωα =
3∑
i=1

dxiα ∧ dpiα ,

where the index α is not summed over. Then, P is a k-polysymplectic manifold when endowed with the
Rk-valued form

ω =
k∑

α=1
ωα ⊗ eα ,

where ω1, . . . , ωk are considered as pulled back to P in the natural way. Moreover, system (3.4.2)
corresponds to the integral curves of the vector field of the form

Xh =
k∑

α=1

3∑
i=1

(
piα

∂

∂xiα
− b2

αx
i
α

∂

∂piα

)
,

which is ω-Hamiltonian vector field admitting an ω-Hamiltonian function

h = 1
2

k∑
α=1

(
p2
α + b2

αx
2
α

)
⊗ eα , p2

α =
3∑
i=1

(piα)2, x2
α =

3∑
i=1

(xiα)2 .

Consider now the Lie group action Φα : SO3 × (T∗R3)α → (T∗R3)α, where each Φα is the lift of the
natural Lie group action Ψ: SO3 × R3 → R3 induced by rotations on R3 to the α-th copy of T∗R3 in P .
Then, the resulting Lie group action Φ on (T∗R3)k, given by (2.3.8), reads

Φ: SOk
3 × (T∗R3)k −→ (T∗R3)k .

The Lie algebra of fundamental vector fields of Φ is spanned by the basis of vector fields on P of the form

ξ1
αP =

(
x1
α

∂

∂x2
α

− x2
α

∂

∂x1
α

+ p1
α

∂

∂p2
α

− p2
α

∂

∂p1
α

)
, ξ2

αP =
(
x2
α

∂

∂x3
α

− x3
α

∂

∂x2
α

+ p2
α

∂

∂p3
α

− p3
α

∂

∂p2
α

)
,

ξ3
αP =

(
x3
α

∂

∂x1
α

− x1
α

∂

∂x3
α

+ p3
α

∂

∂p1
α

− p1
α

∂

∂p3
α

)
,
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with α = 1, . . . , k. These vector fields are Lie symmetries of ω and h. Furthermore, the corresponding
k-polysymplectic momentum map J : (T∗R3)k → (sok3)∗k associated with Φ is given by

J(q1, . . . , qk) =
k∑

α=1
(0, 0, 0; . . . ; J1

α, J
2
α, J

3
α; . . . ; 0, 0, 0) ⊗ eα

where qα = (x1
α, x

2
α, x

3
α, p

1
α, p

2
α, p

3
α) ∈ T∗R3 for α = 1, . . . , k, while

(J1
α, J

2
α, J

3
α) = (x1

αp
2
α − x2

αp
1
α, x

2
αp

3
α − x3

αp
2
α, x

3
αp

1
α − x1

αp
3
α) ,

and α = 1, . . . , k. The function x1
αp

2
α − x2

αp
1
α is the angular momentum, pαφ, of the α-th particle in the

corresponding spherical coordinates {rα, θα, φα}. Meanwhile, L2
α = (J1

α)2 + (J2
α)2 + (J3

α)2 is the square
of the total angular momentum of the α-th particle. Both quantities are conserved by the flow of Xh.

Note that the momentum map J is Ad∗k-equivariant. Recall that J = (0, . . . ,Jα, . . . , 0) ⊗ eα. Then,
µ = (0, 0, 0; . . . ; J1

α, J
2
α, J

3
α; . . . ; 0, 0, 0) ⊗ eα is a weak regular k-value of J if and only if each triple

µα = (J1
α, J

2
α, J

3
α) ∈ so∗

3 is a weak regular value of JΦα , where α = 1, . . . , k. Fix a weak regular k-value
µ. Then,

TqJ−1(µ) =
k⊕

α=1
TqαJΦα−1

α (µα) , ∀q = (q1, . . . ,qk) ∈ P .

Furthermore,
ξiαPJ

j
β = −δαβϵijkJkβ , i, j = 1, 2, 3, α, β = 1, . . . , k .

The isotropy subgroup of Φ at µ is given by the Cartesian product of the isotropy subgroups corresponding
to each µα relative to Φα, for α = 1, . . . , k. To determine Gµα , one requires that

∑3
i=1 λi(ξiαP ) belongs to

Tqα
(JΦα−1(µα)), namely

∑3
i=1 λi(ξiP )αJjα = 0 for j = 1, 2, 3 (with no summation over α), which occurs

if and only if  0 −J3
α J2

α

J3
α 0 −J1

α

−J2
α J1

α 0

λ1
λ2
λ3

 =

0
0
0

 .

