Entanglement

Rafał Demkowicz-Dobrzański

Nicolaus Copernicus University, Toruń, Poland

Aditi Sen (De), Ujjwal Sen, Maciej Lewnestein

ICFO-Institut de Ciencies Fotoniques, Barcelona, Spain

Entanglement enhances security in secret sharing

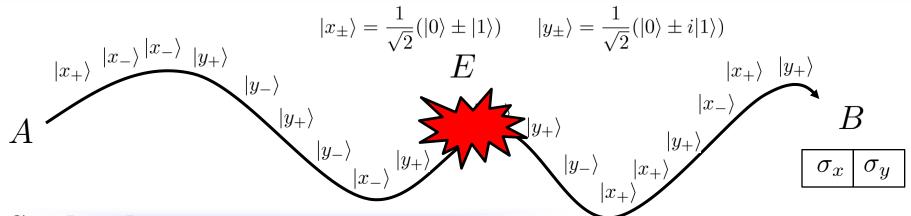
Rafał Demkowicz-Dobrzański

Nicolaus Copernicus University, Toruń, Poland

Aditi Sen (De), Ujjwal Sen, Maciej Lewnestein

ICFO-Institut de Ciencies Fotoniques, Barcelona, Spain

BB84 QKD



Send and measure

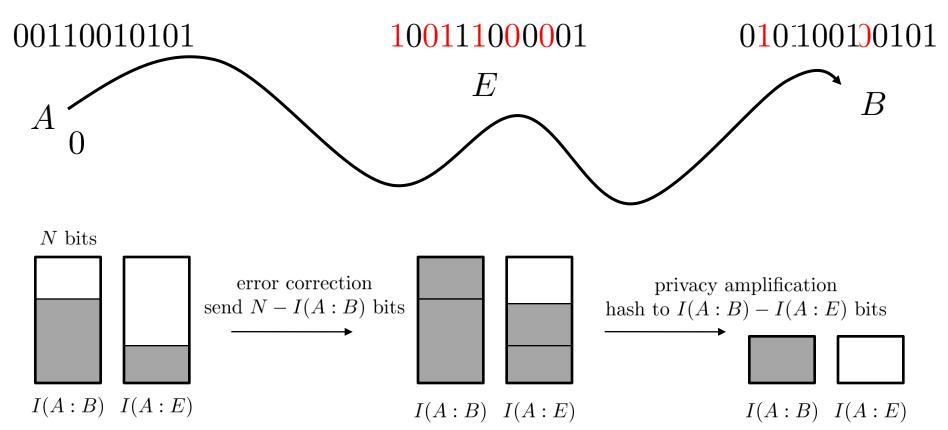
A key	0	0			1			0		0
A	x_+	y_+	y_+	y_{-}	x_{-}	x_{-}	x_{+}	y_+	y_+	x_+
B	σ_x	σ_y	σ_x	σ_x	σ_x	σ_y	σ_y	σ_y	σ_x	σ_x
compatible?	√	√			√			√		√
B key	0	1			1			1		0

Remove bits obtained in incompatible basis

Reveal part of bits to estimate QBER

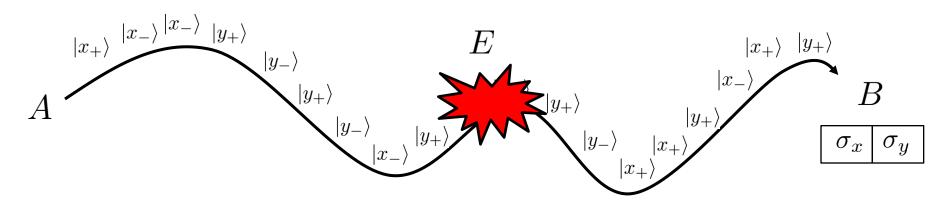
If low enough, perform error-correction + privacy amplification

