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Quantum state estimation on correlated copies – p.1/??



One copy of the ”unknown”

What can we learn about an unknown quantum state
when we have one copy of it?

Polarization of a single photon

|ψ〉 = cos(θ/2)|↔〉+ sin(θ/2)eiφ|l〉

If measuring in a certain basis (e.g. |↔〉, |l〉), we get the
result |↔〉, what can we say about |ψ〉?
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Infinite number of copies

Infinite number of copies allows to determine the state
exactly:

ρ = |ψ〉〈ψ| = 1

2
(I + ~n · ~σ) , ni = Tr (ρσi)

ρ =
1

2

[
1 + 〈σz〉 〈σx〉 − i〈σy〉

〈σx〉+ i〈σy〉 1− 〈σz〉

]
Three types of measurements are necessary:
〈σz〉 : |↔〉, |l〉
〈σx〉 : |�〉, |�〉
〈σy〉 : |	〉, |�〉
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Finite number of copies

In reality we always have a finite number of copies:

|ψ〉 ⊗ · · · ⊗ |ψ〉︸ ︷︷ ︸
N

= |ψ〉⊗N – N copies

The more copies we have, the easier it is to estimate the
state. Different states become more orthogonal:

lim
N→∞

〈ψ|⊗N |φ〉⊗N = lim
N→∞

〈ψ|φ〉N = 0

What is the optimal procedure to estimate the state |ψ〉?

How does the quality of estimation depend on the
number of copies?
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Generalized measurement

Standard measurement:

A =
∑
i
λiPi PiPj = δijPi

∑
i
Pi = I

observable measurement outcomes projection operators

pi = Tr (ρPi) probability of the result i

Generalized measurement
evolution and standard measurement on system + ancilla

pµ = Tr (ρPµ) Pµ > 0
∑
µ
Pµ = I

Pµ form a Positive Operator Valued Measure (POVM)
Quantum state estimation on correlated copies – p.5/??
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State estimation strategy

N copies of an unknown state: ρ⊗N , ρ = |ψ〉〈ψ|

Choose a measurement – set of Pµ

Choose a guessing strategy: µ→ ρµ

Quality (fidelity) of a guess: Fµ = 〈ψ|ρµ|ψ〉

Quality of estimation

F =
∑
µ
pµFµ=

∑
µ

Tr
(
ρ⊗NPµ

)
〈ψ|ρµ|ψ〉=

= 〈ψ|
∑
µ

Tr
(
ρ⊗NPµ

)
ρµ|ψ〉 should not depend on |ψ〉
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The optimal state estimation

The optimal estimation of a qubit state
Massar, Popescu PRL, 74, 1259 (1995)

one copy: F = 2
3

N copies: F = N+1
N+2

The optimal estimation of a qudit state
Bruss, Machiavello, PLA, 253, 249 (1999)

N copies: F = N+1
N+d obtained from the connection to cloning

In order to obtain the optimal fidelities it is necessary to perform generalized
and collective (simultaneous on many copies) measurements.
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Cloning and Estimation – the Motivation

N →M cloning

|ψ〉⊗N⊗|0〉M−N⊗|A〉 |Φ〉 ∈ H⊗M ⊗HA

input states blank states ancilla

ρ̃ = TrA|Φ〉〈Φ| the state of M clones

ρ1 = Tr2,...,M ρ̃ the state of the first clone

ρ1 = ρ2 = · · · = ρM =: ρ clones should be identical
optimal fidelity:

F = 〈ψ|ρ|ψ〉 = M(N+1)+N(d−1)
M(N+d)

Clones are correlated!: ρ̃ 6= ρ⊗M

Quantum state estimation on correlated copies – p.8/??
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M clones of |ψ〉
F=

M(N+1)+N(d−1)
M(N+d)

M→∞ cloning
−−−−−−−−−→

∞ clones of |ψ〉
F = N+1

N+d??yestimation
??yestimation estimation

??y
F = N+1

N+d
F = N+1

N+d
F = N+1

N+d

State of a clone: ρ = η|ψ〉〈ψ|+ (1− η)I/d η–shrinking factor

Estimation and cloning fidelity: F est
N = lim

M→∞
F cl

N→M

If clones were in the state ρ̃ = ρ⊗∞, we could estimate
the state |ψ〉 perfectly. This would lead to contradiction
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Estimation on correlated copies