The matrix of coefficients has rank two for L2
α ̸= 0. In this case, the k-polysymplectic momentum

map JΦα has a regular value at µα for every α = 1, . . . , k. Therefore, assume that L2
α ̸= 0. Then, each

isotropy subgroupGµα has dimension one. Consequently, the reduced manifold JΦ−1µ/Gµ is of dimension
6k − 3k − k = 2k. Since the conditions for the k-polysymplectic Marsden–Meyer–Weinstein reduction
follow from the ones for the symplectic reduction on each component, as commented in Subsection 2.3.7,
the k-polysymplectic Marsden–Meyer–Weinstein reduction theorem can be applied.

Note that in spherical coordinates on each factor T∗R3 of the product manifold (T∗R3)k, the Hamil-
tonian function is given by

h = 1
2

k∑
α=1

(p2
αr + p2

αφ/(r2
α sin2 θα) + p2

αθ/r
2
α + b2

αr
2
α) ⊗ eα ,

and the symplectic forms read

ωα = drα ∧ dpαr + dθα ∧ dpαθ + dφα ∧ dpαφ ,

for each α = 1, . . . , k. Then, the differential equations for the integral curves of Xh read

dpαr
dt =

p2
αφ

r3
α sin2 θα

+ p2
αθ

r3
α

− b2
αrα ,

dpαφ
dt = 0 , dpαθ

dt =
p2
αφ cos θα
r2
α sin3 θα

,

drα
dt = pαr ,

dθα
dt = pαθ

r2
α

,
dφα
dt = pαφ

r2
α sin2 θα

.

A k-polysymplectic relative equilibrium point is a point ze ∈ P such that the vector field Xh at ze is
proportional to one of the fundamental vector fields associated with the Lie group action Φ. In particular,
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consider a point ze = (rα, θα=π
2 , φα, pαr=0, pαθ = 0, pαφ) and Lα = bαr

2
α = pαφ for every α = 1, . . . , k.

At such points, the ω-Hamiltonian vector field Xh takes the form

Xh =
k∑

α=1

pαφ
r2
α

∂

∂φα
.

This implies that ze ∈ P is a k-polysymplectic relative equilibrium point of Xh.
This result can also be obtained via Theorem 3.3.2, which ensures that ze ∈ P is a k-polysymplectic

relative equilibrium point of Xh if and only if there exists ξ ∈ sok3 such that hξ = h− ⟨J −µe, ξ⟩ admits
a critical point at ze. Indeed, for

ξ = (p1φ/r
2
1, 0, 0; . . . ; pkφ/r2

k, 0, 0) ∈ sok3 ,

the Rk-valued function

hξ = h− ⟨J − µe, ξ⟩ =
k∑

α=1
(hα − ⟨(0, . . . ,JΦα − (Lα, 0, 0), . . . , 0), ξ⟩) ⊗ eα ,

has a critical point at ze. Therefore, ze is a k-polysymplectic relative equilibrium point of Xh.
By Theorem 2.3.14, the reduced manifold is (T∗R)k with coordinates {rα, pαr} for α = 1, . . . , k. The

reduced k-polysymplectic form is given by

ωµ =
k∑

α=1
drα ∧ dpαr ⊗ eα ,

and the reduced ωµ-Hamiltonian Rk-valued function reads

fµ = 1
2

k∑
α=1

(
p2
αr + L2

α

r2
α

+ b2
αr

2
α

)
⊗ eα .

Furthermore, the reduced equations of motion take the following form

dpαr
dt = −b2

αrα + L2
α

r3
α

,
drα
dt = pαr , α = 1, . . . , k .

Consequently, the equilibrium points of Xfµ are determined by the conditions

pαr = 0, −b2
αrα + L2

α

r3
α

= 0 ,

for α = 1, . . . , k. It follows that the equilibrium configurations of the reduced k-polysymplectic ωµ-
Hamiltonian system are precisely those points of (T∗R)k that correspond to circular motions of the
oscillators with fixed radii rα and angular momenta Lα. Note that an equilibrium point of the reduced
system is the projection of a k-polysymplectic relative equilibrium point ze ∈ P .

The Hessian of the reduced functions fαµ is positive-definite on a supplementary subspace to kerωµα

at the equilibrium point. Indeed,

Hess(fαµ ) =
(

1 0
0 4b2

α

)
.