Error correction + privacy amplification



N noisy unsecure bits \rightarrow I(A:B)-I(A:E) error free secure bits

Key generation rate in QKD



Assuming individual attacks, one-way error correction, privacy amplification, the key rate is bounded (Csiszar-Koerner):

$$K \le \max[I(A:B) - I(A:E), I(A:B) - I(B:E)])$$

QBER threshold for BB84:

$$I(A:B) = I(A:E) = I(B:E)$$

$$QBER = \frac{1 - 1/\sqrt{2}}{2} \approx 14.6\%$$

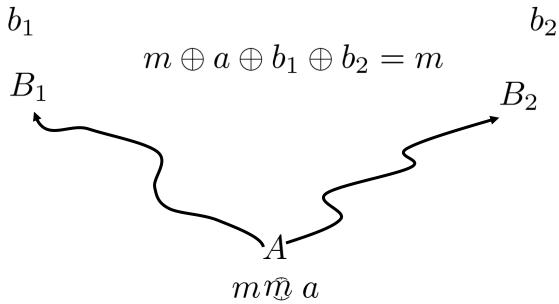
Is entanglement useful in QKD

- Entanglement based QKD protocols (e.g. Ekert) yield the same QBER thresholds as the corresponding prepare and measure protocols (e.g. BB84)
- Entanglement proves useful only when considering device independent secure QKD

In what scenarios entanglement can improve QBER thresholds?

Secret sharing

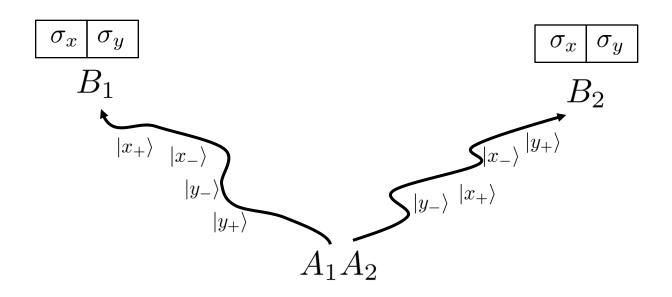
A wants to distribute the message to B_1 , B_2 in such a way that they can learn it only if they cooperate



they need a random key $a \oplus b_1 \oplus b_2 = 0$

$\mid a \mid$	()	1		
$ b_1 $	0	1	0	1	
b_2	0	1	1	0	

Secret sharing via BB84^{⊗2}



A performs independent BB84 QKD with B1 and B2

$$a_1 \oplus b_1 = 0$$

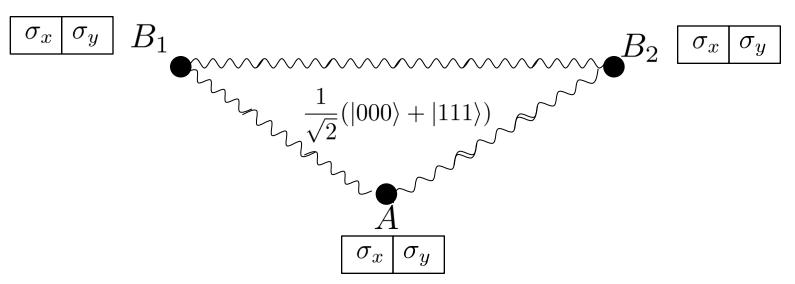
$$a_2 \oplus b_1 = 0$$

$$a = a_1 \oplus a_2$$

we have the key $a \oplus b_1 \oplus b_2 = 0$

Secret sharing using GHZ

M. Żukowski, et al. Acta Phys. Pol. 93, 187 (1998)
M. Hillery, V. Buzek, A. Berthiaume, Phys. Rev. A 59, 1829 (1999)



A, B1, B2 randomly measure in σ_x or σ_y eigenbasis.

$$\langle \sigma_x \otimes \sigma_x \otimes \sigma_x \rangle = 1 \qquad \langle \sigma_x \otimes \sigma_x \otimes \sigma_y \rangle = 0$$

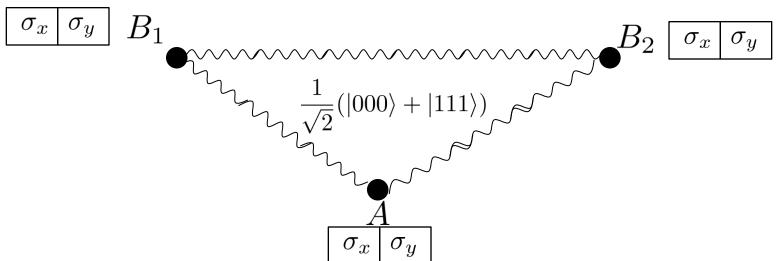
$$\langle \sigma_x \otimes \sigma_y \otimes \sigma_y \rangle = -1 \qquad \langle \sigma_x \otimes \sigma_y \otimes \sigma_x \rangle = 0$$

$$\langle \sigma_y \otimes \sigma_x \otimes \sigma_y \rangle = -1 \qquad \langle \sigma_y \otimes \sigma_x \otimes \sigma_x \rangle = 0$$

$$\langle \sigma_y \otimes \sigma_y \otimes \sigma_x \rangle = -1 \qquad \langle \sigma_y \otimes \sigma_y \otimes \sigma_y \rangle = 0$$

