Entanglement enhances security in secret sharing

Nicolaus Copernicus University, Toruń, Poland

Aditi Sen (De), Ujjwal Sen, Maciej Lewnestein ICFO-Institut de Ciencies Fotoniques, Barcelona, Spain

Quantum Key Distribution

BB84 protocol

A key	0	0	0	1	1	1	0	0	0	0
A	x_+	y_+	y_+	y_{-}	x_{-}	x_{-}	x_+	y_+	y_+	x_+
B	σ_x	σ_y	σ_x	σ_x	σ_x	σ_y	σ_y	σ_y	σ_x	σ_x
compatible?	\checkmark	\checkmark			\checkmark			\checkmark		\checkmark
B key	0	0	?	?	1	?	?	0	?	0

Quantum Key Distribution

Sifting phase

A key	0	0			1			0		0
	x_+	y_+	y_+	y_{-}	x_{-}	x_{-}	x_+	y_+	y_+	x_+
B	σ_x	σ_y	σ_x	σ_x	σ_x	σ_y	σ_y	σ_y	σ_x	σ_x
compatible?	\checkmark	\checkmark			\checkmark			\checkmark		\checkmark
B key	0	0			1			0		0

a random key $a \oplus b = 0$

encryption $m \oplus a \longrightarrow m \oplus a \oplus b = m$ decryption

Quantum Key Distribution

In reality there are errors

A key	0	0			1			0		0
	x_+	y_+	y_+	y_{-}	x_{-}	x_{-}	x_+	y_+	y_+	x_+
B	σ_x	σ_y	σ_x	σ_x	σ_x	σ_y	σ_y	σ_y	σ_x	σ_x
compatible?	\checkmark	\checkmark			\checkmark			\checkmark		\checkmark
B key	0	1			1			1		0

Reveal part of bits to estimate QBER

If low enough, perform error-correction + privacy amplification

Error correction + privacy amplification

N noisy unsecure bits -> I(A:B)-I(A:E) error free secure bits

Key genration rate in QKD

Assuming individual attacks, one-way error correction, privacy amplification, the key rate is bounded (Csiszar-Koerner):

$$K \le \max[I(A:B) - I(A:E), I(A:B) - I(B:E)])$$

QBER threshold for **BB84**:

$$I(A:B) = I(A:E) = I(B:E)$$

 $QBER = \frac{1 - 1/\sqrt{2}}{2} \approx 14.6\%$

Secret sharing

A wants to distribute the message to B_1 , B_2 in such a way that they can learn it only if they cooperate

 $m \mathfrak{M} a$

they need a random key $a \oplus b_1 \oplus b_2 = 0$

	a	()	1		
ſ	b_1	0	1	0	1	
	b_2	0	1	1	0	

Secret sharing via BB84^{⊗2}

A performs independent BB84 QKD with B1 and B2

Secret sharing using GHZ

M. Żukowski, et al. Acta Phys. Pol. 93, 187 (1998) *M. Hillery, V. Buzek, A. Berthiaume, Phys. Rev. A* 59, 1829 (1999)

A, B1, B2 randomly measure in σ_x or σ_y eigenbasis. $\langle \sigma_x \otimes \sigma_x \otimes \sigma_x \rangle = 1$ $\langle \sigma_x \otimes \sigma_x \otimes \sigma_y \rangle = 0$ $\langle \sigma_x \otimes \sigma_y \otimes \sigma_y \rangle = -1$ $\langle \sigma_x \otimes \sigma_y \otimes \sigma_x \rangle = 0$ $\langle \sigma_y \otimes \sigma_x \otimes \sigma_y \rangle = -1$ $\langle \sigma_y \otimes \sigma_x \otimes \sigma_x \rangle = 0$ $\langle \sigma_y \otimes \sigma_y \otimes \sigma_x \rangle = -1$ $\langle \sigma_y \otimes \sigma_y \otimes \sigma_y \rangle = 0$

Secret sharing using GHZ

Proof of security via distilation: K. Chen, H. K. Lo, Quant. Inf. Comp. 7, 689 (2008)

Equivalent to sending maximally entangled 2 qubit states

A sends one of four maximally entangled states to B1 and B2

base 1 $|\Phi_{\pm}\rangle = \frac{1}{\sqrt{2}}(|00\rangle \pm |11\rangle)$ $\langle \sigma_x \otimes \sigma_x \rangle = \pm 1$ $\langle -\sigma_y \otimes \sigma_y \rangle = \pm 1$ base 2 $|\Phi_{\pm}^i\rangle = \frac{1}{\sqrt{2}}(|00\rangle \pm i|11\rangle)$ $\langle \sigma_x \otimes \sigma_y \rangle = \pm 1$ $\langle \sigma_y \otimes \sigma_x \rangle = \pm 1$

Why to use entangled states at all?