Moreover, the function
∑k
α=1 f

α
µ admits a positive-definite Hessian, and the equilibrium point becomes

a strict minimum. This implies that the reduced k-polysymplectic relative equilibrium point is stable in
the Lyapunov sense. In other words, the orbits through a k-polysymplectic relative equilibrium point
are contained within the preimage of an open neighbourhood of the projection of the k-polysymplectic
relative equilibrium point.
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3.4.4 Example: k-Polysymplectic affine Lie systems

Consider now the application of the developed techniques to a family of affine inhomogeneous systems
of first-order differential equations. It is well known that every such system gives rise to a Lie system
[29]. In what follows, such systems are referred to as affine Lie systems. Many affine Lie systems arise
in control theory as well as in various other areas of applied mathematics [31]. The affine Lie systems
whose associated Vessiot–Guldberg Lie algebra is spanned by ω-Hamiltonian vector fields with respect
to the given k-polysymplectic form ω are called k-polysymplectic affine Lie systems.

Consider the following system of first-order differential equations

d
dt


x1
x2
x3
x4
x5

 =


b1(t)
b2(t)
b3(t)
b4(t)
b5(t)

+ b6(t)


0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 −1 0 0



x1
x2
x3
x4
x5

 , (3.4.3)

where b1(t), . . . , b6(t) are arbitrary t-dependent functions. This system corresponds to differential equa-
tions whose solutions are the integral curves of the t-dependent vector field

X =
6∑

α=1
bα(t)Xα ,

where

X1 = ∂

∂x1
, X2 = ∂

∂x2
, X3 = ∂

∂x3
, X4 = ∂

∂x4
, X5 = ∂

∂x5
, X6 = x5

∂

∂x3
− x3

∂

∂x5
.

These vector fields span a six-dimensional Lie algebra V of vector fields. The non-vanishing commutation
relations are

[X3, X6] = −X5 , [X5, X6] = X3 .

Consider the particular case in which the functions b1(t), . . . , b6(t) are constants, denoted by c1, . . . , c6 ∈
R, respectively. Since X1 ∧ · · · ∧ X6 = 0, the methods presented in Subsection 3.4.1 for describing k-
polysymplectic forms compatible with Lie systems can not be directly applied to system (3.4.3). Never-
theless, a two-polysymplectic form can be defined on R5 as

ω = (dx3 ∧ dx5 + dx4 ∧ dx1) ⊗ e1 + (dx3 ∧ dx5 + dx4 ∧ dx2) ⊗ e2 ,

which turns all the vector fields X1, . . . , X6 into ω-Hamiltonian vector fields. Indeed, the corresponding
ω-Hamiltonian functions for X1, . . . , X6 read

h1 = −x4 ⊗ e1 , h2 = −x4 ⊗ e2 , h3 = x5 ⊗ e1 + x5 ⊗ e2 ,

h4 = x1 ⊗ e1 + x2 ⊗ e2 , h5 = −x3 ⊗ e1 − x3 ⊗ e2 , h6 = 1
2(x2

3 + x2
5) ⊗ e1 + 1

2(x2
3 + x2

5) ⊗ e2 .

The flow of the vector field X4 gives rise to a two-polysymplectic Lie group action Φ: R × R5 → R5.
Moreover, X4, which spans the space of fundamental vector fields of Φ, is a Lie symmetry of the system
(3.4.3). Then, the two-polysymplectic momentum map associated with Φ is given by

JΦ : (x1, x2, x3, x4, x5) ∈ R5 7→ (x1, x2) = µ ∈ R∗2 .

Note that µ ∈ R∗2 is a regular two-value of JΦ, and JΦ is Ad∗2-equivariant two-polysymplectic mo-
mentum map. Furthermore, one can check that the example satisfies the conditions (2.3.3) and (2.3.4).
Consequently, Theorem 2.3.14 can be applied.
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The vector field X4 is tangent to JΦ−1(µ) and Tx(Gµx) = ⟨ ∂
∂x4

⟩ for x ∈ R5. Therefore, Pµ =
JΦ−1(µ)/R is a two-dimensional manifold with natural coordinates {x3, x5}. Thus, the reduced two-
polysymplectic form reads

ωµ = ω1
µ ⊗ e1 + ω2

µ ⊗ e2 = dx3 ∧ dx5 ⊗ e1 + dx3 ∧ dx5 ⊗ e2 .

To apply Theorem 2.3.16, the affine Lie system must be tangent to JΦ−1(µ). This condition can be
ensured by requiring that the associated ω-Hamiltonian function is invariant relative to X4. It is satisfied
by imposing c1 = c2 = 0. The resulting vector field reads

Xω = c3X3 + c4X4 + c5X5 + c6X6 .