Secret sharing using GHZ

Proof of security via distilation: K. Chen, H. K. Lo, Quant. Inf. Comp. 7, 689 (2008)



A, B1, B2 randomly measure in σ_x or σ_y eigenbasis.

$$\langle \sigma_x \otimes \sigma_x \otimes \sigma_x \rangle = 1$$

$$\langle \sigma_x \otimes \sigma_y \otimes \sigma_y \rangle = -1$$

$$\langle \sigma_y \otimes \sigma_x \otimes \sigma_y \rangle = -1$$

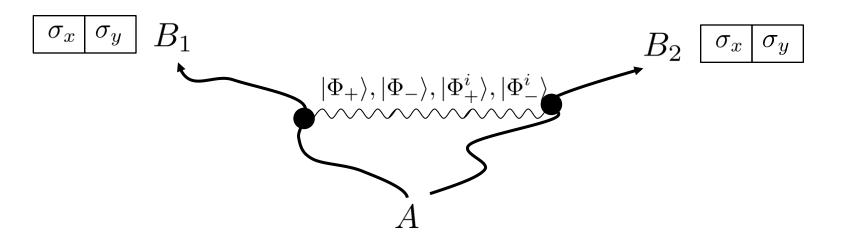
$$\langle \sigma_y \otimes \sigma_y \otimes \sigma_y \otimes \sigma_y \rangle = -1$$

$$\langle \sigma_y \otimes \sigma_y \otimes \sigma_y \otimes \sigma_y \rangle = -1$$

a	()	1			
b_1	0	1	0	1		
b_2	0	1	1	0		

$$a \oplus b_1 \oplus b_2 = 0$$

Equivalent to sending maximally entangled 2 qubit states

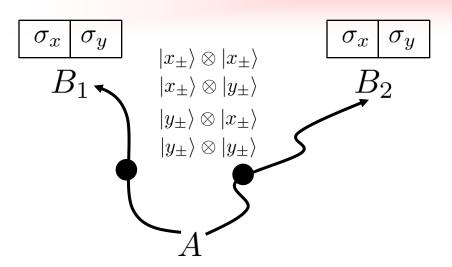


A sends one of four maximally entangled states to B1 and B2

base 1
$$|\Phi_{\pm}\rangle = \frac{1}{\sqrt{2}}(|00\rangle \pm |11\rangle)$$
 $\langle \sigma_x \otimes \sigma_x \rangle = \pm 1$ $\langle -\sigma_y \otimes \sigma_y \rangle = \pm 1$
base 2 $|\Phi_{\pm}^i\rangle = \frac{1}{\sqrt{2}}(|00\rangle \pm i|11\rangle)$ $\langle \sigma_x \otimes \sigma_y \rangle = \pm 1$ $\langle \sigma_y \otimes \sigma_x \rangle = \pm 1$

Why to use entangled states at all?