BB84^{&2} vs. E4 protocol

error in the key when there is an error only in one channels

error $a \oplus b_1 \oplus b_2 = 1$

 $QBER_{BB84^{\otimes 2}} =$ $2QBER_{BB84}(1 - QBER_{BB84}) = 25\%$

equivalent to a single BB84

$$QBER_{E4} = \frac{1 - 1/\sqrt{2}}{2} \approx 14.6\%$$

Entanglement is irrelevant in such setup

LOCC individual attacks without quantum memory

Motivation

- $\bullet\,$ realistic assumptions on eaves dropper $\rightarrow\,$ higher QBER
- in secret sharing 2 channels are remote hard to access coherently
- individual attacks in secret sharing \rightarrow individual LOCC attacks

Find any advantage of using entangled states in cryptography!

Error correction + privacy amplification in secret sharing

 $I(A:B) + 2 \cdot \frac{1}{2} [N + N - I(A:B)] - N = N$

LOCC individual attack

 $|\Phi_{B_1B_2}^{j,a}\rangle \xrightarrow{\mathcal{E}} \rho_{B_1B_2E_1E_2}^{j,a} \xrightarrow{\Pi_{E_1E_2}^{e}} \operatorname{Tr}_{E_1E_2}(\rho_{B_1B_2E_1E_2}^{j,a} \ \mathbb{1} \otimes \Pi_{E_1E_2}^{e}) = \rho_{B_1B_2}^{j,a,e}$

 $\mathcal{E}^{e}(|\Phi_{B_{1}B_{2}}^{j,a}\rangle\langle\Phi_{B_{1}B_{2}}^{j,a}|) := \rho_{B_{1}B_{2}}^{j,a,e} = \operatorname{Tr}_{E_{1}E_{2}}(\mathcal{E}(|\Phi_{B_{1}B_{2}}^{j,a}\rangle\langle\Phi_{B_{1}B_{2}}^{j,a}|) \ \mathbb{1} \otimes \Pi_{E_{1}E_{2}}^{e})$

The attack is characterized by two non trace preserving CP maps $\mathcal{E}^0, \mathcal{E}^1$ which should be realizable by LOCC

LOCC individual attack

 $\mathcal{E}^{e}(|\Phi_{B_{1}B_{2}}^{j,a}\rangle\langle\Phi_{B_{1}B_{2}}^{j,a}|) := \rho_{B_{1}B_{2}}^{j,a,e} = \operatorname{Tr}_{E_{1}E_{2}}(\mathcal{E}(|\Phi_{B_{1}B_{2}}^{j,a}\rangle\langle\Phi_{B_{1}B_{2}}^{j,a}|) \ \mathbb{1} \otimes \Pi_{E_{1}E_{2}}^{e})$

Three partite probability:

$$p_{ABE}(a, b, e) = \sum_{j} \frac{1}{4} \operatorname{Tr} \left[\mathcal{E}^{e}(|\Phi_{B_{1}B_{2}}^{j,a}\rangle \langle \Phi_{B_{1}B_{2}}^{j,a}|) \Pi_{B_{1}B_{2}}^{j,b} \right]_{1B_{2}}$$
sum over 2 basis Bobs measurement

Optimal LOCC individual attack

$$p_{ABE}(a,b,e) = \sum_{j} \frac{1}{4} \operatorname{Tr} \left[\mathcal{E}^{e}(|\Phi_{B_{1}B_{2}}^{j,a}\rangle \langle \Phi_{B_{1}B_{2}}^{j,a}|) \Pi_{B_{1}B_{2}}^{j,b} \right]$$

Optmization problem

- For a given I(A:B) i.e. a given $QBER = \sum_{a \neq b,e} p(a,b,e)$
- Find LOCC operations, \mathcal{E}^0 , \mathcal{E}^1
- Maximizing I(E:B) i.e. minimizing E error on B: $p(e \neq b) = \sum_{e \neq b,a} p(a, b, e)$