This vector field projects onto Pµ = JΦ−1(µ)/R, yielding an ωµ-Hamiltonian vector field of the form

Xµ = c6

(
x5

∂

∂x3
− x3

∂

∂x5

)
+ c3

∂

∂x3
+ c5

∂

∂x5
.

The ωµ-Hamiltonian function associated with Xµ reads

fµ =
(
c3x5 − c5x3 + c6

(
x2

3
2 + x2

5
2

))
⊗ e1 +

(
c3x5 − c5x3 + c6

(
x2

3
2 + x2

5
2

))
⊗ e2 .

Next, the methods developed in Section 3.3 are applied to determine the two-polysymplectic relative
equilibrium points of the ω-Hamiltonian vector field

Y = X4 +X6

and to analyse their stability properties.
By Theorem 3.3.2, a two-polysymplectic relative equilibrium point ze ∈ P is a point for which there

exists ξ ∈ g ≃ R such that ze is a critical point of each component of the R2-valued function of the form

hξ =
(
x1 − ξ(x1 − µ1) + 1

2(x2
3 + x2

5)
)

⊗ e1 +
(
x2 − ξ(x2 − µ2) + 1

2(x2
3 + x2

5)
)

⊗ e1 .

This is satisfied for ξ = 1, and two-polysymplectic relative equilibrium points are of the form ze =
(x1, x2, x3 = 0, x4, x5 = 0) ∈ R5, where x1, x2, x4 are arbitrary.

To analyse the stability of the projection of a k-polysymplectic relative equilibrium point ze ∈ R5,
note that the supplementary spaces to Tze(Gµeze) + kerω1

ze
and Tze(Gµeze) + kerω2

ze
in TzeJΦ−1(µe)

are given by

S1 =
〈

∂

∂x3
,
∂

∂x5

〉
, S2 =

〈
∂

∂x3
,
∂

∂x5

〉
,

respectively. Then, S1+S2+Tze
(Gµe

ze) = Tze
JΦ−1(µe) and the Hessian of (δ2h1

ξ)ze
at ze in the subspace

S1 and the Hessian of (δ2h2
ξ)ze

in the subspace S2 are definite-positive. Therefore, a two-polysymplectic
relative equilibrium point ze ∈ R5 is relatively stable. That is, its projection to the reduced manifold Pµe

is stable. More concretely, the reduced system admits an ωµe
-Hamiltonian function whose components

f1
µe
, f2

µe
have positive-definite Hessians at the equilibrium points πµe

(ze) = (x3 = 0, x5 = 0) in the
directions of ker(ω1

µe
)ze and ker(ω2

µe
)ze , respectively.

Indeed, the reduced ωµe -Hamiltonian function reads

fµe
= 1

2(x2
3 + x2

5) ⊗ e1 + 1
2(x2

3 + x2
5) ⊗ e2

and the function
f1

µe
+ f2

µe
= x2

3 + x2
5 ,

is invariant under the dynamics of Yµe
and admits a strict minimum at πµe

(ze) = (x3 = 0, x5 = 0).
Hence, the reduced two-polysymplectic Hamiltonian system is stable at πµe

(ze).
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3.4.5 Example: Quantum quadratic Hamiltonian operators

Next, an example is analysed based on the Wei–Norman equations for the automorphic Lie system
associated with quantum mechanical models described by quadratic Hamiltonian operators. These models
include, as particular cases, quantum harmonic oscillators with or without dissipation [29, 149]. In this
framework, the differential system under consideration is the one determining the integral curves of the
time-dependent vector field

X =
6∑

α=1
bα(t)XR

α , (3.4.4)

for certain t-dependent functions b1(t), . . . , b6(t) and the vector fields

XR
1 = ∂

∂v1
+ v5

∂

∂v4
− 1

2v
2
5
∂

∂v6
, XR

2 = v1
∂

∂v1
+ ∂

∂v2
+ 1

2v4
∂

∂v4
− 1

2v5
∂

∂v5
,

XR
3 = v2

1
∂

∂v1
+ 2v1

∂

∂v2
+ ev2

∂

∂v3
− v4

∂

∂v5
+ 1

2v
2
4
∂

∂v6
, XR

4 = ∂

∂v4
,

XR
5 = ∂

∂v5
− v4

∂

∂v6
, XR

6 = ∂

∂v6
.