BB84 ^{⊗2} vs. E4 protocol

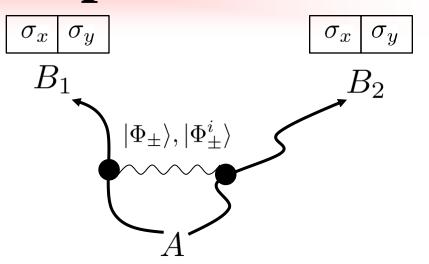


error in the key when there is an error only in one channels

error
$$a \oplus b_1 \oplus b_2 = 1$$

$$QBER_{BB84} \otimes_2 =$$

 $2QBER_{BB84}(1 - QBER_{BB84}) = 25\%$



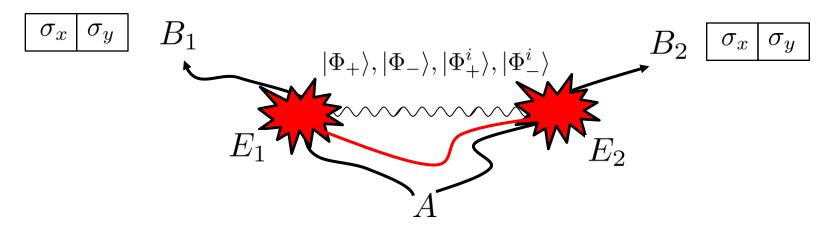
equivalent to a single BB84

$$\begin{array}{c|c|c} j & |\Phi^{j,0}\rangle & |\Phi^{j,1}\rangle & \text{measurements} \\ \hline 1 & |\Phi_{+}\rangle & |\Phi_{-}\rangle & \sigma_x \otimes \sigma_x, \ -\sigma_y \otimes \sigma_y \\ 2 & |\Phi^i_{+}\rangle & |\Phi^i_{-}\rangle & \sigma_x \otimes \sigma_y, \quad \sigma_y \otimes \sigma_x, \end{array}$$

$$QBER_{E4} = \frac{1 - 1/\sqrt{2}}{2} \approx 14.6\%$$

Entanglement is irrelevant in such setup

LOCC individual attacks without quantum memory

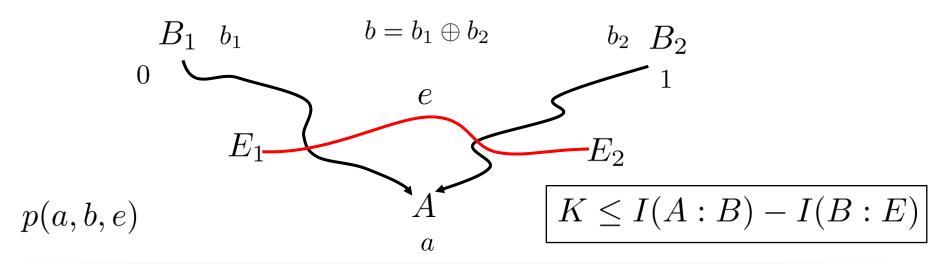


Motivation

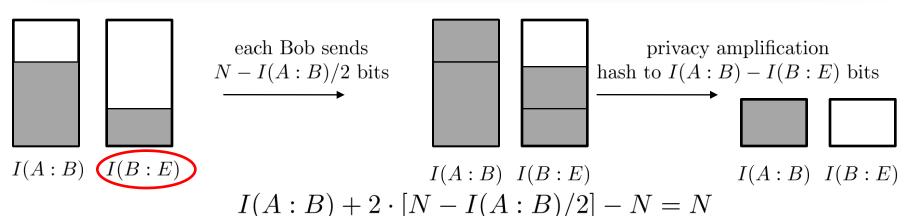
- realistic assumptions on eavesdropper \rightarrow higher QBER
- in secret sharing 2 channels are remote hard to access coherently
- \bullet individual attacks in secret sharing \rightarrow individual LOCC attacks

Find any advantage of using entangled states in cryptography!

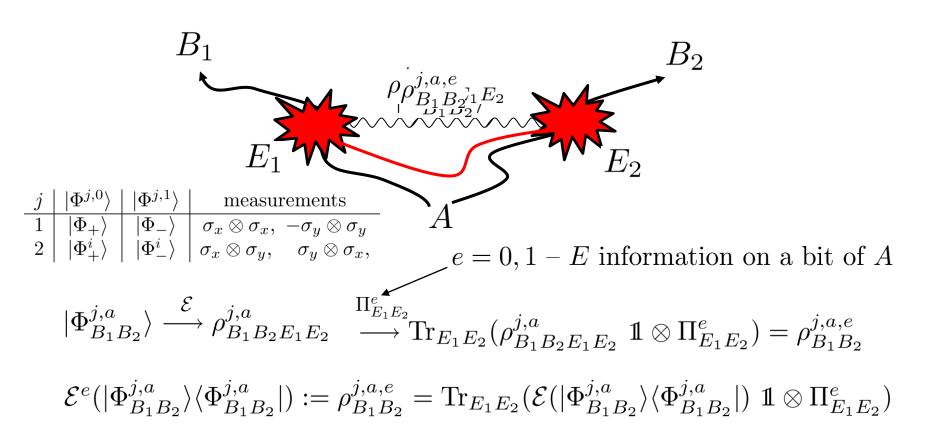
Error correction + privacy amplification in secret sharing