How correlations between copies influence the
estimation quality (RDD Phys. Rev. A 71, 062321 (2005))

ρ = η|ψ〉〈ψ|+ (1− η)I/d – density matrix of each copy
ρ̃ 6= ρ⊗N – correlated state of N copies
different ρ̃, can have the same reduced matrices ρ
Given ρ̃ we want to estimate |ψ〉. Fidelity:

F = 〈ψ|
∑
µ

Tr (ρ̃Pµ) ρµ|ψ〉

Is the product state ρ̃ = ρ⊗N the optimal state for the
state estimation, among the states with the same
reduced density matrices ρ?.

Quantum state estimation on correlated copies – p.10/??
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Permutation invariant states

Permutation invariance

Πρ̃Π† = ρ̃, ∀Π∈repr(SN )

N qubits (N spin 1/2)
a convenient basis, under action of SU(2)⊗N :

|j,m, α〉, j = 0, . . . , N/2; m = −j, . . . , j; α = 1, . . . , dj

total angular momentum projection on the ”z” axis equivalent representations

for a given j, α; vectors |j, m, α〉 support an irreducible representation
of SU(2)

for a given j, m; vectors |j, m, α〉 support an irreducible representation
of SN Quantum state estimation on correlated copies – p.11/??
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Permutation invariant states

Example: 4 qubits

1
2 ⊗

1
2 ⊗

1
2 ⊗

1
2= (0⊕ 1)⊗ 1

2 ⊗
1
2= (1

2 ⊕
1
2 ⊕

3
2)⊗ 1

2 =

= 0⊕ 0⊕ 1⊕ 1⊕ 1⊕ 2 fully symmetric subspace

ρ̃ =

States from the optimal cloning machine are supported
on the symmetric subspace - very bad estimation

Quantum state estimation on correlated copies – p.12/??
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Fidelity of estimation

Arbitrary permutationally invariant state:

ρ̃ =

N/2∑
j=0( 1

2
)

pj

dj
ρ̃j ⊗ 11dj

dj - multiplicity of representation j

pj ≥ 0,
∑

j pj = 1, ρ̃j - are density matrices on 2j + 1 dim space.

Optimal estimation fidelity

F =
1

2

1 +

N/2∑
j=0( 1

2
)

pjTr(Jzρ̃j)

j + 1


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Fidelity of estimation

Optimal estimation fidelity

F =
1

2

1 +

N/2∑
j=0( 1

2
)

pjTr(Jzρ̃j)

j + 1


condition for fixing local purity to η:

N/2∑
j=0( 1

2
)

pjTr(Jzρ̃j) =
Nη

2

What is the optimal state for estimation?
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The optimal state for state estimation

The best state ρ̃ for estimation

Subspaces with high j are bad for the state estimation

Yet, necessary to give required reduced density matrix ρ

Fixing the reduced density matrix (fixing η):

ρ = η|ψ〉〈ψ|+ (1− η)I/d

one can ask, what is the state ρ̃ optimal for the
estimation of |ψ〉?

Quantum state estimation on correlated copies – p.15/??
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State from the optimal cloning machine

State supported on the symmetric subspace: ρ̃ =

Fidelity dependence on η:
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Product state

Product state: ρ̃ = ρ⊗4

Fidelity dependence on η:

Quantum state estimation on correlated copies – p.17/??



The optimal state

The optimal state is not a product state: ρ̃ =

η = 0 η = 1/2 η = 1

Fidelity dependence on η:
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Summary RDD Phys. Rev. A 71, 062321 (2005)

Clones are not only imperfect, but also correlated

Correlations influence estimation fidelity

Problem of estimation on correlated copies solved for N
qubit permutation invariant states

States coming out of the optimal cloning machine are
the worst from the point of view of state estimation

Product states ρ⊗N are not optimal for state estimation

Optimal state, is supported at most on two subspaces
with different j

Relation to superbroadcastig: G.M D’Ariano, C. Macchiavello, P.
Perinotti Phys. Rev. Lett. 95, 060503 (2005)
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