The commutation relations between the above vector fields are

[XR
1 , X

R
2 ] = XR

1 ,

[XR
1 , X

R
3 ] = 2XR

2 , [XR
2 , X

R
3 ] = XR

3 ,

[XR
1 , X

R
4 ] = 0 , [XR

2 , X
R
4 ] = −1

2 X
R
4 , [XR

3 , X
R
4 ] = XR

5 ,

[XR
1 , X

R
5 ] = −XR

4 , [XR
2 , X

R
5 ] = 1

2 X
R
5 , [XR

3 , X
R
5 ] = 0 , [XR

4 , X
R
5 ] = −XR

6 ,

[XR
1 , X

R
6 ] = 0 , [XR

2 , X
R
6 ] = 0 , [XR

3 , X
R
6 ] = 0 , [XR

4 , X
R
6 ] = 0 , [XR

5 , X
R
6 ] = 0 .

The Lie algebra of Lie symmetries of ⟨XR
1 , . . . , X

R
6 ⟩ is spanned by

XL
1 = ev2

∂

∂v1
+ 2v3

∂

∂v2
+ v2

3
∂

∂v3
, XL

2 = ∂

∂v2
+ v3

∂

∂v3
, XL

3 = ∂

∂v3
,

XL
4 = e−v2/2(ev2 − v1v3) ∂

∂v4
− e−v2/2v3

∂

∂v5
− e−v2/2(ev2 − v1v3)v5

∂

∂v6
,

XL
5 = v1e

−v2/2 ∂

∂v4
+ e−v2/2 ∂

∂v5
− v1v5e

−v2/2 ∂

∂v6
, XL

6 = ∂

∂v6
.

In particular, consider the system (3.4.4) of the form

XR
5 = ∂

∂v5
− v4

∂

∂v6
.

A Lie symmetry of this system is given by
Y = ∂

∂v5
.

A two-polysymplectic form on R6 can be defined as

ω = ω1 ⊗ e1 + ω2 ⊗ e2

= (dv1 ∧ dv3 + dv2 ∧ dv4 + dv5 ∧ dv1 + dv4 ∧ dv6) ⊗ e1 + (dv4 ∧ dv6 − dv3 ∧ dv5) ⊗ e2 .

Then,

kerω1 =
〈

∂

∂v3
+ ∂

∂v5
,
∂

∂v2
+ ∂

∂v6

〉
, kerω2 =

〈
∂

∂v1
,
∂

∂v2

〉
,

and kerω1 ∩ kerω2 = 0. Consequently, (R6,ω) becomes a two-polysymplectic manifold.
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The vector field Y is a Lie symmetry of the two-polysymplectic form, since LY ω = 0. Then,

ιY3ω
1 = dv1 , ιY3ω

2 = dv3 ,

and a two-polysymplectic momentum map JΦ associated with the Lie group action given by the flow of
Y reads

JΦ : x ∈ R6 7−→ µ = (v1, v3) ∈ g∗2 ≃ R∗2 .

Note that every µ = (µ1, µ2) ∈ R∗2 is a weak regular two-value of JΦ, which is Ad∗2-equivariant. The
isotropy group related to each µ ∈ R∗2 is given by Gµ = R. Hence, JΦ−1(µ) is a submanifold of R6, as
well as JΦ−1

1 (µ1) and JΦ−1
2 (µ2). Since Y5 is tangent to JΦ−1(µ), then Pµ = JΦ−1(µ)/Gµ admits local

coordinates given by {v2, v4, v6}.
The vector field XR

5 is ω-Hamiltonian with

ιXR
5
ω = ιXR

5
ω1 ⊗ e1 + ιXR

5
ω2 ⊗ e2 = d

(
v1 + v2

4
2

)
⊗ e1 + d

(
v3 + v2

4
2

)
⊗ e2 = dhR5 .

Then, the reduced two-forms read

ω1
µ = dv2 ∧ dv4 + dv4 ∧ dv6 , ω2

µ = dv4 ∧ dv6 .

Furthermore, one has

kerω1
µ =

〈
∂

∂v2
+ ∂

∂v6

〉
, kerω2

µ =
〈

∂

∂v2

〉
,

and therefore ω1
µ and ω2

µ give rise to a two-polysymplectic form on Pµ. Moreover, the ω-Hamiltonian
function of XR

5 is invariant relative to Y . Then, Theorem 2.3.16 ensures that the projection of XR
5 onto

Pµ exists and is given by

Xµ = −v4
∂

∂v6
,

which is the ωµ-Hamiltonian vector field of the ωµ-Hamiltonian R2-function of the form

fµ =
(
µ1 + v2

4
2

)
⊗ e1 +

(
µ2 + v2

4
2

)
⊗ e2 .