Error correction can be done only from B₁, B₂ to A

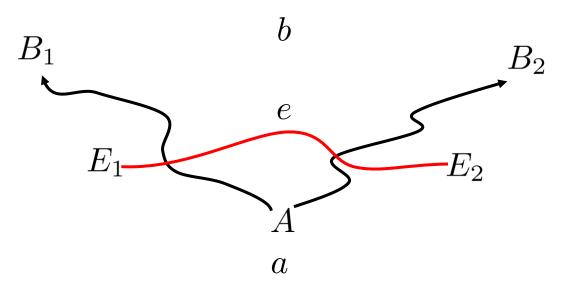


LOCC individual attack



The attack is characterized by two non trace preserving CP maps $\mathcal{E}^0, \mathcal{E}^1$ which should be realizable by LOCC

LOCC individual attack



$$\mathcal{E}^{e}(|\Phi_{B_{1}B_{2}}^{j,a}\rangle\langle\Phi_{B_{1}B_{2}}^{j,a}|):=\rho_{B_{1}B_{2}}^{j,a,e}=\mathrm{Tr}_{E_{1}E_{2}}(\mathcal{E}(|\Phi_{B_{1}B_{2}}^{j,a}\rangle\langle\Phi_{B_{1}B_{2}}^{j,a}|)\ \mathbb{1}\otimes\Pi_{E_{1}E_{2}}^{e})$$

Three partite probability:

$$p_{ABE}(a,b,e) = \sum_{j} \frac{1}{4} \operatorname{Tr} \left[\mathcal{E}^{e}(|\Phi_{B_{1}B_{2}}^{j,a}\rangle \langle \Phi_{B_{1}B_{2}}^{j,a}|) \ \Pi_{B_{1}B_{2}}^{j,b} \right]_{^{1}B_{2}}^{b}$$
sum over 2 basis Bobs measurement

Optimal LOCC individual attack

$$p_{ABE}(a, b, e) = \sum_{j} \frac{1}{4} \text{Tr} \left[\mathcal{E}^{e}(|\Phi_{B_{1}B_{2}}^{j,a}\rangle\langle\Phi_{B_{1}B_{2}}^{j,a}|) \ \Pi_{B_{1}B_{2}}^{j,b} \right]$$

Optmization problem

- For a given I(A:B) i.e. a given $QBER = \sum_{a \neq b,e} p(a,b,e)$
- Find LOCC operations, \mathcal{E}^0 , \mathcal{E}^1
- Maximizing I(E:B) i.e. minimizing E error on B: $p(e \neq b) = \sum_{e \neq b, a} p(a, b, e)$

Using Choi-Jamiołkowski isomorphism

$$\mathcal{E}^{0} \mapsto P_{\mathcal{E}^{0}}, \ \mathcal{E}^{1} \mapsto P_{\mathcal{E}^{1}} \qquad P_{\mathcal{E}} = \mathcal{E} \otimes \mathcal{I}(|\Psi\rangle\langle\Psi|), \quad |\Psi\rangle = \sum_{i} |i\rangle \otimes |i\rangle$$

$$P_{\mathcal{E}} \geq 0 \quad \text{Tr}_{\text{out}}P_{\mathcal{E}} = \mathbb{1}_{\text{in}} \text{ (trace preservation)} \quad \mathcal{E}(\rho_{\text{in}}) = \text{Tr}_{\text{in}}(P_{\mathcal{E}} \ \mathbb{1}_{\text{out}} \otimes \rho_{\text{in}}^{T})$$

• Imposing PPT is simple very difficult; $P_{\mathcal{E}^0}^T \geq 0$, $P_{\mathcal{E}^1}^T \geq 0$

M. Plenio, Phys. Rev. Lett. **95**, 090503 (2005) (monotonicity of logarithmic negativity) RDD, A. Sen (De), U. Sen, M. Lewenstein, Phys. Rev. A, **73** 032313 (2006) (LOCC cloning of entangled states)

Optimal LOCC individual attack

$$p_{ABE}(a, b, e) = \sum_{j} \frac{1}{4} \text{Tr} \left[P_{\mathcal{E}^e} \ \Pi_{B_1 B_2}^{j, b} \otimes |\Phi_{B_1 B_2}^{j, a}\rangle \langle \Phi_{B_1 B_2}^{j, a}|^T \right]$$

