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Entangling properties of the system of coupled kicked tops are studied. Initial product

states are evolved in order to find out how they are being entangled, depending on the

chaoticity of dynamics. Two different ensembles of initial product states are considered:

product states of independent spin-coherent states and product states of random states. In

these two cases initial entanglement growth rate is analysed as well as asymptotic

entanglement. It appears that the choice of either of these ensembles results in significantly

different averaged entanglement behaviour. In the case of ensemble of random product

states, regular dynamics yields both higher entanglement growth rate and asymptotic

entanglement, as compared to the chaotic one. Additionally lower bound on averaged

asymptotic entanglement is derived, expressed in terms of the eigenvector entanglement.

• Hamiltonian:
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• Spin-coherent states are the most classical spin states. They satisfy minimal 

uncertainty with respect to angular momentum components:
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• When               spin-coherent states became classical states with well defined angular 

momentum components.
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discrete dynamics on a sphere
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• Hamiltonian:
int21 HHHH 
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• One period evolution operator:

int21  UUUU 

weak coupling

• Kicked top is a periodically kicked system, with the total spin j conserved

H - Hilbert space

free rotation
kicks

- is minimal for spin-coherent states

• Spin-coherent states are obtained as rotations of         statej

• Direction of the angular momentum of 

the top evolves according to the map:

• Depending on the value of k parameter, classical dynamics is either regular or chaotic:

k=1 k=2 k=3 k=6

• System consisting of two weakly coupled kicked tops, each with the same chaoticity 

parameter k.

single kicked top Hamiltonian weak interaction ( is small) 

separate evolution of 

each of the tops
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entangling part
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• Evolution of entanglement, averaged over two different ensembles of initial product states:

spin-coherent states

- chaos helps in achieving high asymptotic entanglement

- very regular dynamics has extremely low initial

entanglement growth rate.

• Linear entropy is used as a measure of entanglement:
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1Tr1  S  21 Tr - reduced density matrix

random product states

- asymptotic entanglement is very high both for regular

and chaotic dynamics.

- initial entanglement growth is the highest for very

regular dynamics.

• Initial entanglement growth rate for two ensembles of initial product states and Lyapunov

exponent of the single kicked top classical dynamics vs. chaoticity parameter k:

- chaos enhances initial entanglement growth rate

for spin-coherent states.

- chaos diminishes entanglement growth rate for

random product states

- short time entangling power (which corresponds

to averaging over random states) is the highest for

very regular dynamics!

• Explanation:

Perturbative formula by Fujisaki et. al. (PRE 66, 045201 (2002)), relates initial entanglement growth rate to 

the time correlation function of Jz operator of a single top, evolved under non-coupled dynamics:
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- spin-coherent states, have very low dispersion of Jz operator. Chaotic evolution quickly increases

dispersion of Jz operator and thus increases C(t,t) and eventually increases initial entanglement growth

rate. In the case of spin-coherent states chaos helps initial entanglement growth.

operator Jz in the Heisenberg 

picture, evolved according to 

single kicked top dynamics

- random states, have already large dispersion of Jz operator, so chaotic dynamics doesn’t help.

Additionally chaotic dynamics quickly destroys correlations C(t1,t2) (for t1t2). Consequently chaos

lowers initial entanglement growth rate in the case of initial random product states.

• Asymptotic entanglement for two ensembles of initial product states, Lyapunov exponent

of the single kicked top classical dynamics and averaged entanglement of eigenvectors of

evolution operator U vs. chaoticity parameter k:
- asymptotic entanglement is very high for both 

chaotic and very regular dynamics

- asymptotic entanglement in the case of averaging 

over random states shows very weak dependence on 

chaoticity parameter k.

- High entanglement of eigenvectors in the case of very 

regular dynamics is  the reason for high asymptotic 

entanglement of evolved states (see below)

• Entanglement of eigenvectors of a transformation does not give full information on the 

entangling properties of the transformation. Nevertheless it gives a lower bound on the 

asymptotic entanglement of evolved states

12  eigenasymp SS
Mean entanglement of eigenvectors

Asymptotic entanglement averaged 

over initial product states

• Chaos does not help in initial entanglement growth rate, when, averaging is performed 

over random product states – entangling power is lower for chaotic dynamics

• Chaos may help in enhancing initial entanglement growth, when evolving 

low-uncertainty states – for example spin-coherent states.

• Chaos assures high asymptotic entanglement, though high asymptotic entanglement can 

also be reached in the case of regular dynamics due to high entanglement of eigenvectors

kick strength

(j=20, 0.01)
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