It admits a critical point at every point of the form (v4 = 0, v6), where v6 is arbitrary. Such points are
not stable equilibrium points. In particular, this ωµ-Hamiltonian function does not satisfy that f1

µ + f2
µ

has a strict minimum at the equilibrium point: it has only a minimum. The points in JΦ−1(µ) projecting
onto the above-mentioned equilibrium points are two-polysymplectic relative equilibrium points.

3.4.6 Example: Equilibrium points and vector fields with polynomial coeffi-
cients

To illustrate certain aspects of the k-polysymplectic energy-momentum method, consider vector fields
with polynomial coefficients. Moreover, the following example highlights some features of weak regular
k-values of k-polysymplectic momentum maps and the character of their associated k-polysymplectic
Marsden–Meyer–Weinstein reductions.

Consider the coordinates {x1, x2, x3, x4, x5, x6, x7, x8} on R8 and define the vector field X on R8 by

X = xa6
∂

∂x2
+ xb4

∂

∂x3
− xc3

∂

∂x4
+ xd8

∂

∂x7
− xe7

∂

∂x8
,

where a, b, c, d, e ∈ N. A two-polysymplectic form ω on R8 is of the form

ω = ω1 ⊗ e1 + ω2 ⊗ e2 = (dx3 ∧ dx4 + dx1 ∧ dx5) ⊗ e1 + (dx2 ∧ dx6 + dx7 ∧ dx8) ⊗ e2 .
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Indeed,

kerω1
x =

〈
∂

∂x2
,
∂

∂x6
,
∂

∂x7
,
∂

∂x8

〉
, kerω2

x =
〈

∂

∂x1
,
∂

∂x3
,
∂

∂x4
,
∂

∂x5

〉
, kerω1

x ∩ kerω2
x = 0

for any x ∈ R8, and thus ω becomes a two-polysymplectic form on R8.
The vector field X admits the Lie symmetries of the form

Y1 = ∂

∂x2
, Y2 = ∂

∂x1
, Y3 = ∂

∂x5
,

which span a three-dimensional abelian Lie algebra of vector fields. These Lie symmetries are the in-
finitesimal generators of the translations along the x2, x1, and x5, respectively. Moreover, they also leave
the two-polysymplectic structure invariant, since LYi

ωα = 0 for i = 1, 2, 3 and α = 1, 2. Therefore, they
give rise to a two-polysymplectic Lie group action Φ: R3 × R8 → R8.

Since

ιY1ω
1 = 0 , ιY2ω

1 = dx5 , ιY3ω
1 = −dx1 ,

ιY1ω
2 = dx6 , ιY2ω

2 = 0 , ιY3ω
2 = 0 ,

a two-polysymplectic momentum map JΦ associated with Φ is of the form

JΦ : x ∈ R8 7−→ JΦ(x) = (0, x5,−x1;x6, 0, 0) ∈ (R3∗)2 ≃ (R3)2 .

Then, for each x ∈ JΦ−1(µ) and µ ∈ (R3)2, it follows that

TxJΦ−1(µ) =
〈

∂

∂x2
,
∂

∂x3
,
∂

∂x4
,
∂

∂x7
,
∂

∂x8

〉
.

The two-polysymplectic momentum map JΦ is Ad∗2-equivariant. Moreover, every µ ∈ (R3)2 is a weak
regular two-value of JΦ. Indeed, each JΦ−1(µ) is a five-dimensional submanifold of R8, and its tangent
space at each point coincides with the kernel of JΦ at that point. On the other hand, JΦ has no regular
two-values.

The vector fields Y2 and Y3, at x, do not take values in Tx(Gµx), whereas Y1 does. The assumptions of
Theorem 2.3.14 are satisfied, and the quotient space TxJΦ−1(µ)/Tx (Gµx) is a two-dimensional subspace

TxJΦ−1(µ)/Tx (Gµx) =
〈

∂

∂x3
,
∂

∂x4
,
∂

∂x7
,
∂

∂x8

〉
, ∀x ∈ JΦ−1(µ)

and
ωµ = ω1

µ ⊗ e1 + ω2
µ ⊗ e2 = (dx3 ∧ dx4) ⊗ e1 + (dx7 ∧ dx8) ⊗ e2 .