Optmization problem

- For a given I(A:B) i.e. a given $QBER = \sum_{a \neq b,e} p(a,b,e)$
- Find LOCC operations, \mathcal{E}^0 , \mathcal{E}^1
- Maximizing I(E:B) i.e. minimizing E error on B: $p(e \neq b) = \sum_{e \neq b, a} p(a, b, e)$

Using Choi-Jamiołkowski isomorphism

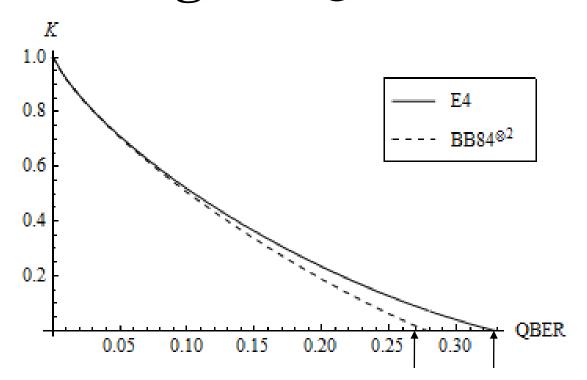
CP map condition
$$P_{\mathcal{E}^0} \ge 0$$
 $P_{\mathcal{E}^1} \ge 0$ $\operatorname{Tr}_{\operatorname{out}}(P_{\mathcal{E}^0} + P_{\mathcal{E}^1}) = \mathbb{1}_{\operatorname{in}}$
PPT condition $P_{\mathcal{E}^0}^T \ge 0$, $P_{\mathcal{E}^1}^T \ge 0$

The problem is a semi-definite program

Optimization over two, 16×16 matrices

If we explicitly show that the optimal solution is LOCC we are done!

Entangled states protocol allows for higher QBER!



• BB84 ^{⊗2}

 $QBER_{BB84} \otimes 2 = 5/18 \approx 27.7\%$ (without LOCC constraint: 25%)

requires communicating 2 bits

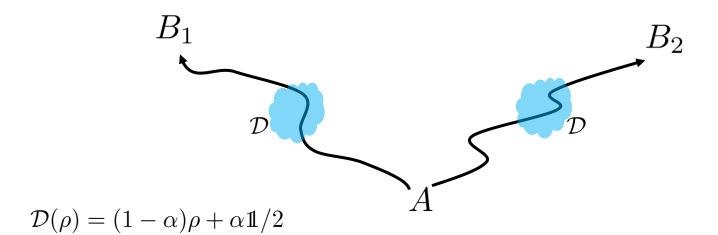
• E4

 $QBER_{E4} = 2(\sqrt{2} - 5/4) \approx 32.8\%$ (without LOCC constraint: 14,6%)

requires communicating $\log_2 27$ bits

Practical application

two independent isotropically depolarizing channels



Under the action of $\mathcal{D}^{\otimes 2}$, $QBER = \alpha(1 - \alpha/2)$ in both $BB84^{\otimes 2}$ and $E4^{\otimes 2}$

We can perform secret sharing via E4 using more noisy channels

• BB84 ^{⊗2}

 $QBER_{BB84^{\otimes 2}} = 5/18 \approx 27.7\%$

(without LOCC constraint: 25%)

requires communicating 2 bits

• E4

 $QBER_{E4} = 2(\sqrt{2} - 5/4) \approx 32.8\%$

(without LOCC constraint: 14,6%)

requires communicating log₂ 27 bits

Summary

- Without imposing LOCC constraints on eavesdropper, entangled states are useless in secret sharing
- If LOCC condtion is imposed, and individual attack scenario considered, entagled states offer higher tolerable QBER

$$QBER_{BB84\otimes 2} = 5/18 \approx 27.7\%$$
 $QBER_{E4} = 2(\sqrt{2} - 5/4) \approx 32.8\%$

- One way error-correction can be perfomed only from B1,B2 \rightarrow A, which leads to a simplified Csiszar-Koerner theorem
- Another example of strength of PPT condition when looking for optimal LOCC operations
- Open problems:
- secret sharing protocols yielding highest QBER under individual LOCC attacks
- relation with LOCC distinguishability of entangled states