Using Choi-Jamiołkowski isomorphism

$$\mathcal{E}^{0} \mapsto P_{\mathcal{E}^{0}}, \ \mathcal{E}^{1} \mapsto P_{\mathcal{E}^{1}} \qquad P_{\mathcal{E}} = \mathcal{E} \otimes \mathcal{I}\left(|\Psi\rangle\langle\Psi|\right), \quad |\Psi\rangle = \sum_{i} |i\rangle \otimes |i\rangle$$

 $P_{\mathcal{E}} \ge 0$ Tr_{out} $P_{\mathcal{E}} = \mathbb{1}_{\text{in}}$ (trace preservation) $\mathcal{E}(\rho_{\text{in}}) = \operatorname{Tr}_{\text{in}}(P_{\mathcal{E}} \mathbb{1}_{\text{out}} \otimes \rho_{\text{in}}^T)$

• Imposing PPT is simple very dificult; $P_{\mathcal{E}^0}^T \ge 0, \qquad P_{\mathcal{E}^1}^T \ge 0$

M. Plenio, Phys. Rev. Lett. **95**, 090503 (2005) (monotonicity of logarithmic negativity) RDD, A. Sen (De), U. Sen, M. Lewenstein, Phys. Rev. A, **73** 032313 (2006) (LOCC cloning of entangled states)

Optimal LOCC individual attack

$$p_{ABE}(a,b,e) = \sum_{j} \frac{1}{4} \operatorname{Tr} \left[P_{\mathcal{E}^{e}} \Pi_{B_{1}B_{2}}^{j,b} \otimes |\Phi_{B_{1}B_{2}}^{j,a}\rangle \langle \Phi_{B_{1}B_{2}}^{j,a}|^{T} \right]$$

Optmization problem

- For a given I(A:B) i.e. a given $QBER = \sum_{a \neq b,e} p(a,b,e)$
- Find LOCC operations, \mathcal{E}^0 , \mathcal{E}^1
- Maximizing I(E:B) i.e. minimizing E error on B: $p(e \neq b) = \sum_{e \neq b,a} p(a, b, e)$

Using Choi-Jamiołkowski isomorphism

 $\begin{array}{ll} \text{CP map condition} & P_{\mathcal{E}^0} \ge 0 & P_{\mathcal{E}^1} \ge 0 & \text{Tr}_{\text{out}}(P_{\mathcal{E}^0} + P_{\mathcal{E}^1}) = \mathbb{1}_{\text{in}} \\ \text{PPT condition} & P_{\mathcal{E}^0}^T \ge 0, & P_{\mathcal{E}^1}^T \ge 0 \end{array}$

The problem is a semi-definite program

Optimization over two, 16×16 matrices

If we explicitly show that the optimal solution is LOCC we are done!

Entangled states protocol allows for higher QBER!

• **BB84** ^{⊗2}

 $QBER_{BB84^{\otimes 2}} = 5/18 \approx 27.7\%$ (without LOCC constraint: 25%)

requires communicating 2 bits

• E4

 $QBER_{E4} = 2(\sqrt{2} - 5/4) \approx 32.8\%$ (without LOCC constraint: 14,6%)

requires communicating $\log_2 27$ bits

Practical application

two independent isotropically depolarizing channels

Under the action of $\mathcal{D}^{\otimes 2}$, $QBER = \alpha(1 - \alpha/2)$ in both $BB84^{\otimes 2}$ and $E4^{\otimes 2}$

We can perform secret sharing via E4 using more noisy channels

• **BB84** ^{⊗2}

 $QBER_{BB84^{\otimes 2}} = 5/18 \approx 27.7\%$ (without LOCC constraint: 25%)

requires communicating 2 bits

• E4

 $QBER_{E4} = 2(\sqrt{2} - 5/4) \approx 32.8\%$ (without LOCC constraint: 14,6%)

requires communicating $\log_2 27$ bits

Summary

- Without imposing LOCC constraints on eavesdropper, entagled states are useless in secret sharing
- If LOCC condition is imposed, and individual attack scenario considered, entagled states offer higher tolerable QBER

 $QBER_{BB84^{\otimes 2}} = 5/18 \approx 27.7\%$ $QBER_{E4} = 2(\sqrt{2} - 5/4) \approx 32.8\%$

- One way error-correction can be perfomed only from B1,B2 → A, which leads to a simplified Csiszar-Koerner theorem
- Another example of strength of PPT condition when looking for optimal LOCC operations

• Open problems:

- secret sharing protocols yielding highest QBER under individual LOCC attacks
- relation with LOCC distinguishability of entangled states
- R. Demkowicz-Dobrzański, A. Sen (De), U. Sen, M. Lewenstein , arxiv:0802.1811