The vector field X is ω-Hamiltonian relative to

dh = ιXω = ιXω
1 ⊗ e1 + ιXω

2 ⊗ e2

= d
(

1
1 + b

xb+1
4 + 1

c+ 1x
c+1
3

)
⊗ e1 + d

(
1

1 + a
xa+1

6 + 1
d+ 1x

d+1
8 + 1

1 + e
xe+1

7

)
⊗ e2 .

The R2-valued function h is invariant relative to the Lie symmetries Y1, Y2, and Y3. By Theorem 2.3.16,
the vector field X projects onto the quotient manifold and its projection Xµ reads

Xµ = xb4
∂

∂x3
− xc3

∂

∂x4
+ xd8

∂

∂x7
− xe7

∂

∂x8
,

which is an ωµ-Hamiltonian vector field since

dfµ = ιXµωµ = d
(

1
1 + b

xb+1
4 + 1

c+ 1x
c+1
3

)
⊗ e1 + d

(
1

d+ 1x
d+1
8 + 1

1 + e
xe+1

7

)
⊗ e2 .
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Then, according to Theorem 3.3.2, a point ze is a two-polysymplectic relative equilibrium point if it is a
critical point of hξ for some ξ = (ξ1, ξ2, ξ3) ∈ g ≃ R3. Then,

dhξ = df1
ξ ⊗ e1 + df2

ξ ⊗ e2

=
(
xb4dx4 + xc3dx3 − ξ2dx5 + ξ3dx1

)
⊗ e1 +

(
(xa6 − ξ1)dx6 + xd8dx8 + xe7dx7

)
⊗ e2 .

Thus, ξ2 = ξ3 = 0 and the two-polysymplectic relative equilibrium points of X are of the form ze =
(x1, x2, 0, 0, x5, x6, 0, 0) for xa6 = ξ1 where x1, x2, x5, x6 are arbitrary. Indeed, (Xµe

)[ze] = 0 for µe =
JΦ(ze).

To study the stability of these two-polysymplectic relative equilibrium points, one needs to analyse
the second derivatives of hξ at ze. Then,

(δ2hξ)ze
= (δ2h1

ξ)ze
⊗ e1 + (δ2h2

ξ)ze
⊗ e2

=
(
cxc−1

3 dx3 ⊗ dx3 + bxb−1
4 dx4 ⊗ dx4

)
⊗ e1 +

(
exe−1

7 dx7 ⊗ dx7 + dxd−1
8 dx8 ⊗ dx8

)
⊗ e2 .

Taking into account that the supplementary spaces to

Tze(Gµeze) + kerω1
ze

∩ TzeJΦ−1(µe) , Tze(Gµeze) + kerω2
ze

∩ TzeJΦ−1(µe) ,

can be chosen as
S1
ze

=
〈

∂

∂x3
,
∂

∂x4

〉
, S2

ze
=
〈

∂

∂x7
,
∂

∂x8

〉
,

respectively. Definition 3.3.6 yields that the two-polysymplectic relative equilibrium points ze are stable
if

(δ2h1
ξ)ze(vze , vze) > 0 , ∀vze ∈ S1

ze
\ {0} ,

and
(δ2h2

ξ)ze(vze , vze) > 0 , ∀vze ∈ S2
ze

\ {0} .

These inequalities hold if and only if b, c, d, e = 1. Consequently, points ze are formally stable two-
polysymplectic relative equilibrium points of X for b, c, d, e = 1.
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Conclusions

This dissertation presents a systematic development of reduction theory, energy-momentum methods,
and stability analysis for Hamiltonian systems with symmetries, with a particular emphasis on non-
autonomous settings and the geometric frameworks of k-polysymplectic, k-polycosymplectic, and k-
contact structures.

This PhD thesis generalises Marsden–Meyer–Weinstein reductions to new, more general, geometric
realms. A significant generalisation of the classical Marsden–Meyer–Weinstein reduction framework has
been achieved by developing its generalisation within the k-polycosymplectic and k-contact settings. It
also removes the technical conditions that momentum maps have to be Ad∗-equivariant by the introduc-
tion of affine Lie group actions. In addition, this PhD thesis discusses some inaccuracies found in the
literature concerning k-polycosymplectic and k-contact MMW reductions. In particular, it is shown that
both technical assumptions in the k-polycosymplectic MMW reduction theorem are sufficient and are
independent of each other. In the case of a k-contact MMW reduction theorem, it is explained in detail
how the quotient Lie subgroup is obtained and what the reduced manifold should be to get the reduc-
tion in the most general case, correcting some results in the literature. All constructions are illustrated
through detailed examples and applications to physical models, such as coupled vibrating strings and
vibrating membranes, thereby demonstrating the practical relevance and applicability of the theoretical
developments.

The dissertation presents a new energy-momentum framework within cosymplectic geometry, which
generalises the classical symplectic approach by adjusting Hamiltonian, gradient, and evolution symme-
tries. This setting permits the definition and analysis of new types of relative equilibria, notably gradient
relative equilibria, and is applied to physically relevant problems, such as the restricted circular three-
body problem and time-dependent Schrödinger equation. A novel cosymplectic-to-symplectic reduction
scheme is also formulated, further enriching the methodological toolkit for the study of time-dependent
Hamiltonian systems.

The final contribution of this dissertation is the construction of a k-polysymplectic energy-momentum
method, complemented by new techniques for the stability analysis of Hamiltonian systems defined on
k-polysymplectic manifolds. This framework is applied to a range of systems of both physical and
mathematical interest, including integrable Hamiltonian systems, quantum oscillators with dissipation,
polynomial dynamical systems, and equations related to the Schwarzian derivative.

Altogether, this PhD thesis contributes significantly to the geometric theory of reduction and stability
of Hamiltonian systems, offering generalisations that bridge mathematical theory with physical applica-
tions. The tools and insights developed herein are expected to inform and inspire further research in
geometric mechanics, dynamical systems, and mathematical models of complex physical phenomena.

This PhD thesis opens new ways of research.
Presently, there are still several works in progress that are related to the topic of this PhD thesis.

1. A. Lopez-Gordon, J. de Lucas, and B.M. Zawora, ”Stability of contact Hamiltonian systems”, 2026.

2. B.M. Zawora, ”Modified Witt-Artin decomposition of exact symplectic manifolds”, 2026.

The first article concerns the generalisation of the energy-momentum method for contact Hamiltonian
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systems. It is a very difficult topic, and the main problem lies in the fact that stable contact Hamiltonian
systems cannot be extended in a natural manner to stable symplectic Hamiltonian systems in the usual
way. Moreover, it is challenging to analyse the relative equilibrium points of contact Hamiltonian systems,
since contact Hamiltonian systems describe dissipative Hamiltonian systems, where the energy of the
systems is not conserved. The dissipated quantities are used to investigate the stability of contact
Hamiltonian systems.

The second work is about the Witt–Artin decomposition theorem. Originally established by E. Witt
in 1937, provides a particular decomposition of a vector space. One of its most significant applications
in symplectic geometry is the decomposition of the tangent space at some point of a symplectic manifold
endowed with a proper Lie group action that preserves the symplectic form. This decomposition is an
essential step in proving the Symplectic Slice Theorem, a fundamental result in the singular reduction
theory. The modified version of the Witt–Artin decomposition theorem is adapted to exact symplectic
manifolds with a proper Lie group action that leaves the primitive one-form invariant. Since contact
manifolds can be considered a special class of exact symplectic manifolds, one gets an analogous decom-
position theorem for contact manifolds with a proper Lie group action preserving the contact structure.
This generalisation may lead to the possibility of generalising the Symplectic Slice Theorem and the
Marle–Guillemin–Sternberg Normal Form Theorem to the contact setting, providing a framework for
singular contact reduction in full generality.

Moreover, there are other questions to be analysed:

1. The stability of PDEs is an open topic that is just very briefly analysed in [84]. The method could
be potentially used in new examples of Hamiltonian systems, such as the Chaplygin gas model and
Born-Infeld model [71]. It is concerned with the Casimir-energy method, which could be extended
to more general geometric settings, e.g. to Dirac manifolds, but this topic has been left for further
work. Nevertheless, a first work in this direction has recently been accepted for publication [71].

2. Another promising direction concerning the reduction by symmetries of Hamiltonian systems in-
volves the reduction of space-time variables for k-contact structures. Such a generalisation is
expected to be feasible for k-contact manifolds, as the reduction of space-time variables has al-
ready been achieved in the context of the k-polycosymplectic Marsden–Meyer–Weinstein reduction,
namely the reduction from k-polycosymplectic to ℓ-polysymplectic for ℓ < k (see [50]). It is well
known that the Reeb vector fields constitute symmetries of the k-contact structure; they take values
in the kernel of dη, and the contraction of each Reeb vector field with η equals one. The underlying
idea is analogous to that employed in the reduction from k-polycosymplectic to ℓ-polycosymplectic
structures. The results are completely novel and seem to be achievable, leading to new and inter-
esting applications.
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